
Akhlaq Hussain

Chapter 4

Lecture 1

Two body central Force Problem

1



▪ In this chapter, we will study

▪ Two-body problem,

▪ Reduction of two-body problem to equivalent
one-body problem.

▪ Central Force

▪ Keppler’s Laws and equation of the orbit

▪ First integrals

2



4.1 Introduction

▪ One of the most important problems of classical mechanics
is to understand the motion of a body moving under the
influence of a central force field.

▪ Force which is always directed towards the centre or line
joining two bodies

▪ The motion of the planets around the sun.
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2) Unbound motion

The distance between two particles or bodies is infinite at
initial and final stage.

The bodies move from infinite distance and approach to
interact in close proximity

Finally move far from each other to an infinite distance.

For example, scattering of alpha particles by gold nuclei as
studied by Rutherford.

The motion in central force field can be classified as;

1) Bound motion

The distance between two bodies never exceeds a finite limit,

e.g. motion of planets around the sun.
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❑It is always possible to reduce the motion of two bodies to that of an equivalent single-
body problem.

❑The exact solution and understanding of two bodies motion problem is possible.

❑However, the presence of the third body complicates the situation and an exact
solution to the problem become an impossibility.

❑ Therefore, one must adopt the approximate methods to solve the many bodies
problem.

❑We can always reduce many body systems to a two-body problem either by neglecting
the effects of the others or by some other screening methods, where the effects of the
other bodies don’t play prominent role.

❑Such as the motion of a planets around the sun, where the effect due to the presence of
other planets is neglected. However, we will restrict ourselves to the two bodies
problem only.
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Consider the motion of two particles. Let F(ext) be the total external force acting on the

system. Let Fint be the total internal force due to the interaction between two particles.

Total external force will be

𝑭𝒆𝒙𝒕 = 𝑭𝟏
𝒆𝒙𝒕 + 𝑭𝟐

𝒆𝒙𝒕 (4.1.1)
Further according to the Newton’s 3rd law

𝑭𝟏𝟐
𝒊𝒏𝒕 = −𝑭𝟐𝟏

𝒊𝒏𝒕` (4.1.2)

Action and reaction forces.

If the action and reaction forces are same Why only apple falls for earth?
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The equations of motion can be written as

Force on Particle 1

𝑚1 ሷ𝒓𝟏 = 𝑭𝟏
𝒆𝒙𝒕 + 𝑭𝟏𝟐

𝒊𝒏𝒕 (4.1.3)

Force on Particle 2

𝑚2 ሷ𝒓𝟐 = 𝑭𝟐
𝒆𝒙𝒕 + 𝑭𝟐𝟏

𝒊𝒏𝒕 (4.1.4)

Total force on system of Particles
𝑭𝒆𝒙𝒕 = 𝑀 ሷ𝑹 (4.1.5)

Total mass of the system
𝑀 = 𝑚1 +𝑚2 (4.1.6)

Position vector of the centre of mass of the system is

𝑹 =
𝑚1𝒓𝟏+𝑚2𝒓𝟐

𝑚1+𝑚2
(4.1.7)
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Position vector of particle 1 relative to particle 2 be

𝒓 = 𝒓𝟏 − 𝒓𝟐 (4.1.8)
𝒓𝟏 = 𝒓 + 𝒓𝟐 (4.1.9)

Putting Eq. (4.1.9) in Eq. (4.1.7) {𝑹 =
𝑚1𝒓𝟏+𝑚2𝒓𝟐

𝑚1+𝑚2
}

𝒓𝟐 = 𝑹−
𝑚1𝒓

𝑚1+𝑚2
(4.1.10)

Similarly, Eq. (4.1.8) can be written as

𝒓𝟐 = 𝒓𝟏 − 𝒓 (4.1.11)

Putting in equation (4.1.11) in equation (4.1.7) {𝑹 =
𝑚1𝒓𝟏+𝑚2𝒓𝟐

𝑚1+𝑚2
}

𝒓𝟏 = 𝑹+
𝑚2𝒓

𝑚1+𝑚2
(4.1.12)

Multiplying Eq. (4.1.3) {𝑚1 ሷ𝑟1 = 𝐹1
𝑒𝑥𝑡 + 𝐹12

𝑖𝑛𝑡 } by m2 & Eq. (4.1.4) {𝑚2 ሷ𝑟2 = 𝐹2
𝑒𝑥𝑡 + 𝐹21

𝑖𝑛𝑡} by m1 and subtracting, 

𝑚1𝑚2 ሷ𝒓𝟏 − ሷ𝒓𝟐 = 𝑚2𝑭𝟏𝟐
𝒊𝒏𝒕 −𝑚1𝑭𝟐𝟏

𝒊𝒏𝒕 +𝑚1𝑚2
𝑭𝟏
𝒆𝒙𝒕

𝑚1
−

𝑭𝟐
𝒆𝒙𝒕

𝑚2 8



Dividing the above equation by (𝑚1 +𝑚2) and using  𝑭𝟏𝟐
𝒊𝒏𝒕 = −𝑭𝟐𝟏

𝒊𝒏𝒕

𝑚1𝑚2

(𝑚1+𝑚2)
ሷ𝒓𝟏 − ሷ𝒓𝟐 =

(𝑚1+𝑚2)

(𝑚1+𝑚2)
𝑭𝟏𝟐
𝒊𝒏𝒕 +

𝑚1𝑚2

(𝑚1+𝑚2)

𝑭𝟏
𝒆𝒙𝒕

𝑚1
−

𝑭𝟐
𝒆𝒙𝒕

𝑚2

⇒ 𝜇 ሷ𝒓𝟏 − ሷ𝒓𝟐 = 𝑭𝟏𝟐
𝒊𝒏𝒕 + 𝜇

𝑭𝟏
𝒆𝒙𝒕

𝑚1
−

𝑭𝟐
𝒆𝒙𝒕

𝑚2
(4.1.13)

Where 𝜇 is reduce mass of the system.

𝜇 =
𝑚1𝑚2

(𝑚1+𝑚2)
𝑜𝑟

1

𝜇
=

1

𝑚1
+

1

𝑚2
(4.1.14)
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Special case

If no external force is acting

𝑭𝟏
𝒆𝒙𝒕 = 𝑭𝟐

𝒆𝒙𝒕 = 𝟎 (A)

equation (4.1.13) will be reduced to

⇒ 𝜇 ሷ𝒓𝟏 − ሷ𝒓𝟐 = 𝑭𝟏𝟐
𝒊𝒏𝒕

⇒ 𝜇 ሷ𝒓 = 𝑭𝟏𝟐
𝒊𝒏𝒕 (4.1.15)a

If the forces produce same acceleration

𝑭𝟏
𝒆𝒙𝒕

𝒎𝟏
=

𝑭𝟐
𝒆𝒙𝒕

𝒎𝟐
(B)

The condition B is realized if centre producing the external forces is at a considerable distance from the

system and the force due to it on any mass is proportional to that of the mass.

Such as gravitational force. In Earth-moon mutual motion, force due to the sun is assumed such that it

satisfy the condition mentioned in Eq. B.
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Equation will be reduced to

⇒ 𝜇 ሷ𝒓𝟏 − ሷ𝒓𝟐 = 𝑭𝟏𝟐
𝒊𝒏𝒕

⇒ 𝜇 ሷ𝒓 = 𝑭𝟏𝟐
𝒊𝒏𝒕 (4.1.15)b

Eq. (4.1.15)b represent motion of a particle of mass equal 𝜇 and moving under the action

of force 𝑭𝟏𝟐
𝒊𝒏𝒕.

The reduction is equivalent to replace the system of two bodies by a mass 𝜇 and

considering the acceleration produced is due to the internal force.

Eq. (4.1.15)a (𝜇 ሷ𝒓 = 𝑭𝟏𝟐
𝒊𝒏𝒕) together with Eq. (4.1.5) (𝑭𝒆𝒙𝒕 = 𝑀 ሷ𝑹) represents the

motion of a two body system under the action of internal and external forces as long as

the conditions mentioned in equations A & B are valid.

If the internal forces are attractive and these are the only forces acting on the system, the

two bodies move around the centre of mass which acts as centre of force. i.e. directed

towards the centre.
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Condition on mass

If the mass of one of the particles is extremely large as compared to that of the other, say

m1 >> m2, then the reduced mass is simply

𝜇 =
𝑚1𝑚2

(𝑚1+𝑚2)
=

𝑚1𝑚2

𝑚1(1+ ൗ
𝑚2

𝑚1)

⇒ 𝜇 =
𝑚2

(1+ ൗ
𝑚2

𝑚1)
as Τ𝑚2

𝑚1 ≈ 0

⇒ 𝜇 = 𝑚2

In this case the centre of mass of the system coincides with the centre of mass of the

heavier body.

