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PREFACE

Does the world really need a new textbook on general relativity? I feel that my first
duty in presenting this book should be to provide a convincing affirmative answer
to this question.

There is already a vast array of available books. I will not attempt here to
make an exhaustive list, but I will mention three of my favorites. For its unsur-
passed pedagogical presentation of the elementary aspects of general relativity, I
like Schutz’ A first course in general relativity. For its unsurpassed completeness, I
like Gravitation, by Misner, Thorne, and Wheeler. And for its unsurpassed elegance
and rigour, I like Wald’s General relativity. In my view, a serious student could do
no better than start with Schutz for an outstanding introductory course, then move
on to Misner, Thorne, and Wheeler to get a broad coverage of many different topics
and techniques, and then finish off with Wald to gain access to the more modern
topics and the mathematical standard that Wald has since imposed on this field.
This is a long route, but with this book I hope to help the student along: I see my
place as being somewhere between Schutz and Wald — more advanced than Schutz
but less sophisticated than Wald — and I cover some of the few topics that are not
handled by Misner, Thorne, and Wheeler.

In the winter of 1998 I was given the responsibility of creating an advanced
course in general relativity. The course was intended for graduate students working
in the Gravitation Group of the Guelph-Waterloo Physics Institute, a joint graduate
program in Physics shared by the Universities of Guelph and Waterloo. I thought
long and hard before giving the first offering of this course, in an effort to round
up the most useful and interesting topics, and to create the best possible course.
I came up with a few guiding principles. First, I wanted to let the students in on
a number of results and techniques that are part of every relativist’s arsenal, but
are not adequately covered in the popular texts. Second, I wanted the course to be
practical, in the sense that the students would learn how to compute things, not
just a bunch of abstract concepts. And third, I wanted to put these techniques to
work in a really cool application of the theory, so that this whole enterprise would
seem to have purpose.

As T developed the course it became clear that it would not match the material
covered in any of the existing textbooks; to meet my requirements I would have to
form a synthesis of many texts, I would have to consult review articles, and I would
have to go to the technical literature. This was a long but enjoyable undertaking,
and I learned a lot. It gave me the opportunity to homogenize the various separate
treatments, consolidate the various different notations, and present this synthesis as
a unified whole. During this process I started to type up lecture notes that would
be distributed to the students. These have evolved into this book.

In the end, the course was designed around my choice of “really cool application”.
There was no contest: the immediate winner was the mathematical theory of black
holes, surely one of the most elegant, successful, and relevant applications of general
relativity. This is covered in Chapter 5 of this book, which offers a thorough review
of the solutions to the Einstein field equations that describe isolated black holes,

ix



X Preface

a description of the fundamental properties of black holes that are independent of
the details of any particular solution, and an introduction to the four laws of black-
hole mechanics. In the next paragraphs I outline the material covered in the other
chapters, and describe the connections with the theory of black holes.

The most important aspect of black-hole spacetimes is that they contain an
event horizon, a null hypersurface that marks the boundary of the black hole and
shields external observers from events going on inside. On this hypersurface there
runs a network (or congruence) of nonintersecting null geodesics; these are called
the null generators of the event horizon. To understand the behaviour of the horizon
as a whole it proves necessary to understand how the generators themselves behave,
and in Chapter 2 of this book we develop the relevant techniques. The description
of congruences is concerned with the motion of nearby geodesics relative to a given
reference geodesic; this motion is described by a deviation vector that lives in a space
orthogonal to the reference geodesic’s tangent vector. This transverse space is easy
to construct when the geodesics are timelike, but the case of null geodesics is subtle.
This has to do with the fact that the transverse space is then two-dimensional — the
null vector tangent to the generators is orthogonal to itself and this direction must
be explicitly removed from the transverse space. I show how this is done in Chapter
2. While null congruences are treated in other textbooks (most notably in Wald),
the student is likely to find my presentation [which I have adapted from Carter
(1979)] better suited for practical computations. While Chapter 2 is concerned
mostly with congruences of null geodesics, I present also a complete treatment of
the timelike case. There are two reasons for this. First, this forms a necessary
basis to understand the subtleties associated with the null case. Second, and more
importantly, the mathematical techniques involved in the study of congruences of
timelike geodesics are used widely in the general relativity literature, most notably
in the field of mathematical cosmology. Another topic covered in Chapter 2 are
the standard energy conditions of general relativity; these constraints on the stress-
energy tensor ensure that under normal circumstances, gravity acts as an attractive
force — it tends to focus geodesics. Energy conditions appear in most theorems
governing the behaviour of black holes.

