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TWO BODY CENTRAL FORCE PROBLEM

= |n this chapter, we will study
= Two-body problem,

= Reduction of two-body problem to equivalent ' LRI N —
one-body problem. | - o |

= Central Force

= Keppler’s Laws and equation of the orbit

= First integrals




TWO BODY CENTRAL FORCE PROBLEM

4.1 Introduction

= One of the most important problems of classical mechanics
IS to understand the motion of a body moving under the
Influence of a central force field.

= Force which is always directed towards the centre or line
joining two bodies

= The motion of the planets around the sun.

- & Centripetal force Centripetal force
-~

Centripetal force




TWO BODY CENTRAL FORCE PROBLEM

'The motion in central force field can be classified as;:

1) Bound motion
The distance between two bodies never exceeds a finite limit,
e.g. motion of planets around the sun.

2) Unbound motion

The distance between two particles or bodies is infinite at
Initial and final stage.

The bodies move from infinite distance and approach to
Interact in close proximity

Finally move far from each other to an infinite distance.

For example, scattering of alpha particles by gold nuclei as
studied by Rutherford.

Massive black hole




TWO BODY CENTRAL FORCE PROBLEM

Qlt is always possible to reduce the motion of two bodies to that of an equivalent single-
body problem.

dThe exact solution and understanding of two bodies motion problem is possible.

dHowever, the presence of the third body complicates the situation and an exact
solution to the problem become an impossibility.

a Therefore, one must adopt the approximate methods to solve the many bodies
problem.

dWe can always reduce many body systems to a two-body problem either by neglecting
the effects of the others or by some other screening methods, where the effects of the
other bodies don’t play prominent role.

ASuch as the motion of a planets around the sun, where the effect due to the presence of
other planets is neglected. However, we will restrict ourselves to the two bodies

problem only.
@



REDUCTION OF TWO-BODY PROBLEM TO THE EQUIVALENT
ONE-BODY PROBLEM

Consider the motion of two particles. Let F(&x) be the total external force acting on the
system. Let F'"t be the total internal force due to the interaction between two particles.
Total external force will be

Fext = F§*t 4+ F&* (4.1.1)
Further according to the Newton’s 3" law
F% = —FJi0 (4.1.2)

Action and reaction forces.

If the action and reaction forces are same Why only apple falls for earth?



REDUCTION OF TWO-BODY PROBLEM TO THE EQUIVALENT
ONE-BODY PROBLEM

The equations of motion can be written as
Force on Particle 1

m,iy = F¢*t + F{% (4.1.3)

Force on Particle 2

m,¥, = F§** + F5¥ (4.1.4)

Total force on system of Particles
Fé*t = MR (4.1.5)

Total mass of the system
Position vector of the centre of mass of the system is

mqir1+ms7ro

R =

(4.1.7)

mq +m2




REDUCTION OF TWO-BODY PROBLEM TO THE EQUIVALENT
ONE-BODY PROBLEM

Position vector of particle 1 relative to particle 2 be

=1y — 1 (4.1.8)

ri=T+T1 (4.1.9)

Putting Eq. (4.1.9) in Eq. (4.1.7) {R = TalttMar2y
o mq+m,

ry=R— (4.1.10)

Similarly, Eq. (4.1.8) can be written as

ry=T,{—T (4.1.11)
Putting in equation (4.1.11) in equation (4.1.7) {R = mlmnizzrz }
1 2
_ mor

Multiplying Eq. (4.1.3) {m,# = F&** + F/#* Y by m, & Eq. (4.1.4) {m,#, = F§** + FI"} by m, and subtracting,

t t
v — int _ int F‘ix _ ng
mym, (4 — ¥3) = myF{5 — myFy5 + mym, e




REDUCTION OF TWO-BODY PROBLEM TO THE EQUIVALENT
ONE-BODY PROBLEM

Dividing the above equation by (m; +m,) and using FY = —FL%
mim, .o e _ (m1+m2) int mim, (Fixt ngt)
ry—13) = Fi; + —
(m1+m2)( 1 2) (mi+my) 12 (mi+my) \ my my

. ext ext
= u(ity — i) = F% + (”1 5 ) (4.1.13)

m4q my

Where u is reduce mass of the system.

=—+ (4.1.14)




REDUCTION OF TWO-BODY PROBLEM TO THE EQUIVALENT
ONE-BODY PROBLEM

| Special case

If no external force is acting

Fext Fext 0 (A)
equation (4.1.13) will be reduced to

= u(iy — ) = Fi%

= uit = F{% (4.1.15)a
If the forces produce same acceleration

Fext Fext
L -5 (B)

my mp

The condition B is realized if centre producing the external forces is at a considerable distance from the
system and the force due to it on any mass is proportional to that of the mass.

Such as gravitational force. In Earth-moon mutual motion, force due to the sun is assumed such that it
satisfy the condition mentioned in Eqg. B.



REDUCTION OF TWO-BODY PROBLEM TO THE EQUIVALENT
ONE-BODY PROBLEM

Equation will be reduced to
= u(iy — ) = F%
= ui- = F¢ (4.1.15)b

Eq. (4.1.15)b represent motion of a particle of mass equal 4 and moving under the action
of force FY3.