This approximation is equivalent to neglecting the recoil of mass m1. This is used in

Bohr’s theory of hydrogen atom and motion of satellites around the earth. It can be

assumed for the motion of earth around the Sun. 12



Since mass m1>>m2,

acceleration in mass m1

𝒂𝟏 =
𝑭𝟏𝟐
𝒊𝒏𝒕

𝒎𝟏
≈ 𝟎 or very small

acceleration in mass m2

𝒂𝟐 =
𝑭𝟐𝟏
𝒊𝒏𝒕

𝒎𝟐
> 𝟎

That’s is why

“An apple appears to fall towards the earth and not the earth towards the apple”.
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If 𝑈 𝒓, ሶ𝒓 is the function of “𝒓”and higher derivative of “ ሶ𝒓”. Then Lagrangian of the

system

𝐿 = 𝑇 ሶ𝑹, ሶ𝒓 − 𝑈 𝒓, ሶ𝒓 (4.1.16)

Where 𝑇 ሶ𝑹, ሶ𝒓 = Τ1 2𝑀 ሶ𝑹𝟐 + 𝑇′ = Τ1 2 (𝑚1+𝑚2) ሶ𝑹𝟐 + 𝑇′ (4.1.17)

And 𝑇′ =
1

2
𝑚1 ሶ𝒓1

′ 𝟐 +
1

2
𝑚2 ሶ𝒓𝟐

′ 𝟐 (4.1.18)

Where 𝒓𝟏
′ = 𝒓𝟏 − 𝑹

⇒ 𝒓1
′= 𝒓𝟏 −

𝑚1𝒓𝟏+𝑚2𝒓𝟐

𝑚1+𝑚2
=

𝑚2 𝒓𝟏−𝒓𝟐

𝑚1+𝑚2

⇒ 𝒓1
′=

𝑚2

𝑚1+𝑚2
𝒓 (4.1.19)

Similarly, 𝒓2
′ = 𝒓𝟐 − 𝑹

⇒ 𝒓𝟐
′ = 𝒓𝟐 −

𝑚1𝒓𝟏+𝑚2𝒓𝟐

𝑚1+𝑚2
= −

𝑚1 𝒓𝟏−𝒓𝟐

𝑚1+𝑚2
= −

𝑚1

𝑚1+𝑚2
𝒓 (4.1.20)

Lagrangian of the System
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Therefore, the kinetic energy from Eq (4.1.18) can be written as

𝑇′ =
1

2
𝑚1

𝑚2

𝑚1+𝑚2
ሶ𝒓
𝟐
+

1

2
𝑚2 −

𝑚1

𝑚1+𝑚2
ሶ𝒓
𝟐

⇒ 𝑇′ =
1

2
𝑚2 +𝑚1

𝑚1𝑚2

𝑚1+𝑚2
2
ሶ𝒓𝟐

⇒ 𝑇′ =
1

2

𝑚1𝑚2

𝑚2+𝑚1
ሶ𝒓𝟐 (4.1.21)

The Lagrangian of the system can be written as;

𝐿 = 𝑇 ሶ𝑹, ሶ𝒓 − 𝑈 𝒓, ሶ𝒓

𝐿 = Τ1 2 𝑚1 +𝑚2
ሶ𝑹𝟐 +

1

2

𝑚1𝑚2

𝑚1+𝑚2
ሶ𝒓𝟐 − 𝑈 𝒓, ሶ𝒓

𝐿 = Τ1 2𝑀 ሶ𝑹𝟐 +
1

2
𝜇 ሶ𝒓𝟐 − 𝑈 𝒓, ሶ𝒓 (4.1.22)

Where M is the total mass of the system and 𝜇 is the reduce mass of the system.

Lagrangian of the System
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4.2.1a Under the central force, the angular momentum of the particle is conserved

a. In cartesian coordinates

The Torque on the system (if any) can be written as;𝑵 = 𝒓 × 𝑭 (4.2.1)

and the angular momentum of the body is l= 𝒓 × 𝑷 (4.2.2)

We know that;
𝒅l
𝒅𝒕
= 𝑵 (4.2.3)

Since the force acting on the body is central force and always directed towards the line

joining the body with the centre therefore

𝑵 = 𝒓 × 𝑭 = 𝑟 Ƹ𝑟 × 𝐹𝑟 Ƹ𝑟 = 𝑟𝐹𝑟 Ƹ𝑟 × Ƹ𝑟 = 0 (4.2.4)

⇒
𝒅l
𝒅𝒕
= 𝑵 = 𝟎 ⇒ l = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (4.2.5)

Eq.(4.2.4) & (4.2.5) suggests that the total torque “𝑵” acting on the system will be zero

and angular momentum “l” of the body will be constant.

4.2 Properties of central Force
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4.2 Properties of central Force

b. In Polar coordinates

𝑭 = 𝐹𝑟 Ƹ𝑟 + 𝐹𝜃 ෠𝜃 (4.2.6)

And similarly, the torque acting on a particle in polar coordinates is

𝑵 = 𝒓 × 𝑭 = 𝑟 Ƹ𝑟 × 𝑚 ሷ𝑟 − 𝑚𝑟 ሶ𝜃2 Ƹ𝑟 + 𝑚𝑟 ሷ𝜃 + 2𝑚 ሶ𝑟 ሶ𝜃 ෠𝜃

⇒ 𝑵 = 𝑟 𝑚 ሷ𝑟 − 𝑚𝑟 ሶ𝜃2 Ƹ𝑟 × Ƹ𝑟 + 𝑟 𝑚𝑟 ሷ𝜃 + 2𝑚 ሶ𝑟 ሶ𝜃 Ƹ𝑟 × ෠𝜃

⇒ 𝑵 = 0 + 𝑟 𝑚𝑟 ሷ𝜃 + 2𝑚 ሶ𝑟 ሶ𝜃 Ƹ𝑟 × ෠𝜃

⇒ 𝑵 = 𝑚𝑟2 ሷ𝜃 + 2𝑚𝑟 ሶ𝑟 ሶ𝜃 ො𝑛 where ො𝑛 is ⏊ to both Ƹ𝑟 and ෠𝜃

⇒ 𝑵 =
𝑑

𝑑𝑡
𝑚𝑟2 ሶ𝜃 ො𝑛 (4.2.7)

For Radial force, the angular part of the force is zero

𝑵 =
𝑑l
𝑑𝑡
= 0 ⇒ l = 𝑚𝑟2 ሶ𝜃 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (4.2.8)

Note: Also, l= 𝒓 × 𝑷 = 𝒓 ×𝑚𝒗 = 𝒓 ×𝑚𝑟𝝎 = 𝒓 ×𝑚𝑟 ሶ𝜽 ⇒ 𝑳 = 𝑚𝑟2 ሶ𝜃 17



4.2.2 The path of a particle moving under the central force must be a Plane

Consider the central force 𝑭 = 𝐹𝑟 Ƹ𝑟 (4.2.9)

Taking cross product with radius vector of above equation

𝒓 × 𝑭 = 𝒓𝐹𝑟 Ƹ𝑟 × Ƹ𝑟 = 0

⇒ 𝒓 × 𝑭 = 𝒓 ×𝑚
𝑑𝒗

𝑑𝑡
= 0

⇒ 𝒓 ×𝑚
𝑑𝒗

𝑑𝑡
= m

𝑑

𝑑𝑡
𝒓 × 𝒗 = 0

⇒
𝑑

𝑑𝑡
𝒓 × 𝒗 = 0 (4.2.10)

Integrating above equation 𝒓 × 𝒗 = 𝒒 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (4.2.11)

Since the vector “𝒒” is perpendicular to both “𝒓” and “𝒗”

𝒓 ∙ 𝒓 × 𝒗 = 𝒓 ∙ 𝒒 = 0

Therefore, the particle is in Plane.

4.2 Properties of central Force
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If the body move from position “A” to position “𝐴′” and cover and angular displacement of “𝑑𝜃” and arc

length “𝑟𝑑𝜃”.

The area of Triangle ∆𝐴𝑂𝐴′in given figure is

𝑑𝑨 =
1

2
𝒓 × 𝑟𝑑𝜽 =

1

2
𝑟 Ƹ𝑟 × 𝑟𝑑𝜃 መ𝜃

𝑑𝑨 =
1

2
𝑟2𝑑𝜃 ො𝑛 (4.2.12)

𝑑𝑨

𝑑𝑡
=

1

2
𝑟2

𝑑𝜃

𝑑𝑡
ො𝑛

Multiplying both sides with mass “𝜇” of the body

m
𝑑𝑨

𝑑𝑡
=

1

2
𝑚𝑟2

𝑑𝜃

𝑑𝑡
ො𝑛 =

1

2
𝑚𝑟2 ሶ𝜃 ො𝑛

𝑚
𝑑𝑨

𝑑𝑡
=

1

2
l⇒

𝑑𝑨

𝑑𝑡
=

l
2𝑚

= 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 (As required)

4.2.3 The Areal velocity of the body under the central force is constant OR

The position vector of particle drawn from the origin sweeps equal area in equal interval of times.

OR The rate of change of area is constant.

4.2 Properties of central Force
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Consider a conservative, where force can be drivable from potential “V(r)”.

The problem has spherical symmetry & angular momentum (𝒍 = 𝒓 × 𝑷) conserved.

Lagrangian of the system 𝐿 = 𝑇 − 𝑉 =
1

2
𝜇 ሶ𝑟2 + 𝑟2 ሶ𝜃2 − 𝑉 𝑟 (4.3.1)

Using Lagrange’s equation
𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝜃
−

𝜕𝐿

𝜕𝜃
= 0

And
𝜕𝐿

𝜕 ሶ𝜃
= 𝑃𝜃 = 𝜇𝑟2 ሶ𝜃, and

𝜕𝐿

𝜕𝜃
= 0

4.3 Eq. of Motion for a body under the action of central force and First Integrals

2Eq. (4.3.3) is first integral of motion

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝜃
−

𝜕𝐿

𝜕𝜃
=

𝑑

𝑑𝑡
𝜇𝑟2 ሶ𝜃 = 0 (4.3.2)

⇒ 𝜇𝑟2 ሶ𝜃 = 𝑃𝜃 = 𝒍 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (4.3.3)



Lagrange’s equation for radial part

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑟
−

𝜕𝐿

𝜕𝑟
=

𝑑

𝑑𝑡
𝜇 ሶ𝑟 − 𝜇𝑟 ሶ𝜃2 +

𝜕𝑉

𝜕𝑟
= 0

𝜇 ሷ𝑟 − 𝜇𝑟 ሶ𝜃2 +
𝜕𝑉

𝜕𝑟
= 0 (4.3.4)

Since 𝑓(𝑟) = −
𝑑𝑉

𝑑𝑟
& ሶ𝜃 =

l
𝜇𝑟2

{from(4.3.3)}, Therefore, Eq. (4.3.4)

3

Since ⇒ 𝜇 ሷ𝑟 −
l 2

𝜇𝑟3
= 𝑓(𝑟) (4.3.6)

4.3 Eq. of Motion for a body under the action of central force and First Integrals



𝐸 =
1

2
𝜇 ሶ𝑟2 +

1

2

l2

𝜇𝑟2
+ 𝑉 𝑟 (4.3.8)

From eq. (4.3.7) and Eq. (4.3.8), total energy of a body under the action of central

force is constant.

