Chapter 4: Data-Level Parallelism in
Vector, SIMD, and GPU Architectures



Introduction

* SIMD architectures can exploit significant data-
level parallelism for:

— matrix-oriented scientific computing
— media-oriented image and sound processors

* SIMD is more energy efficient than MIMD
— Only needs to fetch one instruction per data operation
— Makes SIMD attractive for personal mobile devices

* SIMD allows programmer to continue to think
sequentially



SIMD Parallelism

 Vector architectures

— SIMD first used in these architectures

— Very expensive machines for super computing
 SIMD extensions

— Extensions made to mainstream computers

— For x86 processors Multimedia Extensions (MMX),
Streaming SIMD Extensions (SSE) and Advanced
Vector Extensions (AVX)

e Graphics Processor Units (GPUs)
— Used for processing graphics.

— GPUs have their own memory in addition to the
general purpose CPU and its memory



Vector Processing

* A vector processor is a CPU that implements an
instruction set containing instructions that

operate on one-dimensional arrays of data called
vectors.

* Thisis in contrast to a scalar processor, whose
instructions operate on single data items.

* Vector machines appeared in the early 1970s and
dominated supercomputer design through the
1970s into the 90s, notably the various Cray
platforms.



Vector Architectures

* Basic idea:
— Read sets of data elements into “vector registers”
— Operate on those registers
— Disperse the results back into memory



SIMD Extensions

 Media applications operate on data types narrower than the
native word size

* Limitations, compared to vector instructions:
— Number of data operands encoded into op code

— No sophisticated addressing modes that vector
processors were using.



Intel MMX Technology

63

63 32

63 43 32 16
63 56 45 40 32 24 16

Quadword (64 bits)

Packed doublewords
(2%32 bits)

Packed words
(4316 bits)

Packed bytes
(8x8 hits)


http://www.google.com.pk/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=RXQf5Jwz_Ug66M&tbnid=Fsjk5Xr1sNk5AM:&ved=0CAUQjRw&url=http://www.linuxjournal.com/article/3244&ei=cuJtUpvTFOG60QWxp4CoCw&bvm=bv.55123115,d.d2k&psig=AFQjCNFbSUIaFi6qkzMMSRaFmX2J6faKYA&ust=1383019487482584

SIMD Implementations

* Implementations:

— Intel MMX (1996) (on 64 bit registers)
* Eight 8-bit integer ops or four 16-bit integer ops
* Same registers used for floating point

— Streaming SIMD Extensions (SSE) (1999) (128 bits)
* Eight 16-bit integer ops
* Four 32-bit integer/fp ops or two 64-bit integer/fp ops
* Separate registers for floating points and SIMD operations

— Advanced Vector Extensions (2010) (256 bits)
* Four 64-bit integer/fp ops

— Operands must be consecutive and alighed memory
locations



Graphical Processing Units

Provided to improve the performance of graphicsin a
system

Computationally very capable

Efforts are being made to use them for general purpose
computing.

Basic idea adopted by NVIDIA:

— Heterogeneous execution model
 CPU is the host, GPU is the device

— Develop a C-like programming language for GPU i.e.
Compute Unified Device Architecture or simply CUDA

— Unify all forms of GPU parallelism as CUDA thread
— Programming model is “Single Instruction Multiple Thread”