The reduction Is equivalent to replace the system of two bodies by a mass u and
considering the acceleration produced is due to the internal force.

Eq. (4.1.15)a (ui- = F{%) together with Eq. (4.1.5) (F€*' = MR) represents the
motion of a two body system under the action of internal and external forces as long as
the conditions mentioned in equations A & B are valid.

If the internal forces are attractive and these are the only forces acting on the system, the
two bodies move around the centre of mass which acts as centre of force. I.e. directe@
towards the centre.




REDUCTION OF TWO-BODY PROBLEM TO THE EQUIVALENT
ONE-BODY PROBLEM

Condition on mass

If the mass of one of the particles is extremely large as compared to that of the other, say
m, >> m,, then the reduced mass is simply

mim; mimy;

K= (my+my) m1(1+m2/m1)

_ my m; ~
TH Ty B fmy =0
= U =Mm;

In this case the centre of mass of the system coincides with the centre of mass of the
heavier body.

This approximation is equivalent to neglecting the recoil of mass m,. This is used in
Bohr’s theory of hydrogen atom and motion of satellites around the earth. It can be
assumed for the motion of earth around the Sun. @



REDUCTION OF TWO-BODY PROBLEM TO THE EQUIVALENT
ONE-BODY PROBLEM

Since mass m;>>m.,,

acceleration in mass m,

a;, =—"%=~0  orverysmall
mq
acceleration in mass m,
Fint
a, = 21 >0
m;

That’s Is why

“An apple appears to fall towards the earth and not the earth towards the apple”.

)



Lagrangian of the System

If U(r, 1) is the function of “r”and higher derivative of “7”. Then Lagrangian of the
system
L=T(R+)—U(r) (4.1.16)

Where  T(R,#) =1/, MR?> +T' =1/, (m;+m,)R?* + T’ (4.1.17)

1 2
And T’=Em11‘1 + mzrlz

(4.1.18)

Where ry=7r{—R

mqri+mory _ ma(ri—7rz)

Sri=1ry — =
1 1 (my+my) (mi+my)

>ri=—2 r (4.1.19)

(my+m;)

Similarly, r, =r, — R

D=y - TaTtTars __ mair) _ma (4120) @

(my+m;) (my+my) (my+m;)




Lagrangian of the System

Therefore, the kinetic energy from Eq (4.1.18) can be written as

2 2
T’=1m1( 2 1'”) +%m2(— die 1'”)

2 mq{+m, mi+m;

r 1 mymyz -2
=T = (m, + my) mrame T

y 1 mymy; .9
=T =2 e (4.1.21)
The Lagrangian of the system can be written as;
L=T(R+)—U(r,7)

_1 2 l mim, .2 .

L=1,(m; +m,)R* + > Gmam ¥ U(r,r)
L =1/, MR? +-pi? — U(r, ) (4.1.22)

Where M is the total mass of the system and u Is the reduce mass of the system. @



4.2 Properties of central Force

4.2.1a Under the central force, the angular momentum of the particle is conserved
a. In cartesian coordinates
The Torgue on the system (if any) can be writtenas; N =r X F  (4.2.1)

and the angular momentum of the body Is I=rx P (4.2.2)
We know that; Z—i =N (4.2.3)

Since the force acting on the body is central force and always directed towards the line
joining the body with the centre therefore

N=rXxXF=rrXFE7r=rE.({#X1)=0 (4.2.4)
= Z—i =N =0>=1[= Constant (4.2.5)

Eq.(4.2.4) & (4.2.5) suggests that the total torque “N’’ acting on the system will be zero
and angular momentum “7” of the body will be constant. ©



4.2 Properties of central Force

b. In Polar coordinates

P

F = E.7 + F,0 (4.2.6)

And similarly, the torgue acting on a particle in polar coordinates is

N =r x F =rf x [(m¥ — mr6?)# + (mrf + 2m70)0|

= N = r(mi* — mr0?)(# X #) + r(mro + 2m70)(# x 6) | "
= N =0+ r(mrd + 2mr)(# x )

= N = (mr?0 + 2mrr9)A  where ft is | to both # and &

d “\
=N =— (mr20)n (4.2.7) ;
For Radial force, the angular part of the force iIs zero

N = Z—i = 0= 1=mr%0 = Constant (4.2.8)

Note: Also, I=r X P=rxmv=rXmrw =r Xxmr@ = |L| = mr20




4.2 Properties of central Force

4.2.2 The path of a particle moving under the central force must be a Plane
Consider the central force F = E.v (4.2.9)

Taking cross product with radius vector of above equation
rxF=rE({Xx1)=0

dv
:>r><F=r><mE=0

:rxmgzmi(rxv)zo

dt dt
:%(rxv) =0 (4.2.10)
Integrating above equation r X v = q = constant (4.2.11)

Since the vector “g” is perpendicular to both “r” and “v”
r-rxv)=r-q=0

Therefore, the particle is in Plane.



4.2 Properties of central Force

4.2.3 The Areal velocity of the body under the central force is constant OR

The position vector of particle drawn from the origin sweeps equal area in equal interval of times.

OR The rate of change of area is constant.

