Computer Science

Advanced Computer Architecture

Pipelining

Pipelining Analogy

» Pipelined laundry: overlapping execution
— Parallelism improves performance

6 PM 7 8 9 10 11 12 1 2 AM

order —

~ BT

. Bo==Ml_

o ol

5 S =l

A 6 PM 7 8 9 10 11 12 1 2 AM

Time —W | [| | |
Task
order

~ BSe=[l

" [®E=

o=
- [EEl

O 0 W

Pipelining: Improving Performance

Non-Pipelined 2 hours 0.5
Pipelined 2 hours T
/ Assuming all stages of pipeline

Length of time for each

are busy at all times.
load does not change.

Latency = time from start of one load to the end of same load.
Maximum Throughput = # of loads completed per hour.

Pipelining: Improving Performance

* Objective: Keep all stages of the pipeline
busy at all times

* Pipelining improves performance by
increasing instruction throughput, rather
than decreasing execution time of an
individual instruction.

MIPS Pipeline

Five stages, one step per stage
I . Instruction fetch from memory
ID . Instruction decode & register read
EX: Execute operation or calculate address
MEM : Access memory operand
WB : Write result back to register

IF: Instruction fetch

MIPS Pipeline

ID: Instruction decode/

register file read

EX: Execute/

address calculation

|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
T
|
|
|
|
|
|
|
|
|
|
|
|
|
4

MEM: Memory access

Address

Data
Memory

Write
data

Read

data

WB: Write back

Add
g ADD
result
Shift
left 2
»| Read Read .
Address register 1 data 1 7o
Read
AL
register 2 u ALLli
i resu
Instruction b Registers 0
o—»| Write Read M
Instruction register data 2 u
memory) X
o | Write 1
data
1
6 Sign- 82

3 A\
\@\

Pipelining and ISA Design

MIPS ISA designed for pipelining

All instructions are 32-bits
Easier to fetch and decode in one cycle
x86: 1- to 17-byte instructions

Few and regular instruction formats
Can decode and read registers in one step
Alignment of memory operands

i.e. on word boundaries
Memory access takes only one cycle

MIPS Pipelined Datapath

IF: Instruction fetch

ID: Instruction decode/

register file read

EX: Execute/

address calculation

Add
4 —]
»| Read Read
Address register 1 data 1
Read
register 2
Instruction Registers
Write Read
Instruction register data 2
memory)
o | Write
data

Shift
left 2

y

MEM: Memory access

Zero H——
0 result
M
u
X
1

Address

Data
Memory

Write
data

Read |
data

WB: Write back

Pipeline registers

Need registers between stages
To hold information produced in previous cycle

EEEEEEE /MEM MEM/WB
I——
Add
—
-
5
PC »-| Address = Read
S i Rea
. £ register
e dat
= Read ——
Instruction register foad
- —t gisters Read | b Lo 1/t [e | [Address -
memory o | Write dat dat.
" | regist st
. Write memory
data
Write
data
16 sign- | 32
eeeee d

Pipeline Operation

Cycle-by-cycle flow of instructions through the
pipelined datapath
“Single-clock-cycle” pipeline diagram
Shows pipeline usage in a single cycle
Highlight resources used
“Multi-clock-cycle” diagram
Graph of operation over time

We'll look at “single-clock-cycle” diagrams for
load word and store word.

IF for Load, Store, ...

Iw

Instruction fetch

>Add

Address

Instruction
memory

IF/ID

ID/EX

Instruction

Shift
left 2

. | Read
register 1 Read
data 1
Read
register 2
Registers Rgaq
Write data 2
register
) Write
data
16 i
> . | Sign- 32
| extend

d Add
result

EX/MEM
—
> @ Address
Data
memory
_ _ | Write
v 7| data

Read
data

MEM/WB

11

ID for Load, Store, ...

Iw

Instruction decode

MEM/WB

Data
memory

Read
data

IF/ID ID/EX EX/MEM
Add >
! 9 o
Shift
left 2
c
Address .% Read
2 register 1 Read
B data 1
= Read ——
Instruction _ register %e .
memory ») gisters pgag > L @—| Address
Write data 2
register
Write
| data
o | Write
- 7| data
16 Sign- 32
| extend

12

EX for Load

Iw

Execution

xec=°

s

PC

gAdd

EX/MEM

A
ﬂ

Y

IF/ID ID/EX
— >
Add g g
4 —|
Shift
left 2
Address 5 Read
-% " | register 1 Read
5 data 1
= . | Read
Instruction < registeﬁsgisters
memory B Write Read >
register data 2
Write
data
1 .
? _ [sign- 32 _—
T | extend