Many quantities of interest in black-hole physics are defined by integration over
the event horizon. An obvious example is the hole’s surface area. Another example
is the gain in mass of an accreting black hole; this is obtained by integrating a
certain component of the accreting material’s stress-energy tensor over the event
horizon. These integrations require techniques that are introduced in Chapter 3 of
this book. In particular, we shall need a notion of surface element on the event
horizon. If the horizon were a timelike or a spacelike hypersurface, the construction
of a surface element would pose no particular challenge, but once again there are
interesting subtleties associated with the null case. I provide a complete treatment
of these issues in Chapter 3; I believe that my presentation is more systematic,
and more practical, than what can be found in the popular textbooks. Other
topics covered in Chapter 3 include the initial-value problem of general relativity
(which involves the induced metric and extrinsic curvature of a spacelike hypersur-
face), and the Darmois-Lanczos-Israel-Barrabes formalism for junction conditions
and thin shells (which constrains the possible discontinuities in the induced metric
and extrinsic curvature). The initial-value problem is discussed at a much deeper
level in Wald, but I felt it was important to include this material here: it provides
a useful illustration of the physical meaning of the extrinsic curvature, an object
that plays an important role in Chapter 4 of this book. Junction conditions and
thin shells, on the other hand, are not covered adequately in any textbook, in spite
of the fact that the Darmois-Lanczos-Israel-Barrabes formalism is used very widely
in the literature. (Junction conditions and thin shells are touched upon in Misner,
Thorne, and Wheeler, but I find that their treatment is too brief to do justice to
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the formalism.)

Among the most important quantities characterizing black holes are their mass
and angular momentum, and the question arises as to how the mass and angular
momentum of an isolated object is to be defined in general relativity. I find that
the most compelling definitions come from the gravitational Hamiltonian, whose
value for a given solution to the Einstein field equation depends on a specifiable
vector field. If this vector corresponds to a time translation at spatial infinity, then
the Hamiltonian gives the total mass of the spacetime; if, on the other hand, the
vector corresponds to an asymptotic rotation about an axis, then the Hamiltonian
gives the spacetime’s total angular momentum in the direction of this axis. This
connection is both deep and beautiful, and in this book it forms the starting point
for defining black-hole mass and angular momentum. Chapter 4 of this book is
devoted to a systematic treatment of the Lagrangian and Hamiltonian formulations
of general relativity, with this goal in mind of arriving at well-motivated notions of
mass and angular momentum. What sets my presentation apart from what can be
found in other texts, including Misner, Thorne, and Wheeler and Wald, is that I pay
careful attention to the “boundary terms” that must be included in the gravitational
action to produce a well-posed variational principle. These boundary terms have
been around for a very long time, but it is only fairly recently that their importance
has been fully recognized. In particular, they are directly involved in defining the
mass and angular momentum of an asymptotically-flat spacetime.

To set the stage, I review the fundamentals of differential geometry in Chapter
1 of this book. The collection of topics is standard: vectors and tensors, covari-
ant differentiation, geodesics, Lie differentiation, Killing vectors, curvature tensors,
geodesic deviation, and a few others. The goal here is not to provide an introduction
to these topics; although some may be new, I assume that for the most part, the
student will have encountered them before (in an introductory course at the level
of Schutz, for example). Instead, my objective with this Chapter is to refresh the
student’s memory and establish the style and notation that I use throughout the
book.

