
Analog and Digital Signal
• Analog system

• The physical quantities or signals may vary continuously over a specified 
range.

• Digital system
• The physical quantities or signals can assume only discrete values.

• Greater accuracy
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Binary Digital Signal
• An information variable represented by physical quantity.

• For digital systems, the variable takes on discrete values.
• Two level, or binary values are the most prevalent values.

• Binary values are represented abstractly by: ( bit) bi – Binary &   it- digit
• Number 0 is one bit  and  Number  1 is also one bit

• Words (symbols) False (F) and True (T)

• Words (symbols) Low (L) and High (H) 

• And words                  On   and    Off

• Binary values are represented by values           

• or ranges of values of physical quantities.
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Decimal Number System
• Base (also called radix) = 10 

• 10 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }

• Digit Position
• Integer & fraction

• Digit Weight
• Weight = (Base) 

Position

• Magnitude
• Sum of “Digit x Weight”

• Formal Notation

1 0 -12 -2

5 1 2 7 4

10 1 0.1100 0.01

500 10 2 0.7 0.04

d2*B
2
+d1*B

1
+d0*B

0
+d-1*B

-1
+d-2*B

-2

(512.74)10



Octal Number System
• Base = 8 

• 8 digits { 0, 1, 2, 3, 4, 5, 6, 7 }

• Weights
• Weight = (Base) Position

• Magnitude
• Sum of “Digit x Weight”

• Formal Notation

1 0 -12 -2

8 1 1/864 1/64

5 1 2 7 4

5 *8
2
+1 *8

1
+2 *8

0
+7 *8

-1
+4 *8

-2

=(330.9375)10

(512.74)8



Decimal to Octal Conversion
Example: (175)10

Quotient Remainder Coefficient

Answer:      (175)10 = (a2 a1 a0)8 = (257)8

175 / 8 = 21 7 a0 = 7

21 / 8 = 2 5 a1 = 5

2 / 8 = 0 2 a2 = 2

Example: (0.3125)10

Integer Fraction Coefficient

Answer:      (0.3125)10 = (0.a-1 a-2 a-3)8 = (0.24)8

0.3125 * 8 = 2    . 5

0.5 * 8 = 4    .    0 a-2 = 4

a-1 = 2



Hexadecimal Number System
• Base = 16 

• 16 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F }

• Weights
• Weight = (Base) Position

• Magnitude
• Sum of “Digit x Weight”

• Formal Notation

1 0 -12 -2

16 1 1/16256 1/256

1 E 5 7 A

1 *16
2
+14 *16

1
+5 *16

0
+7 *16

-1
+10 *16

-2

=(485.4765625)10

(1E5.7A)16





Binary Number System
• Base = 2 

• 2 digits { 0, 1 }, called binary digits or “bits”

• Weights
• Weight = (Base) Position

• Magnitude
• Sum of “Bit x Weight”

• Formal Notation

• Groups of bits       4 bits = Nibble

8 bits = Byte

1 0 -12 -2

2 1 1/24 1/4

1 0 1 0 1

1 *2
2
+0 *2

1
+1 *2

0
+0 *2

-1
+1 *2

-2

=(5.25)10

(101.01)2



Decimal (Integer) to Binary Conversion
• Divide the number by the ‘Base’ (=2)

• Take the remainder (either 0 or 1) as a coefficient

• Take the quotient and repeat the division

Example: (13)10

Quotient Remainder Coefficient

Answer:      (13)10 = (a3 a2 a1 a0)2 = (1101)2

MSB           LSB

13/ 2 = 6 1 a0 = 1

6 / 2 = 3 0 a1 = 0

3 / 2 = 1 1 a2 = 1
1 / 2 = 0 1 a3 = 1







Decimal (Fraction) to Binary Conversion
• Multiply the number by the ‘Base’ (=2)

• Take the integer (either 0 or 1) as a coefficient

• Take the resultant fraction and repeat the division

Example: (0.625)10

Integer Fraction Coefficient

Answer:      (0.625)10 = (0.a-1 a-2 a-3)2 = (0.101)2

MSB           LSB

0.625 * 2 = 1    . 25

0.25 * 2 = 0    .    5 a-2 = 0

0.5 * 2 = 1    . 0 a-3 = 1

a-1 = 1



The Power of 2
n 2n

0 20=1

1 21=2

2 22=4

3 23=8

4 24=16

5 25=32

6 26=64

7 27=128

n 2n

8 28=256

9 29=512

10 210=1024

11 211=2048

12 212=4096

20 220=1M

30 230=1G

40 240=1T

Mega

Giga

Tera

Kilo



Addition
• Decimal Addition

5 5

55+

011

= Ten ≥ Base

➔ Subtract a Base

11 Carry



BINARY ARITHMETIC

Addition Sum    Carry
0  +  0  = 0 0 0
0  +  1  = 1 1 0
1  +  0  =  1 1 0
1  +  1  =  0 0 1

