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Calculus of Variation: Euler-Lagrange Equation

Let us consider a function defined between two points P(x,,y,) and Q(X,,Yy,) by f such that

d
f=rf0yy) where y, ==

X

There must be a path between P(x,y;) and Q(X,,y,) along which the value of the integral
over function f(x, y, y,) y (. 9)

]:f fy, v )dx

Has stationary value. (Either maximum of minimum)

)

Let the value of integral J is stationary along the path y(x),

X

but the exact path of integration is not known. It can follow any path adjacent to y(x)

Let Y(x) is the adjacent path to y(x) such that y(x) = Y(x) — y(x) is infinitesimal small
for all values of x between x; and X,.

Now Sy(x) =Y(x) —y(x) & Sf =FQ,y,v) — 0,9, V) @



Calculus of Variation: Euler-Lagrange Equation

Now Sy(x) =Y (x) — y(x) & 6f =F(x,y,yx) — (%, ¥, V)

Where 8y(x) is called variation of y. It represent increase in the quantity “y” from the
stationary path to the adjacent path for a given x. this is arbitrary except:

6y(x;) = 6y(xz) =0

y (3. %3)
dY d
Now 5(3’x) — Yx_y — 5(dx) E_d_ic]
d
5(yx) — E(Y — Y)
d
6(yx) = —(8y) i)
This show that % and & are commutative x
Now 5f=F(X Y;yx)_f(x :Vryx) & f=f(x,y,yx)
Therefore, Of = af& +> o 5y + 2 3y 53’x = (Sy + 2L 3y Syx because 6x = 0

@



Calculus of Variation: Euler-Lagrange Equation

Therefore Of = 6y + 5yx

Now 6] =6 [, [F(x, Y, ¥%) = oy, y)ldx = [ 8f (x,y, y)dx

Since J is stationary therefore §] = fxz Sf(x,y,y,)dx =0

5] = [ [a—fa 25 5yx]dx—0

5] = fxlzgfﬁd +f16y Sy dx = 0

5] = fxfgiayd +fxfaayf = Sydx = 0
o) = ;2L sy dx+‘/‘ — [ 2L sydx = 0

6] = [ g’;s dx - [ ddxaa;xSydx— 0

6y(xz) = 8y(x1) = 0

@



Calculus of Variation: Euler-Lagrange Equation

d of .
o1 = 22 - 2 syax = o
Since &y #= 0 through out the path therefore g’yg — ddx aa; =0

A partial differential eq., know as Euler-Lagrange’s eq., associated with variational problem.

Since f=r&y )

df _dfdx  O0f dy of dyx _0of  Of of
And dx  dxdx oy dx T dy, dx - Ox T dy~ X T ayxyxx
i d af) of a of
Since dx (yx 0Yy Yxx 0Yx Yx g dx 0y,

of _ d of d
Yxx 5, (yx ayx) Vx = ayx Puttlng this in above equation

dx
af _ of | of d( af) d of
dx  9x 6yyx+dx yxayx yxdxayx
A G/ W) ) &
dx dx dx \"*ay,)  “Xloy dxoy,l



Calculus of Variation: Euler-Lagrange Equation

of _af i( a_f)_
0x dx+dx yxayx =0

o G wmgy) =0

This is another form of Euler’s Equation. Now if “f” does not depend explicitly on x

of
5—0
d of \ _
And a(f—yxa—yx)—()
of

Or [ =V By Constant




Calculus of Variation: Euler-Lagrange Equation

Generalization of Euler-Lagrange Equation

Now generalizing to several dependent variables . We consider the function f as function of

Independent variables x and several dependent variables yi,v,, V3, ....., ¥, and y1., Vour,
V3x s coeeny Ynx - Ie,

f=F00y1Y2, Y35 oo Yo Vixo Yo Y3x > ++-ees Ynx)
And J = [ FOOYL Y2, Y35 oo Y Vi Vas Vo s «vves Y X

where J is stationary.

5f = 2L8x +5-0y1 + 250y, + - T Sy + 5= 8Y1x + 5= ok o 5= SV

ay aynx

0 0 0
5f = X1 3L 6y + L7 5= 5Yix = 2”[6—;5 +ayfx5;le]

Therefore 5] = . *2ym [ 6ylx] dx

0Yi a)ﬁx




Calculus of Variation: Euler-Lagrange Equation

0
o] = f;z Z? EY 5ylx] dx

5§ = 3n fxz of L sydx + 37 [ o sy, dx

aYLx

X1 0Yix
6] Zn fo aof 5yldx + Zn fxlz ai];c ddx 5yldx
9 d 0
6] = X 35 Syidx + X7 |7 851]  — BF [P o byidx
x1 ix
G, d o
6] = Xi f;z_f.gyidx -2 f;zaayjzx 0y;dx
n (X2 _a aof .
o = 2 f layl dx ayix] 0ydx
. . n X2 d df —
Since 8] =0 therefore X7 [ [ayl — ayix] S5y;dx = 0
dy; # 0 thought out the path therefore )7 @ — % a?f ] =0  where

1 =1,2,3,...




Applications of Calculus of Variation

1. Straight Line ( Show that shortest distance between two points in plane is a straight line)

we can apply the calculus of variations to find out the distance between two points in a plane
as elements of distance in the xy-plane is given by

dS? = dx?* + dy?