If the body move from position “A” to position “A”” and cover and angular displacement of “d8” and arc

length “rdo”.
The area of Triangle AAOA'in given figure is

dA = %(r X rdf)= %(r‘f‘ X rd@é)

dA = ~r?doA (4.2.12)
dA _1_,df .
ac 2" dtn

Multiplying both sides with mass “u” of the body

dA 1 2df 1 2 A
m—=-mr<—n=-mr<0n

dt 2 dt 2

dA 1 A

aa _ I :
m— = El — =5~ = constant (As required)
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4.3 Eg. of Motion for a body under the action of central force and First Integrals

Consider a conservative, where force can be drivable from potential “V ..

The problem has spherical symmetry & angular momentum (I = r X P) conserved.

. 1 . .
Lagrangian of the system|L = T =V = —u(i? + r262) = V(| (4.3.1) . m,
- < eouation 4oL _ oL _
Using Lagrange’s equation 38 30 = 0 \

oL _ p _ .2/ oL _
And ﬁ—Pg—,LlT 0, and 59_0 \
\
doL dL _ d 2 A\ D
dtoh 00 dt (ur?6) =0 (4.32) .
m;
‘:(yrzé) = Py = l = constant ‘ (4.3.3)

Eq. (4.3.3) is first integral of motion (2]



4.3 Eqg. of Motion for a body under the action of central force and First Integrals

Lagrange’s equation for radial part

o _

aoL oL _ 4d N _ 02
dt o7 6r_dt(‘ur) ure +6r_0
ui — urf? + g—‘: =0 (4.3.4)
: dv : /
Since fy = —— & 0 = 7 {from(4.3.3)}, Therefore, EQ. (4.3.4)
: N
Since = uit — prche i (4.3.6)




4.3 Eg. of Motion for a body under the action of central force and First Integrals

P O | AN N A
= Ur ~ourd3  ar _ar(zmz +V)
L : L s .9 ( I?
Multiplying Both sides with “7” = Uit = —7 — (Zmz + V)
i l ) — dr 0 lZ — d 12
= (z,ur ) - dtor (zmz + V) o dt (Zurz t V)
a(1, .2 _
:>dt(2‘ur +2ur2+v) =0
1 .9 /2 _
= U+ e + V = Constant (4.3.7)
1 . 1 I?
E = E,LlT'Z + Em + V(T) (438)

From eq. (4.3.7) and Eqg. (4.3.8), total energy of a body under the action of central
force Is constant.




4.4 First Integrals

The Angular momentum, of the system is

[ = ur?6
: l dé l
sf=—=S="
Ur dt  ur?
> df = det
Ur
Integrating above equation | = fe do —f Wdt (4.4.1)

Now the total energy of a body moving under central force is given by

2
E=T+V = —[17’ + ll— + Vi (4.4.3)

2 ur

=7 = \/3 (E _ V(r)) (4.4.4)
(F 5 ©




4.4 First Integral

>t=] il (4.4.5)

Eqg. (4.4.1) & Eq. (4.4.5) are known as first integral for the motion in central force
field. where 1, E, 6, and r,must be known initially.

Eqg. (4.4.1) & Eq. (4.4.5) gives “r” and “6” In terms of t. We are often interested to
find “6” in terms of “r”” which will determine the shape of the orbit of the body.

©



4.4 First Integral

Since Y=L da_ L

dt  pr2 dt dr  ur?2
= do =—ar (4.4.6)

Urr
From Eq. (4.4.4) we know that
. |2 /2
;= \/; (E - Vin) (4.4.7)

l
= df = dr
2
ur? \/ﬁ(’f—#— (r)>
r 2

=60=0,+ dr (4.4.8)

To
o)

Eq. 47 gives “68” in terms of “r” which determine the shape of the orbit of the body @
under the action of central force field.




4.5 General Features of Motion Under Central Force

( .

o 2) —
) 1 ro ) =F (4.5.1)
\,u(r@ + 27‘9) = Fy

The tangential component “Fp” is zero because the force 1s radial

u(i —r62) = F,
> ur =E. + uro?

e (4.5.2)

2

e Is known as centrifugal force. It is a pseudo or false force since it does not arise from the

interaction between the particles in the orbit. It appears due to accelerated motion of the body.
Since 12 = u?r*6%

" e



4.5 General Features of Motion Under Central Force

“pi” is the effective force responsible for the motion and can be derived from potential “V ;"

. AVesr
HT = dr
Therefore Eq. (4.5.2) can be written as
_ AVerr 1_2 _ . av [2
dr _Fr+ur3 :>Veff_ f( dr+ur3)dr
J2
= Veff =V + o (454)

| For an inverse square law (gravitational or electrostatic force) |

k k
Fr = _T_z >V = —;
k /2

Therefore, Verr = ——+ 7 (4.5.5)

Note that the centrifugal potential reduces the effect of the inverse square law

Energy

(4.5.3)




4.5 General Features of Motion Under Central Force

Note: the total energy of the system is o

_ 1 .2
E—E,l[l" +Veff

The centrifugal part gives a repulsive potential while the inverse square law part gives
an attractive potential.

Centrifugal part decreases much faster with distance “r” as compared to the inverse
attractive part.

