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Laws of Boolean Algebra
Boolean Algebra uses a set of Laws and Rules to define the operation of a digital logic circuit

As well as the logic symbols “0” and “1” being used to represent a digital input or output, we can
also use them as constants for a permanently “Open” or “Closed” circuit or contact respectively.

A set of rules or Laws of Boolean Algebra expressions have been invented to help reduce the
number of logic gates needed to perform a particular logic operation resulting in a list of functions
or theorems known commonly as the Laws of Boolean Algebra.

Boolean Algebra is the mathematics we use to analyse digital gates and circuits. We can use these
“Laws of Boolean” to both reduce and simplify a complex Boolean expression in an attempt to
reduce the number of logic gates required. Boolean Algebra is therefore a system of mathematics
based on logic that has its own set of rules or laws which are used to define and reduce Boolean
expressions.

The variables used in Boolean Algebra only have one of two possible values, a logic “0” and a logic
“1” but an expression can have an infinite number of variables all labelled individually to represent
inputs to the expression, For example, variables A, B, C etc, giving us a logical expression of A + B =
C, but each variable can ONLY be a 0 or a 1.

Examples of these individual laws of Boolean, rules and theorems for Boolean Algebra are given in
the following table.

Truth Tables for the Laws of Boolean

Boolean
Expression

Description
Equivalent

Switching Circuit
Boolean Algebra

Law or Rule

A + 1 = 1
A in parallel with

closed = “CLOSED”
Annulment

A + 0 = A
A in parallel with

open = “A”
Identity
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A . 1 = A
A in series with

closed = “A”
Identity

A . 0 = 0
A in series with
open = “OPEN”

Annulment

A + A = A
A in parallel with

A = “A”
Idempotent

A . A = A
A in series with

A = “A”
Idempotent

NOT A = A
NOT NOT A

(double negative) = “A”
  Double Negation

A + A = 1
A in parallel with

NOT A = “CLOSED”
Complement

A . A = 0
A in series with

NOT A = “OPEN”
Complement

A+B = B+A
A in parallel with B =

B in parallel with A
Commutative

A.B = B.A
A in series with B =

B in series with A
Commutative

A+B = A.B invert and replace OR with AND   de Morgan’s Theorem

A.B = A+B invert and replace AND with OR   de Morgan’s Theorem

The basic Laws of Boolean Algebra that relate to the Commutative Law allowing a change in
position for addition and multiplication, the Associative Law allowing the removal of brackets for
addition and multiplication, as well as the Distributive Law allowing the factoring of an expression,
are the same as in ordinary algebra.

Each of the Boolean Laws above are given with just a single or two variables, but the number of
variables defined by a single law is not limited to this as there can be an infinite number of variables
as inputs too the expression. These Boolean laws detailed above can be used to prove any given
Boolean expression as well as for simplifying complicated digital circuits.
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A brief description of the various Laws of Boolean are given below with A representing a variable
input.

Description of the Laws of Boolean Algebra

Annulment Law – A term AND´ed with a “0” equals 0 or OR´ed with a “1” will

equal 1
 

A . 0 = 0    A variable AND’ed with 0 is always equal to 0

A + 1 = 1    A variable OR’ed with 1 is always equal to 1

 
Identity Law – A term OR´ed with a “0” or AND´ed with a “1” will always equal

that term
 

A + 0 = A   A variable OR’ed with 0 is always equal to the variable

A . 1 = A    A variable AND’ed with 1 is always equal to the variable

 
Idempotent Law – An input that is AND´ed or OR´ed with itself is equal to that

input
 

A + A = A    A variable OR’ed with itself is always equal to the
variable

A . A = A    A variable AND’ed with itself is always equal to the
variable

 
Complement Law – A term AND´ed with its complement equals “0” and a

term OR´ed with its complement equals “1”
 

A . A = 0    A variable AND’ed with its complement is always equal
to 0

A + A = 1    A variable OR’ed with its complement is always equal to
1

 
Commutative Law – The order of application of two separate terms is not

important
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A . B = B . A    The order in which two variables are AND’ed makes
no difference

A + B = B + A    The order in which two variables are OR’ed makes
no difference

 
Double Negation Law – A term that is inverted twice is equal to the original

term
 

A = A     A double complement of a variable is always equal to the
variable

 
de Morgan´s Theorem – There are two “de Morgan´s” rules or theorems,
 
(1) Two separate terms NOR´ed together is the same as the two terms inverted

(Complement) and AND´ed for example:  A+B = A . B
 
(2) Two separate terms NAND´ed together is the same as the two terms inverted

(Complement) and OR´ed for example:  A.B = A + B

 
Other algebraic Laws of Boolean not detailed above include:

Distributive Law – This law permits the multiplying or factoring out of an

expression.
 