Subtraction Diff.   Borrow
0  - 0  = 0 0 0
1  - 0  = 1 1 0
1  - 1  =  0 0 0
0  - 1  =  1 1 1

Multiplication Product
0  x  0  = 0 0
0  x  1  = 1 0
1  x  0  = 1 0
1  x  1  = 0 1

rajainayat
Pencil

rajainayat
Pencil

rajainayat
Pencil
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Binary Addition
• Column Addition

1 0 1111

1111 0+

0000 1 11

111111

= 61

= 23

= 84)( 10

10

10
Augend

Add end

Sum



Binary Subtraction
• Borrow a “Base” when needed

0 0 1110

1111 0−

0101 1 10

1 = 77

= 23

= 54

Minu end

Subra end

Difference

1010
1

1010



Binary Multiplication
• Bit by bit

01 1 1 1

01 1 0

00 0 0 0

01 1 1 1

01 1 1 1

0 0 000

0110111 0

x

Multiplicand

Multiplier

Product

x

xxx

x x

23

10

230

10

10

10
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2
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Home / Binary Numbers / Octal Number System

Octal Number System
The Octal Number System is another type of computer and digital numbering system which uses

the Base-8 system

The Octal Numbering System is very similar in principle to the previous hexadecimal numbering
system except that in Octal, a binary number is divided up into groups of only 3 bits, with each
group or set of bits having a distinct value of between 000 (0) and 111 ( 4+2+1 = 7 ).

Octal numbers therefore have a range of just “8” digits, (0, 1, 2, 3, 4, 5, 6, 7) making them a Base-8

numbering system and therefore, q is equal to “8”.

Then the main characteristics of an Octal Numbering System is that there are only 8 distinct
counting digits from 0 to 7 with each digit having a weight or value of just 8 starting from the least
significant bit (LSB). In the earlier days of computing, octal numbers and the octal numbering
system was very popular for counting inputs and outputs because as it works in counts of eight,
inputs and outputs were in counts of eight, a byte at a time.

As the base of an Octal Numbers system is 8 (base-8), which also represents the number of
individual numbers used in the system, the subscript 8 is used to identify a number expressed in
octal. For example, an octal number is expressed as:  237

Just like the hexadecimal system, the “octal number system” provides a convenient way of
converting large binary numbers into more compact and smaller groups. However, these days the
octal numbering system is used less frequently than the more popular hexadecimal numbering
system and has almost disappeared as a digital base number system.

Representation of an Octal Number

8
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MSB Octal Number LSB

8 8 8 8 8 8 8 8 8

16M 2M 262k 32k 4k 512 64 8 1

As the octal number system uses only eight digits (0 through 7) there are no numbers or letters
used above 8, but the conversion from decimal to octal and binary to octal follows the same
pattern as we have seen previously for hexadecimal.

To count above 7 in octal we need to add another column and start over again in a similar way to
hexadecimal.

0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21….etc

Again do not get confused, 10 or 20 is NOT ten or twenty it is 1 + 0 and 2 + 0 in octal exactly the
same as for hexadecimal. The relationship between binary and octal numbers is given below.

Octal Numbers

Decimal Number 3-bit Binary Number Octal Number

0 000 0

1 001 1

2 010 2

3 011 3

4 100 4

5 101 5

6 110 6

7 111 7

8 001 000 10 (1+0)

9 001 001 11 (1+1)

Continuing upwards in groups of three

Then we can see that 1 octal number or digit is equivalent to 3 bits, and with two octal
number, 77 we can count up to 63 in decimal, with three octal numbers, 777  up to 511 in
decimal and with four octal numbers, 7777  up to 4095 in decimal and so on.

8 7 6 5 4 3 2 1 0

8 8

8
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Octal Numbers Example No1

Using our previous binary number of 1101010111001111  convert this binary number to its
octal equivalent, (base-2 to base-8).