⇒ 𝜇 ሷ𝑟 =
l2

𝜇𝑟3
−

𝜕𝑉

𝜕𝑟
= −

𝜕

𝜕𝑟

l2

2𝜇𝑟2
+ 𝑉

Multiplying Both sides with “ ሶ𝑟” ⇒ 𝜇 ሶ𝑟 ሷ𝑟 = − ሶ𝑟
𝜕

𝜕𝑟

l2

2𝜇𝑟2
+ 𝑉

4

⇒
𝑑

𝑑𝑡

1

2
𝜇 ሶ𝑟2 = −

𝑑𝑟

𝑑𝑡

𝜕

𝜕𝑟

l2

2𝜇𝑟2
+ 𝑉 = −

𝑑

𝑑𝑡

l2

2𝜇𝑟2
+ 𝑉

⇒
𝑑

𝑑𝑡

1

2
𝜇 ሶ𝑟2 +

l
2𝜇𝑟2

+ 𝑉 = 0

⇒
1

2
𝜇 ሶ𝑟2 +

l2

2𝜇𝑟2
+ 𝑉 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (4.3.7)

4.3 Eq. of Motion for a body under the action of central force and First Integrals



The Angular momentum, of the system is

l = 𝜇𝑟2 ሶ𝜃

⇒ ሶ𝜃 =
l

𝜇𝑟2
⇒

𝑑𝜃

𝑑𝑡
=

l
𝜇𝑟2

⇒ 𝑑𝜃 =
l

𝜇𝑟2
𝑑𝑡

Integrating above equation ⇒ 𝜃𝑜׬
𝜃
𝑑𝜃 = 0׬

𝑡 l
𝜇𝑟2

𝑑𝑡 (4.4.1)

Now the total energy of a body moving under central force is given by

𝐸 = 𝑇 + 𝑉 =
1

2
𝜇 ሶ𝑟2 +

1

2

l 2

𝜇𝑟2
+ 𝑉 𝑟 (4.4.3)

⇒ ሶ𝑟 =
2

𝜇
𝐸 −

l 2

2𝜇𝑟2
− 𝑉 𝑟 (4.4.4)

5

4.4 First Integrals



⇒
𝑑𝑟

𝑑𝑡
=

2

𝜇
𝐸 −

l2

𝜇𝑟2
− 𝑉 𝑟

⇒ 𝑡 = 𝑟𝑜׬
𝑟 𝑑𝑟

2

𝜇
𝐸−

l2
2𝜇𝑟2

−𝑉 𝑟

(4.4.5)

Eq. (4.4.1) & Eq. (4.4.5) are known as first integral for the motion in central force

field. where l , E, 𝜃𝑜 and 𝑟𝑜must be known initially.

Eq. (4.4.1) & Eq. (4.4.5) gives “𝑟” and “𝜃” in terms of t. We are often interested to

find “𝜃” in terms of “𝑟” which will determine the shape of the orbit of the body.

6

4.4 First Integral



Since
𝑑𝜃

𝑑𝑡
=

l
𝜇𝑟2

⇒
𝑑𝜃

𝑑𝑡

𝑑𝑟

𝑑𝑟
=

l
𝜇𝑟2

⇒ 𝑑𝜃 =
l

𝜇𝑟2 ሶ𝑟
𝑑𝑟 (4.4.6)

From Eq. (4.4.4) we know that

ሶ𝑟 =
2

𝜇
𝐸 −

l2

𝜇𝑟2
− 𝑉 𝑟 (4.4.7)

⇒ 𝑑𝜃 =
l

𝜇𝑟2
2

𝜇
𝐸−

l2
𝜇𝑟2

−𝑉 𝑟

𝑑𝑟

⇒ 𝜃 = 𝜃𝑜 + 𝑟𝑜׬
𝑟 ൗl

𝑟2

2𝜇 𝐸−
l2

2𝜇𝑟2
−𝑉 𝑟

𝑑𝑟 (4.4.8)

7

4.4 First Integral

Eq. 47 gives “𝜃” in terms of “𝑟” which determine the shape of the orbit of the body 

under the action of central force field.



l 2

𝜇𝑟3
is known as centrifugal force. It is a pseudo or false force since it does not arise from the

interaction between the particles in the orbit. It appears due to accelerated motion of the body.

Since l 2 = 𝜇2𝑟4 ሶ𝜃2

4.5 General Features of Motion Under Central Force

8

ቐ
𝜇 ሷ𝑟 − 𝑟 ሶ𝜃2 = 𝐹𝑟

𝜇 𝑟 ሷ𝜃 + 2 ሶ𝑟 ሶ𝜃 = 𝐹𝜃
(4.5.1)

The tangential component “𝐹𝜃” is zero because the force is radial

𝜇 ሷ𝑟 − 𝑟 ሶ𝜃2 = 𝐹𝑟

⇒ 𝜇 ሷ𝑟 = 𝐹𝑟 + 𝜇𝑟 ሶ𝜃2

⇒ 𝜇 ሷ𝑟 = 𝐹𝑟 +
l 2

𝜇𝑟3
(4.5.2)

⇒
l 2

𝜇𝑟3
= 𝜇𝑟 ሶ𝜃2 =

𝜇 𝑟2 ሶ𝜃2

𝑟
=

𝜇𝑣2

𝑟
or

𝑚𝑣2

𝑟



“𝜇 ሷ𝑟” is the effective force responsible for the motion and can be derived from potential “𝑉𝑒𝑓𝑓”

𝜇 ሷ𝑟 = −
𝑑𝑉𝑒𝑓𝑓

𝑑𝑟
(4.5.3)

Therefore Eq. (4.5.2) can be written as

−
𝑑𝑉𝑒𝑓𝑓

𝑑𝑟
= 𝐹𝑟 +

l2

𝜇𝑟3
⇒ 𝑉𝑒𝑓𝑓 = ׬− −

𝑑𝑉

𝑑𝑟
+

l2

𝜇𝑟3
𝑑𝑟

⇒ 𝑉𝑒𝑓𝑓 = 𝑉 +
l2

2𝜇𝑟2
(4.5.4)

𝐹𝑟 = −
𝑘

𝑟2
⇒𝑉 = −

𝑘

𝑟

Therefore, 𝑉𝑒𝑓𝑓 = −
𝑘

𝑟
+

l2

2𝜇𝑟2
(4.5.5)

For an inverse square law (gravitational or electrostatic force)

Note that the centrifugal potential reduces the effect of the inverse square law 9

4.5 General Features of Motion Under Central Force

𝑉𝑟



Note: the total energy of the system is

𝐸 =
1

2
𝜇 ሶ𝑟2 + 𝑉𝑒𝑓𝑓

⇒ ሶ𝑟 =
2

𝜇
𝐸 − 𝑉𝑒𝑓𝑓 (4.5.6)

The centrifugal part gives a repulsive potential while the inverse square law part gives

an attractive potential.

Centrifugal part decreases much faster with distance “r” as compared to the inverse

attractive part.

The combine potential is given as the 𝑉𝑒𝑓𝑓 which decrease sharply from positive value

to negative and then increase with r.

The 𝑉𝑒𝑓𝑓 approaches to zero value at infinite value of r. 10

4.5 General Features of Motion Under Central Force



Let an arbitrary potential 𝑉𝑒𝑓𝑓 which may or may not be same as the real problem and

it might appear in different problems.

The Energy and potential curves intersect at “𝑟1”, “𝑟2” and “𝑟3”.

4.6 Motion in arbitrary potential Field

The curve can be divided into three regions.

𝐸 = 𝑉𝑒𝑓𝑓 (4.6.1)

Region for 𝒓 < 𝒓𝟏

𝐸 < 𝑉𝑒𝑓𝑓 (4.6.2)

& 𝑇 =
1

2
𝜇 ሶ𝑟2 < 0

& velocity has imaginary value. Hence motion in this region is not possible. 11

And
1

2
𝜇 ሶ𝑟2 = 0 & ሶ𝒓 = 0



Region for 𝐫𝟏 < 𝐫 < 𝐫𝟐

In this region 𝐸 > 𝑉𝑒𝑓𝑓

for 𝑟 < 𝑟1and 𝑟2 < 𝑟,

The kinetic energy T =
1

2
𝜇 ሶ𝑟2< 0

Region for 𝒓𝟐 < 𝒓 < 𝒓𝟑

In this region 𝐸 < 𝑉𝑒𝑓𝑓

& 𝑇 =
1

2
𝜇 ሶ𝒓2 < 0 Therefore, the motion 

in this region is not possible.
12

4.6 Motion in arbitrary potential Field

Which is not possible therefore the

body will turn back on 𝑟1and 𝑟2.



Region for 𝒓 > 𝒓𝟑

Turning point is 𝑟 = 𝑟3.

The particle approaches to 𝑟3 and rebounded.

ሶ𝑟 = escape velocity; the initial velocity required to

escape from the potential field 𝑉𝑒𝑓𝑓.

𝐸 = 𝑇 + 𝑉𝑒𝑓𝑓 = 0 ⇒ 𝑇 = −𝑉𝑒𝑓𝑓

ሶ𝑟 =
2

𝜇
−𝑉𝑒𝑓𝑓 (4.6.3)

13

4.6 Motion in arbitrary potential Field

The nature of motion of the particle discussed earlier with help of

arbitrary potential will help to understand the nature of orbit.



𝐹𝑟 =
𝑘

𝑟2
(4.7.1)

⇒ 𝑉𝑟=
𝑘

𝑟
(4.7.2)

Therefore, the effective potential 𝑉𝑒𝑓𝑓 is given by

𝑉𝑒𝑓𝑓 =
𝑘

𝑟
+

l2

2𝜇𝑟2
(4.7.3)

The value of “k” depends on the nature of physical problem. For example,

4.7 Motion in Inverse Square Law Force Field

i) gravitational force between two spherical bodies of mass m1 and m2

𝑘 = −𝐺𝑚1𝑚2 (4.7.4)

ii) Electrostatic force for two positive charges

𝑘 =
𝑞1𝑞2

4𝜋𝜖𝑜
(4.7.5)

The nature of the orbit depends on sign of “k”. If k > 0 ⇒repulsive & for k < 0 ⇒ attractive.
14



If effective potential 𝑉𝑒𝑓𝑓 is plotted against “𝑟” for

different values of “𝑘” and “l” following curves are

obtained.