A(B + C) = A.B + A.C    (OR Distributive Law)

A + (B.C) = (A + B).(A + C)    (AND Distributive Law)

 
Absorptive Law – This law enables a reduction in a complicated expression to

a simpler one by absorbing like terms.
 

A + (A.B) = A    (OR Absorption Law)

A(A + B) = A    (AND Absorption Law)

 
Associative Law – This law allows the removal of brackets from an expression

and regrouping of the variables.
 

A + (B + C) = (A + B) + C = A + B + C    (OR Associate Law)
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A(B.C) = (A.B)C = A . B . C    (AND Associate Law)

Boolean Algebra Functions

Using the information above, simple 2-input AND, OR and NOT Gates can be represented by 16
possible functions as shown in the following table.

Function Description Expression

1. NULL 0

2. IDENTITY 1

3. Input A A

4. Input B B

5. NOT A A

6. NOT B B

7. A AND B (AND) A . B

8. A AND NOT B A . B

9. NOT A AND B A . B

10. NOT AND (NAND) A . B

11. A OR B (OR) A + B

12. A OR NOT B A + B

13. NOT A OR B A + B

14. NOT OR (NOR) A + B

15. Exclusive-OR A . B + A . B

16. Exclusive-NOR A . B + A . B

Laws of Boolean Algebra Example No1

Using the above laws, simplify the following expression:  (A + B)(A + C)

Q = (A + B).(A + C)  
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  A.A + A.C + A.B + B.C  – Distributive law

  A + A.C + A.B + B.C  – Idempotent AND law (A.A = A)

  A(1 + C) + A.B + B.C  – Distributive law

  A.1 + A.B + B.C  – Identity OR law (1 + C = 1)

  A(1 + B) + B.C  – Distributive law

  A.1 + B.C  – Identity OR law (1 + B = 1)

Q = A + (B.C)  – Identity AND law (A.1 = A)

 
Then the expression:  (A + B)(A + C) can be simplified to A + (B.C) as in the Distributive law.
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Boolean Algebra Examples
Boolean Algebra examples of how to reduce the number of digital gates using Boolean Algebra

Laws

Boolean Algebra and the Laws of Boolean Algebra can be used to identify unnecessary logic gates
within a digital logic design reducing the number of gates required saving on power consumption
and cost.

We have seen throughout this section that digital logic functions can be defined and displayed as
either a Boolean Algebra expression or as a logic gate truth table. So here are a few examples of
how we can use Boolean Algebra to simplify larger digital logic circuits.

Boolean Algebra Example No1

Construct a Truth Table for the logical functions at points C, D and Q in the following circuit and
identify a single logic gate that can be used to replace the whole circuit.
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First observations tell us that the circuit consists of a 2-input NAND gate, a 2-input EX-OR gate
and finally a 2-input EX-NOR gate at the output. As there are only 2 inputs to the circuit
labelled A and B, there can only be 4 possible combinations of the input ( 2  ) and these are: 0-0, 0-
1, 1-0 and finally 1-1. Plotting the logical functions from each gate in tabular form will give us the
following truth table for the whole of the logic circuit below.

Inputs Output at

A B C D Q

0 0 1 0 0

0 1 1 1 1

1 0 1 1 1

1 1 0 0 1

From the truth table above, column C represents the output function generated by
the NAND gate, while column D represents the output function from the Ex-OR gate. Both of
these two output expressions then become the input condition for the Ex-NOR gate at the output.

It can be seen from the truth table that an output at Q is present when any of the two
inputs A or Bare at logic 1. The only truth table that satisfies this condition is that of an OR Gate.
Therefore, the whole of the above circuit can be replaced by just one single 2-input OR Gate.

Boolean Algebra Example No2

Find the Boolean algebra expression for the following system.