Binary Digit Value  001101010111001111 

Group the bits into three´s starting

from the right hand side
 001 101 010 111 001 111 

Octal Number form 1 5 2 7 1 7

 
Thus, 001101010111001111  in its Binary form is equivalent to 152717  in Octal form or
54,735 in denary.

Octal Numbers Example No2

Convert the octal number 2322  to its decimal number equivalent, (base-8 to base-10).

Octal Digit Value 2322

In polynomial form = ( 2×8  ) + ( 3×8  ) + ( 2×8  ) + ( 2×8  )

Add the results = ( 1024 ) + ( 192 ) + ( 16 ) + ( 2 )

Decimal number form equals:   1234

 
Then, converting octal to decimal shows that  2322  in its Octal form is equivalent to 1234  in
its Decimal form.

While Octal is another type of digital numbering system, it is little used these days instead the
more commonly used Hexadecimal Numbering System is used as it is more flexible.

2

8

2 8

8

8

3 2 1 0

10

8 10
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Hexadecimal Numbers
Hexadecimal Numbers group binary numbers into sets of four allowing for the conversion of 16

different binary digits

Hexadecimal Number String

The one main disadvantage of binary numbers is that the binary string equivalent of a large
decimal base-10 number can be quite long.

When working with large digital systems, such as computers, it is common to find binary numbers
consisting of 8, 16 and even 32 digits which makes it difficult to both read or write without
producing errors especially when working with lots of 16 or 32-bit binary numbers.

One common way of overcoming this problem is to arrange the binary numbers into groups or sets
of four bits (4-bits). These groups of 4-bits uses another type of numbering system also commonly
used in computer and digital systems called Hexadecimal Numbers.

The “Hexadecimal” or simply “Hex” numbering system uses
the Base of 16 system and are a popular choice for representing
long binary values because their format is quite compact and
much easier to understand compared to the long binary strings
of 1’s and 0’s.

Being a Base-16 system, the hexadecimal numbering system
therefore uses 16 (sixteen) different digits with a combination
of numbers from 0 through to 15. In other words, there are 16
possible digit symbols.

However, there is a potential problem with using this method of digit notation caused by the fact
that the decimal numerals of 10, 11, 12, 13, 14 and 15 are normally written using two adjacent
symbols. For example, if we write 10 in hexadecimal, do we mean the decimal number ten, or the
binary number of two (1 + 0). To get around this tricky problem hexadecimal numbers that identify
the values of ten, eleven, . . . , fifteen are replaced with capital letters of A, B, C, D,
E and F respectively.

https://www.electronics-tutorials.ws/
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Then in the Hexadecimal Numbering System we use the numbers from 0 to 9 and the capital
letters A to F to represent its Binary or Decimal number equivalent, starting with the least
significant digit at the right hand side.

As we have just said, binary strings can be quite long and difficult to read, but we can make life
easier by splitting these large binary numbers up into even groups to make them much easier to
write down and understand. For example, the following group of binary
digits 1101  0101  1100  1111  are much easier to read and understand
than 1101010111001111   when they are all bunched up together.

In the everyday use of the decimal numbering system we use groups of three digits or 000’s from
the right hand side to make a very large number such as a million or trillion, easier for us to
understand and the same is also true in digital systems.

Hexadecimal Numbers is a more complex system than using just binary or decimal and is mainly
used when dealing with computers and memory address locations. By dividing a binary number up
into groups of 4 bits, each group or set of 4 digits can now have a possible value of between “0000”
(0) and “1111” ( 8+4+2+1 = 15 ) giving a total of 16 different number combinations from 0 to 15.
Don’t forget that “0” is also a valid digit.

We remember from our first tutorial about Binary Numbers that a 4-bit group of digits is called a
“nibble” and as 4-bits are also required to produce a hexadecimal number, a hex digit can also be
thought of as a nibble, or half-a-byte. Then two hexadecimal numbers are required to produce one
full byte ranging from 00 to FF.

Also, since 16 in the decimal system is the fourth power of 2 ( or 2  ), there is a direct relationship

between the numbers 2 and 16 so one hex digit has a value equal to four binary digits so now q is
equal to “16”.

Because of this relationship, four digits in a binary number can be represented with a single
hexadecimal digit. This makes conversion between binary and hexadecimal numbers very easy, and
hexadecimal can be used to write large binary numbers with much fewer digits.

