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Preface

The recent physical interpretation of intrinsic differential geometry
of spaces has stimulated the study of this subject. Riemann pro-
posed the generalization, to spaces of any order, of the theory of
surfaces, as developed by Gauss, and introduced certain fundamental
ideas in this general theory, From time to time important con-
tributions to the theory were made by Bianchi, Beltrami, Christoffel,
Schur, Voss and others, and Ricei codrdinated and extended the
theory with the use of tensor analysis and his Absolute Calculus.
Recently there has been an extensive study and development of
Riemannian Geometry, and this book aims to present the existing
theory.

Throughout the book constant use is made of the methods of
tensor analysis and the Absolute Caleuius of Ricei and Levi-Civita.
The first chapier contains an exposition of tensor analysis in form
and extent sufficient for the reader of the book who has not
previously studied this subject. However, it is not intended that
the exposition shall give an exhaustive foundational treatment of
the subject. i

Most, if not all, of the contributors to the theory of Riemannian
(Geometry have limited their investigations to spaces with a metrie
defined by a positive definite quadratic differential form. How-
ever, the theory of relativity deals with spaces with an indefinite
fundamental form. Consequently the former restriction is not made
in this book. Although many results of the older theory have
been modified accordingly, much remains to be done in this field.

The theory of parallelism of vectors in a general Riemannian
manifold, as introduced by Levi-Civita and developed by others,
is set forth in the second chapter and is applied in other parts
of the book. The extensions of this theory to non-Riemannian
geometries are not developed in this book, since it is my intention
to present some of them in a later book.



iv Preface

Of the many exercises in the book some involve merely direct
applications of the formulas of the text, but most of them con-
stitute extensions of the theory which might properly be included
as portions of a more extensive treatise. References to the sources
of these exercises are given for the benefit of the reader. All
references in the book are to the papers listed in the Bibliography.

In the writing of this book I have had invaluable assistance
and criticism by four of my students, Dr. Arthur Bramley, Dr. Harry
Levy, Dr. J. H. Taylor and Dr. J. M. Thomas, I desire also
to express my appreciation of the courtesies extended by the
printers Liitcke & Wulff and by the Princeton University Press.

October, 1925.
Luther Pfahler Eisenhart.
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CHAPTER I
Tensor analysis

1. Transformation of codrdinates. The summation con-
vention. Any » independent variables 2%, where 7 takes the values 1
to n, may be thought of as the cotrdinates of an #»-dimensional
space V, in the sense that each set of values of the variables
defines a point of ¥,. Unless stated otherwise it is understood
that the coordinates are real.

Suppose that we have » independent real functions ¢ of the
variables z!, 2% ..., #%* A necessary and sufficient condition
that the functions be independent is that the Jacobian does not
vanish identically;t that is,

29 og”
ax' T Azt
39t .
(1.1) lazf = % 0.
ag' 9"
ax*  axr
If we put
(1-2) xn = ?i(wly ~7)”) (Z = 17 ° 71),

the quantities z’' are another set of coordinates of the space;
when in the right-hand members of (1.2) we substitute the co-
ordinates z' of any point P, these equations give the codrdinates ="
of P. Thus equations (1.2) define a transformation of cosrdinates of
the space V,. In consequence of the assumption (1.1) the 2’s are
expressible in terms of the z'’s, say

1.3) @ = Pa'’ ..., 2" E=1,---.m).
*When we consider any function, it is understood that it is real and con-
tinuous, as well as its derivatives of such order as appear in the discussion, in
the domain of the variables considered, unless stated otherwise.
T Goursat, 1904, 1, p. 57; Wilson, 1911, 1, p. 133.



2 1. Tensor analysis

If we think of the a’s as functions of the z'’s, then by the
rules for differentiation

agk _1’2" o2k 92’°
3/ T g 9ad

However, since the 2’s are independent, the left-hand member of
the above equation is zero unless k = j, in which case it is unity.
Accordingly we can write

Lok axt

— &

(1.4) > i = O

where by definition

(1.5) & =1o0r0 ask=jork=j.

These are called the Kromecker deltas and are used frequently
throughout this work. In like manner we have

L&t o vt
T dxt 8z

(1.6) = ok,

If in (1.4) we hold % fixed and let j take the values 1 to =,

9 a*
we have n equations linear in Py fori=1,...,n. Solving for
these quantities, we obtain

i

ot . |ox
w1 T cofactor of Pyl oy
D az’t 2z’ )
dx/

Any direction at a point P of the space is determined by the
differentials dz* and the same direction is determined in another
set of coordinates z’* by the differentials dz’®, where from (1.2)

1,:0.m . 1,00 ’i
PR LA R LA
(1.8) dz’* = ; ol ; 57 00
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It is desirable now to introduce a convention which will be used
throughout this book, namely that when the same letter appears
in any term as a subseript and superseript, it is understood that
this letter is summed for all the values, say », which this letter
takes and consequently the one term stands for the sum of % terms.
Thus we write (1.8) in the form

3 xn'

1.9) dz" = Py

d.’b’ (7':.7 = 17"'7"’)'

Since j appears twice in the right-hand member in the manner
indicated and ¢ appears only once, the right-hand member stands
for the sum
ax/i
ozt

3 xn'

a xﬂ-

. It

do' + 25 a2,
When the same index appears twice and has the significance just
defined, we call it a dummy index, since the letter used for such
an index is immaterial. However, a letter appearing as another
index must not also be used for a dummy index, otherwise an
ambiguity would be introduced. Thus ¢ in (1.9) could not be used
also in place of j, but the right-hand member of (1.9) could be
written in such forms as

axli 2 xli
w50 rdd hi=1,..,m)
It should be remarked that (1.9) represents »n equations obtained
by giving ¢ the values from 1 to =.

Using the summation convention, we write (1.4) and (1.6) in the
forms

ok oa’ : ax™ oat

o) e = o=

2. Contravariant vectors. Congruences of curves. Let 4/
be any n functions of the z’s and let » functions 2 be defined by

7t

@.1) | A= 4 g’; G g, =1,---,n).
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‘We observe that equa.tions (1.9) are of this form. If equations (2.1)
be multiplied by :k,‘ and 7 be summed from 1 to #, we have in

consequence of (1.10)

ax’’ oak ik
22" = 5 gt =2/ 4.

The right-hand member is the sum of n terms each of which is
zero by (1.5) unless j = k, and consequently the right-hand member
reduces to the single term 4*. Accordingly we have

8 ¥
(2.2) » = J."ﬁ,—'.-.

The same result is obtained if we solve (2.1) for &/ by algebraic
processes and make use of (1.7). However, the process used above
is very simple and will be used frequently. From (2.1) and (2.2)
it is seen that the relation between the A’s and 4”s is entirely
reciprocal.

Suppose now that we have a set of functions A" in another
coordinate system z”* defined by equations of the form (2.1), thus

3 xm
l"i LA
ok

Then by means of (2.2) we have

lll 92 axut zll axrri

llli
axll Y axll

Observe that we have changed the dummy index ¢ in (2.2) to I,
since ¢ appears already. The above equations and (2.2) being
similar to (2.1), we see that the relations (2.1) possess what may
be called the group property.

When two sets of functions A¢ and A’* are related as in (2.1), we
say that A¢ are the components of a contravariant vector in the
system 2¢ and 1’* the components of the same vector in the system z*
From this definition it follows that any = functions of the z's in
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one cobrdinate system may be taken as the components of a contra-
variant vector, whose components in any other system are defined
by (2.1). From (1.9) we see that the first differentials of the
cotrdinates in any system are the components of a contravariant
vector whose components in any other system are the first differentials
of the codrdinates of that system.

A contravariant vector as defined determines a direction at each
point of the space, that is, a field of vectors in the ordinary sense
that a vector is a direction at a point. However, we will use
interchangeably the terms vector and vector-field.*

If 2% are the components of any contravariant vector, a displace-
ment in the direction of the vector at a point satisfies the equations
dz' _ do* da®

23) 3 ey R TR

From the theory of differential equations of this form we have
that these equations admit » —1 independent solutions

(2.4) Wj(xlr:”g,"“xn):cj G=1.--,n—1),

J
where the c¢'s are arbitrary constants and the matrix ||2—Z, “ is of
rank n—1. The functions ¢/ are solutions of the partial differential
equationt
(2.5) 622 o,

~ If now we effect the transformation of coordinates (1.2) in which
for ¢/, where j =1,..., n—1, we take the above solutions and
for 9™ any function such that (1.1) is satisfied, we have from (2.1)

(2.6) W=0 (j=1,---,n—1), A*F}0.
Henee:

When a contravariant vector is given, a system of cobrdinates can
be chosen in terms of which all the components but one of the vector
are equal to zero.

* Many of the ideas developed in this chapter were studied first by Christoffel,
1869, 1, and by Ricci, whose development was presented by him and Levi-Civita
in their paper, 1901, 1.

+ Qoursat, 1891, 1, p. 29.
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If the coordinates of any point P are substituted in (2.4), the
values of ¢/ are determined and the » —1 equations (2.4) for these
values of ¢/ define a curve through P, that is, the locus of points
whose coordinates satisfy n —1 equations, or, what is equivalent,
whose coordinates are expressible as functions of a single para-
meter. Thus equations (2.4) define a congruence of curves, one of
which passes through each point of the space V.. We say that
the congruence is determined by the vector-field 2 and that the
vector 4% at a point is fangent to the curve of the congruence through
the point. Thus we identify the differentials for a curve with com-
ponents of the tangent vector.

3. Invariants. Covariant vectors. If a function f of the «’s
and a function f* of the z”’s are such that they are reducible to
one another by the equations of the transformations of the variables,
they are said to define an smwariant. In this sense an invariant
is a scalar as defined in vector analysis, and is so called by some
writers on tensor analysis. It should be remarked that the term
invariant as thus used has a different connotation from its definition
in the field of algebraic invariants. In fact, any function of the z's
can be taken as an invariant and then its definition in any other
coordinate system is determined by the transformation of coérdinates.

If £ be any function, we have

2 [} o/ ..
(8.1 -b—xz'; = %a—x; (Gyg=1,---, ).

These equations are a special case of the equations

o2/
i

3.2 A= 4
(3.2) i

where 4; are any functions of the 2’s and the A”’s are functions of
the z’s defined by (3.2). 4s in § 2 it can be shown that (3.2) are
equivalent to

(3.3) L= A

2 xli

oa

also that the relation (8.2) possesses the group property (§2). When
two sets of functions 4; and 2; are in the relation (8.2), we say
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that the A’s are the components of a covariant vector in the x’s
and the A”’s are the components of the same vector in the 2’s.
Evidently a covariant vector is defined uniquely by choosing any
set of n functions in one coordinate system. In particular, it
follows from (3.1) that if the first derivatives of a function f are
taken as the components of a covariant vector, the components
of the same vector in any other system are the first derivatives of
the function with respect to the new codrdinates. Such a covariant
vector is called the gradient of f.

It should be observed that the index of a contravariant vector is
written as a superscript and of a covariant vector as a subscript;
this is done so that the summation convention can be used in (2.1),
2.2), (3.2) and (3.3).

If A% and p; are the components of any contravariant and covariant
vectors respectively, from equations of the forms (2.1) and (3.2) and
from (1.10) we have

l" Y 3Zj . 3.’3". — lj,ukdj-c.

If in the right-hand member we sum first for %, all the terms for any 5
vanish except when % = j, and consequently

(3.4) Aigi= M = My

Each member of this equation consists of the sum of n terms, and
the members being equal because of (1.2), it follows that i‘p; is
an invariant.

Suppose conversely that we have an equation such as (3.4) in
which it is assumed that A are the components of a contravariant
vector. In consequence of (2.1) we have

. axn
W (G wi—m) = 0.

From this equation it can be concluded that u; is a covariant
vector, if 4/ is an arbitrary vector and only in this case. Hence:

If the quantity Afp; is an invariant and either AF or p; are the
components of an arbitrary vector, the other set are components of
a vector.
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Let 4; be the components of a covariant vector and consider the
equation
(8.5) Aidei= 0.

This equation admits »—1 linearly independent sets of values of
the differentials dz* in terms of which any other set is linearly
expressible. The totality of directions at a point satisfying (3.5)
constitute what may be called an elemental V,—; at the point.
Hence a covariant vector field may be considered geometrically as
defining an elemental V,,—, at each point. In general, equation (3.5)
does not admit a family of solutions of the form f(z', .-, 2% =¢,
where ¢ is a constant; when it does, that is, when (3.5) is com-
pletely integrable, the elemental V,—1’s at all points of such a Ayper-
surface f = ¢ coincide with the hypersurface.

Exercises
1.If it= ¢, ¥ = 0(j+1), where ¢ is an arbitrary function of the =’s, are
taken as the components of a contravariant vector in the x's, the components A"
in any other coordinate system x'* are given by

. ox"
/.li —_ == .
? !

2 If iy = ¢, 4==0(j] 1), where ¢ is an arbitrary function of the x's, are
taken as the components of a covariant vector in the z's, the components in any
other coordinate system x* are given by

i = g 0%
A P
3. If A/ are the components of # vector-fields in a V., where i fori =1,...,n

indicates the component and « for « =1, . - ., n the vector, and these vectors are
independent, that is, the determinant |Aq(| 3 0, then any vector-field 4° is ex-
pressible in the form
A= a%hg),

where the a’s are invariants.

4. If 4, are the components of a given vector-field, any vector-field 4 satisfying
A p, = 0 is expressible linearly in terms of » — 1 independent vector-fields Ay for
@ =1, ..., n —1 which satisfy the equation. (The vectors i, are independent,
if the rank of the matrix ||ig¢| is » —1).

5. For a linear transformation of the form «'* = qja’, where the a’s are
constants and the determinant a = |a‘/| + 0, the codrdinates are components of
a contravariant vector-field in both codrdinate systems. If we put
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vz = w x,
we have an mduced transformation on the w's given by ui — yH %;, where Alis

the cofactor of 4’ in the determinant a divided by a. Show that w and w are
components of a covariant vector in the z’s and ="’s for the given transformation.

4. Tensors. Symmetric and skew-symmetric tensors.
Let %, p‘ be the components of two contravariant vectors and &, #;
the components of two covariant vectors. If we put

(4.1) v =Vp), a;=F&y o= 5
and denote by aY , ay and o' } the same functions in the components

A ut ¥, #¢ for a codrdinate system z”*, it follows from equations
of the form (2.1) and (3.2) that

W amox da’
@2) &= 0 9F g’
ar* 9t
4.3) ay = ap—— o 5a"
Kk aat 8zt
(4.4) a; = m 'y ——ax,j.

If we have any two sets of functions in two coodrdinate systems
satisfying equations of one of these forms, we say that

a® are the components of a contravariant tensor of the second
order,

ai are the components of a covariant tensor of the second order,

a¥ are the components of a mixed fensor of the second order.
It should be observed that as thus defined any tensor of ome of
these types is not necessarily obtainable from vectors as in (4.1).

From this definition it follows that any set of »*® quantities can
be taken as the components of a tensor of the second order of any
type and the components of the tensor in any other codrdinate
gystem are defined by (4.2), (4.3) or (4.4), according as the tensor
is to be contravariant, covariant or mixed.

As an example we consider the case a¥ = d%, where d¥ are the
Kronecker deltas defined by (1.5). From 4. 4) we have

_ ax’ oot aa’t 02*

32 3o odk oad — O




10 I Ténsor analysis

Hence:

If the Kronmecker deltas are taken as the components of a mixed
tensor of the second order in one set of covrdinates, they are the
components of the temsor in any set of coordinates.

Tensors of any order are defined by generalizing (4.2), (4.3), (4.4).
Thus the equations

s, 0™ aa™
(4.5) @’ = gt L. =
aa™ da’s

define a contravariant tensor of the mth order;

™ aa™
P e 5.72”"‘

(4.6) Aryory = Gs.os,,

a covariant temsor of the mth order;

"y ’”, t ¢
@7 @ g ox dx'™ oz ox*
Dy Py .-, axsl 3 xs"‘ P x'm 2 x’?’,

a mized tensor of the m--q order which is contravariant of the
mth order and covariant of the qth order.*

Concerning these definitions we make the following observations
and deductions:

(1) A superscript indicates contravariant character, a subscript
covariant;

(2) Any set of functions in sufficient number can be taken as
the components of a tensor of any type and order in one codrdinate
system and the components in any other system are defined by
equations (4.5), (4.6) or (4.7) as the case may be;

(8) A contravariant vector is a contravariant tensor of the first
order; a covariant vector is a covariant tensor of the first order;

(4) An invariant is a tensor of zero order. The latter designation
is a more appropriate term than invariant because of the possible
ambiguity of the term invariant;

(5) From (4.8), (4.6) and (4.7) it follows that if the components
of a tensor in one cotrdinate system are zero at a point, they are

*It can be shown asin § 2 that these definitions possess the group property.
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zero at this point in every codrdinate system; in particular, if the
components are identically zero in one codrdinate system, they are
identically zero in every coordinate system.

From the form of equations (4.5), (4.6) and (4.7) it is clear that
the order of the indices plays a role in these equations. Suppose,
however, that the relative position in the a’s of two or more indices,
either contravariant or covariant, is immaterial, which means that
the a’s with these indices interchanged are equal. Then from the
form of these equations it follows that the order of the corre-
sponding indices in the a'’s is immaterial. For example, suppose

that in (4.5) "% "™ = ¢%% "= then we have
s 7,
a"l"'rm . aslsz...s" 3:6"‘ 3:12' 2 3.1!2' hd
ax™ 9x™ o’
17 17 11",
— a&zgl...sm ox': dx 't . ox ™ _ a,rzrl...rm
9z 9™ 9’

When the relative position of two or more indices, either contra-
variant or covariant, in the components of a tensor is immaterial,
the tensor is said to be symmetric with respect to these indices.
If the order of all the indices is immaterial, the tensor is said to
be symmetric.

A general tensor of the second order has n? components, whereas,
if the temsor is symmetric, there are only n(n--1)/2 different
components. Similar formulas for the number of components can be
obtained for symmetric tensors of higher order or tensors symmetric
with respect to certain indices.

When for a tensor two components obtained from one another
by the interchange of two particular indices, either contravariant
or covariant, differ only in sign, the temsor is said to be skew-
symmetric with respect to these indices. When the interchange of
any two indices, either contravariant or covariant, produces only
a change in sign in the components, the tensor is said to be skew-
symmetric. It can shown as above, that if a tensor has the property of
skew-symmetry in one system of codrdinates, it has it in every system.

1f ay; is skew-symmetric, then a; = 0 and there are only n (n—1)/2
different components. Also, if @y,...r, is skew-symmetric in an
n-dimensional space, all the components are zero or equal to within
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sign. For a four-dimensional space there are 6 different components
of a skew-symmetric tensor ay (it is sometimes called a siz-vector).

5. Addition, subtraction and multiplication of tensors.
Contraction. From the form of equations (4.5), (4.6) and (4.7)
it follows that the sum or difference of two temsors of the same
type and order is a tensor of the same type and order. The same
is true of any linear combination of tensors of the same type and
order whose coefficients are constants or invariants. As an example,
we consider any temsor a;;. If we write

(5.1) ai; = % (asj + ap) + —%‘ (@ij — aji),

the first term on the right is a symmetric tensor and the second
is skew-symmetric. Hence any covariant (or contravariant) tensor
of the second order can be written as the sum of a symmetric
tensor and a skew-symmetric tensor.

The process which was used in (4.1) to obtain tensors from
vectors is not limited to the case of combining vectors. Thus if
a;; snd b are the components of two tensors in codrdinates
we have u Y
, oame ., 0% 0a 8z’ 8a’” 92
6.2) b = Wb et v 0w 0at

and consequently a;;b™ are the components of a temsor of the
fifth order, covariant of order 2 and contravariant of order 3.
This process is general, so that by multiplying the components of
any number of tensors, we obtain a tensor, called the product of
the given temsors, which is covariant and contravariant of the
orders obtained by adding the covariant orders and contravariant
orders respectively. This is sometimes called the outer product.
For any mixed tensor afj, the expression af/; is the sum of

n components of this tensor. We shall show that it is a tensor
of the third order. For we have

wp 02" 02’ 22y aa 2t

s = aif - -

wp = Yst ai gal 9z 92’ 0P

az'® da” 82’ g ox% sz ox

. . 0X X OX ¢ oxr X
= Gt o 9a” 9:1:”'6} Y5 aa”
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Hence from (4.7) it follows that ag; is a tensor, covariant of the
second order and contravariant of the first order. This process
by means of which from a mixed tensor of order r we obtain a
tensor of order »r—2 is called contraction. Observe that in applying
contraction any superscript may be used with any subscript.*

In particular, from the tensor aJ‘ we obtain an invariant af by
contraction. In §4 we saw that the Kronecker deltas J; are the
components of a mixed tensor; by contraction we get the sum of
n terms each of which is 1, and thus the invariant &; is =.

This process may be repeated, thus from the above tensor we
have by two contractions a vector, such as any of the following:
ai, afl;, a,.

Multiplication and contraction may be combined to give tensors.
Thus from the tensors a;; and b™* we may obtain a tensor of the
third order, such as ai;b/%, or a;; b, or a vector as a;;b¥%. This
combined process is referred to by some writers as inner multi-
plication. We remark that this process was used in (3.4).

Let at,, be a set of functions of z* and )3 be a set of functions

of 2’* such that atf, A and a,, *F )" are the components of a tensor,
when A’ is an arbitrary vector From this hypothesis and in con-
sequence of (4.7) and (2.2) we have
P — i oz’ ox'P dak dam
fwe™ = Tm® 55 owl 22" 227
w8 3&/®  pam
ax’” o ax'

- a’ﬁm
Since 4 is arbitrary, we have

Py 02 o’ o2 oxt pam
e T Tim g gl 3xJ axrﬂ 0z’ awl”’

and consequently a¥, = and o’ ,,,,, are the components of a mixed
tensor of the fifth order. This proof applies equally well when
any of the subsecripts is used for contraction with 4%; also a similar
result can be established if the arbitrary vector is covariant. Since

* Ricci and Levi-Civita, 1901, 1, p.133 call the process composition, and German
writers, Verjiingung.
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the proof is not conditioned by the number of indices of the
functions @, we have the following theorem of which the theorem
of § 3 is a particular case:

Given a set of functions a;' '™ of o and a set a"':"_'_'_‘;'" of z'*,

1 e 1 'q
if a;’;."'_;";“_pq P and a';:::::;’.'..,q X% are components of a tensor in
the covrdinates x* and x'° respectively, when A and ' are com-
ponents of an arbitrary vector in these respective coordinates, the
given functions are components of a tensor of one higher order.

A similar theorem holds if 4¢ is replaced by a tensor of any
type and one of the indices is contracted. This is sometimes
called the quotient law of tensors.

6. Conjugate symmetric tensors of the second order.
Associate tensors. Let gy be the components of a symmetric
covariant tensor of the second order, that is, gy = gj;. We denote
by ¢ the determinant of the gy’s, that is,

gu : - G
(6.1) g=1|- - - -l
gn1 - - - Jnn

If g¥ denotes the cofactor of gy divided by g, we have
(6.2) g gig = O%,

where 0f have the values (1.5). For it follows from the definition
of gv that when ¢ + % the left-hand member of (6.2) is the sum
of the product of the terms of one row (or column) of (6.1) by
the cofactors of another row (or column) divided by g; and when
i =k, this sum is equal to g/g.

Let i* be the components of an arbitrary vector, then gy A° is
an arbitrary vector, say ;. Now by (6.2)

Py = gyt = 8% = 2.
Since p; is an arbitrary vector, we have as a consequence of the
last theorem of § 5:
If g is the determinant of a symmetric covariant tensor gy, the

cofactors of gij divided by g and denoted by ¢V are the components
of a symmetric contravariant tensor.
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It is clear that in like manner if ¢¥ are the components of a
symmetric contravariant tensor, the cofactors of g¥ in the determinant
of the ¢g¥’s divided by the determinant are the components of a
symmetric covariant tensor of the second order. In either case
we say that the tensor obtained by this process is the comjugate
of the given one.

“As a consequence of the above result and (6.2) we have that
6% are the components of a mixed tensor, which was proved directly
in § 4.

If in (6.2) we replace k by ¢ and sum for 7, we get »n terms
each of which is unity. Hence for the invariant obtained from
a symmetric tensor of the second order and its conjugate we have

(6.3) Py = n.

If we denote by g the determinant of g%, we have by the rule
for multiplying determinants and (6.2)

gi1 - Jin gu...gl” 1 0 0-..0

_ 010.--0
€ gg=1| . . || ... 0= ... =1

gnic-- gnn| g™ - g 00 -..-1

and from (6.2) it follows that gy is the cofactor of ¢¥ in g divided
by g.

By means of a symmetric tensor gy and its conjugate gV we can
obtain from a given tensor, by means of the methods of § 5, tensors
of the same order but different character. Thus, if ax are the
components of a tensor the following expressions are components
of tensors of the character indicated by their indices:

65 = s ah=gVa ey =g ap;
am= g g™ aye; alm= g g™ ayk; a'mP = gl g™ grk qu.

In similar mamner from the tensor of components J¥* we obtain
tensors of the following types of components:

(6.6) b/" = g; bi¥; bim' == Gti i W%, bimp = Gui gimj Goic V* .
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We say that these tensors are associate to the given tensor by means
of gy. Similarly we find tensors associate to any mixed temsor.
We speak of this process as raising the subscripts by means of gv
and lowering superscripts by means of g;. We might write the first
of (6.5) thus a}k, but we use the notation in (6.5) to indicate which
index has been raised or lowered.

We remark that this process is reversible. Thus multiplying the
first of (6.5) by gim and summing for I, we have

Iim “ljk = Gim 9" Oy = LA Qe = Pmjicr
which is the tensor from which a,’jk was obtained.

Exercises
1.If & af i & »* is an invariant for 4, 4, and »* arbitrary vectors, then a¥ are
the components of a tensor.
2. If a A*M is an invariant for 4‘ an arbitrary vector, then ay +a @, are the
components of a tensor; in particular, if a, ¥Af = 0, then aq-l- a,=0.
3. If a, drfdx? dx* = O for arbitrary values of the dxﬁerentu.ls, then

+oaytaytaytayta,

4. If a; 434 = O for all vectors A° such that Ay, = 0, where u, is a given
covariant vector, if » is a vector not satisfying this condition, and by deénition

auv‘= %, ru=r,

then (aq — % ,u‘dj) $¥/ =0 is satisfied by every vector-field & (cf.Ex.4, p.8),
and consequently
a,+a,= %(l‘(’,'*‘ll,“.)-
Schouten, 1924, 1, p. 59.
5. If a_, are the components of a tensor and b and ¢ are invariants, show that

if ba,_+ca, = 0, then either b = —c and 4, is symmetric, or b = ¢ and
a, is skew-symmetric.
6. Let bv be a set of functions of ' i =1,--., m) such

that the determinant | b, | = 0, and & the set of functions defined by the equations
b 4 =0; if b, and ).1 are taken as the components of a tensor aad vector in
the x's, in accorda.nce with the theorem of § 2 a coordinate system o* can be
chosen for which &; = 0(j =1, ---, n).

7. By definition the rank of a temsor of the second order a, is the ramk of
the determinant {a,|. Show that the rank is invariant under all transformations
of codrdinates.

8. Show that the rank of the tensor of components a,d,, where a, and b, are
the components of two vectors, is one; show that for the symmetric tensor
@b+ a, b, the rank is two.
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7. The Christoffel 3-index symbols and their relations.
We consider any symmetric covariant tensor of the second order g;;
and the conjugate tensor g¥ and define two expressions, due to
Christoffel, which will be of frequent use. They are

D 1 = 5 (55 + 5% —3%)
l ok
(1.2) Jh'j} = g*[ij, k).

Observe that from their definition [7, ] and {Z’} are symmetric

in 7 and j. The symbols defined by (7.1) and (7.2) are called the
Christoffel symbols of the first and second kinds respectively. From
(1.2) and (6.2) we have

13  gm {jj b= gng™ Ui, 1 = i, B = Gij, B
Again from (7.1) we have

(1.4) 2 — g, M+ s, ol

Differentiating (6.2) with respect to 2*, we have

9 0
go gk.l +gx gb = Q.
Multiplying by ¢ and summing for %, we obtain

9™ G am 00
(7.5) Y ka2

Substitating in the right-hand member from (7.4), we find in con-
sequence of (7.2)

N

* The historical forms of these respective symbols are [',;’] and { } but we

have adopted the above forms because they are in keeping with the summation
convention. Cf. Christoffel, 1869, 1, p. 49.
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From (6.3) we have by differentiation

. 09y 2 q(l

B —2Y o —L ==
(7.7) g F) xl + Ji axl 0'
Applying the rule for the differentiation of a determinant and the
definition of ¢g¥, we have

og 09y ‘39‘1.
(1.8) o2 =9 5g T 9%

the last expression being a consequence of (7.7). Substituting
from (7.4) or (7.6) in (7.8), we have
alog Vg Jz}
(1.9) et Ll
the right-hand member being summed for <.

The Christoffel symbols of either kind are not components of
a tensor as will be seen from the following results. If gy and gi;
are components of the given tensor in codrdinate systems z* and Z°, it
follows from (4.3) that .

axt dal

7.10 T = Jij— 5 ~.
( ) Ju 9y " 8"

Differentiating with respect to 2'°, we have

0w _ ogy 02* 0af 0o/
(7'11) 6 T axk 113 7L 124
0 9z 0x" ox

+ ( 0xt 9% G %zt )
W\od® 0d” 02° @ 02" 02" 02/

The first of the following equations is obtained from (7.11) by
interchanging w and ¢ throughout and the dummy indices ¢ and k
in the first term of the right-hand member, the second by inter-
changing » and ¢ throughout and the dummy indices j and k in
the first term of the right-hand member:

dgey _ Ogiy 0" Ba’ da) oxf 0%z o/ 9%

[T i 6 1 Y 9ij /6 1o 1Y o 1y 6]
oz 02 4% 82'" ox ax’’ o' 8z ax” 9’ 0
dghs __ Oga 0x* 0 dx/ oxt 0%/ oas 3%

v T ) 50 gt rv+ 9ij R v, e A ik, 7]
ax ax® 8x" ox ax’" 8z ax %9 " o
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If from the sum of these two equations we subtract (7.11) and
divide by 2, we have in consequence of (7.1)

.. ox* ) ar* ot 9%l
@D el = M o o0 9 2 5w 0™
where [u»,0]' is formed with respect to the temsor gi,. Since
these equations are not of the form (4.5), (4.6) or (4.7), it follows
that the functions [j, k] are not components of a tensor. The
same is true of { z’;} as follows from (7.2), or from the following
equation obtained by multiplying (7.12) by ¢’ “Lfﬁfl— , summing for ¢

x

and making use of

4 02k 9ot
(1.13) o e = T
and (6.2):
) } 0af __ JI\ oat bal | 0%
(7.14) {(w ozt Vijl 5 52 T aaPan”

8. Riemann symbols and the Riemann tensor. The Ricci
tensor. We consider now equation (7.14) and the similar equation

1) P _{z}' oxt 1| 0af 0
) axox'®  lwol gt ligl 52 32/

If we differentiate this equation with respect to z’> and (7.14)
33t

ox'" oz’ 92’

equation is reducible by means of equations of the form (8.1) to

with respect to #'° and eliminate the resulting

At oxt bxd 9x*
(8-2) .R MGy m = -H1jk W m W}

where
83 Roc= 5o\t g it + it — i3t i
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and R”',w is the similar expression in the symbols for g),. If

o
(8.2) be multiplied by % and summed for /, we have

0x'% axf aah 0o/
axl Ba;’” P aw""

8.4) R'%uar = Ry

Hence R'y;, which are called Riemann symbols of the second kind,
are the components of a tensor contravariant of the first order
and covariant of the third order. It is called the mixed Riemann
tensor of the fourth order. From (8.3) it follows that the tensor
is skew-symmetric in j and k. The components Rxy. of the associate
covariant tensor of the fourth order, defined by

(8.5) Bupx = gn By By = g™ Bai,
are called the Riemann symbols of the first kind.
If (8.2) be multiplied by _qu.i—;; and summed for !, we have,
in consequence of (7.10) and (Sa.g),
oah 9xf 09/ 09k

az’" 8z’ a2’

(8.6) B rper = Bnip oo
x

From (7.3) and (7.4) we have

9"‘%{:1:‘ = 3_337(9”"{!1:})—{;1:}%%

8.7
= 2t —{ ]}, -+ .
Hence from (8.3), (8.5) and (8.7) we obtain

©9) Bage = 527 i H—gie s, 0+ { ;oo n—{ o .

In consequence of (7.1) and (7.2) this is reducible to

__ 1/ %m %y  O'gn  %gn
Brge = —2—(3:1:‘3.10’ todeE  sdeE o axi)

8.9
®9) + ¢ ((ij, m) (kk, 1 — ik, m] [hj, 1))
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From (8.9) we find that the symbols of the first kind satisfy
the following identities:

Bpipe = — Bk,
(8.10) By = — R,
Bage = R,
and
(8.11) By -+ Bujri + Bag = 0.

From (8.10) it follows that not more than two of the indices
can be alike without the components vanishing; the same is true
if the first two or second two indices are alike. Because of (8.10)
there are n(r—1)/2 (= n,) ways in which the first pair of
indices are like the second pair, and n3(n;—1)/2 ways in which
the first pair and second pair are unlike; hence there is a total
of ny(ne-+1)/2 distinet symbols as regards (8.10). However,
there are n(n—1) (n —2) (n—38)/4! (= n,) equations of the
form (8.11). Consequently there are ny(nz + 1)/2 —n, = n*(n®*—1)/12
distinct symbols of the first kind.*

In consequence of (8.10) we have from (8.8)

(312) Rowg = golib, Kl— g i, B+ || Ik 0 —{ i, .
Also from (8.10) and (8.5) we have
(8.13) Ry = — Rt

It Rlﬁk be contracted for ! and %, we have, in consequence of
(7.9), the tensor R;; whose components are given by

oy = P =GR
' Jm}alogf
lij aam™

* Cf., Christoffel, 1869, 1, p. b5.

t Ricci and Levi Civita, 1908, 1, p. 142 denote R,,,, a8 defined by (8.12) by
G, ond Bianchi, 1902, 1, p. 78 denotes it by (ik, kj). Also the latter puts
{tl kj} = g™ (@ih, kj); hence {il, kj} is equal to — R',, by (8.13).
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which evidently is symmetric. We call the tensor Ry the Ricci
tensor, as it was first considered by Ricei who gave it a geometrical
interpretation in case gy is the fundamental tensor of a Riemann
space (cf. §34).*
Exercises

1. If R'x in (8.3) is contracted for I and 4, the resulting tensor is a zero tensor.

2. If Ry = ogy, then o = —:—R, where B = g¥ Ry.

3. Show from (7.14) that for transformations =" = ¢ (at, . - -, 2+~ 1), o™ =z
the Christoffel symbols {Z}, where 4, j = 1, ..., a—1, are the components of

a symmetric covariant tensor in a variety ® = const.; likewise { 7:_1} and {:‘}
are the components of a mixed tensor and a covariant vector respectively.

4. Show that the tensor equation a" 4, = @4, where e is an invariant, can be
written in the form (a‘, —a d’;) A, == 0. Show also that a‘, = d; @, if the equation
is to hold for an arbitrary vector .

5. If a‘! A, = al, holds for all vectors A, such that z° &, = 0, where ' is a given
vector, then

& = edj+ ot
Schouten, 1924, 1, p. 59.

9. Quadratic differential forms. If g; are the components
of a tensor, the quadratic differential form gy da* da/ is an invariant,
that is (§§ 2, 3),

9.1) G 42" da” = gy dad da.

Conversely if this condition is satisfied for arbitrary values of the
differentials, it follows from equations similar to (1.9) that

, 9zt  da/ ) ey
—9s—a —5-|dx" dx’" = 0
(g/lr 9y P m/ﬂ 3 xl" ’
and consequently )
AT 9zt o/
Iuy +.9vp = (gii +yji) 2"

3 ww *
If we assume that g;; is symmetric this reduces to (7.10). However,
if in (9.1) we put gy = % (95 + g5), we have a quadratic form whose

coefficients are symmetric. Hereafter we assume that we deal
with symmetric forms.

* Ricci, 1904, 2, p. 1234.
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At any point of space gy dz*d2/ is an algebraic quadratic form
in the differentials, and the transformation (1.9) is a linear trans-
formation with constant coefficients. Hence we can apply the
algebraic theory of transformations at a point. In particular, we
I

ox
know that the values of ™

gy = 0 for p+». If the transformation is to be real, it is not
always possible to choose the transformation so that all of the
quantities g, are positive. But according to Sylvester’s law of
inertia the difference between the number of positive coefficients
and the number of negative coefficients is invariant for real trans-
formations; this difference is called the signature of the form. Thus
by a real transformation a quadratic form at a point is reducible to

can be choser at a point so that

902)  (@z')+ ... +(da?)’ — (da?t)P — ... —(da")?,

where the integer 2 p —n is the signature of the form.* In particular,
if the signature is » for each point of space, the quadratic form is
said to be positive definite.

If ¢’ denotes the determinant | g}, [, from the rule for multiplication
of determinants and (7.10) it follows that

9.3) g = gJ%

2
where J is the Jacobian j—a%,; . Thus if g and ¢’ differ in sign
x

at a point, the transformation is imaginary.

10. The equivalence of symmetric quadratic differential
forms. Wée have seen that equations (7.10) are a necessary con-
sequence of the equivalence of two symmetric quadratic forms (9.1).
We seek further conditions upon the g’s and the ¢g"’s in order that
(7.10) may admit a set of » independent solutions af = ¢f(«, -- -, 2™
for i = 1, -.., n, by means of which the forms (9.1) are trans-
formable into one another.

If we put
(10.1) fﬁ- = 7,

* Of. Bocher, 1907, 1, p. 146.
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equations (8.1) become

(10.2) :i ,l’; = : V- {ilj}pl 7.

Hence the problem reduces to the determination of » (n - 1) functions
o, p*, satisfying these differential equations and also the n (n - 1)/2
finite equations )

(10.3) G —99Pu Py = 0,

which follow from (7.10).
The conditions of integrability of (10.1) are satisfied identically in
consequence of (10.2), and the conditions of integrability of (10.2) are

(10.4) .R;-ﬂay = -Rhiikp’; pi,u pja'pkr ’

as follows from (8.6) which is equivalent to (8.2).

From the manner in which equations (7.14) were obtained from
(7.10) it follows that for any set of solutions of (10.1) and (10.2)
the left-hand member of (10.3) is constant, and consequently, if
the initial values are chosen to satisfy (10.3), the solutions will
satisfy (10.3). This imposes n (» -4 1)/2 conditions on the constants
of integration of (10.1) and (10.2). Hence the solution, if it exists,
admits at most n (n+1)/2 arbitrary constants, and then only, if
(10.4) is satisfied identically or as a consequence of (10.3). For
otherwise equations (10.4) impose further conditions, as may also
"the equations obtained by differentiating them and substituting the
expressions for the first derivatives from (10.2), This result may
be stated as follows:

The general transformation of a quadratic differential form inn
variables into another form contains at most n (n-1)/2 arbitrary
constants.

From the results of § 9 it follows that for the transformations

to be real at a point the signature of the two forms must be equal
at the point.

Consider in particular the case of two sets of functions gy and g,
for which the Riemann symbols of the first kind for both sets
vanish. Then (10.4) is satisfied identically and consequently the
differential forms gy da’ do’ and g,,, da'* dz’” are transformable into
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one another by a transformation involving n (n+ 1)/2 constants.
The Riemann symbols of the first kind for the g’’s are zero, if the
quantities g}, are constants, as follows from (7.1) and (8.8), and
these symbols for the ¢'s must be zero, if the two forms are
equivalent. Hence:

A necessary and sufficient condition that a quadratic differential
Jorm gy dzt da’ be reducible to a form with constant coefficients is
that the components of the Riemann tensor vanish; the transformation
involves n(n--1)/2 arbitrary constants.

From the results of § 9 it follows that any quadratic form satisfying
the conditions of the theorem is reducible by real transformations
to the form (9.2), where p is determined by the signature of the
given form.

Returning to the consideration of (10.4), we remark that, if (10.4)
is to be a consequence of (10.3), the tensor Ragx must be the sum
of tensors of the fourth order whose terms are products of two ¢'s.
Since gy is symmetric, the most general form is

Buipe = agni g+ bgnj gix + cgn 94,

Where a, b, ¢ are invariants. Interchanging j and k and subtracting
the resulting equation from the above, we have, in consequence
of (8.10) and on replacing 3 (b—c) by b,

(10.5) B = b(gnj g — gue 99)-

It is readily shown that (8.10) and (8.11) are satisfied, whatever
be b. However, it will be shown in § 26 that b must be a constant.
A quadratic differential form possessing the property (10.5) is said
to have constant curvature b; the significance of this term will appear
in § 26.

When two given quadratic forms satisfy (10.5) for the same
constant b, the equations (10.4) are satisfied identically. Hence:

Two irreducible quadratic differential forms which have the same
constant curvature admit a trangformation into one another involving
n (n+1)/2 arbitrary constants; conversely, unless this condition is
satisfied by two irreducible forms the number of parameters is less
than n (n+ 1)/2.
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It is beyond the scope of this work to consider further the
equivalence of two quadratic differential forms. Christoffel* has
given the solution of the general problem.

11. Covariant differentiation with respect to a tensor g;.
In § 3 it was seen that the derivatives of an invariant are the
components of a covariant vector. It will be shown that this is
the only case for a general system of coordinates in which the
derivatives of the components of a tensor are the components of
a tensor, but at the same time we shall find expressions involving
the first derivatives which are components of a tensor.

Let 4¢ and 4’” be the components in two coordinate systems
of a contravariant vector, and differentiate with respect to a2/
the equation

Y L )
(11.1) B 28— I

with the aid of (8.1), (2.1) and (2.2), we obtain

ok " sz ad L o'z dx”

o) ax’” dad ax'™ ox'% 8z’ o)
_ 3" e aad +l,,ax'” (Jp}' dat _{u axh aak)\
2z’ o oz aa \lovl 5% il 55" 52”]

_ (01'”_*_),0'}[4[') oz’ oat l,,{z‘\

2z 0 ovl | au ax® hif”
If we put
‘ : s )

R e - ).h{ ,}
(11.2) M ; 2 + Rl
the above equation becomes

oz’ ot
i, — llﬂ o« 2
# " oxl da’”

Hence A¢; are the components of a mixed tensor of the second
order. The components 2°; as defined by (11.2) are said to be

* 1869, 1, p. 60.
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obtained from the vector ¢ by covariant differentiation with respect
to the tensor g;. We speak also of the temsor as the covariant
derivative of the vector with respect to gy. Throughout the
remainder of this chapter it is understood that covariant differentiation
is with respect to gy.
If we proceed in simiiar manner with equations (3.3), we find
that ;;, defined by
(11.3) 7-,»-=i)i-—lh{hl
’ " dx/ ijl’

are the components of a covariant tensor of the second order.
The components ;; are said to be obtained from the vector 4; by
covariant differentiation with respect to the temsor gij.
From (11.3) we have
. 4; 94;
b = G

which is the curl of the vector A;. For A;; to be symmetric,
2; must be a gradient (§ 3). Hence:

A mecessary and sufficient condition that the first covariant
derivative of a covariant veclor be symmetric is that the vector be
a gradient.

If we differentiate with respect to 2’ the equation

dxt o/

’
a > = a‘l'__ -
(= 9 xrﬂ 3 xl’

and substitute for the second derivatives of z* and =/ expressions
of the form (8.1), the resulting equation is reducible to

oa, ' '
b g 2V g [
axlo' aﬂ)'{vo. a).)' l‘o.[

— (2o R {h}) d2t da) ook
= oz — MUikl] 9x® ox” b

Hence ay,x, defined by

(11.4) Wy e = Z—ﬁi— {j];c}‘““"f{i’;c}’
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are the components of a covariant tensor of the third order. The
components ay,x are called the first covariant derivatives of ay with
respect to g;;. In like manner it can be shown that the covariant
derivatives of a¥ and af, defined by

, i da¥ ih ]l hdJ ¢

(11.5) e = % +a {hkf+a Ihk}’

and 3

, _ dai ; A
i S gl th_ g

(11.6) = 5219 {hk} % {jkf’

are mixed tensors of the second order. Observe that covariant
differentiation is indicated by a subscript preceded by a comma. In
particular, the covariant derivative of an invariant f is the ordinary
derivative of the function, and is indicated by f.

The general rule for covariant differentiation is

Pyoo Ty

1...m
veer '31--‘8, oo, J7, e Ta
a " — - a 1 a1/ a1 [3 ..
88 ot + ; 88 Jt

L4

—3ay A

8p 1185110008, 1 ) 7

From (11.4), (7.4) and (11.5), (7.6) we have

(11.8) g = 0, g9k = 0.
Also from (1.5) and (11.6)
(11.9) &r = 0.

In consequence of the form of (11.7) it follows that the covariant
derivative of the sum (or difference) of two tensors of the same
order and kind is the sum (ordifference) of their covariant derivatives.

If we effect the covariant derivative of the tensor ay b, we have

etam—nfaf ] onl 1)
a0 )
= b" ay,m + ag V4 m,

*The tensor character of covariant derivatives was first established by
Christoffel, 1869, 1, p. 56.

(s b” )m =
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which is the same as the rule of the differential calculus. Since
a tensor formed by multiplication and contraction is a sum of
products, we have also

(a5 89,6 = ayx b+ ay bz

Hence we have the general rule:

Covariant differentiation of the sum, difference, outer and inner
multiplication of temsors obeys the same rules as in ordinary
differentiation.

From (11.8) and (11.9) follows also the rule:

The tensors gy, gV and J; behave as though they were constants
in covariant differentiation with respect to gy.

Thus if A* and w; are any vectors and 4; and u* are their respective
associates by means of gy (§ 6), the derivatives of the invariant

(11.10) I = l",ui = galzyi
are given by

(1111) Ik = g%y pi+ i) = bl i+ Apg k.

If 4; in (11.3) is the gradient f; of an invariant f, we have

119 fo—fu= o7 (2L) -5 () = o

J.y denoting the first covariant derivative of £,; and the second of f.
It will be found that this is the only case in which the order of
covariant differentiation is immaterial.
If we differentiate covariantly the tensor 4;; defined by (11.3),
we have
. 9; l 0 k|
Fije = Era (—W_l {2j}) ( ax/ { }) {zkf

— a2l Gl
= e ) o
A

_.z,(ai,, {jyl{'—{zlh}{;k} { th)

(11.13)
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Consequently we have
(11.14) Aiju—Ai,ig = AR,

where R’ is given by (8.3).
In like manner for a tensor ay we find

(11.15) a0 — i, ve = in By 4 an; B,
and in general

(11.16)  ar...r

"

1...m
K Qry 7 b = 2 Oroorg_yhirgyy - rn Blrghe
o

This result is due to Ricci and is called the Ricci identity.* When
covariant differentiation is used in place of ordinary differentiation,
this identity must be used in place of the ordinary condition of
integrability. Thus (11.14) follows from (11.13) as a consequence of

8 (ali) 8 (al,«)

aar \oxi| ~ dx \oa*/
The corresponding formulas for contravariant tensors follow on
raising indices by means of ¢¥ and noting that the latter behave

like constants in covariant differentiation. Thus, if (11.14) be
multiplied by ¢* and summed for ¢, we have

(g™, — (@™ k), 15 = g™ M Rge = —g™ ¥ Bag,
and consequently
(11.17) eIy = — A Rl
In general
1...
T R Py T 1
T iy = ST By

(11.18) 1o..m
= D Ry

A necessary and sufficient condition that the Christoffel symbols
be zero is that all of the gy's be constant, as follows from (1.1)
and (7.4). Combining this result with the second theorem of §10,
we have the theorem:

* Ricci and Levi-Civita, 1901, 1, p. 143.
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Inorder that there exist a covrdinate system in which the first covariant
derivatives with respect to a tensor gy reduce to ordinary derivatives
at every point in space, it is necessary and sufficient that the Riemann
symbols formed with respect to gy be zero and that the x's be those
for which gy are constants. (Cf. § 18.)

Exercises

1. The second theorem of § 11, and the identities (11.16) and (11.18) are con-
sequences of the definitions of covariant differentiation and do not involve an
assumption that the quantities differentiated are components of tensors.

2. By applying the general rule of covariant differentiation of § 11 to the
invariant A‘u, show that this rule implies that the covariant derivative of an
invariant is the ordinary derivative.

3. The tensor defined by

[ EERY /4 Cyone a'
a :...p:" = .9“‘1/9;..;9,,,
is called the contravariant derivative of aﬂ % with respect to gy. Show that

= 0. cht and Levi-Civita, 1901, 1, p. 140.
4. If ay is the curl of a covariant vector, show that

ayr+ ap,i+ any = 0,
and that this is equivalent to

) a;: Oau

Ry Pz 0.

+

Is this condition sufficient as well as necessary that a skew-symmetric tensor ay
be the curl of a vector? Eisenhart, 1922, 1.
5. By definition a* are the components of a relative tensor of weight p, if the
equations connecting the components in two codrdinate systems are of the form

,apy = J7 e 92'% 8z® 9" 0xr  Bam
58 02 02 ppd pwe’

where J is the Jacobian é—a%— . Show that if ay is a covariant temsor, then
©

the cofactor of ay in the determinant |ay| is a relative contravariant tensor of

weight two.

6. If aap is a covariant temsor of rank n—1 (cf. Ex. 7, p. 16), there exist

two relative vectors A% and u®, both of weight one, such that the cofactor A%
of aqg is of the form A28 = 1948, When agp is symmetric, 4 and x% are
the same relative vectors.

7. When a relative tensor is of weight one it is called a ¢ensor density. Show
that if the components of any tensor are multiplied by the square root of the
non-vanishing determinant of a covariant tensor, they are the components of a
tensor density.



32 1. Tensor analysis

-

8. The invariant A°; is called the divergence of the vector A with respect to
the symmetric tensor gs. Show that

1}_ 77 *V79).

9. Show that the divergence of the temsor aV with respect to the symmetric
tensor gy, that is, a¥,;, has the expression

1 i
V— a 5@V )+a"‘{ l

and that the last term vanishes, if a¥ is skew-symmetric.
10. The divergence of a mixed temsor a7 is reducible to

= 7 2 @V -}

Show that if the associate tensor a¥ is symmetric,

,89. 1 0g%*
(a‘ V_) —a’ L V_ 63’ (a‘ V_)+ ) [ s FPan

= 'I/ 6:!'
Einstein, 1916, 1, p. 799.
11. When gy and a;; are the components of two symmetric tensors, if

giou—gaan+gnar—gua; =0 (G5, k1 =1....n),
then ay = ogy.

12. If ayu is a tensor satisfying the conditions (8.10) and for a vector i‘ we
have A ayu = 0, a cobrdinate system x'* can be chosen for which aju are zero,
when one or more of the indices is n.

13. Let Aqff for i=1, ..., n denote the components of n independent contra-
variant vectors, where the value of @ for « == 1, ..., n indicates the vector
(cf. Ex. 3, p. 8), and let A denote the cofactor of iy in the determinant
A = |Agf| divided by A. Show that the quantities A7 for each cotrdinate system
are the components of a covariant vector, « indicating the vector and i the
component.

14. Show that if aags Ay 4a) &uf’ def* = O for any two arbitrary vectors Ly
and 1), then

Anijx + Anrji + Qyink + Ajxne = 0;
also when aay: possesses the properties (8.10) and (8.11), then amn = 0.

15. Show that when in a ¥; the cotrdinates can be chosen (Cf. § 16) so that

the components of a temsor gi; are zero when i % j, then

Ry = —g;Rw,
1
Ba = ;;Bw»-}--g;ﬂwb,

Bus—gnBe—guBut s Bgmgu=0  (hij#),
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where R = g¥ Ry. Hence the tensor Ciy, defined by

R
Cup = Bagr+ g Ba— gu By + ga By — gy Bux -+ 35 w95 —9gn gu),

is a zero tensor (Cf. § 28).
16. f ar,...r, and Gr ..., are the components of a tensor in V, for cosrdinate
systems in the relation

B oo, B =g, o) G=2---m

and ar,...r, and Gr,...r,, where ri, .., rm =2, ..., n, are developed in power
series in «!, the coefficients of any power of x' in these developments are com-
ponents of the same tensor in any hypersurface @' = constant. Levy, 1925, 1.

17. If ar,...r, and Gy,...r,, are the components of a tensor in V, for cosrdinate
systems =* and Z‘ in the relation

E"=w'f(j=1v"‘yp)i 5":9’*(3?*'1»"'73“) (k=P+11"'«n)y

the functions ar,...r, and @r,...r, for which 7, ..., 7« take the valuesp+1,..-, n
and in which we put
@) % = 2/ = af,

where the a’s are constants, are components of the same tensor in the Vi ,
defined by (1). Levy, 1925, 1.

18. If gy and gy are the components of two symmetric tensors, and { 3} and {”}
are the corresponding Christoffel symbols, then by defined by

fit =it

r

are the components of a temsor. If a;:; and ap ) ﬂ _. denote the covariant

derivatives of a;:;" with respect to gy and gy, then

Gy, " "‘n—x LU N Y "n @
Bz ﬂn P 2 bai ,2 ﬂl—10ﬂ1+l Be bﬁui'

Also if R and R denote the corresponding Riemann symbols of the second
kind, we have

Riu— B = bjx— bia,t+ b bhs — bs biy,

where the covariant derivatives are with respect to the temsor gi.



CHAPTER II
Introduction of a metric

12. Definition of a metric. The fundamental tensor.
The geometry which has been considered thus far in the development
of the ideas and processes of tensor analysis is geometry of position.
In this geometry there is no basis for the determination of magnitude
nor for a comparison of directions at two different points. In this
chapter we define magnitude and parallelism, and develop consequences
of these definitions.

We recall that the element of length of euclidean space of three
dimensions, referred to cartesian coordinates, is given by

(12.1) ds? = (dz")?+ (dz®)® + (d®)?,
and for polar coo¢rdinates by
(12.2) dst = dr®+r2(d6® -+ sin®0d¢®).

This idea was generalized and applied to »-dimensions by Riemann,*
who defined element of length by means of a quadratic differential
form, thus ds® = gy da* da/, where the ¢’s are functions of the z's.
As thus defined ds is real for arbitrary values of the differentials
only in case the quadratic form is assumed to be positive definite
(§ 9). Much of the subsequent geometric development of this idea
has been based on this assumption. However, the general theory of
relativity has introduced a quadratic form which is not definite,
and consequently it is advisable not to make the above assumption
in the development of geometric ideas which are based on a
quadratic differential form.

We take as the basis of the metric of space a real fundamental
quadratic form

(12.3) ¢ = gydatda/,

* Riemann, 1854, 1.
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where the ¢’s are functions of the «’s subject only to the restriction

(12.4) 9= lggl¥0*
Element of length ds is defined by
(12.5) ds® = egy dzt da/,

where ¢ is plus or minus one so that the right-hand member
shall be positive, unless it is zero. The letter ¢ will be used
frequently and will always have this significance.

Since ds must be an invariant, it follows from § 9 that gy are
the components of a covariant tensor of the second order which
without loss of generality is assumed to be symmetric. It is called
the jfundamental temsor of the metric, and also is referred to as
the fundamental tensor of the space. The metric defined by (12.5)
is called the Riemannian metric and a geometry based upon such
a metric is called a Riemannian geometry. Also we say that the
space whose geometry is based upon such a metric is called a
Riemannian space, just as a space with the metric (12.1) is called
euclidean.

The significance of equation (12.5), as defining the element of
length, is that ds is the magnitude of the contravariant vector of
components dzf. If 4° are the components of any contravariant
vector-field, then 1 given by

(12.6) At = egy M A

is an invariant, which is defined to be the magnitude of the vector
(at each point of space). If A; are the components of any covariant
vector and A¢ are the components of the associate vector (§ 6)
by means of g¥, the conjugate of gy, that is,

(12.7) l‘ = gﬁ 2_;, lg = gij li,
then
(12.8) GUAidy = gV ga gy il = guA¥ A =ed2,

Hence the invariant g¥ ;1; is the square of the magnitude of the
associate vector.

* Unless stated otherwise it is assumed that the codrdinates are real.
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If A = 0 in (12.6) or (12.8), that is,
(12.9) gydM =0 or gVl =10 or AA=0,

at a point, we say that the vector is null at the point, and if (12.9)
holds everywhere we have a null vector-field. If the fundamental
form is definite at a point, at least one of the components of a null
vector is imaginary at the point, in consequence of § 9.

If (12.9) is not satisfied, it follows from (12.6) and (12.8) that
the components can be chosen so that respectively

(12.10) g = ¢  gilidj=¢

where, to use the above mentioned notation, e is plus or minus onc
according as the left-hand members are positive or negative. When
the first of (12.10) is satisfied, we say that A* are the components
of a unit contravariant vector; similarly the second of (12.10) is
the condition for a wunét covariant vector.