As I have indicated, I have tried to present this material as a unified whole,
using a consistent notation and maintaining a fairly uniform level of precision and
rigour. While I have tried to be somewhat precise and rigourous, I have deliberately
avoided putting too much emphasis on this. My attitude is that it is more important
to illustrate how a theorem works and can be used in a practical situation, than
it is to provide all the fine print that goes into a rigourous proof. The proofs that
I do provide are informal; they may sometimes be incomplete, but they should be
sufficient to convince the student that the theorems are true. They may, however,
leave the student wanting for more; in this case I shall have to refer her to a more
authoritative text such as Wald.

I have also indicated that I wanted this book to be practical — I hope that after
studying this book, the student will be able to use what she has learned to compute
things of direct relevance to her. To help with this purpose I have inserted a large
number of examples within the text. I also provide problem sets at the end of each
chapter; here the student’s understanding will be put to the test. The problems
vary in difficulty, from the plug-and-grid type designed to make the student familiar
with a new technique, to the more challenging type that is supposed to make the
student think. Some of the problems require a large amount of tensor algebra,
and I strongly encourage the student to let the computer perform the most routine
operations. (My favourite package for tensor manipulations is GRTensorIl, available
free of charge at http://grtensor.phy.queensu.ca/.)

Early versions of this book have been used by graduate students who took my
course over the years. A number of them have expressed great praise by involving
some of the techniques covered here in their own research. This is extraordinarily
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gratifying, and it has convinced me that a wider release of this book might do more
than just service my vanity. A number of students have carefully checked through
the manuscript for errors (typographical or otherwise), and some have made useful
suggestions for improvements. For this I thank Daniel Bruni, Sean Crowe, Luis de
Menezes, Paul Kobak, Karl Martel, Sanjeev Seahra, and Katrin Rohlf. Of course, I
accept full responsibility for whatever errors remain. The reader is invited to report
any error she may find (poisson@physics.uoguelph.ca), and can look up those
already reported at http://www.physics.uoguelph.ca/poisson/book/.

This book is dedicated to Werner Israel, my teacher, mentor, and friend, whose
influence on me, both as a relativist and as a human being, runs deep. His influence,
I trust, will be felt throughout the book. Every time I started the elaboration of
a new topic I would ask myself: “How would Werner approach this?”. I do not
believe for one second that the answers I came up with would even come close to
his level of pedagogical excellence, but there is no doubt that to ask the question
has made me try harder to reach that level.



NOTATION AND CONVENTIONS

We use the sign conventions of Misner, Thorne, and Wheeler (1973), with a metric

of signature (—1,1,1,1), a Riemann tensor defined by R%, ; =T%; +---, and a

Ricci tensor defined by Ryp = R”auﬁ. Greek indices (a, 8, ...) run from 0 to 3,

lower-case latin indices (a, b, ...) run from 1 to 3, and upper-case latin indices (A4,

B, ...) run from 2 to 3. Geometrized units, in which G = ¢ = 1, are employed.
Here’s a list of frequently occurring symbols:

Symbol Description

z® Arbitrary coordinates on manifold .#
y® Arbitrary coordinates on hypersurface X
64 Arbitrary coordinates on two-surface S
= Equals in specified coordinates

e =0z /0y®, €% =0x*/06* Holonomic basis vectors

ey, €34 Orthonormal basis vectors

9ap
hab = gaﬁegeg
OAB = Jap€iep

g, h, o

Awap) = 5(Aas + Apa)
Alap = 5(Aap — Aga)
Faﬁ’y

I‘abc

3
Rabcd; Rab; R

"/’,a = 6a¢
"p,a = 5a¢
AO‘;ﬂ = VﬂAa
A% = DyA°
£,A%

£

[ae B 4]

€apys = V=gl B 4]
dSu = euapy efese3 d°y
dS,, = epvap €€l d?0
na

€ =n%Ng

—_ B
K.y =napeje,
0; OaB, Wap

B
d02 = d6? + sin® § d¢?