[1 + ]dx (x2,Y2)

dS=\/1+ ]dx SR

dS = +/[1 + y2]dx
Now the distance between the two points having coordinates (x4, y;) and (x,, y,) IS given by

S=[.2ds

S = [+ yFdx @




Applications of Calculus of Variation

S = J;2 1 +yZldx

If S is minimum the Euler’s Equation must be satisfied. Now if f(x,y,y,) = (1 + y2) /2 we

9 d o
can use ! _ f_ 0
dy dx0yy
. 9 0
Since % _0 And o __ Vx
dy 0Yy (1+y9%) /2
. d of _
Since oy 0
of
Therefore —— = constant
0Yy
Yx _ —
= constant = ¢
(1+y2) /2
yE = (1+ yZ)c?
C
Yx a

= (1—c2)1/2 =




Applications of Calculus of Variation

Yx = a
ay _
dx
dy = adx

Integrating above equation

y=ax+b

Which is equation of straight line. Thus, the shortest distance between two points in a plane
IS a straight line.




Applications of Calculus of Variation

1. Show that shortest distance between two points on the surface of the sphere is the Arc of
great circle. (Great circle or orthodrome or Riemannian Circle)

Solution: Let us consider the element of distance between two points on surface of sphere is
dS* = dx? + dy* + dz*
dS? = a?[df? + sin?8 de?]

ds = aJ[l + sze ] do = aJ[l + sin20¢3|do
Distance between two points having coordinates 6; and 8, Is given :;
_ (92
= [,2ds

6 .
S=alfy’ J[1 + sin20¢}|do

Since S Is stationary because it must give an Arc of great circle. We can use

dop



Applications of Calculus of Variation

F6.9.00) = [6,00) = [[1 +5in093]

) 0 d o
Since 9f _ 0 therefore 49 _ 0
do aé 6g09
af
— = constant
d@g
0 sin%6
And —— S 20—
Yo \/[1+sin20<p5]
2 _ sin*0¢j
[1+sin26¢Z]

|1+ sin26¢g|c? = sin*6¢j

sin?0¢5(sin?6 — c?) = ¢?
c cosec 0

(sin29—cz)1/2

P =




Applications of Calculus of Variation

F6.9.00) = [6,00) = [[1 +5in093]

) 0 d o
Since 9f _ 0 therefore 49 _ 0
do aé 6g09
af
— = constant
d@g
0 sin%6
And —— S 20—
Yo \/[1+sin20<p5]
2 _ sin*0¢j
[1+sin26¢Z]

|1+ sin26¢g|c? = sin*6¢j

sin?0¢5(sin?6 — c?) = ¢?
c cosec 0

(sin29—cz)1/2

P =




Applications of Calculus of Variation

c cosec 0 c cosec?0 c cosec?0

Do = — 7 — 7 —

(sin?26—c?2) /2 (1—cosec?6c?) /2 (1—cz—cot29c2)1/2

0o = cosec?6
6 — ) 2
(1c§ ¢ (1fc2)60t2‘9)1/2

1/2

2
(m> cosec?6

9 —_

kcosec?6

= c? )Cot29) 1/, - (1—k2cot20)1/2

kcosec?6
df +«
L f(1 —k2cot26) /2

Let x = kcoté and dx = —kcosec?60 do

Therefore, o= +oc= —sin"1x +
(1- xz)

Or sin~'x = —¢ and x = sin(< —¢
N ©




Applications of Calculus of Variation

x = kcotf = sin(x —)
k cot 8 = sin &« cos @ — cos xsin @
k cos 8 = sin 0 sin X cos ¢ — sin 8 cos X sin @
And k acosf = asin@ sin X cos @ — asin 8 cos < sin @
kz = x sin € — y cos &
using cartesian coordinates (x,y,z) and the spherical polar coordinates.
X =asinf cos @, y = asinf sin @, Z =acosb

This represent a plane passing through the centre of the sphere, which cut the surface of the
sphere in a great circle. The shortest distance between the two points on the surface of the
sphere is the Arc of the great circle.

G



Applications of Calculus of Variation

Surface of Revolution:- cone oblate sphemid

The surface of revolution is a surface created by
rotating curve around a straight line in its plane. For *
example

F

The surface generated by straight line is cylinder.

conical frustum

Similarly a circle that is rotated about its diameter f_
will generate a sphere and if the circle is rotated about ! {__X O

a co-planer axis other then diameter, It generate a R,

cylinder




Applications of Calculus of Variation

Fin the curve for which the surface of revolution is minimum.

Solution: Suppose we form a surface of revolution by taking some curve passing between
two points (x,,y,) and (X,,Y,) (fixed) and revolution is about y axis. We must find a curve

for which the surface area is minimum as shown in figure. y
The area of the strip of surface is |
dA = 2mxds = 2mx(dx? + dy®)"/? Gt
dA = 2mx+/[1 + y2]dx
The total area is A=2m f;lz x\/[1 + y2]dx ; :
The extremum value can be found out using gf/ — ddx 6632 =0 ™
Where f = f(x,y,) = x(1 + yZ)*/?2 (XpY1) Lol
Since 2L = therefore =L = ¢ X S

ady dx 0y,




Applications of Calculus of Variation

0
Therefore, 9 _ constant = a v
ayx =
2\1/2 Y )
For f=fly,)=x(1+y>)Y L)
of 0 2\1/2 Xy _
=5, X+ =% =g =
9y, 0Vy ( Yx) (1+y,%)1/2 »
= = (X1,¥1) \_‘m
Vi = t—az | ) -
dy = mdx

y =acosh (x/a)+b

X = a cosh (u)

a

Which is equation of catenary. The shape of cosh (%) If plotted in x,y Plane is shown.
The rotation of such curve will give minimum surface of rotation.




Applications of Calculus of Variation

et =
coshr = — 4+

2 2

To see how this behaves as r gets large, recall the graphs of the two exponential functions.




Applications of Calculus of Variation

Helix

A shape like a spiral staircase. It is a type of smooth space curve with tangent line
at a constant angle to fixed axis.

A line, thread wire or other structure curved into a shape such as it would assume
If wound in a single layer round a cylinder.