Any real curve C is defined by the z’s as functions of a real
parameter ¢ (§ 2). Unless (12.3) is definite there may be portions

of C for which, when da*in the right-hand member is replaced by
dax?

dt
be values of ¢ at ends, or at interior points, of a portion for which

this quantity is not zero. The length of the curve between these
points is by definition

dx‘ d.z'-’

If we replace ¢, by ¢, equation (12.11) defines s as a function of ¢,
and consequently the curve may be defined by the x’s as functions
of the fundamental parameter s, in which case we have

———dt, this quantity is positive, negative, or zero. Let #, and &

dot do/
(12.12) gg-z';‘ W = e.

If for a portion of a curve, or for a whole curve,

dzt da/

(12.13) gﬁ—d—t W

=0,
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we say that it is of length zero, or minimal. We recall that in
the space-time continuum of relativity certain lines of length zero
are identified as the world-lines of light.

From continuity considerations it follows that a general curve
cousists of portions the length of which is thus defined, and hence
we can speak of the length of a curve between any two of its points.

13. Angle of two vectors. Orthogonality. Let 1, and s}
be the components of two unit vectors, that is,

(13.1) 9 et Aa) = e e = (1, 2).*
If we put
(13.2) c0s8 = gy M Ao/,

it is clear that the right-hand member is an invariant determined
by the two vectors. For euclidean space with the fundamental
form (12.1) this is the cosine of the angle between the lines, and
since it is an invariant it has the same meaning when polar
codrdinates, or any other, are used.

In the general case we define the measure of the angle by (13.2).
Evidently cosé as thus defined is merely a symbol, unless the
right-hand member is not greater than one in absolute value. In
the latter case we give it the usual interpretation and thus the
angle can be found. We shall show that this is always possible,
if (12.3) is definite. In fact, r4,7- tds are the components of
a vector in the pencil determined by 4, and 4,*. The null vectors
of this pencil, determined by the values of #/¢ for which

Gy (rdyf + tdof) (rdy/ +t2sY) = O,
must be imaginary for this case. Hence we must have
(gu MiF Aef)* <1,

and consequently |cos 6| as defined by (13.2) is not greater than one.

* When dealing with more than one vector, we usually make use of the
notation iqf and Aqy to denote the contravariant and covariant components of
one of several vectors, where the value of « indicates the vector and i the
component. In the present case « takes the values 1 and 2.
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‘When the components are not chosen so that the vectors be
unit vectors, we have

i Aot Ao
(13.3) cos O = .?u 1
V (e g5 Mi* M) (e2 gua Ao g ) ’

as follows from (12.6). If d2¢ and d2* denote differentials for two
curves through a point, neither of which is a curve of length zero,
we have

(13.4) coso =

gy dxt 02/
V' (evgy da dad) (es gia 0aF 6)

When (12.3) is definite, a necessary and sufficient condition
that two non-null vectors at a point be orthogonal is

(13.5) giMithsf = 0,

and when the form is indefinite this is taken as the definition of
orthogonality. The problem of determining vector-fields orthogonal
to a given field will be treated later.

‘When one, or both, of the given vectors is a null vector, the
right-hand member of (13.2) involves an indeterminate factor, since
there is no analogue to unit vectors in this case. Accordingly in
retaining (13.2) as the definition of angle, this indeterminateness
is understood. Furthermore, we take (13.5) as the definition of
orthogonality when one or both of the vectors is null. As a
consequence, a null vector is self-orthogonal.

For the curves of parameter x’ of the space we have dai}0,
da/ =0, (j +4). Hence, when they are not minimal, the com-
ponents of the contravariant unit tangent vector are 4* = 1/V ¢; g4,
2 =0(j ¥ 7). From this and (13.3) it follows that the angle w;
between the curves of parameters z! and 2/ at a point, when
neither is a curve of length zero at the point, is given by

(13.6) coswy = —=T4
Y Veegagy

In § 3 we saw that for a covariant vector-field 1; the equation

(13.7) lidat =0
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determines at each point an elemental V,—;, which may be taken
as the geometrical interpretation of the vector. In terms of the
associate contravariant vector this becomes

(13.8) ggMdat = 0,

and consequently the vector 4/ at a point is orthegonal to any
direction in the V,—i at the point, and thus is normal to the V,_i.
Since either the normal or the V,_ determines the other, we may
look upon a vector of either type and its associate as defining
the same geometrical configuration, and thus speak of 4f and 4; as
the contravariant and covariant components of the same vector-field.

By means of (12.7) it is readily shown that from (13.2) we have

(13.9) cos 8 = gV Ayj; Aoj;

for the determination of the angle, when the covariant components
of the vectors are given.* Likewise, the condition of orthogonality
in this case is

(13.10) g%i Ay 7-2|j = 0.

From (13.5) it is seen that at any point P the components of
two orthogonal vectors may be interpreted as the homogeneous
cotrdinates in a projective space of n—1 dimensions of two points
harmonic with respect to the non-singular hyperquadric

(13.11) gy =0,

in which the ¢’s are evaluated at the point. The problem of finding
mutually orthogonal vectors at P is that of finding the vertices of
polyhedra self-polar with respect to (13.11). Consider, for example,
the case n = 4, that is, when (13.11) defines for P a non-singular
quadric surface Q. One vertex, P, of such a tetrahedron can be
chosen arbitrarily in the space but not on Q; a second vertex, P,
arbitrarily in the polar plane of P;, but not on Q; a third, B,
arbitrarily on the intersection of the polar planes of P, and P,
but not on Q. Then P, is determined as the intersection of the

* Tt is understood that the vectors are unit vectors, unless one or both are
null vectors.
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polar planes of P, P; and P;. Since P, P, and Py can be chosen
thus in 08, o0 ® and oo ! ways respectively, there are oo 8[= oo #®—112]
sets of 4 mutually orthogonal non-null vectors at a point in a V.

We call » mutually orthogonal non-null vector-fields in a ¥, an
orthogonal ennuple. The analytical process of finding them is
analogous to the above, the difference being that instead of choosing
a point for P, we choose n arbitrary functions 4, not satisfying
(13.11) and so on.

Hence we have the theorem:

There exist o0 ™™=V orthogonal ennuples in a Riemannian n-space.

Also we have:

A given non-null vector-field forms part of oo ®—=D&=212 grthogonal
ennuples.

A null vector corresponds to a point P on the hyperquadric (13.11)
and any non-null vector orthogonal to it to a point in the tangent
hyperplane to (13.11) at P. Since this hyperplane is of n—2
dimensions, we have the theorem:

A null vector is orthogonal to n—1 linearly independent non-null
vectors in terms of which it is linearly expressible.

From geometric considerations it is seen that these 2-—1 vectors
cannot be chosen so as to be mutually orthogonal.

In like manner we have also:

Any wvector orthogonal to a null vector is expressible linearly in
terms of it and n—2 non-null vectors orthogonal to .

If a null vector is orthogonal to n—1 linearly independent vectors,
it is a lnear function of them.

If Anf are the components of the unit vectors of an orthogonal
ennuple, where % for A =1, . .., » indicates the vector and ¢ for
¢{==1, ..., n the component, we have

(13.12) gihi = e,  gudl Al = 0 (ET)
Any other unit vector-field of components A* is defined by
(13.13) A* = ¢ cos @, Ay + €5 €08 @g A’ + - - - + €4 €OS @y Anf
where in accordance with (13.2) cos ax = gy &° /. If we put

(13.14) &=t 4 (ki 1=1,- -, n),
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where the ¢'s are functions satisfying the conditions
(13.15) lee,(t,.‘f %0, ;‘e, ol =0 X))

the &’s are components of an orthogonal ennuple. The determination
of »* quantities ¢ satisfying (13.15) is the problem of finding the
self-polar polyhedra with respect to the hyperquadric ;ez =0,
and consequently there are co®®-1/2 gets of solutions.

14. Differential parameters. The normals to a hyper-
surface. If f and ¢ are any functions of the z’s, the functions
defined by

(14.1) ASf = g¥ :§ 5?{7 = gVfif;
14 Ao =@ 2L 2L — iy,

are invariants. They are called differential parameters of the first
order. In like manner the invariant defined by

[ 0 f af Jk})
=gV f; = g {—~L A
(14.3) hf=4Vv=9 (6.7:' 0 oa* \ij
is called a differential parameter of the second order.
An equation of the form f(z, - - -, %) = 0 determines a V,_, in
Va; we call it a hypersurface. For any displacement in this hyper-
surface we have

of 4 i
Y dat = 0.
of

Consequently the quantities as e the covariant components of

the vector-field of normals to the Va_;. From (14.1) and (12.9)
it follows that

A necessary and sufficient condition that the normals to a hyper-
surface f(x', ---, z*) = O form a null vector-field is that f be a solution
of the differential equation
(14.4) ASf = 0.

If /i and f; are any functions not satisfying (14.4), the angle 6
between the normals to two hypersurfaces f; = 0 and f; = 0 at
a common point, the angle between the hypersurfaces, is given by
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A (S, S5)
14.5 6 = ’
(14.5) oo Vee A fi- Ao

as follows from (13.3), (13.9), (14.1) and (14.2). If either one or
both of the functions f;, f; is a solution of (14.4), we take

(14.6) cos8 = A (f1, f2)

as the measure of the angle between the hypersurfaces.
From the definitions of § 13 it follows that

(14.7) M(fy fo) =0

is the condition that the hypersurfaces be orthogonal at each
common point. Since
(14.8) A (@, ) = g¥,

we have that a necessary and sufficient condition that the hyper-
surfaces af — const., 2/ = const. at every point of space be
orthogonal is that

(14.9) gy = 0.

If f'(xY, -+, 2" is any real function, the differential equation

(14.10) H(UHS) =0

admits » — 1 independent solutions.* If f% ..., f™ denote such
solutions, and if we introduce new codrdinates defined by 2t =f
for 4 =1,.--,n, then from the equations 4, ", 2’y = 0 for
j=12,..-,n expressed in terms of the fundamental form ¢’y dx" dx’
we have '

(14.11) gy =0 G=2- -, n.

Since we have assumed that the determinant g’ of the above form
is not zero, it follows from (6.4) that g'*' 4 0 and hence from the
identity ¢’V gij = 0k we have

(14.12) 915 = 0, mF0 G=2-n.

* Goursat, 1891, 1, p. 29.
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Hence the fundamental form is

(14.13) ¢ = gh(d2) +ghda’ dz* (j,k=2,..., n).

The geometrical interpretation of these results is that the hyper-
surfaces f/ = const. for j = 2, ..., n are orthogonal to the hyper-
surfaces f* = const. and the former intersect in a congruence of
curves orthogonal to the latter.

15. N-tuply orthogonal systems of hypersurfaces in a V,.
From (14.7) it follows that the condition that there existin a Va
n families of hypersurfaces f; = const. ( =1, .-, n) such that every
two hypersurfaces f; = const., fj = const. fori,j = 1,-., n(i$y)
are orthogonal at every point is that the n(n—1)/2 simultaneous
differential equations

(15.1) LS, ) =0

admit »n solutions. Evidently this is not possible for » >3, when
the fundamental form (12.3) is any whatever. When it is possible,
we say that the Riemannian space admits an n-fuply orthogonal
system of hypersurfaces.

If this condition is satisfied and these hypersurfaces are taken
for the codrdinate hypersurfaces a* = const., we have from (15.1)

(15.2) F =0  Gi=1- n;i$)).

Since we have assumed that the determinant g of the form (12.3)
is not zero, it follows from (6.4) that none of the components g# is
equal to zero.
Hence from the identities
99" =&
we have
(15.3) 9% =20 @GJ=1,--4n;i%)).

Consequently the fundamental form is
(16.4) 9 = g1 (d2")® + gas (dx®)* + - - - 4 gun (da™)®.

Conversely when the fundamental form is reducible to (15.4), we
have (15.2) and consequently the parametric hypersurfaces form
an n-tuply orthogonal system.
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Since in this case
1

(15.5) g% = 7

we have from (7.1), (156.2), (15.3) and (15.5), the following ex-
pressions for the Christoffel symbols formed with respect to (15.4):

. . oo 1 0gs ... 13
(156) (i, M =0, [iil =—liH) =5 5o, li4,d =5 5%
Gg k¥,
PRV ) {j}=__1_89a: Jil __ 1 aloggs
(157)\ijf_ v g 2gy 0’ il = 2 T aa
J } _l_alogyu
\iif = 2 aaf

From (8.9) we have in this case
Rhiik =0 (hv i;j, k "'")7

1y — (Vg 9V gi dlogV gm
Enia _Vg“(axh ek bab  0ak
5 oV gu dlogV ,
(15.8) — gV gu) (i k3,
_v—v—l2 (1 Vs 2 (1 aVigm
i = Vi Vw535 (7;,—; ) +W(7;; )

13 LoV Waml gy,

m  gmm 0™ ax™

where > indicates the sum for m = 1, --., n excluding m = h
mn

and m =1,

16. Metric properties of a space V, immersed in a V,,.
Consider a space V,, referred to codrdinates y* and with the
fundamental form

(16.1) 9 = Qgg dY" dyP.*
If we put
(16'2) .1/“ = .fa(xl’ Tty 38”),
*In this section Greek indices are supposed to take the values 1, ..., m and

Latin indices 1, ..., n.
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where the f’s are analytic functions of the z’s such that the

matrix “—g%” is of rank n, equations (16.2) define a space V,
immersed in V. If we write

oy* oyf _
(16.3) bap30f BT — 9

then from the definition of linear element for V., namely
(16.4) ds* = eaug dy® dyf,

we have for the linear element of V,

(16.5) ds® = egy dat dai.

Thus when a metric is defined for a space V,,, the metric of a sub-
space is in general determined (cf. Ex. 8, p. 48). This is an evident
generalization of the case of a surface «f = f¥(u,v) (fori =1, 2, 3)
in a euclidean space with the linear element (12.1); in this case (16.5)
assumes the well-known form ds* = Edu?+2Fdudv+ Qdv® in
the notation of Gauss.

The formula for V. analogous to (13.4) is

Qo ay" dyﬂ
V(el Aep ay® d?fa) (ez Qap ay" "yﬂ)
From (16.2) we have
ay* ,
(16.7) dy“ = -B—det.

(16.6) cos § =

Substituting in (16.6) and making use of (16.3), we obtain (13.4).
Thus the invariant cos 8 of two directions at a point of V, has
the same value whether determined by the formula for V, or for
the enveloping space V,. Later (§ 55) it will be shown that when
the fundamental form of a space is positive definite there exists
a euclidean space V», where m < n(n -+ 1)/2 in which V, can be
considered as immersed. Consequently angle as defined by (13.4)
for ¥V, is equal to the angle in the euclidean sense as determined in
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the enveloping Vs In fact, in the differential geometry of a surface
in euclidean 3-space, the angle between two directions on a surface
is determined in the euclidean space and its expression in terms
of the metric of the surface is derived therefrom; this gives a form
of which (13.4) is an immediate generalization.*

If 2% are the components of any contravariant vector-field in Va,
along any curve of the congruence of curves for which these are

the tangent vectors we have % = A%, From (16.7) we have for

this curve in V,,

(16.8) g — O 4

Conversely, if we have any vector-field £ in ¥y, for those vectors
of the field in V,, that is, tangential to V,, the components A in
the #’s are obtained by taking any'n of equations (16.8), replacing
the y's by the expressions (16.2) and solving for the a’s.

From (16.8) and (16.3) we have

(16.9) o §° 8P = gy X W,

and from (13.3) for two non-null vector-fields

cosf — arap 51“! §2|ﬂ
W“ap £y 5F) (g 05 52" &P
(16.10) _ g i A

V (er gy Jaff Apd) (e2 gy Ao A2')

o
From (16.7) it follows that %%i_ fore =1,...,m and a given ¢
are the components in the g’s of the tangents to the curves of

* Cf. Eisenhart, 1909, 1, p. 78.
t n suitable equations.



Exercises 47

parameter 2¢ in V,. Since the matrix ”—%%—“ is of rank n by
hypothesis, there are » such independent vector-fields in V, in terms
of whose components the components of any vector-field in V, are
linearly expressible. From this it follows that any m functions &
satisfying the » equations

)
(16.11) aapa—g:.—zﬂ =0

are the components in the y’s of a vector-field at points of V,,
such that the vector at a point of V, is orthogonal to every vector
in V, at the point. Accordingly we say that a vector of com-
ponents &# satisfying (16.11) is normal to V,. If (16.11) is written
in the form

oy”
(16.12) Y &x = 0,

we see that there are m — n linearly independent vector-fields
normal to V.

Exercises.

1. Show that a real codrdinate system can be found for which g =1 or —1.
In this codrdinate system the divergence of a vector A* (Ex. 8, p. 32) is the ordinary
divergence.

2. For a V, referred to an orthogonal system of parametric curves

Rll y&l = RI! gll = Rl!ll’ Rll = o’
2R
R = qu = 1331
AT
and consequently
R
By = 59y

3. When the fundamental form of a V,, is positive definite and 6 is the angle
between the vectors 4,/ and 4,/, then
9= Iud) 4 4 hf A

Iuan bt Ay Ao A

sin?@ =
4. Show that

9
—a? 4‘0 = 2900,‘0,”.
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5. For a V, referred to a triply orthogonal system of surfaces

1 1 .
R, = — R+ — By, G, j, k ),
9y T
1 . .
R,-, = _leb' (‘aJ‘ k 4:)1
I
1 1

wi 9 gjj i

6. Show that for a V, a tensor a, satisfying the conditions (8.10) and (8.11)

bas six independent components and that these can be written in the form
A = Ja % — Ya Y + 95 80— Iy

where a, is a symmetric tensor. Show also that
—_— 1 it it
e, = _4_ g;);g' g’,al"t_.q G

Hence if g"a,,, = 0, then a,, = 0.

7. The functions g, defined by (16.3) are invariants for V,, at points of V,,
and ang are invariants for V.

8. Whén the equations

a“aﬁ . .
auﬁa‘zx 5‘;/7=0 @f=1---m;ij=1-., n)

admit solutions (16.2), for the V, thus defined there is not a metric induced by
the metric of ¥,. Show that in general such a V, exists, if m = n(n +1)/2.

17. Geodesics. Let C be a real curve defined by 2* = fi(¢),
t being any real parameter, and denote by A and B the points
of C with the respective parametric values % and #,. The equations

T = 2+ ewt,
where ¢ is an infinitesimal and ¢ are functions of the z's such that
(17.1) o =0 for t=t,t,

define a curve C nearby C and passing through 4 and B.
Consider the integral

f
11.2) I =J: p@t, ..o 2, &, .., 2" dd,
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where zf = ‘z‘ and ¢ is an analytic function of the 27 arguments.

If T is the corresponding integral for C, we have, on expanding ¢
in Taylor's series,

T—7 — %9 iy
I I—sf[aa}‘.w—l-

i
where &' = %—:&f and the unwritten terms are of the second and

;«3"]dt+---.

higher orders in s. If we write

t
(17.3) 6l = sj; [:_:; wi+%éi] dt,

integrate the second term of the integrand by parts and make
use of (17.1), we have

t,
. ‘log d (b9
(17.49) oI = "’ft, [W. (w)]midt

The integral I is said to be stationary and C the corresponding
extremal, if this first variation 7 is zero for every set of functions o*
satisfying the conditions (17.1). From (17.4) it follows that a
necessary and sufficient condition is that

d 3?) o9 __
(12.5) dt( Fr 0,
which are known as Euler’s equations of condition.*
We apply this general result to the integral (12.11) for a portion
of a curve C for which e is either one or minus one throughout
the domain. In this case

. , W" &
29 _ _egyd _ egyxd 29 _ 1°
08 Vieggatal = ds ' 0 2 ds
dt dt
Substltutmg in (17.5), we obtain .
d*s
a9y 1 8gp i AP
i a>'+ wfx" Py ol 2* ggwl-——ﬁ =
dt

* Ct. Bolza, 1904, 8, p. 123; also Bliss, 1925, 2, p. 130.
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If we make use of the Christoffel symbols formed with respect
to (12.8), this equation becomes

#
) A2 do/ da* da’ dt
(17.6) G435 e +ik i —— dt dt — 9y dat ﬁ o
dit

Multiplying by ¢# and summing for i, we obtain
as

d"x‘_{_J l}dxl dit _ddt dt®

at "k o

at dt  dt ds
dat

17.7)

If in place of a general parameter ¢ we use the arc s of the
curve, equations (17.7) become

d2al { 1\ daf da*

(17.8) ds® jk[ “ds ds

Thus the extremals of the integral (12.11) in which the param-
eter ¢ is the arc s are integral curves of » ordinary differential
equations (17.8).

These integrals satisfy the condition that along any curve

dzt da/
(17.9) 90 ds = const.,

because of (12.12). We shall show that any integral curve of (17.8)
possesses this property. In fact, since the left-hand member of
this equation is an invariant, its derivatives with respect to s along
a curve can be obtained by taking its covariant derivative with

respect to 2%, multiplying by % and summing for k. Hence the

condition that (17.9) shall hold along a curve, when s is a para-
meter, not necessarily the are, is

dai dx’" Ao\ _  da) (@< | (i) daF d‘”’)
(17 10) i ds (ds) =i 5 ds (d32 T{kl} ds ds
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It is seen that this condition is satisfied by any integral curve
of (17.8), which equations may also be written in the form

(17.11) da* (d""),k= 0

“ds \ds

In view of this result we have that if the constant in (17.9) is
positive, negative or zero at a point of an integral curve of (17.8),
it is the same all along the curve; that is, if the tangent vector
at one point is non-null or null, the tangents all along the curve
are of the same kind. From (17.7) it is seen that the form of (17.8)
is not changed if s is replaced by as- b, where ¢ and b are
arbitrary constants. Hence, if the curve is not of length zero,
s can be chosen so that (17.9) becomes (12.12), that is, s is the
arc. On the other hand, if the constant in (17.9) is zero, the
above mentioned generality of s obtains. Any integral curve of
equations (17.8) is called a geodesic. When in particular it is a curve
of length zero, we will call it a minimal geodesic, and we will
understand that when s is used as a parameter of a minimal geodesic
it is such that the differential equations of the geodesic assume
the form (17.8).

Consider for example the V, of special relativity with the
fundamental form ¢ = (dz")?*-- (dz?)*+ (d2*)2*—(dz*)®%. Any curve
of length zero in this space may be defined by equations of the form

x! =IR cos 0 cos ¢ ds, x? =f.R cos @ sin ¢ ds,
x* =IR sin 6 ds, v xt =fR ds,

where B, 6 and ¢ are functions of s. Only in case R, 6 and ¢

are constants are these integral curves of (17.8), which are in this
2 i

case %?f— = 0. Hence in general a curve of length zero is not

a geodesic.

We return to the consideration of (17.8) in which s is the arc
of the geodesic when the latter is not minimal, and is the particular
parameter referred to above when the geodesic is minimal. We
observe that any integral curve of (17.8) is determined by a point
P (al, -+, %) and a direction at P, Thus if we put
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(17.12) 5= (d”i)

ds o’
where a subscript O indicates the value at P,, we have
il @) , adxt\
¥ =ttty (ds) +3'(ds’)os+”'

The coefficients of s* and higher powers in s are given by (17.8)
and the equations resulting from (17.8) by differentiation with
respect to s and replacing the second and higher derivatives of z*
by means of (17.8) and the resulting equations. Thus we have

dal da* 42

d ’ + s ds ds ds =0
do dat dat dam
(17.13) d ds* 2 Jiam ds ds ds ds %
where
i 1 p(0 [i)
Tiw = 3 ( x’{jkf lakHJ} { H )
(17.14) 1 3 N
= ? a_)
Pt =21 Hol)
and in general
] — 1 al}‘kz...m i al i @ l
I}kl...mn = W.P(_ax“_—_rakl...m{jn[—--. _I}ka{mnf)

(17.15)

where P before an expression indicates the sum of terms obtained
by permuting the subscripts cyclically and N denotes the number
of subscripts.* Hence we have

(17.16) o — x}',+§‘s——%—{jik}o§f B (Tl H P — ..

The domain of convergence of these series depends evidently upon
the expressions for g; and the values of &. However for sufficiently
small values of s they define an integral curve of (17.8).

* Cf. Veblen and Thomas, 1928, 4, p. 561.



18. Riemannian, normal and geodesic codrdinates b3

18. Riemannian, normal and geodesic codrdinates. In
this section we introduce certain types of codrdinates which have
important applications. Returning to (17.16) as the equations of
a particular geodesic passing through a point Py (2) and determined
by the direction (17.12), we put

(18.1) Y= &s
and substitute it in (17.16), with the result

(18.2) o= xg-[—yi—%{“iﬂ}oy“yﬂ— A Tl P — .

Since equations (18.2) do not involve the &s, they hold for all
geodesics through P, and therefore constitute the equations of

a transformation of codrdinates. Since the Jacobian ,%—;;I of these

equations is different from zero at P,, the series (18.2) can be
inverted and we have

(18.3) y.= (x'—xg)-i"F‘(xl—x(l» Tty x"—x{,‘) @=1,..., n),

where F* are series in the second and higher powers of z/— ]
(j = 1’ ] n)-

For a given set of values of the constants & in (18.1), these
equations define a curve. When y* in (18.2) is replaced by &s we
have (17.16). Consequently (18.1) are the equations of the geodesics
in the new system of codrdinates. These cotrdinates were first
introduced by Riemann* and are called Riemannian coordinates.
In these codrdinates the equations of the geodesics through P, are
of the same form as the equations for straight lines through the
origin in euclidean geometry.

From the form of equations (18.1) it is seen that these codrdinates
are valid only for a domain about P, such that no two geodesics
through P, meet again in the domain, and from (18.3) it follows
that this domain is that for which the series (18.2) may be inverted
into (18.3).

If we write the fundamental form in the g’s thus

(18.4) 9 = g, dy' dy/,

* 1854, 1, p. 261.
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and indicate by {;k} and [j, k] the Christoffel symbols formed
with respect to (18.4), the equations of the geodesics are

@y, [T dy Ay _
(18.5) i T {jkf as s = °

Since the expression (18.1) must satisfy these equations, we have

[l g —
(18.6) VKl &7 g 0,
and on multiplication by s*

W

which equations hold throughout the domain. Conversely, if these
conditions are satisfied, equations (18.5) are satisfied by (18.1) and
the y’s are Riemannian codérdinates.

By applying to (18.5) considerations similar to those applied to
(17.8) we obtain similarly to (17.16)

Since this must reduce to (18.1) for arbitrary values of & it follows
that

(18.8) 1 ﬂ‘ro= 0.

Since the functions I defined by equations analogous to (17.14)
and (17.15) are symmetric, we have also

(18.9) (ffzﬂy)o= 0, .-, (f:tﬂ-“/’-.u)o: 0.

From (7.3) and (7.4) it follows that equations (18.8) are equivalent to

0G4 ..
(18.10) ( a‘Zk”)o =0 G le=1,---,n).
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(=11
[543

Hence:

At the origin of Riemannian covrdinates the first derivatives of
the components of the fundamental tensor in these coérdinates are zero.

It follows also from (18.8) and the general formula for covariant
differentiation that at the origin of Riemannian coérdinates first
covariant derivatives reduce to ordinary derivatives. Evidently
(18.10) is a special case of this result, since gyx = 0.

If another general system of coordinates z'* are used, we have
a set of equations (17.16) in the primed quantities from which we
obtain another set of Riemanmian coordinates y’* by equations
analogous to (18.3), and the equations of the geodesics in this

codrdinate system are
i d.’L"i i
’ P
y = s = &"s,
y ds ()
Since

L) 11
(18.11) ¥t = (d“ )o= (3” d“j) = a ¥,

ds 2z) ds J

where the a’s are constants, we have:

When the cobrdinates * of a space are subjected fo an arbitrary
analytic transformation, the Riemannian codrdinates determined by
the s and a point undergo a linear tramsformation with constant

coefficients. )
7"

Since the a's in (18.11) are the values of gfcl

is evident that conversely when a linear transformation of the
Riemannian codrdinates is given, corresponding analytic trans-
formations of the z’s exist but are not uniquely defined.

At the point P, the coefficients g; in (18.4) are constants.
From § 9 it follows that real linear transformations of the y's
with constant coefficients can be found for which (18.4) reduces
to a form at P, involving only squares of the differentials and
the signs of these terms depend upon the signature of the differ-

at the point, it

ential form. These particular Riemannian codrdinates have been See

called normal coirdinates by Birkhoff.*
The transformation defined by (18.2) belongs to the class of
transformations of the type

*1923, 2, p. 124,

App.3



56 II. Introduction of a metric

(18.12) 2 = ap 2"+ = capx’“x"*—}- c,,,,,,x Byt ...

where the ¢'s are symmetric in the subscripts. From (18.12) we
have at P, of codrdinates zp and x'* = O in the respective systems

el =% (amsga),— %% = 4[5 (55,

oz az'% da’f aa’%/o \px'B/o

> )7
z} indicates the Christoffel symbols in the z'’s, we

Hence if {jk
{;k} {ﬂc} +¢ Gn®

have from (7.14)
Therefore a necessary and sufficient condition that {;k} =0 is
0

that ¢, = —{jzk}o' Accordingly the equations
i__ 8 Ii_l{ t e 8 re 18 0y
=zt 3 aﬂfx x -I— c,,ﬂz x'P 'V ..
(18.13) 1 _
s L

m!

where the ¢’s are arbitrary constants symmetric in the subscripts,*
define a transformation of codrdinates such that

995\ _
(18.14) (V",‘) =o0.

The z"’s so defined are called geodesic codrdinates. Hence:

At the origin of a geodesic codrdinate system first covariant
derivatives are ordinary derivatives.

The equations in geodesic codrdinates of the geodesic through
the origin determined by & = (%)o are

(18.15) 2 = Ea— g (Thg o8 P 7 —

* This assumption is no restriction as to generality.
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Comparing these expressions with (18.1) we see that Riemannian
cotrdinates are the geodesic coordinates for which the I's vanish
for i = 0.

19. Geodesic form of the linear element. Finite equations
of geodesics. If f(z!,..., 2" is any real function such that

. M4 S¥0, the normals to the hypersurface f=0 are not null

vectors (§ 14), and consequently the geodesics determined at each

" point of =0 by the direction of the normal are not curves of

For

length zero. If we change co¢rdinates taking this hypersurface
for ' =0, and the geodesics for the curves of parameter z,
and take for the coordinate x' the length of arc of these geodesics
measured from z' = 0, from (12.5) it follows that in this codrdinate
system

(19.1) i1 = €,

where ¢ is plus or minus one. From the equations of the geodesics
which result from (17.6) when we take { =— s = 2' we have

dgu

g 0.

i == 1 by hypothesis gi; = 0 for 2! = 0, it follows that gi; = 0
identically. Hence the linear element is

(19.2) ds® = e(erdzi+ggpda®daf) (e, =2, .-, n).

We call this the geodesic form of the linear element. As a result
we have the theorem:

If f is any real function of the ’'s such that A, f + O and geodesics
be drawn mormal to the hypersurface f — O and on each geodesic
the same length be laid off from f =0, the locus of the end points
8 a hypersurface orthogonal to the geodesics.*

These hypersurfaces are said to be geodesically parallel to the
hypersurface f = 0.

Incidentally we have the theorem:

* This is the generalization of a theorem of Gauss for surfaces in euclidean
3-space, cf. 1909, 1, p. 206. Also, we remark that the first assumption of the
theorem is satisfied, if (12.3) is definite.
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A necessary and sufficient condition that the curves of parameter x'
be geodesic and the cosrdinate x* be the arc is that gy, be constant e,
and g,; for i = 2,---, n be independent of z\

For the quadratic form (19.2) we have

(19.3) Azt = e

Conversely, if f is any solution of the differential equation
(19-4) Alf = 01,

where e, is plus or minus one, the surfaces /== const. are orthogonal
to a congruence of geodesics, and the length of any geodesic between
two hypersurfaces f = ¢, and f = ¢z is ¢e—¢. In fact, if we
give f the significance of f* in (14.10) and proceed as in § 14, we
get the fundamental form (14.13). With respect to this form

equation (19.4) reduces to g'* = ¢,. Since g'*' = gi" the form (14.13)
11

reduces to (19.2).

A complete solution of either of the equations (19.4), that is, for
e, =1 or —1, is a function f involving n —1 arbitrary constants
@, -+, Op—1in addition to an additive constant ¢.* The covariant
components of the normals to the corresponding hypersurfaces

(19.5) f(l'l, teey -7'”, A1y ** s an—l) = ¢

are %, each hypersurface being determined by a value of

Consider now any point P and a non-null vector at the point whose
covariant components are X; According as gV 4;4; is positive or
negative, we take the solution of (19.4) for ¢, = 1 or —1. Then
the n equations

of .

o = e
determine the a's and the factor ¢, and equation (19.5) the value
of ¢ so that one of the hypersurfaces (19.5) shall have the given
direction 1; for its normal at P.

* Gowrsat, 1891, 1, p. 98.
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1f we imagine the expression (19.5) substituted in (19.4) and
differentiate with respect to a;, we obtain

) =
Al (-f; 9 ai
Consequently the hypersurfaces

of _
(19.6) Y bi,

where the s are constants, are orthogonal to the hypersurfaces (19.5)
and meet in the geodesics orthogonal to the latter hypersurfaces.
Since we have shown that one of the hypersurfaces (19.5) can be
chosen so that a given direction at a point is normal to it, we
have the theorem:

When a complete solution (19.5) of (19.4) és known, equations (19.6)
Jor arbitrary values of the b's are the equations of the non-minimal
geodesics, and the arc of the geodesics is given by the value of f.*

Exercises.
1. If the codrdinates at points of a geodesic are expressed in terms of s [cf. (17.8)]
and ¢ is any function of the x’s, then

g da" dx™ dx"=

dm = onreen s @ ds -~

Levy, 1925, 1.

2. If for every point in space and for a special covrdinate system associated
with each point a tensor equation is satisfied, the tensor equation holds throughout
the space for any cotrdinate system.

3. Show that at the origin of a system of geodesic codrdinates defined by (18.13)
any component of a tensor in the z's is equal to the component with the same
indices in the x"’s; in particular this applies to the fundamental tensor.

4. If o' are geodesic codrdinates with a point P for origin, and they are sub-
jected to the transformation

' % 4B '7
x + 7.1: @

where the ¢'s are constants symmetric in &, 8 and y, the x'’s are geodesic with P

for origin and at P
Erlaf={ih=
ox'? \ep o \e8f — caﬂy'

*This is the generalization of a theorem in the theory of surfaces. Cf. 1909, 1,
p. 217; also Bianchi, 1902, 1, p. 338.
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5. If in the transformations of Ex. 4

JRNEY Iy IS I
‘apy = T3 [aa,-? apl T 5" ﬁ7}+ 9 \7e ]P’
then at P in the x'’s

0 i\’ 9 i’ 9 il
FrZe {aﬂ} HFrT {ﬂy} NPT {w}”

There are % n3(n—+1) (n+2) of these equations. Show also that for a V, the
second derivatives of g, at P are uniquely determined by these equations and (8 3)
as linear functions of R'%;. Eddington, 1923, 1, p. 79.

6. Show, with the aid of Exs. 3 and 5, that for a ¥, the components of any
tensor involving only g, and their first and second denvatlves are functions
of g, and B, Eddington, 1923, 1, p. 79.

7. Show that for a V, the only covariant symmetric tensor of the second order,
whose components are lmear in the second derivatives of g, and involve also g,
and their first derivatives, are of the form

R +9,@R+b),

where ¢ and b are invariants.
8. For the generalized Liouville form of the fundamental form, namely

X, + X, 4+ X) X e @,

where X, is a function of of alone, a complete integral of 4 6 = 1 is

6= c+fz‘:]/e‘(X‘+a‘)dm‘,

where ¢ and the a’s are constants, the latter being subject to the condition
a+-+a,=0. Bianchi, 1902, 1, p. 338.

20. Curvature of a curve. Given any non-minimal curve in a ¥V,
which is not a geodesic and let the cotrdinates be expressed in
terms of its arc. If we write

&2 i|da) ddk
(20.1) st +{7’kf ds ds "

it is evident from the form (17.11) of the left-hand member of this
equation that w? are the contravariant components of a vector.
Moreover, in consequence of (17.10) we have

. da/
(20.2) gw =0



20. Curvature of a curve 61

that is, the vector u’ is orthogonal to the curve at each point.
An invariant ¢ is defined by the equation

1 ; —
(20.3) 5 = Ve wul
At the origin of Riemannian cotrdinates equations (20.1) are
Azt .
(20.4) —dF— == /.lf’.

Thus 1/¢ is the generalization of the first curvature in euclidean
3-space and wie of the direction-cosines of the principal normal
of the curve. Accordingly we call ¢, defined by (20.3), the radius
of first curvature of the curve and the vector of components u* the
principal normal, We have at once:

When the first curvature of a curve is zero at all ils points, either
it is a geodesic and ils principal normal is indeterminate or it is
a curve for which the principal normal is a null vector.*

By means of (20.4) the equations of the curve are expressible
in the form

(20.5) o = (%ﬁi)os N LI

The equations of the geodesic through the origin which has the
same direction as the given curve at the point are
- dz')
= ( ds

Hence the distance d between points of the curve and the geodesic
for the same value of s, to within terms of the third and higher
order, is given by

1
206) d = V@ —5) @— = 5o Vigr ] = -

8
?’
as in the case of euclidean 3-space.t

* When the fundamental form is definite, the second possibility does not arise.
+Cf. 1909, 1, p. 18.
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In consequence of the remark following (17.11) it follows that
when a curve is minimal but not a geodesic, the preceding develop-
ments apply with the understanding that s in (20.6) is the para-
meter in terms of which the equations of the minimal geodesics
tangent to the curve are expressible in the form (17.8).

We have from (20.6):

A necessary and sufficient condition that a curve and its tangent
geodesic at a point have contact of the second or higher order is
that the curvature be zero.

In terms of Riemannian codrdinates with a given point as origin,
the surface consisting of the geodesics through the origin in the
pencil of directions determined by the tangent and the principal
normal of a curve at the origin is given by the eguations

&t = [a (%)0-}- b (fl‘)o]s,

where a and ) are parameters. If we take a =1, b= —;—s, we

have from (20.5) that the curve so determined coincides with
the curve to within terms of the third and higher orders. Hence:

The surface formed by the geodesics through a point of a cuwrve
in the pencil of directions determined by the tangent and principal
normal to the curve at the point osculates the curve.

We call this surface the osculating geodesic surface of the curve.
It is an evident genmeralization of the osculating plane of a curve
in euclidean 3-space. :

If in the right-hand members of equations (20.1) the functions u*
are arbitrary, we have a system of differential equations admitting
a solution for each point determined by a direction at the point,
as in the case of equations (17.8).

21. Parallelism. In this section we define parallelism of vectors.
As the basis of this definition we take a property of parallelism
in the euclidean plane, namely that all vectors parallel to one
another make the same angle with a straight line, that is, with
a geodesic.

Consider now any V, and in it a non-minimal geodesic C at
points of which the cotrdinates #*(¢ =1, 2) are expressed in terms
of the arcs, let i*(x) be the components of unit vectors at points
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of C and not tangent to C. The cosine of the angle between the
vector at a point and the tangent to C at the point is gy ).‘

The condition that this angle be constant along C is ds ‘:e;fafes
lines 8-9
dz* (.. dax) cdak [, dal | ]__
Tl ), = ds["‘ds +u(F 0

which reduces in consequence of (17.11) to

da/ .. da* _

i

P~ gs Ak ds 0.

Since 4% are the components of a unit vector, we have 1;4* = ¢,
from which it follows that

gy ¥ li,k-d—xk— = 0.

ds
} e
By hypothesis g = |gy|+ 0 and ldz‘ dz® [ 0. Consequently
| ds ds

from the preceding equations we have

L) Yoy =t ) e =0

da* (w )i 1) dz*

For the euclidean plane, and indeed for a euclidean space of
any order, referred to cartesian codrdinates the condition that a
vector-field be a parallel field is that 2¢ be constants. In this
case the expression in parenthesis in (21.1) vanishes, since the
Christoffel symbols are zero; consequently in any codrdinate system
the condition for parallelism is

2 il
i, — 9% 4 —
(21.2) B = 5 'H{sz 0.
From (11.17) we have
je— 2y = — i Rig,

and consequently the condition of integrability of (21.2) is
(21.3) Yy R‘Uk = 0.



[
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App-6
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When the fundamental form of a space is such that a coordinate
system can be chosen in terms of which the coefficients gy are
constant and only then, the components R%u of the Riemann tensor
vanish (§ 10). In this case equations (21.3) are satisfied identically,
and consequently equations (21.2) are completely integrable; that
is, a solution of (21.2) is determined by arbitrary initial values
of the A's. In this case we have a field of vectors parallel to
an arbitrary vector. If equations (21.2) and (21.3) are consistent,
we will have one or more fields of parallel vectors; this question
will be considered in § 23. However, in a space with a general
fundamental form this is not possible. Consequently we introduce
the idea of vectors parallel at points of a curve, and take (21.1)
as the definition of parallelism along any curve, mot necessarily a
geodesic, with respect to the metric of the space, whatever be the
order of the space. Thus if we take a curve C defined analytically
by the a's as functions of s, equations (21.1) admit a solution
determined by an arbitrary direction at an initial point of the
curve. Not only the curve but also the metric of the space are
involved in these equations, and consequently we speak of such
a solution as defining a set of vectors parallel along the curve
with respect to the metric of the space, or for brevity with respect
to V,. This is the parallelism of Levi-Civita,* who first proposed
this definition, but from another point of view (cf. § 24).

As a first consequence of this definition, we have that, if in (21.1)
we put At = %f—, we get the equation (17.8) of the geodesics. Hence:

Geodesics are characterized by the property that the tangents are
parallel with respect to the curve.

This is an evident generalization of the property of conmstancy
of direction of a straight line in euclidean space.

Again if 4% and A are two sets of solutions of (21.1) we
have that gy 4,?4s is constant along the curve. Hence:

At every point of a curve the two directions parallel with respect
to the curve fo two directions at a given point P of the curve make
a constant angle.

In particular, when the curve is a geodesic and its tangents are

*1917, 1; cf. also, Severi, 1917, 2, p. 230.
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one set of directions we have the property in a V; which served
as the basis for the definition of parallelism.*
Equations (21.1) are equivalent to

mo i)

since by hypothesis the determinant g of the gy's is different from
zero, and consequently the covariant components satisfy

dx¥
(21.5) lj,k'a? = 0.
22. Parallel displacement and the Riemann tensor. For
a general parameter ¢ equation (21.1) becomes

. ax ;
©2.1) o +2.l{k‘l}d—d’”; — 0.

Instead of speaking of the solution determined by an initial direction
as a set of parallel vectors, we may speak of the vectors arising
from a given vector by parallel displacement along a curve. In
particular, it is interesting to consider the effect of parallel dis-
placement of a vector about a small closed circuit.+

Take a surface defined by zf = f*(u, v), where the functions f*
and their derivatives up to the third exist and are continuous at P,
and consider the circuit conmsisting of P (u,v), Q (u-+Au,v),
Ru-+Au, v+4v), S(u, v+A4v) and P. If a vector A* be trans-
ported parallel to itself about this circuit, we have

ara

)ur
@9z = @+ (% )Av+ {25 )(A o'+

* Levi-Civita, 1917, 1, p. 184.

+ This question was considered by Schouten, 1918, 1, p. 64 and by Pérés,
1919, 1; it was considered for the general case of an affine connection by Weyl,
1921, 1, p. 106; see also Dienes, 1922, 2, and Synge, 1923, 3; the method followed
in the text is similar to that of Synge.

wm-0%+( )A+ (%
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(195 = Wn— () st 5 (Go5) 4w+
()p = (W)s— (dl) Av+ (d’l) (4v)*+

where the terms not written are of the third and higher orders,

i 294

Z’;})q, ((;11_111;—)9 are given by (22.1)
and the equations resulting from the differentiation of this equation.
If all of the above equations be added, we have

(22(/:))1:— (l’)P—(Z’)p-—Au[(Zf: flf: ]+ [‘”’ ‘”' ]

a2 A a2 a2 A dA
1 2 ez = ] il
g @or| (), + ()] + 5 0| () H )+
If we assume that the z’s are geodesic with P as origin, so that
/1 } == 0, we have from (22.1), in which the Christoffel symbols

ik
are evaluated by means of their expansions about P,

and the quantities such as (

avy ar¥y (3 { }axmﬂk)
(du)p_o’ (dv) - (695"‘ ikl au av) dut--
ayd¥\ [ 8 [Jildz™ da) k)
(du)R_ (Bx"‘ |jk} o ou Au
d i ox™ 6xl
_(bx"‘{jk v ) Av-I—
)=l
dvls axm™ kS
dza aa\ 8 Ji)oeam dxf .k)
(du’)p_I_(du’)R_ 2(8.1:’" ‘jk} an ou p+”"
a2 ax\ (8 [d)dxm da) )
(dv*)q+(dv’)s_ 2(835"‘ {ka v dv B0 ¢ P+“..

‘When these expressions are substituted in (22.2), we obtain

s = (e =il 55 5571,




23. Fields of parallel vectors 67

Since the left-hand member is a contravariant vector in V,, and
dx) dx™
du’ odv
follows that in a general cotrdinate system this equation is

, & are the components of contravariant vectors, it

N, — (pi_ 0% 02" k)
(22.3)  A()p — (R‘W e 220 ) Ausot--.

From the considerations of § 21 it follows that 4 (1f)»= 0 when
Rixmj=0. When this condition is not satisfied, it follows from (22.3)
that when a general vector is displaced around an infinitesimal circuit
the difference between its final and original direction is of the second
order and depends upon the value of the components Riyn; at
the starting point and upon the circuit. An exception to this case
is treated in the next section.

23. Fields of parallel vectors. From (21.1) it follows that
when a set of functions A¢ satisfy the equations

; PR LYY L
(23.1) Xy = ax,‘+z{kl}_ 0,

any two vectors of the vector-field are parallel with respect to
any curve joining points of these vectors.* The conditions of
integrability of these equations are (21.3), that is

(23.2) PR = 0.

Unless Ry == 0, which is assumed not to be the case, the com-
ponents of such vector-fields must satisfy (23.2) as well as (23.1).
Differentiating (23.2) covariantly with respect to 2™ and expressing
the condition that (23.1) is satisfied, we get

(23.3) A Riypem, = 0.

Continuing this process, we get a sequence of necessary conditions
A Rymm, =0,

(23.4) L

A Riyk,memy...m, = 0,

* in the region of V. in which (23.1) apply.
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If the equations (23.2), (23.3), (23.4) are algebraically inconsistent,
there is no field of parallel vectors. To be consistent it is necessary
that equations (23.2) and the first ¢(= 0) sets of equations (23.3)
and (23.4) admit acomplete yystemofpsetsof linearly independent solutions
Ayt ey Ayt for pS 1, i=1, .., m, in terms of which all other
solutions are linearly expressible, such that these p sets of solutions
satisfy also the (¢} 1)th set of equations (23.4). Thus any set of
solutions 4* is given by
(23.5) 2= gW hyit. .. @ 3y

where the ¢’s are functions of the «’s, which we seek to deter-
mine so that A% is a set of solutions of (23.1).

In the first place we remark that if is® is any one of the p
sets of solutions and we substitute it in (23.2) and the
first ¢ sets of (23.3) and (23.4), and differentiate these equations
covariantly, then since 4% satisfies the (g} 1)th set also it follows
that i¢%m is a solution of (23.2) and the first ¢ sets of (23.3) and
(23.4). Consequently it is expressible in the form

(23.6) dafm = Wl ot W

where the p® covariant vectors ,u(“‘ (e¢,0=1,...,p;m = 1,.--,m)
are to be determined; here « and ¢ indicate the vector and m the
component. They are determined by the condition that (§ 11)

Aot mi— Ao\t im = — ho/ Rjmy = 0,

in consequence of (23.2). Substituting from (23.6) in this equation
and making use of (23.6) in the reduction, we obtain

[68,. . — 88 A () B — 6@ N 2s = 0. (2, 8=1,-.-,p).*

Since the rank of the matrix || 45| is p, these equations are equi-
valent to the system

®
oulim_ 00 e,B0=1,.
R ;n'»l+ (6 B — B = 0 ( L1 o 23,

*In this equation « and g are summed from 1 to p; the same is true of a
repeated index of this sort in the following equations.
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When now we require that A* as given by (23.5) shall satisfy

(23.1) we obtain, in consequence of (23.6), since the rank of |A} || is p,

39 | (o
(23.8) o Tl = o.

Because of (23.7) this system of equations is completely integrable,
and consequently the solution involves p arbitrary constants. In
view of the above results we have the theorem:

If the system of equations (23.2), (23.3), (23.4) is algebraically
consistent, there exists one or more fields of parallel vectors; more
specifically, if (28.2) and the first q (= 0) sets of (23.3) and (23.4)
admit a complete systerrf of solutions which also satisfy the (¢ + 1)th
set of these equations, therp exist fields of parallel vectors depending
on p arbitrary constants.

Since equations (23.8) admit a solution determined by an arbi-
trary set of initial values, we see that when the conditions of the
theorem are satisfied, any vector at any point P in space in the
p-fold bundle determined by the p vectors As° is parallel to a
vector in the bundle at any other point.*

We have just obtained the conditions for fields of parallel
vectors in invariantive form. Now we shall show how such
fields may be obtained by making a suitable choice of cobrdl-
nates. Using the preceding notation and indicating by i.’ ¢
components of p independent fields in coordinates z'*, we have

(23.9) A= a2 W

Consider the system of p linear partial differential equations

(23.10) Xo (0) = :lo'ﬂﬂ =0, (c=1--,p;5=1,---,m),

where X;(0) is an abbreviation. If X X;(60) has the significance

06
X X,(0) = deft 5oy (Aol 2 ),

*This problem for a single field of parallel vectors was treated by Levi-
Civita, 1917, 1, p. 194; cf. Eisenhart, 1922, 3, p. 209; also Veblen and Thomas,
1923, 4, pp. 589-591.

See
App.7

e See
App. 8
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the operator ,
(X.,, Xo') = XfXa(o) - X,X,(O)

is called the Poisson operafor. A fundamental theorem of systems
of linear partial differential equations is: A necessary and sufficient
condition that a system (23.10) be completely integrable, that is,
that it admit n—p independent solutions, is that (X, X,) be linearly
expressible in terms of the X’s.*

When now we apply this general theory to the case where 4*
satisfy (28.1), we find that (X, X;) 8 = 0 and consequently equations
(23.10) admit n—p independent solutions. If we take them for
the coordinates 2", ..., 2™, it follows from (23.9) that %' —
for t = p+1, ..., n. Again if we omit one of the equations
from (23.10), say X,(8) = 0, the remaining system is complete
and admits in addition to 2/*™, ..., /™ another independent
solution 2. In this way the x'’s are defined so that all of the
components of the 4’s are zero except those with the same subscript
and superscript. If it is assumed that these vectors are unit
vectors, we have accordingly in the new cotrdinate system

1

) l"lt=0 (621""717;t=1;“‘;n;t#°‘)-

If these expressions are substituted in (23.1), we get

52 108 Vi —{/of = 0

litmo ((ozlomm )
ko j’k__—l;"’rn;j*o"
{ kao-lf is not summed for o, but consists of a single term.
If we multiply the first of these equations by gs; and subtract
from it the second multiplied by ¢gj; and summed for j, we get

the equivalent set of equations

where

g.,,ﬁ 10¢ V goa — ko, 1] = 0,

* Qoursat, 1891, 1, p. 52.
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that is,

2 dgu __ 9gat By:w
@19 gl log ger— 208 20 20 _

For the case k¥ = o, these equations reduce to

] yal _ 0
r (VE« = ts 5 V eagos.

In accordance with these equations we define p functions ¥s by

wo' Yol i 6%
Vesgos = oy Veegn 02

from which have

9 9
@18)  gn=ere 2L g=1, g i=1,., ).

From these expressions it follows that ¥, must involve z°,
otherwise the space is of less than » dimensions.
Again if neither & nor ! in (23.12) is ¢, we have

o 0Ys Yo “=1;""P;k;l=17"’n;)
(23.14) gu = es 9 o T Puc ( k¥o,l+o !

where 9us is a function independent of a°.
From (23.13) and 23.14) it follows that for each value of ¢ the
fundamental form can be written

9’=e¢(d¢¢)’+yﬂdx' dx* (”',8‘—‘1,---,”;7‘*0’,84‘—0‘),

where g,; are mdependent of x"

If then we put 2'° = g4, 27 = 2/ (j + o), the curves of para-
meter =’ are the same as those of parameter x° and these curves
are geodesics (cf. § 19). Hence we have:

When a Vi admits p independent fields of parallel unit vectors,
the vectors of each field are the tamgent vectors to a congruence
of geodesics.
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Conversely, if the fundamental form of a space is reducible to
the form

(23.15) 9 = ¢ (dx) + gys da” dx® rys=2 ..., m),

it is found from (23.12) that a necessary and sufficient condition
that the tangents to the curves of parameter x' form a parallel
field is that g,s be independent of x'. In this case all the spaces
2! = const. have the same fundamental form and consequently any
one of them can be brought into coincidence with any other by a
translation, that is, by a motion in which each point describes the
same distance along the geodesic normal to the sub-space. In
the case p > 1 the space admits p independent translations; thus
any one of the subspaces of each of the family of subspaces
Ye = const. can be brought into coincidence with any other of the
family by a translation.

If, in particular, we take Wo=2"+9¢ (@?1, ..., z")foro=1, ... ,p,
it follows from (23.13) and (23.14) that for a V, with the funda-
mental form

9 =-e (d2)’+ - - - + e (d2P)*+ gop da® d? (@¢,8=p+1,.--n),

where gog are arbitrary functions of z#+1,...  z* the tangents
to curves of parameters z', z% ..., z? form fields of parallel vectors.*

24. Associate directions. Parallelism in a sub-space.
Let C be any non-minimal curve in a V, at points of which the
codrdinates 2 are expressed in terms of the arc, and let ¢ be
the components of a unit or null vector-field; in either case we have

(24.1) LA = 0.
If we put

e
(24.2) I = w8

it is seen from (21.1) that pf = 0, if the vectors at points of C
are parallel with respect to the curve; otherwise, as follows from

* Of. Eisenhart, 1925, 8, for the complete solution of the problem.

T If the curve is minimal, we take for s the parameter in terms of which
the equations of the tangent geodesics are of the form (17.8); note the remark
following equation (17.11).
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the form of the left-hand member of (24.2), the functions u* are
the contravariant components of a vector, which Bianchi* has
called the associate direction for the vector 4 along the curve.
From (24.1) and (24.2) we have

(24.3) Aipt= 0,
and consequently:

If a set of vectors at points of a curve are nmot parallel with
respect to the curve, there is determined at each point of the curve
an associate direction and it is orthogonal to the given wvector at
the point.

The invariant 1/r defined by

(24.4) L Vi

r

we call, with Bianchi, the associate curvature of the vector i with
respect to the curve. When, in particular, the vectors A are
tangent to the curve, equations (24.2) and (24.4) reduce to (20.1)
and (20.3), and consequently the associate direction and curvature
are the principal normal and first curvature of the curve.
Consider the space V,, as immersed in a space Vy, of cosrdinates %,
the equations of V, being (16.2).t Let & be the components in
the y’s of the vector-field whose components in the z's are A that
is [ef. (16.8)], ,
@ — ay_
(24.5) # = Mo

Differentiating these equations with respect to s, we have

d8f Al 8y |, %yf  do
(24.6) s~ as o0 TV saew ds

If #* denote the components of the associate direction of £* in V,,
(which is not necessarily the same as the associate direction of A¢

*1922, 4, p. 161.
t Throughout the remainder of this section Greek indices take the values
1,...,m and Latin 1, ..., n, unless stated otherwise.
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thi )
p —3
@24.7) # = e}
where the Christoffel symbols /A r} are formed with respect to the

fundamental tensor a,g of V,,. Because of (24.5) and (24.6) this
may be written

av oyt %y B\ 2y oy
(24'8) "2'9 dS s + (axiaxl +{ar[a ?xt ax')

If we denote by [¢7, k], the Christoffel symbols of the first kind formed
with respect to (12.3), we have from (16.3) by direct calculation

N P B\ 3y" 3.1/")
24.9) [, Xy = a5 3 axk (axtax.l +{opr}a oxr dxl/’

When (24.8) is multiplied by aﬂa%;— and summed for 8, the
resulting equation is reducible by means of (16.3) and (24.9) to

2y’ dli
aps et = g 42 I 1,

24.10
(24.10) o2

= ‘q'k ds (be + l{lj})

If the vectors &% are parallel with respect to the curve in Vi,
then 2 = 0, and from (24.10) and (21.4) we have that the vectors
are parallel in V,,. Hence:

If a curve C lies in a Vn which is immersed in a Vi, and vectors
are parallel along C with respect to Vm, they are parallel with
respect to Vy.

As previously remarked (§ 16), if the fundamental form of V, is
definite, it is possible to find a euclidean Vi, enveloping it and the
requirement that vectors in V, be parallel with respect to Vs leads
to parallelism with respect to V,,. This was the point of departure
for Levi-Civita’s definition of parallelism in any space.*

*1917, 1
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As a consequence of the above theorem and the first theorem
of § 21 we have:

If a curve is a geodesic of a space, it is a geodesic of any sub-
space tn which it lies.