Metric on 4

Induced metric on X

Induced metric on S

Metric determinants

Symmetrization

Antisymmetrization

Christoffel symbols constructed from gqg
Christoffel symbols constructed from h,p
As constructed from g,p

As constructed from hgp

Partial differentiation with respect to x®
Partial differentiation with respect to y®
Covariant differentiation (gos-compatible)
Covariant differentiation (hqp-compatible)
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CHAPTER 1
FUNDAMENTALS

This first chapter is devoted to a brisk review of the fundamentals of differential
geometry. The collection of topics presented here is fairly standard, and most of
these topics should have been encountered in a previous introductory course on
general relativity. Some, however, may be new, or may be treated here from a
different point of view, or with an increased degree of completeness.

We begin in Sec. 1.1 by providing definitions for tensors on a differentiable
manifold. The point of view adopted here, and throughout the text, is entirely
unsophisticated: We do without the abstract formulation of differential geometry
and define tensors in the old-fashioned way, in terms of how their components
transform under coordinate transformations. While the abstract formulation (in
which tensors are defined as multilinear mappings of vectors and dual vectors into
real numbers) is decidedly more elegant and beautiful, and should be an integral part
of an education in general relativity, the old approach has the advantage of economy,
and this motivated its adoption here. Also, the old-fashioned way of defining tensors
produces an immediate distinction between tensor fields in spacetime (four-tensors)
and tensor fields on a hypersurface (three-tensors); this distinction will be important
in later chapters of this book.

Covariant differentiation is reviewed in Sec. 1.2, Lie differentiation in Sec. 1.4,
and Killing vectors are introduced in Sec. 1.5. In Sec. 1.3 we develop the mathemat-
ical theory of geodesics. The theory is based on a variational principle and employs
an arbitrary parameterization of the world line. The advantage of this approach
(over one in which geodesics are defined by parallel transport of the tangent vector)
is that the limiting case of null geodesics can be treated more naturally. Also, it is
often convenient, especially with null geodesics, to use a parameterization that is
not affine; we will do so in later portions of this book.

In Sec. 1.6 we review a fundamental theorem of differential geometry, the local
flatness theorem. Here we prove the theorem in the standard way, by counting the
number of functions required to go from an arbitrary coordinate system to a locally
Lorentzian frame. In Sec. 1.11 we extend the theorem to an entire geodesic, and we
prove it by erecting Fermi normal coordinates in a neighbourhood of this geodesic.

Useful results involving the determinant of the metric tensor are derived in
Sec. 1.7. The metric determinant is used in Sec. 1.8 to define the Levi-Civita tensor,
which will be put to use in later parts of this book (most notably in Chapter 3).
The Riemann curvature tensor and its contractions are introduced in Sec. 1.9, along
with the Einstein field equations. The geometrical meaning of the Riemann tensor
is explored in Sec. 1.10, in which we derive the equation of geodesic deviation.

1
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1.1 Vectors, dual vectors, and tensors

Consider a curve 7y on a manifold. The curve is parameterized by A and is described
in an arbitrary coordinate system by the relations (). We wish to calculate the
rate of change of a scalar function f(z®) along this curve:

d of dx*

g _ o e

d\ 0z dX ’
This procedure allows us to introduce two types of objects on the manifold: u® =
dz®/d) is a vector which is everywhere tangent to v, and f o = 8f/0z* is a dual
vector, the gradient of the function f. These objects transform as follows under an
arbitrary coordinate transformation from z® to z% :

of _ of 0z  0x°

oz ~ Oz Oz ~ Oz

f,a’ = f,a

and ) , ,
r dz® Oz dz*  Oz°
== — = ——
X Oz dA Oz
From these equations we recover the fact that df /d) is an invariant: fou® = fau®.
Any object A* which transforms as

«

u a

’

r o 0z®

© Oz
under a coordinate transformation will be called a vector. On the other hand, any
object p, which transforms as

Aa

A* (1.1.1)

o™
Do = Oz Da (112)

under the same coordinate transformation will be called a dual vector. The con-
traction A%p, between a vector and a dual vector is invariant under the coordinate
transformation, and is therefore a scalar.

Generalizing these definitions, a tensor of type (n,m) is an object TP
which transforms as

yeeed

e oz 0z% 9z 9x° .4
V8t gy 9P dx' Oxd 7l

under a coordinate transformation. The integer n is equal to the number of super-
scripts, while m is equal to the number of subscripts. It should be noted that the
order of the indices is important; in general, Tﬂ"'a,ymé + T"‘"'B,ymé. By definition,
vectors are tensors of type (1,0), and dual vectors are tensors of type (0,1).