Or

A spiral curve lying on a cone or cylinder and cutting the generator at constant
angle. The shortest distance on the surface of a sphere or curved surface

Show that the geodesics on the surface of the right circular cylinder is a Helix.
Solution: The element of the distance along the surface is
ds = (dx?* + dy? + dz*)1/?
Where x =rcosf, y=rsind, Z =2

dx = —rsin 6 do, dy =rcos0dl, dz=dz




Applications of Calculus of Variation

ds = Vr? sin? 0d0? + r? cos? 6dO? + dz?
ds = Vr?2 do? + dz>?

ds = (\/rz (Z—z)2+1) dz = (V1202 +1)dz

of d of _

The s to be extremum we have 36 " 2230, 0
Here f = (r?62 + 1)V/?2  and g—g =0
a of _
= 4z 96, 0
of _ 0 r 292 1/2 _ _
50, = 76, [r<07 + 1]/ = constant = ¢
of 120,

= = C
00, [rz2+1]"?




Applications of Calculus of Variation

T4922 _ C2
[r202+1]

r*02 = [r?62 + 1]c?

r202(r? — c%) = c*

2

202 ¢
ref; = e
C2
ro, ooty = D
rd—e =D
dz
>1r0 =Dz+FE

where D and E are constants




Applications of Calculus of Variation

BRACHISTOCHRONE or shortest time problem
The Brachistochrone problem is famous in mathematics & solved by Jhon Bernoulli.
The analysis led to the formal foundation of the calculus of variation.

The problem is about the curve joining two points, along which a particle falling from rest
under the influence of gravity, travels from the higher to the lower point in the least time.

If v Is the speed along the curve, then the time required to fall on arc length ds is ds/v

2ds A

t12 = 1 7 A(0,0) '|

Where ds = \/dx? + dy? = \/1 + vy, 2dx

Since the energy of the particle at point 1 is P.E=mgy.
When particle reaches point 2, its potential energy will
become its K.E

1 2
Smve =mgy




Applications of Calculus of Variation

v =29y
Now the expression for t,, become ‘A(O ) v
_ 2"
t12 = fl \/m dx
f= (1+3,2)"
V2gy
_ ()Y
f(x’ Y’ yx) - \/2‘57

If the integral has stationary value. We can use Euler equation_

e [ ~¥y,) =0

g—i =0 = f— yxa—f = constant

YVx @




Applications of Calculus of Variation

:>(1+yx2)1/2 ~ Ve Ces fo A .
J29y Yx [2gy(1+y 2)1/2 Yx | A0,0)

d (1+yxz)1/2

VX 3y J29y

1 [(+y,%)-v,? —
J2ay | +y H1/2 |

1 1
:>\/7 [(1+yx2)1/2] — \/ZC

>Vy(A+y.%) = 7

= C

=

1
gc
1

=y(L+y,H) =55=b

=>y(1+y,*)=b

To solve above equation let y, = tan ¢ and y(1+tan® @) =b



Applications of Calculus of Variation

= ysec’@p =b

A
=y =cos’pb = %(1 + cos 2¢) A(0,0) I
and dy = (—bsin2¢)de
Now Yy, =tang
dy
= ——=tang

= dx = cotep dy = cote (—bsin2¢)de

= dx = —bcot ¢ (sin @ cos @)de
= dx = —2bcos®* o de

:>x=a—2bfc052<pd<p=a—2bf%(1+c052g0)d<p

:>x=a—b(<p+%sin2<p) @




Applications of Calculus of Variation

:>x=a—§(2<p+sin2<p)

The problem can also be solved by assuming
Y, = cot @

And y= %b(l — CcoS 2¢) and

TRY AT HOME: Homework.

X = a+%b(2<p — sin 2¢)
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Hamilton’s Principle (Principle of stationary action Or Least action)

The Lagrange’s equation was developed from the consideration of the instantaneous
state of the system and small virtual displacement about the instantons state.

From “D Almambert principle or differentiable principle”

A virtual displacement is one that take place in time 6t = 0

However, it is also possible to obtain Lagrange’s equation for the actual motion of
system between the time t; and t,, by considering small virtual variation of the
motion from the actual path of the motion

This principle known as integral principle or Hamilton’s principle.




Hamilton’s Principle (Principle of stationary action Or Least action)

“Out of all possible paths along which a dynamics system move from one point to another
with in a given interval of time (consistent with the force of constraints, if any) the actual
path followed is that which gives extremum value to the time integral of Lagrangian”

The principle can alternatively be stated as

“The motion of the system from instant t, to instant t, is such that the line integral.”

y

J= fttf L dt is stationary.

Any variation in the value of integral is zero.
t, ty
6/ =6 | Ldt= 6L dt =0

tq 2]

Since zero Is the minimum or least value. Therefore, it is also called Hamilton’s principle of

least action.
o)



Hamilton’s Principle (Principle of stationary action Or Least action)

L = L(qu QiJ t)

Since ethe Lagrangian does not explicitly depends on time therefore %51& =0

Any variation in the value of integral is zero.

= [ 5Ldt_ft2[216ql6 + 3 5ql]dt

= [FoLdt =3, aql 5q; +—5ql]dt
Since we know that
d 0L 0L dL d JL
— — =0= = .
dt&‘qi aql aql dtaqi




Hamilton’s Principle (Principle of stationary action Or Least action)

. d JL oL d
f 6L dt = zf [aa—ql@ + 35, a (09| d

JEDMINS aql(s ]dt

t1

Since we know that variation in the generalized coordinate at ends points is zero.
6q1(t1) = 6q,(t;) =0
6q,(t1) = 6q,(t2) =0

SQn(tl) — 6Qn(t2) =0

Therefore, we can write f SLdt =0




Derivation of Lagrange’s Eq. from Hamilton’s principle of least action

Let us consider conservative, holonomic dynamical system whose configuration at any instant is
specified by n-generalized coordinates q4, g5, ..., g,