If vectors along a curve are parallel with respect to V, but
not with respect to V,,, we have from (24.10)

9
(24.11) aa,,%‘“- 78 =0,

that is, the associate vector is normal to ¥y, and conversely. Hence:

A necessary and sufficient condition that vectors along a curve
in Vn be parallel with respect to Vn, when they are mot parallel
with respect to an enveloping space Vm, is that the vectors in Vp
associate to these vectors be normal to Vn.

When a geodesic in a space Va is not a geodesic in an enveloping
space Vm, its principal normals as a curve in Vu, are normal to V. *

Consider two spaces V. and V; immersed in a V,, such that at
each point of a curve C every normal to one is normal to the
other; in this case the spaces V, and V, are said to be tangent to
one another along C. From the next to the last theorem we have:

If two spaces Vo and Vi in a Vi are tangent along a curve C,
vectors parallel to one another along C with respect to V, are parallel
with respect to Vy and vice-versa.

Two spaces Vn and V, for ¢ <n in a Vi, are said to be tangent
along a curve C, if every normal to V, at each point of C is normal
to V,. Hence:

If in a Vi two spaces Vo and Vg for g<<n are tangent along
a curve C, vectors parallel to one another along C with respect to V,
are parallel with respect to V.

Two subspaces V. and V. immersed in a V,, are said to be
applicable, if there exists a transformation of the codrdinates z
and «* of these spaces such that the fundamental forms are
transformable into one another. Since the equations of parallelism
involve only the components of the fundamental tensor and their
first derivatives, we have:

*This a generalization of a characteristic property of geodesics on a surface
in euclidean space, 1909, 1, p. 204; cf. Bianchi, 1922, 4.
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If two spaces Vu and Va in a Vi are applicable, to vectors parallel
along a curve with respect to Va there correspond vectors parallel
along the corresponding curve in Va.

As a simple example of several of these theorems, we consider
a sphere in euclidean space and a circular cone tangent to the
sphere along a small circle C. H we have a set of vectors parailel
along C with respect to the sphere, they are parallel with respect
to the cone, and when the cone is rolled out upon a plane the
vectors are parallel in the euclidean sense.

We consider the converse problem: Given a curve C' and at
each point of it a vector ¥, to find all sets of vectors 4‘ such
that the vectors w? are associate to AL We denote by 4,°
(¢=1, ..., n—1) the components of »— 1 unit vectors orthogonal
to pf. Then 4%, if they exist, are given by

B it Chadt oo L Ay = 9 Agft

(24.12) (6=1,.--,n—1)

in accordance with the first theorem of this section.' Substituting
in (24.2), we have

(24.13) i Ag)t

aite )
ds +t0““"7|t7

where wof are the components of the associate vector of g’
Multiplying (24.13) by 4,; and summing for ¢, we have

at

(24.14) gt e’ Ay = 0,
where
(24.15) Cre = Gy et Aoy (6,7 =1,.-.,n—1).

We assume that the #s in (24.12) are chosen so that A% are the
components of a unit vector, if it is not a null vector. Hence

we have .
(24.16) a ' =¢cor0 @, 6 =1,.-.,n—1).

We consider first the case when g’ is not a null vector, in
which case the n—1 vectors 4, can be chosen mutually ortho-
gonal (§ 13). Then
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(24.17) e = e, ¢ =0 (¢ ¥9),
and equations (24.14) become

(24.18) %sf + e, = 0,

where by, = wg(*4,;. Differentiating Aeidy; = 0 (s 7) with
respect to s and applying (24.2), we have b;.+ b, = 0. In con-
sequence of this relation any set of solutions of (24.18) satisfy
the condition ;ea(t")' = const.; consequently if (24.16) and (24.17)

are satisfied by the initial values, they are satisfied for all values
of s. Hence equations (24.18) admit oo®2 sets of solutions
satisfying (24.16), where ., are given by (24.17). Hence:
Given a set of non-null vectors along a curve C, there exist co™—2
sets of vectors 2 along C with respect to which the given vectors are
associate; each set is determined by choosing the components A at

a point of C.*
When g ave the components of a null vector, we have
(24.19) W= A e=1,...,n—1),

in accordance with the considerations at the close of § 13. More-

over, we have
(24.20) Mgl = @ &+ codyt (6,7 =1,...,0—1),

where & are the components of a vector linearly independent of
the n—1 vectors 4s. Since the n vectors & and Agf are all
independent, equations (24.13) are equivalent to

(24.21) % = 6‘—66.,. s
t‘ea = 0.

Differentiating (24.19) covariantly with respect to 2* and multiplying

by dd_x:’ we have, in consequence of equations of the form (24.2),
. dak . . dc® .
#k d—a;‘ = (& 0+ ¢ Zril) + —Zlis‘l"lz'

* Cf. Bianchi, 1922, 4, p. 166, where this theorem is established for spaces
with a definite fundamental form.
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Multiplying by u; and summing for ¢, we have, since u;& 40,
(24.22) o = 0.

Differentiating the second of (24.21) and making use of the first

and of (24.22), we obtain t"('ff" —d, Qr) = 0. Proceeding in like

manner with this equation, we find

d®e do, dc dog
ta( ds: 2¢ d.: “91'+co'c 19a)+c (__cro'(’r) =0

(¢,0,0 =1,...,n—1).

From this process it is seen that the determination of vectors ¢
for which a given null vector ¢ is the associate depends upon the
character of the latter, that is, whether sooner or later we obtain
an equation by this process which is satisfied in consequence of
its predecessors.

We will not proceed further with th1s general case, but will
establish the theorem:

If a set of null vectors are parallel with respect to a curve C,
they are the associates with respect to this curve of o™~ sets of vectors.

ot
ds k——l"

satisty the condition pii; = const. Hence any set of solutions
whose initial values are such that w?4; = O satisfy the conditions
of the theorem.*

Exercises.
xd
1. When in (20.1) #f = a‘, dd , either the associate tensor a is skew-
3
symmetric, or a, ‘3‘2 % = 0 is a first integral of (20.1).

*The existence of solutions A% of the above equations is the problem of the
existence of solutions of a system of ordinary linear differential equations of
the first order (cf. §21).
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2. Let P, P,, P, be the vertices of a geodesic triangle in a V, and ¢, 9,, ¢,
the interior angles of the triangle at these respective points; show that when the
tangent vector at P, to the geodesic P, P, is transported parallel to itself around
the triangle in the direction P, P, P,, it makes the angle 7 —¢ — ¢, — @, with
its original direction at P,. Lwi-Civintg,_'l"?‘gé, 4, p.224.

3. A necessary and sufficient condition that the tangents to the curves x* = const.
on a V, be parallel with respect to a curve C is that C be an integral curve of

{2}@':0 G =19

1i

Bianchi, 1922, 4, p. 167.
4. When the coordinates of a V, are chosen so that the fundamental form is
e, (dzY+2g,, da' dz*+e, (d2?)?, and only in this case, the tangents to the para-
metric curves of either family are parallel with respect to the curves of the other
family. Bianchi, 1922, 4, p.170.
5. When the fundamental form of the surface considered in § 22 is definite at

the point P, equations (22.3) can be written

AZ
4, = (R‘w”‘)PEH’ E,I”‘m + -,

where 42 is the area enclosed by the circuit, @ is the angle between the para-
metric curves at P and £ ¢ and &, are the components in V, of the tangents to
these curves at P.

6. If 4 are the components of any vector field and 4 A* = cos e, the change
in ¢ at a point P when the vector A‘ is transported around a small circuit as
in § 22 is given by (cf. Ex. )

Az
(de)p = — By AM)p 8, & 11 sinfsine ’

Pérés, 1919, 1, p. 421.
7. When in equations (23.13) and (28.14) for 6 = 1, 2

¢1=exfx+af2+‘4u v, = e f,+af, +4,,

where f, and f, are independent of «* and x' respectively, a is an arbitrary con-
stant and A4, and 4, are arbitrary functions of «* - -, ", the tangents to the
curves of parameters x! and x* constitute fields of parallel vectors.

25. Curvature of V, at a point. Let 4, and 2,/ be the
components of two contravariant vector-fields. The vectors at
a point P determine a pencil of directions defined by

(25.1) &= alyi+ B,

where « and 8 are parameters. The geodesics through P in this
pencil of directions constitute a geodesic surface S. The Gaussian
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curvature of § at P was taken by Riemann* to be the definition
of the curvature of Va at P for the given orientation, that is, the
orientation determined by 4, and 2%

We assume that the codrdinates 2* of V, are Riemannian with P
as origin (§ 18). Then the surface S is defined by

(25.2) 2= hfu't A ud,

where u' = as and «® = Bs for any geodesic through P, and 2,/
and A are constants.t
In terms of »' and u® the fundamental form of § is

(25.3) ¢ = by du” dus,

where (cf. § 16) )
— gy 22 By

(25.4) bep = 91 o 55+

From a formula analogous to (24.9) we have in this case, as a con-
sequence of (25.2),
SRR B AN |
= 1y k

(25.5) (@B, vl = guc dyf* Ao Agy {z) fo

For n == 2 all the Riemann symbols of the first kind (§8) are zero
or differ from R,s,s at most in sign, because of the identities (8.10).§

In this case we have for two cotrdinate systems, »’ and u'’,

- = dul dud dul aus\2
Ring = Rmz( — )
owt auw?  auw? awtl’

as follows from the general equations (4.6), and also for the
determinant b = |b,s| from (9.3)

(bul ou®  du! 6142)’
au't aw?  aw’ autl’

Y =

*1854, 1, p. 261.

T We observe that s is not uniquely determined when the geodesic is of length
zero [cf. the remarks following equation (17.11)].

+ Throughout this section it is understood that Greek indices take the values 1
and 2.

§ We indicate by R_.,py,; these symbols formed with respect to (25.8).
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Hence
(25 6) K J— RX’I’ —_— Rl!l’

b bi1 bes —bas’

is an invariant. Since

b b b
p1t — 82 [ AU § Pt — AL
b’ b’ b’
we have

(26.7) Kby = R, Kby = Ean = R, Kbn = Rlas.

From these equations it follows that K as defined by (25.6) is
the Gaussian curvature of S.*

From (25.5) it follows that at P the origin of Riemannian
codrdinates all the symbols [¢8, y}, are zero, and from (8.8)

= 2 9
Bygs = 5‘;‘{[2 27 I]b_a_u’[l 27 1]b-

When the expressions from (25.5) are substituted, we obtain, because
of (18.8) and (8.3),

= - 9 J1 ] l

Bisis = gue ba® daff Ao 2™ (W { ij } Ty {mj })

= gu M) Ao A2 M)™ Rlimj = Ricimyj A1 Ao Ae™ Ag/ .
Since the expression on the right is an invariant, it holds in any
codrdinate system.
We have from (25.4) and (25.2)

(25.8) b1y bes—b1s® = (gnj gix— gk gij) 2 Aot AyJ Agf.
Hence (25.6) may be written in the form

— B 2 2o 1) Ay
(9 gix— gnie 95) Ar (P Aaf* AapJ Aaf*”’

which is the expression in any codrdinate system for the curvature
at a point P for the orientation determined by 4, and 4.

(25.9) K

* 1909, 1, p. 155.
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26. The Bianchi identity. The theorem of Schur. We

recall from (8.3) that the components R of the Riemann tensor
are defined by

(26.1) R = fg{fi}—"a‘aﬂ?{z}+{"Z}{:7:}_{y:k}{z}

If we choose geodesic coordinates at a point P, then at P

92 h * |k
h. = -

From this and similar expressions for the other terms in the left-
hand member of the following equation it follows that

(26.2) Rl + Rrig j+ Rrajx = 0

at P. Since the terms of this equation are components of a
tensor, this equation holds for any codrdinate system and at
each point. Hence (26.2) is an identity throughout the space for
h, 4,5,k 1 =1,...,n. It is known as the identity of Bianchi who
was the first to discover it.* Since gy and g¥ behave like con-
stants in covariant differentiation, we have from (26.2)

(26.3) Ryt + Bra,j + Bray,x = 0.
Because of the identities (8.10) equation (26.2) can be written
Rrje1— B+ 9P Ryaje = 0.
If we contract for ~ and %, we obtain
Ry, 1— Rij+ ¢"™ Bmijn = 0,

where Ry are the components of the Ricei tensor (§ 8). If this
equation be multiplied by g% and ¢ and I be summed, we get

13R
A d
(26.4) By = 555

* Bianchi, 1902, 1, p. 851.
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where
(26.5) R = ¢*Ry

is called the curvature invariant, or scalar curvature, of the space.*
Equations (26.4) are important in the general theory of relativity.

From (25.9) it follows that a necessary and sufficient condition
that the curvature at every point of space be independent of the
orientation is that (cf. Ex. 14, p. 32)

(26.6) Brige = b (gnjgix — gne 94),

where b is at most a function of the ’s. Since we have from (26.6)
Ruin 1 = 3_b(y G — )
hijk,! — 0 hj Gite—— Ghk 3ij) 5
it follows from (26.3) that

x, " (o g — e g0) + g 6:1:/ " (ome ga—gmga)
+ —a_xT (gmgi— gnign) = O.

If we assume that j, k¥ and ! are different, on multiplying this
equation by g and summing for %, we obtain gac:—xb, —ga% = 0.
If 7 is allowed to take values from 1 to #, it follows that
% == 5% = 0, since the determinant g is not zero by hypothesis.
Hence b is constant and we have the following theorem due
to Schur:t

If the Riemammian curvature of a space at each point is the
same for every orientation, it does mot vary jfrom point to point.

A space of this kind is said to be of constant Riemannian
curvature. Equations (26.6), where b is constant, are the necessary
and sufficient conditions for such a space.

In § 10 it was shown that a necessary and sufficient condition
that there exist a codrdinate systemfor a Vy for which the components

* Of. Levi-Civita, 1917, 3, p. 388.
+1886, 1, p. 563.
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gy of the fundamental tensor are constants is that Ry = 0 for
hyi, 5,k =1,...,n. In this case as follows from (25.9) K= 0
for every orientation at every point of V,, and is a special case
of (26.6) with b = 0. When the fundamental form is definite,
Va is a euclidean space of n dimensions and the special coordi-
nate system is cartesian. We denote by S, a space for which
Ry = O for Ay 4,5,k = 1,...,n and call it a flat space.

27. Isometric correspondence of spaces of constant
curvature. Motions in a V,. When the fundamental forms
of any two spaces of the same order are transformable into one
another, we say that the spaces are isometfric and that the equations
of the transformation define the dsometric correspondence. In § 24
we have applied the term applicable to two isometric sub-spaces
of a space V,,; some writers use this term as synonymous with
isometric, but we prefer the term isometric when the two spaces
are not looked upon as sub-spaces of an enveloping space, since
applicable has the connotation of applicability.

Returning to the consideration of equations (10.5) and their
interpretation in § 26, we give the third theorem § 10 the form:

Any two spaces of n dimensions of the same constant curvature
are isometric, and the equations of the isometric correspondence
involve n (n+ 1)/2 arbitrary constants.™

The geometrical properties of a surface in euclidean 3-space
which depend upon the fundamental form alone as distinguished
from its properties as a sub-space of the enveloping euclidean
space are called intrinsicc. 'We apply this term to the properties
of any V, depending only upon its fundamental form. As a result
of the above theorem we have:

Two spaces of n dimensions of the same constant curvature whose
JSundamental forms have the same signatures have the same intrinsic
properties.

We have seen in § 26 that a necessary and sufficient condition
that a space V, be of constant curvature K, is that the components
of the fundamental tensor satisfy the conditions

(21.1) Brije = Ko (g gix— gnr 9) -

*In order that the correspondence be real, the signatures of the fundamental
forms of the two spaces must be the same.
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We inquire whether there exists a system of cotrdinates z* in
such a space for which the fundamental form is

],.‘-,n N\ 2
ei(dat
(21.9) o= %
where U is a function of the 2’s and the ¢’s are plus or minus
one. Making use of (15.8), we find that the conditions (27.1)

applied to (27.2) reduce to

U
0w
(27.3) 1,--,m
a2 AN &S aU’] .
U(ei—a‘a;g +ej';£ﬁ) = etej[K0+ ; ek(_aw") G+,

From the first of these equations it follows that
U=X+.--+ X,

where X; is a function of z¢ alone. From the second of (27.3)
and the equation obtained therefrom by replacing j by I, we get
Xj ¢ = Xi'e;, where the primes denote differentiation with respect
to the argument. Since the first and second terms involve x/
and 2 at most, it follows from this equation that Xi'e; =2a,
where a is an arbitrary constant, and therefore that

X; = ei(axi® 4+ 2bi2i + ),

where the b’s and ¢'s are arbitrary constants. If we substitute
these expressions in the second of (27.3), we obtain the following
conditions upon these constants:

(27.4) K, = 4Zq(aq—bf).

When, in particular, we take all of the b’s equal to zero and
choose the ¢'s so that Yeic; = 1, then (27.2) becomes
1

e (A2’ + - - -+ en(dz)’
.
[14 5o e+t ena?)]

(21.6) ¢ =
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This is known as the Riemannian form for a space of constant curv-
ature*. From the first theorem of this section we have:

The coirdinates of any space of constant curvature can be chosen
so that its fundamental form assumes the Riemannian form (21.5).

In order to give a geometric interpretation to the first theorem
of this section, we consider two points P and P’ of two spaces
Vs and Vi of the same constant curvature. As we are concerned
primarily with real isometric correspondences, we assume that the
signatures (§ 9) of the fundamental forms at P and P are the
same. We take any ennuple of mutually orthogonal non-null
vectors at P for the directions of the parametric curves at P and
similarly at P/, and choose the coordinates so that at P and P’
the fundamental forms are respectively

9 = (da'f+ .- + (da?y — @xPHy—... —(da?)’,

(27.6) ‘
¢ = @z’ 4+ (@2 — (@Y —. .. — (a2

Returning to the considerations of § 10, we observe that if we take
(27.7) pji = dj

for the values of 2% at P, the conditions (10.3) are satisfied and
also (10.4) in consequence of (27.1). By the arguments of § 10
there exists a solution of (10.1) and (10.2), determined by the
initial values (27.7), which satisfies (10.3) and (10.4) for all values
of 2. We remark that (27.7) is the condition that the direction
of the curve of parameter x* at P corresponds to the direction of
the curve of parameter 2’° at P'. From the first of (27.6) it
follows that the components 4° of the directions of the curves of
parameter ¢ for ¢ = 1,..., p at P are such that the invariant
g9y A4 A is positive, and for ¢ = p41,.... n this invariant is
negative; similarly for the directions of the parametric curves at
P'. According as this invariant is positive or negative we say
that the corresponding vector is positive or negative. Accordingly
we have the theorem:

If Vi and V, arve two spaces of the same constant curvature,

* Riemann, 1854, 1, p. 264.
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and P and P are two points of these spaces at which the signatures
of the fundamental forms are the same, a real isometric correspond-
ence can be established between V, and V, such that P and any
orthogonal ennuple at P corresponds to P and amy orthogonal
ennuple at P', subject to the restriction that positive and negative
vectors at P correspond to vectors of the same kind at P .*

When, in particular, we apply the preceding considerations to
one space instead of two, we have an isometric correspondence of
V» with itself such that P and an arbitrary orthogonal ennuple
at P correspond to a point P’ and an arbitrary orthogonal
ennuple at P’. Thus we interpret the equations between the z’s
and 2’'s as an isometric point transformation of the space into
itself. This is evidently a generalization of a point transformation
of a euclidean space into itself; when the equations of such a
transformation involve parameters, they may be interpreted as
defining a motion of a portion of the space into amother portion.

In order to consider more fully the question of a motion of a
portion of a space into another portion, we recall that when a
euclidean space is refered to cartesian coordinates ¥, the equations
of a general motion are defined by

(27.8) zt = o\ 2/ + ¥,

where the a’s and b’s are constants subject to the conditions
(27.9) 2@ =1, 2 dal, =0 G+ k).
From (27.8) and (27.9) we have

(27.10) 2@z = 2z’

] i

If now the z’s are replaced by functions of any codrdinates =”* and
and z* by the same functions of z”, equation (27.10) becomes

yijd{bnth'j — g_;;idi’i ﬁlj,

* Evidently there is no such restriction when the fundamental forms of Va
and Vi are definite.
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where gi; and gj; are the same functions of the #’s and z's re-
spectively. Dropping the primes we have the result that the
equations of a motion in euclidean space referred to general
codrdinates satisfy the differential equations

_ ox* axt
@.11) 9= a7 o

where gy and gy are the same functions of the z’s and z’s re-
spectively.

We generalize this result and say that when the fundamental
tensor of a V, is such that equations (27.11) admit a solution

(21.12) zt = ¢t (2, -, 2"

involving one or more parameters, these equations define a motion
of V, into itself; when, in particular, (27.12) do not involve a
parameter these equations define merely an isometric correspon-
dence of the space with itself. In order to determine whether a
space V, admits motions into itself, we have only to apply the
processes of § 10 to the case where g; and gy are the same
functions of the 2’s and z’s. This general problem will be considered
in Chapter 6. For the present we remark that the third theorem
of § 10 may be given the form:

A space Vu of constant curvature admils a group of motions of
n(n-+1)/2 parameters; conversely, when a Va admits o group of
motions of n(n-+1)/2 parameters, its curvature is constant.*,

From the fourth theorem of this section and the above con-
siderations we have also:

If the signature of the fundamental form of a space of constani
curvature is the same at all points, there exists a motion of the
portion of the space in the meighborhood of a point P inio the
portion in the neighborhood of any other point P' such that an
orthogonal emnuple at P goes into an arbitrary ennuple at P,
with the restriction that a positive or negative vector of the former
goes into one of the same kind at P’

* Cf. Bianchi, 1902, 1, p. 348.
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28. Conformal spaces. Spaces conformal to a flat space.
If the fundamental tensors gy and gy of two spaces V, and V,, are
in the relation
(28.1) -g_il' = e"’g,;,

where ¢ is any function of the z’s, from (12.5) it follows that
the magnitudes of the vectors of components dx* at points of V,
and ¥, with the same codrdinates are proportional and from (13.4)
that the angles between two corresponding directions at corre-
sponding points are equal. Accordingly we say that the corre-
spondence between V, and V, is conformal, and that V, and V, are
conformal spaces. The condition (28.1) is necessary as well as
sufficient.
From (28.1) we have
(28.2) gy = e gy,

and from (7.1) and (7.2) we derive the following relations between
the Christoffel symbols formed with respect to the two tensors:

[ij, k] = &(lij, K+ g0+ g0 — gy 0.1),

(28'3) ’l— — Jl ! 3! m
Vigf = \ij +8/0;+dlci—gijg"mom,
where o,; = %. If o,;; denote the second covariant derivatives

of o with respect to the ¢’s and we write

(28.4) 6j = 6,y—0,;0,;,

when we substitute these expressions in equations analogous to (8.8),
we have

€29 Ry = Rijie + g 015+ 9ij Ok — ghj ik — Gk Ong

(28.5)
+ (gnx 9 — gnj ) Ay 0,

where 4; ¢ is defined by (14.1).
By means of (28.2) and (28.5) we have for the expressions for
the components of the Rieci tensor (§ 8) for V,
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(28.6) Ry = g™ Rup = Ry+ (n—2)oy+gyldso+ (n—2) A d],

where A;o is defined by (14.3), and the invariant curvature is
given by

(28.7) R = gV Ry — ¢ ¥[R+2(n—1) Aso+(n—1)(n—2) 4, 0].

The case n = 1 evidently is of no interest. Since any
quadratic differential form in two variables is reducible to the form
A{(dz")® +(d=x*?] in an infinity of ways*, any V; is conformal to
any other. In what follows we understand that »>2.

In consequence of (28.1) equation (28.7) can be written

(28.8) gy B = gy[R+2(n—1) Ao+ n—1)(n—2)A0].

Eliminating 4;¢ from this equation and (28.6), we obtain

oy = 7171_—2 (Ry— Ry)— 2—({_‘—1;(7_?) (55 B—gy B)
(28.9) )
_?gd Alo'.

Because of (28.2) equations (28.5) can be written

28.10) By = R+ 0k oy— 8} 0w+ 9" (9 on— gix o)
+ Sk g5 — 9] gn) Ao
If the expression (28.9) for ¢; and analogous expressions for

i, oy and oy be substituted in (28.10), the resulting equations are
reducible to

(28.11) (—7"3;,‘1; = Chu,
where
1
C'i = R'u+ n—2 (8} Ra— 0% Ry+ g " — gy B™)
(28.12)

h

.R 3
+ B=Dn—2) (0% 95— 9; gir)-

*1909, 1, pp. 93, 102.

+
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Evidently C*;z are the components of a tensor, _and as follows
from (28.11) this tensor is the same for V, and V, in conformal
correspondence. It was called the conformal curvature tensor by
Weyl*, who was the first to consider it.

When #n =3 and the cotrdinates are chosen so that gy =0
(Z+j) (§ 15), it is readily shown that (cf. Ex. 15, p. 32).

The conformal curvature tensor is a zero tensor in a Vyt.

In consequence of (26.2) we have from (28.12)

Ch i+ i+ Cr g = ‘,;é§ (&} Raa+ 0% Ry
+ 8 Ryx+ g B2+ ga B+ gy B'w),
where we have put
R{]k = Rv;i,k .J+ 2(')1 ) (.qfkR — 9 ‘R'k)’
Ry = g" Ry.

Raising the index ¢ and contracting for 5 and j, we have in con-
sequence of (26.4)

(28.15) Ry = 0.

(28.13)

(28.14)

Contracting (28.12) for 2 and k, we have Cj = 0. When we make
use of this result and (28.15) in contracting (28.13) for 4 and %,
we obtain

(28.16) Chajn = 2=3

Ry;.

From (27.5) it is seen that any space of constant curvature is
conformal to a flat-space Sy (§ 26). We seek the necessary and
sufficient conditions that a V, be conformal to an S,.

In order that ¥, in the preceding discussion be an S, it is
necessary and sufficient that Rpyx = 0 (§ 26). From (28.11) and
(28.12) it follows at once that Chyx = 0, that is,

* 1918, 2, p. 404.
t Weyl, 1918, 2., p. 404.
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1
Biiu+ ———5 (9 Be— gne Byj + gix Brj — gy Bw)

T De—2 I)R(n —g) (9w 95— 9w gu) = 0.

(28.17)

Since Ru 0 also, we have from (28.9)
I _Bgy ..)._L .
(28.18) ¢4 = 0,i0,; + (2(n—1) Ry 5 99 Ao,

Moreover, when o satisfies these equations, equations (28.8) for
R = 0 are satisfied. The conditions of integrability of (28.18)
are [cf. (11.14)]

C,ijk— O,ikj = 0,1 R‘,;;k.

Substituting from (28.18), we find as the conditions
(28.19) Ry,x— Rue (—j(gﬂcR —g9i B =0

For n + 3 this condition is a consequence of (28.17) as follows
from (28.16). Hence we have the theorem:

Any V; can be mapped conformally on an Ss; a necessary and
sufficient condition that a Vy for n>>2 can be mapped conformally
on an Sy s that the tensor Ryx be a Zero tensor when n = 3 and
when n>8 that Chyx be a zero temsor.®

Exercises.

99,
1. A codrdinate system can be chosen so that —- B2 w,‘ =0 along a given curve,

Fermi, 1922, 5; Levi-Civita, 1925, 4, p. 190;

2. A space for which 1926, 8, p. 298.
R = R

4= 7 9y

is called an Einstein space. Every V, is an Einstein space (cf. Ex. 2, p. 47).

Show that an Einstein space V, has constant curvature.
Schouten and Struik, 1921, 3, p. 214.

* Weyl, 1918, 2, p. 404, showed that the vanishing of C,, is a necessary con-
dition. Schouten, 1921, 2, p. 80, that it is sufficient when n>>3; he also derived
the above conditions for a V,.



Exercises 93

3. Show that a space of comstant curvature K, is an Einstein space, and
that R = K, (1—n)n.
4. If an Einstein space is conformal to a flat space, it is a space of constant

curvature. Schouten and Struik, 1921, 3, p. 214.
5. Show by means of (26.4) that when »>>2 the scalar curvature of an
Einstein space is constant. Herglotz, 1916, 2, p. 208.
6. A V, for which
—1
ta=—(1=247 g=—@" g,=—@ s,
2 ..
g“=1__5“£’ gq=0 (‘*J)v

where a is an arbitrary constant, is an Einstein space for which R = 0.
Schwarzschild, 1916, 3, p. 195.
7. A V, for which

In= — 47, Gga =— — (‘”1)2 G = — (x'sin 3’)’1

a(x')? c C

g“=A7 A=14+—F ( ) +‘a—,fy yy:() G+,
where ¢ and ¢ are arbitrary constants is an Einstein space. Show that when
¢ = 0 the V, has constant Riemannian curvature. Kottler, 1918, 3, p. 443.

8. In order that the tensor
= R, +8@R+Y),

where R = g* R,? and where a and b are invariants, shall satisfy the conditions
&', = 0, it is necessary and sufficient that it be of the form

¢ = B+ of(— 3 R,

where ¢ is an arbitrary constant.

9. Let K be the curvature at a point P of a V, determined by the vectors i.
and ).,‘ ; when 4,¢is displaced parallel to itself around a small circuit and returns
to P, the change in the angle « with the vector 4,¢is given by dea = —K 42,
where AZX is the area enclosed by the circuit (cf. Ex. 6, p. 79).

Péres, 1919, 1, P, 4928.

10. If 4,* and A,* are the components of two families of unit vectors, the
vectors of each famxly being parallel with respect to a curve C, the curvature K
determined at each point by the vectors l ¢ and l,l‘ at the point satisfies
the equation

daK . dx
ds = GO By A Ay Ayt g

ik,
In order that K be constant along C for all sets of parallel vectors 4,,* and Ay

it is necessary and sufficient that

da™
RV""‘W = 0.

* orthogonal to one another.
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In order that this property hold for any curve, it is necessary and sufficient

that B, = 0. Levy, 1925, 1.

11. If ¢ is any function of the x's such that 4, ¢ + 0, and g¥¢,C,, =0
for k4,4, k1 = 1,-.-, 4, then C,, = 0. (Cf. Ex. 12, p. 82)

L Brinkmann, 1924, 2, p. 217.

12. It o = — 5 —~logg in (28.1), then J = const. for ¥, in this codrdinate

i} _
system and {ij} =0.
13. Show that the quantities

K, = =l + Rl sl

have the same values at corresponding points of two spaces whose fundamental
tensors are connected by (28.2). Thomas, 1925, 5, p. 257.

14. By expressing integrability conditions of the eguations of transformation
of the quantities K}, of Ex. 13 under a change of cobrdinate systems, show that
the following quantities are the components of a tensor:

F
(n—2) F}u"-di 7t d‘lEjk-‘-gﬂ -qij + (d Ip— "'9!1)’

where F,, is formed from the K’s in the same way that B, is formed from the
Ghnstoﬁel symbols of the second kind, and where F,, = Fj, Show also that
the above expression is equal to (» —2) Ci,,. Thomas, 1925, 5, p. 258.

15. Show that, if each Christoffel symbol in the covariant derivative of gYg,,
is replaced by the corresponding K . (cf. Ex. 13), the result is identically zero.
Hence show that in the system of coordmates y', defined by

o= ol +y— o Eod 1,

the components of the conformal tensor g¥g,, are stationary at the origin.
Thomas, 1925, 5, p. 259.
16. Show by means of (27.4) that the most general conformal map of a
euclidean space upon itself for n>>2 is obtained as the product of inversions
with respect to a hypersphere, motions and transformations of similitude.
Bianchi, 1902, 1, p. 375, 376.
17. Obtain the theorem for any flat space analogous to that of Ex. 16.
18. A necessary and sufficient condition that a V, for n>>2 can be mapped
conformally on an Einstein space 7,_ is that there exist a function o satisfying
the equations

L4

¢ %%t 49, = Ly,
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where
Rew R

snm—n' @ DLy =ga—p% B

1
A = —é- 41 Tc— i1
R being the constant scalar curvature of 17‘; then g, = lad 9y
Brinkmann, 1924, 2, p. 271.
19. Show that the conditions of integrability of the equations of Ex.18 are
1
o, Chqk P g— n_—§ RV"
where B, is defined by (28.14), and that consequently the equations are com-
pletely integrable only in case V, can be mapped on an S,.
Brinkmann, 1924, 2, p. 272.
20. In order that an Einstein space can be mapped conformally on an Ein-
stein space, it is necessary that the function o in § 28 satisfy the equations

= 9y -
”’U = 6‘“6',!+ m[BC"—R—”(ﬂ—I) A,d‘]

where B and R are the constant scalar curvatures of the two spaces.
Brinkmann, 1925, 6, p. 121.
21. Show by means of Ex. 4, p. 47 that for any solution of the equations
of Ex. 20
= __1_ R 20 g
4o = wi—D (Re®+2¢e’+ R),

where ¢ is a constant; and consequently, if 4,6 = 0, the scalar curvatures of
the two spaces must be zero. Brinkmann, 1925, 6, p. 122.

22. An Einstein space V, can be mapped conformally on another Einstein
space by means of a function o for which 4,0 %0, if, and only if, its fundamental
form is reducible to

P = f0gd5" 28 + LS @p=1,, 0,
where

JS= ”(” D [R(@")* + 2aax"+ 1),
a and b being constants, and the functions Gqp 8TE independent of x* and such
that ¢ pdz dz? is the fundamental form of an Einstein Va1.

: Brinkmann, 1926, 6, p. 125.



CHAPTER I
Orthogonal ennuples

29. Determination of tensors by means of the compo-
nents of an orthogonal ennuple and invariants. If the
equations (13.12) of an orthogonal ennuple are written in the form

29.1) k' =0 ¥k, It =ea (Rk=1...,n),
and we solve the n—1 equations of the first set for Ax;, we get

Ay Awg g

oA Ty

where £, denotes the cofactor of A" in the determinant |A”|
divided by this determinant; hence " ™, = &;. From the second
of (29.1) it follows that the value of these ratios is es, and con-
sequently

(29.2) Ay = en .

If we solve the equations
9o’ = dn (h=1,.--,m)
for g; and make use of (29.2), we obtain

1,..,n

(29.3) 9 = ; en Anii Anjj -
From these equations follow

1,0 R .
(29.4) ;,‘ en duji Any’ = 67

and

1,1 i
(29.5) 2 eh}-hlilhri = gﬁ
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m<n
Consider now any covariant tensor of the mth order,of com-
ponents ay, ...,,. The quantities cp ...n,, defined by

. (29.6) Chy ooy = p,.y; 1hll'1...lhul'fm,

1 ] "
are scalars. If these expressions for c,...n, are substituted
in the right-hand member of the equation

1,000,0

(29.7) s, ...q, = 2 Chy e h,, €h, - Ch, Anjs, -+ An s,

" Ryyooey b

1 m

this equation reduces to an identity because of (29.4). Hence:

The compoments of any tensor are expressible in terms of in-
variants and the components of an orthogonal emnuple®.

30. Coefficients of rotation. Geodesic congruences. In
conformity with (29.6) we define a set of invariants ypx by the
equations o
(30.1) ye = i j i’ A,

where Ay;; (4, = 1,-..,n) are the components of the covariant

derivative of A;; with respect to the fundamental form of the
space. Equations (30.1) are equivalent by (29.7) to

1,...,1m
(80.2) Myaj = %7 en e vk Mg Ar)j.

From the first of equations (29.1) we have by covariant
differentiation [ef. (11.11)]

Anii,j A+ A, s dn® = 0.

Substituting from equations of the form (30.2), multiplying by
Ay’ and summing for j, we obtain

(30.3) T+ Y = 0 ¥ 8);
in particular we have
(30.4) Y = 0.

* OF. Ricei and Levi-Civita, 1901, 1, p. 147.
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So far as these identities go there are n*(n—1)/2 independent
invariants Y. However, they are not arbitrary but are subject
to the conditions arising from the conditions of integrability of
equations (30.2).

The conditions of integrability of (30.2) are of the form (cf. § 11)

(30.5) Ayi, e — i kg = A R

If the expressions obtained by differentiating (30.2) covariantly
and a similar equation in g;x be substituted 1n (30.5) and the
resultmg equation be multiplied by 4,° lq, ¥ and summed for
i, 7 and %, this equation is reducible by means of (30.1) to

(30.6) Ywer = R 2" Ay’ A’ A",

where by definition

1,..,n
07ipg 07ipr T §Y
(30.7) o = S0t ey & e lem G — )

+ vy mpqg ~— ¥Ymilg ¥ mpr] y

and where for any invariant function we write

of _ 080
(30.8) ooy = M

As thus defined a'/ is the ratio of two differentials. We call it
Sr

an nirinsic derivative.
From (8.10) and (30.6) it follows that

(30.9) Vipgr = —V¥plgr = —Viprg = Varilp-

From (30.8) we have

aik :sfh by azcz (lm af) = S+ ')

— Z eyn by’ £5+ A’ Mg’ fe
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Since f i = f,i, it follows that

(30.10) LA ) - Z ez(rw.—-nm)g—‘g-

osx 0sp Bsn Osk

This is the form which the condition of integrability of intrinsic
derivatives assumes.

In order to give a geometric interpretation to the invariants ymu,
we consider a point P, of ¥, and the curve C, of the congruence
Am® through Py; along C, we have

(30.11) T = A

Denote by 8,7 the angle at any point P of Cm between the vector Ax;
at P and the vector A;; at P parallel to 4;" at P, with respect
to a displacement from P, to P along C; then

cosSOp7 — Iut lm,'.

By hypothesis Am’ Jyi,j = 0 and consequently (§ 11)

6 . ) _ 1., 1

5 COSOhT = A" Ami” A= T Ami’ 2 ep eq Yhpg Apii Ral
mn ’

(30.12) e

1,0

=7 %‘ ep Ynpm Apii
At Py 7' = 4’ and consequently at P,

(30.13) 0 08O = 7him.
35m

Hence we have:

If P, is any point of Vn and P is a mearby point on the
curve Cm of the congruence Am’ through Py, then yam dsm is equal,
to within terms of higher order, to minus the dzﬂ'erence of the
cosine of the angle between the vectors ).;.] and Ay* at Po and the
cosine of the amgle between the vector An’ at P and the vector at P
parallel to Ay* .at P, with respect to Chm.

When the space is euclidean, yum dsm is the component in the
direction 2;° of the rotation of the vector 2.;.; as P, moves to P.
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Consequently we speak of yaum in the general case as the coefficients
of rotation of the ennuple.*
From (30.2) we have

(30.14) lqj llll',.i = ;eh Yin j'h[i.

From (17.11) it follows that the right-hand member is zero, when,
and only when, the curves of the congruence lq‘ are geodesics.
If this expression equated to zero be multiplied by Ax* and summed
for 7, we obtain the theorem:

A mnecessary and sufficient condition that the curves of the con-
gruence Xy be geodesics is that

(30.15) =0 h=1--m).

In the general case we have from (30.14) and (20.1)

(30.16) mf == %: €k ¥inl lh[‘:

where ;' are the components of the principal normal of a curve
of direction 4;°. From (30.16) and (20.3) we have

1 i 2
(80.17) = = gym m’ = 2 entm.
a7 7

Hence when the principal normals are not null vectors, the first
curvature is given by

(30.18) % — ‘/" >enrha

and the principal normals are positive or negative vectors (§ 27)
according to the sign of the right-hand member of (30.17). Also
from (30.17) we have that the principal normals to the curves ;"
are null vectors, when, and only when,

(30.19) ;%J’ﬁu =0 h=1,..m),

and (30.15) is not satisfied.
* Levi-Civita, 1917, 1, p. 192.
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31. Determinants and matrices. Certain theorems con-
cerning determinants and matnces can be given simple form by the
use of quantities &s,...;, = &** ' which are defined to be zero,
when two or more of the indices are the same, and 1 or —1
according as the indices are obtainable from the natural sequence
1,-.-,n by an even or odd number of transpositions.* Thus the
determinant a = lajl, in which ¢ indicates the column and j the
row for #,7=1,..-,n, may be written in either of the forms

(31.1) a = sili,-u i a':l a';” ot a:;'
or
(31.2) a =& gl gl

‘l 1y in

From these equations it is seen at once that a determinant
changes sign, if the elements of two rows (or columns) are inter-
changed, and that a determinant is zero, if corresponding elements
of two rows (or columns) are the same. These properties are put
in evidence also by the following identities which are consequences
of (31.1) and (31.2):

— iy 3 Jidavdn gy —— St Ji }, Jn
(31.3)6:,-“]’“.}”6!—6{‘% ﬂaha’ a" P ng=—¢ .a age-a;t.

As an example of the use of the &'s we establish the law
for multiplication of determinants. Let a and b = |¥| be two
determinants of the mth order. By (81.1) and (31.3) we have

a-b = ae. s b‘il...b:i"

I
)

iy 3y 1, Ji
iydgeeniy ,,'a aj"bllb2""bn“

G SR G O
where ¢ = aj bj.
As defined the ¢'s have » indices when the indices take the

values 1,...,n. We define also a set of quantities bR :’ ._; for

p < n. By definition these quantities are zero, when two or more

* Cf. Eddington, 1923, 1, p. 107.
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superscripts (or subscripts) are the same, or when the superscripts
do not have the same set of p values as the subscripts; also any ¢
is 41 or —1 according as the supersecripts and the subscripts differ
from one another by an even or odd number of permutations.* As
an immediate consequence of the definitions we have

iy 12 n
(31.4) & 0= d"...;" @ Wiy - Gy
(31.5) g = djl ”'a"a o

Also we have the identity

(31.6) GO = mld
Moreover, from (31.3) and (31.4) we have
(31.7) Suifd, ah . ay = e alak.. . a

Consider now two matrices

(81.8) Nesll, Nz,
where the Greek letters take the values 1,...,# and determine
the column, and the Latin 1,...,p (< ») and determine the row.
We put

1l
(31.9) b, = ¢, @

and establish the following theorem which we shall use later:
The determinant of the quantities by, defined by (31.9) s the sum
of the products of corresponding determinants of the pth order of
the matrices (31.8).
From (31.9) and (31.1)
b= Ibfm{ = i, C;,ll C::'" - C;;;df' dp... d’;",
which by (31.7) may be written

= G GGy Gy

* Cf. Murnaghan, 1925, 7.
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and by (31.6)
(6110) b = pl ot gm e L 2 L,

] p Y1

For any term of this sum to be different from zero, the 8’s and s
must take on the same set of values and each permutation of the o’s
over these values gives a term; there are consequently p! ‘terms
for a given set of #'s and y’s each of which is obtained by multiply-
ing together

Oy A
for the &’s in the same order. But from (81.4) und (31.5) these
expressions for a given set of a’s are seen to be corresponding
determinants of the matrices (31.8) to within the equal multipliers
£4,...c, and &M%, whose product is 1. Hence the expression on
the right in (31.10) reduces to the sum of the products of corre-
sponding determinants of (31.8), as was to be proved.*

32. The orthogonal ennuple of Schmidt. Associate
directions of higher orders. The Frenet formulas for
a curve in a V,. Let & be the components of a unit vector,
that is,

(32.1) gij §1|‘ §1|J = &,

and let &,/ for ¢ = 2,...,n be the components of any n —1
other vectors such that these n vectors are linearly mdependent
We put

(32.2) G Em’ == (Gm=1,...,m)t

and we denote by b, the determinant of by for o, 8 =1,..., p,
thus,

(32'3) bp == Eb;! (ay ﬂ = 17 t p)'

From (32.2), (32.3) and the results of § 31 we have that b, is the
sum of the products of corresponding p row determinants of the

* For another proof of this theorem, see Kowalewski, 1909, 2, p. 77.
T Normally one would use bis but the notation used makes for simplicity in
what follows.
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matrices ||gg &, )| and HE{,H. Consequently when the fundamental
form of V, is positive definite, all of the determinants b, for
p=1, .., n are positive;* when the fundamental form is indefinite,
we assume that the vectors &)’ are such thatb, $ 0forp=1,..., n.

Consider now the vector of components 4" which are expressed
linearly in terms of the components &s; for ¢ =1, ..., p, as follows

(32.4) lp|i =eﬂv eb;ff El!!i B; (¢ =1,..., P);

where e, is chosen so that the radical is real and By is the
cofactor of by in b, divided by bp. From (32.1) and (32.3) it follows
that b = ¢;. In order that (32.4) may hold for » = 1 and that
A" = &/, we define by as 1.

From (32.4) we have

IA

(32.5) gii kol &’ =6 %p—p dz @ = p-
p—1

Assuming that ¢<p, we have from the definition of 4, similar

to (32.4) and from (32.5)

(32.6) Giitpl by’ =0 CET))

If both sides of (32.4) be multiplied by gy Ay’ and summed for i,
we have in consequence of (32.5)

(32.7) Gii bl Ao’ = ep.

Thus the vectors defined by (32.4) for p = 1,..., n form an ortho-
gonal ennuple, as first shown by E. Schmidtt.

Consider now any curve C in V, and unit vectors of a field
A" at points of C' which are assumed not to be parallel along C.
If we put

* This is seen by considering any point P and choosing the coordinate system
so that at P g, =1, g, = 0 (i +), in which case any b, is the sum of
squares.

11908, 1, p. 61; cf. also Kowalewski, 1909, 2, pp. 423-426.
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do’
ds

(32.8) L' =ea by,

then E,| are the components of the vector associate to 2,° (§ 24).
Since b3 = b} = 0 for this case, we must assume that this vector
is not a null vector, if we desire b, as defined by (32.3) to be
different from zero. We define #—2 other vectors along C by
the equations

(32.9) %Eﬂ‘.i = fpr) (r=2,-, n—1).*

We assume that these » vectors are linearly independent and that
bp+ 0 for p = 1,..., n. Then equations (32.4) define an ortho-
gonal ennuple of directions at points of C which we call the
associate directions of 4" of orders 1,..., n—1.

At points of C the components %“si of the tangent vector to C are

expressible in the form
J . .
(32.10) —_—=q lrll (j’ r=1,..., '"')1

where the a’s are invariants. From (32.10) and

1’“.‘”

(32.11) lp|i, j == g ex ey pit lmilzu
we have

J . 1,000, m .
(32.12) %fs-lm', j= Zk: e g A,
where
(32.13) gk = " Ypkr.

Because of (30.3) we have also
(32.14) g+ @y = 0.
From (32.4) and (32.9) it follows that —@J— yng j is at most a

* For t.he development of this section to apply we assume that none of the
vectors &4’ are parallel with respect to C.
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linear expression in _E,f,- ey §p+,|‘ and therefore in 2,°,. - -, lp-*-”i.
Consequently ey = 0 for k>>p 1. Combining this result with
(32.14), we have

' 1
(82.15) Cppil = — Cptip = ?p_’

ape = 0 k% (p 1),

where g, is defined by the first of these equations. Accordingly
equations (32.12) reduce to

d.z" —y_ ; ;
(82.18) G hoi’ s = ~ o + 2R hpyt (p = 2,00 1),

from which we have

da’ | 1
(32.17) )—p,’.l!i—d—slm"j == ;; (p - 2,---,’)’&—" 1).

From (32.8) and § 24 it follows that (32.16) apply also to the case
p = 1 with the understanding that 1/go = 0. Also from (32.12)
and (32.15) for p = = we have (32.16) for p = n with the under-
standing that 1/¢, = 0.

We call 1/, for p=1,.-., n—1 the associate curvatures of
order 1,...,m—1 of the vectm & (= 4" for the curve C. We
can ﬁnd thelr expressions in terms of the determinants b, by
differentiating covariantly equations (32.4) with respect to x/ and
substituting in (32.17). This gives, in consequence of (32.9),

L V5 stV )

Op oz’
(“ = 17"'-]’)1

which is reducible by means of (32.5) to

(32.18) gl = v e”e”“bbg"’ by (p=1-.,n—1).

? D

When, in particular, the vector llf is the tangent vector to C,
we have in (32.10) a'=1, a®=0 for ¢+ 1 and from (32.13)
@ = yga. From (32.17), (20.1) and (20.3) it follows that 1/¢,
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is the first curvature of C. In this case we say that 1/ep are
the first, second, - .., n—1th curvatures of C. Moreover, equations
(32.16) for p=1, ..., » are a generalization of the Frenet
formulas for a curve in euclidean space in cartesian codrdinates,
as is readily seen by replacing covariant derivatives by ordinary
derivatives.* Hence we follow Blaschke in calling (32.16) the
Jormulas of Frenet for a curve in a Riemannian space.t

Exercises.
1. It 7., denote the coefficients of rotation for the orthogonal ennuple defined
by (13.14), show that

Leun
T = Vo TG G+ 3 ot 51,0,
r
and that B

2. Show that iy, 1/ g are the components of a covariant temsor (§ 31).
Ricci and Levi-Civita, 1901, 1, p, 185.
3. Show that the components of the contravariant tensor of order n associate
to the tensor of Ex. 2 by means of g, are &'+ "%/ ]/
Ricci and Levi-Civita, 1901, 1, p. 138.
4. Show that the first covariant derivatives of the tensors of Exs. 2 and 3
are zero. Ricei and Levi-Civita, 1901, 1, p. 138.
5. Show that

4 L)

. ‘ le ...... d_i,
3. v--ln_ e e e e e ]
hni=|iiin)
iﬂ

le ...... dj"

and consequently that the ¢'s are the components of a tensor of order 2m.
Murnaghan, 1925, 7, p. 238.

33. Principal directions determined by a symmetric
covariant tensor of the second order. Let ag be the com-
ponents of a symmetric covariant tensor of the second order and
consider the determinant equation

(33.1) |ay—egiy| = 0.

* Cf. 1909, 1, p. 17.

+ Blaschke, 1920, 1, p. 97, considered the case when the fundamental form is
definite, in which case the only restriction is that h.‘ s £s|‘ and the vectors $.-|‘
defined by (32.9) be linearly independent. When the form is indefinite, it must
be assumed also that the determinants b, defined by (82.3) be different from
zero; in particular, this requires that the curve C be not minimal.
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In another cotrdinate system 2/* we have

. o, o ad™ o, et ea™
©3.2)  ay= dinTor Gy 90T Sm Tl g

so that (33.1) becomes
2

1k
ox — 0.

axt

!
| aim— @gim| -

Since by hypothesis the Jacobian is not zero, this equation is of
the same form as (33.1) and thus the roots ¢ of (33.1) are invariants.
If on is a real simple root of (33.1), the equations

(33.3) (@ij—en g) My* = O

define, to within a factor, » quantities 4z, which are the contra-
variant components of a real vector-field, as is seen by changing
the coordinates and making use of (33.2). If ¢ is another real
simple root of (33.1), we have a second vector-field defined by

(33.4) (a5—orgi) o' = 0.

Multiplying (33.3) by lklj and (33.4) by An’, summing for j in each
case and subtracting, we have, since ¢r % ¢r by hypothesis,

(33.5) gij lmi lkri = 0,

that is, the two vector-fields are orthogonal.

From the algebraic theory* it follows that if the roots of (33.1)
are real and the elementary divisors are simple, there exists a
real transformation of the variables z* such that at a point P
the forms

(33.6) ¢ = g;jdat da/, Y = qydatda/
are reducible to
(33.7) = O (dz)®+-- - + e (dx")s:

Y == ¢, (dz")*+- - -+ cnon(d2™)?,
* Cf. Bromwich, 1906, 1, pp. 30, 50.
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where the ¢'s are constants none of which is zero and ¢y, - .., on
are the roots of (33.1), which are not necessarily different. In
particular, if ¢ is a definite form, the roots of (33.1) are real, and
the ¢’s have the same signs.*

If e. is a s1mp1e root, then at P the solutions of equations (33.3)
are Ay' =1, =0 (¢ = 2,...,n), to within a multipler.
Hence the vector is not a null vector. Accordingly if all the roots
of (33.1) are real and simple, equations (33.3) define » mutually
orthogonal non-null vectors, that is, an orthogonal ennuple (§ 13).

When p of the roots are equal, say o, = ... = e,,, then for
h=1,... p, equations (33.3) reduce to (ep+a—eh) T =0 for
0 == 1, - n—p, (p + o being not summed). These equations are
satisfied by the p linearly independent vectors whose components are

),,,3’: oL (@=1,--,p;i=1,...n),

which evidently are non-nuil vectors. Moreover, any other solution
is a linear combination of these vectors. Consequently for a
multiple root of order p the rank of (33.1) is n—p, and there
are oo?~1 gets of solutions. i

If the codrdinates are any whatever and Ay° for « = 1,...,p
are the components of p independent solutions, then

(33.8) Chf=wlly (GB=1,. . pi=1,...,m)
are another set of solutions. If we choose the functions u,? so that
a . ‘, : .

w1, gy 2y =0 wu’gudg a0 (@),

the p vectors of components §a|i are mutually orthogonal and are
not null vectors. The determination of the p’s is equivalent to
finding an orthogonal ennuple in a space of » dimensions whose

fundamental tensor g,s is defined by g.s = gy lali lpﬂ . At a

point P in the codrdinate system giving (33.7), we have la;‘ =0
for i=p+1,..., n, and consequently

g = I;«ﬁl = ﬁ“‘cp,lalplz;fzo (e, 8=1, -, p).

* Bocher, 1907, 1, pp. 171, 305.
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Hence functions p,® satisfying these conditions can be obtained
in accordance with the results of § 13.

Gathering the foregoing results together we have the theorem:

If ay are the components of a symmetric covariant tensor such
that the elementary divisors of equation (33.1) are simple and the
roots are real, equations (33.8) define a real orthogonal ennuple;
this is unique when the roots are simple; when a root is of order p,
there are coP(P—V12 gets of mutually orthogonal non-null vectors corre-
sponding to this root.

The directions at each point defined by these vectors are called
the principal directions determined by the tensor ajj; the m con-
gruences defined by the ennuple the principal congruences and
01, - -+, @n the principal invariants.

Since the vectors are not null vectors, the components can be
chosen so that

(33.9) 9ij lhli lhlj = én h=1,.---,m),
and we have from (33.3)
(33.10) ay Ml g’ = 0, hFh),

on = o aij M M’

Hence if none of the roots of (33.1) is zero, that is, if the
determinant |ay| 3 0, we have

(33.11) ag M An’ F0 h=1,---,n)

Conversely, if ).hli are the components of n» mutually orthogonal
unit vectors, and ay are the components of a symmetric tensor
such that the first of (33.10) is satisfied, then these vectors define
the principal directions determined by ay. For, if we define n in-
variants s by (33.10), we have as a consequence of (33.5), (33.9)
and (33.10) ]

(g—eng) i’ =0 (B k=1,-.-, )

Since the determinant of the A’s is different from zero, these equations
are equivalent to (33.3), which establishes the theorem.
If we write equations (33.3) in the form

ag " = ennj,
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multiply by ea4ay, sum for 4 and make use of (29.4), we obtain
(33.12) ay = ; en €n Mnji Anyj.

‘When both of the forms (33.6) are indefinite, there is a possibility
that the elementary divisors are not simple. We consider this case
for 4-spaces and it can be shown that the results are general. If
one, or more, of the elementary divisors are multiple and real at
a point P, a real codrdinate system can be chosen for which at P
the coefficients of the forms are of one of the following types.*

Type 1.

G =1 g =1l gu=h,

ay =k, Gy =0, Gy = osks, G = ok,

where the k's are constants, all the other g’s and a’s being zero.
The elementary divisors are (¢ — @)%, (¢ — es), (6 — @u)-
1°. @1, 05, e« . The vectors given by (33.3) are

©,1,0,0), (0,0,1,0), (0,0,0,1),

of which the first is a null vector and the others are not.

2°. @ = ¢,. The vectors are the first of the above, and any
vector of the pencil determined by the last two.

8°. @1 = ¢s. The vectors are the last of the above and any
vector determined by the first two. Any vector of the pencil is
orthogonal to (0, 1, 0, 0).

4°. @1 = @3 = @i Any vector for which the first component
is zero.

Type 2.
1,

G1a =1, gu
= 01, sy = Ky, Qe = @s.

Q11 by, &,

The elementary divisors are (¢—e,)%, (o —es)®.

1°. @1 ¥ es. The vectors are (0, 1, 0, 0) and (0, 0, 0, 1), and
both are null vectors.

2°. ¢ = @ Any vector of the pencil determined by the
vectors of the preceeding case.

* Cf. Bromwich, 1906, 1, p. 46.
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Type 3.
e = 1, g = ks, 9ua ks,
Qs = 0, Ges = 1, a3 = e1ksy A = 0uks.

I

The elementary divisors are (¢—g;)% (0—o.).

1°. o, ¥ 0, The vectors are (1, 0, 0, 0) and (0, O, 0, 1), of
which the first is a null vector.

2°. 0, = @.. Any vector of the pencil determined by the pre-
ceeding two.

Type 4.
J1z2 — lr I3y — 1,
s = 0, Qs = 1, ase = @1, s = k.

There is one elementary divisor (¢—g,)* and one vector (1, 0, 0, 0),
which is a null vector.

When two or more of the ¢’s are equal, the corresponding
elementary divisors are said to have the same base.