Case I 𝒌 > 𝟎, l > 𝟎

Case II 𝒌 > 𝟎, l = 𝟎

Case III 𝒌 = 𝟎, l > 𝟎

Case IV 𝒌 < 𝟎, l > 𝟎

Case V 𝒌 < 𝟎, l = 𝟎

These curves can be very helpful in understanding the nature of the orbit.

A body with total energy 𝐸 > 𝑉𝑒𝑓𝑓 approaching to

the centre of force from infinite distance. The

particle will be deflected as given in figure.

15

4.7 Motion in Inverse Square Law Force Field



(i) For E1 at r = r1

𝐸1 = 𝑉𝑒𝑓𝑓 = −
𝑘

𝑟
+

l2

2𝜇𝑟2

Turning point at 𝑟 = 𝑟1.

Motion represents scattering, where body is not

bound to the centre and deflected away.

(ii) For E2 = 0

Possible roots are 𝑟 = 𝑟1
′ and 𝑟 = ∞. The particle

moves away & radial velocity fall continuously.

(iii) For E3 < 0

Two roots 𝑟 = 𝑟2 and 𝑟 = 𝑟3 of equation are real and

distinct.
16

4.7 Motion in Inverse Square Law Force Field



(iv) For E4 = 𝑽𝒆𝒇𝒇,

which is tangent of the potential energy curve.

Therefore,
𝑑𝑉𝑒𝑓𝑓

𝑑𝑟
= 0

⇒
𝑑𝑉

𝑑𝑟
−

𝑙2

𝜇𝑟3
= 0

⇒ 𝐹𝑟 = −
𝑑𝑉

𝑑𝑟
= −

𝑙2

𝜇𝑟3
= −𝜇𝑟 ሶ𝜃2

⇒ 𝐹𝑟 = −
𝜇𝑟2 ሶ𝜃2

𝑟
= −

𝜇𝑣2

𝑟

Thus, 𝐹𝑟 is equal to the centrifugal force required to maintain

circular motion of the body around the centre of the force.

Thus, 𝐹𝑟 is centripetal force that maintain the orbit.
17

4.7 Motion in Inverse Square Law Force Field
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Problem (Page 293, Classical Mechanics by Marion)

Find the force law for a central force field that allows a particle to move in a logarithmic

spiral orbit given by 𝒓 = 𝒌𝒆𝜶𝜽, where “k” and “𝜶” are constants. Also find value of 𝜽 𝒕

and 𝒓 𝒕 . Also find Energy of the orbit.

Solution. Since we have verified that

𝑑2𝑢

𝑑𝜃2
+ 𝑢 = −

𝜇𝑓 1
𝑢

𝑙2𝑢2

𝑑2𝑢

𝑑𝜃2
+ 𝑢 = −

𝜇𝑟2𝑓 𝑟

𝑙2
(1)

Now using

𝑟 = 𝑘𝑒𝛼𝜃 ⇒
1

𝑟
=

1

𝑘
𝑒−𝛼𝜃

Differentiating Twice with respect to θ

𝑑2

𝑑𝜃2
1

𝑟
=

𝛼2

𝑘
𝑒−𝛼𝜃

⇒
𝑑2𝑢

𝑑𝜃2
=

𝛼2

𝑘
𝑒−𝛼𝜃 = 𝛼2𝑢 (2)
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Putting value of u and
𝑑2𝑢

𝑑𝜃2
in equation 1

𝑑2𝑢

𝑑𝜃2
+ 𝑢 = −

𝜇𝑟2𝑓 𝑟

𝑙2

⇒ 𝛼2 + 1 𝑢 = −
𝜇𝑟2𝑓 𝑟

𝑙2

⇒ 𝑓 𝑟 = −
𝑙2

𝜇𝑟3
𝛼2 + 1 (3)

Eq. 3 represents the force responsible for motion.

Now the central potential responsible for the motion of the particle will be

𝑉 = 𝑓׬− 𝑟 𝑑𝑟 = −
𝑙2

2𝜇𝑟2
𝛼2 + 1 (4)

Total energy of the system is

𝐸 = 𝑇 + 𝑉 =
1

2
𝜇 ሶ𝑟2 +

𝑙2

2𝜇𝑟2
+ 𝑉 (5)
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Now

ሶ𝑟 =
𝑑𝑟

𝑑𝜃

𝑑𝜃

𝑑𝑡

ሶ𝑟 =
𝑑𝑟

𝑑𝜃
ሶ𝜃 =

𝑑𝑟

𝑑𝜃

𝑙

𝜇𝑟2

ሶ𝑟 = 𝑘𝛼𝑒𝛼𝜃
𝑙

𝜇𝑟2
= 𝑟𝛼

𝑙

𝜇𝑟2

ሶ𝑟 = 𝛼
𝑙

𝜇𝑟
(6)

Now 𝐸 = 𝑇 + 𝑉 =
1

2
𝜇 ሶ𝑟2 +

𝑙2

2𝜇𝑟2
+ 𝑉

⇒ 𝐸 =
1

2
𝜇

𝑙𝛼

𝜇𝑟

2
+

𝑙2

2𝜇𝑟2
−

𝑙2

2𝜇𝑟2
𝛼2 + 1

⇒ 𝐸 =
𝑙2

2𝜇𝑟2
𝛼2 + 1 −

𝑙2

2𝜇𝑟2
𝛼2 + 1 = 0 (7)

Eq. 7 gives the total energy of the system. Zero value of the system represent

a bound system.
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Now we will determine of 𝜃 𝑡 and 𝑟 𝑡

Since ሶ𝜃 =
𝑙

𝜇𝑟
⇒

𝑑𝜃

𝑑𝑡
=

𝑙

𝜇𝑟2

𝑑𝜃

𝑑𝑡
=

𝑙

𝜇𝑘2𝑒2𝛼𝜃
⇒𝑒2𝛼𝜃𝑑𝜃 =

𝑙

𝜇𝑘2
𝑑𝑡

Integrating both sides we get
𝑒2𝛼𝜃

2𝛼
=

𝑙𝑡

𝜇𝑘2
+ 𝐶

𝑒2𝛼𝜃 = 2𝛼
𝑙𝑡

𝜇𝑘2
+ 𝐶 ⇒𝜃 𝑡 =

1

2𝛼
ln 2𝛼

𝑙𝑡

𝜇𝑘2
+ 𝐶 (9)

Now 𝑟 = 𝑘𝑒𝛼𝜃

⇒
𝑟

𝑘
= 𝑒𝛼𝜃 ⇒

𝑟2

𝑘2
= 𝑒2𝛼𝜃

⇒
𝑟2

𝑘2
= 2𝛼

𝑙𝑡

𝜇𝑘2
+ 𝐶 ⇒ 𝑟 𝑡 = 2𝛼𝑘2

𝑙𝑡

𝜇𝑘2
+ 𝐶 (10)
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4.8 Prove that for central force field the equation of motion can be written as;

𝒅𝟐𝒖

𝒅𝜽𝟐
+ 𝒖 = −

𝝁𝒇 𝒖

𝒍𝟐𝒖𝟐
And

𝒅𝟐𝒖

𝒅𝜽𝟐
+ 𝒖 = −

𝒇 𝒖

𝝁𝒉𝟐𝒖𝟐

where 𝒉 = 𝒓𝟐 ሶ𝜽 and 𝒖 = Τ𝟏 𝒓

Solution: Consider a particle of mass “𝜇” is at a distance “𝒓” from the origin. The

acceleration of the particle can have two components in the polar coordinates

𝑎𝑟 = ሷ𝑟 − 𝑟 ሶ𝜃2 (4.8.1)

𝑎𝜃 = 𝑟 ሷ𝜃 + 2 ሶ𝑟 ሶ𝜃 (4.8.2)

Since the central force is always directed along the radial vector “𝒓”. The radial force

is responsible for the motion. Therefore;

𝑓 𝑟 = 𝜇 ሷ𝑟 − 𝑟 ሶ𝜃2 (4.8.3)

𝑓 𝜃 = 0 (4.8.4)

Let us consider a function “𝑢” such that 𝑢 =
1

𝑟
⇒ 𝑟 =

1

𝑢



3

𝑑𝑟

𝑑𝑡
= −

1

𝑢2
𝑑𝑢

𝑑𝑡
= −

1

𝑢2
𝑑𝑢

𝑑𝜃

𝑑𝜃

𝑑𝑡

⇒ ሶ𝑟 = −𝑟2 ሶ𝜃
𝑑𝑢

𝑑𝜃

⇒ ሶ𝑟 = −ℎ
𝑑𝑢

𝑑𝜃
(4.8.5)

Differentiating above equation with respect to t

𝑑 ሶ𝑟

𝑑𝑡
= −ℎ

𝑑

𝑑𝑡

𝑑𝑢

𝑑𝜃
= −ℎ

𝑑

𝑑𝜃

𝑑𝑢

𝑑𝑡

⇒ ሷ𝑟 = −ℎ
𝑑

𝑑𝜃

𝑑𝑢

𝑑𝜃

𝑑𝜃

𝑑𝑡

⇒ ሷ𝑟 = −ℎ ሶ𝜃
𝑑

𝑑𝜃

𝑑𝑢

𝑑𝜃
= −ℎ ሶ𝜃

𝑑2𝑢

𝑑𝜃2
(4.8.6)

Since h = 𝑟2 ሶ𝜃 ⇒ ሶ𝜃 = ൗℎ 𝑟2 𝑜𝑟
ሶ𝜃 = ℎ𝑢2, Putting in Eq. (4.8.6)

ሷ𝑟 = −ℎ2𝑢2
𝑑2𝑢

𝑑𝜃2
(4.8.7)



Putting 𝑟 =
1

𝑢
, ሶ𝜃 = ℎ𝑢2 and Eq. (4.8.7) in Eq. (4.8.3)

𝑓 𝑟 = 𝜇 ሷ𝑟 − 𝑟 ሶ𝜃2 ⇒ 𝑓 𝑢 = 𝜇 −ℎ2𝑢2
𝑑2𝑢

𝑑𝜃2
− 𝜇

1

𝑢
ℎ𝑢2 2

⇒ 𝑓 𝑢 = −𝜇ℎ2𝑢2
𝑑2𝑢

𝑑𝜃2
− 𝜇ℎ2𝑢3

⇒ 𝑓 𝑢 = −𝜇ℎ2𝑢2
𝑑2𝑢

𝑑𝜃2
+ 𝑢

⇒ −
𝑓 𝑢

𝜇ℎ2𝑢2
=

𝑑2𝑢

𝑑𝜃2
+ 𝑢

⇒
𝑑2𝑢

𝑑𝜃2
+ 𝑢 = −

𝑓 𝑢

𝜇ℎ2𝑢2
(4.8.8)

As required.