Let the system move in real or configurational space from point “P” to “Q” by two possible paths as
shown

Let & denotes the variation in the Lagrangian function, which does not involve a change in time t. then

L = L(qs ) ?
5] = 5ft";2L dt
t oL oL
6] =J.” [Zia_qi&h + Zia_qi&h] dt
_ t[OL o, OL d P
o] Zl t 6qi5l+6(1id 5ql]dt 5. (t)) = 841(t,) = 0
1\*1) — 1\*2) —
. tzﬁ _ t, L d '
6] Zl ft aqi 5qldt + Zl ftl aql dt Sqldt 66]2(1:1) = 6q2(t2) =0

d oL

N AL 5 5
‘1 dt 94y 8qn(t1) = 6q,(t) =0 @




Derivation of Lagrange’s Eq. from Hamilton’s principle of least action

t, d oL

DY f —6 dt =2, o 4t g, Odidt
oL  d oL
DN a—m—ga—quﬁqidt
Since &q; iIs zero only at end points. Except end points the 6q; is nonzero. Therefore [aq ;taa_;-]

must be zero through out the path.

oL d 0L
Therefore, a_ch — Ea_ql =0

aou o _,

dtdq; 9q;

Which is Lagrange’s Equation.




Hamilton’s Equation of Motion

H-equation are formulated in 1833 by Irish Mathematician William Rowan Hamilton

1) Hamilton’s formulation is a more powerful method of working with physical principles
already established.

2) In Lagrangian formulation, the independent variable are g; and , g; while in Hamilton's
formulation the independent variable are generalized coordinates g; and generalized
momenta p;

Applications;

It helps us to construct more abstract theories in Quantum Mechanics [Probabilities
distribution and perturbation theory in phase space] & statistical mechanics [Poisson
Algebra]

Hamilton’s equations are great in solving problems that involves transformer of energy and
momentum.

Provide an easy wat to solve problems that can be hard to solve using Newtonian Mechanics O



Derivation of Hamilton’s Equation of Motion using Lagrange’s Eq.

Let a mechanical system be represented at any instant by n generalized coordinates

d1, 492, -, qn
The Lagrange’s equation of motion is
d a]f oL _ 0 wherei =,1,2,3,4,....,n
atdq; 0q;
Where L= L(Qli d2, .-, qn, C.hr éIZI "'iC?ni t)
And dL = Z d +Z—d + dt 1
: : )4
For conservative system I.e 3, 0
oL _ o(T-V) _
Then aq;  94; aql
oL  OT : :
a—m=aqi=aqi25miqi2:miql'zpi a




Derivation of Hamilton’s Equation of Motion using Lagrange’s Eq.

d 0L d
And s vs _ 2 — A,
dt 9q; dtpl Di

- oL _doL_d _ .
Since 9q, dtoq, acbPi T Pi b
Putting equation, a & b in equation 1
: . oL
And dL = Zipidqi + Zipi dql + Edt 2
Consider the term 2id(pi §i) = Xy pi dq; + X q:dp;
= Xipidq; = X;d(; q;) — X; q:dp;
Putting in equation 2 dL = );p;dq; + X; d(p; ;) — X q:dp; + %dt
: : : oL
= d[L = X;pi i] = X Pidq; — X; qidp; + - dt

. _ _ oL
= —d[X;pi ¢ — L] = X;0idq; — X; q:dp; + Edt




Derivation of Hamilton’s Equation of Motion using Lagrange’s Eq.

Where H = ),;p; g; — L
. . oL
= —dH = Y; p;dq; — X; q;dp; + - dt

: : oL
Or = dH = —»,;p;dq; + X,; ¢;dp; — - dt 3
From equation 3 we can conclude that H = H(q;,p;,t)
OH oH OH
And dH:Zia_qidqi-l_Zia_mdpi_l_Edt 4

Comparing Equation 3 and 4

Equation ¢ & d are called
Hamilton's equations of motion.




Derivation of Hamilton’s Equation of Motion using Lagrange’s Eq.

Special Cases

If H is not an explicit function of time, then H is a constant of motion.

Since H is independent of time H = H(q;,p;)
dH OH . OH .
dat ~ “lag; 1t Zlaplpl
: OH : OH _ .
since 3q, — P & ap;  di
dH . . . .
therefore = —=—2;Diqi + 2;4ip; = 0

= H = ),;p;q; — L = Constant

If the equations of transformation do not depend on time and if the potential energy Is
velocity independent, then H is the total energy of the system

2. Pidi =ZlaqléIl i Clza Z

@



Derivation of Hamilton’s Equation of Motion using Lagrange’s Eq.

Yipidi = Xy d4i Xj myTy S

arj
l

or;
Zipiql Z] m]r] Zl ]

: : or;
YiPiqi = Xj myty X 6q] di

2iPiqi = X myTj - 7
Y plql—ZZ" m] 2 =2T
Therefore H=),piq,—L=2T—-1L
H=2T-T+V
Therefore H=T+V=E

So, we conclude that of Hamiltonian does not depend on time it represents the total energy

of the system. @



Cyclic or Ignorable Coordinate

If a Lagrangian L = T — V of the dynamical system does not contain a coordinate explicitly,
then that coordinate is called cyclic or ignorable coordinate.
oL

0
0q;

Thus, If g; Is an ignorable coordinate then

L
Where 34, may not be zero.
l

From Lagrange’s equation of motion. I.e.,
d 9L 0L d OL

dtdq; 0q; - Ea_ql -
oL
= — = constant
aq;
= L _ », = constant
dq; Pi
Where p; Is the conjugate momentum for g;, so iIf Lagrangian of a dynamical system does
not contain a coordinate g; Then corresponding conjugate momentum p; Is conserved. O@



Applications of Hamilton’s Equation of Motion

Derive Equation of motion for one dimensional hormonic Oscillator using of
Hamilton’s Equation of Motion

2

. 1. 1
H = mx _mez +Ekx2

Now H=px5c—L:m)'c-5c—me2_§kx2] : .
%

1 . 1 2 1
H=-mx?+=kx? =25 4 Z[x2
2 2 om | 2

Now using Hamilton’s equation of motion @



Applications of Hamilton’s Equation of Motion

. OH _ 0 p;zc 1 2]
Px = dx  Ox 2m+2kx
D, = —kx

OH d [p2 1
X = = - +—kx2]

op, Op,lzm 2

= P, = mX = —kx ;
X,




Applications of Hamilton’s Equation of Motion

Derive Hamilton’s Equation of motion for simple pendulum.