Combining the results of this section and recalling that when
the elementary divisors are simple there are » of them, although
some may have the same base, we have:

The number of principal directions defined by (33.3) is equal to
the number of elementary divisors; when p(>1) of the divisors
have the same base, the vectors corresponding to this base are any
linear combination of p independent vectors; to a divisor which is
not simple there corresponds o null vector when the base is not the
same as any other, and when it is the same as another base one
or more of the p vectors is a null vector, according as it is the base
of one or more divisors which are mot simple.

Thus in case the divisors are simple there are n principal directions,
and only in this case.

If we write oy
I Lol
(33.13) e = LA

the finite maxima and minima values of ¢ at a point are given by

the directions for which 53—;’7 = 0, for j = 1,..., n, that is,

(ay—eg)# = 0.
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Hence we have:

At a point the finite maxima and minima of ¢ defined by (33.13)
are given by the principal directions at the point.

If the fundamental form is definite, ¢_is finite for all directions.
If it is indefinite, ¢ is infinite for all null directions, except those
which are principal directions; this exception arises when the
elementary divisors of (33.1) are not simple.

34. Geometrical interpretation of the Ricci tensor. The
Ricci principal directions. Let 2.7., be the components of any
unit vector, and Ay’ for ¥ = 1,...,n;%k 4 &, the components of
n—1 unit vectors forming an orthogonal ennuple with the given
vector. The Rlemanman curvature at a point for the orientation
determined by A° and any vector A, denoted by r, is given
by [cf. (25.9)]

(34.1) Tk = enex Bpgre n|? Ay ? dny” Ax’.

Since the right-hand member of this equation is zero for k = &,
we assume that 7w = 0.
In consequence of (29.5) we have

1,... 3

n . .
(34.2) § e == enBpgredn)® In" 9° = — en Ryghn* An/’.

Hence ;’“mc is the sum of the Riemannian curvatures determined

by the vector l;., and n—1 mutually orthogonal non-null vectors
orthogonal to it; moreover, from (34.2) it is seen that it is in-
dependent of the choice of these n—1 vectors. We denote it by eh
and call it the mean curvature of the space for the direction 7-h|
This result is due to Ricei,* who gave this geometrical interpretation
of the tensor which Einstein chose later as the basis of the general
theory of relativity.
If we write (34.2) in the form

_ Ry

(84.3 o= M
) ¢ gis b’’’

*1904, 2, p. 1284.
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we see (§ 33) that the finite maximum and minimum values of the
mean curvature correspond to the principal directions determined
by the Ricci tensor, that is, the directions given by

(34.4) (Ry + og9) ¥ = 0.

From (33.12) it follows that for these principal directions
(34.5) Ry = — ; en en Anji An)j.

We call these the Ricci principal directions of the space.

A necessary and sufficient condition that the principal directions
for a tensor a; be indeterminate is that ay; = egy. In this case
we say that the space is homogeneous with respect to the tensor ay.
We have at once:

A necessary. and sufficient condition that a space be homogeneous
with respect to the Ricci tensor is that

1
(34.6) Ry = ;Rya,

that is, that it be an Einstein space (cf. Ex. 2, p. 92).

35. Condition that a congruence of an orthogonal
ennuple be normal. By definition a congruence of curves in
a V, is normal when they are the orthogonal trajectories of a family
of hypersurfaces f(z', - - ., %) = const. If dz’ are the components
of any displacement in one of these hypersurfaces, then

of 5 i
(35.1) L dzi = 0.

Consequently if l,q‘ are the components of a normal congruence
of an ennuple, we must have

(35.2) of — fii = ki,

dat

where w is an invariant (§ 14), and from (35.1) it follows that f
must be such that we have

- of _ -
(85.3) X (f) = W' of =0 G=1..,a1).
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In order that these n—1 equations may admit a solution
which is not a constant, they must constitute a complete system.
A necessary and sufficient condition is that

Xn, Xn)f = X X (f)— X X (f)

be a linear function of Xx(f) for b,k =1,-.., n—1 (§23). From
(35.3) we have, in consequence of (30.2),

XX (f) = Ml G’ g+ da’ 5)
=M’ W' fy+S Zez yian M*

1,¢c0,n—1
. Py i) a
= i’ ' fy— ; e voin Xa () — en rrin 2L

3sn
Hence
@, XS = 2 o Gone—ram) Xe )+ enrmme— ) 2L

Since 4,* is not expressible linearly in terms of Aytforh=1,..., n—1,
%{— is not expressible in terms of the X(f)’s. Hence:

n

A necessary and sufficient condition that the comgruence An' of
an orthogonal ennuple be normal is that

(35.4) Vnhk = ¥nkh hE=1,.. 5 n—1).

From (35.4), (30.2) and (30.15) we have:

A necessary and sufficient condition that a geodesic congruence Anj;
be normal is that Ay be a symmetric tensor.

Suppose that the conditions (35.4) are satisfied. Equating the
expressions for f,¢ obtained from (35.2) and for f;; from f,; = pdy,,
we get

W5 At B Ay j == 5 Anjt e dnj,i.

Multiplying by l,.lj and summing for j, we have, in consequence
of (80.2) and (30.3),

21 i 0
(35.5) ‘3"_1;;'ﬂ = "3»»14“'2 armm by, v = Iy’ —

22 logp.
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Expressing the condition of integrability of these equations, we
obtain

Vg Mnli—¥,i A+ v Rugs, j— At 0)
+ 15: ez[ Ayj— 7’:}» Ayi + rinn (A4 —'Mi.j)] = 0.

Multiplying by lhlj i.,,|' and summing for ¢ and j, we have for the
determination of » the equations

9
n”m +me+ 2 etvom in—7rmn) = O
hl=1,...,n—1).

(35.6) en

Multiplying the above equation by Ay’ 2%’ and summing for i
and j; we have, in consequence of (35.4), the identities

Ohnn __ Otimn ) =
(35.7) po . +;€N’lnn (rme—run) = 0
Gyl =1,...,n—1).
We consider, in particular, the case when the congruence lnli is

normal to a family of hypersurfaces f = const., where fis a
solution of the differential equation

(35.8) ¢V fy=0.

These have been called isothermic hypersurfaces by Ricei and
Levi-Civita* and are an immediate generalization of isothermic
surfaces as defined by Lamé.t

From (35.2) and (35.8) we have

Py =4gY (I‘,j}-nld+P’§ehek)’nldclh|i Axij)
=, 1»|j+ﬂ4::enrm = 0.

From this equation it follows that » in (35.5) has the value
—%: enynnn in this case, and consequently

9l
(35.9) en aogi,u ;eh?’nhhlnki —;eh Vhnndng (R=1,...,n—1).

*1901, 1, p. 162
11857, 1, p. 1.
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Conversely, if the expression on the right is the component of
a gradient, the function f defined by (35.2) satisfies (35.8). Hence:

A mnecessary and suyfficient condition that a comgruence An; be
normal to a family of isothermic hypersurfaces is that (35.4) be
satisfied and the right-hand member of (35.9) be the component of
a gradient.

36. N-tuply orthogonal systems of hypersurfaces. From
the definition of an n-tuply orthogonal system of hypersurfaces in
§ 15 it follows that the curves of intersection of these hypersurfaces
form an ennuple of mutually orthogonal normal congruences. As
there considered the coodrdinates z? are such that the congruences
are the parametric curves. When the codrdinates are general, we are
able to find the condition that all the congruences of an orthogonal
ennuple be normal by remarking that in this case, as follows from
(356.4), we must have

Thid = Yhik hkl=1...,n; bk 1F).
By means of equations of this form and the identities (30.3) we have
Thik, = YRk == — Yk == — Ylkh == Yklh = Ykhl == — Yhil,

that is, yme = 0. Hence:

A necessary and sufficient condition that the congruences of an
orthogonal ennuple be normal is

(36.1) tha = 0 tll=1..,n;hklt)*

As remarked in § 15 such an ennuple does not exist in a general V.
The conditions, in general form, which a ¥V, must satisfy in order
that such an ennuple exist are to be found by a consideration of
the equations which the components 1’ of the ennuple and the
invariants yms must satisfy in this case. From (30.6) and (30.7),
when (36.1) hold, we have

(36.2) R 2" ' 27 2, = 0 Gpart),
. 3
(36.3) Rnn lqh Ap' Ay’ At = a)';:p - ep 7ipp Yrop=—Or Yirr Yrop,

* Cf. Ricei and Levi-Civita, 1901, 1, p. 151.
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Baige 2" i’ Ao’ 44

— 91wy 8J’pu
= Soa T 95, +e,r,,u+e r,,,,,-l-ze Yot Vmpp*

(36.4)

Since the left-hand member of (36.3) is unaltered when ! and » are
interchanged, we must have

9 ]
(36.5) a)’_::p erp +erurp— e Yurvrsp = 0,
which is the form of (35.7) for the present case.
The characterization in invariant form of a V, admitting an
orthogonal ennuple of normal congruences is obtained by expressing
the condition that equations (36.2), (36.3), (36.4), (30.2) and

gt =en, gyl =0 (4K

possess a solution in the =»® quantities lm" and the n(n —1)
quantities yaxk.

By means of the above theorem we are able to prove the
following theorem:

If a tensor ay is such that the roots of (33.1) are simple,
a necessary and sufficient condition that the principal congruences
determined by ai; be mormal is that the componments of these con-
gruences, as given by (33.3), satisfy the equations

(36.6) agedn M A =0 (Bl,m=1,--,n; b, m ¥)

In fact, if we differentiate the first of (33.10) covariantly with
respect to 2%, we have in consequence of (30.2), (30.3) and (33.10)

aii I’ ! +; ep(en — @) ynp 2 = 0.
Multiplying by Am* and summing for k, we obtain
(36.7) ij,1c A Ay At® = (en — €1) 7m r+0,

from which we obtain the theorem.*

* For a discussion of the case where the roots of (33.1) are not simple see
Eisenhart, 1923, 6, pp. 263-280.
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Proceeding in like manner with the second of (33.10), we obtain

adig fak koen __ 0en
(36.8) aij, i An) Any Ay endy 2 P g

We observe that (36.7) and (36.8) hold whether the roots of (33.1)
be simple or not.

37. N-tuply orthogonal systems of hypersurfaces in
a space conformal to a flat space. When the congruences
of a normal orthogonal ennuple are taken as parametric and we put

(B11) gi=eaH!, g;=0, gi= Ij =0 G+,

)
the functions H; being defined by these equations, we have

@12) i _j{l—, Wo=0, hy=eH, Ay=0 (%)

From (30.1) and (15.7) we have

(87.3) Yhii = € 0 H, 22 - # 7).
When expressions of this form are substituted in equations of the
form (36.2), (36.3) and (36.4), we obtain

Bnjx = 0 (3,4, % ¥),
Broie — H( o'H; __ oH; alogH, _ 0H; along)
ik = 48 oo T o 0o EEY
(37.4) (hy 4 k F),
o 2 (1 aH.) ? ( 1 aHh)
Rmm—HhH:[ ax"(Hl Py +e %35\ T om
rereien 0 Hy BHi]
+$ H or oo
where 7 is summed over the values 1,:..,n except 2 and 7. These

equations follow directly also from (15.8) by means of (37.1).
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We introduce with Darboux* the functions Ay defined by

_ 1 8H_, Ly .
If the V; is an S, equations (37.4) become in this notation
3 Bni
(31.6) e BB =0,

Zi’: +en aﬁ”‘ +Ze¢e.ehﬂmﬁu =0 (hikF)

Let 3* be the generalized cartesian codrdinates of the 8, in
terms of which the fundamental form is

(31.7) ¢ = cjdy’ dy/,
where ¢; are plus or minus one and ¢y == 0 (i ). If Y/ are

the components in the y’s of the vector 4;’ in the a’s, we have
from the equations

. 9 i
Yyt = ?-Jik-;;gk—
and (37.2)
. 3
(37.8) 2 :: H Y

For the present case equations (7.14) become

asyi ayi { l}
ax/ ax* — 9at Lk,

Substituting from (37.8) and making use of (15.7), we obtain

2 Yy’
ax/

2 Yy
?xk

From (37.8), (87.1) and equations of the form (7.10) we have

(37.9) = B Yu' = —Deab¥y' (& +j)

(87.10) Y'Yy = e,

*1898, 1, p. 161.
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where
(37.11) ek = e, eq =20 kF1.

If the functions 8. satisfy the conditions (37.6), equations (37.9)
are completely integrable. Moreover it can be shown that any
n sets of solutions satisfy the conditions

¢ Yi' Yy' = const.

Hence if we take any orthogomal ennuple of unit vectors at a
point, there corresponds a solution of (37.9) satisfying (37.10) and
(37.11), and having the given values at the point. If then there
exists a set of functions H; for which the right-hand members of
(37.4) vanish, and consequently (37.5) and (37.6) are satisfied,
there exist solutions of (37.9) defining an orthogonal ennuple in
S, determined by an arbitrary orthogonal ennuple at a point.
Then by quadratures from (37.8) we can find the equations
Y = ¢'(z', 2% ..., &) defining an m-tuply orthogonal family of
hypersurfaces ' = const. for which the fundamental tensor is
given by (37.1).

The proof of the existence and generality of solutions of
equations (37.6) has been given by Bianchi*. He has shown also
that the solution of equations (37.5) for a given set of functions
By involves n arbitrary functions, each of a single 2. Hence we
have:

In a flat space of n dimensions any orthogonal ennuple of non-
null directions at a point are tangent to the curves of intersection
of the hypersurfaces of an m-tuply orthogonal system.

As a corollary we have:

If a Va is conformal to a flat space, there exists an n-tuply
orthogonal system of hypersw;faces whose curves of intersection have
a given ovientation at a point.t

We shall obtain a characteristic property of any Vy (n>>3) con-
formal to an 8,. We have from (28.17) that for any orthogonal
ennuple in such a V,

* 1924, 3, pp. 625-629.

T Because of the generality of the functions B, and H, satisfying (37.5) and
(87.6) it is evident that the n-tuply orthogonal system is not uniquely determined
by the given orientation.

See
App. 12
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(37.12) R A" Ag* 2’ 29" = 0 (p, g, 7,8 %),

that is [Cf. (30.6)],
(87.13) Yogrs = 0 @ ans¥).

We seek conversely the condition that (37.13) hold for every
orthogonal ennuple. To this end we put

I

Iali ép “lpli‘}'eq bqu,

Iyt = —bly'+aly’,
(87.14) = : ;

l),[ = ér C}-rl +es dls| ’

Tyt = —ddy k'

Expressing the condition that ;“py,; = ( for every a, b, ¢ and d,
we get

Cp Vsppr—€q Vsqpr = 0
(37.15) 'p ¥sppr — €q Vsqqr ’
epe?'?’rpp:"'efeqfrqqr'—epesi’mﬂ‘*'eqeﬁ’sqqs=0 (2,9, r,8%).

From the first of (37.15) we have

1 1,00,
(87.16) ey Vsppr — n—2 ; €q Vsagr -
In consequence of (29.5) we have from (30.6)
(37.17) Z@q Vsqqr = Rhﬁk l$|h 3’1‘] . gy - -th )'Slh lrlkr
q

so that (37.16) becomes

(31.18) e Rugh k" Ay’ gl An* = ——5 Bouc ht” hn"

If we write the second of (37.15) in the form

(37.19) epl ep, )’p,p,?,l’;

= €p, €p, Yp,p, 0,0, T, €0, V2,0,0,0,~ 0, €0, VP,2,9,7,,
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we can obtain n-—3 other expressions for the term on the left
by replacing ps and p; on the right by the respective pairs
DPe; Ps; Doy P8 -« -5 Pa—1y Pn; Pny Psy where D1, p2; -y Pn is some
permutation of the integers 1, ..., n. Adding together these n—2
equations and adding 2ep, 5, 7p,5,5,5, t0 both sides of the resulting
equation, we have in consequence of (37.17)

h k h k
@7.20) " o Tmmmn = By (on Ao" D"t e, " By)

- (eI’, €D VDyD D Py +...4 €p, €p, 7’p,,p,7:,p,,) .

It we add to this the n—1 equations obtained by permuting
the p’s cyclicly in the sequence pi, pe, - - -, pa, the resulting equation
is reducible by means of (29.5) to

nP(ep, e, Yo,m0,0) = 2R—(n—2) P(ep, €py YD, 7a1apy) s

where P( ) indicates the sum of the » terms obtained by the
process indicated above. Hence

(37.21) (n'—l)P(epl ep’ rp‘p’p’pl) = R.
The last expression in (37.20) is equal to

P (?p. €p, Yp‘p,p,p,)_ep. €p, V0,0, 9,0,  Epy 2, V0,0, 1, D,

" €p,Cp, Vo1, 2, rt e, €y YD1y 2 2 *
In consequence of an equation of the form (37.19) the last three
terms of this expression are equal to —€p, ¢p, ¥p,p,p,p,» Hence
(37.20) can be written
(87.22)  (n—2) ep, ep, Bnic Ap, " Apyy” Aoy Ap | *

e B
= B (ep, )'p.lh 7~p,llc + ep, }%Ih }'I’a|,) —

n—1"

Consider now any point P in V, and choose the codrdinate
system so that at P gy =e¢;, gy =0 (¢45). The tangents to
the parametric curves at P are mutually orthogonal, and the
components of the unit vectors in these directions are 4" = dj,
(h,i=1,...,n). From (37.12), (37.18) and (37.22) we have at P
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1 ..
Rh{ik = 0, Bpie = n—=3a ei Ry (h'; WD) k#)’

Rhyiin = 1 (ehRii"l'ei-th)_ﬁh-

n—2

From (28.17) it follows that at P all the components of the con-
formal tensor are zero. Since P is any point, we have:

A necessary and sufficient condition that (31.12) be satisfied for
every orthogonal ennuple in aVo(n>3) is that the Vy be conformal
to an Sp.*

Exercises.
1. If ¢ is any function of the «'s, the coefficients of ¢"~*, ¢"~% ---, ¢ and o°
in the determinant equation 3| Pry— 09y | = 0 are invariants of degrees1, ..., n

respectively in the second derivatives of ¢; the first of these is 4,9.
Ricci and Levi-Civita, 1901, 1, p. 164.
2. Show that equations (33.3) can be written in any of the forms

(af—g ) 4P =0, (@a/—e, ) 4y, =0, (@¥—0, 99 4, = 0,

where a/ and a¥ are associate to a,; by means of g,,.
3. If in accordance with (29.7) the components of a symmetric tensor a, are
expressed in the form

Leow,n
a, = ?_,: €€, kg

a necessary and sufficient condition that the orthogonal ennuple A ,1‘ consist of
the principal directions determined by a, is that ¢, =0 (r%39).

4. If there exists for a V, a symmetric tensor a, other than g, whose first
covariant derivative is zero and the corresponding equation (33.1) has simple
elementary divisors, then the roots of this equation are constant.

Eisenhart, 1928, 5, p. 299.

5. If A ¢ and i.H‘ are the components of congruences determined by different
roots in Ex. 4, then y,,,=0for!=1,..., n. Show also that A5 A, are
components of mutually orthogonal congruences corresponding to a multiple root
of order m, then the equations

l.,;%:O k=m+1,.---,n)
are completely integrable. Eisenhart, 1923, 5, p. 300.

6. If ).M‘ for k,i=1,...,n are the components of n mutually orthogonal

normal congruences and
W= ad 4 b

* Schouten, 1924, 1, p. 170.
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are the components of a normal congruence, so also are
M= — al“'-l- b)’q"
Schouten, 1924, 1, p. 213.
7. If A7 are the components of an orthogonal ennuple, a necessary and suffi-
cient condition that the equations
w2 — k= p+1, .-, n)
form a complete system is that

j— _— j=11"'7p; .
Y™ Vi i’k=p+1,...,”)

In particular, if the congruences dgifor j=1, ..., p are normal, these conditions
are satisfied.

38. Congruences canonical with respect to a given con-
gruence. In § 13 we showed that there are oo ®@—D&—2/2 gety of
n — 1 mutually orthogonal congruences orthogonal to a given non-
null congruence. In this section we define a particular set of n—1
such congruences which was discovered by Ricei,* and called by
him the congruences canonical with respect to the given congruence.

Let 4,; be the components of the given congruence and put

1
(38.1) Xij = 5 Quli.j =+ Anljis).-

We consider the system of » -1 equations in the n -1 quantities
M(GE=1,...,n) and ¢

T B = 0,
(38.2) e

(Xg— o gy) ¥+ ednj = 0,
of which the determinant equation is

X — wyu Xln — O lnu

. — |- = 0.
(38.3) A(w) Xl —wgm- )(,m— @ Gnn lnln
lnll . lnln 0

Jor a root w
If the rank of this determmant is n—r-+41, @ is an r-tuple root

in accordance with the general algebraic conditions for a multiple
root.

* 1895, 1, p. 301; also Ricci and Levi-Civita, 1901, 1, p. 154,
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We shall show conversely that the rank of A is n —r--1 for
an r-tuple root of (38.3), when the fundamental form of V,, is definite.
To this end we choose a codrdinate system so that at a point P
g =0 and A,; = O for ¢ = 2,---,n. At P we have

0 1 0 ... 0
1 Xn—ogy Xp--- X
4=1o0 Xio

(38.4)
Xpp—wga -+ Xon— wgon

Xon— @fGop - - - Xon— @ gnn

Since by hypothesis the fundamental form of V, is definite, so also
is the form gog da” daf for @, 8 = 2,...,n. From the second
form of A in (38 4) it follows (§ 33) that the roots @ are real and
that for an »-tuple root the rank of this form is n—»—1, and
for the first form of A in (88.4) the rank is » —» -1, as was to
be proved. If the fundamental form is indefinite and Xy datda)
is definite, the same argument applies.

In consequence of this result, it follows that for a simple root
equations (38.2) define a unique congruence orthogonal to Ay, and
for an r-tuple root co” congruences the components of any one of
which are expressible linearly in terms of the components of r
mutually orthogonal congruences orthogonal to A" (cf. §33) Let
wr, and o be two different roots of (38.3) and denote by n' and lm
the components of congruences corresponding to these roots. In
this case from the second of (38.2) we have

(38.5) (Xy— wn gi) M’ + @ daj = 0.
Multiplying by X’ and summing for j, we have

(Xy— on g) Wi’ b’ = 0.
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Interchanging # and k and subtracting the resulting equation from
the former, we obtain

(38.6) 94 lm‘ }-klj = 0, Xy lmi lk|j = 0 hFk).

Consequently, the congruences corresponding to two different roots
of (38.3) are orthogonal to one another. Hence:

When either the fundamental form of Va or the form Xjda'daz/
1s definite, the roots of (38.3) are real and equations (38.2) define
n—1 mutually orthogonal real congruences orthogonal to the given
congruence Ay'; the congruences corresponding to a mulliple root
are not uniquely determined*.

We have also the following theorem:

When neither the fundamental form of Vy nor the form Xy dat dx/
is definite, a mnecessary and sufficient condition that equations (38.2)
define n—1 mutually orthogonal real congruences orthogonal to a
given congruence is that the roots of (38.3) be real and the rank
of A be n—r+1 for an r-tuple root.

The congruences so defined are said to be canonical with respect
to the given congruence. When we take them and 1,° for an
orthogonal ennuple and apply (80.2) to the definition (38.1) of
Xij, equations (38.5) become

1
@87 ;em (Ynwm ~+ ¥nmn) Amij—wn dnjj -+ on njj = O.
Multiplying by 4’ for k+ &, k+ n and summing for j, we get

(38.8) Yriict Yrin = 0 hyk=1,-.,n—1; R %k).
From (38.7) follow also

1
(38.9) Oh = € Ynhh, e = 3 én Vinn.

Conversely, if (38.8) are satisfied, the »—1 congruences of com-
ponents A for A = 1,..., n—1 are canonical with respect to
).,,I‘. Hence:

* Ricei, 1895, 1, p. 302; Ricci and Levi-Civita, 1901, 1, p. 155.
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A necessary and sufficient condition that the congruences an’ for
h=1,.... n—1 of an orthogonal ennuple be canonical with
respect to the congruence An)' s that (38.8) be satisfied.

From (38.8) and (35.4) follows the theorem:

A necessary and sufficient condition that n—1 non-null mutually
orthogonal congruences An® for h = 1,..., n—1 orthogonal to a
normal congruence be canonical with respect to the latter is that

(38.10) Yoe = 0 hEk=1,.-., n—1;h k).

As a corollary we have:

When a space Vi admits an orthogonal ennuple of normal con-
gruences, any m—1 of these congruences s canonical with respect
to the other ome.

39. Spaces for which the equations of geodesics admit
a first integral. If each integral of the equations (17.8) of the
geodesics of a space satisfies the condition

dan dx’=
(39.1) L R Pal const.,

the equations (17.8) are said to admit a first integral of the mth
order. From the form of (39.1) it is seen that there is no loss
of generality in assuming that the temsor a, ..., is symmetric in
all the subscripts. If we differentiate (39.1) covariantly with

respect to x*, multiply by %, sum for k¥ and make use of the

equations of the geodesics in the form (17.11), we obtain

dan  da'm da¥ 0
TrorwkTge " Tds  ds )

Since the equation must be satisfied identically (otherwise we
should have the solutions of (17.8) satisfying a differential equation
of the first order), we must have

(39.2) P(ay,...r,,x) = 0,

where P indicates the sum of the m -1 terms obtained by per-
muting the subscripts cyclically.
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In particular, if (39.1) is of the first order, that is,

dat
(39.3) a,-sz— = const.,
the condition (39.2) is
(39.4) @+ aj: = 0.

The question of integrals of the first order is considered in § 71.
In this section we are interested primarily in the case when (39.1)
is quadratic, that is,
dat da/

(39.9) a;j K —a;' = const.,
for which the condition (39.2) is
(39.6) @ik + @i+ @, ; = 0.

We consider the case when a; are such that the elementary
divisors of (33.1) are simple, and make use of the orthogonal
ennuple defined by (33.3). We observe furthermore that equations (39.6)
are equivalent to the equations

(B9 (it amitaw) by A i =0 (pg,r=1,-..,m),

since the determinant of the A’s is not zero. By means of (36.7)
and (36.8), according as p, g, r+,r =pFq and p=gqg=r,
equations (39.7) become

(39.8) (ep—00) 7pr+(ea—0") Yoo+ (er—ep) 1rpa =0 (9,0,7 %),

)

(89.9) ep ———3‘;’; + 20— 7ap =0 (0% 09,
9¢p __
(39.10) T =

Conversely, when equations (39.8), (39.9) and (39.10) are satis-
fied, then ay defined by (33.12) satisfy the conditions (39.6). The
problem of finding all V,’s admitting a quadratic integral consists
in finding a temsor gy and an orthogonal ennuple i’ for which
the coefficients of rotation e and )t satisfy the conditions
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obtained by the elimination of the ¢’s from (39.8), (39.9) and (39.10).
The general solution has not been obtained, but we shall consider
two particular solutions of the problem.

If all the ¢’s are equal, equations (39.8) are satisfied identically,
and from (39.9) and (39.10) it follows that the common value of
the ¢’s is constant. Then from (33.12) and (29.3) we have ay; = ¢gy-
This is the result obtained in § 17, namely, that (17.9) is a quadratic
first integral of the equations of the geodesics.

If we assume that all of the ¢’s are different and the principal
congruences determined by ay are normal, it follows from (36.1)
that (39.8) are satisfied identically. When we take the normal
congruences for the parametric curves, and make use of 31.1),
(87.2) and (37.3), we have from (39.10) that ¢; is independent
of 2%, and from (39.9) that H}/(0i—@;) is independent of z/.

A solution of this problem has been given by Stickel* as follows:
Let ¢y for j=1,..-, n be arbitrary functions of ¢ alone such
that the determinant @ of these n* functions ¢; is not zero. If
¢¥ is the cofactor of g; in @ divided by @, then
ik

?tl

S

|

1
(39.11) H =5 &=

for a given value of k different from 1 satisfy the conditions
above stated. From (33.12) and (37.2) we have

ik
(89.12) e = o =eapmy, w=0  G%)

Since k can take the values 2, ..., n, there are n—1 quadratic
first integrals other than the fundamental form.

We recall that the conditions of the problem are that the ¢'s
be different, that ¢; be independent of a* and that

H = fu (i—e) = .-+ = fi-silei— 0i-1)
(39.13)
= firri(@i—0it1) = --- = fu (& —@n),
where fii is a function independent of z* for 4, k=1,..-,n;¢ + k.
From (89.13) for a given ¢ and from

*1893, 1, p. 486.
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H = filg—e) = = firajlg—g) =
.o =fn.i (@j—l’n)

for a given j, we get pairs of equations of the form

(39.14)

Ji  G—e  Su @@ .
fo  ea—e’  fu e—e Ga k),

from which follows

fﬂ f’s] R
m@ L=

Again eliminating (¢; — ¢;) from (39.13) and (39.14), we obtain
H!f;+H fi = 0. Replacing 4,7 by j,k and k,4 respectively
and eliminating H7, Hf and Hy, we get

i S fui
39.16 L LE LT = ],
(89.16) Fa i Fi
The problem reduces to the solution of these two sets of functional
equations. Di Pirro* has shown that (39.11) and (39.12) give the
general solution of the problem for n = 3.

40. Spaces with corresponding geodesics. From equations
(17.7) it follows that the equations of the geodesics in a space V,
in terms of any parameter ¢ are

do) P dot P
dt  de dt dt

(40.1) ide) [ \ﬁﬁ)ﬂ.‘i_xﬁ_
+({lm} 2t — Il %) T =0

If V,, is a second space with the fundamental form

(40.2) ¢ = gydatda,

the equations of its geodesics are analogous to (40.1), and are

lzm} in (40.1) by the Christoffel symbols

* 1896, 1, pp. 318-322; he states without proof that the same is true for
any n and considers also the case when the roots are not simple. The reader
is referred to this paper and to Levi-Civita, 1896, 2, p. 292.

obtained by replacing {
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J‘ Im } formed with respect to (40.2). In order that every set of

solutions of (40.1) define a geodesic in V,, the equations

w03 [({ b=l 57— (b=l 5] 5 7 =0
must be satisfied identically.

If we subtract equations (8.1) from the corresponding equations
for V,, the resulting equations may be written

, i i gk
“0 {!“’} —{Mld} (Jl ]} { }) :;/‘%%
Hence if we put L

“0.5) Lt =11+

the quantities a‘,.j are the components of a tensor, symmetric in
¢ and j.

When the expressions (40.5) are substituted in (40.3), the latter
can be written

dz* dat dx™
(dialm-akalm) at dt dt =0

Since these equations must be satisfied identically (cf. § 39), we
must have

O a'm + 01 d'mic+ 04 aVa = Ok @lin+ O} @l Ok .
Contracting for j and m, we get
= O} Wi+ 0f P,

where v; is the vector a’;/(n+1). Hence in order that equations
(40.3) be satisfied identically, it is necessary and sufficient that

(40.6) {f;} =1, j} + oty 8y,
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where ; are the components of a vector.* If now we contract
for I and j we have in consequence of (7.9)

dlogg _ ologg )
(40.7) d - = T T2ltD,

where § = |gi|. Hence ; is the gradient of a function v, that
is, ¥,;, since g/g is an invariant.

Expressing the condition that the covariant derivative of gg with
respect to 2/ and the form (40.2) is zero, and replacing the symbols
{Zl]} by their expressions (40.6), we get the following equations
equivalent to (40.6):

(40.8) giej = 29w Wi+ g Y,i+ g5 Yk,
where g, ; is the covariant derivative of gix with respect to z/ and

the fundamental tensor g;. The conditions of integrability (11.15)
of these equations are reducible to

(40.9) gmx B™ 1+ gim Bt = g5 Yia— ga Yui+ gs Ya— ga ¥sj,
where we have put
(40.10) Yy = Yy— Y,

If we denote by R™;; the Riemann tensor for gy, we have
from (40.6) and (8.3)
(40.11) RB"j = R™u+ 60" py— 0" yu.

From these equations it follows that (40.9) is equivalent to the

identity sz-l— R = 0.
When V, is of constant curvature Ky, we have from (27.1)

(40.12) R = Ko (0] ga— o7 g4)-
In this case (40.9) and (40.11) reduce respectively to

(40.13) i Aa— Gia Aij+ G Au— G Ape = 0,
Rh(il = g}y‘An——gM Aiiy

* Cf. Weyl, 1921, 4, p. 100; also Eisenhart, 1922, 6, p. 234 and Veblen, 1922,
7, p. 849.
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where
(40.14) Ay = Kogij— ¥y.

Multiplying the first of (40.13) by g’* and summing for j and %,
we find that
(40.15) A = egip

where ¢ is an invariant. Hence the second of (40.13) becomes
Ruj = e nj gu—gn g5) and from § 26 it follows that ¢ is a
constant-and V, also is a space of constant curvature. Hence we
have the theorem of Beltrami:*
The only spaces whose geodesics correspond to the geodesics of a
space of comstant curvature are spaces of comstant curvature.
From (40.8), (40.10), (40.14) and (40.15) we have for ¢ 4 0

(40.16) Y = 2 (YW,i Y+ Y iV + YY) —4Y,i ¥, Y
— Ko 2gix ¥+ gix ¥, + 95 ¥,0)-

In consequence of (40.12) the conditions of integrability (11.14)
of (40.16) are of the form

(40.17) Vu— Y5 = Ko (Y5 9ic— Yk 9),

which are satisfied identically by (40.16).
For ¢ = 0 we have from (40.15), (40.14) and (40.10)

(40.18) Y5 = Y ¥+ Ko gy,

which are readily shown to satisfy the conditions (40.17). Hence
according as we have a solution y of (40.16) or (40.18) we can
find a space of constant curvatare different from or equal to zero
with geodesics corresponding to those of V. In the former case
gy is given directly by (40.15) and in the latter by the solution
of (40.8).

When ¢ in (40.15) is K,, V, has the same curvature as V.
From the considerations of § 27 we may think of (40.15) and
(40.14) for a given solution of (40.16) as defining a correspondence
of V, with itself such that geodesics correspond.

* 1868, 1, p. 232; also Struik, 1922, 8, p. 140 and Schouten, 1924, 1, p. 204,
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Contracting (40.11) for m and [/, we have
(40.19) Ry = Ry+m—1 .

It the expressions for vy from (40.19) are substituted in (40.11),
we find that
Wlijk = W,
where
(40.20) W = R’w‘—nil

(6% Ryj— 9} Rux).

This tensor was discovered by Weyl* and called by him the
projective curvature lemsor.

In order that the components of W'y be zero, in which case
Weyl calls V., a projective plane space, it is necessary and suf-
ficient that

1
(40.21) By = w1 (g1 Rij— gy Rir).

Since we must have Riux = 0, we find that for n>2

Ry = o9y

and consequently V, is of constant Riemannian curvature.t
41. Certain spaces with corresponding geodesics. We
return to the consideration of equations (40.8). If we put
= —}log p, the equations become

(41.1) 2u g+ 2gum,;+ gup,i + gimxk = 0,
and from (40.7) we have

s
(41.2) p = 0(7) :

where C is an arbitrary constant.

*1921, 4, p. 101.
+ CF. Weyl, 1921, 4, p. 110.
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We assume that the elementary divisors of

(41.3) lgi—egi|l = 0

are simple and denote by lmi the components of the orthogonal
ennuple defined by equations of the form (33.3). Equations (41.1)
are eqmvmlent to the system obtained by multiplying (41. 1) by
Ay’ 2y 2,7 and summing for ¢, j and k, for p, q, r = 1,.--, n
(cf. §39). According as we take p,q,r ¥, p=q%r, p # qg=r
and p = ¢ = r, these equations are reducible by means of equations
analogous to (36.7) and (36.8) to the respective equations

(0)—e)7pr = 0 (p, ¢, r %),
0
'5;; (nep) = 0 @ + ),
41.4 2
( ) 216 (0p—04) paa+ ("qa_;‘;?rl =0 @+,

a 53
—E(ﬂ ep) = 0.

We consider the case when the roots of (41.3) are simple.*
From the first of (41.4) it follows that y,., = 0 for p, ¢, » 3,
and consequently the principal congruences are normal [cf. (36.1)].
If we choose these curves as parametric, equations (41.4) reduce,
in consequence of (37.1) (37.2) and (37.3), to

L (re) = 0, i 49
9 log H; d0: L
(41.5) 2(9,-—9,-)—;’%,—4—53; =0, @+,
3:1’ -(u® e) = 0.

From the first of these equations we have

X 1
(4].6) 1o = E,

* This case and the case of multiple roots when the fundamental forms of
V,and V, are definite have been treated by Levi-Civita, 1896, 2, pp. 255-300.
We refer the reader to this paper for the case of multiple roots.
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where ¢; is a function of z* alone, and from the third and (41.6)
that u/g; is independent of z*. Hence

(41.7) = Cpy - Pn,

where ¢ is an arbitrary constant. From (41.6) and (41.7) it follows
that the second of (41.5) becomes

olog H &
(41.8) bmi = —_7 108 (9;—90).

Hence if H} (p;— i) denotes the product of the factors (¢;— ¢:)
for j =1,..., n (%), we have that H?/H}(q:;—q’,-) is at
most a function of = alone. Consequently the codrdinates ¢ can
be chosen so that, in consequence of (37.1),

4L9) gi = e H = a|[Ij(0i—9), gy = 0.

These expressions for H; are not changed if we replace ¢; by
9i+ a, where a is an arbitrary constant, for; =1, .. -, m. Then
from (33.12), (41.6), (41.7) and (37.2) we have

éi 1 ,
Gt~ Gt pita 11O,

9y = 0.

(41.10) gz =

If we put
aij = :“" Eij;

from (41.1) it follows that ay; satisfies the condition (39.6). Con-
sequently

1,0

;? (@14 a) -« 91+ a) (i1t a) - --

i\2
e ont ) | TT; (g — 9] (42 ) = eonst

(41.11)

is a first integral of the equations of the geodesics of V, with the
fundamental temsor gy Since (41.11) must be a quadratic first
integral whatever be a and the left-hand member is a polynomial
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of degree n—1 in a a, it follows that the equations of the geo-
desics admit » distinct quadratic first integrals.*

In the case just considered corresponding parametric hypersurfaces
of V,, and V, are n-tuply orthogonal. We shall obtain other solutions
satisfying this condition. From (15.7) and (40.6) in which ¥; is
replaced by the gradient of — }logw, we have the following set
of conditions:

107 _ 1 g :

g 0@ gy 0% G +7),

0 Joodi — — log I8 .y

(41.12) Wloggu = o7 log P (CEI)]
9 = 9 i
T 10895 = g 0¥ s

We consider first the case when every gy is a function of all
the coordinates. Expressing the condition of integrability of the
last two of (41.12), we find that p must be of the form (41.7),
and then from these equations we have

— gii
41.13 § = =
( ) G pip’
to within negligible constant factors. Then from the first of (41.12)
we have

9 /]
e loggi = 45— log (9;— %1)-

Comparing this equation with (41.8), we obtain equations (41.9)
and (41.10).

Suppose now that ge. for « =1, . .-, m are independent of z* for
6=m-1,...,n, then from the first of (41.12) it follows that gee
are independent of x¢. Proceeding as before, we find

_ Yoo

@L14) p = cg192---9m, guu = ea|[Tp(pp— 9a); Gau= 0
(o, 8 =17"'7m)'v

* Cf. Levi-Civita, 1896, 2, p. 287.
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For the other g's we have from the first of (41.12) and (41.14)

aio'a 1 aya‘o'
oz~ Pap 2%’

(41.15) - 1 8
T o G o @T=mALomicdo),
T T

and from the second and third of (41.12) we have gos = cs 2%,

From the second of (41.15) it follows that all the constants ¢; must
be equal, say 1/c. Then from the first of (41.15) we have

ologges 8 .
W = ax“log(%z C).
Hence
1'...,1’5
(41.16) Joo = H (Wu'—c)fo' (6 = m+ 1; Tty 'n)’
«

where fs are arbitrary functions of xm™+1, ..., 2,
From these results the general form (40.2) is obtained similarly
to (41.10) by replacing ¢; by 9;+ a in the expression for .

Exercises.
1. Solve equations (40.8) for the case where V, is of constant Riemannian
curvature K, + 0 and V, is a flat space.
2. Determine solutions of (41.12) other than those given in § 41.
3. Show that if 4 are the components of a geodesic congruence, then

A ("t.i + "M) =0,

and consequently the determinant ]).,, /+).J' ;| is zero.
4. If 4, are the components of a geodesic congruence, the congruences can-
onical with respect to it are given by [Cf. (38.2)]

(Xg—mg‘,) =0,

In particular, the congruence 4, satisfies this equation for w = 0.
Riccei, 1895, 1, p. 304.
5. If )'m are the components of an orthogonal ennuple in a V., a necessary
and sufficient condition that the congruence of components u, = ¢* 4,,; be geodesic
is that the invariants a* satisfy the equations

da*
Pl g = anydd,
Ricci, 1924, 6.
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6. A necessary and sufficient condition that the congruemces 1, ° for
a =1, -+, n—k of an orthogonal ennuple be normal to co"—* sub-spaces V, is that

(“=1y "'1”_k; U1T="_k+ly"'yn)~

Levy, 1925, 8, p. 41.

7. If every set of n—k congruences of an orthogonal ennuple are normal
to co"—* gub-spaces V,, then all the congruences of the ennuple are normal.

Levy, 1925, 8, p. 42.

8. If ¢, is a multiple root of order m of equation (33.1) and all the elementary

divisors of this equation are simple, in order that m mutually orthogonal con-

gruences corresponding to ¢, be normal®” it is necessary that any m independent

congruences ),'ll for r =1, -+, m corresponding to this root and any n—m

independent congruences corresponding to the other roots satisfy the equations

Yoar = Ytac

; _ r,8=1,.00,m;
By hay’ Opf Ryt =27 4, =0 (h’= mt1, -, 7;)

Figenhart, 1923, 6, p. 265.
9, If the roots of equation (33.1) are simple or double and the elementary
divisors are simple, a necessary and sufficient condition that there exist a normal
orthogonal ennuple whose components satisfy (33.8) is that any orthogonal ennuple
satisfying (33.3) shall satisfy (36.1) and (36.6) in which % and k, % and ! respect-
ively do not correspond to the same root, that the equations of Ex. 8 be satis-
fied and that (36.2) be satisfied, when I and p refer to the same double root, and
q and r to any other root or roots. Eisenhart, 1923, 6, p. 267.
10. If the congruences Ay’ for ¢ =1,..4n—1 of an orthogonal ennuple
are normal, they are canonical with respect to the congruence A"l‘.
Ricet, 1895, 1, p. 308.
1. If for a V, the equation | B,+ eg,| == 0 admits a simple root ¢, and a
triple root g,, the elementary divisors being simple, and the principal directions
corresponding to ¢, and ¢, satisfy the respective conditions

gghfhi =1 gyhth/=—1 *=234),
then
1 1
B,— ‘2—ng = (e,—e) 4 4y + 2 @, + e 9y

Such a V, may be interpreted as the space-lime continuum of a perfect fluid
in the general theory of relativity, the congruence 1, ‘ consisting of the lines
of flow, Eisenhart, 1924, 4, p. 209.
12. When the fundamental form is defined by (39.11), the determination of the
equations of the geodesics in finite form is reducible to quadratures (cf. Ex.8, p. 60).
Stickel, 1893, 2, p. 1284.

13. Show that the guantities
+ [ 1 l 1 i
s, {jk}_— nt1 a_-"{lk}_ n+T°"i{lj}

* and that this applies to every root.
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have the same values at corresponding points of two spaces in geodesic cor-
respondence, and that for a new set of coordinates ' the corresponding func-

tions H;g';, are given by
3’:1:‘_ = I 16 3:::‘ "“H“ 81" 8:@*
dx'® du'P “f 3a'® % px'e px'B

1 (Blogd dat dlog A Ba:‘)
n+1\ 9x'® dx'B 3z’ dxe/’

where 4 is the Jacobian l:—,x;' T. Y. Thomas, 1925, 9, p. 200.
x

14. By expressing integrability conditions of the second set of equations in
Ex. 13, derive the tensor W?,, defined by (40.20).
J. M. Thomas, 1925, 10, p. 207.
15. For the parameter ¢, defined along any geodesic by

t = fc_;!:‘—j{“‘}wds

the differential equations of the geodesics are

1

o : da? da*
a 1L
where the functions H;, are defined in Ex. 13.

=0’

T. Y. Thomas, 1925, 9, p. 200.
16. Show that the parameter ¢ in Ex. 15 is the same for spaces in geodesic
correspondence.

17. Show that at corresponding points of two spaces in geodesic correspondence

a codrdinate system y* can be established such that the equations of the geodesics

through the given points in the two spaces are given by y* = %'{, where 7‘ are

constants and ¢ is the parameter defined in Ex. 15; show also that the equations

Piyiy =0

are satisfied identically, where P are the functions for the y’s analogous to
IL, in the 2's defined in Ex. 13, (CE. § 18).

Veblen and Thomas, 1925, 11, p. 205.

18. Show that the quantities H‘“ in Ex. 13 behave like the components of

a tensor under linear fractional transformations of the cotrdinates, and under

them alone. Veblen and Thomas, 1925, 11, p. 206.

19, A necessary and sufficient condition that there exist for a V, a symmetric

tensor g, where |§u| % 0, whose first covariant derivatives are zero, is that

the equations of the geodesics of ¥, admit the first integral 37..,.:—:5‘ d%:—;—: const.

and that the 17” with gy as fundamental tensor admit geodesic representation on V.

Levy, 1926, 1.

20. For a space of constant curvature + O the onmly tensor 9y Where [gﬁ | +0,

whose first covariant derivatives are zero is given by §; = 0g,, where ¢ is a constant.

Levy, 1926, 1.
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21. A necessary and sufficient condition that a Riemannian space admit a
symmetric tensor ay, other than g, whose first covariant derivative is zero and
such that the elementary divisors of the corresponding equation (33.1) are simple,
is that its fundamental form be reducible to the sum of forms ¢, = g,;, do*d=’,

where g, are functions at most of the a’s of that form; then
a,dz"dx* = ; CaPas

where the ¢’s are constants. (Cf. Exs. 4 and 5, p. 124.) Eisenhart, 1923, 5, p. 303.

22. The congruence corresponding to each simple root of equation (33.1) of
Ex. 21 is normal, and the tangents to the curves of the congruence form a field
of parallel vectors. FEisenhart, 1923, 5, p. 803.



CHAPTER IV
The geometry of sub-spaces

42. The normals to a space V, immersed in a space V.
Let V, be a space with the fundamental quadratic form

(42.1) p = gydatdxl Gj=1,---,n)
immersed in a space V, with the quadratic form

(42.2) ¢ = agpdy®dy’ (5, 8=1,--.,m)*
Van being defined by equations of the form (cf. § 16)

(42.3) =@, ., ),

where the rank of the Jacobian matrix “%‘;—u“ is n.
For displacements in ¥, we have

(42.4) tap AY” Ay = gy dat da),
and consequently

0" 8y _
(42.5) aaﬂw —3—.’;’- = GJij.

Since the y’s are invariants for transformations of cosrdinates in v,
their first derivatives with respect to the z’s are the same as their
first covariant derivatives with respect to (42.1). Hence we may
write (42.5) in the form

(42.6) aap ¥ ¥%0 = gu-

If A* are the components of a vector-field in V,, normal to V,
at points of the latter, we must have (§ 16)

42.9) g y*i ¥ = 0.

*In this section Greek indices take the values 1,...,m and Latin1, ..., n,
unless stated otherwise.
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Since the matrix of these equations in 4% is the product of the
matrix ||y ;|| and the determinant

(42-8) a = laaﬂ l '

which we assume to be different from zero, it follows that this
matrix is of rank #»,* and consequently equations (42.7) admit mr—n
linearly independent sets of solutions; that is, there are m —n
independent vectors normal to ¥, at a point.
We consider first the case when m = n--1 and prove the theorem:
A mecessary and sufficient condition that the mormals fo a V,
immersed in @ Vot form a null vector system is that the determinant g
Jor Vy, be zero.
. In accordance with the theorem of § 31 it follows from (42.6)
that the determinant g is the sum of the products of corresponding
n-row determinants of the two matrices |la.zy* ;|| and [ly* |l If
(42.7) is written in the form

Y de = 0,

it follows from this equation and (42.7) that corresponding deter-
minants of these matrices are proportional to 4 and A4 respectively,
and consequently g = ¢odf Ap, where ¢ and o are factors of
proportionality. From this expression for g the theorem follows
at once (§ 12; cf. § 14).

We consider now the case m>n-+1 and indicate by 44" for
¢ = n+1,...,m the contravariant components of m —n inde-
pendent vectors normal to V,. If we put

(42.9) Efl“ = t:lo'la (6,7 = n+1,---,m),

where 7 are functions of the z's, the vectors with compopents 15,[“
are normal toV,. In order that they be orthogonal to one an-
other, the functions ¢ must satisfy the conditions

« B __ [ B Yo
tap e Eo = tap iy A tr o =10
, 7,7, e =n+1,...,m; t o),
* Bocher, 1907, 1, p. 9.
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which we write
(42.10) Cun B g = 0.

The problem of finding m—n sets of functions £ satisfying this
condition is equivalent to the algebraic problem of finding a self-
polar polyhedron (§ 13) with respect to

(42.11) e 't = 0.

When the determinant |c,, | is different from zero, there can
be found m—n sets of #'s satisfying (42.10), none of which satis-
fies (42.11). Consequently m—mn sets of mutually orthogonal vectors
normal to V;, exist, none of which is a null vector.

If [¢u| = 0 and the rank of the determinant is m—n—p,
there are p linearly independent vertices of the hyperquadric
(42.11),* and consequently p linearly independent null vectors are
given by (42.9) and m —n—p other vectors, which are not null
vectors, orthogonal to the former. Thus there are m—» independent
vectors §ﬁ|“ normal to ¥, of which p are null vectors. For any
one of these null vectors, say &,% we have

T . @ . o= n-+1,...,m;
Bap &y S = 0 agp§y ?/ﬂ,i_o (2'21,...,” )
Since |aq5|4 0 by hypothesis, we cannot have Qg §1l“ = 0 for

B =1,...,m. Hence there must exist relations of fhe form

aa' §6‘|“+ bi !/“,i — 0’

where all the b’s cannot be zero, otherwise the m—n vectors &
would not be linearly independent. Multiplying by Qo f j and
summing for «, we have b g;; = 0. Since all the b’s cannot vanish,
we must have g = 0. Therefore the case |c,, | = 0 is possible
only when g = 0, and hence:

When the determinant g of the fundamental form of a Vi immersed
n a space Vm is different from zero, m—n real mutually orthogonal
vectors normal to V, can be found nome of which is a null vector.

* Cf. Bocher, 1907, 1, p. 130.
t Ricei, 1922, 9, 10.

See
App. 14
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Suppose now that 44 * are the components of m—n such mutually
orthogonal vectors normal to V,. The magnitudes of these com-
ponents can be chosen so that

ap ).,,‘“lﬂﬂ =¢ (6 =mn+1,.--,m),

where the quantities e, are plus or minus one. Then c,, = 0 in (42.10)
for p ¥ » and c,, = e,, so that (42.10) reduces to ey, tf tg =0
7

for u,0,7=mn-41,...,m(e$ 7). The problem of finding such
functions ¢ is that of finding an orthogonal ennuple in a space
Sm—n (§26). Each such ennuple determines by means of (42.9)
a new set of mutually orthogonal non-null vectors normal to V..
Hence we have:

When m—n mutually orthogonal unit vectors in Vi mormal to
a V, immersed in Vp are known, linear combinations of their com-
ponents, whose coefficients are the components of any orthogonal
ennuple in a certain flat space of m—mn dimensions, are the com-
ponents of another set of mutually orthogonal normal vectors.

From the results of § 13 it follows that any one of these linear
combinations can be chosen arbitrarily, provided that the functions #°
are such that ;ea (#9)% + 0.

43. The Gauss and Codazzi equations for a hypersurface.
Consider a space Vy4: of coordinates y* and a hypersurface V, of
codrdinates z* defined by the equations

(43.1) Y= fe@, ..., 2"

We take (42.1) and (42.2) for the fundamental forms of V, and
Va+1 respectively, and consequently have the relations

(43.2) aap Y%, i YP; = g

between the components of the two fundamental tensors.
From the first theorem of § 42 it follows that the normal
vector to V, is not a null vector, since it is assumed that g 4 0.

*In this and subsequent sections Greek indices take the values 1,...,n+41
and Latin 1,...,n.
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If &% are the components of the unit normal vector, we have
from (42.7)

(43.3) gy 88 =0, aep&* & = e

If equation (43.2) be differentiated covariantly with respect to
2% and the ¢'s, we have

6aa‘3
oy”

If we subtract this equation from the sum of the two equations
obtained from it by interchanging ¢ and % and j and k respec-
tively, we obtain, in consequence of (11.12),

Y i P v et ap a4+ Py = 0.

aag ¥k P55+ (@B, Nla v i P ik = 0,

where the Christoffel symbols of the first kind are formed with

respect to a,g and evaluated at points of V,. When this equation
is written in the form

g Y 1 (y"‘,ry + {;:,}ay".i y",j) =0,

it follows from the first of (43.3), since the Jacobian || % || is
of rank n by hypothesis, that

(43.4) ¥y = — { ’Z }ay",i .+ ey &%,

where the functions £;; are thus defined. If these equations be
multiplied by .z & and summed for «, we obtain

(43.5) Ry = aap ¥ y* 5+ v, Blay®i /i &

Since ag, ¥ and [uv,B], are invariants for transformations of
codrdinates z¢ in V,, it follows from (43.5) that £ are the eom-
ponents of a symmetric covariant tensor in the «’s.

If the first of (43.3) be differentiated covariantly with respect
to 2/ and the g's, we have



See
App. 15
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0 {la‘g

(136) 4yt o8 +ang i ¥ = —y v/ ¥
y
= —y": ;i ¥ (o, Bl + (8, ala),

in consequence of (7.4). By means of this result equations (43.5)
are equivalent to

(43.7) 2y = —app )i &, — BV, 0la g i 5 .

These equations can be written in the form

w9  apva(Fa{ ] i) = o

104

If the second of equations (43.3) be differentiated with respect
to a/, the resulting equation is reducible by considerations similar
to those used in (43.6) to

g &% ‘5”--{—{ ﬂ} “-':"') = 0.
(43.9) gp 5 ( v v s
From this equation and the first of (43.3) it follows that
1¢’ﬂj+{ B}y‘“i?" = A%y,
) g )

where the A’s are determined by substitution in (43.8); in con-
sequence of (43.2) we have

g Ay = —05, A= —9;g"
Hence we have

@100 ¥y =—oygnSm—| P} ¥

—lpv

Sey

In order to obtain the conditions of integrability of (43.4), we
make use of the Ricci identity (§ 11) ‘

(43.11) Vi— Y0 = Y% m g™ B,
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where Ry are the Riemann symbols of the first kind formed with
respect to the g’s. Substituting from (43.4) and making use of
(43.4) and (43.10) in the reduction, we obtain

¥ m 9™ [Buije— e(2nj Quc— 2uc 24j)] — e 5 (Ry,x— L))
v A
By ive=0,

where the components R“,‘,,;, are formed with respect to a,s and
evaluated at points of V. If this equation be multiplied by a,, f 2

and summed for «, and again by a. .Eﬁ , we obtain the two sets
of equations (after changing the indices)

= « ¢
(43.12) By = e(Qu 2u— 2 Q) + Ropys y i :'/ﬂ.j?/.k!/ W

(43.13) Qije—Licj = Ropys v\ i ¥

In consequence of these equations the conditions of integrability
of (43.10) are satisfied.

When V,4: is a euclidean 3-space and the y’s are cartesian
codrdinates, equations (43.4) become

(43.14) vy = .

These are the Gauss equations* for the surface, where in accordance
with the customary notation

43.15) ' =u, 2* =v, &, =D, &, = D, 2 = D".
In this case equations (43.12) reduce to the single equation
(43.16) Rz = DD"—D?,

the equation of Gauss, and (43.13) to the equations of Codazzi
(43.17) Qjr— Qg = 0.1

*1909, 1, p. 154.
+1909, 1, p. 155.
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Accordingly (43.12) and (43.18) are called the equations of Gauss
and Codazzi for the hypersurface V,; they were established first
by Voss.* Also the quadratic form

(43.18) Y = Q;drda’

is called the second fundamental form of V.
When V41 is a space of constant curvature K, we have
from (27.1)

(43.19) Rapys = Ko (@ay g0 a0 apy)-
Because of (43.2) and (43.3) equations (43.12) and (43.13) reduce to

(43.20) Ry = e(Qa 21— 2u L) + Ko(gix gji— gt gjn)
and
43.21) QL p— Qe = 0.