A very special tensor is the metric tensor gog, which is used to define the inner
product between two vectors. It is also the quantity that represents the gravitational
field in general relativity. The metric or its inverse g®? can be used to lower or raise
indices. For example, A, = g,3A4° and p® = g*’pg. The inverse metric is defined
by the relations g**g,3 = §°%. The metric and its inverse are symmetric tensors.

Tensors are not actually defined on the manifold itself. To illustrate this, con-
sider the vector u® tangent to the curve v, as represented in Fig. 1.1. The diagram
makes it clear that the tangent vector actually “sticks out” of the manifold. In fact,
a vector at a point P on the manifold is defined in a plane tangent to the manifold
at that point; this plane is called the tangent plane at P. Similarly, tensors at a
point P can be thought of as living in this tangent plane. Tensors at P can be
added and contracted, and the result is also a tensor. However, a tensor at P and
another tensor at ) cannot be combined in a tensorial way, because these tensors

(1.1.3)
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Figure 1.1: A tensor at P lives in the manifold’s tangent plane at P.

belong to different tangent planes. For example, the operations A%(P)B?(Q) and
A*(Q) — A*(P) are not defined as tensorial operations. This implies that differen-
tiation is not a straightforward operation on tensors. To define the derivative of a
tensor, a rule must be provided to carry the tensor from one point to another.

1.2 Covariant differentiation

One such rule is parallel transport. Consider a curve 7, its tangent vector u®, and
a vector field A% defined in a neighbourhood of v (Fig. 1.2). Let point P on the
curve have coordinates %, and point ) have coordinates z® + dx®. As was stated
previously, the operation

dA®

A%(Q) — A%(P)
= A% +dzP) — A%(2P)
A* 5 dzP

is not tensorial. This is easily checked: under a coordinate transformation,

a0 oz, _ 0z 02 N Pz 9xP
BT 9P axe oze 9zB P T 9redxB §zF T

which is not a tensorial transformation. To be properly tensorial, the derivative
operator should have the form DA® = A$(P) — A*(P), where A% (P) is the vector
that is obtained by “transporting” A* from @) to P. We may write this as DA% =
dA* + §A“, where §A® = A% (P) — A*(Q) is also not a tensorial operation. The
precise rule for parallel transport must now be specified. We demand that § A* be
linear in both A* and dz?, so that §4® = re,s A" dz? for some (nontensorial) field
Fauﬁ called the connection. A priori, this field is freely specifiable.

We now have DA% = AD‘, ﬁdxﬁ +1%5 ArdzP | and dividing through by dA, the
increment in the curve’s parameter, we obtain

pAe
where u? = dz? /d) is the tangent vector, and
A%y = A%, £ T2, AW, (12.2)

This is the covariant derivative of the vector A%. Other standard notations are
A";ﬁ = VgA® and DA%*/d\ = V,A°.
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Figure 1.2: Differentiation of a tensor.

The fact that A% is a tensor allows us to deduce the transformation property
of the connection. Starting from I'?) s A* = A% 5 — A%g, it is easy to show that

82z 98
e pAr — =2 T u
B OzrO0zP OxP'

! B
FO‘I, ,ANI _ 6{1)a 633
wp Oz OzP'
Expressing A" in terms of A on the left-hand side and using the fact that A* is
an arbitrary vector field, we obtain
. Ozt Bz daP %z 9xP

a

Fa ! ! = 7 - 5 —,.
WB Hgh 9z dzF ~ M8 HxrdzP dxP

Multiplying through by dz*/ dz"" and rearranging the indices, we arrive at

. oz® oxP Oz* 82z 9zP Ozt
(o2 - _ 0= ~—-= a _
s = Oz OzB' Ozt Tus OzrOxB Ozh' dxh' (1.2.3)