T = %mlzéz & V=—-mgy = —mglcos®

L=T—V=%ml292+mglc059

pgzg—gzmlzé
:>9=%
2 2
Now H =pg0 — L_W_ 2m12+mglc050]
_ _Pb —mgl cos 0
2ml?

Now using Hamilton’s equation of motion




Applications of Hamilton’s Equation of Motion

. 0H _ 0 [ »j

0 = 08— 9pg Lmlz mgl cos H]

=6 =-% 5
ml 19

. o _ o[ p3 !

pg——ﬁ——ﬁlzmz—mglcosel :

Do = %(mlzé) = —mglsin 8
pg = ml?0 = —mglsin 6
ml?0 = —mglsin 6

6 = —%sin@

Or é+%sin6:0




Applications of Hamilton’s Equation of Motion

Derive Hamilton’s Equation of motion for compound pendulum.

T=%192 & V=—-mgy = —mgh cos 8

L=T—V=%I€2+mghc059

oL _ .
Po =55 =10
Po

»0==2
I

2

. 2
Now H=p90—L=p79—[2—?+mghc059]

[l
[}
™
12-]
=]
el
[ER]
(]
[ =]
=t
L)
-
]

2

H =Z—?—mghcos€

Now using Hamilton’s equation of motion




Applications of Hamilton’s Equation of Motion

. 0H
6 —E—Elz—mghcosel
>0="2
I
Pg = [——mgh COS 9] ”
Do = a(lé) = —mghsin6 g

pg =10 = —mghsin6

Ll
)

10 = —mghsin6

a1

. magh .
6 = —Tgsme

EMIIITRR ]

Or 0+—sm6—0
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Hamilton’s Canonical Equation in Spherical Coordinates (1, 8, @)
Hamilton’s canonical equations in spherical coordinates

H=Ypiqi—L=p7+pgb+p,p—L

Lo 242 | 2 i 20.02) _ PF s Py _
T—zm(r +7r°0° +1r°sin“0¢ )—2m+2mr2 m——y And V =V(r0,¢)
— ; ' h oT oT oT

H =p, =+ py

2 2
Po Py p7 Do P v
mr2 + Py mr? sin26 Lm T 2mr?2  2mr? sin20 ( QD)

H=p’2"+ Po + Pi +V(r,0,p)
2m  2mr? = 2mr?sin20 T
Applying Hamilton’s canonical Equations

L OH _pr . _ _0H _ p§ i Pp V(6.9
~ 9p, m' Pr = or  mr3  mr3sin20 or '’

5 — OH _ P . _ __OH _ ppHcosf  av(r6,9)
"~ 9pg mr?’ Po = 90 mr? sin36 06 '’

. __0H _ Do . _ _O0H _ V(6,9

¢ = dp, mr?sin2f Pp =

ap o




Hamilton’s Canonical Equation For three dimensional Oscillator

T =-m(? +y? + 22)
V=%k(x2 + 2 4 72)
L=T-V=_m@2+y2+22) —k@? +y? + 27)

=2 = mx =L -y =L = mz
px_ax_ d py_ y Y pz_aZ_

p

H=YpG—L= pxx+pyy+pzz—L—px+ +——[”X+py + 22k +y? 4+ 2]

S PE P PR dp(h2 g g2 4 p2)

Applying Hamilton’s canonical Equations




Hamilton’s Canonical Equation For particle falling under gravity

1.
T=5my2

V=mgy
L=T—V=%m5/2—mgy

oL
Dy = 5; = MY

. . py [Py
H=Ypigi—L=pyy—L="=2-[%—mgy|

H=ﬁ+m
om gy

Applying Hamilton’s canonical Equations

Since py =my =-—-mg or y=-g




Hamilton’s Canonical Equation For particle under Central Force

Derive the Hamilton’s equations and Hamiltonian in polar coordinates for a particle of mass
m, which is under the influence of central potential Force (-k/r?)

Since F=—VV=>V=—der=—f_rﬁzdr=_§

and T = lm[,;z + r2é2] —
2

P} | P
+ >
2m 2mr
p2 P2 k
L=T-V=—"1+—"-4-

2m  2mr? T

+ +=| =L+ —=

2m  2mr? r 2m  2mr? r

: : : Pf
H=2ipiqi—L=p7+pgb—L=-"+

B [0
m mr2

P§ k] P? P5 k

Applying Hamilton’s canonical Equations

. aH p‘r‘ . ] aH pg oo pé k
= = = = = — = —_—— -_ =
r op, m pr = mr, Pr e R DAL a—— R ¢
. OH . . OH
6 =—=2L0 =9 =mr2f pg = —— = 0 = py = constant
dpg  mr? 00 @




Hamilton’s Canonical Equation For Projectile motion

Derive Hamilton’s eq.s and Hamiltonian for projectile motion of a particle of mass m, in space

Sol: Let (X, Y, z) be he coordinates of projectile in space at time “t”

1 o2 w2 s21_ P2 Py P
Therefore T=-m[x*+y°“+z2°]=>=+—=+ and V=mgz
2 2m 2m 2m
2 p2 2
L=T-V=-£4 242 _ g,
2m 2m 2m
px p.?zc Py
H = Zplql—L—pxx+pyy+pzz—L— + + [2m+2 +——mgz]
2
H = px+py+ = +mgz
2m
Applying Hamilton’s canonical Equations
. OH _ py ._6_H_p_y . _OH _ pg
x_apx_m’ y_apy_m' Z_apz_m
. 0H _ . _ _0H _ . 0H _
Px = —5- =0, Py =—7%, =" p;=—-_=—mg o




Hamilton’s Canonical Equation For Atwood machine

Derive the Hamilton’s equation and Hamiltonian for Atwood Machine with mass less support.
Atwood machine is a simple machine where two masses can move over a frictional less pully.