The combine potential is given as the V. which decrease sharply from positive value

to negative and then increase with r.

The V.. approaches to zero value at infinite value of r. @



4.6 Motion in arbitrary potential Field

Let an arbitrary potential V., which may or may not be same as the real problem and
It might appear in different problems.

The Energy and potential curves intersect at “ry”, “r,” and “r3”.

E =Vys (4.6.1) ; Vers 1
And “uit=0 & =0 EZEW'"ZJFVeff
The curve can be divided into three regions. AN 'E
Reqion for r < r; ¥ \/ ¥
E < Vs (4.6.2) L
&T =—pi? <0 A

& velocity has imaginary value. Hence motion in this region is not possible.



4.6 Motion in arbitrary potential Field

Regionforr; <r<r, Ver
E
In this region £ > V¢
forr <randr, <r, N

The kinetic energy T = %w-,z< 0

Which is not possible therefore the
body will turn back on ryand 7.

Region forr, <r < rj

Inthis region £ < V¢
&T = % ut? < 0 Therefore, the motion
In this region is not possible.




4.6 Motion in arbitrary potential Field

Region for r > r3
Turning pointisr = r3. S NE
The particle approaches to r; and rebounded. : |

7 = escape velocity; the initial velocity required to
escape from the potential field V¢ .

The nature of motion of the particle discussed earlier with help of
arbitrary potential will help to understand the nature of orbit.




4.7 Motion In Inverse Square Law Force Field

k
F == (4.7.1)
> V=" (4.7.2)
Therefore, the effective potential V, ;¢ Is given by
k I?
Verr =7+ 2,02 (4.7.3)

The value of “k” depends on the nature of physical problem. For example,
1) gravitational force between two spherical bodies of mass m; and m,

11) Electrostatic force for two positive charges
__ 419>
k = ame, (4.7.5)

The nature of the orbit depends on sign of “k”. If k > 0 =repulsive & for k < 0 = attractive.

@



4.7 Motion In Inverse Square Law Force Field

A body with total energy E > V.. approaching to
the centre of force from infinite distance. The
particle will be deflected as given in figure.

If effective potential V., Is plotted against “r” for
different values of “k” and “I” following curves are

obtained. v % )
\ \\ \\ \\.0’/
Case | k>01[>0 RN
\\ 4_3\\\ \\\\
Case || k>0,=0 o, e, e
BN
Case I k=0,1>0 \_”/‘ >
k<0,/>0
Case IV k<0,l>0 e
Case V k < O,l =0 /z’k<o,1:0

These curves can be very helpful in understanding the nature of the orbit. (@)



4.7 Motion In Inverse Square Law Force Field

() ForE,atr=r,
lZ
2Ur?

E1 — Veff — _;+

Turning pointat r = ry.

Motion represents scattering, where body iIs not
bound to the centre and deflected away.

(i) ForE,=0

Possible roots are r =r{ and r = co. The particle
moves away & radial velocity fall continuously.

(i) For E; <0

Two roots r = r, and r = ry of equation are real and
distinct.

Energy

\ 4

—o--——+-»> Perigee

@



4.7 Motion In Inverse Square Law Force Field

\ 4

(lV) For E4 = Veff1
which is tangent of the potential energy curve.
aVe
Therefore, Verr — ¢ .
dr g
2 =
L2
dr  ur3
__av_ v _ 42
= F=-—= et uro
S = ur?6? w2 nn
= — _ _ kv

r r
Thus, E. i1s equal to the centrifugal force required to maintain
circular motion of the body around the centre of the force.
Thus, E. Is centripetal force that maintain the orbit.




Problem (Page 293, Classical Mechanics by Marion)

Find the force law for a central force field that allows a particle to move in a logarithmic
spiral orbit given by r = ke®?, where “k” and “a” are constants. Also find value of 0o

and T (). Also find Energy of the orbit.

Solution. Since we have verified that

uf

(S 4 ) = - )

462 12,2

d2u Hrf o
(@i +u) =" )
Now using
r=ke® =l=2g-ab

r k

Differentiating Twice with respect to 6

d? (l) _ a_ze—ae
dgz \r

d? _
=>d07;=0;e“9=a2u (2)




Putting value of u and |n equation 1

(d2 n )_ Wf(r)

do? 12
2
= (a? + Du = —“rlf(’")
= f(r) = m,g (CZ +1) 3)

Eq. 3 represents the force responsible for motion.
Now the central potential responsible for the motion of the particle will be

V=—ff(r)d7"= (4)
Total energy of the system is

2
E=T+V=- ur + +V (5)

2Ur?




dr a0
do dt
dr dr 1
= d90 Eurz
l
r = kae =TS
: l
T'—(XE (6)
2
Now E=T+V=- ur +——=+V
2Ur
>E =" (l—“)2+ C L@+ 1)
— K ur 2Ur? 2/11‘2
> E = u'rz (7)

Eq. 7 gives the total energy of the system. Zero value of the system represent
a bound system.