Covariant differentiation can be extended to other types of tensors by demanding
that the operator D obey the product rule of differential calculus. (For scalars, it
is understood that D = d.) For example, we may derive an expression for the
covariant derivative of a dual vector from the requirement

d(A%p,) = D(A%py) = (DA%)ps + A*D(pa)-

Writing the left-hand side as A®gp,da® + A%p, gda’ and using Egs. (1.2.1) and
(1.2.2), we obtain
Dp
where
Paip = Pas — I D0 (1.2.5)
This procedure generalizes easily to tensors of arbitrary type. For example, the
covariant derivative of a type-(1,1) tensor is given by

By =Thy+ FQMTHB - F“ﬂ'yT‘fV (1.2.6)

The rule is that there is a connection term for each tensorial index; it comes with a
plus sign if the index is a superscript, or with a minus sign if the index is a subscript.
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Up to now the connection has been left completely arbitrary. A specific choice
is made by demanding that it be symmetric and metric compatible,

Fa,.yﬁ = 1"&677 gaB;'y = 0. (1.2.7)

In general relativity, these properties come as a consequence of Einstein’s principle
of equivalence. It is easy to show that Egs. (1.2.7) imply

1
Faﬁw = 9 g (guﬁ’,’y + 9uy,8 — gﬁ’y,u)- (1.2.8)

Thus, the connection is fully determined by the metric. In this context, I'%.,, are
called the Christoffel symbols.

We conclude this section with some terminology: A tensor field Ta"'B,,, is said
to be parallel transported along a curve ~ if its covariant derivative along the curve
vanishes: DT"‘"'B,,,/d/\ =T*"5..,,u* =0.

1.3 Geodesics

A curve is a geodesic if it extremizes the distance between two fixed points.
Let a curve v be described by the relations z®(A), where A is an arbitrary
parameter, and let P and () be two points on this curve. The distance between P

and () along 7 is given by
Q
L =/ \/ £ gapi®iP d, (1.3.1)
P

where £* = dz®/dA. In the square root, the positive (negative) sign is chosen if the
curve is spacelike (timelike); it is assumed that ~y is nowhere null. It is clear that £
is invariant under a reparameterization of the curve, A — X' ().
The curve for which £ is an extremum is determined by substituting the “La-
grangian” L(i*, z#) = (£g,,@*4")'/? into the Euler-Lagrange equations,
d oL oL

d\ 9z 9z
A straightforward calculation shows that () must satisfy the differential equation
i+ Famirﬁ 27 = k(\)&® (arbitrary parameter), (1.3.2)

where K = dIn L/d)\. The geodesic equation can also be written as u"‘;Buﬂ = Ku®,
in which u®* = &% is tangent to the geodesic.

A particularly useful choice of parameter is proper time 7 when the geodesic
is timelike, or proper distance s when the geodesic is spacelike. (It is important
that this choice be made after extremization, and not before.) Because dr? =
—gapdz®da? for timelike geodesics and ds? = g,sdz®dz® for spacelike geodesics,
we have that L = 1 in either case, and this implies K = 0. The geodesic equation
becomes

%+ Faﬁwdrﬁdr”’ =0 (affine parameter), (1.3.3)

or u® ﬁuﬁ = 0, which states that the tangent vector is parallel transported along
the geodesic. These equations are invariant under reparameterizations of the form
A = X = a)+b, where a and b are constants. Parameters related to s and 7 by such
transformations are called affine parameters. It is useful to note that Eq. (1.3.3)
can be recovered by substituting L' = % gapt®3” into the Euler-Lagrange equations;
this gives rise to practical method of computing the Christoffel symbols.
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By continuity, the general form u";ﬂuﬁ = ku® for the geodesic equation must
be valid also for null geodesics. For this to be true, the parameter A cannot be
affine, because ds = dr = 0 along a null geodesic, and the limit is then singular.
However, affine parameters can nevertheless be found for null geodesics. Starting
from Eq. (1.3.2) it is always possible to introduce a new parameter \* such that
the geodesic equation will take the form of Eq. (1.3.3). It is easy to check that the
appropriate transformation is

Ci;:\* = exp [/A /-e()\')d)\'] : (1.3.4)

(You will be asked to provide a proof of this statement in Sec. 1.13, Problem 2.) It
should be noted that while the null version of Eq. (1.3.2) was obtained by a limiting
procedure, the null version of Eq. (1.3.3) cannot be considered to be a limit of the
same equation for timelike or spacelike geodesics: the parameterization is highly
discontinuous.

