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Pipelining Analogy

» Pipelined laundry: overlapping execution
— Parallelism improves performance
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Pipelining: Improving Performance

Non-Pipelined 2 hours 0.5
Pipelined 2 hours T
/ Assuming all stages of pipeline

Length of time for each

are busy at all times.
load does not change.

Latency = time from start of one load to the end of same load.
Maximum Throughput = # of loads completed per hour.




Pipelining: Improving Performance

* Objective: Keep all stages of the pipeline
busy at all times

* Pipelining improves performance by
increasing instruction throughput, rather
than decreasing execution time of an
individual instruction.




MIPS Pipeline

Five stages, one step per stage
I . Instruction fetch from memory
ID . Instruction decode & register read
EX: Execute operation or calculate address
MEM : Access memory operand
WB : Write result back to register



IF: Instruction fetch

MIPS Pipeline

ID: Instruction decode/
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MEM: Memory access

Address

Data
Memory

Write
data

Read

data

WB: Write back

Add
g ADD
result
Shift
left 2
»| Read Read .
Address register 1 data 1 7o
Read
AL
register 2 u ALLli
i resu
Instruction b Registers 0
o—»| Write Read M
Instruction register data 2 u
memory ) X
o | Write 1
data
1
6 Sign- 82

3 A\
\@\




Pipelining and ISA Design

MIPS ISA designed for pipelining

All instructions are 32-bits
Easier to fetch and decode in one cycle
x86: 1- to 17-byte instructions

Few and regular instruction formats
Can decode and read registers in one step
Alignment of memory operands

i.e. on word boundaries
Memory access takes only one cycle



MIPS Pipelined Datapath

IF: Instruction fetch

ID: Instruction decode/

register file read

EX: Execute/

address calculation
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Pipeline registers

Need registers between stages
To hold information produced in previous cycle
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Pipeline Operation

Cycle-by-cycle flow of instructions through the
pipelined datapath
“Single-clock-cycle” pipeline diagram
Shows pipeline usage in a single cycle
Highlight resources used
“Multi-clock-cycle” diagram
Graph of operation over time

We'll look at “single-clock-cycle” diagrams for
load word and store word.




IF for Load, Store, ...
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ID for Load, Store, ...
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EX for Load
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MEM for Loa
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WB for Load

rite back
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orrected Datapath for Load
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EX for Store
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MEM f
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WB for Store
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Multi-Cycle Pipeline Diagram

» Form showing resource usage

Time (in clock cycles)
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Multi-Cycle Pipeline Diagram

Traditional form

Program
execution
order

(in instructions)
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Single-Cycle Pipeline Diagram

State of pipeline in a given cycle

add $14, $5, 6 | lw $13, 24 ($1) | add $12, $3, $4 | sub $11, $2, $3 | lw $10, 20($1) |
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Pipelining Control
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