 
The system consists of an AND Gate, a NOR Gate and finally an OR Gate. The expression for
the AND gate is A.B, and the expression for the NOR gate is A+B. Both these expressions are also
separate inputs to the OR gate which is defined as A+B. Thus the final output expression is given
as:

2



4/10/2020 Boolean Algebra Tutorial and Boolean Algebra Examples

https://www.electronics-tutorials.ws/boolean/bool_8.html 3/5

 
The output of the system is given as Q = (A.B) + (A+B), but the notation A+B is the same as the De
Morgan´s notation A.B, Then substituting A.B into the output expression gives us a final output
notation of Q = (A.B)+(A.B), which is the Boolean notation for an Exclusive-NOR Gate as seen in
the previous section.

Inputs Intermediates Output

B A A.B A + B Q

0 0 0 1 1

0 1 0 0 0

1 0 0 0 0

1 1 1 0 1

Then, the whole circuit above can be replaced by just one single Exclusive-NOR Gate and indeed
an Exclusive-NOR Gate is made up of these individual gate functions.

Boolean Algebra Example No3

Find the Boolean algebra expression for the following system.

 
This system may look more complicated than the other two to analyse but again, the logic circuit
just consists of simple AND, OR and NOT gates connected together.
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As with the previous Boolean examples, we can simplify the circuit by writing down the Boolean
notation for each logic gate function in turn in order to give us a final expression for the output
at Q.

 
The output from the 3-input AND gate is only at logic “1” when ALL the gates inputs are HIGH at
logic level “1” (A.B.C). The output from the lower OR gate is only a “1” when one or both
inputs B or C are at logic level “0”. The output from the 2-input AND gate is a “1” when input A is a
“1” and inputs B or C are at “0”. Then the output at Q is only a “1” when inputs A.B.C equal “1”
or A is equal to “1” and both inputs B or C equal “0”, A.(B+C).

By using “de Morgan’s theorem” inputs B and input C cancel out as to produce an output at Q they
can be either at logic “1” or at logic “0”. Then this just leaves input A as the only input needed to
give an output at Q as shown in the table below.

Inputs Intermediates Output

C B A A.B.C B C B+C A.(B+C) Q

0 0 0 0 1 1 1 0 0

0 0 1 0 1 1 1 1 1

0 1 0 0 0 1 1 0 0

0 1 1 0 0 1 1 1 1

1 0 0 0 1 0 1 0 0

1 0 1 0 1 0 1 1 1

1 1 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 1
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Then we can see that the entire logic circuit above can be replaced by just one single input labelled
“A” thereby reducing a circuit of six individual logic gates to just one single piece of wire, (or
Buffer). This type of circuit analysis using Boolean Algebra can be very powerful and quickly
identify any unnecessary logic gates within a digital logic design thereby reducing the number of
gates required, the power consumption of the circuit and of course the cost.
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Boolean Algebra Truth Tables
Boolean Algebra Expressions can be used to construct digital logic truth tables for their

respective functions

As well as a standard Boolean Expression, the input and output information of any Logic Gate or
circuit can be plotted into a standard table to give a visual representation of the switching function
of the system.

The table used to represent the boolean expression of a logic gate function is commonly called
a Truth Table. A logic gate truth table shows each possible input combination to the gate or circuit
with the resultant output depending upon the combination of these input(s).

For example, consider a single 2-input logic circuit with input variables labelled as A and B. There
are “four” possible input combinations or 2  of “OFF” and “ON” for the two inputs. However, when
dealing with Boolean expressions and especially logic gate truth tables, we do not general use “ON”
or “OFF” but instead give them bit values which represent a logic level “1” or a logic level “0”
respectively.

Then the four possible combinations of A and B for a 2-input logic gate is given as:

Input Combination 1. – “OFF” – “OFF” or ( 0, 0 )

Input Combination 2. – “OFF” – “ON” or ( 0, 1 )

Input Combination 3. – “ON” – “OFF” or ( 1, 0 )

Input Combination 4. – “ON” – “ON” or ( 1, 1 )

Therefore, a 3-input logic circuit would have 8 possible input combinations or 2  and a 4-input logic
circuit would have 16 or 2 , and so on as the number of inputs increases. Then a logic circuit
with “n”number of inputs would have 2  possible input combinations of both “OFF” and “ON”.

So in order to keep things simple to understand, in this tutorial we will only deal with standard 2-
input type logic gates, but the principals are still the same for gates with more than two inputs.

