Chapter 4: Data-Level Parallelism in Vector, SIMD, and GPU Architectures

Introduction

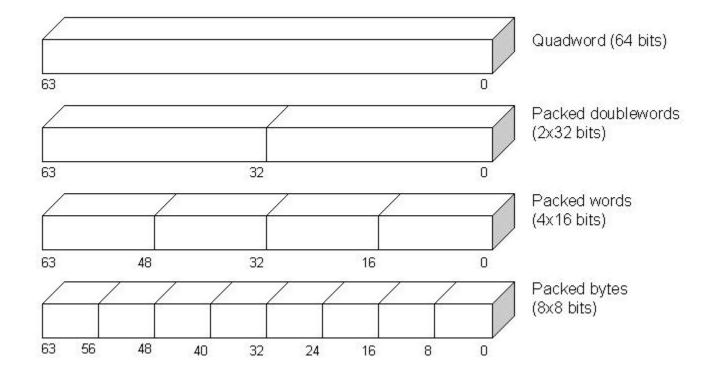
- SIMD architectures can exploit significant datalevel parallelism for:
 - matrix-oriented scientific computing
 - media-oriented image and sound processors
- SIMD is more energy efficient than MIMD
 - Only needs to fetch one instruction per data operation
 - Makes SIMD attractive for personal mobile devices
- SIMD allows programmer to continue to think sequentially

SIMD Parallelism

- Vector architectures
 - SIMD first used in these architectures
 - Very expensive machines for super computing
- SIMD extensions
 - Extensions made to mainstream computers
 - For x86 processors Multimedia Extensions (MMX), Streaming SIMD Extensions (SSE) and Advanced Vector Extensions (AVX)
- Graphics Processor Units (GPUs)
 - Used for processing graphics.
 - GPUs have their own memory in addition to the general purpose CPU and its memory

Vector Processing

- A vector processor is a CPU that implements an instruction set containing instructions that operate on one-dimensional arrays of data called vectors.
- This is in contrast to a scalar processor, whose instructions operate on single data items.
- Vector machines appeared in the early 1970s and dominated supercomputer design through the 1970s into the 90s, notably the various Cray platforms.


Vector Architectures

- Basic idea:
 - Read sets of data elements into "vector registers"
 - Operate on those registers
 - Disperse the results back into memory

SIMD Extensions

- Media applications operate on data types narrower than the native word size
- Limitations, compared to vector instructions:
 - Number of data operands encoded into op code
 - No sophisticated addressing modes that vector processors were using.

Intel MMX Technology

SIMD Implementations

- Implementations:
 - Intel MMX (1996) (on 64 bit registers)
 - Eight 8-bit integer ops or four 16-bit integer ops
 - Same registers used for floating point
 - Streaming SIMD Extensions (SSE) (1999) (128 bits)
 - Eight 16-bit integer ops
 - Four 32-bit integer/fp ops or two 64-bit integer/fp ops
 - Separate registers for floating points and SIMD operations
 - Advanced Vector Extensions (2010) (256 bits)
 - Four 64-bit integer/fp ops
 - Operands must be consecutive and aligned memory locations

Graphical Processing Units

- Provided to improve the performance of graphics in a system
- Computationally very capable
- Efforts are being made to use them for general purpose computing.
- Basic idea adopted by NVIDIA:
 - Heterogeneous execution model
 - CPU is the *host*, GPU is the *device*
 - Develop a C-like programming language for GPU i.e.
 Compute Unified Device Architecture or simply CUDA
 - Unify all forms of GPU parallelism as CUDA thread
 - Programming model is "Single Instruction Multiple Thread"