()



Now we will determine of 6 and r(

: .l do _ 1
Sincef =—=—=—
ur dt ur

a6 __ 1 . 2a049__L
= uk2e2“9:>e do = o dt
i i g2ab It
Integrating both sides we get el + C
2a0 _ e — _—
e = 2 (u +C):>9(t) ln [26!( +C)]
Now r = ke%®
:>£:ea9 :>_2262a9
k k2

:>—2=2a(l—t+C):>r(t):\/Zakz(m+6)

(9)

(10)
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4.8 Prove that for central force field the equation of motion can be written as;

d%u W d*u _ Jw
do2 TUu= 1292 And do2 TUu= ph2u?

where h = %20 and u = 1/,

Solution: Consider a particle of mass “u” Is at a distance “r” from the origin. The
acceleration of the particle can have two components in the polar coordinates

a, =i —r6? (4.8.1)
ag =16 + 210 (4.8.2)

Since the central force is always directed along the radial vector “r”. The radial force
IS responsible for the motion. Therefore;

foy = n(# —16?) (4.8.3)
fiey =0 (4.8.4)

1 : 66,99 1 1
Let us consider a function “u” such that u = -S> =




dr 1 du 1 dudé

dt w2 dt  u2do dt
- du
= ¢ = —rlg =
do
. du
=7 =—h— 4.8.5
— (4.8.5)

Differentiating above equation with respect to t

dr d (du d [du
- h () - (%)
dt dt \do do \ dt

o= ] d (dud@)

a6 \de dt
. s d (du\ _ 5 d’u
> i =—hf— (%) =—ho " (4.8.6)
Sinceh =726 =0 ="/, or 6 = hu?, Putting in Eqg. (4.8.6)
. d?u
r = —h2u2 @ (487)




Putting r =

|+

fay = u(# —16%) = fr) = M(—hzu

= fry = —uh*u? % — uh?u3
= fly) = —Hh*u? (% + u)
> — = (G + )

> (Gt +u) =~

As required.

Since [ = ur?6 = uh putting in Eq. (4.8.8)

d?u _ .uf(u)
(d92 T u) T [2y2

As desired.

. O=hu?*and  Eq.(48.7) in Eg. (4.8.3)

) )

(4.8.8)

(4.8.9)




Problem (Page 293, Classical Mechanics by Marion)

Find the force law for a central force field that allows a particle to move in a logarithmic
spiral orbit given by r = ke®?, where “k” and “a” are constants. Also find value of 0o

and T (). Also find Energy of the orbit.

Solution. Since we have verified that

(dz_u_l_u) _ _Mw

d6>2 12?2
d?u . .urzf(r)
(d92 T u) N 12
Now using
11 _
r=ke*® su=-=z¢7%
r k

Differentiating Twice with respect to 6

d? (1) _ a_ze—ae
doz \r k
d’u «
do2  k

1)

2




Putting value of u and |n equation 1

(d2 n )_ Wf(r)

do? 12
2
= (a? + Du = —“rlf(’")
= f(r) = m,g (CZ +1) 3)

Eq. 3 represents the force responsible for motion.
Now the central potential responsible for the motion of the particle will be

V=—ff(r)d7"= (4)
Total energy of the system is

2
E=T+V=- ur + +V (5)

2Ur?




_ drao
~de dt
dar ;. dr 1
r=w? Tawoue
= kae®? lz=ra'L2
Ur Ur
. l
T':(XE (6)
2
Now E=T+V=- ur +——=+V
2Ur
>E =" (l—“)2+ @+ 1)
— K ur 2Ur? 2/11‘2 @
> F = u'rz (7)

Eq. 7 gives the total energy of the system. Zero value of the system represent
a bound system.

@



Now we will determine of 6 and r(

) . l
= = =
Since @ =z @

a6 __ 1 . 2a049__L
= uk2e2“9:>e do = o dt
i i g2ab It
Integrating both sides we get el + C
2a0 _ e — _—
e = 2 (u +C):>9(t) ln [26!( +C)]
Now r = ke%®
:>£:ea9 :>_2262a9
k k2

:>—2=2a(l—t+C):>r(t):\/Zakz(m+6)

(9)

(10)




_ 2
4.9 Show That: a) v? = 2 + 1202 = h? ((%) + u2>

b) Using results from part “a” also prove that the conservation of energy equation will be

du\? o, 20E-V).. 1
(de) tun = ph? |fu—r

Solution: Let us consider a particle of mass “u” and position vector “r”.

. 1 1
Smceuz;:r:—

u
dar 1 du _ 1 dud®b
dt  u?dt u2 de dt
. - du . du
Sr=—120=—>71=—-—h—
do do

Therefore, v2 = 12 4+ 1202

du
daé

h? ()" 4 h2u?

= v? = K2 ((%)2 + u2> (4.9.1)

= p? = (—h )2 + = (hu?)?




Since E=T+V=>T=E-V

:%,uvzzE—V

:%uhz ((2—3)2 +u2) =E—-V

du 2 5 2(E=V)
N (E) Fu? =20 (4.9.2)

Eq. (4.9.1) and Eq. (4.9.2) are as desired.




4.10 Equation of motion for a body under central force

ginverse sguare law force}

2 l
Solve (ﬂ + u) = —PL";S‘Z) and 6 =6, + [ /y? dr and prove that the solution is the
2
\/ Zu(E—V(,,)— 2:7)

do?
equation of conic. i.e. the motion under the inverse square law force represent motion on conic
path. Also discuss the possibilities of bound and unbound system.