T=%m15’2+%m25’2 =%(m1+m2))'12 & i

i

V=-mgy—myg(l—-y)=-gy(m —m;)—mygl
1 .
L=T-V= 5(7711 +my)y? + gy(my —my) + mygl

Py = Z_; = (my + my)y or y = (m1p+ym2) m: &
H=Sipidi—L=pyy— L =py s = [Lo Bt gy(my — my) + mgl]
= H =3P gy(m, —my) — mygl
Using Hamilton’s Equations  y = aa:y = (mffmz) & Dy = —g—;’ =g(m; —m,)
= 7= i




Hamilton’s Canonical Equation For Atwood machine

Derive the Hamilton’s equation and Hamiltonian for Atwood Machine for pully of moment of
Inertia | and Radius R.

Atwood machine is a simple machine where two masses can move over a frictional less pully.
1 . 1 . 1 . 1 . 1 3']2 . y +y
T =-my?+-myy*+-10° =-(my + my)y* +-15; where 6 == N
1 I )
V=-mygy —myg(l —nR —y) =—-gy(m; —m;) — mygl —m,gnR
1 I .
L=T-V=3(my +m;+=5) 5%+ gy(my —m,) + mygl — mygnR

m:

oL ( I\ . . Dy
=—={m +m, + —) or = ms
Py oy 1 2 1 R2 Y Y (m1 +m, +—R12)

2

. . p 1 p
H:ZipiQi_L:pyy_L:py( - I)_[_( . 1)+QY(m1_m2)+m2gl_ng7TR

m1+‘m2 +ﬁ 2 ‘m1+m2 +ﬁ

D



Hamilton’s Canonical Equation For Atwood machine

2 Ty
>H=- 22 ~ — gy(my —my) —mygl + mygnR b
2 (m1+m2+ﬁ) s
Using Hamilton’s Equations "/
. 0H by

y:a —

I
py (m1 +m2 +ﬁ)

& py =(m1+m2 +#)y

. 0H
Py=—5=g(m1—mz) m:
= j} — g (ml_mZ) m’I
(m1+m2+é)




Derive Hamilton’s Canonical Equation From Hamilton’s Principle

Hamiltonian of a system is given as: H=):pq —L

= L=);piqi—H
Consider the system move from initial point to final position in time interval At = t, — t; by any
two possible path. If 8L is the variation in the Lagrangian of the System

= 6L =2;6p;q; +X;pi6q; — 6H
Where H = H(q;, p;)

Taking integral over both sides

t 0H
[ o1dt = ¥, [ (8p1 i + pi 6G; — 5041 — aplc?pl)dt 0

Considering the term ftl p; 8q;dt = ftl Di afgql'dt = |p; 6 |

2 4
— 2L sqdt = — [ pi 8gqudt

@



Derive Hamilton’s Canonical Equation From Hamilton’s Principle

Therefore

t .
ftlz oLdt = Z f (qlgpl Pi 6%’ P 5(11 op; 5}91) dt

qi

Since ftlz SLdt =0 Hamilton’s Principle

t . .
Xil, (5Pi qi —Di0q; — Bql

=3, (( €~ apl) o = (b1 +3 )Sql) dt =0

Since 6q; and &p; are not zero throughout the path. Therefore

6ql o 5pl) dt =0

. 0H 9OH
qi—a—pi=0 and p; + 30 =0

OR

0H

. _ OH . _ _0OH ( >




Derive Hamilton’s principle using Newton’s Law

Consider the case of a single particle. Let the particle move from r (t,) to r(t,) representing
the position of particle at instants t, and t,. Consider another path connected the same end
points. Since the end points are the same for the paths

57‘(t1) — 5T(t2) — O
Newton’s equation of motion at any instant is

F=mr

Let SW be the work done on a particle, then 4
SW =F - 67
SW =mr - 67

0S8 = (real path)

The total force acting on a particle will be

F=F,+F and F.-6¥ =0  work done by constraint force




Derive Hamilton’s principle using Newton’s Law

And the equation become
SW =F .61 =F, - 61

If the applied force E, is a conservative force and hence is derivable from a potential energy
function V, Then

SW =F, -6 = =VV .6 = =6V
SW = =8V = mr - 67
Consider a term

d ,- - = = = - __ 1.7 -
E(r-5r)—r-5r+r-5r—5(5r)+r°57”
'_'. __£ '_. — _ l'—z

Or r 5r—dt(r O1) 5(2r)

Therefore SV =mi - 6F = m-=(F-67) — & (lm,;z) = mZ (. 67) — 6T
dt 2 dt

d . ‘
(ST—(SV:mE(f-&’) @



Derive Hamilton’s principle using Newton’s Law

ST — 8V = m%(i’-&’)
SL = 6T — 8V = m%(i’-&’)
Integrating with respect to time from t, to t,
) . ) i LN . — _ N . —1ty .
[ ?26Ldt =m 6 o (¥ - 6r)dt = m|r - 672 = 0
because the variation in 67 are zero at end points

Therefore

Which is Hamilton’s principle




Derive Newton’s Law from Hamilton’s principle

Let us consider a particle of mass “m” at position ¥ = 7(x, y, z, t) is moving under the action
of a force F.