Address

Data
memory

Write
data

Read
data

MEM/WB

“x c 2°

13

MEM for Loa

Add

Address

Instruction
memory

IF/ID

Y

ID/EX

Instruction

Shift
left 2

Read
" | register 1 Read
data 1
Read
register 2
Registers goaq
Write data 2
register
Write
data
16 | sign-

v | extend

Write
data

| lw |

I Memory I
EX/MEM MEMAWB

-
Read
> @ Address data [
Data
memory

Y

14

WB for Load

rite back
IF/ID ID/EX EX/MEM MEM/WB
Add >
4 —> s
Shift
left 2
c
Address -% Read
= register 1 Read >
@ data 1
£ Read > -
Instruction o Read
memory > egisters pgaq . > @ Address d:?a R 0
t data 2 o M
register Data u
Writ memory X
/ . 1
k Write
o data
Sign- | >
extend
Wrong
register — - |
number

15

orrected Datapath for Load

A

Add

Address

Instruction
memory

IF/ID

Write
data

EX/MEM

extend

Sign-

\

ID/EX
Shift
left 2
c
-% o | Read Read
2 " | register 1 ea >
E 9 data 1
= Read
I register 2
Registers po,q
o | Write data 2 > i
" | register
—

Address
Data
memory
Write
data

Read
data

MEM/WB

16

EX for Store

| ™ |
| Execution |
IF/ID ID/EX EX/MEM MEM/WB
Add > >
4 Adg#Add -
Shift result "
left 2

0
M
u = Address c . | Read Read

(=] .

= register 1 > >
1x S g data 1

= »| Read Zero > —

Instruction = £ register 2 ALU ALU _ Read
memory —® | write RegISierSRea d - result > Address data |]
register data 2 Data
: memor
—» Write P Y
data
- _ Write
- 7| data
1? _ | Sign- 32 -
V| extend

“xc =°

MEM f

or Store

Add

Address

Instruction
memory

Y

F/ID

ID/EX

Instruction

Shift
left 2

Read
" | register 1 Read
data 1
Read
register 2
Registers goaq
Write data 2
register
Write
data
16 i
X . | Sign- %2
| extend

Write
data

| sSw |

I Memory I
EX/MEM MEM/WB
T -

Read
> @ Address data [
Data
memory

Y

18

WB for Store

sw
w

rite-back
IF/ID ID/EX EX/MEM MEM/WB
Add > > .
e Add o
Shift
left 2
c
Address ,% Read
3 register 1 Read >
ki data 1
= Read >
Instruction register2 .
- - ead
memory o Registers peqq - > -@—»| Address data ||
Write data 2 -
register Data
Write memory
data
o Write
o data

19

Multi-Cycle Pipeline Diagram

» Form showing resource usage

Time (in clock cycles)
CC1 CcC2 CC3 CC4 CC5 CCe6 cc7 cCcs

CCo9

Program
execution
order

(in instructions)

Iw $10, 20($1) [l'—l—D
sub $11, $2, $3 |Ir.—|—E _.:I:’-I—QI—IEJE
add $12, $3, $4 :Fi_gi
| addsta, 5, 36 Ell—I—!inI’ ,—I—wl—l;g]

20

Multi-Cycle Pipeline Diagram

Traditional form

Program
execution
order

(in instructions)

lw $10, 20($1)
sub $11, $2, $3
add $12, $3, $4
lw $13, 24($1)

add $14, $5, $6

Time (in clock cycles)

CC 1 cCc2 CcC3 CC4 CC5 CCe CC7 CC8 CC9
Instruction | Instruction Execution Data Write back
fetch decode access
Instruction | Instruction Execution Data Write back
fetch decode access
Instruction | Instruction Execution Data Write back
fetch decode access
Instruction | Instruction . Data .
fetch decode Execution access Write back
Instruction | Instruction Execution Data Write back
fetch decode access

21

Single-Cycle Pipeline Diagram

State of pipeline in a given cycle

add $14, $5, 6 | lw $13, 24 ($1) | add $12, $3, $4 | sub $11, $2, $3 | lw $10, 20($1) |

Instruction fetch | Instruction decode | Execution | Memory | Write-back |
IF/ID ID/EX EX/MEM MEM/WB
Add
‘ st
Shift
left 2
(0
M
u PC » Address Read
x S register 1 Read
-\ 1 = data 1
E Read Zero =
& > °
Instruction = register2 ALU
Registers ALU Read
memory mi | wiite 9 g:t:dz > result Address data [|

register Data

Write memory

data [

Write
data
1? sign- | 32
X extend _

Instruction

IF/1D

Control

Pipelining Control

WB

EX

ID/EX

WwB L
» M — wB|
» —— — ™ '_‘
EX/MEM MEM/WB

Pipelining Control

LE:I; MER
B ’
| E.iE MAWE

IFAD0

Aeld ¥ » ¥

A

Read
raglsrer 1 Rusen]

I

K

| Nddross

L 4

Read data 1
register 2

~ Registers peaq
Writn data 2
regiser

b

Instrucion

Instruction
memory

I
l

Rexad
data

- o Address

Data
T

Write
data

:

B | ilirite
| data

Irstruction -
[15-i] {F
T

Instruction
[20-16)

Instruction
[15-11]