Since 𝑙 = 𝜇𝑟2 ሶ𝜃 = 𝜇ℎ putting in Eq. (4.8.8)

𝑑2𝑢

𝑑𝜃2
+ 𝑢 = −

𝜇𝑓 𝑢

𝑙2𝑢2
(4.8.9)

As desired.
4



5

Problem (Page 293, Classical Mechanics by Marion)

Find the force law for a central force field that allows a particle to move in a logarithmic

spiral orbit given by 𝒓 = 𝒌𝒆𝜶𝜽, where “k” and “𝜶” are constants. Also find value of 𝜽 𝒕

and 𝒓 𝒕 . Also find Energy of the orbit.

Solution. Since we have verified that

𝑑2𝑢

𝑑𝜃2
+ 𝑢 = −

𝜇𝑓 𝑢

𝑙2𝑢2

𝑑2𝑢

𝑑𝜃2
+ 𝑢 = −

𝜇𝑟2𝑓 𝑟

𝑙2
(1)

Now using

𝑟 = 𝑘𝑒𝛼𝜃 ⇒u =
1

𝑟
=

1

𝑘
𝑒−𝛼𝜃

Differentiating Twice with respect to θ

𝑑2

𝑑𝜃2
1

𝑟
=

𝛼2

𝑘
𝑒−𝛼𝜃

⇒
𝑑2𝑢

𝑑𝜃2
=

𝛼2

𝑘
𝑒−𝛼𝜃 = 𝛼2𝑢 (2)
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Putting value of u and
𝑑2𝑢

𝑑𝜃2
in equation 1

𝑑2𝑢

𝑑𝜃2
+ 𝑢 = −

𝜇𝑟2𝑓 𝑟

𝑙2

⇒ 𝛼2 + 1 𝑢 = −
𝜇𝑟2𝑓 𝑟

𝑙2

⇒ 𝑓 𝑟 = −
𝑙2

𝜇𝑟3
𝛼2 + 1 (3)

Eq. 3 represents the force responsible for motion.

Now the central potential responsible for the motion of the particle will be

𝑉 = 𝑓׬− 𝑟 𝑑𝑟 = −
𝑙2

2𝜇𝑟2
𝛼2 + 1 (4)

Total energy of the system is

𝐸 = 𝑇 + 𝑉 =
1

2
𝜇 ሶ𝑟2 +

𝑙2

2𝜇𝑟2
+ 𝑉 (5)
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Now

ሶ𝑟 =
𝑑𝑟

𝑑𝜃

𝑑𝜃

𝑑𝑡

ሶ𝑟 =
𝑑𝑟

𝑑𝜃
ሶ𝜃 =

𝑑𝑟

𝑑𝜃

𝑙

𝜇𝑟2

ሶ𝑟 = 𝑘𝛼𝑒𝛼𝜃
𝑙

𝜇𝑟2
= 𝑟𝛼

𝑙

𝜇𝑟2

ሶ𝑟 = 𝛼
𝑙

𝜇𝑟
(6)

Now 𝐸 = 𝑇 + 𝑉 =
1

2
𝜇 ሶ𝑟2 +

𝑙2

2𝜇𝑟2
+ 𝑉

⇒ 𝐸 =
1

2
𝜇

𝑙𝛼

𝜇𝑟

2
+

𝑙2

2𝜇𝑟2
−

𝑙2

2𝜇𝑟2
𝛼2 + 1

⇒ 𝐸 =
𝑙2

2𝜇𝑟2
𝛼2 + 1 −

𝑙2

2𝜇𝑟2
𝛼2 + 1 = 0 (7)

Eq. 7 gives the total energy of the system. Zero value of the system represent

a bound system.
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Now we will determine of 𝜃 𝑡 and 𝑟 𝑡

Since ሶ𝜃 =
𝑙

𝜇𝑟2
⇒

𝑑𝜃

𝑑𝑡
=

𝑙

𝜇𝑟2

𝑑𝜃

𝑑𝑡
=

𝑙

𝜇𝑘2𝑒2𝛼𝜃
⇒𝑒2𝛼𝜃𝑑𝜃 =

𝑙

𝜇𝑘2
𝑑𝑡

Integrating both sides we get
𝑒2𝛼𝜃

2𝛼
=

𝑙𝑡

𝜇𝑘2
+ 𝐶

𝑒2𝛼𝜃 = 2𝛼
𝑙𝑡

𝜇𝑘2
+ 𝐶 ⇒𝜃 𝑡 =

1

2𝛼
ln 2𝛼

𝑙𝑡

𝜇𝑘2
+ 𝐶 (9)

Now 𝑟 = 𝑘𝑒𝛼𝜃

⇒
𝑟

𝑘
= 𝑒𝛼𝜃 ⇒

𝑟2

𝑘2
= 𝑒2𝛼𝜃

⇒
𝑟2

𝑘2
= 2𝛼

𝑙𝑡

𝜇𝑘2
+ 𝐶 ⇒ 𝑟 𝑡 = 2𝛼𝑘2

𝑙𝑡

𝜇𝑘2
+ 𝐶 (10)



Solution: Let us consider a particle of mass “𝜇” and position vector “𝒓”.

Since 𝑢 =
1

𝑟
⇒ 𝑟 =

1

𝑢

𝑑𝑟

𝑑𝑡
= −

1

𝑢2
𝑑𝑢

𝑑𝑡
=−

1

𝑢2
𝑑𝑢

𝑑𝜃

𝑑𝜃

𝑑𝑡

⇒ ሶ𝑟 = −𝑟2 ሶ𝜃
𝑑𝑢

𝑑𝜃
⇒ ሶ𝑟 = −ℎ

𝑑𝑢

𝑑𝜃

Therefore, 𝑣2 = ሶ𝑟2 + 𝑟2 ሶ𝜃2

⇒ 𝑣2 = −ℎ
𝑑𝑢

𝑑𝜃

2
+

1

𝑢2
ℎ𝑢2 2 = ℎ2

𝑑𝑢

𝑑𝜃

2
+ ℎ2𝑢2

⇒ 𝑣2 = ℎ2
𝑑𝑢

𝑑𝜃

2
+ 𝑢2 (4.9.1)

4.9 Show That: a) 𝒗𝟐 = ሶ𝒓𝟐 + 𝒓𝟐 ሶ𝜽𝟐 = 𝒉𝟐
𝒅𝒖

𝒅𝜽

𝟐
+ 𝒖𝟐

b) Using results from part “a” also prove that the conservation of energy equation will be

𝒅𝒖

𝒅𝜽

𝟐
+ 𝒖𝟐 =

𝟐 𝑬−𝑽

𝝁𝒉𝟐
if 𝒖 =

𝟏

𝒓

9



Since 𝐸 = 𝑇 + 𝑉 ⇒ 𝑇 = 𝐸 − 𝑉

⇒
1

2
𝜇𝑣2 = 𝐸 − 𝑉

⇒
1

2
𝜇ℎ2

𝑑𝑢

𝑑𝜃

2
+ 𝑢2 = 𝐸 − 𝑉

⇒
𝑑𝑢

𝑑𝜃

2
+ 𝑢2 =

2 𝐸−𝑉

𝜇ℎ2
(4.9.2)

Eq. (4.9.1) and Eq. (4.9.2) are as desired.
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Solve
𝒅𝟐𝒖

𝒅𝜽𝟐
+ 𝒖 = −

𝝁𝒇 𝒖

𝑳𝟐𝒖𝟐
and 𝜽 = 𝜽𝒐 + ׬

ൗ𝒍
𝒓𝟐

𝟐𝝁 𝑬−𝑽 𝒓 −
𝒍𝟐

𝟐𝝁𝒓𝟐

𝒅𝒓 and prove that the solution is the

equation of conic. i.e. the motion under the inverse square law force represent motion on conic

path. Also discuss the possibilities of bound and unbound system.