If force is conservative
F=-VV
The virtual work done on particle by force F
SW =F -6 =—-VV .67
Where the K.E of the particle will be %mfz
If the time integral of Lagrangian of a system is stationary (Hamilton’s Principle)
[ oLdt = [ 6(T = V)dt = [7 6 (3mi? = V) dt =0
ft’f (mi - 6+ — 8V)dt = 0

Considering the First term fttlz mi - §rdt = ftjz mr - %Sth




Derive Newton’s Law from Hamilton’s principle

Considering the First term fttlz mi - §rdt = fttlz mr - %&’dt

tr d - —
il ordt
Since the variation in §7 are zero at end points

()

t - .
[?mr - 8rdt = —m
ty t1

FooFdt = — [2mF - §rdt
Putting in Hamilton’s Principle
ft’f SLdt = ft’f(—m% 57+ F - 57)dt = ft’f(—mﬁ +F)-87dt =0
Since variation 67 1s zero only at the end points but the variation §7 Is not zero through out
the path and the above equation is zero through out the path.
Therefore —mr + F = 0

Or F =mr




Chapter 3
Lecture 5

Hamilton’s Principle
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Application of Hamilton’s Principle

Using Hamilton’s principle to find the equation of motion of a particle of unit
mass moving ion a plane in a conservative field

Solution: Let us consider a particle of mass (m=1) moving in xy-plane

And K.E=T=-m(?+y?) = (&% + 7%
av )%
And Fe=—— and F, = ~ %

Lagrangian of the system
L=T—-V=-@G2+y}) -V
Using Hamilton’s Principle

8 [, Ldt = [*(8T — 8V)dt

5 [, Ldt = [[*(%8% + 76y — V) dt

t




Since

Therefore,

Application of Hamilton’s Principle

V=V(y)

av av
SV—a5x+$6y
e SN | P '
67 Ldt =, (x6% + ysy — >~ 6x ay5y) dt

6 [7 Ldt = [ (285 — 52 0x ) dt + [ (707 — Z—ch) dt

0x

y av ta [ . v
—%6x — an) dt + ftl (—y5y — 55)}) dt

S
—
o
-
QU
4
|
s
NN
7~ N 7/ N -~

6 [ Lt = 7 (—% - 2) xde + [ (— —‘;—Z) Sydt = 0
. OV s
—x—a_o and ay—O
14 and 14
X = 0x Y= Jdy




Page 91 Sinha

Show that the equation of motion remain unchanged when a time derivative of some
function is added to the Lagrangian.

Sol: Let f be a function dependent of q’s and t and df/dt is added to a Lagrangian L, then the
new Lagrangian L’

re . d
L'(q,q,t) = L(q,q,t) + d—f where f = f(q,t)
Now the new Hamilton’s function J'
/ tz2 ;4 . t . d
J'= [ (g g, 0dt = [*|L(q,q,6) + 5| dt
1 (b2 : df _ 2 df
J' =1 [L(q,q,t)+E]dt—]+ft1 —dt
Now variation in J'

5]’ —6]+6ft2dfdt—6]+|8f|




Page 91 Sinha
§/' = 8] + 5[52 L dt = 8] + |5f1}2
Since f=1@t)
5f =3k 8q
Therefore,
5" = 8] +6 " dfdt—8]+|Zaf6q‘

Since variation at the end points is zeroi.e  dq(t,) = 5q(t2) =0

:>|ZZ—£5q

()

=0
t

Hence §'=6/=0




Exercise 2 Goldstein Page 65

Suppose it is known experimentally that a particle fell a given distance y, in a time

t,= /zy o/ 4. The time of fall for the distance other than y, are not known.

Suppose further that the Lagrangian for the problem is known but that instead of
solving the equation of motion for y as a function of time t, it is guessed that the
functional form is y = at + bt?

If the constant a and b are adjusted always so that the time to fall y, Is correctly given
by t,. Show directly that the integral fttlz Ldt Is an extremum for real values of the

coefficients only whena =0 and b = g/2

Sol: The Lagrangian of the system or mass falling

L= %myz +mgy




Exercise 2 Goldstein Page 65

Since y = at + bt? and y =a+ 2bt
and L= 1my2 + mgy = lm(a2 + 4b?t? + 4abt) + mg(at + bt?)
f Ldt = f [ m(a® + 4b*t? + 4abt) + mg(at + bt?) ] dt
fot Ldt = Em (azt + §b2t3 + Zabtz) + mg(z at? + %th)
t _ 1 2,2 22,3 2 . 1 2 41 3
Jo Ldt = -ma’t + -mb?t® + mabt? + s mgat* + ;mgbt

yo_bto2

Since y, = at, + bt,2=>a = p
o

Putting in above equation
2

_pt.2 2
ftzLdt=%m(y° tbt") to+zmb2t§+m(W)bt2+ mg (M) t§+§mgb t3
(0]

o tO

For minimum value = Ldt =0




Exercise 2 Goldstein Page 65

2 o o,
f Ldt—— (y"tbto) to+§mb2t§+m(w)bt§+%mg(w)t§+%mgbt§

(0] (0] tO

For minimum value = Ldt =0

_ ¢ 2 _
L Ldt = (M) t, ( o ) +2mbt3 +m (M) t2 + mbt? ( ) + - mgtz( t,) + = - mg t3
db to to 3 tO

Ldt = —m(y, — bt,*)t, + = mbt3 + m(y, — bt,*)t, — mbt3 + ;mgtz( t,) += mg t3

Ldt—/ot +7b/z3+:mbt3 7;15 —/d)t3—mbt3—%mgt3+ “mg t3

1 3 _1 3 3 _2
= Ldt— mbt -mgt; = mt; ( b g —O

i(5’9—39)=0
:(b—%g)=0 =>b=%g @




Exercise 2 Goldstein Page 65

Putting t,= /zy"/g & b = %g

in q = Ye=bte”
to
vt
to

Now using another technique

Since —— ——=mj—-mg=0=>jy=g

Since y = at + bt?