Let us consider a particle of mass “u” is under inverse square law force. The equation of motion can be
written as

(% n u) _ ‘l‘f o (4.10.1)
Since the inverse square attractive force

foy = —,% = —ku?

% ru= (4.10.2)




4.10 Equation of motion for a body under central force

ginverse square law forcez

Starting with equation Eg. (4.10.2)

diu el dw ok
S tu=5pP—tu——5=0 (4.10.2)
Consider a function
‘y =u-4 ‘ (4.10.3)
Differentiating above equation Twice

d’y _ d’u ‘

07 = g7 (4.10.4)
Now

du ok _dly

a0z + z = gz TV T

d?y _
‘ 202 +y=0 ‘ (4.10.5) @




4.10 Equation of motion for a body under central force

(inverse square law force)
It is a second order differential equation where “y” Is a function of “6”

And y = Acos(6 —6,) (4.10.6)
y =u—‘:—§=Acos(9 —0,)
1 uk
- = ‘;—2 + Acos(0 — 6,)
() _, ,
= ‘; =1+ ﬁcos(e —8,) (4.10.7)

Equation of conic.

A A A

% =1+ ecos(8 —0,) (4.10.7)a

12 i
where a¢ = P Semi latus rectum.

2

and e = i—lk IS eccentricity which is defined as the measure

of deviation from circular shape.




4.10 Equation of motion for a body under central force

ginverse square law forcez

Now consider the first integral for the motion under central force
l

6=0,+ r? —dr (4.10.8)
JZH(E‘ V)~ 5ur7)
Since ‘ du = —=dr &‘ V=—%=—ku ‘ (4.10.9) & (4.10.10)
Putting Eq. (4.10.4) and Eq. (4.10.5) in Eqg. (4.10.3)
du
6=6,—[ (4.10.11)
)
Let @za,#zband—lzc
l l
Then 6-6,=— o =—[——

\/(zuE 2uk uz) J(a+bu+cu?)




4.10 Equation of motion for a body under central force

ginverse square law forcez
. _ s :
-~ - o |- e )

12

i e i

6, —0 =|cos™! klz . ZILZE=a,ZlL2k=band—1=c
o eEn).

u=?—§+l';—f 1+(Zl E)COS(H —0)

— 1+\/1+(Zl E)COS(H —9)]

= |1+ ecos(8, —0)]=[1+ ecos(6 — 6,)] (4-10-12)

We have shown that the solution of the first integral is an equation of conic
2

a = # = semi latus rectum and e = \/1 + (

2
ilkf) Is the eccentricity



4.10 Equation of motion for a body under central force

ginverse square law forcez

For Eq.(4.10.7)a & EQ.(4.10.12) if we assume 6, = 0°, 8 = 0° & 180°
r=—= - &|r,=—"—= a (4.10.13) & (4.10.14)

1+e 212E 1—e 212E
1+\/1+(uk2) 1—- \/1+<uk2)

Fore > 1 of E > 0, ry IS negative

Ande =1, E =0, ry, isinfinity

Both cases => motion is unbound
Thereforee < 1 and E < 0 Is necessary to keep a bounded motion.
The finite and positive values of r; and r, represents the turning points.

2
Comparing the equation of eccentricity A= 12 1+ ( 2 E) (4.10.15)

pk?
G




4.10 Equation of motion for a body under central force

ginverse square law forcez

Nature of the Orbit
The nature of orbit Is determined by eccentricity e which depend on energy

Value of E Value of eccentricit Nature of orbit

e>1 Hyperbola
. E=0 | e=1 Parabola
Vege(min) <E< O 0<e<l1 Ellipse
E = Veg(min) e=0 Circle
1 L? 1
we can always set , = 0 And - = a = = = = C[1 + ecos(0 — 6,)]
» Bound motion is possible only for Ellipse or circle. | - (
_ | Myperbola P
« The motion of planets is either circular of elliptical. U

Ellipse Vesr(min) <E <O

« The variation of length of the day and seasonal | \ Emipse Ve, G
changes suggest that the path of the planet is elliptical. |~ — Circle B = Vors Gt




4.10 Equation of motion for a body under central force

ginverse square law forcez

Elliptic Orbit

The ellipse Is a curve traced out by a particle moving In such a way that the sum of
its distance from two fixed foci O and O’ is always constant.

2 g THONDT L MHFE D= S Talommom (@ )



4.10 Equation of motion for a body under central force

Inverse square law force

Elliptic Orbit
T+ = (12‘2) = 2a where a the semi-major axis Is constant

Note the distance between two foci

2

00'=1r—nr = (1_82)6 = 2ae

- 05' — qe (4.10.16)
From the figure it is clear that OP’ = O’P’ and
OP' 4+ O'P" = 2a & OP' =a

S .
L) : r1
P’
Y
S
' 1 :
B
}
-+ 2a >

_, 2
Now from figure b? = (OP')? — (%) = a? —a’e? = a?(1 —e?

