Chapter 4: Data-Level Parallelism in
Vector, SIMD, and GPU Architectures



Introduction

* SIMD architectures can exploit significant data-
level parallelism for:

— matrix-oriented scientific computing
— media-oriented image and sound processors

* SIMD is more energy efficient than MIMD
— Only needs to fetch one instruction per data operation
— Makes SIMD attractive for personal mobile devices

* SIMD allows programmer to continue to think
sequentially



SIMD Parallelism

 Vector architectures

— SIMD first used in these architectures

— Very expensive machines for super computing
 SIMD extensions

— Extensions made to mainstream computers

— For x86 processors Multimedia Extensions (MMX),
Streaming SIMD Extensions (SSE) and Advanced
Vector Extensions (AVX)

e Graphics Processor Units (GPUs)
— Used for processing graphics.

— GPUs have their own memory in addition to the
general purpose CPU and its memory



Vector Processing

* A vector processor is a CPU that implements an
instruction set containing instructions that

operate on one-dimensional arrays of data called
vectors.

* Thisis in contrast to a scalar processor, whose
instructions operate on single data items.

* Vector machines appeared in the early 1970s and
dominated supercomputer design through the
1970s into the 90s, notably the various Cray
platforms.



Vector Architectures

* Basic idea:
— Read sets of data elements into “vector registers”
— Operate on those registers
— Disperse the results back into memory



SIMD Extensions

 Media applications operate on data types narrower than the
native word size

* Limitations, compared to vector instructions:
— Number of data operands encoded into op code

— No sophisticated addressing modes that vector
processors were using.



Intel MMX Technology
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SIMD Implementations

* Implementations:

— Intel MMX (1996) (on 64 bit registers)
* Eight 8-bit integer ops or four 16-bit integer ops
* Same registers used for floating point

— Streaming SIMD Extensions (SSE) (1999) (128 bits)
* Eight 16-bit integer ops
* Four 32-bit integer/fp ops or two 64-bit integer/fp ops
* Separate registers for floating points and SIMD operations

— Advanced Vector Extensions (2010) (256 bits)
* Four 64-bit integer/fp ops

— Operands must be consecutive and alighed memory
locations



Graphical Processing Units

Provided to improve the performance of graphicsin a
system

Computationally very capable

Efforts are being made to use them for general purpose
computing.

Basic idea adopted by NVIDIA:

— Heterogeneous execution model
 CPU is the host, GPU is the device

— Develop a C-like programming language for GPU i.e.
Compute Unified Device Architecture or simply CUDA

— Unify all forms of GPU parallelism as CUDA thread
— Programming model is “Single Instruction Multiple Thread”