Exercise 2 Goldstein Page 65

Differentiating above equation

y =a+ 2bt
y=2b=g
Or h=2

2

Now at time t, the equation will be

y, = at, + bt?

Yo = a2y0/9 + b(2y,/9)

1=a.2/y,9 + b(2/9) = a\J2/y.9 +2(2/9)
1=ay2/y,g+1=>a=0




Hamiltonian for charge Particle in E.M Field

Consider a charge particle of mass m with charge g moving with a velocity v in an
electromagnetic field. The Lagrangian of charge particle is

L=%mv2—q<p+q(v.A) or L=%mv2—q<p+ %(v.A)

And Hamiltonian of system

H=pv—-L
oL
Now p—a—mv+qA
1
And v—g(p—q/l)

H = (mv + gA) -v—%mvz +qp —q(v.A4)
H=mv*+qw.A) — %mvz +qp —q(v.A4)

_ 1 2 — Ly — g412
H=-mv*+qp =—|p—qAl" +q¢




Hamiltonian for charge Particle in E.M Field

1 1 -
And H=-mv?+qp =—[p—qdl* + qp
, 4 _ a4 _ a4
Now p=—=—Imv+qd]l=ma+q_
. OH = 1 [
And p=——=-VH= —V[%[p—qfl]“w] == _—%[p—qA]-VA+q|7c0]

ma + q% = —[—q(v-V)A + qV¢] Because% p—qA]l=v

dA J0A J0A dA
ma=—q——[-qw-V)A+qVp| = q[—ch—gl +q[(v- A+ ——

ma=qE+q(vx(VxA))=qE+q([wxB)




Hamilton’s Principle for conservative system

Show that § [,/ 3;p; dgq; =0

Since [6Ldt =0
JoLdt =6 [(X;pi g —H)dt =0
6 [ (Zipi S —H )dt =6 [%;p; “Ldt — [ $Hdt =0
5[, pldq‘dt—f(SHdt=O

Since variation in H is zero, therefore the second term will vanish. Or the Hamiltonian H has
the same constant value in both varied and actual motion. Therefore

f 5Ldt—5f 2.ibi dq; =0

t
ftlz oLdt = f op; dq; + X f p; doq;




Hamilton’s Principle for conservative system

Integrating Second term

B B B B

i, Opidqi+3; ), piddq; =%, |, 6p;dq; +Zi|ZVzli|§ - %), dpidq;
B B

Y[, 6pidq; +%; [, dp; 8q;

Since dg; = gdt

Therefore, 6fA 2P dq;

B
6.[14 Zipi dql —

B
6.[4 Zipi dCIl

B B
=%iJ, Opidq; +3%; |, pidéq;

=% [, op: da;
and dpi:_a_chdt
=3[, pida; — X, [, dp; 6q;
f”—”d dt+zf”—”5 dt =0
=fA SHdt = 0

B
- Zi fA dpl 5ql




Hamilton’s Principle for conservative system

Show that 8 [ Tdt = 0 &

Since we know that (Sff 2ipidq; =0

and H = T + V for conservative and holonomic system.

Where V is independent of velocity therefore

aH _ ar

0q;  aq; P

5f Zlaqldq‘ =0

5f ZlaaTlO;qldt= 0

Ba .
=6, ZiCIia_qidtz 0

- . 0T .0 .
Since ¥; 4 5o~ = Xi Gi 55 (ngmjrjz)




Hamilton’s Principle for conservative system

. or orj
Z QL 9d; _Z q; (Z m;t; ]) Z m;r; Zlaq] q;
. or;
i CIlaq _Z m;t; Zlaq]lql
or;j

ZCILaq_Z m].ZLGQJQL ijjf)"f)'=2T
Therefore, 6f > p; dg; —6f N ql—dt— delsztz 0

=6 ftlz Tdt =0

It is another form of Hamilton’s Principle.
Since E=T+V
Or T=E-V




Hamilton’s Principle for conservative system

m
> dt = | e Y2l
Putting In Previous equation.
o107l =0
=8 [, (E =) |55 Y ar=o0

1/2

=6 [ =22 di=0

=68 [, [m(E — V)]Y/2dl = 0




Applications of Hamilton’s Equation of Motion

Derive Hamiltonian and Hamilton’s Equation of motion for simple pendulum
constraint to move along horizontal straight line.

Consider a simple pendulum which move along horizontal x-ais and vibrate along vertical y-
axis

x' =x+1sin=>x"=x+0lcosb
y'=lcosf =y =-0lsinb

T = %m(a’c’z +y'%) = %m(a’cz + 1262 4+ 2x01 cos 6)

& V=-mgy =—-—mglcosb
L=T-V= %m(a’cz + 1202 + 2%0l cos 0) + mgl cos 6

Px=%=m(x+9lcose) = 22X — %4 0lcos@

m

Do =g—g=m(lzé+5clc059) = %z (16 + % cos 9)




Applications of Hamilton’s Equation of Motion

%cos@ =10 cosO + x cos? 6
And P cos® — B2 =16 cosO + xcos?0 —x — Ol cos b
ml m
PO cosO —B% = xcos? 0 —x
ml m
P9 cos — B = —%(1 = cos? 9)
ml m
P 0s@ — 2% = —xsin%6
ml m
X = 1 ( — &cos 9)
m sin? 6 Dx
And from same equation
P _Pbg cosb ( Po )
lQ—ml X cos b T2 \Px T cos 6

6= — (ple — P, COS 9)

msin? 0