44. Curvature of a curve in a hypersurface. Consider
a non-minimalt curve C lying in a V, and defined by the x’s as
functions of the arc. When these expressions are substituted in
(43.1), we have the y's of the enveloping space V41 as functions
of s. Consequently

dyaz a.dmi
ds LB ds'

Since the left-hand member is an invariant in V,, we have by
covariant differentiation with respect to a/

(%),j Ja v ds +y (dml)"’

Substituting for 3% i the expression from (43.4), multiplying by

dax) . .
m—and summing for j, we have

* 1880, 1, p. 146; cf. also Bianchi, 1902, 1, p. 361.
+ For the method of proceedure when C is minimal see the first foot-note
of § 24.
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%

ds* ads ds
(44.1) oayped G2y (B }dw’ ask).
=TS s ds ds® ' jklgds ds

From § 20 it follows that the left-hand member of this equation
is the component %* of the principal normal of € in V4, and
the expression in parenthesis on the right is the component p* of
the principal normal in V,. The first curvatures of C in V¥, and
in Va41 respectively are given by [cf. (20.3)]

1 1
(44.2) o= V]gyw p], e Viaag 1= 981

The former of these is called the relative curvature of C with
respect to V.
If we put

i J
(44.3) 1 daxt dx

R~ "YVas as’

it follows from (44.1) that 1/R is the component normal to V, of
the first curvature of C in V;4. Its value at a point P is the
same for all curves of V, through P with the same direction.
Accordingly it is called the normal curvature of V, at P for a given
direction. From (44.1) we have:

The normal curvature of a hypersurface for a direction is the
Jirst curvature in the enveloping space of the geodesic of the hyper-
surface in this direction.*

If we denote by 7* the components in the y’s of the vector 4,
that is,

(44.4) 7% = wy",
equations (44.1) can be written
(44.5) " = e—— + 7%

The vector 9“ is called the relative curvature vector.

* These results and those which follow are immediate generalizations of well-
known ideas in the theory of surfaces in euclidean 3-space. Cf. 1909, 1,
pp. 131-133.
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If the vectors #* and * are not null vectors, in consequence
of (44.2), equations (44.5) can be written

o ‘§(¥ q"a
44.6 T — e+
(44.6) o 7 T o’

where now 4% and %* are the components of the unit vectors in
their respective directions.
Since the vector of components 7 lies in V,, we have

aaﬂ §a _’q_ﬂ = Oy

and from (44.6) it follows that the principal normal in Vy4i is
me of the directions in the pencil of directions formed by the
orthogonal vectors & and % If we put

Uop §° 7 = coso, g n” 7% = cosg,

we have from (44.6)

1 cos @ 1 €CcoSo
(“eD) B e’ Qg (4 ’
where a,7%9" = &.
If the fundamental form for V4. is positive definite, we have
e = 1, cosg = sinog, and consequently

1 cos @ 1 sine
44.8 = = — —_—=
(44.8) R e’ [ e

The first of these equations is the generalization of Meusnier’s
theorem to curved spaces of any order and the second shows
that the curvature of C relative to V, is a generalization of the
geodesic curvature of C.*

45. Principal normal curvatures of a hypersurface and
lines of curvature. The principal directions in V, determined
by £; are given by

(45.1) (Ru 25— gi) * = 0,

*1909, 1, p. 118.
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where R; are the roots of the determinant equation
(45.2) |B 24— gy| = 0.

From § 33 it follows that R, are the maxima and minima values
of the radii of normal curvature defined by

1 2y M

R~ g ¥u

(45.3)

and 4" defined by (45.1) are the corresponding directions. The
roots of (45.2) are called the principal radii of normal curvature
of V.. The curves of the congruences determined by 4" are called
lines of curvature of V,. If the roots of (45.2) are simple, there
are n uniquely determined families of lines of curvature, and their
directions at any point are mutmally orthogonal (§ 33). If a root
is of order » and the elementary divisors are simple, the corres-
ponding principal directions are linearly expressible in terms of
r directions, orthogonal to one another and to the directions
corresponding to the other roots. If the elementary divisors are
not simple, which can happen only for certain cases when the
fundamental quadratic form of V, is indefinite, it is not possible
to find » families of lines of curvature whose directions at a point
are mutually orthogonal. The lines of curvature corresponding to
a real root are always real. When the fundamental form is definite,
all the roots are real. This is not necessarily the case when the
form is indefinite.

Suppose that the elementary divisors of (45.2) are simple, in
which case none of the vectors defined by (45.1) is a null vector
(§ 33). Hence there exist » mutually orthogonal unit vectors iz °
satisfying (45.1) such that

(45.4) g6 iy’ = en, gi ' by’ =0 (% # k).
Any unit vector-field in V,, say 4, is defined by

(45.5) M= ecosai byt ...+ encosanin’,
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where (§ 13) o )

cosa, = gy My,  ggh A =
Now (45.3) becomes
(45.6) L =Tk,

and from (45.1) we have

1 A
(45.7) T = ep R4 l;q' I
Substituting in (45.6) from (45.5) and making use of (45.7), we
obtain \
e ecos’ey en c0s®ay,

(45.8) 5= & 4+ 2
which is the generalization of Euler’s formula.*

We shall prove the following theorem:

The congruences canonical with respect to a mormal congruence
are the lines of curvature of the hypersurfaces normal to the congruence.

Let & be the components of the congruence of normals to a Vy in
a Vpt1, and &p* for A=1, ..., n the components of the congruences
canonical with respect to the congruence ¥*. From (38.2) we have

1 .. . ,
(45.9) [5 (Qa’ﬂ -+ -?ﬂ’“) —wy, (Lap] ’s.mp +oné, = 0,

where the covariant differentiation is with respect to the fundamental

form of Vi1,
Since
_ B (0 )yl _ 0% oy
&8 yﬂ‘j =y ,j (—5;; &, ‘ama = o5 B vay &
and from (43.10) we have
] 9 o
—3% = xd (auﬁ gﬁ) = - 'QU.qlm ?/gym (27 +[en, vl yu'j g ’
it follows that
(45.10) §a g == m tep.

* CL. Voss, 1880, 1, p. 151; Bianchi, 1902, 1, p. 370; also 1909, 1, p. 124.
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From & f . = 0 we have by covariant differentiation with respect
to the g’s and by means of (43.4)

(45.11) e Liv ity =o0.

If (45.9) be multiplied by 4" ; and summed for «, and ‘§;.|ﬂ be
replaced by s’ g/a .J» We obtain

1 .
@6.12) |5 Gapt8,0—on s rfs il = 0.
Because of (45.10), (45.11) and (42.5) this reduces to

25+ ongy) ' = 0,

which proves the theorem.

As a consequence of this result and the last theorem of § 38
we have the following generalization of the theorem of Dupin:*

When a space V, admits an n-tuply orthogonal system of hyper-
surfaces, any hypersurface is cut by the hypersurfaces of the other
Samilies in the lines of curvature of the former.

46. Properties of the second fundamental form. Con-
jugate directions. Asymptotic directions. If P(zf) and
P'(z*+-da’) are nearby points of a hypersurface V,, and C is the
geodesic in V, determined by these points, it follows from (44.5)
that |.R| as given by (44.3) is the radius of first curvature of C at P.
From (20.6) it follows that p given by

(46.1) 2p = Qydaida’

is the distance from P’ to the geodesic of V41 tangent to C at P,
to within terms of higher order.t This is the well-known property
of the second fundamental form of a surface immersed in euclidean
3-space.; Hence we have:

* 1909, 1, p. 449.

T Since the principal normal to C is normal to V. and consequently is not
a null vector, the exceptional case treated in § 20 does not arise in this instance.

11909, 1, p. 114
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If V, is the locus of geodesics of Vat:r tangent to a Vu at
a point P(ab), the distance from a point P'(z*+daf) of Vuto Va
is one-half the value of the second fundamental form for the given d',
to within terms of higher order.

Generalizing a concept* of the theory of surfaces, we say that
two directions at a point P determined by daf and dz‘ are con-
Jugate, if
(46.2) Qydatdaxl = 0.

From .§ 46 and (33.10) we have:

The directions of two lines of curvature at a point of a hyper-
surface are conjugate.

Also we have the more general theorem:

A vector at a point of a hypersurface whose components are
linear combinations of the components of p vectors tangent to lines
of curvature is conjugate to the vector whose components are linear
combinations of the remaining n—p veclors tamgent to lines of
curvature.

A direction which is self-conjugate is called asymptotic. Hence:
The directions at a point of a hypersurface defined by

(46.3) Qydatda) = 0
are asympiotic.

From (44.5) and (20.6) we have:

A geodesic of a hypersurface in an asymptotic direction at a point P
has contact of the second or higher order with the geodesic of the
enveloping space in this direction at P.

By definition an asymptotic line is one whose direction at every
point is asymptotic. From (44.5) we have:

When an asymplotic line is a geodesic of a hypersurface, it is
a geodesic of the enveloping space, and conversely.

If ).,.[’ and &," are the components in the z’s and y's respectively
of a vector-field in V,, we have

(46.4) & = iy

If equations (43.10) be multiplied by A’ and summed for j, we
have in consequence of (46.4)

*1909, 1, p. 1217.
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(46.5) e = — Qg ol

where & is the covariant derivative with respect to the fundamental
tensor of V,4,. From the form of (46.5) it is seen that the right-
hand member is the associate direction in V4, for the displacement
of the normal vector in the direction £, unless the normal is
parallel along the curve (cf. Ex.5, p.158). In order that this associate
direction coincide with the direction &, the right-hand member
of (46.5) must equal ¢&,#. The resulting equation is reducible by
means of (46.4) to

(g’ + ednl) P = 0.

Multiplying by a.sy* ; and summing for 8, we have, in consequence
of (42.5), )
(2w + egx) An’ = 0.

Comparing this equation with (45.1) we have:

A necessary and sufficient condition that the associate direction
(when it exists) of the normal vector to a hypersurface for a curve
in the hypersurface be tangent to the curve is that the curve be
a line of awrvature.

In order that the associate direction be orthogonal to the curve,
we must have )

Bop 5" B Y I’ = 0,

which is reducible by (46.4) and (42.5) to

ijlmjlmk = 0.
Hence we have:
A mecessary and sufficient condition that the associate direction
(when it exists) of the normal to a hypersurface for a curve in
the hypersurface be orthogonal to the curve is that the curve be an

asymptotic line.*
Exercises.
1. When the elementary divisors of equation (46.2) are simple for a hyper-
surface V, of a space of constant Riemannian curvature K,, the scalar curvature
R of V, is given by

* These two theorems are generalizations of well-known theorems in the theory
of surfaces in euclidean 3-space. Cf. 1909, 1, pp. 148, 144.
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ee (B (23] e mns

where R, are the radii of principal normal curvature.

2, Let V, be a given hypersurface of a V, , and refer the latter to a codrdinate
system «* in which the hypersurfaces a*t! = const. are geodesically parallel
to V, (§19), =™+ being the arc of the geodesics normal to these hypersurfaces
measured from V,; then

¢ = e(dar+)*+ ¢ dotdx Gji=1..-,m),

and g, = (c 'l) a+1o- Show that in this codrdinate system the components of
the normal to V,are ¥=0 (i=1,.-.,n), i+ =1, and by means of (48.4) that

dc,

1
D = =
2 V0o apa

» .
=0

Bianchi, 1902, 1, p. 369.
3. When a V, admits an n-tuply orthogonal system of hypersurfaces a*= const.,

the components in the x's of the tensor &2, for the hypersurface a™== const. are

H, 08, - L
o= =g e =0 Gi=len—Litd,
as follows from (87.1), (37.2) and (43.4); and the radii of principal normal
curvature are
1 _ 1 °H _
R, HH, o> WTw
Bianchi, 1902, 1, p. 378.

4. When a V, admits an #-tuply orthogonal system of hypersurfaces af==const.,

the first curvature of the curves of parameter x* is given by [cf. (30.18) and Ex. 3]

1 Ii,....n e,
a4 1Y’y

r+h),

where R, is the radius of principal normal curvature of xf = const. for the
curve of pmmeter ™. Bianchi, 1902, 1, p. 379.

5. In order that the normals to a hypersurface along a curve of it be parallel
with respect to the curve in the enveloping space, it is necessary and sufficient that

dx
Pyar =0

where ¢ is a parameter along the eurve; show also that such a curve is an
asymptotic line.

6. For a V, the functions g, defined by (cf. § 31)

‘ﬂ( evk R

1
g = 19 -
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are the components of a symmetric contravariant tensor. Show that on taking
indices as equivalent which are congruent modulo three

gp = Rr+u+n+n+z‘ '
Ricci, 1895, 1, p. 292.
7. In a V, the Riemannian curvature at a point for an orientation orthogonal
to the vector 4, is given by
A

T AR

where Y is defined in Ex. 6. Hence the principal directions determined by

pY are those for which K has maximum and minimum values; these are given

by the roots of | Y —eg¥ | = 0. Bianchi, 1902, 1, p. 354.
8. For a hypersurface of a space V, of constant curvature K the lines of

curvature are the directions for which the Riemannian curvature are maximum

and minimum, and these are given by

K =K+ Gg k= 1,2,8; 4,5,k *).

Bianchi, 1902, 1, p. 871.

L
R, R,

47. Equations of Gauss and Codazzi for a V, immersed
in a V,. Given a V, of cotrdinates 2 in a V,, of codrdinates y*; let
the fundamental tensors of V; and V,, be taken in the forms (42.1)
and (42.2) respectively*. As shown in § 42 there exist oo ™—mm—n~1/2
systems of real unit vectors in V,, mutually orthogonal to one another
and normal to ¥,. We choose a particular system of such normal
vectors and denote their components by & for c = n--1, ..., m;
then we have
(47.1) Oap §01¢ §¢Iﬂ = e, Bup £, gﬂﬂ =0

(o',t = n+1"") m; 6*’);

where e; is plus or minus unity. These components satisfy equations
(42.7), that is,
(47.2) Bug Y i §a,/’ = 0.

If (42.6) be differentiated covariantly with respect to the quadratic
form (42.1), we have
P0ap . .
2g” ¥ SVt g @l ay" ) = 0.

*In this and subsequent sections Greek indices take the values 1,..., m,
unless stated otherwise, and Latin 1,..., n.

(47.8)
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If we subtract this equation from the sum of the two equations
obtained from it by interchanging ¢ and %, and j and % respectively,
we obtain

aep ¥ 5+ (@B, 7y iy’ sy = 0,

where the Christoffel symbols are formed with respect to the form
(42.2) for V,, and evaluated at points of V,. This equation may
be written
[« ) =
“ap!lﬂ.k(y“.i}'i‘ (I a!/”,z?/ J) = 0.
Since any solution of (42.7) is expressible linearly in terms of the

m—mn vectors £, there must exist functions $24; such that

(47.4) o= —1 &1y Seo Qay b
MYV ig ¢
(¢ =n+1,...,m).

From these equations we have in consequence of (47.1)
@15)  anpyyEf = — ¥, Byt iy i b + Qa

The functions &, and [u», Bls are invariants for transformations
of codrdinates ¢ in Vy, 4", are the components of a symmetric
covariant tensor of the second order in the z's and »“; are com-
ponents of a vector. Hence it follows from (47.5), that for each
value of ¢ the quantities £2¢; are the components of a symmetric
tensor in V.

Differentiating (47.2) covariantly with respect to z/, and making
use of (47.5), we have

(4716)  agpy®ibefy = — Qay— 0B, vl y” iy &l
If we define functions p,,; by the equations
(47.7) aap §flu §¢‘p’j+ [[0 v, ,3]“ y‘“,j .301" :Sﬂﬁ = Mraljs

then for each value of = and ¢ the quantities . ; are components
of a vector, since the term on the left of (47.7) is the component
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of a vector. Moreover, if the second of equations (47.1) be
differentiated with respect to 2/, we have from the resulting equation
and (47.7) that

(47.8) Pr¢|j+ borj = 0, togj = 0.

For a given value of ; the quantities ¥,/ ; are the contravariant
components df a vector in V.. Accordingly we write

§o’|ﬁ.j == Akya,k_*_ZBf :‘:ﬂp (z=mn+1,...,m),
T

where the A’s and B’s are to be determined by substituting this
expression in (47.6) and (47.7). This gives

Argy = —Qgy— B8, Y,y ;¥ &,
B, = et/"‘rdj—er[l"'r ﬁlny,,j-éo'l 51'( .

From the first of these we get, on multiplying by g% and summing
for 4,

A= —0,,6"— w8, i i v Ef 9"

It ).;.f are the components of any mutually orthogonal unit vectors
in V,, we have from (29.5)

;el;lmilmt == yﬂ (Il =1,... 'n).

If Em are the components of these vectors in the y’s, we have
5" = My"; and consequently

AP0 = — 256" P u—pd, vy, S 2 en Sn” Enf.

Substituting these expressions in the above equation for & ," and
making use of an equation of the form (29.5) for V,, we have
(on changing indices)

479) & pj = —!)alljykyﬁh Ve v} ?/‘“,j Eq”+§er Hzg) §rlﬂ
(0,7 = n+41,..., m).
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In order to obtain the conditions of integrability of (47.4), we
make use of the Ricci identity (cf. § 11)

(47.10) ¥ ine— YS.a = Y .1 9" Ruijk,
where the Riemann symbols R are formed with respect to (42.1).

Substituting from (47.4) and making use of (47.4) and (47.9) in
the reduction, we obtain

v 9" [Byp— ; es (R Lt — Lopic Laip)}
— e ks [Qaw,k—‘ !2.,|.~k,,-——2 er (o Lejij— tralj -Qrwc)]
[3 T
— Rty iy vk =0,

where R“‘w,; is the Riemann tensor with respect to the fundamental
form (42.2) of V., evaluated at points of V. If this equatlon be
multiplied by a.sy# , and summed for « and again by a.g &, ,,, , We
obtain the two sets of equations

Rijla = 2 es (el Roljt— Latit Loijic)

47.11)
+Raﬂy6y iyﬂyl ¥, k.’/dl

and

Qaigj,x— Rolik,j = 2 ef("'ﬂ!lk Deiii— Pralj 'Qﬂik)
47.12) _ ’ N
+R¢ﬂyd iy E"Ip (o,v=mn+1,-- m).

Since &q# jk = &q” 1, the conditions of integrability of (47.9) are
reducible by means of (47.12) to

Z (3 (I"ro']j, 1 Bk, j) §1‘] # +2 € ér (/"'ro'|j Morlk — Proik Merl j) §g]p
(47.13) +2 e 9 (Raix .Q,m;-—%uj Qqink) 5‘:[’ + R o Y5 Y K Ea*

— g™ 1 B Y"1 95 ¥k Bt = 0.



47. Equations of Gauss and Codazzi 163
Multiplying this equation by &, and summing for 8, we obtain
Pralj e Mrolrj T+ %: €o (#gr|j Pooll: — Mgr|k Heal))
(47.14) —
+ g (@eftj Qefpic—RLeluc Qaing) + B 4,5 4k Eat* Erfp =10

(e, e =mn-+1,..., m).
When m = n-1, the quantities pj1; are zero, as follows
from (47.8). Then (47.11) and (47.12) reduce to (43.12) and (43.13),
and (47.14) are satisfied identically. Hence we call (47.11) and

(47.12) the equations of Gauss and Codazzi of a V, in a Vy.*

If in accordance with § 42 we take another set of real mutnally
orthogonal vectors normal to V, defined by

(47.15) % = 5%,

the functions ¢ satisfy the conditions

Detito =0, Delf=r%,
a [

(o‘,v,g:n—l—l,---,m;v:{:e).

(47.16)

In consequence of the results of § 29 we have
(47.17) ety =0, 22 )= e
1 4 1 4

From equations similar to (47.5) and (47.7) by means of (47.15)
we have respectively

(47.18) Qg = 1y Llyj,

fivgli = 1, t; P+ AEe; ii t::,j

(l)yy?9art=n+13 R ] m)°

(47.19)

*These results for positive definite forms are due to Voss, 1880, 1, p. 189
and to Ricci, 1902, 2, p. 857.
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When these expressions are substituted in equations similar to
(47.11), (47.12) and (47.14), these equations are found to be

consistent with the latter in consequence of (47.17).
48. Normal and relative curvatures of a curve in aV,

immersed in a V,. In § 24 we considered the vectors of a
field in ¥, at points of a curve in a ¥, immersed in a Vi, the
components of the vector being 47in the x’s of 7, and & in the y's
of V., and we obtained the following expressions for the com-
ponents 2# of the associate direction for V,, along the curve:

P S b )

ds 9z’ o 0x) | layls 02 0

In consequence of (47.4) this can be written

(48.1) 7 = HU/";‘FZW Lolij- C;x‘ jgﬂ'la (e=n+1,---,m),

where pJ/ are the components of the associate direction in V, for
the vector A* and are given by (24.2).

The associate curvature of the vector A* inV, is given by (24.4)
which now we denote by 1/r,, and analogously the associate
curvature in V,, is defined by

(48.2) ria = |/ la,,,, q“,,f‘|.

From these definitions and (47.1) we have, in consequence of (47.1-2),

(48.3) Tre—g- = eZ +2e¢9¢|u Qirt—— 6; dd:l: A,
where e, and e, are plus or minus one when the respective associate
directions are not null vectors. From (48.1) it is seen that the
component in V, of the associate vector for V,, is in the associate
direction for V, and its magnitude is 1/7,.

When 4¢ are the components of the unit vector tangent to the
curve,* equations (48.1) can be written

* For the method of procedure when the curve is minimal see the first foot-
note of § 24.
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(48.4) = wlyf =g,

where 7% and * are the components in the y's of the principal
normals of the curve in V,, and ¥, respectively, and by definition

. dat dz . o
= vy Oisi e
(48-9) {e ;Ca )y ds  ds .Eo'l y
which evidently is a vector normal to V,. Its magnitude 1/R is

given by o d) det dat
1 dz* dx’ da* d
wo g =|Zetmon GG E

it is the component normal to V, of the first curvature of the
curve in V,,. Its value at a point P is the same for all eurves
of V,, through P in the same direction. We call it the normal
curvature of Vo at P for the given direction and the vector {*
defined by (48.5) the normal curvature vector. When the curve
is the geodesic through P, we have y* = 0, and consequently:

The mormal curvature of a Vyp, immersed in a Vn, at a point
and for a direction is the first curvature in Vi, of the geodesic of
Va through the point in the given direction.

The first curvatures of the curve in V,, and V, are given by
equations of the form (44.2); 1/¢, so defined is called the relative
curvatire of the curve with respect to V,, and the vector 7* de-
fined by (48.4) the relative curvature vector. In this case equation
(48.3) reduces to

L €a — eﬂ e
(48.7) s + g
where ¢;, ¢, and ¢ are plus or minus one, when the respective
vectors 7%, ® and {* are not null vectors. When all of these
vectors are not null vectors, equations (48.4) can be written in
the form ;
L A Sl
(48.8) ¢ =T o’
where 9% {® and 7* are components of unit vectors.*

* Cf. the results of this section with those of § 44.
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49. The second fundamental form of a V, in a V,.
Conjugate and asymptotic directions. Consider the biquadratic
differential form

49.) ¥ = e, 2y deidaiddt dat (6 = n+1,-., m).
[

When m = n 1, the expression et is the square of the second
fundamental form of V, (§ 43). Accordingly when m >n-1 we
call (49.1) the second jfundamental form of V,. From (48.6) and
the geometrical interpretation of R it follows that the form v is
independent of the choice of the m — n mutually orthogonal vectors
in V;n normal to V,, in terms of which the functions 24 are
defined by (47.5).

Let C be a geodesic of V), through a point P, and consider first
the case when the principal normal of C in V,, is not a null vector,
the components of the principal normal being defined by (48.4).
From the theorem of § 48 and equations (20.6), (48.6) and (49.1)
it follows that the distance from a nearby point of C to the
geodesic of V,, tangent to C' at P is one-half the square root of
the absolute value of y for the direction of C, to within terms
of higher order. When the principal normal of € is a null vector,
we have 1/R = 0 so that the distance is of the third or higher
order as follows from (20.6). Hence:

If Vau is the locus of geodesics of Vm tangent to a sub-space Vi
at a point P(ab), the distance from a point P'(x*+da’) of Va
to Vy is equal to ome half the square root of the absolute value of Y
Jor the given values of dxf, to within terms of higher order.

Generalizing the concepts of conjugate and asymptotic directions
of a hypersurface (§ 46), we say that two directions at a point
determined by dz* and dx* are comjugate, when

(49.2) 2 es Qafij Qapa A 89 da 822 = 0,
[
and asymptotic, or self-conjugate, directions are defined by

(49.3) 2 o6 Raig Rapa A da) da* da? = 0.*
[

* Cf. Voss, 1880, 1, p. 151.
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From (48.6) we have:

The mormal curvature of a Vy in an asymptotic direction is zero.
From this result, the theorem of § 48 and (20.6) we have:

A geodesic of Vu in an asymplotic direction at a point P has
contact of the second, or higher, order with the geodesic of Vm in
-the direction at P.

An asymplotic line is by definition a curve whose direction at
every point of the curve is asymptotic. From (48.8) we have:

When an asymptotic line is a geodesic in Vy, it is a geodesic
n Vi, or its principal mormal in Vi, i a null vector; and con-
versely, when a geodesic in Vy, is a geodesic in Vi, it is an asymptotic
h‘ne m Vn.

From equation (48.3) and § 24 we have:

When a vector in Vy is displaced parallel to itself in Vy along
a curve whose direction s conjugate to that of the given vector, it
moves parallel to itself in Vm, or its associate direction in Vi, is
a null vector.

In order that a vector displaced parallel to itself in V, shall move
parallel to itself in Vi, it is necessary that the direction of dis-
placement be comjugate to the vector in V.

From (48.4) and (48.5) it follows that the components of the
prineipal normal in V,, of any curve of V, through a point P are
expressible linearly in terms of » mutually orthogonal vectors &

forh=1,...,nin V, at P and the n(n+ 1)/2 vectors Y 2,5,
[

for 6 =n-+41,.-.-.,m normal to V, at P. We denote by = the
number of linearly independent vectors in these combined systems.
Evidently + <m, and also * <n(n+3)/2. If it is less than
n (n-+38)/2, there must exist linear and homogeneous relations
between the functions 27 at B 'We denote by G, the variety of
order = consisting of all the geodesics of V through P in directions
determined by the z independent vectors. From the last theorem
of § 20 it follows that G, has contact of the second order with
every curve of V, through P. Hence we call G, the osculating
geodesic variety of V, at P.*

50. Lines of curvature and mean curvature. The principal
directions determined by each of the m—n temsors 2, corres-

* Cf. Bompiani, 1921, 6, p. 1122.
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ponding to a given set of m—n mutually orthogonal unit vectors
normal to a V, in a V,, define an orthogonal ennuple of congruences
analogous to the lines of curvature of a hypersurface (§ 46). We
call them the lznes of curvature of V, for the corresponding normal &, .
In order to obtain a geometric characterization of these lines, we
multiply equations (47.9) by iz’ and sum for j. Making use of
(46.4), we. obtain

(50°1) Ehla :én' ﬂ;a = %l 9”‘ 9ﬁ,k )'hlj + ; er trg) j -E‘rlp ;'hlj'

Proceeding with this equation in a manner similar to that followed
in the case of (46.5), we get the theorem:

A necessary and sufficient condition that the associate direction
of a mormal vector to aVy for a curve in the V, be tangent to the
awve is that the curve be a line of curvature for the given normal.

Any unit vector §* normal to aV, is expressible linearly in terms
of m—mn mutually orthogonal unit vectors normal to V,, as in
(47.15), and the corresponding tensor 2y is given by

(50.2) Q5 = (agpy® i+ 0¥, Blay” i y" ) &,

as follows from (47.5), (47.15) and (47.18). When the normal
vector is a null vector, its components &* involve an arbitrary
factor and consequently the corresponding £; is determined by
(50.2) only to within a factor.

From equation (45.2) it follows that the sum of the principal
normal curvatures of a hypersurface is

(50.3) Q = gV Q.

This is the generalization of the mean curvature of a surface*
and is called the mean curvature of the hypersurface. In a similar
manner we call 24, defined by

(50.4) Q6| = g9 Qey4j,
the mean eurvature of V, for the normal direction &;“

* 1909, 1, p. 123.
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Consider the vector normal to V;, whose components &% are given by
(50.5) F = 2etloiyg’ ",
Its magnitude ¥ is given by
(50.6) M= ‘;%Qalfj Qg0 g¥ g |.

From (47.15) and (47.18) it follows that the vector &% is independent
of the choice of the n—» mutunally orthogonal vectors £;;“ normal
to Va.

Since the rank of the matrix || &%|| is m—mn, the components
of the above vector vanish, when, and only when,

(50.7) o597 = 0 (6 =mn4+1, -, m).

The invariant M is zero in this case, and also when the vector
is a null vector.*
Suppose now that )/ + 0 and write (50.5) in the form

(50.8) Mg = ;eagulijgﬁ §ﬂl“7

& being the components of the unit vector. Then from (50.2)
and (47.5) we have for the components of the tensor 2; corres-
ponding to the vector

(60.9) MQy = ‘f,‘ €6 2414 R s g

From this equation and (50.6) it follows that the mean curva-
ture of V;, for the direction &% that is, 2;¢¥, is equal to M, to
within sign at most. Moreover, if the vector £* is a null vector,
we find that the mean curvature for this normal is zero. If we
call M the mean curvature of V, and the vector defined by
(50.5) the mean curvature normal, we have:

*Of. §52.
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The mean curvature of a V., immersed in a Vm for the mean
curvature normal is the mean curvature of Vy, to within sign at
most.

Also we have in view of the above results:

A necessary and sufficient condition that the mean cuvature of
a Vi, be zero is that the mean curvature with respect to every normal
to V. be zero, or that the mean curvature normal be a null vector™.

Let 4% be the components of any vector normal to V,; then
q¢ = ££&,° From (50.2) and (47.18) it follows that the mean
curvature for this direction is °24,;9Y. From (50.5) we have

o & W = g é‘,l” ;e,, Ly :sq“

== t" 901” fi.
Consequently we have:

The mean curvature of a Vi for any mormal orthogonal to the
mean curvature normal is zerot.

51. The fundamental equations of a V, in a V. in terms
of invariants and an orthogonal ennuple. In a V¥, immersed
in a Vi of coordinates y* we choose an orthogonal ennuple of
unit vectors of components A, that is,

(51.1) gi;lh!ilh!j = fn, gylhlilk[i =0 (k,k = 1,-~-, n; h #‘- k).

Since y“; are the components of a covariant vector in Vi for each
value of a, a set of invariants &,° are defined by (cf. § 29)

612 = ;eh S (i = 1,-, n; € = 1, m).
These equations are equivalent to

(51.3) B = ol

From the latter we have

(61.4) Qg & §h\p == ep, Oop Sk =0 *h+ 5.

*The second alternative does not aﬁse, when the fundamental form of ¥
is definite.
+ Cf. Bompiani, 1921, 5, p. 1134.
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From (51.3) it follows that &,“ are the components in the y's of
the vector whose components in the 2’s are 44, and from (51.4)
we find that the ¢'s are the same for a congruence whether given
in the y’s or z’s.

In similar manner, if we put

(51.5) Qo = ,Zk,‘ehekma.z.kz,..i oy (6 = n+1,---, m),

the quantities wop: are invariants in V,, which are given by

(561.6) agihge = -Qalﬁ)vhlilk[j’
and thus
(b1.7) Wglhk = Wgiich.

We recall from § 30 the formulas
(51.8) Ay; = gehekﬂhklhlilklj, rm = hyji,jaf A
From (47.4), (51.3) and (51.6) we have
(51.9) Ay s =2 e wapnk §a)“ — ; * } AL
¢ "y ig
o hk=1,--.,n; e=1,...,m; o=n+1,...,m).

Differentiating (51.3) covariantly with respect to x/ and the
fundamental form of V,, we have

- @ « i o i
Sno =y % Y iy

Multiplying by ).kIj and summing for j, we have, in consequence
of (51.8) and (51.9),

k" . ‘o | ”
(61.10) —i)—si_ = ; es o £o) " — { wy }a En 1 By —ZJ e ymesy”,
where
a&m”

= &'5" ;.

ETS
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Since Enja = aap ,EM", it follows that we have also

G1.11) 2

g::: = ; ea woint Soja + Lo, la En ¥ Eny” ——Z e vk Sijec-
Equations (47.11) may be written in the form

R )'pli "qu lrlk )-sll = ; es (wotpr ®jgs — Wolps wolgr)
+ Repya &l ol E47 E7.

(51.12)

When the expressions for 2gy,x and 2gqx,; as obtained from
(51.5) are substituted in (47.12) and this equation is multiplied by
p’Ag’ y* and summead for i, j, k, we have

Owglpg O waipr
38¢ 88q

(51.13) | . ~
= TZ o (or* thvais oreipg — Aol talj weipr) + Fppr Epl* Eot En” Eal’*

+ ; €n [w‘rlhq Vhpr —— Wglhr ¥ hpq + wa|hp()’hqr — V7 hrq)]

The &'s defined by (51.3) and those of § 47 are the components
of an orthogonal ennuple in V. Analogous to (51.8) for V, we
have for Vi,

(51.14) §e|a;p =ll2: € ev?e;w -Eyla §vlﬂ ’
and
(51.15) :fgla;p =’§ Cu er—;epv §p|a\ Eip-

If we substitute in (51.15) for the y’s their expressions in terms of
the z’s, multiply by #*; and sum for 8, we have for points of Vi

95" a | - .
_ai'li“"§9‘73’ﬁ"'Jl,s,zfa:ge#"ﬂwgmagvlﬁ?/qvi-

Multiplying by lk;i and summing for 7, we have, in consequence
of (61.3) and (51.4),

* Ricct, 1902, 2, p. 359.
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98"

col — - o l « } .
— e g — E Y g‘ ﬁ

e ,2‘#79#1: H  gylgtel tH

(“’18}7)4"’;.9:17"""'; k=].~"'a”)'

(51.16)

If we compare these equations for ¢ = 1,...,n with (51.10),
we have

— _ — . hykyl=17“'7n; )
GLITY) yukx = rmk, romk = — e ( c=n+1,... )

Equations (51.10) can be written

(51.18) Eqf E%p = e, O Eq” *;ez rnae §®
a
(@B8=1,..om;o=mn-+1...,m; hl,k=1,...,m).

‘When k = h, we have on comparing (51.18) with (48.4) that
gy are the invariants of the normal curvature vector of the

curve whose tangential vector has the components &,” in the s
and that yp, are the invariants of the relative curvature vector.

When % F £, it is seen from (51.18) that o i are the invariants
of the normal component of the associate curvature vector for V,,
of the vector & for the direction &, and that yux are the
invariants of the component relative to V,. Since Ok = @gii »
it follows that the components normal to V, of the associate
curvatures for Vs of &,* in the direction &¢® and of £ * in the
direction £,” are equal in magnitude and direction.

In order to give another interpretation to these invariants, we
consider the case when m = n -1, indicating by &% the components
of the vector normal to V,. In this case, because of (51.17),
equations (51.16) for ¢ = n -1 become [ef. (30.4)]

(61.19) Ef g = —;en wonx En”,
where
(51.20) one = Q4 dn" 4’

If the curve whose tangent vector is & is a geodesic in Vj,
&% are the components of its principal normal. Comparing (51.19)
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with (32.16) for p = 2, we have again that e is the first curv-
ature, and wpx for % F %k are the invariants of the second curv-
ature vector. This second curvature is evidently the generalization
of the geodesic torsion of the curve in V,, of direction &x“*. Hence
in the case m>mn-+1, if at any point P in V, we take the
flat 3-space determined by two directions & and &x® in Va
and by a normal £, to V,, the invariants gy, and g are the
normal curvatures of the curves of direction &, and &4® respec-
tively, and w,yy their geodesic torsions to within sign at most.
Since the left-hand member of (51.12) and the second term of
the right-hand member do not involve normal directions, it follows
that the value of the first term on the right is independent of
the choice of the m» —n mutually orthogonal vectors normal t0 Va.
For r = p, s = q equations (51.12) become

Ry }'pli 7'q:j lz'lk )'all = 2 e (0glpp "’dqu_""’z\pq)
+ Rapys E01® £ Saly &1

If m.=n-+1 and the V41 is an Spys, we have

(51.21)

ia jq kol 2
Rijua lzlll lqll Ay Ag = e(opp 01gg— 0pq)-

Hence each of the terms e (wgpp Woigg— w:m) in (51.21) multiplied
by epeq may be interpreted as the B,lemanma,n curvature at a point P
for the orientation O,y determined by l,,| and )-.,| in the flat 3-space
defined by these two vectors and the direction §,* at P. Accord-
ingly Riccit calls the first term in the right-hand member of (51.21)
the relative curvature of Opy and equation (51.21) may be interpreted
as follows:

The Riemannian curvature for an orientation in V, is the sum
of the relative curvature and the Riemanmian curvature of the
orientation i Vim.

By means of (30.6) equations (51.21) are expressible in the form.

(51.22) Ypgpg = Z €q ("’a]pp "’cqu—"”ﬁ'lpq) ~+ 7 papa>
[
and the preceding theorem gives the interpretation of these invariants

*1909, 1, p. 138.
$1902, 2, p. 361.
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If we multiply equations (51.21) by e, and sum for p from 1, -.-, ,
we have in consequence of (29.5)

— Ry Agf ="Z’; €p€o(9olpp @olgg— “?tlpq)'{'R-aﬁr"; ekl Eal Enl 5o’ -
Multiplying by e, and summing for ¢, we have

—R = 2 €p eq €a(wo|pp Voigg— "Mlpq)

o,

(51.23)

+ Ropyy g ep e Enl” Eof Eol” 5o,
or
(51.24) —R ‘,2 ep €q €a(olpp tolag— 95.pq) +,,2,, €p €q Yrape-

Exercises.

1. A necessary and sufficient condition that the principal normals of a curve
in a V,_ and for an enveloping V,, coincide is that

dot daf
ﬂqw ds d&‘ =0 (a="+11' 'ym)'

2, If the functions (42.8) defining a V, in a V satisfy the equations
6=y°‘~{j { }ayﬂ Wo_g  (ohr=hem)
2" i '

02 0af iL,j=1...,m
the parametric curves in V, are asymptotic lines,
3. If the functions (42.3) defining a V, in a V_ satisfy the equations

y” {h} +{ }ay” ay o (Ar=leam )

¢ dx  \ij 2w dar GG k=1 n;i%jl’

the directions of any two parametric lines at & point in ¥, are conjugate.
4. If the functions y* = £ (x!, 27 defining a V, in a V_ satisfy the equations

A

D' oa? Ba’ Ba?

the parametric curves in V, form a conjugate system of lines, such that the
tangents to the curves of either family where they meet a curve of the other
family are parallel in ¥, with respect to the latter curve (cf. Ex. 3 and 4, p. 79);
these are a generalization of surfaces of translation in euclidean 3-space.
Bompiani, 1919, 2, p. 841.
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5. If a V,in a V, admits a conjugate system of lines, the osculating geodesic
variety (§ 49) of V, is at most of order four.

6. If aV,in aV, admits two families of asymptotic lines, the osculating
geodesic variety of V, is at most of order three.

7. Show directly by means of (47.18) and (51.5) that the first term of the
right-hand member of (51.12) is independent of the choice of the m — % mutually
orthogonal congruences normal to V.

52. Minimal varieties. Consider any V,, and a V, immersed
in it, defined by the -equations

(62.1) Y= g“ (@, -, 2").
Let V,—1 be a given closed sub-space of V,, bounding a region R,
of the latter and consider the integral

(562.2) 1= L Ldxtda?-..da"

extended over R,, where L is a function of the y's and their first
derivatives y .*
Let w*(at,...,2%) be a set of arbitrary functions such that

(62.3) o% = 0 for Vy—.
Then
(52.9) ge = gt et

where ¢ is an infinitesimal, define another variety V, containing the
given V,., and nearby V,. Substituting these expressions in the
function Z in (52.2) and expanding by Taylor’s theorem, we have
for the corresponding integral

N~

Y [ A PRYE R
JE, 0y 8y

where ¢ involves terms of the second and higher orders in . If
we write

* It is understood that L and its first and second derivatives with respect to
the arguments are continuous in the domain and on the boundary.
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(62.5) oI = ef (w"‘ oL 4o 2L )da;‘ da* ... daz",
B, oy 0y i

and integrate the second term of (52.5) by parts, we have, in
consequence of (52.3),

31 = sf m«[a"—;—i?( oL )]dx*...dw".
R, oy oxr \dy .

In order that the integral I be stationary, that is, that 67 =0,
for every set of functions w“ satisfying (52.3), it is necessary and
sufficient that L be a function such that

? ( oL )_ oL
aa’ \ay® i/ 0y”

= 0.

(52.6)

These are the generalized equations of Euler (cf. § 17).

The element of area of a surface in euclidean 3-space is
VEG—F® dudv* in terms of the customary notation. General-
izing this expression to a V, in a V., defined by equations of .the
form (52.1), we have Vg dax'da® ... dz* as the clement of volume
of V,. If we consider the region R, of V,, bounded by a closed
V-1, its volume is defined by the integral

(62.7) _ I =j; Vgda'da®... da".

Generalizing the definition of minimal surfaces,t we say that V,
is a minémal variety in V,,, if for a given V,—; the integral I is
stationary.f

In order to determine the characteristic property of minimal
varieties in terms of the functions defined in § 47, we consider

the equations B
L(ﬂ_g_)__a_l_@ —0
aat \ 8y” dy™ )

9= lgil, g5 = aepy"i¥.s,

From

* 1909, 1, p. 75.

+1909, 1, p. 251.

{ This generalized problem was considered by Lipschitz, 1874, 1; in this paper
he obtained equations (52.6).
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we have
9 V; _ 1 9g O0gp
oy" i 2V; dgm 0y"

= Vygiand,;.

Making use of equations of the form (7.6) and (7.9) for the g's
and (7.4) for the a’s, we obtain

i‘(aV«g) = Vg ¢ [aap 4+ (@7, Blat 187, 6} i ).
o0t \ 0y 4
Also we have

aV; — 1 ag ang — V_ 20 4/. .

ay“ - 2V:q- agjk aya - 99"'[“1’1:3]a‘1/,zyﬂ,,.

From these expressions and (47.4), we have

v

)= = Vil )

= Vgagp 2e 2 g &
g

Since these expressions must vanish for all values of #, we have
> s Qi g" §¢|" = 0. Hence we have:
'

A necessary and suffictent condition that a Vi be a minimal
variety for a Vm is that its mean curvature normal vanish.*

From the results of § 50 we have also:

A mecessary and sufficient condition that a Va be a minimal
variety for an enveloping Vm is that ils mean curvature in every
normal direction be zero.

This is an evident generalization of a characteristic property
of minimal surfaces.t

Suppose that 2 Va1 admits co' minimal hypersurfaces. If these
be taken for 3! = const. and their orthogonal trajectories for
the curves of parameter y*l, we have

2 .
tnt1i = 0, niint1 = eHpp1; & =0, grtl—=

* Lipschitz, 1874, 1, p. 31.
+1909, 1, p. 251.
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From (43.5) it follows that

0 — — 1 08y
W 2 Hytt ayn-i—l ‘

In this case gy = a; for any y*+! = const. and g = |ay| for
4, =1, ..., n. Consequently

P 1 9g
M= = i oy
Hence we have:

A mecessary and sufficient condition that an infinity of hyper-
surfaces of a space be minimal is that their orthogonal trajectories
determine a correspondence between them which preserves volume.*

53. Hypersurfaces with indeterminate lines of curvature.
A hypersurface V,, with indeterminate lines of curvature is a general-
ization of a plane or sphere in euclidean 3-space.t As in the latter
case, when the lines of curvature at a point P are indeterminate,
P is called an umbilical point.

From (45.3) it follows that a necessary condition that every
point of a V,, immersed in a V,4; be an umbilical point is that
24 = 09y, where ¢ is an invariant. If we multiply this equation
by g¥ and sum for 7 and j, we obtain

(63.1) 2 = Qg% = no,
and consequently the condition is
2
(53.2) Q4 = 5 9
In this case we have from (51.20)
1

(53.3) @pp = %-eh.Q, ope = 0 EFIR
The case when £ = 0, that is, when 1/R = 0, will be treated
in § H4.

*For a Vs this result is due to Bianchi, 1903, 1, p. 578; for any V. to

Bompiani, 1921, 5, p. 1141,
1 Cf. 1909, 1, p. 116.
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When m = n-1,* equations (51.12) and (51.13) become

(63.4) Rya o' g s’ = €(wpy g — 0pg0007)+ Rapys Ep®Eof 57 Ea®
and

/] 9
7“:&——38& +¥ en [whq Yhyr—— @pye )’hpq+ Whp ()’hqr—' )'hrq)]
(635) ! _
= R).p;w Ep])' Eqiy grly §P Ny
For the values (53.3) we have from (53.5)
(53.6) -I_e).ﬂ,l" §p|l Eo &” ¥ =0 (»aort),
and for p = r$ ¢
1,92 & 1g v p) E o —
(53.7) (n ep g T Fiow B 5o ) Kt = 0.

When 2 = const., equations (53.7) become
(53.8) Ragy Epl* E7 P 50 = 0 (» 9
This equation is satisfied identically, if we take p = ¢; also if we

replace &,* by &*. Hence if (53.8) be multiplied by e, and the
resulting equation be summed for p, we have in consequence of (29.5)

(53.9) Ripuy 0 & o = Rpu ¥ 5 = 0.

If we put Rp, ¥ ¥ = e, where e is defined by (43.3), it follows
from (53.9) and agu & & = O that

(Rﬂp_' (’ap,;) & &g =0, (Epp“‘ Qaﬂy) # =0,

and since the n-+1 vector-fields qua and &% are independent, we
have

(Bpu—eag) ¥ = 0.

* From (47.8) it follows that the functions u are zero in this case.
+In this section and the next Greek indices take the values1,...,n+1 and
Tatin 1,...,n.
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Hence (§ 34) we have:

If a Va1 admits a hypersurface Vi with indeterminate lines of
curvature and 2 is constant, the normal to V, at a point is a
Ricci principal direction for Vii1 at points of V. *

We seek the canonical form of the fundamental tensor of Vi,
in order that there may exist oo! hypersurfaces with indeterminate
lines of curvature. To this end we choose the codrdinate system
so that y**! = const. are the hypersurfaces and we choose their
orthogonal trajectories for the curves of parameter s*+1. Then
we have

(53.10) p41i = 0, An+1n+1 = Cpt1 H:-l—l (1 == 17 Tty n)'

The contravariant components of the normal vector are

. 1
53.11 t= 0 Pl = — .
( ) E ’ § Hn+1
At points of any hypersurface y*+! = const., y* = 2f and ay = gy
for ¢,j=1,...,n. Consequently equatipns (43.10) become in
this case
02 B 1

i B 2, gmgf ) 1

(83.12) ¥ n 99" % ljn-{—l}a Hyp'

For 8 = n-1 these equations are satisfied identically. For

A =1,..., n we obtain '
Lyl oo} 1

n 6'I+ ‘]n"‘lfa Hn+1 =0

From these equations and (53.10) we have

R

and consequently

dlogV ax _

. 2
(53.13) ‘—'a-y—,HT- = —-;Ilnﬂ-

* For 2 = ( this theorem is due to Ricci, 1904, 2, p. 1289; for 2 + 0 to
Struik, 1922, 8, p. 143.
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Conversely, when (53.10) and (53.13) are satisfied, equations
(43.10) for the values (53.11) lead to (53.2).

When 2 % 0, it follows from (53.13) that the ratio of any two
of the functions aj for j,k = 1,..., » must be independent y*+1,
When 2 = 0, the functions aj are independent of y*+'. Hence
we have:

A mecessary and sufficient condition that a Vay1 admit a family
of hypersurfaces with indeterminate lines of cwrvature is that its
SJundamental form be reducible to

(53.14) ¢ = Aaydydy + B(dy+)e (5§ = 1,++-,m),

where aij are the functions of y',---, ¥*, and A and B are any
functions of y'..., y*tY; according as A involves y™t! or met,
£ s different from or equal to zero.

As a corollary we have:

If a space admits a family of hyperswifaces with indeterminate
lines of curvature, their orthogonal trajectories determine a con-
Jormal correspondence between them.

If a Vuta is conformal to an Su41, and the codrdinates y* are
chosen so that

(53.15) ¢ = e;‘e«(dy"‘)’,

the conditions of the above theorems are satisfied by any of the
codrdinate hypersurfaces. If ¢ does not involve y”+! then from
(63.13) it is seen that 2 = O for the hypersurfaces y**+! = const.
Since any S, in the S,.; to which V,41 is conformal can be
chosen as a hypersurface y*+! = const., we have:

If a Vap1 is conformal to an Sy, the hypersurface of Vi
corresponding to any Sa in the Swy1 has indeterminate lines of
curvature.

Another way of stating this result is that in such a V,41 at
each point and in each direction there is a V, with indetermin-
ate lines of curvature. In order that a V.41 for »n>2 may
possess the latter property, it is necessary that equations (53.6)
be satisfied by every orthogonal emnuple in V,1;. In § 37 we
saw that in this case V11 must be conformal to an Su+i. Hence
we have the theorem of Schouten*:

* 1921, 2, p. 86.
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A necessary and sufficient condition that at each point and in
each divection of a Va1 for n>>2 there is a hypersurface with
indeterminate lines of curvature is that the Vii1 be conformal to
an S;H.p

54. Totally geodesic varieties in a space. If all the geo-
desics of a V, are geodesics of an enveloping V.41, the former
is called a totally geodesic hypersurface of Va41. These hyper-
surfaces are an evident generalization of the planes of euclidean
3-space.

From (44.5) we have that a necessary and sufficient condition
that a V, be a totally geodesic hypersurface is that 1/R = 0
and from (44.3) that
(64.1) Qi = (iy.j = 1,..4,n).
Then from § 46 we have:

The lines of curvature of a totally geodesic hypersurface are indeter-
minale.™
Since 2, as defined by (53.1), is zero, the first theorem of § 53
applies to totally geodesic hypersurfaces.

From (54.1) and (51.20) we have

(54.2) o = 0 hk=1,...,n).
In consequence of (61.17) we have from (51.15)

(54.3) £ 5 =0.
Hence we have:

The normals to o totally geodesic hypersurface are parallel in the
enveloping space.

We shall not write down the systems of differential equations
determining a space admitting a totally geodesic hypersurface,} but
will consider the case when there are oo! such hypersurfaces.
From the second theorem of § 53 we have:

A necessary and sufficient condition that a Va1 admit a family
of totally geodesic hypersurfaces is that its fundamental form be
reducible to
(54.4) ¢ = aydy'dy/+ B@y*") Gj=1,---,m),

* Of. Ricei, 1903, 2, p. 412.

+ C1. Ricei, 1903, 2, p. 414.

See
App. 19
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where ay are independent of y™' and B is any fumction of
the y's.*

As a corollary we have:

If a space admits oo totally geodesic hypersur.faces, their orthogonal
trajectories determine an isomelric correspondence between them.t

When all the geodesics of a V, in a Vi for m >n-+1 are
geodesics of V,,, we say that V, is fotally geodesic. Since the
matrix || &5 “]| is of rank m — =, it follows from (48.5) that

A mecessary and sufficient condition that a V, immersed in a Vp,
be totally geodesic is that
(54.5) Qs = 0 (G=”+17"'7m3i’j=],“'rn)'
From (48.3) we have:

If any vector in a totally geodesic sub-space of a Vp is trans-
ported parallel to itself along a curve, it moves parallel to itself
also in V.

Also from the results of § 52 we have:

A totally geodesic sub-space of a Vm is a minimal variety of V.

Exercises.

1. A minimal surface in any V, is characterized by the property that its
lines of length zero form a conjugate system, and it is a surface of translation
in the sense of Ex. 4, p. 175. Bompiani, 1919, 2, p. 841

2. The equations

2= ¢—up' +¢'+ g — wopi+ v,

iy ?—ug' —y'—go+ uo g4+ ¥4,

z= y—uy¥—¢'+v—uvi—g,

it=—y+tuy —g +v—uy+ ¢},
where ¢ and y are arbitrary fanctions of %, and ¢, and ¥, of u,, and where
primes denote differentiation with respect to the argument, define a minimal
surface in euclidean 4-space. Eisenhart, 1912, 1, p. 224.

3. If f(x+iy) is an analytic function and

f+iy) = u(@y)+ivey),

the equations
z=x y=y z=u@®y), t=v@y)

define a minimal surface in euclidean 4-space. Kommerell, 1905, 2, p. 586.

* This theorem for n = 2 is due to Hadamard, 1901, 2, p. 40; for any »
Ricci, 1903, 2, p. 412, derived the result for the casc a, =0 G ¥ f); cf. also
Bompiani, 1924, b, p. 122.

+ Of. Bompiani, 1924, 5, p. 122.
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4. A necessary and sufficient condition that all the lines of curvature of a V,
be indeterminate at a point is that at the point

2414 = 069y (e=n+1,...,m)

Such a point is called an wumbilical point. Show that at an umbilical point
the osculating geodesic variety is determined by V, and the mean curvature
normal. Struik, 1922, 8, p. 106.

5. When the lines of curvature of a hypersurface of a space of constant

curvature K, are indeterminate, the hypersurface has constant curvature K, and

K—€2+ n41°

6. A necessary and sufficient condition that a V, ., for n>>2 admit at each
point and in each direction a V, with indeterminate lines of curvature and
that £ be the same constant for all the V,'s is that V,  have constant Riemannian
curvature. Schouten, 1924, 1, p. 181.

7. A necessary and sufficient condition that for an orthogonal ennuple ).“‘ the
congruence 2, be normal to a family of hypersurfaces with indeterminate lines
of curvature is that

Vo = 0 (=1, .- n—1,; b+,

GVt T € Vs = 0 T 6 Vantware

8. When a V, admits p independent fields of parallel vectors, the congruence
of curves of each field are the orthogonal trajectories of a family of totally
geodesic hypersurfaces.

9. A necessary and sufficient condition that a V, be totally geodesic in a V,
is that

0"y _{k} oy® J"‘} P oy _ (“yﬂ,7=l.---,m;)
oxf 0/ |8yfa 0f Ba? LWihk=1...a !

10. When a ¥V, admits co! totally geodesic sub-spaces V,, they determine

a V., of which they are totally geodesic hypersurfaces.
Bompiani, 1924, 5, p. 123.

11. When a V,, admits oo! totally geodesic sub-spaces V,, the tangents to
their orthogonal trajectories at points of the same V, are parallel with respect
to V.

12. Show by means of (47.4) that a necessary and sufficient condition that
the sub-spaces yo = const. for c =n-1,..., m of a ¥, with the fundamental
form (42.2) be totally geodesic is that

{oh=0 {5={51 (:';i’;i::::::m

where the Chrisioffel symbols { } are formed with respect to @ dy‘ dyi (,3=1..--,n).
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13, When the fundamental form of a V,, is

¢ = a,dyfdy’ + ag dycdyr (',J =1’.“’n;. m)’

g6 T=n +1 , v
where the functions a,, are independent of y*+!, ..., y™, the sub-spaces yo = const.
are totally geodesic in V. Bompiani, 1924, 5, p. 124.

14, When two totally geodesic sub-spaces of a V, intersect, the variety of
intersection is totally geodesic in V. Struik, 1922, 8, p. 97.

15. If the order of the osculating geodesic varieties at points of & V, ina V
is less than m (§ 49), then for each value ¢ < m—r there are an infinity of
sub-spaces V,, with respect to which ¥, is totally geodesic.

Struik, 1922, 8, p. 113.

16. If a V, lies in a V,, for m>n--1, for each value of g <m—n—1
there are an infinity of sub-spaces V¥, of V. in which the curves of a given
congruence in V, are geodesics. Struik, 1922, 8, p. 113.

17. If a V, lies in a V,, for m>n-+1, for each value of g=m—n—1
there is an infinity of sub-spaces V, with respect to which ¥, is a minimal
variety. Struik, 1922, 8, p. 114.



CHAPTER V
Sub-spaces of a flat space

55. The class of a space V,. In § 10 it was shown that
a necessary and sufficient condition that there exist for a space Vi,
@ colrdinate system in terms of which the components of the
fundamental tensor are constants is that all the components of the
Riemann tensor in any coordinate system be zero. We have called
such a space a flat space and have denoted by S» a flat space
of n dimensions (§ 26). For an S,, there exist real cotrdinates 2®
in terms of which the fundamental form is

(85.1) 9 __=2(.u(dzu)2 (“=11"'7m)7

where the ¢'s are plus or minus one according to the character
of the space. There are other real codrdinate systems in terms
of which ¢ assumes the form (55.1), but the number of positive c¢'s
and of negative ¢'s is the same for all of these systems. In par-
ticular, when all of the ¢’s are plus one, S, is a euclidean space
of m dimensions and the z’s are cartesian coordinates. When ¢
for any S, assumes the form (55.1), we call the codrdinates cartesian.
In order that a space V, with the fundamental form

(65.2) 9 = gydatdx’

be a real sub-space of Sm, it is necessary and sufficient that the
system of equations (cf. § 16)

28 0%
(55.3) ;C“W 2 Y

admit m independent real solutions

(55'4) ‘ z¢=f¢(wl,”,’xn) (“=1"'°7m)-
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The signs of the ¢’s in (55.3) depend upon the character of the
form (55.2). In fact, from the theory of matrices* and (55.3), it
follows that the determinant g = |gi| is equal to the sum of terms
each of which is the square of a determinant of order » of the

. 9 . X . .
matrix ”a—’:;“ with a plus or minus sign according as the corre-

sponding determinant of the nth order of the determinant of (65.1) is
plus or minus one. Consequently, if g is negative, all of the ¢’s cannot
be positive, that is, ¥, cannot be immersed in a real euclidean space.