We conclude this section with the following remark: Along an affinely param-
eterized geodesic (timelike, spacelike, or null), the scalar quantity e = u®u, is a
constant. The proof requires a single line:

de

e (u®uq).5u° = (u‘fﬁuﬂ)ua + u® (uq;pu?) = 0.

If proper time or proper distance is chosen for A, then £ = F1, respectively. For a
null geodesic, € = 0.

1.4 Lie differentiation

In Sec. 1.2, covariant differentiation was defined by introducing a rule to transport
a tensor from a point ) to a neighbouring point P, at which the derivative was
to be evaluated. This rule involved the introduction of a new structure on the
manifold, the connection. In this section we define another type of derivative —
the Lie derivative — without introducing any additional structure.

Consider a curve v, its tangent vector u® = dz®/d)\, and a vector field A
defined in a neighbourhood of v (Fig. 1.2). As before, the point P shall have the
coordinates z%, while the point ) shall be at ¢ + dz®. The equation

' = 2% +dz® = 2% + u*d\
can be interpreted as an infinitesimal coordinate transformation from the system z

to the system z'. Under this transformation, the vector A% becomes

or'®
AB
5P (z)

(6% +ug dN) AP ()
= A%(z) +u®zAP(z) dA.

Ala(ml)

In other words,
A'%(Q) = A¥(P) + uo‘,ﬁAﬂ(P) dA.

On the other hand, A*(Q), the value of the original vector field at the point @, can
be expressed as
A%(Q) = A%z + do)
= A%=) + A%(2) daP
= A*(P)+uPA%4(P)d.
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In general, A'*(Q) and A*(Q) will not be equal. Their difference defines the Lie
derivative of the vector A% along the curve 7:

_ A%Q) - A (Q)
= o :

Combining the previous three equations yields

£,A%(P)

£,A% = A% guP — u®g AP, (1.4.1)

Despite an appearance to the contrary, £, A% is a tensor: It is easy to check that
Eq. (1.4.1) is equivalent to

whose tensorial nature is evident.
The definition of the Lie derivative extends to all types of tensors. For scalars,
£.f =df = fou®. For dual vectors, the same steps reveal that

Lupa = pa,ﬁuﬁ + uﬁ,apﬁ
(1.4.3)
= pa;Buﬂ + uﬁ;apﬁ-
As another example, the Lie derivative of a type-(1,1) tensor is given by
TG = T =, T+ T
(1.4.4)

— a no_ o w © a

= Bipu U u;uTﬁ"'u;BTu'
Further generalizations are obvious. It may be verified that the Lie derivative obeys
the product rule of differential calculus. For example, the relation

£4(A%g) = (£.A4%)ps + A% (£upp) (1.4.5)

is easily established.

A tensor field T""'B,_ is said to be Lie transported along a curve ~y if its Lie
derivative along the curve vanishes: £uT°‘"'5___ =0, where u® is the curve’s tangent
vector. Suppose that the coordinates are chosen so that z!, z2?, and z® are all
constant on 7, while 20 = X varies on 7. In such a coordinate system,

a __ da® * ca
u- = d\ — Y0

where the symbol “=” means “equals in the specified coordinate system”. It follows

that u®4 = 0, so that

0
T =T . yut = 55T g
If the tensor is Lie transported along ~y, then the tensor’s components are all inde-
pendent of z° in the specified coordinate system.
We have established the following theorem:

If £uT°""ﬁm = 0, that is, if a tensor is Lie transported along a curve v with
tangent vector u®, then a coordinate system can be constructed such that u® = 6%
and T*75 = 0. Conversely, if in a given coordinate system the components of a
tensor do not depend on a particular coordinate x°, then the Lie derivative of the
tensor in the direction of u® vanishes.