=>b=a\/(1—ez)




4.10 Equation of motion for a body under central force

ginverse square law forcez

If e # 0 then,
: 212E
Since e=\/1+(ﬂk2)
. o~ 4 (2VE
Therefore, b=a/(1—e?2)= aV <1 1 (Mkz))

21°E
b=a <_ (,ukz))
N
The energy of the bounded system is less than zero therefore

It will give a real value solution. @




4.10 Equation of motion for a body under central force

ginverse square law forcez

If e = 0 ellipse will become circle b = a
(Note in the region when body passes through closest distance the curve is arc of

a circle)

21°E
And 1+ (”kz) =0
__(uk? 2 _ _ HK?
b= (212)=>l  2E
Eqg. (4.10.13) & (4.10.14) will be reduced to r; = r, = a = «a, therefore;
e &)
ro—a—a—uk— pp
K
And To = _E
And E=-—=




4.10 Equation of motion for a body under central force

ginverse square law forcez

Putting this value in equation of eccentricity we get

e=\/1+(il;f)=\/1—(;%) LE=—k

Using this value, the semi-minor axis b can be written as.
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4.11 Keppler’s Laws

Keppler First Law: “Every planet describes an ellipse with the sun at one of the foci”

Let us consider a particle of mass “u” is under inverse square law force.
Since the inverse square attractive force

__ Kk _ .2 (if,=1

fory = —=z=—ku (ifr=-) (4.11.1)
For gravitational force k = GmM,

dz_u _ Iif(u)

(ng tu)= = (4.10.2)
d"u _ pku
dp? TU=T
d"u _ kK
—tu="5 (4.11.2)

We will now solve these equations Eq. (4.11.2) to understand the nature of

the orbit.
d?u _ uk __ d*u uk



4.11 Keppler’s Laws

Consider a function y = u — ‘l‘—f (4.11.4)

Differentiating above equation

dy du
do  de

Differentiating above equation again

2= (4.11.5)

(4.11.6)

d?u k
dO? 12

The general solution is;

u = BcosO + Csinf + ‘:—f

Where B = Acosf, and C = Asiné,
u = Acos(60 —0,) + ‘:—f

lZ
1 /
r= — pk

k — 2
%+ACOS(9—90) 1+':—lkcos(9—90)

a

T =
1+ecos(60—-6,)
a

= 1+ ecosf

= |




4.11 Keppler’s Laws

It is a second order differential equation where “y” is a function of “6”” And
y = Acos(8 — 6,) (4.11.7)
where A and 6, are constants.

k
y=u—%=Acos(8—90)

Uk
=Tz + Acos(6 — 6,)

2 Al?
ul—|)=1+—cos(0—-6,) (4.11.8)
uk uk

2 —
Using Equation Eq. (4.9.2) (%) oo = 208G

and using V = —% = —ku



4.11 Keppler’s Laws

do 12
Using Eq.|lu = Acos(6 — 6,) + % and Z—z = —Asin(0 — 6,)
2 7
(Z—g) + u? = [—-Asin(8 — 6,)]? [ACOS(H 6,) + = ZI—Z(E + ku)

= A?[sin?(8 — 0,) + cos?(0 — 6,)] + (“k) 2‘;—5/1005(8 -6, = Zl—g(E + ku)

2
= A2 (ﬁ) +2% Acos(0 - 6,) =% (E + kAcos(6 — 0,) + 1% ) /

12

2
:>A2+(”—k) +2?—§Ac05(9—90)—2“E+2“kAcos(9 9)+2( )

lZ




4.11 Keppler’s Laws

k |2El?
= A =*t +1
12 ﬂkz

lZ

uk

12
— 2
= _(“") =1+ —’;f (\/ZEIZ + 1) = cos(0 —6,)

2
And u( )=1+i—lkcos(9—90) (4.11.8)

T k? uk

(i)

2E1%
— = 1+(\/uk2 +1>cos(9—90)

|=>5= 1+ ecos(8 —6,) ‘ (4.11.9)

r

=

Eqg. (4.11.9) is equation of conic which describe the motion of planet
around the sun.




4.11 Keppler’s Laws

For Eq.(4.11.8) & Eq.(4.11.9) if we assume 8, = 0 & 8 = 0°& 180°

17 14e

& (4.11.10) & (4.11.11)

r, = —
T

Fore > 1 of E > 0, ry IS negative

Ande =1, E =0, ry isinfinity

Both cases = motion is unbound

Thereforee < 1 and E < 0 Is necessary to keep a bounded motion.
The finite and positive values of r; and r, represents the turning points.




4.11 Keppler’s Laws

Nature of the Orbit

The nature of orbit is determined by eccentricity e which depend on energy

e>1
. E=0 e=1
Vege(min) <E< O 0<e<1

E = Veff(min) e=20

L2 1

1
we can always set8, = 0 And- =«
C uk T

Bound motion is possible only for Ellipse or circle.
The motion of planets is either circular of elliptical.

The variation of length of the day and seasonal
changes suggest that the path of the planet is elliptical.

4

N

__\(

Value of E Value of eccentricit Nature of orbit

Hyperbola
Parabola
Ellipse
Circle

— = -=C(C[14+ecos(8—6,)]

yperbola E>1

Parabola E=1 >

Ellipse Verr(min) < E <0

Circle E = Veff (mln)

>




4.11 Keppler’s Laws

¢ Since the planet repeat its motion after a fixed period.