The codrdinates x* can be chosen so that at any point of Va the
form (5.2) involves only squared terms with plus and minus signs.
Since n of the z's can be identified with 2’s at the point, we have
that (55.1) at the point must have at least as many positive and
as many negative ¢’s as there are positive and negative terms in
the reduced form of (55.2) at the point. Thus, for example, one
of Einstein’s postulates concerning the space-time continuum V, of
general relativity is that at each point the fundamental form is
reducible to —(dz")? — (dx?)®— (dx®)® 4 (dx*)®. Consequently, for
a flat space in which ¥, can be immersed one of the ¢’s must be
positive and three negative.

If (55.2) is a positive definite form and we take all the ¢’s equal
to -+ 1 in (55.3), we have n(n + 1)/2 equations for the determination
of the z's. If we take m = n(n-+1)/2, we have a system of
equations which admits in general real solutions in accordance with
the theory of partial differential equations. Thus a V» with a positive
definite form can be immersed in general in a euclidean space of
n(n-+1)/2 dimensions** Similar results hold when (55.2) is not
positive definite and the ¢’s have been chosen in accordance with
the preceding observations.

We have just seen that in general a V» can be immersed in a flat
space of n(n -+ 1)/2 dimensions. However, it may be immersible in
a flat space of a lower order. If the lowest order is n+p, we say
that Vy, is of class p.t

Consider, for example, the space-time continuum V, outside
a symmetric mass m with the Schwarzschild form}

*§ 31,

+ Ricci, 1898, 2, p. 75; also, Struik, 1922, 8, p. 99.
{ Cf. Ex. 6, p. 93.

*+ Cf. Janet, 1926, 7 and Cartan, 1927, 7.
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(65.5) ¢ — (1—-‘@)dt*--—l——dr'——r=(do=+sin' 0dgY),
r 1_2m
r

where »>2m. If we put

.

2= r—fm cost, 2! = r—2m sint, 2= f(r),

2t = rsind cosg, 2> = rsin 0 sing, 2® = r cos @,

where f(») is such that
ar: 1 m?
() = =gm (3 +2m).
then (55.5) becomes
¢ = (d2") + (d2%)'— (d2%)* —(d2*)' —(d2°)* — (d2°)*.

Hence the given V; can be immersed in a flat space of six dimensions,
and consequently its class is two or one. From the results at the
end of §59, it follows that p — 2.*

56. A space V, of class p>1. If V, with the fundamental
form (55.2) is of class p(>1), the enveloping flat space Su+p has
the fundamental form (55.1) in which @ =1, ..., n-p. Let 94"
denote the components of » mutually orthogonal unit vectors normal
to V; then we have

(66.1) ;Cu(fhﬂa)g = eg, ;Cu ot e = 0
(d’q; = ln-l-l, ...,-n+p;d*l’).+

The equations for this case analogous to (47.4) and (47.9) are

(66.2) %y = Z,,: ¢a batij ol
and
(56.3) Ral'j = — bamylm 2 m +2 er Vol j i

T
(d,’t = n+1;"‘:7l+.p),

* Of. Kasner, 1921, 6, p. 130.
+1In this and the next section, unless stated otherwise, Greek indices take
the values 1, ..., n+p and Latin 1,..., n.
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where for each o and = the quantities »-qj; are the covariant com-
ponents of a vector, subject to the conditions

(56.4) V-ra]j + V“U == O, Vaa]j = 0.

The conditions of integrability of (56.2) are reducible to [cf.(47.11)
and (47.12)]
(56.5) Ry = ; s (bojix bei jt — bojat boyjx)

and
(66.6) botij,k— alit) = 20 e Pratk bely — Vealj brii),
T

since the components of the Riemann tensor for S, are zero. By
means of these equations the conditions of integrability of (56.3)
reduce to

nt1, ., ntp
Vroljke — Vrak,j ; eo (Vorlj Yoolk— Verik Ygo\))
(56.7) ,
+ g*™ (beftj boimk — britk bojmj) = 0.*
Conversely, if we have a symmetric tensor gy, p symmetric tensors

by and p(p — 1)/2 vectors ver; = (— ¥rqis) satisfying (56.5), (56.6)
and (56.7), the conditions of integrability of (56.2),(56.3) and (56.4)
are satisfied. If we put

a2 j— gy = Ay, ;Ca 96" 2%i = By,
o
;c“ﬂ'ﬂa'lfla—eﬂ‘r = Cor, €o6c = €, ¢eor = 0 CEIIN

then A; are the components of a tensor, Byj; of p vectors and Cor
are invariants in V,. If we differentiate these equations with respect
to 2* and make use of (56.2) and (56.3), we find Cyr constant and
the first derivatives of 45 and Bgj; equal to expressions linear and
homogeneous in these functions. In like manner the derivatives
of any order are linear functions of 4y and By and of the
derivatives of lower order. Hence if we choose a set of solutions
of (56.2) and (56.3), whose initial values satisfy

* Cf. Ricci, 1898, 2, p. 90.
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an 2“,f z“,j = (ij, Ecaqaf‘ z“,i = 0,
o [/

56.8

( ) ;Cu (ﬂnlu)z = €g, ;cﬂt ﬂdla 7" =0 (0% 9),
these conditions will be satisfied by the functions for all values of
the z’s. Since there are (n+p)(n-+ p-+1)/2 of these conditions
on the (n - p)® functions 2% ; and 4", the desired solution involves
(n+ p)(n+p—1)/2 arbitrary constants in addition to x4 p additive
arbitrary constants, arising from the determination of the 2’s by
the integrals

(56.9) &= f & ida

These results obtain for an arbitrary choice of the ¢'s in (56.8).
These can be chosen so that for a domain of the z's the set of
solutions are real. In fact, if the coordinates 2 are chosen so
that at a given point P we have gy = 0 (¢ § 5), and we make the
choice

a=gi (=1-,n), c=e @=nt+l-.,n+p),

where the ¢'s appear in (56.5), (56.6) and (56.7), the conditions (56.8)
are satisfied by the values

2% = 0f, 70" = 0G

at P, and thus for a domain in the neighborhood of P we have
real solutions, and consequently a real Sy4, enveloping the 7, with
the fundamental tensor g.

As previously seen, the desired type of solution of equations (56.2)
and (56.3) involve (n 4 p)(n+p--1)/2 arbitrary constants. We
give an interpretation of the significance of these constants by ob-
serving that, if 2% and ¢,* are a set of solutions, so also are

(566.10) 7% = a% 2 + b7,
8

. —a__ @ B B =1,.--, n+p; )
(56.11) % of %" el ( c=n+1,.-,n+pl’
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where the a’s and d’s are constants, and that the conditions (56.8)
are satisfied, if the constants a%g satisfy

(66.12) ;( (a%p)* = ¢, ;:c« a%a%, =0  (BF).

Because of these (n-}-p) (n+p-+1)/2 conditions, (n+p) (n+p—1)/2
of the constants a”s and all of the b's are arbitrary. Hence the
general solution is obtained from a particular solution by means
of (56.10) and (56.11). From (56.10) and (56.12) it follows that

g = ; e (dZ%)? = ; e (d2%)?,

and consequently equations (56.10) and (56.12) define in cartesian
coordinates the most general motion (§ 27) of the Sy, into itself.
Generalizing the “ideas of motions in euclidean space, we say that
the a’s determine a rofation and the b’s a tramslation. Thus we
have that different sets of solutions of (56.2) and (56.3) define V,'s
which are superposable by a motion in Sp4,. Hence the foregoing
results may be formulated as follows:

In order that a symmetric tensor gij, p symmetric tensors bs i and
p (p—1)/2 vectors voryi (= — i) for 4,5 =1, ..+, n, 6,7 = n+1,
«ooy n-+p determine a Vo with gy as fundamental tensor immersed
in a real Spip, it is necessary and sufficient that these quantities
satisfy equations (56.5), (56.6) and (56.7); the fundamental form
of Snrp is determined by the first of (56.8), and Vi is determined
to within a motion in Spip.

From the definition of the class of a V, it follows that equations
(65.3) admit solutions (55.4) when @« = n-}p. Evidently the
equations (55.8) for « = n-p-r admit solutions of the type
(55.4), and if » of these solutions are not constants, the given V,
is a sub-space of an S,ipir. For the cases when » = 0 and
r + 0 the geometric properties of V,, depending entirely upon its
fundamental form, that is, the ¢nérinsic properties, are the same.
But this is not true for geometrical properties depending upon the
enveloping space. We are familiar with this idea in the case of
surfaces of euclidean 3-space and those of euclidean 4-space.

57. Evolutes of a V,in an S,{,. The codrdinates of a point
on the normal of components 74" to a Va in an Su4p are given by

(51.1) 20" = "+ enq".
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In order that the point with these coordinates shall undergo a
displacement tangential to the normal, when the corresponding point
in Va is displaced in Vy, it is necessary that

d2'¢|¢

qu’] ®

=2 (e=1.--,n+p),

where 2 is an invariant, or, in consequence of (57.1),
" i+ en61%4) d2¥+ 15" (de—1) = 0.

If this equation is multiplied by ¢, 74" and summed for e, in con-
sequence of (56.1) and (56.3), we find that A — d¢, so that these
equations become

(61.2) % i+ o161 4) d2f = 0.

If (57.2) be multiplied by ce9“ (= ¥ 6) and summed for «, and
also by c,z%; and summed for «, we obtain the respective sets
of equations

(67.3) Vegpdd =10 (@E=mn+1,.--,n+p)
and
(67.4) (95— @bo1y) dz* = 0 &Gj=1,---,m).

Conversely, for a displacement in V, satisfying (57.3) and (57.4)
the conditions (57.2) are satisfied.

As in § 50 we say that the congruences defined by (57.4) con-
sist of the lines of curvature of V, for the normal 94 and the
roots of the determinant equation

(67.5) l9v — eboil = 0

are the corresponding principal radii of normal curvature for the
vector 55)”. When, in particular, the directions of a line of curv-
ature satisfy (57.3), we say that the V, defined by (57.1) is an
evolute of the given V,.

Suppose that for a root ¢,, of (57.5) the direction determined
by (67.4) satisfies (57.3) (or one of the directions, if ¢, is a multiple
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root). If we take these curves for the curves of parameter x!,
from (57.1) and (57.2) we have

] ]
%Ia,l = %Ia‘a*%a Zala,r = Za.r+'lala.r?1+a—§;’lala
(r=2,..., n).

If g¢; denote the components of the fundamental tensor of the
corresponding evolute V4, we have

d0,\2
Jo11 = €g (52_11) ’ Jolir = €675 7 o

Consequently the fundamental form of Vs can be written
(57.6) eo'dqf‘i' Jolrs dx dz’ (r,s=2...,m),

where gsrs are determinate functions. Hence the varieties ¢, = const.
in V5 are geodesically parallel (§ 19) and have for orthogonal
trajectories the curves of parameter ¢,; these are geodesies in Vg ).*

Conversely, let a V, in an S.+, be referred to a family of geo-
desically parallel hypersurfaces whose orthogonal geodesics are not
null curves, and take the latter for curves of parameter z'; then
the fundamental form of V, is

(67.7) e (dx") + grs d2” da® (r,s=2,.-.,m).

— «

Let 2= be the coordinates in Sa+p of points of the Vj, then %
x

are the components in the 2’s of the tangents to the curves of

parameter xz'. Moreover, from (57.7) it follows that

57.9) > a_zz)z__ o 2 ot __
' r; c“(ax‘ =4 Lt g

and from the first of these we have

o2y 0% .
(67.9) 20(;*3;1—1-—5‘;,—8—1;=0 G=1,..-.,m).

«

* This is a generalization of a well-known result concerning the evolute of
a surface in euclidean 3-space; cf. 1909, 1, p. 181.
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If we put

o
(67.10) £ = & — (@ +a) 22

axt’

where a is a constant, we have by differentiation

aa aza aa aa alzu
= @O, o= :

In consequence of the second of (57.8) and (57.9) we have

ana—;a—£=0 t=1,..-.,n)
S ot ot T
whatever be a. Hence equations (57.10) define a family of V,’s
of which the given ¥, is an evolute.

58. A subspace V, of a V, immersed in an S,y,. In
this section we shall derive the equations of § 47 from the equations
of § 56 by considering V,, as immersed in an Smip. We let the
codrdinates of Va be af, those of V,n be y* and of Spip be £2.*
There are m—mn-p mutually orthogonal non-null vectors in Sy +p
normal to Va; we denote by 54” for e=mn-1,..., m the com-
ponents in the z's of these vectors which lie in V,, and by qu“ for
e=m-+1,-..,m+p the components of the vectors normal to
both V,, and V. at points of the latter.

From the equations

2

(58.1) = %y“,c

we have by covariant differentiation with respect to «/ and the
fundamental form of Va

2
(58.2) fy = %yﬁwa;;.—;"fyﬂ,sy&;.

For V,, immersed in Sy, we have equations of the form (56.2),
namely

* In this section 4,5 =1,.-o,n; L, v =1,.com;a=1,...,m+p.
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972 A\ 8~ — «
ay” oy _{/wf.. ar ;e"b?'/” el
e=m+1,...,m+p),

where {:y} are formed with respect to the fundamental form
a

of V,, namely
(58.4) QG Ay dy” .

(68.3)

In like manner for V,, immersed in Sni, We have

e . P B a d=n+l’...’m; )
(58.5) z .u—geabalo o] +§ ee bolij Mol (9=m+1,---,m+p .

If E.nl are the components in the y's of the vectors 76" in the 2's,
we have
9%
(58.6) = & 7
Substituting the expreséions for W from (58.3) in (58.2)

and for 74" from (58.6) in (58.5) and subtracting the resulting
equations, we have

1;—:-( .u‘l‘{ } y“,iy".j—geabaw §0'll)

Ze: eo Mgiur ¥4 ¥”.i—boi) 101“ = 0.

Since the determinant of the quantities _Z?z“: and qel“ is not zero,
we have

2 A 1
(68.7) you= —-Jl” V}a iy +§eo' bo1yj Eal”
T y o=n+1,...,m;
(68.8) boiy = b(’ll"' ¥y ((’=m+17"" m+p)

If we differentiate equations (58.6) with respect to z/, we have
in consequence of (58.3)

« Z v i 3 v -4
Nal = (§¢Il,.i + { M ,,lfa §a y".f) %;7 + ; eo Yoy Ea1” Y. el -
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From (56.3) and (58.6) we have

1 02%

¥
(68.9) 141 = —bow yb"-a—yr v'm +§ er Vrg)j &1l s
..i-;ee Ved” ’l]e‘a .

Subtracting these equations and proceeding as above, we obtain

(58.10) §¢|)',j = —bdljglmyl,m J\p,vf v it +20r"'nm E'rl ,
T PR o',-r=n+1,n--,m;)
(58.11) Voolj = belw y ,j¥al - (g=m+1, o m+tpl

Equations (58.7) and (58.10) are of the form (47.4) and (47.9)
respectively, where

(68.12) boy = L), Vrolj = Mrolj (60 = n+1...,m).

If the expressions for bg|ij, ¥palj, baiij and ¥¢; from (58.8), (58.11)
and (58.12) are substituted (56.5), (56.6) and (56.7), and we remark
that from (56.5) and (58.3) it follows that the components of the
Riemann tensor of V,, are given by

Bom = ; o (_bellv 3eI/m —39|m39|w),

the resulting equations are reducible to (47.11), (47.12) and (47.13)
respectively.

59. Spaces V, of class one. When V, is of class 1, we have
in place of (56.2) and (56.3)

(59.1) 2%y = ebyq”
and
(59.2) ;= —bwg"m

The conditions of integrability of these equations are

(59.3) Rijur = e(bir b — ba bjn)
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and
(59.4) bije—ba; = 0,

in place of (56.5) and (56.6).

From considerations similar to those of the preceding sections
we obtain the theorem:

In order that

(59.5) ¢ = gydatda/, Y = bydat da/

be the first and second fundamental forms of a space Vu immersed

in @ real Spy1, it 18 necessary and sufficient that (59.3) and (59.4)

be satisfied; then Vy is determined to within a motion in Spy1.
The roots of the determinant equation

(59.6) |Rby—gyl = 0

are the principal radii of normal curvature of V, in the S,41, and
the congruences of curves defined by

(59.7) (Bnby—go) " = 0

are the lines of curvature of V. (§ 45). Since (57.3) are satisfied
identically in this case, it follows that the normals to Vy along
a line of curvature are tangents to a curve, and that these curves
lie in the sheets of the evolute of V., just as in the case of surfaces
of euclidean 3-space.

If the elementary divisors of (59.6) are simple, there are n families
of lines of curvature, whose directions at any point are mutually
orthogonal and are not null directions. At any point P the codrdinate
system can be chosen so that these are the codrdinate directions.

Hence at P in this cotrdinate system we have
gi=e, gu=0G+s); MW=0G%+d) W'=1
(59.8) 1
by = 0 (C %), Ty — onbm.

If we denote by rxx the Riemannian curvature for the orientation
determined by 4° and 2‘, we have from (25.9), (59.3) and (59.8)

(59.9) Thk — em.
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Since these quantities are invariants, we have the theorem:

When a Va is of class one and the elementary divisors of (59.6)
are simple, the Riemannian curvature at a point for the orientation
determined by the directions of two lines of curvature at the point
is numerically equal to the product of the corresponding normal
curvatures; the sign is determined by the character of the mormal
to Vu in the enveloping Sn+1.*

From (59.3) we have for the components of the Ricci tensor

(59.10) Rp = g™ (ba bn— ba by).

Hence at a point for the codrdinates such that (59.8) hold we

have
e

1

(59.11) Ry = —eby % & b, Rpe = 0 Gk,
1

From these equations and (34.4), we have:

When a Vi is of class one and the elementary divisors of (59.6)
are simple, the Ricci principal directions coincide with the directions
of the lines of curvature.t

We seek now under what conditions B;; =0 for j=1,.-., n
in (59.11). These conditions are satisfied, if one of the b’s, say by,
is not zero, and all the others vanish. Suppose now that p(>1)
of the ¥’s do not vanish, say bu,---, by, and that the others
vanish. Then we must have

1000,p
(59.12) > eby =0 G=1,---,p.

Subtracting two of these equations for j = r, 3, we get ey by = €s bgs.
Since this must be true for », s = 1,..., p(r ¥ s), it follows
from (59.12) that all of these b’s are zero contrary to hypothesis.
Hence at most one of the ¥’s can be different from zero, and then
from (59.3) it follows that the components of the Riemann tensor
are zero. Since this situation must hold at every point of Vi, the
latter is of class zero and not of class one. Hence we have:

*This is a generalization of the theorem of Gauss for surfaces in euclidean
3-space, cf. 1909, 1, pp. 120, 165.
+ Schonten and Struik, 1921, 3, p. 214.
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There are no spaces of class one for which all the components of
the Ricci tensor are zero*

60. Applicability of hypersurfaces of a flat space. For
a space V, with the fundamental form

(60.1) 9 = gij dxt dal

equations (59.3) and (69.4) for e = 1;4,7 =1, 2 are the Gauss
and Codazzi equations of a surface in euclidean 3-space. The
problem of finding other surfaces applicable to the given V,, that
is, with the same fundamental form (60.1) is the problem of finding
sets of functions by satisfying these equations. It is of the generality
of a partial differential equation of the second order,f and thus
there are many surfaces applicable to a given surface. When n > 2,
this is not the case. In fact, it will be shown that

If a Vy is of class one, real quantities by are determined by (59.3)
to within sign, if ome of the determinants of the third order of the
b's is mot zerol

Since by hypothesis the rank of the determinant b = |by;| is at
least three, the coordinates can be chosen so that at a point P
we have b, %0, by = 0 for r,s = 1,2, 3 and r+ s, and thus

(60.2) B = |bs| %0 (r,s =1, 2, 3).

We consider first the possibility of two sets of solutions b; and by
of (59.3) for e =1 and € = —1 respectively. If B,, denotes the
cofactor of bys in B and similarly B, for the determinant B = | by,
it follows from (59.3) that B,s =— —Bys. Since

(60.3) | B,s| = B,

we have that B® =— —B® Consequently if equations (59.3) and
(69.4) admit a set of real solutions for e = 1 or —1, the solutions
are imaginary fore= —1 or 1. Accordingly as we are concerned

only with real solutions, ¢ must be the same for both sets of
solutions and consequently Bys = Bys and from (60.3) B® = B

* Kasner, 1921, 7, p. 126; also Schouten and Struik, 1921, 3, p. 215.
+ Cf. 1909, 1, p. 831.
+ Of. Killing, 1885, 1, pp. 236-287; also Bianchi, 1902, 1, p. 465.
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Hence _

(60.4) B = + B,

Since the cofactor of Bys in (60.3) is b,s B,* we have in consequence
of (60.4) 3

(60.5) brs = - bys (rys = 1,2,3).

From the equality
(60.6) b_"—b;g—z‘rai:f = brr bst-brsbrt (1‘,8= 17 273; = ly"‘)”)’
from (60.5) and &, F 0, bys =0 (r + 5), we have

(60.7) brt = .'L‘brt (7':1,2’3; t=]7“’,n)'

Again if in (60.6) we take r — 1,2,3 and s,¢t = 1,...,n, we
obtain

—

b = bg Gt=1,...,m)

and the theorem is proved.

From (59.6) it is seen that the case where the rank of the
determinant is less than three is that for which n—2 of the roots
of (59.6) are infinite, and from (59.9) that the Riemannian curvature
is zero for all but one of the orientations determined by the lines
of curvature of V». Hence the preceding result may be stated
as follows:

A hypersurface in an Say1 for m > 2 is indeformable, if more
than two of its principal radii of curvature are finite, or, in other
words, if the Riemannian curvature determined by more than one
pair of directions of the lines of curvature is mot zero.

It should be observed that, although the functions ; are deter-
mined to within sign by (59.8) for » > 2, except in the cases
indicated, the conditions (59.4) must be satisfied also, in order
that the space be of class one.t

61. Spaces of constant curvature which are hyper-
surfaces of a flat space. In a flat space with the fundamental
form
(61.1) g =2w(@ (@=1-.,n+1)

«

* Of. Bacher, 1901, 1, p. 33.
t Cf. Sbrana, 1909, 3.
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the hypersurfaces defined by
(61.2) 2 ca(e®)? = eR?,

«

where e is plus or minus one, and R is an arbitrary constant,
will be called the fundamental hyperquadrics of the space. When
all the ¢'s are positive, that is, when the space is euclidean, there
is only one family of real hyperquadrics; in this case e = 1 and
the hyperquadrics are hyperspheres. In all other cases (except
when all the ¢'s are negative which case we exclude) there are
two families of such real hyperquadrics, corresponding to e = 1
and ¢ = —1 and arbitrary values of E. When the hyperquadrics
are subjected to a translation in the Sp4i, We get in place of
(61.2) the equation
(61.3) > ea(z*—b%) = eR?,

o
where the b’s are the constants defining the translation (§ 56).
We shall show that the hyperquadrics are spaces V, of constant
curvature; we take their equations in the form (61.2).*

Assuming that the z's are functions of zf for i = 1,..-,n so
that (61.2) holds, we have from (61.2) by differentiation

anz“z“,i - O,

«
;CaZ“z"‘,ﬁ= — D cat® i) = —gy.

From the first of (61.4) and (61.2) it follows that the compon-
ents 5% of the unit vector normal to V, are given by

(61.4)

(61.5) ” = .
When the expressions for 2%; from (59.1) are substituted in the
second of (61.4), we find

1
(61-6) j — —Ta—gg.

* From the results of § 56 it follows that there is no loss of generality in
so doing.
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Now (59.4) are satisfied identically and (59.3) become

61.7) By = Ko (gign—gugpe),
where
(61.8) K = 2
and (59.1) become

&
(61.9) &y = e = — Kogy2*.
Hence:

The fundamental hyperquadrics of a flat space are spaces of
constant Riemannian curvature.

We shall prove the converse theorem:

The fundamental hyperquadrics are the only hypersurfaces of
constant Riemannian curvature + 0 of a flat space.

In fact, if V, is any space of constant curvature, a solation of
(69.3) and (59.4) is given by (61.6), where R and e are determined
by (61.8). Moreover, by the arguments of § 60 this is the only
solution, to within algebraic sign, if g = |gy| + 0. Equations (59.2)
become

M 1 af
932 = R oaJ’

of which the integral is (61.5), if we neglect additive constants,
that is, a translation in Sp41. Then (61.2) follows from (56.1)
and the theorem is proved.

If 2 are one set of solutions of (61.9), the equations

(61.10) 7% = a%f,

where the a’s are constants define other sets of solutions. In order
that (61.2) may be satisfied, these constants must satisfy the
conditions

(61.11) ; ca(a%)* = cg, ; cxa® a = 0 B+ ).

There are n-+1 and n(n-1)/2 of the conditions respectively, and
consequently n(n -+ 1)/2 of the (n -+ 1)® constants a* p are arbitrary.

We shall show that (61.10) and (61.11) define the most general
solution of (61.2) and (61.9). In fact, if we put
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(61.12) £, =1%
and write (61.9) in the form

(61.13) 95, = —Kogy ™,

the system of equatious (61.12) and (61.13) is completely integrable
in the (n-+1) functions z* and the n(n+1) functions p%. Our
problem consists in the determination of the solutions of these
equations satisfying (61.2) and the conditions

(61.14) > in" = gi, 2w pi=0,
o «

that is, (n+1)(n-+2)/2 conditions, so that the desired solution
involves 7 (n-1)/2 arbitrary constants, as was to be proved.

For any set of the a’s satisfying (61.11) equations (61.10) define
a motion (§ 27) of the hyperquadric into itself; from the point of
view of the enveloping Sat1, this is a rotation (§ 56) about the
origin ‘of the cartesian codrdinates of Sni1. Since the quantities
% determine a direction at a point in Va, the number of arbitrary a’s
is just sufficient for the determination of a motion which carries
a point P into a desired point @, and an orthogonal ennuple in
V. at P into a chosen orthogonal ennuple at Q. This result is
in keeping with the last theorem of § 27.

62. Codrdinates of Weierstrass. Motion in a space of
constant curvature. In the preceding section the z’s have been
interpreted as the cartesian coordinates of a flat space Sp41 in
which a given space V, of constant Riemannian curvature is
immersed. If we are concerned only with intrinsic properties of
the Vp, that is, those depending only on its fundamental form, we
may adopt another point of view and treat the Z's as a particular
type of codrdinates, n-+1 in number, in terms of which the
equations for a space V, of constant curvature assume a form
advantageous to the comsideration of certain problems. Thus we
may state the results of the preceding section as follows:

For a space Va of constant Riemannian curvature K,, there exist
sets of n-+1 real coordinates 2* satisfying the condition

(62.1) ;Ca(za)’-_—' —:K]—o (“=11"'7”+1)7
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in terms of which the fundamental form of V, may be written
(62.2) g = 2 ca(de®),

o

where the ¢'s are plus or minus ome according to the character of the
SJundamental form; when one such system is known, others are given by

(62.3) 2% = a% 2,
where the a’s are comstants subject to the conditions
(62.4) %—,‘ Cy (a“p)’ = ¢, ; €, 8% a% = 0
(“,ﬂ,}’= 17"’7"’+l; 34:7)‘

When the V, is defined in terms of any set of codrdinates
#(f=1,...,n), the determination of the z’s reduces to the
solution of equations (61.9), (62.1) and

(62.5) ; Cat® 2% = gy.
From (61.4) it follows that a set of # 41 quantities 7* such that
(62.6) 2 9% = 0
«

are the components in the 2’s of a vector in V,; the components A
of the same vector in the a's are given by

(62.7) 7" = 2.

If 71" and 92" are the componments of two of these vectors, it
follows from (62.7) and (62.5) that

Za: ca (") = gij A Mo’
Z«" camyna® = gy Ao’

Consequently, the angle between two unit vectors is given by

(62.8)

(62.9) cos 0 = ; ca 1) 9"
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An equation of the form
amttatt - tanattt =0

in which the a’s are constants defines a hypersurface of the V,,
which we shall show is a space of constant curvature. In fact,
by a transformation (62.3) of the 2’'s this can be reduced to the
form 21 = 0. Then from (62.1) and (62.2) we see that the
hypersurface z*+1 = 0 has the same constant curvature as the
enveloping V.

When all the ¢’s in (62.2) are positive, it follows from (62.2)
that the fundamental form of the V, is positive definite, and from
(62.1) that K, is positive for the space to be real. When ¢ =1
fori =1,..., n, caya = — 1 and K, = — 1/R*, if we solve
(62.1) for z»+! and substitute in (62.2), it becomes

1 . \ .
W[R 2@+ F 6 e — 2]

¢ (1,.7= 1,”-,”),

(62.10) ¢ =

from which it is found that ¢ is positive definite. In consequence
of the first theorem of § 27, when a V, has a positive definite
form, it is possible to choose a set of n--1 codrdinates in terms
of which the fundamental form is (62.2) with all the ¢'s plus one
or all but one plus one, according as the curvature of V,, is positive
or negative.

If we put z# — y*/R, the y's are the coordinates which
Bianchi has called the point codrdinates of Weierstrass, since
they are a generalization of codrdinates used by Weijerstrass in
non-euclidean geometries of two dimensions.* In deriving these
results for spaces of comstant curvature with positive definite
fundamental forms, Bianchi used a different point of view, which
‘seems less direct than the foregoing. We generalize his notation
5o as to apply to spaces of constant curvature with any type of
fundamental form and call the 2's the point codrdinates of Weier-
strass and the components n* the veclor components of Weierstrass.

In the above theorem equations (62.3) and (62.4) have been
interpreted as a transformation of coordinates of Weierstass into

* Cf. Bianchi, 1902, 1, pp. 407, 434444,
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cobrdinates of the same kind. They serve also as a basis for the
equations of motion of a space of constant curvature V, into itself
in terms of general codrdinates. In fact, we have seen (§ 27) that
the portion of V5 in the neighborhood of a point P can be applied
to the portion in the neighborhood of another point P. Consequently,
there exist codrdinate systems af and z* in V, such that the fun-
damental forms of V, in the two codrdinate systems are

(62.11) ¢ = gydat dol = Gy dz? do/,

where any gy is the same function of the z’s as gy is of the z's,
and the cotrdinates ¢ have the same values at P as the corre-
sponding «* at P. If 2~ denote a particular set of solutions of
(61.9) satisfying (62.1), evidently the same functions of the z’s are
a solution of the corresponding equations (61.9) in the z’s. When
these expressions for 2% and z* are substituted in (62.3), we have
the x’s defined as functions of the z’s and n(n + 1)/2 parameters,
and thus we have in general coordinates the equations of the
continuous group of motions of V, into itself.

63. Equations of geodesics in a space of constant
curvature in terms of codrdinates of Weierstrass. For
a non-minimal geodesic in a space V,, of cotrdinates 2f we have (§17)

Pot (i) dd dat
(63.1) ds® " \jkl ds ds°
If V» is a hyperquadric (61.2) of a flat space, we have in conse-
quence of (63.1) and (61.9)

L T P N P

ds* = 82/ ds ds * ds
__ e 4% daj dx dx/
7R T Kogy ds ds a

Because of (61.8) and

dxt da’
(63.2) WGy ds — v
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the above equations reduce to

d? = . ee
(63.3) F 7 i 2%,
There are two cases to be considered according as ee is -1

or —1,
1°. e, = +1. In this case the integrals of (63.3) are

(63.4) 2% = Z5eos - + Ry smE ,

where 2% are the co¢rdinates at the point s = 0, and ¢ are the
components in the z's of the unit vector tangent to the geodesic
at s = 0, as is seen from the equations

dz 1
(63.5) e = (——-z"‘sm + Rq§cos —E)E
Since the expressions (63.4) must satisfy (61.2) for all values of s,
we must have

(63.6) Zc,,(zg)z = ¢ R, Zc.,,(ﬂ‘.?‘)” =, 2end =0

which are in agreement with the preceding observations and results.
From (63.5) it follows that the functions %, defined by

(63.7) Ry® = —2f sm $ + R 7 cos 3 R ,

are the components of the unit vector tangent to the geodesic at
the point of codrdinates z#. From (63.4) and (63.7) we have

7% = z“cos%—Rq“ sini,
(63.8)

Ry§ = #sin— -I-Rq cosi,

which reveals the reciprocal character of these formulas.
From (63.4) and (63.6) we have

g:c,,(z«-—zg)z = 4eR?sin? -2-1;,
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and consequently the distance in the enveloping space between two
points whose geodesic distance is s is 2 Rsin ﬁ. From this it
follows that two points coincide whose geodesic distance is 27 R;
this is seen also from (63.4). Hence:

In a space of constant curvature the geodesics for which ee; = 1,
where e is defined by (61.2) and e, by (63.2), are closed curves of
length 27 R.

From (63.7) we have
8

(63.9) Den® 7 = ecos
4

Consequently the angle, as determined by the metric of the enveloping
space, between the tangents is s/R or w—g/R, according as e is
+1 or —1, whereas from the definition of parallelism these
tangents are parallel with respect to the curve in the metric of
the given V, (§ 21).

2°. eeg = —1. The integrals of (63.3) are
(63.10) 2% = 7 cosh 3+ Ry sinh .

The components of the unit vector tangent to the geodesic at the
point of codrdinates 2* are given by

. 8 8
(63.11) Ry* = g7 sinh _§+ng coshi.
Since
PN s (1__ I R LN S
Ec“(z“ 9] 2¢ R (1 cosh R) 4e R*sinh VL

we have that the distance in the enveloping space of two points,

: s . . . . 8 .
whose geodesic distance is s, is 2Rsmhﬁ. Moreover, since

8
g.c“q“qg = ecoshje—,

we see that in calling the left-hand member the cosine of the
angle between the tangents (§ 16) the term cosine is a mere notation.
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When, in particular, the fundamental forms of the spaces of
"constant curvature are positive definite, we have ¢ — 1, and
consequently the cases 1° and 2° apply respectively to spaces of
positive and negative constant curvature.*

When the fundamental form of Vy is not definite, there remains
for consideration the case of minimal geodesics. If in accordance
with the observations following equations (17.11) we choose the
parameter ¢ so that the equations of the geodesics are of the
f;}*{} (63.1) with s replaced by ¢, equations (63.3) assume the form
de
the equations of the minimal geodesics are

= 0, and consequently in the codrdinates of Weierstrass

(63.12) & =5 t+zg.

Accordingly the components in the 2's of the tangent vector are
the same at all points of a minimal geodesic.

64. Equations of a space V, immersed in a V,, of constant
curvature. As an application of the results of §§ 58 and 61 we
establish the equations of a sub-space Va of a space Vi, of constant
curvature in terms of the cotdrdinates of Weierstrass, making use
of the notation of these sections and observing that p =1 in § 58.

From (61.5), (61.6) and (61.8) we have

2 1 1
(64.1) ffm+1|a =g bty = g % Kpe = B’

where a,, dy* dy” is the fundamental form of V.t
From (58.8), (58.11) and (64.1) we have

1 , 1
bm—l—l]ii = —Eap ?/‘.c' yy,j = — 3 %%

(64.2) 1 ,
Vmtielj = """I_Bapryﬂy.igﬂ'l = 0, (6 =n+1,..., m).

* Of. Bianchi, 1902, 1, pp. 434-440, where these results are obtained from

a different point of view.
+In this section ¢ =1, ..., m+1; 4, g, » =1, . .., m and Latin indices take

the values 1,..., 0.
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Becanse of these results and (58.12) equations (58.5) and (58.9)
reduce to

(64.3) %y = ;: es Qaiij 161" — Ko g4 27,

(64.4) 56" ) = — Qeppjg™ 2% m +Zerl‘wj.i 7"
(o, =mn+1,...,m).

Proceeding as in § 47, we find that the conditions of integrability
of (64.3) and (64.4) are

(64.5) Ry — ;‘ es (2s1ik 2012 —Latit Lo 1) + Ko (g0 gn— ga gp)
(64.6) 241 x—Rqi,; = ; er (roik Leiyj— Praj Lrj)

-
o),k Prolk,j +Zef eo (1gr1j Bootk— Herlk Meal))

(64.7) ,

+ 9% (Lei; o e — Lo Lon) = 0 (0, 0,7 =n+1, ..., m).
These equations follow directly from (56.5), (56.6) and (56.7), if
we make use of (64.2) and (58.12).* In this case we can show
as in § 56 that, if we take the equations preceding (56.8) for
e, t=mn-+1,...,m and

©48) Zeane" "= Do, Teat"s's= B, JeelF—3—F

and choose initial values so that Ay, Boii, Cor, Ds, E; and F vanish,
then they vanish for all values of the 2's.t

There are (m--1) (m- 2)/2 of these equations of condition on
the (m-1)* functions £%;, 94,° £”. Hence a solution of (64.3)
and (64.4) satisfying these conditions involves m(m-1)/2 arbitrary
constants. We may account for these arbitrary constants by
observing that, if 2% and #4" are a set of solutions of (64.3) and
(64.4), so also are z” given by (61.10) and ys* given by

*They follow also from (47.11), (47.12) and (47.14), if we note that
Rll"”‘ = K, (a), a’m—aln al“).
1 Equations (64.8) are merely forms of (56.8) for 7m+1|" given by (64.1).
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%la = aaﬂ %Iﬁ»

where the a’s are subject to the conditions (61.11), when @ =m-}-1.
Recalling the intrepretation of (61.10), we have the theorem:

When a symmetric tensor gy, (m—mn)(m—n—1)/2 vectors pize|i (= —por}i)
and m—n tensors Rq; satisfy equations (64.5), (64.6) and (64.7),
in which R, is a constant, the tensor gy is the fundamental fensor
of a space Va immersed in a space Vm of curvature Ky; Vn is
determined to within a motion in V.

When m = n-1, that is, when V» is a hypersurface of a space
of constant curvature, we have in place of (64.3) and (64.4)

(64.9) Fy= eQynr —Kogy?",
(64.10) 'la,} = —Q glm Za,m,
where the functions z# and 4% are in the relations

641 el =5, b =e
« ° «

the ¢’s being -plus or minus one, such that the equations

(64.12) g o 2%i2%) = gij

admit solutions 2% which are real functions of the 2’s. The conditions
of integrability are

(64.13) Ry = e(2u 25— u L) + Ko (gix g — gar gin)
(64.14) Qyx— Rax,j = 0.*

When two tensors g; and 2y satisfy these conditions, there exists
a V, immersed in a space Vy4q .0f curvature K, which is deter-
mined to within a motion in the space.

The arguments applied in § 60 to equations (59.3) apply in like
manner to (64.13) with the result:

A hypersurface of a space Va of constant Riemannian curvature
Jfor n>3 is indeformable in the Vy, if more than two of the principal
radii of curvature are finite.

* Cf. (43.20) and (43.21).
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We establish the following theorem which evidently is a gener-
alization of the results of §§ 57 and 59 for spaces of class one:

A necessary and sufficient condition that the geodesics of a space
of constant curvature Vi1 normal to a hypersurface Va of Vai1 along
a curve C of Vy be tangent to a curve in Vuys 8 that C be a line
of curvature of Vu.*

We establish this theorem by means of the results of § 63,
where 2§ and 47 denote respectively the codrdinates of a point of ¥,
and the components of the normal to V, at the point, this normal
lying in Vyis.

We consider first the case when the codrdinates of points on
the geodesics normal to V, along a curve of the latter are ex-
pressible in the form [cf. (63.4)]

(64.15) 2% = 25 cos— + Ryf sin E ,

where 25, 45 and w are functions of x* which are functions of s
for the curve. Now

dz= de

cos &
(64.16) ds ds

- Sin %
R

1 dw
+[ 25 sin — +Rqocos§]§ T

In order that the point of codrdinates z* be displaced tangentially
to the geodesic at the point, we must have as follows from (64.16)
and (63.7)

de B
s O08 —+ —snf—-e( 25 sin— +RqocosR)

where ¢ is a factor of proportionality. If we multiply by ¢* 43,
sum for o and make use of (63.6) and Zc"‘ 2,* ;16 = 0, we find
that ¢ = 0. Hence we have

da?

w
(64.17) (zo“,¢+R’lo“,e tan E}F&" =0

* Cf. Bianchi, 1902, 1, pp. 488-491.
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‘When thls equation is multiplied by c¢*z* ; and summed for «,
we obtain, in consequence of (64.10) and (64 12),

(64.18) (g,;, — ROy tan ) 4% _ o,

E) ds
Comparing this equation with (45.1), we see that the curves
possessing the desired property are the lines of curvature of Vj,
and if R; denote the principal radii of normal curvature, the
quantities w; are given by

(64.19) tan 2 = 2,

Conversely, when (64.18) are satisfied, we have

d '3
Ca 20 ,J(Zo I+R70 i tan R)Tzz“ = 0.

Also the equations

Ce %o (Zo 1+1€70 i tan R) ‘;f =0

are satisfied identically. Since the determinant of these equations
is different from zero, equations (64.17) follow, and consequently
the theorem is proved for the case (64.15).

Proceeding in like manner with the second case of § 63, we obtain
similar results. In place of (64.19) we have

w; R;
tanh f = 72- ,
from which it follows that «; is real or imaginary according as
R; is less or greater than R.

65. Spaces V, conformal to an S,. In § 28 we established
by direct processes the conditions in tensor form that a space
V. be conformal to an Sn. In this section we show that such
a V, can be immersed in an Sy, and make use of the results
of § 56 to obtain the conditions obtained in § 25.

If V, is conformal to an S,, there exists a cotrdinate system x*
for which the fundamental form of V, is

(65.1) ¢ = zp’ch(dx')' G=1,---,m),
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where the ¢’s are plus or minus one and y is a function of the 2's.
It we put

# = yai, o= ‘/’;(Z,:“(”i)'_’l')’

(65.2) M=y (Z (@) + %)’

we have from (65.1)

(65.3) L4 =2¢a(dza)’ (a=1:"‘:n+2):
where

(65.4) ent1 = 1, ot = —1,

and from (65.2)

(65.5) > ea (29t = 0.

It we call (65.5) the fundamental hypercone of the Spis With the
fundamental form (65.3), we have that V,, is immersible in an Spi»
and is in fact a hypersurface of the fundamental hypercone (65.5).

Conversely, equation (65.5) and any equation F'(!, ..., 272 =0
not homogeneous in the 2’s define a hypersurface of the hypercone.
If in the equation # — 0, we substitute the expressions (65.2),
we find the function ¥ of the «’s in terms of which (65.3) is
reducible to (65.1). Hence we have the following theorem which
is a generalization of a theorem due to Brinkmann:*

Any Va which is conformal to an S, i3 a hypersurface of the
Jundamental hypercone of a certain Snis, and any hypersurface
of the fundamental hypercone of an Spis which is mot a hypercone
with the same vertex is conformal to an S,.

In terms of any codrdinates af in V, we have from (65.3)

(65.6) et 1% = gy.
«

Differentiating (65.5) covariantly with respect to 2 and z/ and
the fundamental form of V., we have in consequence of (65.6)

Zc“z“z".i =0,
«

ety = —gy.

«

(65.7)

*1928, 7, p. 1.
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As in § 56 we denote by 54" for 0 =1, 2 the components of
two mutually orthogonal unit vectors in Spi, normal to V,. From
the first of (65.7) it follows that 2* = ryy®+ ¢t45“. Substituting
in (65.5) we find that r%¢ +t*¢; = 0. Hence ¢ and ¢ differ in
sign. Without loss of generality we take ¢, = —e; =1, 8o that

(65.8) § ce(quy®)? =1, %: calny™)? = —1
and then
(65.9) &= ripy*+ 3%,

where r is an invariant. From the conditions

2cat’ine” =0,
«

(65.9) and (65.8) we have

dlogr
(65.10) 2 ca 1" qu"s = — ey g% = LA
@ o aat
Hence from (56.3) we have
dlog»
(65.11) Vo == — Vi = aozfi? ,
so that
alo
(65.12) 76" = —boig™ " m—ne" afir (0,r=1,2; 0% 7).

From the second of (65.7) and from (65.9), (56.2) and (56.1)
we have

1
(65.13) bay = — (b11a+7 91:1') .
In this case equations (56.5) reduce to

1
R = - (Bajiz g + bae gie— bujix gn— bujt gix)
(66.14) i
+ 3 (90 95— i 97);
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in place of (56.6) we have

dlogr

1 lo r
(65.15) byjij,e—brjx,j = Py (bllﬂ‘l‘ 7 yii) g

(b1|m+ y(k)

and (56.7) are satisfied identically.
By means of (65.9) and (65.13) equations (56.2) can be written

1
(65.16) %= 7(b1|¢; £+ gy 0,
and (65.12) for ¢ = 2 becomes
2l
(65.17) 93°; = but.g z ,m+—z i+('lz| —7) aox‘gr.

When (65.14) and (65.15) are satisfied, equations (65.16), (65.17) and

9z o
o =P

form a completely integrable system in 2% £ ; and 42", Asin § 56
it can be shown that if the initial values of the quantities are
chosen so that

o o o o
2%8.52,1=gg, g:caz z2,:=0,

(65.18)
2ot =0, 2l =0,
these equations will be satisfied by all values of the z’s. Hence
two tensors gy, byy and an invariant r in the relations (65.14)
and (65.15) determine a V,, with the fundamental tensor gy which is
conformal with an Sh.
If we put

1 1
(65.19) 4y = b+ 5590
equations (65.14) and (65.15) become
(65.20) Ripa = gp du+ ga djx — gax djv— gn du

and
(65.21) dyxe— A, = 0.
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From (65.20) we have for the components of the Ricei tensor

(65.22) Ry = g g* da+ (n— 2)d
and consequently
= 2(n—1)g¥dy.

Hence from (65.22) we have

1 1
3 T e —3) T

(65.23) dji, =

When these expressions for the d’s are substituted in (65.20) and
(65.21), we get equations (28.17) and (28.19) respectively.

Exercises

1. Determine the conditions which the functions t" must satisfy, in order that
for the normal of components )

79[“ = :o’qo'éa (o' = "+lv"'y‘”+p)

the conditions (57.3) are satisfied identically.
2. Show that in a euclidean space of n(>>3) dimensions there are no hyper-
surfaces of constant negative curvature. n>3 Bianchi, 1902, 1, p. 485.
3. When the fundamental form of a space,\of constant curvature K, is definite,
the hypersurfaces of constant curvature K are such that K> K, Levy, 1925, 1.

4. A necessary and sufficient condition that a hypersurface of a spac"éiosf
constant curvature be of constant curvature is that the lines of curvature of the
hypersurface be indeterminate. Levy, 1925, 1.

5. Show that, if in (27.4) the b’s are given the values zero and the c's are
chosen so that e €0 = 1/4, the fundamental form is reducible to

e, (dz)
(2 e 2+ %)

on replacing x' by Rz and K, by e/R>
6. When in (61.2) we put ¢, = ¢, and ¢, , = e, this equation is satisfied by

Zc -
7 = R—Lc_’ PR I 3 t 4
e+ Zea+ 4]

and in terms of the «'s the fundamental form is that of Ex. 5.
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7. When a hypersurface V, of a space of constant curvature admits n con-
gruences of lines of cnrvature, their tangents are Ricci principal directions
for V,.

8. When in the equations of § 65 we put »*** = R or 2"+ = R, we have
the case of spaces ¥, conformal to spaces of constant curvature.

9. The third ftmdammtal JSorm of a hypersurface of an S, +1 18 given by

Y= an(dr,“)' = b, by g d das.

10. When V, is a hypersurface of a space of constant curvature, from (64.10)
it follows that

¥ =Z“,‘c¢(dqa)- = 2, 2, ¢ dat da’.

Bianchi calls this the third fundamental form of the hypersurface.
Bianchi, 1902, 1, p. 488.
11. When in (27.4) a =0, ¢, =0, b =0(j=1,...,n—1), this equation
becomes K, == —4e, b and the fundunental form of the space of constant
curvature K. is
e (dx')*+ ... e, (dz“)’

- 4b a*

12. When the fundamental form of a space of constant curvature is
e (da) o+ ... +¢, (da")?
e, o

1

the fanction

U= e—ac'.'.[61(:'1"‘——a‘)"+ coe e, (@t —ar) 46, 2],

n—1

where the a’s are arbitrary constants, in such that 4,U == U?. Hence § 19)
the finite equations of the geodesics are

w’-a’:%ejcnbjm“lf G=1-..--,0—1),

where the b’'s are arbitrary constants Bianchi, 1902, 1, p. 422.
13. £ U in Ex. 12 be replaced by — b e' where ¢ b =¢ bl 4 ... 4¢,_ b2,
the equations of the geodesics can be written

1 — —
——m, x’ —c’+ee tauhs (j-—-l,-'-,” l),
where the ¢'s are arbitrary constants. Bianchi, 1902, 1, p. 422.

14. For a given set of values of ¢/ in Ex. 13, the geodesics of V, lie in the
hypersurface

e
; e,(x-‘-—-c")’-}-eﬂ = b—:,

and are geodesics of this hypersurface (§ 24). Beltrami, 1868, 1, p. 234.
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15. Show by means of the theorem of Beltrami (§ 40) that the hypersurfaces
in Ex. 14 have constant Riemannian curvature.
16. The determination of n-tuply orthogonmal systems of hypersurfaces in
a space of constant curvature K, reduces to the solution of the system of
equations (cf. § 87)
g, 28, .
—W:I{jﬂjﬂ W—ﬂ“ﬂk,:o G, 4,k #%),

08,
e Ba:; +e¢ aw’ +Zc‘ ¢ 68,8+ K e e, HH = 0,
where 8, = 0.
17. When a space of constant curvature K, is referred to an n-tuply orthog-

onal system of hypersurfaces 2 = const. and the fundemental tensor has the
form (87.1), the functions %, defined by

9%

W‘—ml H (i=l,---,”),

where z¢ are codrdinates of Weierstrass, satisfy the equations
St =0, Zeatfl = Seanfrr =0 G(*)).

Show that (cf. § 87)

on,® oy,
oz’ = 0" By ozt

= _eizek n® Bu— ¢ K, H, 2%,
Bianchi, 1924, 3, p. 651.



CHAPTER VI
Groups of motions

66. Properties of continuous groups. For a V, expressed
in terms of codrdinates 2* the equations

(66'1) §i=fi(xl’x2’,,,,xn;a) (i=1"";n),

where ¢ is a parameter, define for each value of a a point trans-
formation of V,. If the functions f* are such that the combination
of two such transformations is one of the transformations (66.1),
and if also the identity transformation and the inverse of every
transformation -is in the set, then these transformations are said
to form a one-parameter continuous group of transformations.*
In this case the z’s considered as functions of 4 satisfy a system of
differential equations of the form
dzxt

(66.2) a = Y(a) §(x, 23, - .., ).t

If a, is the value of a for the identity transformation and if
we put ¢ =J:1,U(a) da, the equations (66.2) become

(66.3) = &z, ..., z"),

dt
and the identity is given by-¢ = 0. If the functions & are
assumed to be regular in the domain of 2% the integrals of (66.3)
can be written in the form

o8 ¢

(66.4) B = a B@ et

* The restriction that the identity and the inverse of every transformation be
in the group is not made in the general definition of a group as given by Lie,
1893, 3, p. 368. However, the above definition is in keeping with that generally
in vogue today, and the groups of the less restricted type are called semi-groups.

+ Cf. Lie, 1893, 3, p. 371; also Bianchi, 1918, 4, p. 63.
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If we introduce the notation

. of
(66.5) Xf=§& 2
and indicate by X”f the result of performing the operation X
on f r times in succession, equations (66.4) can be written

}
(66.6) 7 — it tXoft L Xiait. .ok L Xraip...,
2 r!

Moreover any function F(z%, - .-, ") regular in the domain of 2%
is expressible in the form

(66.1) F@, -, 5 = F(&, -, + iXF 4. S X
When in (66.4) we replace ¢ by the infinitesimal d¢, we obtain,
on neglecting terms of higher order,

(66.8) zt = i1 Edt,

This is the #nfinitesimal tramsformation of the group and from
(66.8) we have that the z’s undergo the infinitesimal change

(66.9) oz = Edt.

Moreover from (66.7) we have that the change of any function F'
is given by
(66.10) 0F = XF.dt.

The equations (66.8) are uniquely defined by the form of Xf
which Lie* calls the symbol of the infinitesimal transformation of
the group. The equations (66.4) of the group are then determined;
the group is said to be gemerated by Xf. It is understood that
Xf and aXf, where a is any constant, generate the same group.
We shall at times refer to X f as the generator of the group.

Equations (66.3) define a congruence of curves in V,, the paths
of the group, each of which is described by a point as the latter
undergoes the continuous transformation of the group.

* 1898, 3, p. 390; Bianchi, 1918, 4, p. 67.
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From (66.3) it is seen that & are the contravariant components
of a vector; we call them the contravariant compoments of the
infinitesimal transformation. From § 2 it follows that there exists
. . " s N App. 25
a transformation of codrdinates 2" = z', 2"/ = ¢/ (2", -- -, 2") for replaces
J =2, ---, n so that in the new system the components §'j == () lines3-8
for j = 2, ..., n. If we effect the further change defined by

d 1 l .
;1’ = o G=2 .-, m),

it follows from (66.5) that in this system Xf = 88{1 . Hence:
x
The covrdinates of a Van can be chosen so that the contravariant
components of the infinitesimal transformation of a one-parameter
group are
(66.11) =1 §¥=0 G=2---,m).

In this coordinate system the finite equations of the group are
(66.12) z' = 2"+, o =,

as follows from (66.4). As an immediate consequence we have
that a one parameter group containing the identity contains also
the inverse of every transformation of the group.

When the equations of a transformation involve 7 essential
parameters, thus

(66.13) = i@, 2" a0  (E=1,...,m),

and these transformations possess the property referred to in con-
nection with (66.1), they are said to form a group @,. We say
that » infinitesimal transformations

(66.14) Xef = Eaf - 8f @=1,--.,7)

are linearly independent, when there do not exist constants ¢* for
which

(66.15) &' =0

Suppose that r linearly independent infinitesimal transformations
satisfy the conditions (cf. § 23)
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(66.16) (X Xﬂ)f = capy ny (e, 8,r=1,---,17),

where the ¢'s are constants, called the constants of composition
of the group, and are subject to the conditions

4 Y
Cus +Coe = 0
(66.17) ) ) wp e ’
-4
c'aﬂy Cye + cﬂdy Cye + cday Cyg = 0
(e B,7,0,6=1,..-, 1),

It can be shown* that the X.f generate a group G, consisting
of all the groups @, generated by the infinitesimal transformations

(66.18) a® Xo f,

where the a's are arbitrary constants; and conversely every group Gy
can be generated by r linearly independent infinitesimal trans-
formations (66.14) satisfying (66.16) and (66.17).

If the components & of an infinitesimal transformation are regular
in the neighborhood of a point P, of codrdinates xj, and they are
expressed in the form

(66.19) ¥ = E+of (@ —a)+of @ —aD@— 2B+ -,

we say that the transformation is of order zero at P, when not
all of the Es are zero; that is of order ome when all the &’s are
zero but not all the af/s, and so on.
Consider the matrix
gy, &
(66.20) M=\
‘é:fllr Tty E"l“
of the components of the generators of a G,. If the rank of M,
when the 2’s are replaced by the xy’s, is 7o, then in the equations

a® ko (o) = 0

* Lie, 1893, 8, pp. 391, 896+ Bianchi, 1918, 4, pp. 97, 98.
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r — 7, of the a's can be chosen arbitrarily and the others expressed
in terms of them. Hence there are r — 7, linearly independent
transformations (66.18) of order greater than zero at P,, and 7,
linearly independent transformations of order zero.

From equations (66.4) it is seen that if an infinitesimal trans-
formation is of order >0 at P,, the finite equations of the group
generated by it leave P, fixed. The » — 7, infinitesimal generators
of order >0 generate a Gy_r, which is the sub-group of G,
leaving P, fixed; it is called the sub-group of stability of Pp.*

67. Transitive and intransitive groups. Invariant varieties.
A group is said to be transitive, when by means of its transformations
any,\ﬁ“omt can be transformed into any other,‘”f)mt otherwise it
is éntransitive. For example, the group of motions in euclidean space
of three dimensions is transitive, whereas the group of rotations
about a point is intransitive. From the finite equations (66.13)
of a @, it follows that for a transitive group r = n.

For an intransitive group G, there are subspaces V,, of V, such
that any point of a V,, is transformable only into points of V;
otherwise by a combination of transformations a given point could
be transformed into any other point of V. Such a Vi, is called
an invariant variety for Gy.

If we consider any point Pp of V, and as in § 66 denote by zy
the rank of the matrix M for P, there are z, independent in-
finitesimal transformations which transform P, into nearby points
and any linear combination of the form (66.18) for « =1, ..., 7,
possesses this property. Hence the paths of these transformations
determine a V;, into points of which P, is transformable, and the
sub-group of stability of P, is of order »r — 7. If G, is transitive,
%= n, since V;, is the same as V, by the above definition of
a transitive group. If @, is intransitive, V, is a sub-space of V.
It is the invariant variety of lowest order containing P, and is
called the minimum invariant variety for P,. If T denotes the
transformation by means of which P, is transformed into a point P’
of V;,, T its inverse and T any transformation of stability of P,,
then

TTT-*(P) = P'.