Let us consider a particle of mass “𝜇” is under inverse square law force. The equation of motion can be

written as

4.10 Equation of motion for a body under central force

(inverse square law force)

11

𝑑2𝒖

𝑑𝜃2
+ 𝒖 = −

𝜇𝑓 𝑢

𝑙2𝑢2
(4.10.1)

Since the inverse square attractive force

𝑓 𝑟 = −
𝑘

𝑟2
= −𝑘𝑢2

𝑑2𝒖

𝑑𝜃2
+ 𝒖 =

𝜇𝑘𝑢2

𝑙2𝑢2

𝒅𝟐𝒖

𝒅𝜽𝟐
+ 𝒖 =

𝜇𝑘

𝑙2
(4.10.2)



Starting with equation Eq. (4.10.2)

𝑑2𝒖

𝑑𝜃2
+ 𝒖 =

𝜇𝑘

𝑙2
⇒

𝑑2𝒖

𝑑𝜃2
+ 𝒖 −

𝜇𝑘

𝑙2
= 0 (4.10.2)

Consider a function

𝑦 = 𝒖 −
𝜇𝑘

𝑙2
(4.10.3)

Differentiating above equation Twice

𝑑2𝑦

𝑑𝜃2
=

𝑑2𝒖

𝑑𝜃2
(4.10.4)

Now

𝑑2𝑢

𝑑𝜃2
+ 𝒖 −

𝜇𝑘

𝑙2
=

𝑑2𝑦

𝑑𝜃2
+ 𝑦 = 0

𝑑2𝑦

𝑑𝜃2
+ 𝑦 = 0 (4.10.5) 12

4.10 Equation of motion for a body under central force

(inverse square law force)



It is a second order differential equation where “𝑦” is a function of “𝜃”

And 𝑦 = 𝐴𝑐𝑜𝑠 𝜃 − 𝜃𝑜 (4.10.6)

𝑦 = 𝑢 −
𝜇𝑘

𝑙2
= 𝐴𝑐𝑜𝑠 𝜃 − 𝜃𝑜

1

𝑟
=

𝜇𝑘

𝑙2
+ 𝐴𝑐𝑜𝑠 𝜃 − 𝜃𝑜

⇒

𝑙2

𝜇𝑘

𝑟
= 1 +

𝐴𝑙2

𝜇𝑘
𝑐𝑜𝑠 𝜃 − 𝜃𝑜 (4.10.7)

𝛼

𝑟
= 1 + 𝑒𝑐𝑜𝑠 𝜃 − 𝜃𝑜 (4.10.7)a

where 𝛼 =
𝑙2

𝜇𝑘
Semi latus rectum.

and 𝑒 =
𝐴𝑙2

𝜇𝑘
is eccentricity which is defined as the measure

of deviation from circular shape. 13

4.10 Equation of motion for a body under central force

(inverse square law force)

Equation of conic.



𝜃 = 𝜃𝑜 + ׬
ൗ𝑙
𝑟2

2𝜇 𝐸− 𝑉 𝑟 −
𝑙2

2𝜇𝑟2

𝑑𝑟 (4.10.8)

Since 𝑑𝑢 = −
1

𝑟2
𝑑𝑟 & 𝑉 = −

𝑘

𝑟
= −𝑘𝑢 (4.10.9) & (4.10.10)

Putting Eq. (4.10.4) and Eq. (4.10.5) in Eq. (4.10.3)

𝜃 = 𝜃𝑜 − ׬
𝑑𝑢

2𝜇𝐸

𝑙2
+
2𝜇𝑘

𝑙2
𝑢 − 𝑢2

(4.10.11)

Let
2𝜇𝐸

𝑙2
= 𝑎,

2𝜇𝑘

𝑙2
= 𝑏 and −1 = 𝑐

Then 𝜃 − 𝜃𝑜 = ׬−
𝑑𝑢

2𝜇𝐸

𝑙2
+
2𝜇𝑘

𝑙2
𝑢 − 𝑢2

= ׬−
𝑑𝑢

𝑎+𝑏𝑢+𝑐𝑢2

Now consider the first integral for the motion under central force

14

4.10 Equation of motion for a body under central force

(inverse square law force)



𝜃 − 𝜃𝑜 = −
1

−𝑐
𝑐𝑜𝑠−1 −

𝑏+2𝑐𝑢

𝑏2−4𝑎𝑐
= −

1

1
𝑐𝑜𝑠−1 −

−
2𝜇𝑘

𝑙2
+2(−1)𝑢

2𝜇𝑘

𝑙2

2
−4

2𝜇𝐸

𝑙2
(−1)

𝜃𝑜 − 𝜃 = 𝑐𝑜𝑠−1
−
𝜇𝑘

𝑙2
+𝑢

𝜇𝑘

𝑙2

2
+

2𝜇𝐸

𝑙2

𝑢 =
𝜇𝑘

𝑙2
+

𝜇𝑘

𝑙2
1 +

2𝑙2𝐸

𝜇𝑘2
𝑐𝑜𝑠 𝜃𝑜 − 𝜃

⇒

𝑙2

𝜇𝑘

𝑟
= 1 + 1 +

2𝑙2𝐸

𝜇𝑘2
𝑐𝑜𝑠 𝜃𝑜 − 𝜃

We have shown that the solution of the first integral is an equation of conic

15

4.10 Equation of motion for a body under central force

(inverse square law force)

𝛼 =
𝑙2

𝜇𝑘
semi latus rectum and 𝑒 = 1 +

2𝑙2𝐸

𝜇𝑘2
is the eccentricity

⇒
𝛼

𝑟
= 1 + 𝑒𝑐𝑜𝑠 𝜃𝑜 − 𝜃 = 1 + 𝑒𝑐𝑜𝑠 𝜃 − 𝜃𝑜 (4.10.12)

2𝜇𝐸

𝑙2
= 𝑎,

2𝜇𝑘

𝑙2
= 𝑏 and −1 = 𝑐



For Eq.(4.10.7)a & Eq.(4.10.12) if we assume 𝜃𝑜 = 0𝑜, 𝜃 = 0𝑜 & 180𝑜

𝑟1 =
𝛼

1+𝑒
=

𝛼

1+ 1+
2𝑙2𝐸

𝜇𝑘2

& 𝑟2 =
𝛼

1−𝑒
=

𝛼

1− 1+
2𝑙2𝐸

𝜇𝑘2

(4.10.13) & (4.10.14)

For 𝑒 > 1 of 𝐸 > 0, 𝑟2 is negative

And 𝑒 = 1, 𝐸 = 0, 𝑟2 is infinity

Both cases ⇨ motion is unbound

Therefore 𝑒 < 1 and 𝐸 < 0 is necessary to keep a bounded motion.

The finite and positive values of 𝑟1 and 𝑟2 represents the turning points.

Comparing the equation of eccentricity 𝑨 =
𝝁𝒌

𝒍𝟐
𝟏 +

𝟐𝒍𝟐𝑬

𝝁𝒌𝟐
(4.10.15)
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The nature of orbit is determined by eccentricity 𝑒 which depend on energy

Value of E Value of eccentricity Nature of orbit

𝐄 > 0 𝐞 > 𝟏 Hyperbola

𝐄 = 𝟎 𝐞 = 𝟏 Parabola

𝐕𝐞𝐟𝐟 𝐦𝐢𝐧 < 𝐄 < 𝟎 𝟎 < 𝐞 < 𝟏 Ellipse

𝐄 = 𝐕𝐞𝐟𝐟 𝐦𝐢𝐧 𝐞 = 𝟎 Circle

we can always set 𝜃𝑜 = 0 And
1

𝑐
= 𝛼 =

𝐿2

𝜇𝑘
⇒

1

𝑟
= 𝐶 1 + 𝑒𝑐𝑜𝑠 𝜃 − 𝜃𝑜

Nature of the Orbit

• Bound motion is possible only for Ellipse or circle.

• The motion of planets is either circular of elliptical.

• The variation of length of the day and seasonal

changes suggest that the path of the planet is elliptical.
17
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The ellipse is a curve traced out by a particle moving in such a way that the sum of

its distance from two fixed foci 𝑂 and 𝑂′ is always constant.

𝑂𝑃 + 𝑂′𝑃 = 𝑟 + 𝑟′ = 2𝑎

a is the semi-major axis

𝑟1 + 𝑟2 = 2𝑎 (1)

𝑟1 =
𝛼

1+𝑒
& 𝑟2 =

𝛼

1−𝑒
(2 & 3)

From (1), (2) and (3) ⇒ 𝑟1 + 𝑟2 =
2𝛼

1−𝑒2
= 2𝑎

𝑎 =
𝛼

1−𝑒2
⇒ 𝛼 = 𝑎 1 − 𝑒2 (4.10.15)

Elliptic Orbit

𝑟 =
𝑎 1−𝑒2

1+𝑒𝑐𝑜𝑠𝜃
or 𝑟 =

𝑎 1−𝑒2

1+𝑒𝑐𝑜𝑠 𝜃−𝜃𝑜
This is the polar equation of the orbit.
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𝑟2 + 𝑟1 =
2𝛼

1−𝑒2
= 2𝑎 where 𝑎 the semi-major axis is constant

Note the distance between two foci

𝑂𝑂′ = 𝑟2 − 𝑟1 =
2𝛼

1−𝑒2
𝑒 = 2𝑎𝑒

⇒
𝑂𝑂′

2
= 𝑎𝑒 (4.10.16)

From the figure it is clear that 𝑂𝑃′ = 𝑂′𝑃′ and

𝑂𝑃′ + 𝑂′𝑃′ = 2𝑎 & 𝑂𝑃′ = 𝑎

Now from figure 𝑏2 = 𝑂𝑃′ 2 −
𝑂𝑂′

2

2

= 𝑎2 − 𝑎2𝑒2 = 𝑎2 1 − 𝑒2

⇒ 𝑏 = 𝑎 1 − 𝑒2
19
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If 𝒆 ≠ 𝟎 then,

Since 𝑒 = 1 +
2𝑙2𝐸

𝜇𝑘2

Therefore, 𝑏 = 𝑎 1 − 𝑒2 = 𝑎 1 − 1 −
2𝑙2𝐸

𝜇𝑘2

𝑏 = 𝑎 −
2𝑙2𝐸

𝜇𝑘2

The energy of the bounded system is less than zero therefore

it will give a real value solution.

4.10 Equation of motion for a body under central force

(inverse square law force)
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If 𝒆 = 𝟎 ellipse will become circle 𝒃 = 𝒂

(Note in the region when body passes through closest distance the curve is arc of

a circle)

And 1 +
2𝑙2𝐸

𝜇𝑘2
= 0

𝐸 = −
𝜇𝑘2

2𝑙2
⇒ 𝑙2 = −

𝜇𝑘2

2𝐸

Eq. (4.10.13) & (4.10.14) will be reduced to 𝑟1 = 𝑟2 = 𝑎 = 𝛼, therefore;

𝑟𝑜 = 𝑎 = 𝛼 =
𝑙2

𝜇𝑘
=

−
𝜇𝑘2

2𝐸

𝜇𝑘

And 𝑟𝑜 = −
𝑘

2𝐸

And 𝐸 = −
𝑘

2𝑎

4.10 Equation of motion for a body under central force

(inverse square law force)

𝑟1 + 𝑟2 =
𝛼

1+𝑒
+

𝛼

1−𝑒
= 2𝑎

𝑟1 + 𝑟2 =
𝛼

1+0
+

𝛼

1−0
= 2𝑎

𝑎 = α =
𝑙2

𝜇𝑘
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4.10 Equation of motion for a body under central force

(inverse square law force)

Putting this value in equation of eccentricity we get

𝑒 = 1 +
2𝑙2𝐸

𝜇𝑘2
= 1 −

𝑙2

𝜇𝑘𝑎
∴ 𝐸 = −

𝑘

2𝑎

Using this value, the semi-minor axis b can be written as.

