
Chapter 4: Data-Level Parallelism in

Vector, SIMD, and GPU Architectures

Introduction

• SIMD architectures can exploit significant data-
level parallelism for:
– matrix-oriented scientific computing
– media-oriented image and sound processors

• SIMD is more energy efficient than MIMD

– Only needs to fetch one instruction per data operation
– Makes SIMD attractive for personal mobile devices

• SIMD allows programmer to continue to think

sequentially

SIMD Parallelism

• Vector architectures
– SIMD first used in these architectures
– Very expensive machines for super computing

• SIMD extensions
– Extensions made to mainstream computers
– For x86 processors Multimedia Extensions (MMX),

Streaming SIMD Extensions (SSE) and Advanced
Vector Extensions (AVX)

• Graphics Processor Units (GPUs)
– Used for processing graphics.
– GPUs have their own memory in addition to the

general purpose CPU and its memory

Vector Processing

• A vector processor is a CPU that implements an
instruction set containing instructions that
operate on one-dimensional arrays of data called
vectors.

• This is in contrast to a scalar processor, whose
instructions operate on single data items.

• Vector machines appeared in the early 1970s and
dominated supercomputer design through the
1970s into the 90s, notably the various Cray
platforms.

Vector Architectures

• Basic idea:
– Read sets of data elements into “vector registers”

– Operate on those registers

– Disperse the results back into memory

SIMD Extensions

• Media applications operate on data types narrower than the
native word size

• Limitations, compared to vector instructions:

– Number of data operands encoded into op code

– No sophisticated addressing modes that vector
processors were using.

Intel MMX Technology

http://www.google.com.pk/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=RXQf5Jwz_Ug66M&tbnid=Fsjk5Xr1sNk5AM:&ved=0CAUQjRw&url=http://www.linuxjournal.com/article/3244&ei=cuJtUpvTFOG60QWxp4CoCw&bvm=bv.55123115,d.d2k&psig=AFQjCNFbSUIaFi6qkzMMSRaFmX2J6faKYA&ust=1383019487482584

SIMD Implementations

• Implementations:
– Intel MMX (1996) (on 64 bit registers)

• Eight 8-bit integer ops or four 16-bit integer ops
• Same registers used for floating point

– Streaming SIMD Extensions (SSE) (1999) (128 bits)
• Eight 16-bit integer ops
• Four 32-bit integer/fp ops or two 64-bit integer/fp ops
• Separate registers for floating points and SIMD operations

– Advanced Vector Extensions (2010) (256 bits)
• Four 64-bit integer/fp ops

– Operands must be consecutive and aligned memory
locations

Graphical Processing Units

• Provided to improve the performance of graphics in a
system

• Computationally very capable
• Efforts are being made to use them for general purpose

computing.
• Basic idea adopted by NVIDIA:

– Heterogeneous execution model
• CPU is the host, GPU is the device

– Develop a C-like programming language for GPU i.e.
Compute Unified Device Architecture or simply CUDA

– Unify all forms of GPU parallelism as CUDA thread
– Programming model is “Single Instruction Multiple Thread”