¢ During this period the variation in the length of day and night can
only be explained if the orbit of the planet is elliptical.

“» We conclude that the planet around the sun describe elliptical orbit
with sun at one of its foci.

¢ Furthermore, the finite and positive values of r; and r, represents the
turning points for the planet or the minimum and maximum radii of
the planet during the motion which are called apogee and perigee for
the earth orbit.




Keppler Second Law: “The position vector of particle drawn from the origin

sweeps equal area in equal interval of times.”

“The Areal velocity of the body under the central force is constant.”

OR

“The rate of change of area covered by the radial vector drawn from the

centre to the planet under the central force is constant.”

The area of Triangle AAOA'in given figure is

dA = ~r2dod (4.11.12)
dA 1 _,df .

—_— = -7 —

dt 2 dt

Multiplying both sides with mass “u” of the body
dA 1 2 0 o _ 1

ME - —M — —‘Llr 0
aa _ 1
Har =2
22— L1 = constant (4.11.13)
dt 2U




4.11 Keppler’s Laws

Kepler’s Third Law: “The square of the time period of revolution of the planet is

directly proportional to the cube of the semi-major axis of the orbit”

From the Kepler’s second law, we know that Areal velocity of the body under the

action of central force 1S constant

: l
A = — = constant
2uU
dA l dA l
=—= [—dt=—[dt
dt 2U dt 2U

> [ dA =ﬁf§dt

Where 7 Is the time period of revaluation.

l
> A=—7
21

Since the area of the ellipse Is

(4.11.13)

(4.11.14)

A = mab




4.11 Keppler’s Laws

And b = aVv1l — e?
= A = ma*V1 — e?

And we also know that by usingr, = a = — %

2E12
uk?

= E = —% putting this in e = \/1 +

1--L
= e = _—
uka
12 12

sef=1-—=—=1-¢°
uka uka

=1 — e?

l

Juka

Therefore, A = ma?V1 — e? = ma?

=

l

Juka

(4.11.15)

(4.11.16)




4.11 Keppler’s Laws

= A= %aB/Z (4.11.17)

Comparing Equation for A

= 72 = (Constant)a’
= 72 o« a3 as desired. (4.11.18)




4.12 Virial Theorem

The virial theorem provides a general equation that relates the average over time of
the total Kinetic Energy (T) of a system, bound by potential forces,

N
<T>=—%<2Fi-r,->
i=1
The word virial for the right-hand side of the equation derives from vis, the Latin
word for "force" or "energy" and was given its technical definition by Rudolf Clausius
in 1870.

significance : virial theorem is that it allows the average total kinetic energy to be
calculated even for very complicated systems that defy an exact solution,

such as those considered in Statistical mechanics; this average total kinetic energy is
related to the Temperature of the system by the equipartition theorem. @



4.12 Virial Theorem

Let us consider a system of points masses. Let the particle with mass “m;”, position
vector “r;” and momentum “ P;”. We define a term “G” such that;

G=YN.P;,-1;
P Z 1P T¢+Z 1P rl

dG_ N N . .
E_ 2i=1 Fi -1+ Ximgmy vy - 1

I Z 1F 1‘ +Zl 1ml7”l2

(4.12.1)

(4.12.2)

_ \V'N
I = Z-_lmiri o i

1dl  1d «p
== m;r; T,

2 dt Zdtz =1"" %t T

1dI

E& [Zl lmlrl rl"'Zl 1m;r;- ri]
1dl _ 2

2dt Zl lmlrl ri

1dl _ 2

Ea Zl 1mlrl ri

1dlI

= Lis1PiTi =G

The time average over the time Interval Is obtained by integrating both sides of the

dGg
T—dt -

equation. -Jo 2

[G (r) = G(0)]

(4.12.3)

()



4.12 Virial Theorem

If the motion is periodic, all coordinates repeat itself after a certain time “t”

1 r7dG

=2 [ 2dt =0 because G(t) = G(0)

If the motion is not periodic, even then for T > the% |G(t) —G(0)] >0

In both cases left hand side Is zero. Comparing Eq. (4.12.2) and (4.12.3)
1 rTdG

~Jy =-dt =<YN F;-r;>+2<T>=0

22<T>=—<YN F;,-r;>

1
S<T>= —- < XL Fi-rp >

=< T >= —% <¥N (V)1 >

1 dv
=><T>——E<—E-r> (4124) @




4.12 Virial Theorem

Since V =~ and & = —%for central force r=-% & ¥_ k2 for

T dr T T dr T
dv k k . . _ central attractive force
—-r=——-r=—=putting this value In Eq.
dr T T dv k k .
(4124) e r = 2 r = - putting

this value in Eq. (4.12.4

<To>=—tc-Yps=_1ky 4. (4.12.4)

2 dr 2 T 1 A

| <T>=—-—-<——.1r>=

5<T>=—-=<V > (4.12.5) 2 dr
It is true for every system having potential 2 r
V = krntl =><T>=—%<V>

n+1

=>< T >= T <V > (4126)