𝑏 = 𝑎 1 − 1 +
𝑙2

𝜇𝑘𝑎

𝑏 = 𝑎
𝑙2

𝜇𝑘𝑎

𝑏 = 𝑎 Τ1 2
𝑙

𝜇𝑘
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Let us consider a particle of mass “𝜇” is under inverse square law force.

Since the inverse square attractive force

𝑓 𝑟 = −
𝑘

𝑟2
= −𝑘𝑢2 (if 𝑟 =

1

𝑢
) (4.11.1)

For gravitational force 𝑘 = 𝐺𝑚𝑀𝑠

𝑑2𝑢

𝑑𝜃2
+ 𝑢 = −

𝜇𝑓 𝑢

𝑙2𝑢2
(4.10.2)

𝑑2𝑢

𝑑𝜃2
+ 𝑢 =

𝜇𝑘𝑢2

𝑙2𝑢2

𝑑2𝑢

𝑑𝜃2
+ 𝑢 =

𝜇𝑘

𝑙2
(4.11.2)

We will now solve these equations Eq. (4.11.2) to understand the nature of 

the orbit.
𝑑2𝑢

𝑑𝜃2
+ 𝑢 =

𝜇𝑘

𝑙2
⇒

𝑑2𝑢

𝑑𝜃2
+ 𝑢 −

𝜇𝑘

𝑙2
= 0 (4.11.3)

4.11 Keppler’s Laws

Keppler First Law: “Every planet describes an ellipse with the sun at one of the foci”
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Consider a function 𝑦 = 𝑢 −
𝜇𝑘

𝑙2
(4.11.4)

Differentiating above equation

𝑑𝑦

𝑑𝜃
=

𝑑𝑢

𝑑𝜃

Differentiating above equation again

𝑑2𝑦

𝑑𝜃2
=

𝑑2𝑢

𝑑𝜃2
(4.11.5)

Now

𝑑2𝑦

𝑑𝜃2
+ 𝑦 =

𝑑2𝑢

𝑑𝜃2
+ 𝑢 −

𝜇𝑘

𝑙2
= 0

𝑑2𝑦

𝑑𝜃2
+ 𝑦 = 0 (4.11.6)

𝑑2𝑢

𝑑𝜃2
+ 𝑢 =

𝜇𝑘

𝑙2

The general solution is;

𝑢 = 𝐵𝑐𝑜𝑠𝜃 + 𝐶𝑠𝑖𝑛𝜃 +
𝜇𝑘

𝑙2

Where 𝐵 = 𝐴𝑐𝑜𝑠𝜃𝑜 and 𝐶 = 𝐴𝑠𝑖𝑛𝜃𝑜

𝑢 = 𝐴𝑐𝑜𝑠 𝜃 − 𝜃𝑜 +
𝜇𝑘

𝑙2

𝑟 =
1

𝜇𝑘

𝑙2
+𝐴𝑐𝑜𝑠 𝜃−𝜃𝑜

=
ൗ𝑙
2
𝜇𝑘

1+
𝐴𝑙2

𝜇𝑘
𝑐𝑜𝑠 𝜃−𝜃𝑜

𝑟 =
𝛼

1+𝑒𝑐𝑜𝑠 𝜃−𝜃𝑜

𝛼

𝑟
= 1 + 𝑒𝑐𝑜𝑠𝜃
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It is a second order differential equation where “𝑦” is a function of “𝜃” And

and using 𝑉 = −
𝑘

𝑟
= −𝑘𝑢

𝒅𝒖

𝒅𝜽

𝟐
+ 𝒖𝟐 =

𝟐𝝁 𝑬−𝑽

𝒍𝟐
Using Equation Eq. (4.9.2)

𝑢
𝑙2

𝜇𝑘
= 1 +

𝐴𝑙2

𝜇𝑘
𝑐𝑜𝑠 𝜃 − 𝜃𝑜

𝑢 =
𝜇𝑘

𝑙2
+ 𝐴𝑐𝑜𝑠 𝜃 − 𝜃𝑜

𝑦 = 𝑢 −
𝜇𝑘

𝑙2
= 𝐴𝑐𝑜𝑠 𝜃 − 𝜃𝑜

where 𝐴 and 𝜃𝑜 are constants.

𝑦 = 𝐴𝑐𝑜𝑠 𝜃 − 𝜃𝑜

(4.11.8)

(4.11.7)
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𝑑𝑢

𝑑𝜃

2
+ 𝑢2 =

2𝜇 𝐸+𝑘𝑢

𝑙2

Using Eq. 𝑢 = 𝐴𝑐𝑜𝑠 𝜃 − 𝜃𝑜 +
𝜇𝑘

𝑙2
and

𝑑𝑢

𝑑𝜃
= −𝐴𝑠𝑖𝑛 𝜃 − 𝜃𝑜

𝑑𝑢

𝑑𝜃

2
+ 𝑢2 = −𝐴𝑠𝑖𝑛 𝜃 − 𝜃𝑜

2 + 𝐴𝑐𝑜𝑠 𝜃 − 𝜃𝑜 +
𝜇𝑘

𝑙2

2
=

2𝜇

𝑙2
𝐸 + 𝑘𝑢

⇒ 𝐴2 𝑠𝑖𝑛2 𝜃 − 𝜃𝑜 + 𝑐𝑜𝑠2 𝜃 − 𝜃𝑜 +
𝜇𝑘

𝑙2

2
+ 2

𝜇𝑘

𝑙2
𝐴𝑐𝑜𝑠 𝜃 − 𝜃𝑜 =

2𝜇

𝑙2
𝐸 + 𝑘𝑢

⇒ 𝐴2 +
𝜇𝑘

𝑙2

2
+ 2

𝜇𝑘

𝑙2
𝐴𝑐𝑜𝑠 𝜃 − 𝜃𝑜 =

2𝜇

𝑙2
𝐸 + 𝑘𝐴𝑐𝑜𝑠 𝜃 − 𝜃𝑜 +

𝜇𝑘2

𝑙2

⇒ 𝐴2 +
𝜇𝑘

𝑙2

2
+ 2

𝜇𝑘

𝑙2
𝐴𝑐𝑜𝑠 𝜃 − 𝜃𝑜 =

2𝜇𝐸

𝑙2
+ 2

𝜇𝑘

𝑙2
𝐴𝑐𝑜𝑠 𝜃 − 𝜃𝑜 + 2

𝜇𝑘

𝑙2

2

⇒ 𝐴2 =
2𝜇𝐸

𝑙2
+

𝜇𝑘

𝑙2

2
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⇒ 𝐴 =
𝜇𝑘

𝑙2
2𝐸𝑙2

𝜇𝑘2
+ 1

And  𝑢
𝑙2

𝜇𝑘
= 1 +

𝐴𝑙2

𝜇𝑘
𝑐𝑜𝑠 𝜃 − 𝜃𝑜 (4.11.8) 

⇒

𝑙2

𝜇𝑘

𝑟
= 1 +

𝜇𝑘

𝑙2
2𝐸𝑙2

𝜇𝑘2
+ 1

𝑙2

𝜇𝑘
𝑐𝑜𝑠 𝜃 − 𝜃𝑜

⇒

𝑙2

𝜇𝑘

𝑟
= 1 +

2𝐸𝑙2

𝜇𝑘2
+ 1 𝑐𝑜𝑠 𝜃 − 𝜃𝑜

⇒
𝛼

𝑟
= 1 + 𝑒𝑐𝑜𝑠 𝜃 − 𝜃𝑜 (4.11.9)

Eq. (4.11.9) is equation of conic which describe the motion of planet 

around the sun.



For Eq.(4.11.8) & Eq.(4.11.9) if we assume 𝜃𝑜 = 0 & 𝜃 = 0𝑜& 180𝑜

𝑟1 =
𝛼

1+𝑒
& 𝑟2 =

𝛼

1−𝑒
(4.11.10) & (4.11.11)

For 𝑒 > 1 of 𝐸 > 0, 𝑟2 is negative

And 𝑒 = 1, 𝐸 = 0, 𝑟2 is infinity

Both cases ⇨ motion is unbound

Therefore 𝑒 < 1 and 𝐸 < 0 is necessary to keep a bounded motion.

The finite and positive values of 𝑟1 and 𝑟2 represents the turning points.
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The nature of orbit is determined by eccentricity 𝑒 which depend on energy

Value of E Value of eccentricity Nature of orbit

𝐄 > 𝟎 𝐞 > 𝟏 Hyperbola

𝐄 = 𝟎 𝐞 = 𝟏 Parabola

𝐕𝐞𝐟𝐟 𝐦𝐢𝐧 < 𝐄 < 𝟎 𝟎 < 𝐞 < 𝟏 Ellipse

𝐄 = 𝐕𝐞𝐟𝐟 𝐦𝐢𝐧 𝐞 = 𝟎 Circle

we can always set 𝜃𝑜 = 0 And
1

𝑐
= 𝛼 =

𝐿2

𝜇𝑘
⇒

1

𝑟
= 𝐶 1 + 𝑒𝑐𝑜𝑠 𝜃 − 𝜃𝑜

Nature of the Orbit

• Bound motion is possible only for Ellipse or circle.

• The motion of planets is either circular of elliptical.

• The variation of length of the day and seasonal

changes suggest that the path of the planet is elliptical.
8
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❖ Since the planet repeat its motion after a fixed period.