The numbers 0 to 9 are still used as in the original decimal system, but the numbers
from 10 to 15are now represented by capital letters of the alphabet from A to F inclusive and the
relationship between decimal, binary and hexadecimal is given below.

Hexadecimal Numbers

Decimal Number 4-bit Binary Number Hexadecimal Number

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

2

2

4
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5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

16 0001 0000 10 (1+0)

17 0001 0001 11 (1+1)

Continuing upwards in groups of four

Using the original binary number from above 1101 0101 1100 1111  this can now be converted
into an equivalent hexadecimal number of  D5CF which is much easier to read and understand
than a long row of 1’s and 0’s that we had before.

So by using hexadecimal notation, digital numbers can be written using fewer digits and with a
much less likelihood of an error occurring. Similarly, converting hexadecimal based numbers back
into binary is simply the reverse operation.

Then the main characteristics of a Hexadecimal Numbering System is that there are 16 distinct
counting digits from 0 to F with each digit having a weight or value of 16 starting from the least
significant bit (LSB). In order to distinguish Hexadecimal numbers from Denary numbers, a prefix
of either a “#”, (Hash) or a “$” (Dollar sign) is used before the actual Hexadecimal
Number value, #D5CF or $D5CF.

As the base of a hexadecimal system is 16, which also represents the number of individual symbols
used in the system, the subscript 16 is used to identify a number expressed in hexadecimal. For
example, the previous hexadecimal number is expressed as:  D5CF

Counting using Hexadecimal Numbers

2

16
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So we now know how to convert 4 binary digits into a hexadecimal number. But what if we had
more than 4 binary digits how would we count in hexadecimal beyond the final letter F. The simple
answer is to start over again with another set of 4 bits as follows.

0…to…9, A,B,C,D,E,F, 10…to…19, 1A, 1B, 1C, 1D, 1E, 1F, 20, 21….etc

Do not get confused, 10 or 20 is NOT ten or twenty it is 1 + 0 and 2 + 0 in hexadecimal. In fact
twenty does not even exist in hex. With two hexadecimal numbers we can count up to FF which is
equal to decimal 255. Likewise, to count higher than FF we would add a third hexadecimal digit to
the left so the first 3-bit hexadecimal number would be 100  (256 ) and the last would
be FFF (4095 ). The maximum 4-digit hexadecimal number is FFFF  which is equal to 65,535
in decimal and so on.

Representation of a Hexadecimal Number

MSB Hexadecimal Number LSB

16 16 16 16 16 16 16 16 16

4.3G 2.6G 16M 1M 65k 4k 256 16 1

This adding of additional hexadecimal digits to convert both decimal and binary numbers into
an Hexadecimal Number is very easy if there are 4, 8, 12 or 16 binary digits to convert. But we can
also add zero’s to the left of the most significant bit, the MSB if the number of binary bits is not a
multiple of four.

For example, 11001011011001  is a fourteen bit binary number that is to large for just three
hexadecimal digits only, yet too small for a four hexadecimal number. The answer is to ADD
additional zero’s to the left most bit until we have a complete set of four bit binary number or
multiples thereof.

Adding of Additional 0’s to a Binary Number

Binary Number 0011 0010 1101 1001

Hexadecimal Number 3 2 D 9

 
The main advantage of a Hexadecimal Number is that it is very compact and by using a base of 16
means that the number of digits used to represent a given number is usually less than in binary or
decimal. Also, it is quick and easy to convert between hexadecimal numbers and binary.

Hexadecimal Numbers Example No1

Convert the following Binary number 1110 1010  into its Hexadecimal number equivalent.

16, 10

16, 10 16

8 7 6 5 4 3 2 1 0

2

2
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Binary Number = 11101010

 Group the bits into four’s starting from the right hand side

  =  1110  1010  

 Find the Decimal equivalent of each individual group

  =  14  10 (in decimal)

 Convert to Hexadecimal using the table above

  =  E  A (in Hex)

 Then, the hexadecimal equivalent of the binary number

1110 1010   is  #EA

Hexadecimal Numbers Example No2

Convert the following Hexadecimal number #3FA7  into its Binary equivalent, and also into its
Decimal or Denary equivalent using subscripts to identify each numbering system.

  #3FA7

 = 0011 1111 1010 0111

 = (8192 + 4096 + 2048 + 1024 + 512 + 256 + 128 + 32 + 4 + 2 + 1)

 = 16,295

 
Then, the Decimal number of 16,295 can be represented as:-

#3FA7    in Hexadecimal

or

0011 1111 1010 0111    in Binary.