* Bianchi, 1918, 4, p. 147.
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Since all these transformations 7’7 T~ are distinct, the group of
stability of P’ is of at least the same order as for Py, and by
reversing the process we have that it is of the same order. Con-
sequently V7, is the minimum invariant variety for any point of it.
Accordingly the equations of V, are obtained by equating to zero
all the determinants of M of order 7,4 1. Moreover, the sub-group
of G, generated by the z, infinitesimal transformations referred
to at the beginning of this paragraph is a transitive group for V..

From the foregoing considerations it follows that, if the equations
obtained by equating to zero all the determinants of the same
order of M are consistent, they define an invariant variety with
respect to G». From this we have

According as theﬁ&'r’fk of the matrixc M in the §'s is n or less,
G, is transitive or intransitive.

If the rank of M (66.20) in the «’s is ¢(<n), and P is a point
for the codrdinates of which M is of rank ¢, then the minimum
invariant variety for P is a V;. But if for the codrdinates of P
the rank is r < ¢, then the minimum invariant variety for P is
a V, and is obtained by equating to zero all the determinants
of M of order r-1.

If the rank of M is g(<n), then all of the equations

(67'1) Xaf =0

are expressible in terms of ¢ of them. In consequence of this
result and of equations (66.16) it follows from the theorem of § 23
that equations (67.1) form a complete system and admit n —gq
independent solutions ¢i,---, 9a—g. From (66.10) it follows that
any solution of equations (67.1) is an invariant for G,, and con-
versely any invariant is a solution of (67.1). Hence every invariant
of @, is a function of ¢j,---, ps—. From these considerations
we see that the equations

(67'2) ?p(xlr""xﬂ)z 9’,9(1”(1,"";%') (ﬁ=1,"',”—4)

define the minimum variety for m%jnﬁgint Py of coordinates a}.
Let Vi, be an invariant variety. for a G,, defined by the equations

(61.3) = ¢, Y™,
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Since the paths of the transformations must be in V,,, we must have

(67.4) 56)' = 24

« 02t (a=1,n-,r;a=l,-~-,m;)
oy~ i=1,...,n 4

where the 7’s are functions of the y’s. Now

i 0 o
(67.5) Xo—f == Eo-,'?% S qala—a% = Ya’f.
Hence the Y’s are the generators of a group I' in V,, which is
said to be induced by G,.
If I' is of order less than r, there exist relations of the form

(61.6) Ehg® =0
and from (67.4)
(67.7) CEf =0

at points of V,,. In this case the transformation of G, of components
(61.8) F=c%'

leaves V,, point-wise invariant. Conversely, if (67.8) leaves Vi
point-wise invariant, then (67.7) must hold at points of Vi», and

gince the Jacobian matrix “8_:1;” is of rank m, (67.6) must hold.

oy”
Hence:

If Ve is an invariant variety for a G, and a sub-group Gp of
Gy leaves Vi point-wise invariant, the group induced on Vn by G,
i a Gr—p; and conversely.*

From the definition of minimum variety it follows that the group
induced in such a variety is transitive, whereas for any other
invariant variety it is intransitive.

68. Infinitesimal transformations which preserve geo-
desics. If a V, with the fundamental form

(68.1) ¢ = gydatda’

* Of. Bianchi, 1918, 4, p. 165.
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is subjected to an infinitesimal transformation defined by (66.8),
then from (66.8), (66.9) and (66.10) we have

(68.2) ddaf = ddaf — —"—Eide 5t, gy = %gggkdt,
and consequently from (68.1)

(68.3) b9 = hydaidal dt,

where

o &k
(68.4) hy = 5" +yzk 3x-' +9ﬂc I it g E e

From (68.3) it follows that the fundamental tensor of the trans-
form V, is given by

(68.5) 9 = g9i+hy dt.

For infinitesimal transformations which preserve geodesics we
have equations of the form (40.6) and (40.8), in which ¥; is replaced .
by v,id¢, where v,; is the gradient of a function y. From the
latter and (68.5) we obtain

(68.6) hije = 2945 Y+ g Wit gie ¥4
From (68.5) we have (cf. § 6)
g = g(1+gYhydo),

and from equations analogous to (40.7)

1 .
(68.7) Y = my" hyj k.

Since (68.4) can be written in the form

(68.8) hiy = &;+ &4,
equations (68.7) become

1 .
(68.9) Y = my" Ei .

From (68.6) we have
(68.10) R+ b,y — Pixi = 2(95 Y+ g ¥,
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Substituting in this equation from (68.8) and making use of Ricei
identities (§ 11) of the form

(68.11) Eie— &y = Em B
and of the identity (8.11), we obtain
(68.12) B = — Em B0+ g0 @kt g 9,4
From these equations and (68.9) we must have
En R™jg¥ = 0,

which is identically satisfied, since B™y is skew-symmetric in ¢ and j.
The conditions of integrability of (68.12) are [cf. (11.15)]
Em (B ki, — R™i, 1) + Em 1t B i — Eme B+ Ei.m B

(68.13)
+Emj R a+ ga P u— g P p = O.

Multiplying by g% and summing for ¢ and !, we have

1
n—1

(68.14) ¢ j = (EmB™x+Em B, j+§m,ijk+ya§mRﬂ "k, 1)
where B™ — g™ Ry;.*
Since 1 j; must be symmetric in j and %, we have from (68.14)

Em[R™ix— B+ ¢ (B™wii— B™i,))] = 0.

‘When the expressions (68.14) are substituted in (68.13), we obtain
equations of condition linear in & and & for ¢, 5 =1, .-+, n
In addition, the conditions of integrability of (68.14) are linear in
§, E.jand v,;. From these equations we obtain by continued
differentiation other equations linear in &;, & ; and ¥,;. All of these
equations must be algebraically consistent, if the given V, is to
admit infinitesimal transformations preserving geodesics.

* For, %%, B~ = 9°F, 9™ Ry = 978, . 0™ By, =, 19" By, bY changing
the dummy indices.
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When ¥V, is of constant curvature K,(F 0), equations (68.13)
reduce in consequence of (40.12) to

gl Ko Exe+ 86.) + W] — 9 [Ko &1+ &) + ] = 0,

from which follows, for n$ 1,
(68.15) Ko &+ &0+, = 0.

From the second of (40.13), where now A;; = K, g;j— v,;; 04, and
trom (68.5) we have Ray = Ko(ghjgii — Jnigy), Wwhich is in
accordance with the theorem of Beltrami (§ 40). In this case
equations (68.12) reduce to

(68.16) Ex= Ko & — g &)+ 95 Y.k + 9 V5.

Differentiating (68.15) covariantly with respect to z* and sub-
stituting from (68.16), we find that ¥ must satisfy the equations

(68.17) Yt Ko QRgyvu+ g i+ g ¥,:) = 0.

The conditions of integrability (40.17) of these equations are satis-
fied identically.
If we put

- 1
(68.18) § = §i—‘”2‘]‘{;1/.i;

where ¥ is any solution of (68.17), equations (68.15) and (68.16)
reduce respectively to _
(68.19) _ RrEe=0
& ju = Ko(gie & — g &),

In § 71 it will be shown that these equations admit n(n - 1)/2
independent solutions. Hence for each solution of (68.17) there
are n(n-4-1)/2 independent infinitesimal transformations of a V,
of constant curvature preserving geodesics.

69. Infinitesimal conformal transformations. From (68.5)
and (68.8) we have the ¥, resulting from an infinitesimal trans-
formation of a V, is conformal with V,, when



69. Infinitesimal conformal transformations 231
(69.1) hy = &+ &, = wyy,

where ¥ is an invariant. The case where i == 0 will be treated
in the next and subsequent sections.

A necessary and sufficient condition that the paths of two trans-
formations & and ¥ be the same is that & — ¢’. From (69.1)
and analogous equations in the &s we have in this case

e;&ite:i& = (P—eoygy.

Consider first the case when ¥ — oy = 0. One of the &'s must
be different from zero, say &§. When we take i = j =1, we
get ¢1 = 0; and when we take i =1, 3+ 1, we get ¢,; = O.
Hence ¢ is a constant and the two transformations are the same.
When ¥ —e § 0, it follows from the above equations that the
rank of the determinant |gy| is not greater than 2. Hence we
have the theorem of Fubini:*

Two infinitesimal conformal transformations of a V, for n>2
cannot have the same paths.

From (69.1) we have

Fije+ b, j— Biei = gij W1+ gin W,i— g .-

Proceeding with this equation in a manner similar to that followed
in the case of (68.10), we get

) . 1
(69.2) S = —&n B wyjt 5 (6 Wt g i — g ¥,9)-
The conditions of integrability of these eqﬁations are

(69.3) Em (B™ Kij, ¢ Rmzs'j. ®)+ Em,1 B™ij— Emoi leii + &m Rﬂﬂ‘l

+ &mj B o+ % (G ¥ e— g Y. a+ gi . u—gn Y,a) = 0.

If these equations be multiplied by ¢* and be summed for 7 and /,
we get

*1908, 3. p. 410.
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m n 1
2 Em R™ij,i— Em R x— Em e B j— Em,j B+ —2-(n-—2)tp_;k
(69.4) 1 ,
+_2‘gjk Ly =0,

where Ay ¢ is defined by (14.3). Multiplying by ¢/ and summing
for j and %, we have

2
n—I1

(69.5) Ay = (Em B™ i+ 5mi B™),

where B™ = ¢™ R’ = g™ g™ R,. Substituting this expression
for 4,y in (69.4), we have ¥, i expressed linearly in terms of &
and &;; for 4,5 =1, ..., m, and the general procedure to be applied
to this case is similar to that applied to (68.12), (68.13) and (68.14).

When V, is a space of constant curvature K, + 0, equations
(69.3) reduce in consequence of (40.12) and (69.1) to

K, ¢ (9a gjx — gix git)

(69.6) .
+ 5 @a v e —gu .t g ¥a— g, a) = 0,

and (69.4) to
697 2Km—Vgupyv+m—2D¢ jxtgnldey = 0.

Multiplying by ¢/* and summing for j andk, we have Ay ¢ +K,ntp=0,
by means of which (69.7) reduces for »>2 to

(69.8) Y+ Kogny = 0.

When i is a solution of these equations, equations (69.6) are
satisfied identically. Moreover, the conditions of integrability of
(69.8) are satisfied. If we have any solution of (69.8), equations
(69.1) may be written by means of (69.8) in the form (68.15).
If in this equation and (69.2) we make the substitution (68.18),
we obtain (68.19). Consequently for each solution of (69.8) there
are n(n-+1)/2 independent infinitesimal conformal transformations
of a V, of constant curvature.
see Let G, be an intransitive group of conformal transformations
App.27 of a V, and take for the hypersurfaces x!'=— const. oo invariant

* Cf. footnote p. 229.
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varieties, z' being the parameter of the orthogonal trajectories of
these invariant varieties; also we take hypersurfaces formed by
these trajectories for 2/ = const. where j =2, ..., n. It is assumed
that the orthogonal trajectories are not null curves; hence we have

(69.9) gu F 0, ;=0 G=2,--.,m).

Since the hypersurfaces z'== const. are invariant varieties it follows
from (69.9) that & = 0. When in the equations (69.1), in which

hij is given by (68.4), we take i =1, j 1, we get gjkaa—i'{l =0.

Hence EZ, for j =2,...,n are independent of z’. Consequently
the coordinates can be chosen so as to involve n —1 variables,
and the group transforms conformally into itself not only V,, but
also each of the V,—y’s. For i=j =1, the equation of con-

dition is §'.§| Zyzl’: = Ygy,. Since ¥ F 0 and g, ¥ 0 by hypothesis,

the Va—1's do not admit a sub-group of stability and are minimum
invariant varieties, if the rank of M (66.20) is » — 1.

If the Va—1’s are not the minimum invariant varieties, we may pro-
ceed with any of them as we did with V,, and reducé the group to
one operating on » — 2 variables; and so on. Hence we have:*

If a group G of conformal transformations of a V, admits
minimum invariant varieties of order m, the group may be reduced
by means of a transformation of variables to a group on m variables
with only m linearly independent transformations.

70. Infinitesimal motions. The equations of Killing.
When, as remarked in § 27, a space V, is of such a character
that there exist two systems of codrdinates, 2* and z‘, for which
the corresponding coefficients gy and gy of the fundamental forms
are the same functions of z* and Z* respectively and the equations
of transformation of the two sets of codrdinates involve ome or
more parameters, these equations may be interpreted as defining
a continuous motion of the space into itself. In § 27 it was shown
that any space of constant curvature admits a continuous group
of motions of n(n - 1)/2 parameters, and that spaces of constant

* Fubini, 1903, 3, p. 405.
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curvature are the only ones admitting a group with n(n--1)/2
parameters. Also it was pointed out that the method of Christoffel
(§ 10) could be used to determine whether a given space admits
a group of motions. In the remainder of this chapter we apply
the Lie theory to this problem.

We remark that if a V,, admits a group of motions, the fundamental
form (68.1) of V, must remain invariant for every infinitesimal
transformation of the group, which accordingly determines an in-
finitesimal motion of V, into itself.

From (68.4) and (68.5) it follows that the contravariant com-
ponents & of an infinitesimal motion must satisfy the equations

8 gii a5 85"
k 2 I o ——e 7 R
(70‘1) E 80.7" +9'1k Py +.q.’k 3t 07
which by (68.8) are equivalent to
(70.2) i+ &,:=0.

These equations of condition were first obtained by Killing* and are
known as the equations of Killing.

From (66.9) we have that the magnitude of the infinitesimal
displacement in a motion is given by

(70.3) (05)® = egy § 5/ (d0)%,

and consequently in order that there may be a non-null motion,
we must have
(70.4) g &8 0.

We shall show conversely that if equations (70.1) are consistent
and admit a solution satisfying (70.4), these §'s determine the in-
finitesimal generator of a group G, of motions of V.. To this end
we assume that the coordinates are chosen so that the &’s have
the values (66.11). Then equations (70.1) reduce to

9 gij ..
(10.5) 3%'% =0 Gj=1,---,n).

*1892, 1, p. 167.
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Hence the ¢'s are independent of 2 and consequently the fundamental
form is transformed into itself by the finite equations (66.12) of
the group. Hence:

When a space admits an infinitesimal motion, it admits the Sinite
continuous group Gy of motions generated by the infinitesimal motion.

Conversely, when (70.5) are satisfied, a solution of (70.1) is given
by (66.11). Therefore:

A necessary and sufficient condstion that a V. admits an infinites-
imal motion is that there exist a cosrdinate system in terms of
which all of the g’s do not involve ome of the covrdinates, say
x'; then the curves of parameter x' are the paths of the infinites-
imal motion and also of the finite motion.

From the foregoing considerations and those of § 68 it follows
that lengths are preserved in a motion and that geodesics go into
geodesics. We shall show directly that angles are preserved. The
angle between two directions defined by d,a¢ and dya* is given
by [ef. § 13.4)]

7 o j
cos & = 9y 42 dyx)

Ve gy dy @ 4, 2)) (es gra dpa* dy 2D
In consequence of (68.2) and (70.1) we have

L. /] k
gy duos dyal) = (5290 4 g, D8 4 ) O8N 4 iayaiat — o,
dz* ox/ ozt

and therefore dcose = 0. Hence:

When a V,, undergoes a motion into itself, lengths and angles are
preserved and geodesics go into geodesics.

By considerations similar to those at the beginning of § 69 for
Y = P == 0 we have:

Two motions of a Va cannot have the same paths.

We shall prove the following theorem:

If a space V, admits an intransitive group Gy of motions, and
« hypersurface Va—y is an invariant variety, the hypersurfaces geo-
desically parallel to it are invariant varieties.

Let the family of geodesically parallel hypersurfaces be the
spaces x' = const. and choose for the parameter z' the distance
from the given V,_; measured along the normal geodesics. Then

gun=e, g=20 G #1).
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Since 2' = 0 is an invariant variety, it follows from (66.9) that
Eq' = 0 for 2=0ande=1,...,r. From (70.1) fori=j;=1,
kg’
ox?
and the theorem is proved.

Suppose now that the minimum invariant varieties of a group G,
of motions are hypersurfaces. We take them as the hypersurfaces
x* = const. and choose the other cootrdinates so that (69.9)
hold. Then &' = 0. Equations (70.1) for { = j = 1 reduce to

,s.,."%%; 0(k=2,--.,n). Since the rank of M (66.20) is n—1,

g1 is a function of «' alone. Hence:
If the minimum invariant varieties of a G, of motions are
hypersurfaces, they are geodesically parallel.

we have

= 0 and consequently 5" = 0 for all values of z

Exercises

1. Determine the solution of equations (68.13) and (68.14) when the space
is flat and the codrdinates are cartesian.
2. Show that a V; with the fundamental form

¢ = & (@) + X, [es (d2)' + & ()],

where X, is an arbitrary function of «' alone, admits the intransitive group Gs
of motions of which the generators are

o 0 a0 208
e 38 o AT o

Bianchi, 1918, 4, p. 645.
3. Show that a V, with the fundamental form

¢ = e, (d0)' + X [es (d2)’ + €0 (d%)’ + €4 (d8)'],

where X; is an arbitrary function of x! alone, admits the intransitive group G.
of motions of which the generators are
0x?’ 0x®’ dux*’
[ 9 9 9 4
— 2,7 . — —— _ 2 _— 4
“”’az’ a® o “‘”‘ams ““’az" BTG TN

Fubini, 1904, 4, p. 64.

4. Show that a V. with the fandamental form
¢ = X [@=) + e [@a)’ + ' ([do*)') + (d)’,

where X, is an arbitrary function of x* alone, admits the intransitive group Gs
of motions of which the generators are
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9 9 d [ il g
3 3 T aw T —’a‘;f“’w”’—amﬁ
L 1
— 2% o 4 = [(&%)?— (xF)? — ¢~ +ataf -2 (% F =28
e 2[()()e] w’a,(“ﬂg

Fubini, 1904, 4, p. 64.
5. If § are the components of a motion and 4‘ the components of the unit
vector tangent to a non-minimal geodesic, then §, A° is constant along the geodesic.

71. Conditions of integrability of the equations of Killing.
Spaces of constant curvature. From equations (69.2) we have,
on putting ¥ = 0,

(7L.1) Eik = — Em B ijy

and from (69.3) we have as the conditions of integrability of these
equations

En (B™j,t — B™ 1) + Emyt B vij— Em,e By
+ Ei,m ijld + §m,j Rmikl = 0.

From these equations and (70.2) we have:
If Egii for 6 =1, ..., r are the components of infinitesimal motions
of a Vy, so also are a®Eqi, where the a’s are arbitrary constants.
We establish also the following theorem:
If Xof for ¢ = 1, ..., r are the generalors of infinitesimal
motions of & Va, 8o also are (Xq, Xp) f for 6,z =1,...,r(cF 7).
Consider the case where 6 = 1, = = 2. If & are the components
of (X]_, Xz)f; then

x 5
8 a*

(711.2)

Ekaglli_sksi kg i
— & e = S & k— 89 &k,

F o= &

from which by means of (70.2) we have
&= — & Eapes + B Eupie
In consequence of (71.1) we have
Sij = (— &) Bai+ 8" e d) + 5™ B (Rism — Romi)-

Because of (8.10) it follows that &; ;- &, = O which was to be
proved.
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From (71.1) it follows that the second and higher derivatives
of & are expressible linearly and homogeneously in terms of &; and
their first derivatives. Hence (§ 66):

The transformations of a group of motions are of order zero or
one at any point of V.

‘We observe that (70.2) are the conditions (§ 39) that the equations
of the geodesics of V, admit the linear first integral & da? = const.
Hence: ds

When a V, admits a group Gy of motions, the equations of the geo-
desics of Vy admit r linearly independent first integrals, and conversely.

We have seen that the second and higher derivatives of the &'s
are expressible linearly and homogeneously in terms of the &'s and
their first derivatives. These n(n -+ 1) quantities must satisfy the
n(n+1)/2 linearly independent conditions (70.2), and consequently
the general solution of (70.1) admits at most n(n--1)/2 arbitrary
constants. Hence the complete group of motions of a ¥y involves at
most #(n -+ 1)/2 parameters. In § 27 it was shown from other con-
siderations that a space of constant curvature admits a continuous
group of motions of n(n - 1)/2 parameters, and that this is a charac-
teristic property of such spaces. We shall establish this result from
the present point of view, and observe that the condition is that
equations (71.2) must be satisfied identically, when the conditions
(70.2) are imposed.

As a first consequence we have

(71.3) B™wji— R = 0,
and since the other terms of (71.2) can be written in the form
Emp (0F R™ij— R B™yj+ 8§ R — 6 R"m) = O,
on taking account of (70.2), we have the conditions
8 R™wj— O RPuij— Of B™uj+ 0% Brij+ Of R"oa— 0} Bl
— B B+ R =0 (p¥mk+))
Contracting for ! and p and making use of (8.11), we get

1 "
Ry = ‘n—_—l(é}"Rek—ﬂ?'Rjk),



72. Infinitesimal translations 239

which are equivalent to (40.21), the conditions that V, have con-
stant curvature. In view of the preceding theorem we have:

A group of motions of a Vu has at most n(n-1)/2 parameters,
and this number only in case V, has constant curvature.

A space of constant curvature is characterized by the property
that the equations of iis geodesics admit n(n-+1)/2 linearly in-
dependent linear first integrals.

72. Infinitesimal translations. In § 23 we saw that when
a V, admits a field of parallel vectors, the curves to which the
vectors are tangent form a normal geodesic congruence and that
any two V,—’s orthogonal to the congruence can be brought into
coincidence with one another by a motion in which each point
describes the same distance, that is, by a translation. We observe
that (23.15) satisfies the conditions of the second theorem of § 70
and that in this case
(72.1) gy 5§/ = const,,

which from (70.3) is seen to be a necessary and sufficient con-
dition that an infinitesimal motion be a translation.

If the coordinates are chosen so that the components of the
infinitesimal translation have the components (66.11), then (70.5)
must hold and from (72.1) it follows that g,, must be constant.
From this result and the second theorem of § 19 we have:*

The paths of a motion are geodesics, when, and only when, the
motion is a translation.

The spaces for which the tangents to the paths form a field of
parallel vectors are only a particular type of spaces admitting
translations. The following theorem gives a geometrical charac-
terization of the general case:

A necessary and sufficient condition that a field of umit vectors
be such that the vectors at points of any non-minimal geodesic whatever
make a constant angle with the geodesic is that the vectors be tangent
to the paths of a translation.

Let C be any geodesic along which the codrdinates are expressed
in terms of the arc. The cosine of the angle at each point of C

J
gx_. For this to be constant

between the vector & and C is §; s

we must have
* Bianchi, 1918, 4, p. 499.
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dxk dx/ da* dx/ dx’ ]
7?(-17{), = Tds ["5’ ds +Ef( ds)
dx) dx¥
= &k ds ds 0.

Since this condition must be satisfied for every C, we must have
(70.2), and since the vector is a unit vector, the theorem is proved.

73. Geometrical properties of the paths of a motion.
If & are the components of an infinitesimal motion, not a trans-

lation, and we put
(73.1) & = ¥ s,

where 2,;; are the components of the corresponding unit vector-
field, and associate with 4,; n —1 other unit vectors forming an
orthogonal ennuple with it, equations (70.2) become in consequence
of (30.2)

(73.2) % et em (Pntm~+ ¥nmd) Mg donjj— W, Anti— Y, 4n)j = 0.
Multiplying by l,,,i Ay’ for pyg =1,---,n—1 and summing for ¢
and j, we get
(73.3) Ynpgt+ ngp = 0 (pg=1---,n—1).
If (73.2) be multiplied by A,' and summed for i, we have
(73.4) D em Ymnn Amij+ en W5+ Wi Inf hnj = 0.

m
If we multiply (73.4) by 4.’ and sum for j, we get

(73.5) Wiy =0,
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and consequently (73.4) reduces to
(73.6) Y= — en%: em Yman bl j.

Conversely, when (73.3) and (73.6) are satisfied, so also are (73.2)
and (73.5). Hence (73.3) and (73.6) constitute a necessary and
sufficient condition that the congruence of curves 4,; be the paths
of a motion.

When p # ¢, equations (73.3) are the condition that the con-
gruences 4y for p =1, ..., n —1 be canonical with respect to i,
(Cf. §38). From (30.16) we have Ansm' = yumu (1§ 7). Hence
equations (73.3) for p = ¢ are necessary and sufficient conditions
that the curves of the congruences lq‘ for I ¥ n be geodesics, or
that their principal normals be orthogonal to the paths. Moreover,
from (30.14) and (78.6) we have A" ;s = en ¥, ;; consequently
the principal normals to C are normal to a family of surfaces
Y = const. Hence we have the following theorem of Ricei:*

In order that a congruence C of curves be the paths of a motion, not
a translation, it is necessary and sufficient that (1) any n— 1 mutually
orthogonal congruences orthogonal to C be canomical with respect
to C; (2) the curves of any congruence orthogonal to C be geodesics
or their principal normals be orthogonal to the curves of C at corre-
sponding points; (3) the principal normals to the curves of C form
a normal congruence.

From (73.6) and (35.9) we have:

When the paths of a motion, not a translation, form a normal
congruence, the hypersurfaces orthogomal to the paths are isothermic.

When the paths C are geodesics, and consequently the motion
is a translation, equations (73.6) are satisfied identically in con-
sequence of (30.15). Hence:

In order that a congruence of geodesics be the paths of a trans-
lation, it is necessary and sufficient that conditions (1) and (2) of
the above theorem be satisfied.

74. Spaces V, which admit a group of motions. We
consider first the case of a group of motions G, of a V,, take the
components in the form (66.11), and choose the curves of param-

* 1899, 1, p. 79; also Ricci and Levi-Civita, 1901, 1, pp. 173, 608.
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eter 2* orthogonal to the paths. Then g, = 0, and from (70.1)
we find that g, and gs; are independent of z', so that by a suitable
choice of %, we have

(14.1) ¢ = gn(daz"Y + e (A2,

that is, V; is applicable to a surface of revolution, if ¢ is definite.
In order to determine whether a V; can admit more than ome

motion, we consider the equations of Killing for the form (74.1).

They reduce to

aE 8! 2§ 8 g

B 0 g tegy =0 5 =0

.9 0
g —8'2‘; -+ 2,911

From the third of these equations, we have & = X, where X,
is a function of x' alone. Indicating by primes derivatives with
respect to the arguments, from the first two we have

9§
bt

dlogVign — OF _ & p

(14.2) e i ™

of which the condition of consistency is

o*logVgn, = X{

74.3 =
( ) gu 3 xﬂ € X1

:c,

where ¢ is a constant, since the first and second terms of this
equation are independent of z' and x® respectively. Equating to
zero the derivatives of the first term with respect to z*, we find

2 l/
from the resulting equation that 71;_— ia—;.g;—‘ = k, where k is
11

a constant. Then from (15.8) we have Rs,9 = gy k, that is, V;
is of constant curvature. For a given V; the constant ¢ in (74.3)
is determined, and the general solution of Xi’ = ce; Xi involves
two arbitrary constants. Another is introduced in the determination
of &' from (74.2). Hence the general group is a Gy, and since the
rank of M (66.20) is two, the group is tranmsitive. Thus we have
the theorem, well-known for the case where ¢ is definite:*

*1909, 1, pp. 328, 326; Bianchi, 1902, 1, p. 508.
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The fundamental form of amy surface admitting a continuous
deformation is reducible to (14.1), where gy, s independent of z.
and the group involves ome parameter, unless the surface is of
constant curvature; in the latter case the complete group is a Gs.

In order to determine whether ¥V, can admit a sub-group G, of
motions, we have that (66.16) must hold for «, 8, y = 1, 2.
There are two cases to consider, according as the constants of
composition are zero or not. In the former case we have

(74.4) (X1, Xs) JS=0,

called the Abelian case, and in the latter linear combinations with
constant coefficients of X; /' and X,/ can be made so that

(74-5) (Xn Xz)f = X, f.*

We choose the paths for the covrdinate lines, which is possible in
consequence of the fourth theorem of § 70. Then &% = &,* = 0.

For the case (74.4) we have that &' is a function of x* alone
and %% of 2? alone. Hence the cotrdinates can be chosen so
that &' = &2 = 1, that is,

(14.6) Xf=2 xp— 2

axt’ ox

From the equations of Killing (70.1) it follows that g; are con-
stants, and consequently V; is an S;.
For the case (74.5) we have

982 0 log &1
a;‘l = H g ” /E 2",

Hence the coordinates can be chosen so that &2 = 1, &' = ¢=",
From (70.1) we have

2 gy ) )
a?; =0 ailll =0 85;3 — 9w

and consequently

Dot — 2w

(147) gu = a, g1 = az’+b, g = a(@)P+2bz' 4,

* Bianchi, 1918, 4, p. 235.
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1

where a, b and ¢ are constants, The generators are

(14.8) Xf= ‘“’af,, Xf= af *

In this case the curvature of V; is a/(b*— ac)t.

75. Intransitive groups of motions. Since the group induced
by a G, upon a minimum variety is transitive (§ 67), the problem
of finding the groups of motions of a V5 is reduced to the problem
of transitive groups by means of the following theorem due to
Fubini:}

If a space Vo admits an intransitive group of motions Gy, which
is the complete§ group for Va or one of its sub-groups, the group in-
duced on amy minimum variety Va—x has v paramelers, and the JSinite
equations of Gy are reducible by a suitable choice of cobrdinates to
those of a tramsitive group on n—=Kk variables.

We recall from § 67 that the order n—k of the minimum
varieties is the rank of the matrix M (66.20), that there passes
one of these varieties Vy-x through every point, and that if the
induced group on any Vn— is not of order 7, there exists a sub-
group Gy of G, le(wmg this V»—r point-wise invariant, Let P, be
m'"“int of Vy, V3_, the minimum invariant variety through P,
and P be any point of V, not in Vo—x. Consider now the V,.-H.;
consisting of an infinity of invariant Va—'s including Va—r and
the one through P; this evidently is an mvzmant variety of Gy,
and in particular of the sub-group Go leaving Vo_x point-wise in-
variant. In Vyp—x+1 draw the geodesics of Vi-x+1 normal to
V. Any motion of G, induces a motion in V,—z4; which sends
geodesics into geodesics, preserves angles and distances ) 70)
In particular, any transformation G¢ holds the points of Vak
fixed and consequently all the points of the geodesics fixed, and
in particular P. Hence G, consists of the identity and thus the
first part of the theorem is proved.

In order to prove the second part, we consider a hypersurface

* Cf. Bianchi, 1918, 4, p. 510.

+Cf. 1909, 1, p. 155.

11908, 4, p. 40; also Bianchi, 1918, 4, p. 514.

§By the complete group we mean the group with the maximum number of
parameters which satisfies the conditions of the problem.
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Vo_, of V, consisting of invariant V,—x’s. It is an invariant variety
of G, and the induced group of Vs contains r parameters, by
the first part of the theorem. Consider V, referred to Va—; and
the hypersurfaces geodesically parallel to it (§ 19) as the spaces
x' = const., z' being the distance measured from V,_, along a
geodesic normal to it, in which case the latter is the hyper-
surface z' = 0. For each motion of G, each of the hypersurfaces
x! = const. moves into itself just as Vn— does. Suppose further
that the other coo¢rdinates a?, ..., " are chosen in any manner
whatever so that the normal geodesics are the curves 2® = const., ---,
™ = const. Since the geodesics are interchanged among them-
selves in a motion, it follows that the codrdinates z, ..., 2™ of
a point on one V,_; into which a point of codrdinates z2, ..., a®
goes are the same for any other V,—1, and consequently the finite
equations of any motion are of the form

m'l = xly x,j= Tj(wzy"';w”) (j=2"")n)-
Thus for the space Va1 we have shown that the finite equations
can be put in the form stated in the theorem. If 2>>1, we take
Va— in place of V, in the above process and reduce the equations
to those in n—2 variables and so on, which proves the theorem.
76. Spaces V; admitting a G, of motions. Complete
groups of motions of order n(n+1)/2—1. A group G, of
a V, is intransitive and from the fourth theorem of § 70 it follows
that the minimum invariant varieties are Vi’s. From § 75 we have
that the induced group on these varieties is a @3 and from § 74
that their curvature is constant. From the last theorem of § 70
it follows also that they are geodesically parallel, and that if they
be taken for the surfaces x® = const., then &5°=0 for 0 =1,2
and &' for i =1, 2 are independent of z®. We take for the
curves z' == const., 2® = const. the geodesics orthogonal to one
of the surfaces z® = const., at points of the paths, and write the
fundamental form
(76.1) g = ggddtdeite(da®)  G,j=1,2).

For this particular surface the infinitesimal transformations are
given by (74.6) and (74.8), and from the preceding observations
these are the generators for V;.

See
App. 28



246 VI. Groups of motions

In order that equations (70.1) be satisfied by the transformations
(74.6), it is necessary and sufficient that g; be functions of z*
alone, subject only to the condition gi; gea—g:s* 3 0. In order
that equations (70.1) be satisfied by the transformations (74.8), it
is necessary and sufficient that

(16.2) gy =&, g = ax'+B8, g = e(x)? 282"+ 7,

where «, 8, y are arbitrary functions of z® such that ey — 82 % 0.
In the former case the curvature of the surfaces x® = const. is
zero, and in the latter o/(8*—ay) (cf. § 74).*

By means of these results we shall show that a V; cannot admit
a complete group Gy of motions. The group cannot be intransitive,
otherwise a family of surfaces (the minimum varieties) would admit
a G5, which is impossible since 5>>(2-3)/2. Hence the group
must be transitive, and the sub-group of stability (§§ 66, 67) of
any point P, is of order 5—3 = 2. If there were such a G,
the points at a constant geodesic distance from P, would constitute
a minimum invariant variety, and thus we should have a family
of geodesically parallel invariant varieties. This is the case just
considered, and from the form of the transformations (74.6) and
(74.8) it follows that all the transformations of such a G, are of
order zero (§ 66), and consequently there cannot be an invariant
point.t

We are now in a position to prove the following theorem due
to Fubini.}

A Vy for n>2 cannol admit a complete group of motions of
order n(n+1)/2—1.

We prove this theorem by induction, assuming it to hold for
a Vo, If a V, admits a G, with r =n(n+1)/2 —1, it must
be transitive; otherwise by the theorem of § 75, a variety of order
n—1, or less, would admit a group of this order, which is im-
possible since a V,—, can admit at most a group of order n(n—1)/2.
If @, is transitive, there is a sub-group of order r, =7 —n
= n{n —1)/2—1 leaving a point P, fixed, which is a group of
" %Cf. Bianchi, 1918, 4, p. 542.

+Cf. Bianchi, 1918, 4, p. 540.
11903, 4, p. 54.
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motions of o ! V;1's, the loci of points at constant geodesic distance
from F,. But this is contrary to the assumption that the theorem
holds for a V,—;. Since we have shown that the theorem holds
for a Vs, the proof is complete.

77. Simply transitive groups as groups of motions. When
for a group G, in n variables the matrix 3£(66.20) is of rank %, the
group is called simply transitive. 'We shall prove the following
theorem due to Bianchi:*

Any simply transitive group in n variables is the group of motions
(complete or partial) of an infinity of spaces V.

Let &' for ¢,j=1,...,n be the components of the infinitesimal
transformations of the group, and demote by A; the cofactor of
&' in the determinant |&;‘| divided by this determinant; then

(17.1) 45 =&,  As' = .

In order that the group may be a group of motions it is
necessary and sufficient that the equations of Killing

aé Ak
" + grj 8.’2‘ =0

a 4.
(711.2) &k 29y 90—+

admlt a set of solutions g;; symmetric in ¢ and j. Multiplying
by A and summing for !, we have

8 ij h o
(11.3) a—‘qm"y’ = gin Tj’r-{-ghj r¥,
where
3 3511
(17.4) rh= -2 4

The conditions of integrability of (77.3) are

(11.5) ga B+ 91 Bin = 0,

* 1918, 4, p. 517. The method used in this section is different from that used
by Bianchi. The latter considers also (pp. 522-524) the case when the group
is not simply transitive.
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where

' 1
(116) B = r_ 2

Y + 7 Lot — I L.

It is our purpose to show that the B’s are zero and consequently
the system is completely integrable, and thus prove the theorem.
From (77.1) and (77.4) we have

n 0 A4L

(17.7) Iy =&"21.

Multiplying (77.4) by & and summing for r, and (77.7) by 4}, and
summing for 2, we get

A
(17.8) ___835;; = — & I
and

J R
(11.9) 2‘;{ — AfrTk,

Since the &s are components of a group, we have from (66.16)

3§ h P h
§l|k 3;‘}‘ —Emlk ai:k = Clmr §r|h-

Multiplying by A4} A7 and summing for ! and m, we have in con-
sequence of (77.1) and (77.4)

(71.10) rh—rk = —an’ & A} A7,

By means of (77.10) equations (77.6) can be written

eIy 8l p[ 0 1 h g4k 0 1 4h 4k
By = 7 + enié [Bm' (&pl” 45 At)-'a_xT(Erl 4; Ar)]

4 TP Toy— I Ty
Substituting from (77.4) in the first two terms of the right-hand

member and reducing the resulting expressions and the next two
terms by means of (77.8), (77.9) and (77.7), we obtain



Exercises 249
By = Din I — L T+ TP Tl — I T,
+ cn® [A} Ep™ (Tim AX— T A%+ 5,0 (4F A4 1
+ A} AR Tt — A7 A3, T — 4} 45 ).

By repeated application of (77.10) to the right-hand member of this
equation, we have, in consequence of the first of (66.17) and (77.1)

BY = on® car” Epf' (AF AT A2+ A5 AT AD+ A A% AD)
= (cav” m® + oka” cs” + cor” na®) Ept AF AT A2,

From the second of (66.17) it follows that the B's are zero and
hence the theorem is proved.

Exercises

1. When the paths of a motion form a normal congruence, the lines of
curvature of the orthogonal hypersurfaces are indeterminate.

2. A surface admits a translation, when, and only when, it is flat.

Bianchi, 1918, 4, p. 507.

3. If a V, admits a translation, the surface formed by an infinity of paths of
translation is flat. Bianchi, 1918, 4, p. 501.

4. When a V_ admits a system of codrdinates for which g . = const. for
¢=1,---,r and the other g's are independent of x% then the V,_ admits
a group G, of translations, the curves of parameters x¢ being the paths.

5. When the paths of a translation form a normal congruence, the orthogonal

hypersurfaces are totally geodesic. Struik, 1922, 8, p. 167.
6. If the rank of M (66.20) for an intransitive group G, of motions of a A
is m, then r < m(m 4 1)/2. Bianchi, 1918, 4, p. 515.

7. If a V, admits an intransitive group @, of motions, where r = n (n —1)/2,
the minimum invariant varieties are a family of geodesically parallel hypersurfaces
of constant curvature. Bianchi, 1918, 4, p. 544.

8. A group is said to be Abelian, when the constants of composition (§ 66)
are zero. Show that for an Abelian group G,, for » < n, the codrdinates can

be chosen so that Eq':: . Bianchi, 1918, 4, p. 260.
9. When a V, admits a simply transitive Abelian group of motions, it is an S,
and the group is that of translations. Bianchi, 1918, 4. p. 521.

10. When a V, admits an Abelian group @, (r<\n) of motions, the minimum
invariant varities are of order » and are flat spaces.
11. Show that equations (71.2) can be written

&Ry, =&, By —§,, By —E B, +E By,

App. 29
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and that, when they are multiplied by ¢** and summed for j aud k, the resulting
equations are
Q) "R,,=—4%, B —%&, B

12. If a space admits a motion and also an orthogonal emnuple 4,/ of Ricei
principal directions, when equations (1) of Ex. 11 are multiplied by 4,/ ).”‘ and
summed for ¢ and /, the resulting equations are reducible according as k = &k
or h 4k to the respective sets of equations (Cf. §§ 38, 34)

o
ox

(0, — oy [& 2 € Vap by F hai A 1 =0,

= 0,

where ¢, are Ricci principal invariants. Show that these invariants are invariant

under the transformations of the group generated by &.  Ricci, 1905, 1, p. 490.

13. When a space admits a transitive group of motions and an orthogonal

ennuple of Ricei principal directions, the Ricei principal invariants are constant.

Ricci, 1905, 1, p. 491.

14. If a space admitting a motion is referred to an orthogonal ennuple 4, the
invariants @, and b,j, defined by

g = »
28, a, 1I’ Sig Zere‘b" vt llj’

satisfy the equations
0a

ob,
83‘] = Xe(ar, gt T Ve Vo= Doy Vo
& r

in consequence of (71.1) to which they are equivalent. Moreover, equations (71.2)
are equivalent to

Z LI N SN Bl + ¥ — by Y = O
where

R A"A“L'L‘l"

Y =
e ‘past, u " |

Ricci, 1905, 1, p. 489.
15. Show that the invariants y,,,, of Ex. 14 are expressible in the form

0 Vuu

+ 2 e, pa Vgt Vit Vora + Vet 7y:k+7rklyl;nr)

Ricci, 1905, 1, p. 489.

16. If a space admits an orthogonal ennuple of Ricci principal directions and
the corresponding invariants r,,, are zero when more than two of the indices
are different, the space is called regular by Ricci. Show that when a regular
space admits a motion all of the invariants ,,, are invariant for the motion;

Yo =
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also that if the space admits a transitive group of motions, these invariants
are constant. Ricci, 1905, 1, p. 491.

17. Show that the functions I'* defined by (77.7), for two sets of codrdinates
satisfy equations of the form (8.1) in which the Christoffel symbols are replaced

by I"s; and that if ihr} are the Christoffel symbols formed with respect to the

fundamental form of the space, then I'* — l.h'_ are the components of a tensor.

18. If §,’ are the components of an orthogonal emnuple and A have the
significance of § 77, the functions I ¢ defined by

satisfy equations of the form (8.1) in two codrdinate systems; also

35,1' i 04; %
(¢Y) Bzt T4 Iy =o0, 5 — A4 T =0.

19. Equations (1) of Ex. 18 may be interpreted as the vanishing of the first
covariant derivatives of the vectors £,* and Ay for covariant differentiation de-
fined by replacing the Christoffel symbols by corresponding I"s. Show that the
covariant derivatives so defined are tensors. Eisenhart, 1925, 12, p. 248.



Appendix 1
Replace if v is a vector satisfying this condition by if »* is a vector
defined by aihgv =0fora =1,---,n — 1 and ps' = 0.
Appendix 2

The argument following “In fa.ct” is not valid, since one cannot form

the covariant derivative of E' Differentiating equation (17.9) with
respect to s and using (7.8) one obtains the second part of equation
(17.10). Accordingly the left-hand number of (17.11) must be inter-

preted as meaning the quantity in parenthesis in (17.10).

Appendix 3

In this note we derive the expression for the metric tensor gy in
the neighborhood of the origin O of normal coordinates z* in terms of
these coordinates and establish therefrom certain geometric results.

At O we have g;; = e;, where

e = €4 €ij = 0 (7’ #J);

e: being plus or minus one as the case may be. Since at O the first
derivatives of g;; are equal to zero by (18.10), we have to within terms
of the third and higher orders in the z's

1( 9%;;
gii = €5 + 2 (ax,, aﬁ) zhzk,

From the first of (18.9), (18.8), and (17.14) we have at O

[hJ, i+ 5 [Jk i+ —[hk i =0.

On replacing the Christoffel symbols by their expressions from (7.1),
these equations become

0°gin 9%gii o%ga l( L o%gix L ) -0
dxi 9z* ' 9z dx* = oxidxd 2 \oridxt  dridozh Az o’ ’

Adding to this equation the one obtained from it on interchanging ¢
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and j, we obtain

l( d%gin 9°g;x 3% azou) 2 0% O
2 \0x' dz* = dx*dx* Oz 9x* 9z’ Ix*

oz dx*  dxigxi
from which we have

3%g;n d*ga d%g;; 9%gn )
Agk : - 2 - ) =
x (ax' o T azio | ‘aprar  avaz) = °

From (8.9) we have at O

(Rast)o = 1( Fgu | gy _ gy _ a"o«-»)
0T 2 \ori 9z ' xh ozt 9z 0x*  9zh o °

from which and the preceding equations we obtain

3 a’g.-i )
Rai)ozhzt = > hph
(Raiie) 2 (6:0" azxk/, L

Hence we have
(1) gii = ei; + 33(Rain)oxhak.

From (1) we get in the neighborhood of O by (7.1), noting the identities
(8.10),

2 (i3, k] = Y4(Ran + Rja)ez.

Since at O g% = ¢¥, we have that to the same approximation
k ..

3) lijl = exf4, k.

Consider through Oa geodesic whose equations in normal coordinates
are (18.1)

4) zi = §s,

where £ is a unit vector, and on it a point M for which s = a. At M
take the geodesic whose tangent at M is the unit vector \‘ obtained by
parallel displacement along OM of a given unit vector of at 0. To
within terms of higher order in s A* are of the form

A = af 4 b's + L4cis?

In order to evaluate the constants b’ and ¢!, we substitute these expres-
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sions for \' in equations (21.1) written

n [z} o,
ds i) ds

and obtain, using (3),
; 1 i .
bi + ¢'s + (a‘ + b's + 3 czsz);; (Run + Rin)ot s = 0.

From this result we have, noting that Ry is skew-symmetric in the
last two indices,

=0, ¢l = — ;—;ia’(Rmh)oE”f'" = gj (Riimr)oEi Erat.
Hence we have
5) N o= af + YgeRjim)oE Erala’.

At M we draw the geodesic tangent to the vector of components
M and denote by P the point at the distance b from M. The normal
coordinates y* of P are solutions of the equations (17.8), namely

dYy i | dy’ dy*
© L A
which for s = 0 are £ia, the normal coordinates of M.
Since at M the quantities ‘% have the values A}, one has to within
terms of higher order
™ y' = Fa + Nis + Jad's?,

where d* is to be determined.
From (2) and (3) we have to within terms of higher order

(8) {;k, = Lgei(Rjixn + Riip)okts.

When the expressions (7) and (8) are substituted in equation (6)
we find that

di = —34ei(Rjn) 08NN = Zgei( Rimn)oakNNE.
Hence to within terms of the fourth degree in a and b we have

(9) v = Fa + blo* + Yéed Rim)otira’a?] + 14b%;(Rijun) ool a* Era.
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If byt is equal to Y, ey’ — ¥a)? to within terms of the sixth degree
in a and b, we have '
bo? = b1 + J4(Rsm)ofa'frata’].
From (25.9) we have
(Bjm)oFa’tral = KB?,

where K is the curvature at O for the orientation determined by the
unit vectors £ and o', and

(10) B? = (gpga — giga)Eiaitral.

Hence
be? = b%(1 4+ Y4KB%?),

from which we have to the same approximation
(11) b? = b*(1 — Y4KB%?).

At the point O draw the geodesic tangent to the vector «f and denote
by Q the point on the geodesic at the distance b from O. Its normal
coordinates z* are given by

2t = a'h.

Denote by a’ the length of the geodesic joining Q and P. The small
figure OMPQ has been called a parallelogramoid by Levi-Civita, who
derived the interesting result now to be obtained.

Since a¢ is equal to 2 e;(y' — 2%)%, to within terms of the sixth order

in a and b we have frox‘n )
a = a1 — 34(Rym)obiaifta®b?] = a2(1 — 34K B®?).
Analogously to (11) we have
a’? = a(1 — 14KB%?)
Substituting in this equation the above expression for ag, we obtain
(12) ' a’t = a* — a??B2K.

When the fundamental form of V, is positive definite B? as defined
by (10) is sin? ¢ where ¢ is the angle between the unit vectors §
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and of (see Ex. 3, p. 47). In this case we have from (12) the equation
of Levi-Civita.*
a® — a'?
A?

=K

where A = ab sin ¢ is the area of the parallelogramoid.

Appendix 4

The argument following equation (20.1) is not valid in view of the
statement in Appendix 2. By means of equations (7.14) one obtains.

dri , i ] dzi dx* (d%”‘ { N dz'= dx’ ') dzt

ds? ik ds ds ~ \ds? vl ds ds / ox'V
. art . .
from which follows pi = u pyre Consequently ' is a contravariant
vector.
Appendix 5

Equating to zero the derivative with respect to s of the expression

_dxi )
gi;M — we have in consequence of (7.4)

ds
e oo A\' | dr' dx* ,dizt
[)\ ([k, 31 + [3k. <]) + g5 ax"] ds ds T 9N g = 0,
which by means of (17.8), (7.3), and (11.2) is reducible to
dzi . dz*
35 T — = 0
% s M+ s

Since A are components of a unit vector we have gi\'N = e, from
which by differentiating with respect to s we have in consequence of
(7.4)
. dx*
9NNy - = 0.
. dzk,
From these two equations we have that the quantity N I is either

a zero vector or a vector orthogonal to both the geodesic C and to the
vector X\ at each point of C. The latter isimpossible. Hence we have
(21.1).

* 1917, 1 pp. 198-201; also Cartan, 1946, 4, pp. 245-248.



Appendices 257

Appendix 6
Equations (21.1) written in the form

dx ) } dr*

- [ = =
ds+)‘l”° ds 0

admit a solution Ai(s) determined by an arbitrary direction at a point of
C. Note: when equation (21.1) is referred to later on this page it is to
the equation in the above form.

Appendix %7

Because of (23.7) the conditions of integrability of (23.8) are satisfied
identically. Hence these equations are completely integrable, and
consequently the solution involves p arbitrary constants. See Eisen-
hart, 1933, 1, pp. 1, 2 or 1940, pp. 114, 115,

Appendix 8

Denoting by X;; and A;} the components in z* and z’* of any p inde-
pendent fields of vectors not limited to sets of solutions of (23.1) we
have (23.9).

Appendix 9

This note replaces the material on page 70 beginning with “If it etc.”
on line 17, all of page 71, and page 72 to § 24, and deals with the
canonical forms of the metric tensor of a V', which admits r independent
fields of parallel vectors, the components \‘ of each field being a solu-
tion of equation (23.1), that is

i _ON D) _
) =gt [kj} =
Let A}, be the components of r such ﬁeldg, where a(=1,---, r)
indicates the field and (= 1, - - -, n) the components. If we put
2) gii)\iﬂ\'ﬁ = Ca (a,b=1,---,7)

and differentiate with respect to z*, and note that the covariant deriva-
tives of g;; are zero, we find that the ¢’s are constants. When the
metric differential form is indefinite there is the possibility that some of
the parallel fields are null vector fields, that is some of the c,, are zero.
From the form of equations (1) it is seen that any linear combination
of the N's with real constant coefficients are the components of a
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parallel field. By means of such transformations it is possible to
transform the matrix ||c.s|| when its rank is p(< r) into one for which
we have

- - a=1-,piu=p+1r
3) Caa=¢€ Cu=0 ca=0 (a,b=l,~~-,r;a;£b )
where the e¢’s are +1 or —1 as the case may be. Thus in the new
vector fields N are unit vectors, A}, null vectors. and any two fields
are mutually orthogonal.

In the first paragraph on page 70 it was shown that a coordinate
system exists for which the components of each field are zero except
the component with the same subscript and superscript. In what
follows it is understood that this is the coordinate system z‘, and we
have at once from (2) and (3) that

(4) Gap = Gou = Gu» = 0

(g,B=1,""",paBprv=p+1- -,
We consider first the unit vectors Nyy(a = 1,---, p). We have
(5) Mo® = (Cafaa) ™ At =0 (h=1,", njh*a).

When these expressions are substituted in equation (1) we obtain

14 al| .
(6) 2 22 log gaa {aj’ =0 (e not summed)

h .
Iaj, =0 (hyj=1,"--,n;h # a).
If we multiply the first of these equations by g.. and subtract from it
the second multiplied by gix and summed for k, we obtain

30 _ x| e _ (;‘=1""’P;).

P
7 ¢’——.1 aax T : .
@ Gk 57 108 Jou ™ Gra T 0wl ' O2* L k=1,--,n

For k = a this equation is satisfied identically. Fork=8=1,--",
p(8 # a) we have in consequence of (4)

®) 9is _ 99si _
dze  o9xf

* Throughout this note the summation convention does not apply to indices
a and 8.
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From this equation for j = «, or j = 8, we have

e _ s _ =1 - p
ax’~0’ 6:1:“—0 (ayﬁ_lx yp;a?éﬁ)

)

In consequence of this result, (8), and (4), and equation (7) withj = g8
we obtain

aa'
=0 (@Bf=1- ", plaEBio=p+1 -, m)

(10) 32

When now we put j = @, £ = ¢ in (7), the resulting equation may be
written

i) a
(11) rlya'(eﬂgau)—%] = €q — (eagaa)% e=p+1,---,n).
T ox°
If we put
Wa
¥ _ Wa
(12) (eagaa) oz’
where in accordance with (9) ¥, is a function of z=, z#+! --- z» at
most, we obtain from (11)
We (aw.. )
13 ae = €a T\ as
(13) g €a 3ra\age T =)

where in accordance with (10) ¢, is a function of z?+, - - - | z* at most.
If in (7) we put j =0, h =1 foro, 7r=p+1,---, n and sub-
stitute from (12) and (13), we obtain

3Ger (aw. ) Wa 3V ) 3
14 €a =\ . . oer
1) e o =\ozr T %) gm0z T \ozr ) 522 0
Wa (3%. 6%,)
+ dz> \ 9x7 ox°

Since g,, is symmetric in its indices, we must have

a ar a ag

e _ Bpus _

ax° i ad

from which it follows that
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where ¢, is a function of z?+1, - - -  z” at most. Hence ¢, may be incor-
porated in ¢, in (12) and (13) so that we have
Wa OWa

15 ae = €a T .

1s) g ¢ oz* dz°
Then from (14) we have

Wa Wa

1 or = « o or

(16) G = 2 0a 3re 5 + O
where ¢,, does not involve z, - - -, z”.

From (12), (15), and (16) it follows that the fundamental quadratic
form of V, is

2 ea(d‘kx)’ + Por dxe dz”.

If now we effect the non-singular transformation
xl¢= ay z'o = z° (a=1:”';p§‘7=1’+1y"';")
in the new coordinate system the fundamental form is

(A7) Y ea(dz?)? + g dardr’, (a=1,--,p;o,r=p+1 -, n)

where g,, are independent of z!,---, z?. Also in this coordinate
system the components (5) of the parallel unit vector fields are given
by

(18) ol = 0% (@=1-,p).

It remains to be shown that for these values and the form (17) equa-
tions (1) are satisfied. In fact. the conditions are

) IR *(a_q_k 0_9:»_?@)=
{“Jl g*led, ¥l 29" \oze + ' oxF 0

Sincea =1, - -, p, when j and k have values 1, - - -, p the expression
in parenthesis is zero; the same is true when either takes these values
and the other p + 1, - - -, n; also since g.. does not involve z'. - - -, z?,
the quantity in parenthesis vanishes when both j and k take the values
p+1,-,n

If then the rank of the matrix ||ca| is 7, we have the theorem:

When a V, admits r fields of parallel vectors, none of which is a null
vector-field orthogonal to all the other fields, each field is expressible linearly
and homogeneously with constant coefficients in terms of r mutually
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orthogonal unit vector-fields; a coordinate system exists in terms of which
the components of these unit vectors are given by (18) and the fundamental
form of V. is given by (17) with p = r.

When the fundamental form of V., is definite, there being no possi-
bility of null vectors, the above theorem gives the canonical form of
the metric tensor of a V, admitting p independent parallel vector
fields. When however the fundamental form is indefinite there is the
possibility of p independent unit vector-fields and r — p null fields,
each field being orthogonal to the other fields of both sets. In this
case in addition to the unit vectors of components (18) we have also
the null vectors of components

x:I = Qu x:.tl =0 (i # F)v

foru =p + 1, -, r where ¢, is to be determined. For these vectors
we obtain from equations (1) in a manner similar to that which led to
equation (7) the equations

dlog o, | 3w  Ogn _ 39w (u =p+1,--, r,>
19) 2g, o2 4 Dk 0w X .
(19) ok i + dxri  dr*  oxk 0 hyk=1"--,n
From (17) we have g., = 0 for ¢ > p and that g,, for o, 7 > p are
independent of z!'---, z7. In consequence of (4) and the above we
have from (19) forj = a(=1,---,p)andk =p(=7r+1, -+, n)
dlog ¢ ‘
”p____g_“=0 (a=1,---,p).
az=

Since the determinant of g;; is not zero all of the functions g,, are not
equal to zero. Consequently the functions ¢, do not involve z,

.-, ZP
Since g,, =0 for u, v =p 4+ 1, -+, r equation (19) for k = 4,
J = p reduces to
9w _ Oue _ (u,v=p+1,---,r)
@0 az* 6x'_0 p=r+1,--+n J

In consequence of these equations, equations (19) for j = ». k = p
reduce to

9
(21) EL'-' Jupu = 0.