❖ During this period the variation in the length of day and night can

only be explained if the orbit of the planet is elliptical.

❖ We conclude that the planet around the sun describe elliptical orbit

with sun at one of its foci.

❖ Furthermore, the finite and positive values of 𝑟1 and 𝑟2 represents the

turning points for the planet or the minimum and maximum radii of

the planet during the motion which are called apogee and perigee for

the earth orbit.
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Keppler Second Law: “The position vector of particle drawn from the origin

sweeps equal area in equal interval of times.” OR

“The Areal velocity of the body under the central force is constant.” OR

“The rate of change of area covered by the radial vector drawn from the

centre to the planet under the central force is constant.”

The area of Triangle ∆𝐴𝑂𝐴′in given figure is

𝑑𝑨 =
1

2
𝑟2𝑑𝜃 ො𝑛 (4.11.12)

𝑑𝑨

𝑑𝑡
=

1

2
𝑟2

𝑑𝜃

𝑑𝑡
ො𝑛

Multiplying both sides with mass “𝜇” of the body

𝜇
𝑑𝑨

𝑑𝑡
=

1

2
𝜇𝑟2

𝑑𝜃

𝑑𝑡
ො𝑛 =

1

2
𝜇𝑟2 ሶ𝜃 ො𝑛

𝜇
𝑑𝑨

𝑑𝑡
=

1

2
𝒍

𝑑𝑨

𝑑𝑡
=

1

2𝜇
𝒍 = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 (4.11.13)
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Kepler’s Third Law: “The square of the time period of revolution of the planet is

directly proportional to the cube of the semi-major axis of the orbit”

From the Kepler’s second law, we know that Areal velocity of the body under the

action of central force is constant

ሶ𝐴 =
𝑙

2𝜇
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (4.11.13)

𝑑𝐴

𝑑𝑡
=

𝑙

2𝜇
⇒ ׬

𝑑𝐴

𝑑𝑡
𝑑𝑡 =

𝑙

2𝜇
𝑑𝑡׬

⇒ 0׬
𝐴
𝑑𝐴 =

𝑙

2𝜇
0׬
𝜏
𝑑𝑡

Where 𝜏 is the time period of revaluation.

⇒ 𝐴 =
𝑙

2𝜇
𝜏 (4.11.14)

Since the area of the ellipse is 𝑨 = 𝝅𝒂𝒃
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And 𝑏 = 𝑎 1 − 𝑒2

⇒ 𝐴 = 𝜋𝑎2 1 − 𝑒2 (4.11.15)

And we also know that by using 𝑟𝑜 = 𝑎 = −
𝑘

2𝐸

⇒ 𝐸 = −
𝑘

2𝑎
putting this in 𝑒 = 1 +

2𝐸𝑙2

𝜇𝑘2

⇒ 𝑒 = 1 −
𝑙2

𝜇𝑘𝑎

⇒ 𝑒2 = 1 −
𝑙2

𝜇𝑘𝑎
⇒

𝑙2

𝜇𝑘𝑎
= 1 − 𝑒2

⇒
𝑙

𝜇𝑘𝑎
= 1 − 𝑒2 (4.11.16)

Therefore, 𝐴 = 𝜋𝑎2 1 − 𝑒2 = 𝜋𝑎2
𝑙

𝜇𝑘𝑎
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⇒ 𝐴 =
𝜋𝑙

𝜇𝑘
𝑎 Τ3 2 (4.11.17)

Comparing Equation for A

𝐴 =
𝑙

2𝜇
𝜏 =

𝜋𝑙

𝜇𝑘
𝑎 Τ3 2

⇒ 𝜏 = 2𝜋
𝜇

𝑘
𝑎 Τ3 2

⇒ 𝜏2 =
4𝜇𝜋2

𝑘
𝑎3

⇒ 𝜏2 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑎3

⇒ 𝜏2 ∝ 𝑎3 as desired. (4.11.18)
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The virial theorem provides a general equation that relates the average over time of

the total Kinetic Energy (T) of a system, bound by potential forces,

< 𝑇 >= −
1

2
<෍

𝒊=𝟏

𝑵

𝑭𝒊 ∙ 𝒓𝒊 >

The word virial for the right-hand side of the equation derives from vis, the Latin

word for "force" or "energy" and was given its technical definition by Rudolf Clausius

in 1870.

significance : virial theorem is that it allows the average total kinetic energy to be

calculated even for very complicated systems that defy an exact solution,

such as those considered in Statistical mechanics; this average total kinetic energy is

related to the Temperature of the system by the equipartition theorem.

4.12 Virial Theorem
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𝐺 = σ𝒊=𝟏
𝑵 𝑷𝒊 ∙ 𝒓𝒊 (4.12.1)

𝑑𝐺

𝑑𝑡
= σ𝒊=𝟏

𝑵 ሶ𝑷𝒊 ∙ 𝒓𝒊 + σ𝒊=𝟏
𝑵 𝑷𝒊 ∙ ሶ𝒓𝒊

𝑑𝐺

𝑑𝑡
= σ𝒊=𝟏

𝑵 𝑭𝒊 ∙ 𝒓𝒊 + σ𝒊=𝟏
𝑵 𝑚𝒊 ሶ𝒓𝒊 ∙ ሶ𝒓𝒊

𝑑𝐺

𝑑𝑡
= σ𝒊=𝟏

𝑵 𝑭𝒊 ∙ 𝒓𝒊 + σ𝒊=𝟏
𝑵 𝑚𝒊 ሶ𝑟𝑖

2

𝑑𝐺

𝑑𝑡
= σ𝒊=𝟏

𝑵 𝑭𝒊 ∙ 𝒓𝒊 + 2𝑇 (4.12.2)

4.12 Virial Theorem

𝐼 = σ𝒊=𝟏
𝑵 𝒎𝒊 𝒓𝒊 ∙ 𝒓𝒊

1

2

𝑑𝐼

𝑑𝑡
=

1

2

𝑑

𝑑𝑡
σ𝒊=𝟏
𝑵 𝒎𝒊 𝒓𝒊 ∙ 𝒓𝒊

1

2

𝑑𝐼

𝑑𝑡
=

1

2
σ𝒊=𝟏
𝑵 𝒎𝒊 ሶ𝒓𝒊 ∙ 𝒓𝒊 + σ𝒊=𝟏

𝑵 𝒎𝒊 𝒓𝒊 ሶ∙ 𝒓𝒊

1

2

𝑑𝐼

𝑑𝑡
=

2

2
σ𝒊=𝟏
𝑵 𝒎𝒊 ሶ𝒓𝒊 ∙ 𝒓𝒊

1

2

𝑑𝐼

𝑑𝑡
=

2

2
σ𝒊=𝟏
𝑵 𝒎𝒊 ሶ𝒓𝒊 ∙ 𝒓𝒊

1

2

𝑑𝐼

𝑑𝑡
= σ𝒊=𝟏

𝑵 𝑷𝒊 ∙ 𝒓𝒊 = 𝑮

Let us consider a system of points masses. Let the particle with mass “𝑚𝒊”, position

vector “𝒓𝒊” and momentum “ 𝑷𝒊”. We define a term “𝐺” such that;

The time average over the time interval is obtained by integrating both sides of the

equation.
1

𝜏
0׬
𝜏 𝑑𝐺

𝑑𝑡
𝑑𝑡 =

1

𝜏
𝐺 𝜏 − 𝐺 0 (4.12.3)
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If the motion is periodic, all coordinates repeat itself after a certain time “𝜏”

⇒
1

𝜏
0׬
𝜏 𝑑𝐺

𝑑𝑡
𝑑𝑡 = 0 because 𝐺 𝜏 = 𝐺 0

If the motion is not periodic, even then for 𝜏 ≫ the
1

𝜏
𝐺 𝜏 − 𝐺 0 → 0

In both cases left hand side is zero. Comparing Eq. (4.12.2) and (4.12.3)

1

𝜏
0׬
𝜏 𝑑𝐺

𝑑𝑡
𝑑𝑡 =< σ𝒊=𝟏

𝑵 𝑭𝒊 ∙ 𝒓𝒊 > +2 < 𝑇 >= 0

⇒ 2 < 𝑇 >=−< σ𝒊=𝟏
𝑵 𝑭𝒊 ∙ 𝒓𝒊 >

⇒< 𝑇 >= −
1

2
< σ𝒊=𝟏

𝑵 𝑭𝒊 ∙ 𝒓𝒊 >

⇒< 𝑇 >= −
1

2
< σ𝒊=𝟏

𝑵 −𝛁𝒓𝑉 ∙ 𝒓𝒊 >

⇒< 𝑇 >= −
1

2
< −

𝒅𝑉

𝒅𝒓
∙ 𝒓 > (4.12.4)
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Since 𝑉 =
𝑘

𝑟
and

𝒅𝑉

𝒅𝒓
= −

𝑘

𝑟2
for central force

𝒅𝑉

𝒅𝒓
∙ 𝒓 = −

𝑘

𝑟2
∙ 𝑟 = −

𝑘

𝑟
putting this value in Eq.

(4.12.4)

< 𝑇 >= −
1

2
< −

𝒅𝑉

𝒅𝒓
. 𝑟 >= −

1

2
<

𝑘

𝒓
>

⇒< 𝑇 >= −
1

2
< 𝑉 > (4.12.5)

It is true for every system having potential

𝑉 = 𝑘𝑟𝑛+1

⇒< 𝑇 >=
𝑛+1

2
< 𝑉 > (4.12.6)

𝑉 = −
𝑘

𝑟
&

𝒅𝑉

𝒅𝒓
=

𝑘

𝑟2
for

central attractive force

𝒅𝑉

𝒅𝒓
∙ 𝒓 =

𝑘

𝑟2
∙ 𝑟 =

𝑘

𝑟
putting

this value in Eq. (4.12.4)

< 𝑇 >= −
1

2
< −

𝑑𝑉

𝑑𝑟
. 𝑟 >=

−
1

2
< −

𝑘

𝒓
>

⇒< 𝑇 >= −
1

2
< 𝑉 >