Hexadecimal Numbers Summary

Then to summarise. The Hexadecimal, or Hex, numbering system is commonly used in computer
and digital systems to reduce large strings of binary numbers into a sets of four digits for us to
easily understand. The word “Hexadecimal” means sixteen because this type of digital numbering
system uses 16 different digits from 0-to-9, and A-to-F.

2

2 16

16

16

2

10

16

2
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Hexadecimal Numbers group binary numbers into sets of four digits. To convert a binary sequence
into an equivalent hexadecimal number, we must first group the binary digits into a set of 4-bits.
These binary sets can have any value from 0  ( 0000  ) to 15  ( 1111  ) representing the
hexadecimal equivalent of  0 through to F.

In the next tutorial about Binary Logic we will look at converting whole strings of binary numbers
into another digital numbering system called Octal Numbers and vice versa.

10 2 10 2
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Binary Numbers Tutorial
There are different yet similar binary numbering systems used in digital electronic circuits and
computers.

However, the numbering system used in one type of circuit may be different to that of another
type of circuit, for example, the memory of a computer would use hexadecimal numbers while
the keyboard uses decimal numbers.

Then the conversion from one number system to another is very important with the four main
forms of arithmetic being.

Decimal – The decimal numbering system has a base of 10 (MOD-10) and uses
the digits from 0 through 9 to represent a decimal number value.
Binary – The binary numbering system has a base of 2 (MOD-2) and uses only
two digits a “0” and a “1” to represent a binary number value.
Octal – The octal numbering system has a base of 8 (MOD-8) and uses 8 digits
between 0 and 7 to represent an octal number value.
Hexadecimal – The Hexadecimal numbering system has a base of 16 (MOD-16)
and uses a total of 16 numeric and alphabetic characters to represent a number
value. Hexadecimal numbers consist of digits 0 through 9 and letters A to F.

https://www.electronics-tutorials.ws/
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Long binary numbers are difficult to both read or write and are generally converted into a system
more easily understood or user friendly. The two most common derivatives based on binary
numbers are the Octal and the Hexadecimal numbering systems, with both of these limited in
length to a byte (8-bits) or a word (16-bits).

Octal numbers can be represented by groups of 3-bits and hexadecimal numbers by groups of
4-bits together, with this grouping of the bits being used in electronic or computer systems in
displays or printouts. The grouping together of binary numbers can also be used to
represent Machine Codeused for programming instructions and control such as an Assembly
Language.

Comparisons between the various Decimal, Binary, Hexadecimal and Octal numbers are
given in the following table.

Digital Numbering System Comparison Table

Base, b Byte (8-bits) Word (16-bits)

Decimal
0
to

255

0
to

65,535

Binary
0000 0000

to
1111 1111

0000 0000 0000 0000
to

1111 1111 1111 1111

Hexadecimal
00
to

FF

0000
to

FFFF

Octal
000
to

377

000 000
to

177 777

We can see from the table above that the Hexadecimal numbering system uses only four digits
to express a single 16-bit word length, and as a result it is the most commonly used Base
Numbering System for digital, micro-electronic and computer systems.

10 10

2 2

16 16

8 8
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Binary Fractions
Binary Fractions use the same weighting principle as decimal numbers except that each
binary digit uses the base-2 numbering system

We know that decimal (or denary) numbers use the base ten (base-10) numbering system
where each digit in a decimal number is allowed to take one of ten possible values in the range
of 0 to 9. So moving from right to left along a decimal number, each digit will have a value ten
times greater than the digit to its immediate right.

But as well as each digit being ten times bigger than the previous number as we move from
right-to-left, each digit can also be ten times smaller than its neighbouring number as we move
along in the opposite direction from left-to-right.

However, once we reach zero (0) and the decimal point, we do not need to just stop, but can
continue moving from left-to-right along the digits producing what are generally called Fractional
Numbers.

A Typical Fractional Number
Here in this decimal (or denary) number example, the digit
immediately to the right of the decimal point (number 5) is worth
one tenth (1/10 or 0.1) of the digit immediately to the left of the
decimal point (number 4) which as a multiplication value of one (1).

Thus as we move through the number from left-to-right, each
subsequent digit will be one tenth the value of the digit immediately
to its left position, and so on.