If from equation (19) for j =p, k =r for p,7=r+1,---, n one
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subtracts the equation for j = 7, k = p, one obtains

3 -9
Fy Puur = py Pufpo-

Accordingly we put

a6,
22 =—.
(22) Pulur Fy
In view of equation (21) and the fact that ¢, and g,, do not involve
x1, - -+, x* we have that 6, are functions of z+!,---, z* at most.
Since the determinant of g;; is different from zero, the functions 6, must

be independent, that is the rank of the jacobian matrix

a0
—"“ must be
dxr

r — p. Consequently r —p<n<p-—(r—p), that is r—1p
< ¥(n — p). Consequentlyr —p <n—r.
From (20) and (22) we have

) (l)ae,__i(l a0,
oz’ \g,/ ox* T 9w @,/ oxr
Since these equations must hold for p = 7 + 1, - - -, n and the s are

independent, we have that ¢, is a function of z#, z+!, - - -, z at most.
If then we effect the non-singular transformation

dx»

: e = gr (p=1'+1,'~',n),
Pu

x'e = g9 x'e =

the components of the null vectors are

i s
ul—‘s#

. . a6,
In this coordinate system ¢, = 1 and g,, = a—: Then from (19) we
z

have that g, are at most functions of !, - - -, z». In this coordinate
system we have in the fundamental form the terms Eg,,,, dx+ dze,

m
which from (22) with ¢, =1 is zdx“ d6,. Since the rank of the

[/ I .
#ll is r — p, there is no loss in generality in assuming that the

oxr

matrix

. . a9 . .
jacobian ‘é;: for o =r+1,--+, 2r — p is different from zero.
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Accordingly if we make the non-singular transformation

_— h=1-,rn2r—p+1--,n
x"—x‘ o l‘=0“ ( ) y 7y ’ ;)
! #=P+1:"’,7' !

the fundamental form of V, is (dropping primes)
(23) 2 ea(da®)? + 2 3 dzrte darte + g, dar do”

a = 1,"':p3¢=1,"'7""‘p)
(P,T=r+17'”)n
It can be shown as in the preceding case that for a V, with this funda-
mental form equations (1) are satisfied by \i; = &.. Hence we have
the theorem:
When a V. admits r independent fields of parallel vectors such that
p of the fields are erpressible linearly and with constant coefficients in
terms of p mutually orthogonal unit fields, and r — p fields consist of null
veclors, each field being orthogonal to the other r — 1 fields, there exists
a coordinate system in lerms of which the fundamental metric form is
given by (23), where g,. are functions of z™+', - - -, z* at most, and the
components of the vector fields are 85 for 8 =1, -+, r.

Appendix 10

The Greek letters take the values 1 - -, n, the Latin 1, - - -, p(< n),
the upper index indicating the column, the lower the row.

Appendix 11

€p€p+1

In (32.15) and (32.17) replace 1 by Replace right-hand
p

» Pr

member of (32.16) by e, ( Mooy’ + Ay ) In the equation preced-
Pp—1 Pp

ing (32.18) replace ~ by 2, da! dx’
p

» Pp

Appendix 12

Put ¢;;YiY} = by where the Y'’s are solutions of (37.9) determined
by initial values such that (37.10) and (37.11) are satisfied. From
(37.9) it follows that the first derivatives of b are linear and homo-
geneous in the b’s and these derivatives are equal to zero for the initial
values. The same holds true for all higher derivatives of the b’s, and
consequently (37.10) and (37.11) hold for all values of the x’s.
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Appendix 13
Separable Systems of Stickel. A necessary and sufficient condition that
as; ‘—if ‘E-, = const
“ds ds :

be a quadratic first integral of the equation of geodesics of a Rieman-
nian V, is, as derived in § 39,

1 @ik + Qi + e = 0,

where a comma followed by an index indicates covariant differentia-
tion; there is no less in assuming that a;; is symmetric in the indices.
If p; are the roots of the determinant equation

(2) la:; — pgil =0,
the equations
3) (a:; — pagi)Msy = O,

as shown in § 33, determine an orthogonal ennuple of contravariant
vectors of components \j, where h indicates the vector and ¢ the
component. Ordinarily the vector-fields so defined are not normal
in the sense that a vector-field admits a family of hypersurfaces
orthogonal to the vectors.

We assume that a,; is such that these vector-fields are normal and
that the hypersurfaces orthogonal to them are taken as parametric;
and we write the fundamental form thus

@ ds* = euHi(dz)? + -+ + eHA(dan),

where the ¢’s are plus or minus one as the case may be. In this case
N = 0 for i  h and a;; = O for ¢ » j. Making use of (15.7) we find
that equations (1) forj = k = 1andj = 1, k = j respectively reduce to

alog\/;;_ dlog H;

b

oz’ ax?
(5) ,
aa;; 3 log H? 1 8H;
- — 2ay — i =0,
oz oz %i H? agi 0

and equations (1) for ¢, j, k different are satisfied identically. From
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the first set of (5) we have
(6) ai = p:H;,

where p;, thus defined, is independent of zi. The second set of (5)
reduce to

9 pi — pi
)] pyr log i =0,
from which it follows that (p; — p;)/H? is independent of z7. Writing
these results in the form

@®) %0 (o= 1)

a lOg H? (?p,‘
ax’ J

oz’ o o

and expressing the condition of integrability of this system of equations,
we obtain

d%log H? o log H? 9 log H?
(,,,._,,,.)( B 2% g ’)=0

ozt 9z’ oz’ az’
and
(os — )(a’logH? alogH?alogH?_|_¢')logH,?alog1'Ii2
Pi ™ P\ agi 0zt azi azk ari ozt
+ alogH:alogH:> _
oz* oz’

In order that (8) may admit a solution with all the p's different
we must have

0% log H} | olog H;dlog Hf

9 —— -
® az‘ 3! dxi az' 0,
(10) a*log H; 3 log H} 3 log H} n 3 log H? 3 log H}
0z dx* dax’ dz* oz’ ok
dlog H}dlog Hy
+ az* ari 0.

Since these equations are consistent, it follows that when they are
satisfied equations (8) are completely integrable. One solution is
pi = p; = @, a constant. We denote by pf (fora =2,---,n)n — 1
other solutions such that the determinant of the » solutions is not zero.
This may be indicated in the determinant form

(3] |p:" - P?l = 0,
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where 7 is fixed, and @ = 2, -+, n;5 =1, -+, n;j # ¢. In this case
the equations of the geodesics admit n — 1 quadratic first integrals
whose coefficients are

(12) u = lez a’z’ =0.

It is our purpose to show that the preceding conditions determine
the Stickel form of the metric tensor of V, as given in § 39 but not
there derived. 'To this end we denote by ¢;; n? functions such that their
determinant ¢ is not zero, and we denote by ¢" the cofactor of ¢;;
in ¢. We put

@ «_ ¥
(13) H? =" P = D
@ ¢
and understand that the ¢’s are such that p{ are independent of z*.
Also we put

pf — pf _ ¢ll¢ie — oilpie
H‘? ot

and have from (7) that b3 are independent of 2.  We have that

(14) by =

oo — e’ = oM itias
where M, is the algebraic complement of ¢jgi — ¢ugia in the
determinant ¢*. Consequently we have
(15) ¢% =M (G,J=1,"",na=2-",n).
From the definition of M, we have

ple = 2 eiM jtia,
o)
and consequently
o .
- = (oilb;‘-
o't igﬁ !
Differentiating with respect to z/, we have
9¢i1 .
0= — b =2 ---,n;j=1"---,n).
.(#Ej) ax’ (a ) b ’ J ’ s )
For a given j the determinant of bf; is not zero, in consequence of (11)
and (14). Hence a function ¢ is a function of x* at most.

* Cf. Kowalewski, Einfithrung in die Determinantentheorie, p. 80.
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From (14) we have
(16) o5 = —o'bs.
In consequence of this result and (15) we have

Mius b{?j_bﬁ_ _ (/3:3’...’”)
(17) Mili2 = b.?;' = b:?i = 0Oijg = 0jig i J
Since the second term is independent of z7 and the third of z*, it follows

that o, as defined in (17), is independent of z* and z/. From the
identities

2,---,n

2 ¢kaMiliu =0 (i: jr k #)y

we have with the aid of (17)

3, ceeLn
(18) ere + 2 ergoiip = 0.
8
Differentiating with respect to z*, we have
a¢“ 3'“""3(01‘,9
19 - — i = 0.
(19) or + 26: azi 7iig

For a given ¢ and k, there are n — 2 equations (18) satisfied by the
n — 1 quantities oks, - - -, gxa; and these same equations are satisfied
by the derivatives of these quantities with respect to z*, hence we have

afpka — ..
ax‘. = MikPkay

9 (ex
)0
0T \@ry

for v  a. Such equations hold for ¢ = 1, -+, n; i = k. Hence we
have

(20) Pia = € "wt'a’

where ¢, are functions of z* at most and »; are to be determined.
From (15) we have

or

b?lMu.',, = b:anj,. (‘l,] = 2, Tty n).
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Substituting from (20) we obtain
G'ib;Nu = enb{ Ny,
where N\, is independent of z! and z*. Differentiating with respect to
z!, we have
9
ax!

Again from (15) and (16) we have

("i—"i)=0 (i,j=2,--~,n).

o a,B=2""’n;a¢ﬁ
bjaMalBﬂ+bg¢Milaa=0 ( j= 1,"',”;].?5(1).

Substituting from (20) we obtain
e'ib;:,Nag + e'ﬁbsaNaj = 0.

Differentiating with respect to z=, we have

a
a‘; (V,' - l'g) = 0.
Combining these results, we have
ad Vi — V‘) . s . .
(—a—x,,~’=0 G k=1,-",n;3,j, k #)
From the preceding equations we have
(21 vi—vi=f5, w—w=fa, vi—n=fm

where f;; is at most a function of ' and 2. From these equations we
have

Ji —fa+fin=0.
Differentiating with respect to z, we obtain

YA T AN

Since the first term does not involve z* and the second z7, we have
fi =0 — gy, foo = 0i — o,

where o; is as function of z' alone. Hence equations (21) may be
replaced by

v.~=v+a;,
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where » is undetermined, and (20) becomes
Pia =€0x (i=1,-" ,n;a=2--- n),

where 6., are functions of z* alone. Since we have shown that piis a
function of z' alone, it follows that when the above expressions are
substituted in (13) the factor ¢’ disappears, and consequently the
general solution of the problem is obtained when each function eij 18
a function of z* alone, which is the Stickel form. Hence we have:

A necessary and sufficient condition that the metric tensor of V. can
be given the Stdckel form is that the equations of geodesics admit n — 1
independent quadratic first integrals, that the roots of the characteristic
equations (2) for each of these integrals be simple, that (11) hold, and
that the vector-fields determined by (3) be normal and be the same vector-
fields for all the first integrals.

Also we have:

A necessary and sufficient condition that the fundamental form (4) be
in the Stdckel form is that equations (9) and (10) be satisfied.

From (9) we have

2 2
22) ] H;

az’ dx’ log Hp =0

from which it follows that
H = %05,  H = ;70
where ¢;; is independent of z/ and y;; of z. Substituting these expres-
sions in (9) we find that 6,; is such that
(23) He = i(ri +7i0),  HP = Yi(ri + 130,
where 7;; is independent of z/ and 7;; of .

Stéckel systems in a flat space
For a flat space we have R = 0, where Ry is given by (37.4).
In consequence of (10) this condition is
d*log H?

24
24) or dz*

’

from which and (10) we have
dlogH2alog H? dlog H?alog Hp? _Olog Hdlog Hy?* 0
xi - J P

dx* oz’ ox* ox* o’

(25)
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Substituting the expressions (23) for H:* and H;* in (24) and the
equation resulting from (24) when 7 and j are interchanged we obtain
respectively
975

ort

a1y

; = (14 + 755)8:4(x}, @)
ax’

(26) = (ri + 1) 052}, @),
In order to determine the functions 8; and 6;, we differentiate these
equations with respect to z‘ and z’ respectively, in which case the
left-hand numbers are zero, and reduce the results by means of (26);
we obtain

a0;; a0.;

3_5;‘ + 0,'.'0.',' = 0, 'a:‘: + 0,‘.‘0,‘,- =0.

Since the two partial derivatives are equal we put
_dloga _dloga
T e 0 T e
and on substitution find that @ = a; + a; where a; and «; are at
most functions of z* and 27 respectively. Then from (26) we have
i + i = (i + o),

where w;; is independent of z* and z. In consequence of this result
we have from (23)

@) He=X [ Gs+o0), H? =X [[ (i +oa),
=9 i)
H? = X, ]:[ (oxi + o)

(k)

where X; X; X, are functions of z‘, 2/, z* respectively, and o;; is
a function of z* at most, and similarly each ¢ is a function of z* at
most where h is the first subscript of . These expressions satisfy (24).

The functions o; must be such that equations (25) be satisfied,
and also Rj;; = 0, as given by (37.4). For euclidean 3-space the
results are the following other than the Cartesian case.*

L H1=Hz=1, H.g=xl,
the cartesian coordinates z, y, z being related to the cylindrical polar

'
* For proof see Eisenhart, 1934, 3.
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coordinates z* by the equations
z = z! cos z3,

y = x!sin 23, 2 =z2%

II. H1 = 1, H’ = x‘, Ha = z! gin $,,
where z¢ are polar coordinates, and
z = z! sin z2 cos z3, y = z! s8in z? sin z3, z = z' cos z2.
II1. Hs =1, H,* = Hy® = a?(sinh? 22 + sin? 23),
where a is an arbitrary constant, and z* are elliptic cylinder coordinates,
and
z =z y = a cosh z2 cos z3, z = a sinh z? sin z3.
IV. H:? =1, H,2 = Hg? = (z2)2 + (2%)?,
where z* are parabolic cylinder coordinates, and

y = }%((h)? — (=%)h),
2 = Hy? = (2V)%k? cn? (z%k) + k'2 en? (z3,k')],

z = x%3.

— 1
z =z,

V. H?=1,
where z* are sphere-conical coordinates,

z = z'dn (2%k) sn (z3,k), y = z' sn (z%,k) dn (z3,k),
z = z' cn (2%,k) en (z3,k')

and the constants ¥ and %’ entering in the elliptic functions are in

the relation k2 + k" = 1.
VI le = H82 - ($1)2 + (xa)z’ sz = (z2xl)2,
where z¢ are parabolic coordinates, and
y = z'z? sin 22,

z = 15((x")? — (z%)?).

T = z'z® cos z2,

VII. H,® = Hs* = a*(sinh? z! + sin? z3),
H,? = a? sinh? 2! sin? z3,

where a is an arbitrary constant, z* are prolate spherical coordinates,

and
z = a sinh z! sin z3 cos z?, y = a sinh 2! sin 23 sin z?,
z = a cosh z* cos 3.
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VIII. H,? = H;* = a*(cosh? 2! — sin? z?),
H;? = a? cosh? z! sin? 73,
where z* are oblate spheroidal coordinates, and

z = a cosh z! sin z3? cos z?% y = a cosh z! sin 23 sin 2,
2z = a sinh z! cos z?.
zt — zf)(zt — z*
IX. H? = L_)—(:Fx_),
f@)
f@) = 4(a — 2)(B — ) (v — ),
where & > 2! > 8 > z? > v > z%; the z' are confocal elliptic coordi-
nates, and

Il (@ — =9 16— =)

g - s s _
e VTE-aG- |
I —2)
22 = __"_________
(y —a)(v — 8)
X. H= E-M @) = 4(a — 29(8 — =),
J(=%) \
where z! > a > 22 > 8 > z*; the z* are confocal parabolic coordi-
nates, and
$l+$2+$3—a—ﬁ \ l:[(ls—.’ti) , l:[(a—x)
r = , yr= - PR S
2 a—f B—a

In each case the coordinate surfaces r* = const. are quadric surfaces
including the cases when one or more families of surfaces consist of
planes. Hence:

A necessary and sufficient condition that a triply orthogonal system
of surfaces in euclidean 3-space be a Stickel coordinate system 1is that
they be any system of confocal quadrics including the cases when one or
more families of the system consists of planes.

Appendix 14
In four places replace {7 by &n4a
Appendix 15

Replace the quantity in parenthesis in (43.8) by Eﬁy{‘,-, where .,
denotes the covariant derivative of £ with respect to the metric
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tensor a.s of Vayi. Do the same for the next two equations on this
page, and replace (43.10) by

(43.10) By = — Qg™ o

Appendix 16

The argument is open to the same objection as applies to equation
(17.11) in Appendix 2. Differentiating the preceding equation one has
By _wdede &
ds' ~ Gzids ds ' Ui dst
By means of
i _ a4 alk
agi ~ Yui TR U

and (43.4) one obtains equation (44.1).

Appendix 17
Replace (47.6) and (47.7) by
(47~6) auﬁy:y:risfl;v = = Qo55,
47.7) CopErY T80y = Mt

where £, is the covariant derivative of £} with respect to the
metric tensor a.s of V..

Replace what follows equation (47.8) down to and including (47.9)
by the following: Since Sf,,,y"’i are the components of a vector in
Vm, we put

Egl;‘vyz’ = Aijﬁ; + B:iffl-

Multiplying by a.s%, summing for 8, and making use of (47.2) and
(47.6), as written above, we obtain Alga = — Qg5 Again mul-
tiplying this equation by @.sé7), summing for 8, and making use of
(47.1), (47.2), and the above (47.7), we obtain e,B; = piro. Hence
in place of equation (47.9) we have

(47.9) B} = — Qg™ + 3, eoteaiid.

Appendix 18
If the associate direction of the normal vector £,# in the direction
£ on V., is to coincide with the direction, the right-hand member of
equation (50.1) must equal p£xf, that is phxiy®. This condition is
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[—(Qam\g"‘ + P's,"c)?/.ﬂlc + 2 erﬁ"nli&lﬁl)‘il =0.

From (47.7) in Appendix 17 we have
apbr EolyErY = MeaM.

If then E£f.,tx7 = pkwf, we have u A} =0, and the above condi-
tion reduces to
(Qepig™ + 8N, = 0,

since the vectors y# are independent. In turn this equation is equal to
(Qojis + pgii)Ny = 0.

Hence in place of the theorem as stated we have:
If the associate direction of a normal to V., in a Va for a curve n Va
is tangent to the curve, the latter is a line of curvature for the given normal.

Appendix 19
If (54.1) is satisfied it follows from (43.10) in Appendix 15 that
(54.3) gy’ = 0.

Add to the theorem the clause: with respect to a displacement in the
hypersurface.
Appendix 20

The results of § 56 for the case where the fundamental form of Vs« is
positive definite have been obtained by Vranceano using a different
method.* In this note his method is applied to a V. for which the
fundamental form is positive definite or indefinite with the under-
standing that the matrix of gi; is of rank =.

Using the notation of §§ 55, 56 we put

M) =)+ e (: ISP p)’

where 73 are the components of p mutually orthogonal unit vectors
normal to V., so that we have

dz~
@) iz =0, S cand)? =€, 2, carepna =0 (@ # 7).
(-3 [- 3 a

If the quantities z* are considered as p new variables, equations (1)
may be considered to be a transformation of coordinates in Sn4p, which

* 1930, 8.
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is non-singular in the neighborhood of V., since along V.(z* = 0)
the jacobian of the transformation is the determinant of the

.. 0 . . . .
quantities a—f—z and 77| ; this cannot be zero, since there is no linear
x

relation between these quantities.
From (1), (55.1), (55.3), and (2) we have

ds? = 2 Cald2?)? = gi; dxi dui + 2a° 2 Ca df* dnS)
+ 2 drox” 2 Cany) dny) + z°2" 2 Ca dng) dnyy + 2 c(dz)2

If we write
ds? = @,p dz* daf,

and make use of (56.3) we obtain the following expressions for the a’s:*

aij = (i — 21?”b,|.‘j + XX Corijy
B)  2¢erij = g¥(boppsbepti + beppibrprs) + 2 €o(YooliYorli t YooliYorii)

P
Aie = Qoi = T Yors, ey =0 (0 # 7), Qoo = €4
(ppo,7=mn+1,"-,n+p)
where the index ¢ takes the values 1, - -, n.

Indicating by [a8, v]. and [4], k] the Christoffel symbols of the first
kind formed with respect to the a’s and ¢’s respectively, we obtain the
following results, noting (56.4):

{4, kla = [4, K] — 22%gpsic + T°T7Corvin,

where
- l( '[t‘: ab'hk abvh’j)
ek 2\ 9z azt )’
¢ 1 (ac'nk acrr;k acnij)
»i* = 2\ ow 't ozt /)’
7|t a
[mﬂr-[ (5) 7""’)+2b,,,., zmw}
a 0Yerli
hmﬂ¢=§[f(;;“ ””) 2mm4—mcml,
lor,4] =0, 0%, 7] = vreps, lo7, 0} =0

L k=1, n )
po,7=n+1-"",n+0p
*Here, and in what follows, the greek letter nu as used in §56 is replaced by
gamma in such terms as »,qs.
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Denoting by A.sys the Riemann curvature tensor for the a’s we have
from (8.8)

Auﬂy& = i [581 a]a - a—a;‘ [677 a]a + a"(lﬂ“f: a]ﬂ[asx T]u

9z
— (83, ollar, 7a).
At points of V,

a¥ = g¥, a¥ =0, a" =0, a’”’ = e,

so that we have at points of V.

d
(@) Aun = = 185, olu — 2 By, ol + (8, HLlad, U

— 188, hlley, Tla) + 3, eo((87, olalad, ol — (85, alaary, ale) = 0

(hyl=1,-"mn),

since A,gs = O throughout Sn4,.
Fora = i,8 = j,v = k, & = I, this equation becomes at points of V.
in conseguence of the above expressions for the Christoffel symbols

(5) Rin = 2 €o(bjirbojit — bejitboyin),

which are equations (56.5). Fora = k,8 = j, v = 1, § = o, we obtain

(6) bejiie — bojir = 2 er(Yrefkbrisi — Yrojibrjin),

which are equations (56.6). Fora = r,8 = 0,7 = j, 8§ = k, we obtain
) Yeatik — Yrowi + 2 e (YVoriYoolk — Yer|kYpoli)

’ + g (rpibepr — brrbop) = 0,
which are equations (56.7). Fora = 1,8 = 1,y = ¢, 8§ = j we obtain
Y8 (¥rafisi — Yrolii) — Croii + gM0appibryin + 2 € YpoliYorli = 0-

»

When the expression for ¢,.; from (3) is substituted in this equation,
one obtains equation (7) with k replaced by i. When three or four
of the indices take values greater than n equations (4) are satisfied
identically.

Appendix 21

This note deals with a non-flat V., whose fundamental quadratic
form g;; dz* dz’ may be positive definite or indefinite, provided that the
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matrix of g;; is of rank n. We consider the V, as immersed in a flat
space S, of coordinates 2%, as in § 55, the fundamental form of S,
being 2 ca(dz*)?, where the ¢’s are plus or minus one according to
the character of V. and S.., the equations of V, in S,, being
ze = fa(xl, RN zn).
From equations (55.3), namely
92
1) 2 CaZ%25G = gy, 25 = pyrd
we obtain by covariant differentiation based upon g;;

2 Ca(2525 + 252%) =0

where 2, is the covariant derivative of 2% that is
9%z 9z* { l ’
Zae = i T Vbl
’ oz 9zF  ox' \ik
If we subtract this equation from the sum of the two equations obtained
from it on interchanging 7 and & and j and k respectively, we obtain

2) D, ca2iey = 0.

From the Ricei identities [ef. (11.14)]
3) Lo — 2o = z';',,Rz'ik = gM2G Rk

it follows that the quantities z7; cannot be zero for a non-flat V..

From equation (2) and the theorem on page 145 it follows that the
quantities z3;, are expressible linearly in terms of m — n mutually
orthogonal unit vectors in S, normal to V,. That process is followed
in §56. In this note we consider the case when the quantities 2%
are linearly expressible in terms of ¢1 < m — n unit vectors 47 which
in accordance with § 13 may be taken to be mutually orthogonal in
all generality, ¢ being the least number of such vectors in terms of
which z7; is expressible. We have

(4) 2 ca("l:‘l)z = €y, 2 caﬂ:]'ﬂ“:l = 0, 2 Can:|2§ =0
) (o,7=1,"-,qu;0 #7),

where the ¢’s are plus or minus one as the case may be. Accordingly
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we have

(5) 25 = 3, eebapilel®

where the quantities b.j; are components of ¢, tensors symmetric in
their indices, as follows from (5) and the fact that z%; is symmetric
in 7 and j. The vectors 55 and all vectors linearly expressible in
terms of these are said to constitute the first normal complex N, to
Vain Sa.

If the third set of equations (4) are differentiated covariantly the
result is reducible by (4) and (5) to

) boyix + 2, Caitiie = O @=1,q)
From equation (1) we have

a«,a hi _ sh
> cazieigh = &,
a

by means of which equation (6) is equivalent to

2 ca(noy i + boprghiz)z = 0.

From the form of these equations it follows that the expression in
parenthesis is linearly expressible in vectors normal to V., and con-
sequently in terms of 7, and at least ¢; other normal unit vectors
7ay® all the vectors of the two sets being mutually orthogonal. Thus
we have ‘

(7) ":l,k = -b«flhkghiz:‘ + 2 e‘r'Yfl]k"l;:l + 2 8.,'Ya,c|k17«,|"

(‘717=1:"':q1 )
0’2=Q1+1,"',QI+Q2

If all the quantities v, are zero, that is if the quantities are expres-
sible in terms of the vectors 5,7, equations (6) and (7) are in fact equa-
tions (56.2) and (56.3) respectively,* and consequently V, is of class ¢1.
Otherwise the unit vectors ., and all the vectors linearly expressible

in terms of them are said to constitute the second normal complex N of
V.in S,. If N does not exist, we say it is vacuous.

*Here, and in what follows, the greek letter nu as used in §56 is replaced by
gamma in such terms as v,q .
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From the first and second sets of equations (4) and (7) it follows that
® Yortk + Vet = 0, Yoo = 0.
From (5) and (7) we have
9 2= — E eobajiiboprg™zy + 2 (brpiie + 2 €eDaiiYeo k) e
) ’ ¥ 3, ecbass ; Vosolklles]®.

When this expression and the one obtained from it on interchanging j
and k are substituted in (3), we obtain an expression linear in 25, 747,
and n7, equal to zero. Since there can be no linear relation between
these quantities, all the coefficients must be zero. Accordingly we
have the following sets of equations in which a term with carets (*)
over two indices stands_for this term minus the similar term with
these indices interchanged, as in (10):

(10) Rusie = 2 o(bojribejit — bopprbsyis) = 2 €ebappsbejst,
(11) b'|l‘).l' = 2 efba|i,'Yn|ﬁy
(12) E evbvli"YﬂalE = O-

If N, is not vacuous, we have forozrs = g1+ 1, - - q1 + ¢»

(13) 2 Ca(ﬂm“)z = €qyy 2 Cam,|°'m,|" =0 (‘rﬂ # 0'2),
2 CaNoy|"Ne|™ = 0, 2 cuﬂulaz:: = 0.

Differentiating the last set of these equations covariantly and making
use of (5) and the third set of equations (13), we obtain

>, came s = 0.
-«
Hence we have

(14) "I:I,k = z €oYoos|kNe|™ + 2 €1, Yr2001k0ry|" + 2 ec,')'vanlkn:xlr
L 2 T o3

where 7., if these exist, are ¢; mutually orthogonal unit vectors
orthogonal to the vectors 5, and 7., These vectors and those
linearly expressible in terms of them are said to constitute the third
normal complex Nj.

Expressing the condition of integrability of equations (7), that is
flelr = Mok, and making use of (5), (7), (14), and (11), we obtain
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the following equations:

(15) 'Y‘nﬁ.? + 2 ep'Yprﬁ‘Yp']? + ghibrp'gbﬂh? + 2 en'fu,.ﬁ')’ﬂy’ﬁ\ = 0,

o o2
(16) Yesai£d + 2 erYrelEYorr|T + 2 e YrokYoursff = 0,
(17) 2 e""'ﬂ'lﬁ':’!ﬁ = 0'

When N is vacuous equations (10), (11), and (15) are equations (56.5),
(56.6), and (56.7) respectively, and consequently V. is of class ¢;.

We consider whether the first normal complex can consist of a single
vector. From (12) we have

bl]ii = PiYaslliy

from which and (10) one obtains Rai = 0. Hence we have:

The first normal complex N1 of a non-flat V, immersed in an
Sm(m > n + 1) consists of more than one vector field.*
As a corollary we have

For a V, of class 2 immersed in a flat-space of order n + 2 all the
vectors normal to V., are in the first normal complex N 1.

We consider next the case where the second normal complex N
consists of a single vector 74,* (g2 = ¢1 + 1) and N, is not vacuous.
From (17) it follows that

(18) Yaoik = otﬂk, Yosqlk = 0-.##,

where the @’s are scalars and ux a covariant vector. In this case the
last term in (14) becomes ux 2 €5,804ma,* Which is a single vector field,

which we denote by 7¢,°(gs = g2 + 1). Hence we have

If N, consists of a single vector-field and N is not vacuous, N,
consists of a single vector-field.

From (14) and the first of (13) it follows that in this case ygex = 0.
Consequently equation (14) is

(19) n‘;zl.k = 2 €6Yaqs|kMe|” + egurng”.
L

By the process which led to (14) we have

(20) ":,[.k = 2 €5 oqy|kN0|” + eqYanle)” + 2 €eYaiaslkNed™)
o o4

* This theorem for a V, with positive definite fundamental form was established
by Burstin, 1929, 6, p. 113.
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where the vectors n,,® if they exist constitute the fourth normal com-
plex. Differentiating Ec.n,r'v;,,," = 0 and making use of (7), (19),

(4), (13) and 2 Came|®g,® = O we obtain

(21) Yaelk + Yoqr = 0.

In consequence of this result, (12), (16) and (18) we find that the con-
dition of integrability of equations (19) reduce to the following:

HEYequif = 0, MY o = 0, utp = O, #i'Yv.q.ﬁ = 0.

The last of these equations being similar to equation (17), by the
same process.based upon the latter equation for an N, it can be shown
that if N, is not vacuous it consists of a single vector. In like manner
it is shown from the condition of integrability of equations (20) that if
N is not vacuous it consists of a single vector. The preceding results
would have followed if N consisted of more than one vector-field and
N; of only one. Hence we have:

If any normal complex other than the first consists of only one vector-
field, the same is true of all subsequent complezes until a vacuous one is
reached.*

When N consists of a single vector 5,2, it follows from equations
(18) and (21) that the last term in equation (15) is equal to zero, and
this equation, (10), and (11) are respectively equations (56.7), (56.5),
and (56.6). Hence we have:

When the first normal complez of a V, consists of g1 mutually ortho-
gonal unit vectors and the second complex consists of a single unit vector,
Ve 13 class q..

In the foregoing discussion each normal complex was spanned by
mutually orthogonal unit vectors. When the fundamental form of
V. is positive definite, thiz is necessarily the case. When however
the fundamental form of V, is indefinite there is the possibility of null
vectors being included among the vectors determining a complex,
This alters the treatment of the problem in various ways (see 1937, 2).

Appendix 22

The following theorem is due to T. Y. Thomas:t
Fora V. (n > 3) of class one for which the determinant of the coefficients

* Cf. Burstin, 1929, 6; also Mayer, 1928, 2, and Tucker, 1931, 3.
11936, 1, p. 190.
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by; of the second fundamental form is not equal to zero, the Codazzi equa-
tions (59.4) are a consequence of the Gauss equations (59.3).
Differentiating covariantly equation (59.3), that is
Ruijr = e(babixr — bakbis),
one obtains

Raijes = e(bajabix + babies — barabii — burdija).
Permuting the indices j, k, I cyclically, we have the two equations

Ryita; = e(bukba + baxbarj — bursbie — bubies),

Rh"lf,k = e(.bhl.kbij + bhlbt‘j.k - bhi.kbi'l - bh:'bﬂ,k)‘

When these three equations are added the left-hand member is zero,
because of the Bianchi identities (26.3), and we have

(1) baBai + baiBi + baBnij + baeBaj + biiBue + buBijx = 0,
where
thl = bhj,l - bhl.f‘
If the matrix ||b;.,-" is of rank n, quantities b» are uniquely determined
such that
bhby = 5;,, bhiby; = at.

If we multiply equation (1) by b* and sum for h and j we obtain,
noting that the B’s are skew-symmetric in the last two indices,
(n — 3)Bim + bub*Bay — bub"Bai = 0
Multiplying this equation by b®* and summing for 7 and k we obtain
2(n — 2)b"Bs; = 0.
When n > 3 we have from these two sets of equations that B = 0,
as was to be proved.
Appendix 23

By definition a V, is an Einstein space, if

e} R:; = pgij.

Every V., is an Einstein space (Ex. 2, p. 47). For n = 3 an Einstein
space is of constant curvature (Ex. 2, p. 92). It will now be deter-
mined under what conditions for n S 4 an Einstein space of class
one is of constant Riemannian curvature.

The Riemannian curvature ru of a V., of class one in Sny for the
orientation determined by the unit vectors Ay and Ay’ tangent to the
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lines of curvature of V, in terms of the principal normal curvatures ¢,
and c; for these lines of curvature is given by (cf. 59.9)
(2 Thk = €CiCk,

where ¢ is +1 or —1 according to the character of the normal to V,
in Sp41. From (34.2) we have

(3) e = —eaRiNg Ny
From (1), (2), and (3) one has
(4) CpCr = —ep.

Let S = 2 ¢x, then from equation (4) one obtains
k
ey — Scx —ep = 0;

that is each ¢y is a solution of the quadric
(5) 22— Sz —ep = 0.

If all the ¢’s are equal, V, is of constant curvature as follows from
the theorem of Schur (§ 26). Assume that they are not all equal,
say ¢1 # ¢2. The others are equal to ¢, or s, being roots of equation

(5). Let ¢1 oceur p times and ¢, ¢ times (p + ¢ = n). Then from (5)
we have

(6) ci+c: =38, cic2 = —ep,
and from the first of these and S = pe, + gc, we have
( — et + (g — 1)es = 0.

Since neither ¢, nor ¢, can be zero from the second of equations (6),
it follows that p and ¢ are each greater than 1, in which case ¢, and ¢,
differ in sign. This is not possible if ep is negative. Hence, the
assumption that there be different ¢’s is not valid and we have:

An Einstein space of class one for n S 4 4s a space of constant Rie-
mannian curvatures if ep 1s negative.*

Appendix 24
In equations (64.15) and what follows 2a=1,-"+, n+ 2) are

generalized cartesian coordinates of the flat space Sny2 of which V,,,;

* See 1937, 3 when the fundamental quadratic form of V, is positive definité,
noting that B;; = —R,;.
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is a hypersurface. Let £ be a normal to V. in S.42 not in Vai
From (64.10) we have c.t*n5; = 0, and consequently
w\ dz*
£l 25, + Rng  tan — ) — =
cat® \ 20; + B, anR s

Since the determinant of the quantities zj;, 5%, £ is different from
zero, equations (64.17) follow, and consequently the theorem is proved
for the case (64.15).

Appendix 25

. . ] .
If ! is a solution of & 6_; =1, and ¢?, - - -, ¢ are independent solu-

. .0 . . . .
tions of 5'5-3 = 0, then in the coordinates z'* = ¢* we have gr=1,

g2=..-= ¢ =0 Hence the theorem:

Appendix 26
Accordingly V., is included in the variety whose equations are obtained
by equating to zero the minors of M of order o + 1.

Appendix 27

By means of the Bianchi identities (26.2) and the identities (8.10)
equations (69.3) can be written

(69.3) —£"Rijstm + EmiB™uii — EmiB™u + EimB™m + Em iB™int
+ Y (gab.ix — g + g — gikax) = 0.

Multiplying these equations by g* and summing for ¢ and [, we get
E"Rim + EmiR™ + EnsB™ = Y5(n — 203 + Jogin Acd.
Multiplying by ¢** and summing for j and k, we have, using (69.1),
(n = 1) A = E"Rom + 2(msB™ = {"Rm + VR.

Substituting this expression for Ay in the preceding equation, we
obtain

1
2m = 1) gikR,m) + EmiB™ 4+ EmB™
1

T2tm—1)

When this and similar expressions are substituted in (69.3), the result

1
2 (n — 2Wj = £\ Bje.m —

giVR.
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is reducible in consequence of (69.1) to
@) —&Cirrm + Emp(5PC™i; — 8PC™4; + §°CPipg + 52C™) = 0,

where Ciju is the Weyl conformal curvature tensor (28.12).

For a V; the conformal curvature tensor is a zero tensor (p. 91).
Hence equations (a) are satisfied identically for a V,.

In order that equations (a) be satisfied identically for a V.(n > 3),
it is necessary and sufficient that Cijum and the anti-symmetric part
of the remainder of equations (a) be zero, that is

(b)  8PC™i; — STCE; — 8C™u; + 8x™CPy;
+ 8mCPu — 87CHy + 87CTH — 87°CPi = 0.
From (28.12) we have
Cii =0, Chir = 0, Chie + Chisi + Chyj = 0.
If p in equations (b) is replaced by ! and summed for I, we get
(n — 1)C™; = 0.

Hence a necessary and sufficient condition that equations (a) for
Va(n > 3) be satisfied identically is that V, be conformally flat.
Eliminating the function ¢ from the equations (69.1), that is

(¢) L+ &ii = gid,

n(n + 1)

we obtain ~— 1 equations connecting the s and their first

derivatives. When these equations are differentiated we obtain
n*(n + 1 -1
% — n equations. Thus there are 2 42-
tions in the £'s and their first and second derivatives, in number
n+1
2

(n?* + n — 2) equa-

(n? 4+ 2n). Hence according as equations (a) are satisfied

n+ Dn+ 2
2
pendent solutions of (¢). In particular we have:*

For any Riemannian space V; there are ten linearly independent
tnfinitesimal conformal transformations; for any conformally flat space
Va(n > 3) thereare (n + 1)(n + 2)/2 linearly independent infinitesimal
conformal transformations.

identically or not there are or fewer linearly inde-

* Cf. T'aub, 1949, 1.
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Appendix 28

The proof of the theorem, which is essentially that given by Fubini,
establishes a coordinate system of the kind described for any minimum
invariant variety V._, but not necessarily for V. TFor a proof see
Eisenhart 1932, 2 or 1933, 1, § 55.

Appendix 29
In § 77 it is proved that any simply transitive group of order n
is a group of motions of an infinity of Riemannian spaces. Denoting
by & the components of the group and using the functions I'}; defined
in terms of them by (77.4) we consider the equations

wn o
O a3 T ML = 0.

The condition of integrability of these equations is found to be

)‘jB‘J'kl = 0,
where
9Ty, ar,,

;1—:" + I‘ P;-',P:k.

B, =

In §77 it is shown that B%u = 0. Hence equations (1) are com-
pletely mtegmble that is there exist n mdependent solutions Aqf,
where a = 1, ,'n indicates the vector and ¢ = 1,- -+, n the com-
ponent. The quantltles \af are the vectors of another snmply transi-
tive group, the reciprocal group of the one with components £’ "
If a V, admits a motion defined by

= fiz, 1),

then as explained in § 27, we must have
lif azt

(2) gii(2) = gu(®) —— o ax,

For an infinitesimal motion
o= i+ £t
equations (2) reduce to the Killing equations (70.1), namely

9g;; At 1
h <M + g — + gn— = 0.
ozt ga or! gin ar’

* Cf. 1933, 1, p. 113.
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Equation (2) means that the ¢’s are carried into themselves by a
motion. The same applies to any tensor whose components are
functions of the g’s and their derivatives, and in particular to the Ricci
tensor R;;. Hence we have

IR atk agh

§+Ra-ax—i+R;n—t=

3) P o

In § 77 by making use of the Killing equations we derived equations
(77.3), namely
9gi5

4 Py galh — galh = 0.

Proceeding in like manner with equations (3) for all the vectors &
we obtain

oR;;
(5) —é;" - R.-,.I‘}',, — Ralh, = 0.
Making use of (4), (5) and
O o
() T T MTh =0,
we obtain

9 o 9 i
(7 dzk (gihaNaf’) = 0, dxk (giha™Nat') = 0,
) .
o BitaMal) =0 (o = B).

Since equations (1) are completely integrable, each set of solutions is
determined by initial values. If the initial values of the n? quantities
Ao are chosen to satisfy the n? conditions

(8) gidaNa’ = €,  gihaAg’ = 0, RihaNgf = 0 (e % B),

where e, are 4+1 or —1, the resulting solutions satisfy these conditions
for all values of the z’s. From these equations, (34.4), and (33.10)
it follows that A= are the components of the Ricei principal directions.
Hence:*

When a V, admits a simply transitive group of motions, the components
of the reciprocal transitive group can be chosen so that they are the Ricct
principal directions of V,.

* Cf. 1935, 2, p. 827.
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Note that equations (6) are analogous to equations (23.1), differing
in that {},} is replaced by TIj,.. Hence if parallelism is defined by
means of the quantities T}, we have that the n vector-fields A, and
any field N = Eca)\.f, where the ¢’s are constants, are absolutely

parallel. In this sense for a V, which admits a simply transitive
group of motions the reciprocal group provides absolute parallelism.
Furthermore in the case of this parallelism, since any two of these
fields A\* and u‘ are such that gi;\‘uw’ is a constant, as follows from (4)
and (6), the angle between the vectors at a point is the same for the
parallel vectors at all points in V,.

Absolute parallelism is not a concept limited to spaces admitting
a simply transitive group of motions. In fact, if one takes any ortho-
gonal ennuple of unit contravariant vectors A\q in any ¥V, and the
covariant components of these vectors, that is Naji = giAej” and defines
quantities T}, by the equations

. Mg
= — ge.kauwy

then equations (6) follow.*
Because a Riemannian space admits many orthogonal ennuples
(cf. § 13), such a definition of absolute parallelism lacks definiteness.
For a space for which R;; # pgij, the Ricei principal directions provide
a basis. A natural inquiry is whether an orthogonal ennuple can be
chosen so that the geodesics of V, are the integral curves of the
equations
dx’ ré da! dz*
ds? *ds ds

0.t

* Cf. Cartan, 1930, 7; also Eisenhart, 1933, 2.
t Cf. Cartan and Schouten, 1926, 3; Eisenhart, 1927, 3, p. 33.
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Eddington, 6, 101, 255.

Einstein, 32, 113, 188, 254.

Einstein space, 92, 93, 189, 200; con-
formal to an S,, 93; spaces conformal
to an, 94, 95.

Eisenhart, 31, 46, 69, 72, 118, 124, 183,
140, 142, 184, 251, 253-256.

Element, of length, 34, 35; of volume,
177, 179.

Ennuple, see Orthogonal ennuple.

Equations, of Codazzi, see Codazzi; of
Euler, see Euler; of Gauss, see Gauss;
of Killing, see Killing.

Euclidean space, 34; motion, 87, 192;
conformal representation of, 94 ; hyper-
surfaces, 218.

Euler, equations of,49,177; formula of, 154.

Evolutes of a V., 193, 198.

Fermi, 92, 255.

Flat space, 84; see Sa.

First integrals of the equations of geo-
desics, 128-131, 138, 141, 238.

Formulas of Frenet, 107.

Fubini, 231, 233. 236, 237, 244, 246, 253.

Fundamental form, 84, 57; second, 150,
155, 156, 166; third, 219; see Space
of constant Riemannian curvature

g, 14.
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9y 14, 34

gY, 14.

99y _ 0, at a point, 55, 56; along a

a—t.' - 1 ] ) 3 g
curve, 92.

Zupr 97

Yapr 98-

Gauss, 45, 57.

(Gauss, equations of, 149, 150, 163, 172,
190, 197, 200.

Gaussian curvature of a geodesic sur-
face, 81.

Geodesics, 49-52; minimal, 51, 210; equa-
tions of, 50-52, 141; see First integrals,
etc. ; equations in finite form, 59, 140 ; in
Riemannian cotrdinates, 53; character-
istic property, 64; of a sub-space, 75,
156 ; spaces with corresponding, 131-139,
141; in a space of constant curvature,
139, 207-210, 213, 219, 230; in-
finitesimal transformations preserving,
227-230; as paths of a motion, 239.

Geodesic, congruences, 100, 115, 139,
241; coordinates, 56; correspondence,
131139, 141; curvature, 152; form of
the linear element, 57; surface oscu-
lating a curve, 62; surface, 79, 81;
torsion, 174; triangle, 79; variety, 166,
167, 176, 183~186, 249.

Geodesically parallel hypersurfaces, 57,
168, 249.

Goursat, 1, 5, 42, 58, 70, 252, 253.

Qradient, 7, 27.

Group, see Continnous group.

Group of motions, 233-251; invariant
varieties, 235, 245; minimum invariant
varieties, 236, 244, 249; intransitive,
235, 236, 244, 249; transitive, 236, 250,
251; simply transitive, 249; order of
transformations, 238; of a space of
constant curvature, 207, 238; paths,
235, 239, 240, 241, 249; translations,
239, 241, 249; spaces V, admitting a,
241-244; spaces V, admitting a, 245;
of a regular space, 250.
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Hadamard, 184, 253.

Herglotz, 93, 254.

Homogeneous space, 114.

Hypercone, fundamental, 215.

Hyperquadric, fundamental, 202, 203.

Hypersphere, 202.

Hypersurface, definition, 8, 41; normals
to a, 41; null normals to a, 41; curves
orthogonal to a, 43; isothermic, 116,
241; equations of Gauss and Codazzi,
149, 150, 197; curvature of a curve
in a, 150~152; relative and normal
curvatures, 151; second fundamental
form, 150, 155, 156; principal radii of
normal curvature, 153, 158; lines of
curvature, 153-157, 159, 213, 219;
conjugate and asymptotic directions,
'156; geodesics, 75, 156 ; normals parallel
aiong a curve, 158; of a space of
constant curvature, 157, 159, 212, 213,
218-220; mean curvature, 168; with
indeterminate lines of curvature,
179-183, 185, 218, 249; totally geodesic,
183, 184, 249; minimal, 178; of a flat
space, 197-201, 218, 219; of a space
of constant curvature, 157, 212, 213,
218-220; third fundamental form, 219.

Hypersurfaces, angle between, 41; orthog-
onal, 42; geodesically parallel, 57, 158,
249; applicable, 200, 201, 212; see
N-tuply orthogonal systems.

Identities of Ricei, 30.

Identity of Bianchi, 82.

Indeterminate lines of curvature, 179-183,
185, 218, 249.

Infinitesimal motion, 234, 235, 237.

Infinitesimal transformation of a group, 222,
223; symbol of, 222; contravariant com-
ponents, 223; linearly independent, 223;
order, 224; which preserve geodesics,
227-230; conformal, 230-233.

Infinitesimal translation, 239, 249.

Inner multiplication, 13, 29.

Intransitive group, 225, 233, 235, 236,
244, 249.
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Intrinsic, derivative, 98; property, 84, 192.

Invariant, 6,97, 124; covariant derivatives:
27, 29; curvature of a V,, 83, 157;
principal, 110, 124.

Isometric, spaces, 84; correspondence of
spaces, 84-88, 184.

Isothermic hypersurfaces, 116, 241.

Kasner, 189, 200, 255.

Killing, 200, 2384, 252.

Killing, equations of, 234, 237.

Kommerell, 184, 258.

Kottler, 93, 254.

Kowalewski, 103, 104, 253.

Kronecker delta, 2.

)’al‘i 81 40.

4y ; symmetric, 115.

Lamé, 116, 252.

Length, of a curve, 36, 37; element of,
34, 385.

Levi-Civita, 5, 13, 21, 30, 31, 64, 65, 69,
74, 79, 83, 92, 97, 100, 107, 116, 117,
124, 125, 127, 131, 136, 138, 241,
252-254, 256.

Levy, 33, 59, 94, 140, 141, 218, 256

Lie, 221, 222, 224, 252.

Line, asymptotic, see Asymptotic.

Lines of curvature, of a hypersurface,
153-159, 199, 213, 219; of a V, in a
V., 168; indeterminate, 179-183, 185,
218, 249; of a V, in an S,,, 193, 198.

Lipschitz, 117, 178, 252.

M, 169.

Heg)yr 161, 163,

Matrices, 101-103.

Mean curvature, of a V, for a direction,
113; of a hypersurface, 168; of a sub-
space, 168, 178.

Mean curvature normal, 169, 170, 178, 185.

Metric of a space, 34, 35.

Meusnier’s theorem, generalization of, 152.

Minimal, curve, 87; geodesic, 51, 210;
surface, 177, 184; variety, 177-179,
184, 186.

Motion, in a space, 87, 88; infinitesimal,
284, 235, 237, 239, 249; paths of, 235,

Index

239, 240, 241, 249; of an S, into it-
self, 192; of a space of constant eurv-
ature into itself, 204, 207, 238; see
Group of motions.

Murnaghan, 102, 107, 256.

Yeglst 189.

N-tuply orthogonal systems of hyper-
surfaces, 43, 44, 117-124, 138, 155,
158, 220.

Normal, to a hypersurface, 41, 158; null,
41; toa V,ina V,,, 47, 140, 143-146,
192; principal, to a curve, 61, 107;
mean curvature, 169, 170, 178, 185.

Normal, congruences, see Congruences;
codrdinates, 55; curvature of a curve
in a subspace, 150-154, 158, 165, 193.

Null vector, 36, 38, 41, 111, 112.

Qq, 147, 158, 168.

2,41 160.

w,, 178, 174,

Wy 171, 174,

Order, of a tensor, 9, 10; of an infini-
tesimal transformation, 224.

Orthogonal ennuples, 40; number of, 40;
determination of tensors, 97; of Schmidt,
103,104; of normal congruences, 117-119,
128, 140; canonical, 125-128, 139, 140,
154, 241.

Orthogonal systems of hypersurfaces, see
N-tuply orthogonal ete.

Osculating, geodesic surface of a curve,
62; geodesic variety, 167, 176, 185, 186.

Outer product, 12, 29.

Parallel displacement of a vector, 65-67,
79, 93, 184.

Parallelism of vectors, 64; in a sub-space,
74, 75, 167; tangent to a sphere, 76;
tangent to a V,, 79, 175; normal to a
hypersurface, 158; in a totally geodesic
sub-space, 184.

Parallel vectors, fields of, 67-72, 142,
185, 289.

Paths of a continuous group, 222, 231,
235, 239, 240, 241, 249.

Péres, 65, 79, 93, 2b4.
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Point, 1; umbilical, 179, 185.

Poisson operator, 70.

Principal, congruences, 110, 118; direc-
tions, 107-114, 124, 181, 199, 219;
invariants, 110, 124; normal to a curve,
61, 107; radii of normal curvature,
153, 158, 198.

Projective, curvature tensor, 135; plane
space, 135.

Quadratic differential form, 22; equi-
valence, 23-26, 86-88; signature, 23;
positive definite, 238; transformation,
24, 86; of constant curvature, 25, 85,
93, 206, 218, 219; fundamental, 34;
Liouville form, 60; second and third of
a hypersurface, 150, 155, 156, 219.

R, 19.

R, 21.

R, 22, 83.

Radius of, curvature of a curve, 61, 107;
normal curvature, 160-154, 158,165, 193.

Regular space, 250.

Relative, curvature, see Curvature of a
curve; tensor, 31.

Relativity, 384, 37, 51, 83, 113, 140,
188, 189.

Ricci, b, 13, 21, 22, 80, 31, 97, 107,
113, 116, 117, 124, 125, 127, 139,
140, 159, 163, 172, 174, 181, 183, 184,
188, 190, 241, 250-258, 256.

Ricci, identities, 30; principal directions,
114, 181, 199, 219; tensor, 22, 32, 47,
92, 93, 113, 114, 135, 200.

Riemann, 84, 53, 80, 86, 252.

Riemann, symbols, 20, 21; tensor, 20, 25,
30, 32, 33, 44, 47, 81-84, 93, 169, 162,
172, 180, 187, 211, 212, 237.

Riemannian, metric, 35; geometry, 35;
space, 35; codrdinates, 53-55; form of
the linear element, 86 ; curvature, 79-81,
113, 159.

Rotation, coefficients of, 97-100; in an
8., 192.

8., 84; spaces conformal to an, 91-93,
121-124, 182, 214-218; n-tuply or-
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thogonal systems in, 121; sub-spaces,
187-220; applicable hypersurfaces, 200,
201; motions, 87, 192.

Sbrana, 201, 253.

Scalar, 6; curvature of a space, 88, 157.

Schmidt, 104, 2563.

Schouten, 16, 22, 65, 92, 93, 124, 125,
134, 182, 185, 199, 200, 254, 255.

Schur, 83, 252.

Schwarzschild, 93, 188, 264.

Severi, 64, 254.

Signature of a quadratic differential
form, 23.

Six-vector, 12.

Sommerville, 264.

Space, n-dimensional, 1; see Einstein
space; see Kuclidean space; metric,
84; Riemannian, 35; flat, see Flat and
S,; homogeneous, 114; projective plane,
135; regular, 250.

Space of constant Riemannian curvature,
83; isometric correspondence, 84; mo-
tions, 86-88, 204, 207, 238; fundamental
form, 25, 85, 93, 206, 218, 219; spaces
conformal to, 91, 219; hypersurface,
157, 159, 212, 218, 218-220; geodesics,
134, 139, 207-210, 213, 219, 230; geo-
desic correspondence, 134; applicable
hypersurfaces, 212; sub-spaces, 212;
n-tuply orthogonal systems, 220; in-
finitesimal transformations, 230, 232;
linear first integrals of the equations
of geodesics, 239.

Spaces, tangent, 75; applicable, 75, 84,
200, 201, 212; conformal, 89; conformal
to an S, 91-98, 121-124, 182, 214-218;
conformal to an Einstein space, 98-95;
with corresponding geodesics, 131-139,
141.

Space-time continuam of a perfect fluid,
140.

Stiickel, 130, 140, 252.

Struik, 92, 93, 134, 181, 185, 186, 188,
199, 200, 249, 254, 255.

Sub-group of stability, 225.
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Surface, geodesic, 62, 79, 81; of translation,
175, 184; minimal, 177, 184.

Synge, 65, 255.

Tangent, to a curve, 6; sub-spaces, 75.

Tensor, covariant, 9, 10; contravariant,
9, 10; mixed, 9, 10; symmetric, 11;
skew-symmetric, 11; order, 9, 10; zero,
11; contraction, 13; conjugate, 15;
associate, 16; rank, 16; see Riemann
tensor; see Ricci tensor; relative, 31;
divergence, 32; fundamental, 35;
conformal curvature, 91; whose first
covariant derivative is zero, 28, 29,
107, 124, 141, 142; satisfying equations
(8.10) and (8.11), 32, 48.

Tensors, addition, subtraction, multipli-
cation of, 12; outer product, 12, 29;
inner product, 18, 29; composition, 13;
quotient law, 14.

Tensor density, 31. _

Thomas, J. M., 94, 141, 256.

Thomas, T. Y., 69, 141, 255, 256.

Totally geodesic sub-space, 183-186, 249.

Transformations of cotrdinates, 1, 23-25,
55, 141; linear, 8, 55; linear fractional,
141; of a group, 221, 223; conformal,
230-233.

Transitive group, 225, 236, 247, 249-251.

Translation, 72, 192, 239, 241, 249;
surface of, 175, 184.

Umbilical point, 179, 185.

V., 1; elemental, 8, 39; curvature, 80,
81, 83, 113, 157, 159; conformal to an
8., 91-95, 121-124, 182, 214-218; class,
188; of class one, 197-200; evolutes,
193, 198.

V, in a V,, equations, 44; metric prop-
erties, 45, 48; normals, 41, 47, 140,
143-146, 158; parallelism, 74, 75, 167;
associate directions, 74, 75, 167; geo-

Index

desics, 75; equations of Gauss and
Codazzi, 163, 172; normal and reiative
curvatures of a curve, 150-1564, 158,
164, 165; second fundamental form,
166; conjugate directions, 166, 167,
175, 176; asymptotic directions, 166;
asymptotic lines, 167, 175, 176; lines
of cutvature, 168; mean curvature,
168, 178; mean curvature normal, 169,
170,178; relative curvature, 174; totally
geodesic, 183-186, 249; in an Swtpr
195-197 ; of constant curvature, 210-214.

V,inan 8,,, equations, 187; equations
of Gauss and Codazzi, 190, 197, 198;
motion, 192; evolutes, 193, 198; lines
of curvature, 193, 198, 199; principal
radii of normal curvature, 193, 198.

Veblen, 69, 183, 141, 2565, 256.

Vector, contravariant, 4, 5, 10, 39; co-
variant, 7, 10, 89; divergence, 32, 47;
magnitude, 35; unit, 36, 40; null, 36,
38, 41, 111, 112; parallel displacement,
65-67, 79, 93, 184; associate direction,
78-18, 105, 157, 167; associate curv-
ature, 73, 106, 164; relative curvature,
151, 165; normal curvature, 165.

Vectors, angle of, 87, 88; orthogonality,
38; n mutually orthogonal, 40, see
Orthogonal eunuple; parallelism, see
Parallelism and Parallel vectors.

Vector-field, 5, 36; see Parallel vectors.

Verjiingung, 13.

Volume, element of, 177, 179.

Voss, 150, 164, 163, 166, 252.

W“,w 135, 141.

Weierstrass, coordinates of, 204-210.

Weight of a relative tensor, 31.

Weyl, 65, 91, 92, 133, 185, 254.

Wilson, 1, 264.

The results of paragraph 31 were based upon material presented by Professors
Veblen and J. W. Alexander in their lectures before the appearance of the paper by
Murnaghan, 1925, 7.
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