Then the Truth tables for a 2-input AND Gate, a 2-input OR Gate and a single input NOT Gate are
given as:

2

3

4

n
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2-input AND Gate

For a 2-input AND gate, the output Q is true if BOTH input A “AND” input B are both true, giving
the Boolean Expression of: ( Q = A and B ).

Symbol Truth Table

A B Q

0 0 0

0 1 0

1 0 0

1 1 1

Boolean Expression Q = A.B Read as A AND B gives Q

Note that the Boolean Expression for a two input AND gate can be written as: A.B or just
simply ABwithout the decimal point.

2-input OR (Inclusive OR) Gate

For a 2-input OR gate, the output Q is true if EITHER input A “OR” input B is true, giving the
Boolean Expression of: ( Q = A or B ).

Symbol Truth Table

A B Q

0 0 0

0 1 1

1 0 1

1 1 1

Boolean Expression Q = A+B Read as A OR B gives Q

NOT Gate (Inverter)

For a single input NOT gate, the output Q is ONLY true when the input is “NOT” true, the output is
the inverse or complement of the input giving the Boolean Expression of: ( Q = NOT A ).

Symbol Truth Table
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A Q

0 1

1 0

Boolean Expression Q = NOT A or A Read as inversion of A gives Q

The NAND and the NOR Gates are a combination of the AND and OR Gates respectively with
that of a NOT Gate (inverter).

2-input NAND (Not AND) Gate

For a 2-input NAND gate, the output Q is true if BOTH input A and input B are NOT true, giving
the Boolean Expression of: ( Q = not(A AND B) ).

Symbol Truth Table

A B Q

0 0 1

0 1 1

1 0 1

1 1 0

Boolean Expression Q = A .B Read as A AND B gives NOT-Q

2-input NOR (Not OR) Gate

For a 2-input NOR gate, the output Q is true if BOTH input A and input B are NOT true, giving the
Boolean Expression of: ( Q = not(A OR B) ).

Symbol Truth Table

A B Q

0 0 1

0 1 0

1 0 0

1 1 0
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Boolean Expression Q = A+B Read as A OR B gives NOT-Q

As well as the standard logic gates there are also two special types of logic gate function called
an Exclusive-OR Gate and an Exclusive-NOR Gate. The Boolean expression to indicate an

Exclusive-OR or Exclusive-NOR function is to a symbol with a plus sign inside a circle, ( ⊕ ).

The switching actions of both of these types of gates can be created using the above standard logic
gates. However, as they are widely used functions they are now available in standard IC form and
have been included here as reference.

2-input EX-OR (Exclusive OR) Gate

For a 2-input Ex-OR gate, the output Q is true if EITHER input A or if input B is true, but NOT
both giving the Boolean Expression of: ( Q = (A and NOT B) or (NOT A and B) ).

Symbol Truth Table

A B Q

0 0 0

0 1 1

1 0 1

1 1 0

Boolean Expression Q = A ⊕ B  

2-input EX-NOR (Exclusive NOR) Gate

For a 2-input Ex-NOR gate, the output Q is true if BOTH input A and input B are the same, either
true or false, giving the Boolean Expression of: ( Q = (A and B) or (NOT A and NOT B) ).

Symbol Truth Table

A B Q

0 0 1

0 1 0

1 0 0

1 1 1
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Boolean Expression Q = A ⊕ B  

Summary of 2-input Logic Gates

The following Truth Table compares the logical functions of the 2-input logic gates above.

Inputs Truth Table Outputs For Each Gate

A B AND NAND OR NOR EX-OR EX-NOR

0 0 0 1 0 1 0 1

0 1 0 1 1 0 1 0

1 0 0 1 1 0 1 0

1 1 1 0 1 0 0 1

The following table gives a list of the common logic functions and their equivalent Boolean
notation.

Logic Function Boolean Notation

AND A.B

OR A+B

NOT A

NAND A .B

NOR A+B

EX-OR (A.B) + (A.B) or A ⊕ B

EX-NOR (A.B) + (A.B) or A ⊕ B

2-input logic gate truth tables are given here as examples of the operation of each logic function,
but there are many more logic gates with 3, 4 even 8 individual inputs. The multiple input gates are
no different to the simple 2-input gates above, So a 4-input AND gate would still require ALL 4-
inputs to be present to produce the required output at Q and its larger truth table would reflect
that.
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