Then the decimal numbering system uses the concept of positional
or relative weighting values producing a positional notation, where
each digit represents a different weighted value depending on the

https://www.electronics-tutorials.ws/
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position occupied either side of the decimal point.

Thus mathematically in the standard denary numbering system, these values are commonly
written as: 4 , 3 , 2 , 1  for each position to the left of the decimal point in our example above.
Likewise, for the fractional numbers to right of the decimal point, the weight of the number
becomes more negative giving: 5 , 6 , 7  etc.

So we can see that each digit in the standard decimal system indicates the magnitude or weight
of that digit within the number. Then the value of any decimal number will be equal to the sum of
its digits multiplied by their respective weights, so for our example above: N = 1234.567  in
the weighted decimal format this will be equal too:

1000 + 200 + 30 + 4  + 0.5 + 0.06 + 0.007 = 1234.567
or it could be written to reflect the weighting of each denary digit:

(1×1000) + (2×100) + (3×10) + (4×1) + (5×0.1) + (6×0.01) + (7×0.001) = 1234.567
or even in polynomial form as:

(1×10 ) + (2×10 ) + (3×10 ) + (4×10 ) + (5×10 ) + (6×10 ) + (7×10 ) = 1234.567
 
We can also use this idea of positional notation where each digit represents a different weighted
value depending upon the position it occupies in the binary numbering system. The difference
this time is that the binary number system (or simply binary numbers) is a positional system,
where the different weighted positions of the digits are to the power of 2 (base-2) instead of 10.

Binary Fractions
The binary numbering system is a base-2 numbering system which contains only two digits, a
“0” or a “1”. Thus each digit of a binary number can take the “0” or the “1” value with the position
of the 0 or 1 indicating its value or weighting. But we can also have binary weighting for values of
less than 1 producing what are called unsigned fractional binary numbers.

Similar to decimal fractions, binary numbers can also be represented as unsigned fractional
numbers by placing the binary digits to the right of the decimal point or in this case, binary point.
Thus all the fractional digits to the right of the binary point have respective weightings which are
negative powers of two, creating a binary fraction. In other words, the powers of 2 are negative.

So for the fractional binary numbers to the right of the binary point, the weight of each digit
becomes more negative giving: 2 , 2 , 2 , 2 , and so on as shown.

Binary Fractions

0 1 2 3

-1 -2 -3

10

10

10

3 2 1 0 -1 -2 -3
10

-1 -2 -3 -4
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etc, etc.
Thus if we take the binary fraction of 0.1011  then the positional weights for each of the digits is
taken into account giving its decimal equivalent of:

 
For this example, the decimal fraction conversion of the binary number 0.1011  is 0.6875 .

Binary Fractions Example No1
Now lets suppose we have the following binary number of: 1101.0111 , what will be its decimal
number equivalent.

2

2 10

2

3 2 1 0 1 2 3 4
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1101.0111 = (1×2 ) + (1×2 ) + (0×2 ) + (1×2 ) + (0×2 ) + (1×2 ) + (1×2 ) + (1×2 )

 = 8 + 4 + 0  + 1 + 0 + 1/4 + 1/8  + 1/16

 = 8 + 4 + 0  + 1 + 0 + 0.25 + 0.125  + 0.0625 = 13.4375

Hence the decimal equivalent number of 1101.0111  is given as: 13.4375

So we can see that fractional binary numbers, that is binary numbers that have a weighting of
less than 1 (2 ), can be converted into their decimal number equivalent by successively dividing
the binary weighting factor by the value of two for each decrease in the power of 2, remembering
also that 2  is equal to 1, and not zero.

Other Binary Fraction Examples
0.11 = (1×2 ) + (1×2 ) = 0.5 + 0.25 = 0.75

11.001 = (1×2 ) + (1×2 ) + (1×2 ) = 2 + 1 + 0.125 = 3.125

1011.111 = (1×2 ) + (1×2 ) + (1×2 ) (1×2 ) + (1×2 ) + (1×2 )
= 8 + 2 + 1 + 0.5 + 0.25 + 0.125 = 11.875

Converting Decimal to a Binary Fraction
The conversion of a decimal fraction to a fractional binary number is achieved using a method
similar to that we used for integers. However, this time multiplication is used instead of division
with the integers instead of remainders used with the carry digit being the binary equivalent of
the fractional part of the decimal number.

When converting from decimal to binary, the integer (positive sequence right-to-left) part and the
fractional (negative sequence from left-to-right) part of the decimal number are calculated
separately.

For the integer part of the number, the binary equivalent is found by successively dividing
(known as successive division) the integer part of the decimal number repeatedly by 2 (÷2),
noting the remainders in reverse order from the least significant bit (LSB) to the most significant
bit (MSB), until the value becomes “0” producing the binary equivalent.

So to find the binary equivalent of the decimal integer: 118

118 (divide by 2)  =  59  plus remainder 0  (LSB)

59 (divide by 2)  =  29  plus remainder 1  (↑)

29 (divide by 2)  =  14  plus remainder 1  (↑)

14 (divide by 2)  =  7  plus remainder 0  (↑)

7 (divide by 2)  =  3  plus remainder 1  (↑)

3 (divide by 2)  =  1  plus remainder 1  (↑)

1 (divide by 2)  =  0  plus remainder 1  (MSB)

Then the binary equivalent of 118  is therefore: 1110110   ← (LSB)

3 2 1 0 -1 -2 -3 -4
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The fractional part of the number is found by successively multiplying (known as successive
multiplication) the given fractional part of the decimal number repeatedly by 2 (×2), noting the
carries in forward order, until the value becomes “0” producing the binary equivalent.

So if the multiplication process produces a product greater than 1, the carry is a “1” and if the
multiplication process produces a product less than “1”, the carry is a “0”.

Note also that if the successive multiplication processes does not seem to be heading towards a
final zero, the fractional number will have an infinite length or until the equivalent number of bits
have been obtained, for example 8-bits. or 16-bits, etc. depending on the degree of accuracy
required.

So to find the binary fraction equivalent of the decimal fraction: 0.8125

0.8125 (multiply by 2)  =  1.625  =  0.625 carry 1  (MSB)

0.625 (multiply by 2)  =  1.25  =  0.25 carry 1  (↓)

0.25 (multiply by 2)  =  0.50  =  0.5 carry 0  (↓)

0.5 (multiply by 2)  =  1.00    =  0.0 carry 1  (LSB)

Thus the binary equivalent of 0.8125  is therefore: 0.1101   ← (LSB)

We can double check this answer using the procedure above to convert a binary fraction into a
decimal number equivalent: 0.1101 = 0.5 + 0.25 + 0.0625 = 0.8125

Binary Fraction Example No2
Find the binary fraction equivalent of the following decimal number: 54.6875
First we convert the integer 54 to a binary number in the normal way using successive division
from above.

54 (divide by 2)  =  27  remainder 0  (LSB)

27 (divide by 2)  =  13  remainder 1  (↑)

13 (divide by 2)  =  6  remainder 1  (↑)

6 (divide by 2)  =  3  remainder 0  (↑)

3 (divide by 2)  =  1  remainder 1  (↑)

1 (divide by 2)  =  0  remainder 1  (MSB)

Thus the binary equivalent of 54  is therefore: 110110
Next we convert the decimal fraction 0.6875 to a binary fraction using successive multiplication.

0.6875 (multiply by 2)  =  1.375  =  0.375 carry 1  (MSB)

0.375 (multiply by 2)  =  0.75  =  0.75 carry 0  (↓)

0.75 (multiply by 2)  =  1.50  =  0.5 carry 1  (↓)

0.5 (multiply by 2)  =  1.00    =  0.0 carry 1  (LSB)

Thus the binary equivalent of 0.6875  is therefore: 0.1011   ← (LSB)

Hence the binary equivalent of the decimal number: 54.6875  is 110110.1011
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Binary Fractions Summary
We have seen here in this tutorial about Binary Fractions that to convert any decimal fraction
into its equivalent binary fraction, we must multiply the decimal fractional part, and only the
decimal fractional part by 2 and record the digit that appears to the left of the binary point. This
binary digit which is the carry digit will ALWAYS be either a “0” or a “1”.

We must then multiply the remaining decimal fraction by 2 again repeating the above sequence
using successive multiplication until the fraction is reduced to zero or the required amount of
binary bits has been completed for a repeating binary fraction. Fractional numbers are
represented by negative powers of 2.

For mixed decimal numbers we must perform two separate operations. Successive division for
the integer part to the left of the decimal point and successive multiplication for the fractional part
to the right of the decimal point.

Note that the integer part of a mixed decimal number will always have an exact binary number
equivalent but the decimal fractional part may not, since we could get a repeating fraction
resulting in an infinite number of binary digits if we wanted to represent the decimal fraction
exactly.
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