Thus, the Lie derivative is the natural construct to express, covariantly, the
invariance of a tensor under a change of position.
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1.5 Killing vectors

If, in a given coordinate system, the components of the metric do not depend on
2%, then by the preceding theorem, £¢g,5 = 0, where £* = 0%. The vector £¢ is
then called a Killing vector. The condition for £ to be a Killing vector is that

0= £§gaﬁ =&ap +&pia- (1.5.1)

Thus, the tensor &5 is antisymmetric if £* is a Killing vector.

Killing vectors can be used to find constants associated with the motion along
a geodesic. Suppose that u® is tangent to a geodesic affinely parameterized by .
Then

d a «

a(u §a) = (u ga);ﬁuﬂ
u‘fﬁuﬁéa + Enpuu’
0.

In the second line, the first term vanishes by virtue of the geodesic equation, and
the second term vanishes because .5 is an antisymmetric tensor and u®u® is
symmetric. Thus, u*§, is constant along the geodesic.

As an example, consider a static, spherically symmetric spacetime with metric

ds? = —A(r) dt? + B(r) dr? + r? dQ?,

where d0? = df? + sin? § d¢>. Because the metric does not depend on ¢ nor ¢, the
vectors s 5
=% 0= 55

are Killing vectors. This implies that along timelike geodesics, the quantities
E=-uafly,  L=uay

are constants. These can be interpreted as energy and angular momentum per unit
mass, respectively. It should also be noted that spherical symmetry implies the
existence of two additional Killing vectors,

5?1)8(1 = sin¢ dy + cot @ cos ¢ Oy, 5?2)6(1 = —cos¢ Oy + cot sin ¢ 0.

It is straightforward to show that these do indeed satisfy Killing’s equation (1.5.1).
(To prove this is the purpose of Sec. 1.13, Problem 5.)

1.6 Local flatness

For a given point P in spacetime, it is always possible to find a coordinate system
z® such that

ga/Bl(P) :’l’]a/B/’ Faﬁ,,y,(P) =07 (161)

where 7,5 = diag(—1,1,1,1) is the Minkowski metric. Such a coordinate system
will be called a local Lorentz frame at P. We note that it is not possible to also
set the derivatives of the connection to zero if the spacetime is curved. The phys-
ical interpretation of the local-flatness theorem is that free-falling observers see no
effect of gravity in their immediate vicinity, as required by Einstein’s principle of
equivalence.
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We now prove the theorem. Let % be an arbitrary coordinate system, and let
us assume, with no real loss of generality, that P is at the origin of both coordinate
systems. Then the coordinates of a point near P are related by

2% = aﬁlmﬁ +0(z?), % = Aaﬁla:’g, + O(="?),

where A"‘é and A"‘B, are constant matrices. It is easy to check that one is in fact
the inverse of the other:

"AM _ sa o
A°, AV = 6%, A°y AVy = 6%.
Under this transformation, the metric becomes
galﬁl (P) = Aaal Aﬂﬁ’gaﬂ(P)

We demand that the left-hand side be equal to 1 g. This gives us 10 equations for
the 16 unknown components of the matrix A% ,. A solution can always be found,
with 6 undetermined components. This corresponds to the freedom of performing a
Lorentz transformation (3 rotation parameters and 3 boost parameters) which does
not alter the form of the Minkowski metric.

Suppose that a particular choice has been made for A%,. Then AO‘; is found
by inverting the matrix, and the coordinate transformation is known to first order.
Let us proceed to second order:

7

’ 1 ’
z® = A"‘Bwﬁ + 2 Baﬁ,yxﬁm'y + O(z?),

where the constant coefficients B“/;W are symmetric in the lower indices. Recalling
Eq. (1.2.3), we have that the connection transforms as

! _qa' 4B g7 " AB A
Yo (P) = A A% AT T (P) = B A5 A7,
To put the left-hand side to zero, it is sufficient to impose
%, = A%, (P).

These equations determine Ba[;,y uniquely, and the coordinate transformation is
now known to second order. Irrespective of the higher-order terms, it enforces
Egs. (1.6.1).

We shall return in Sec. 1.11 with a more geometric proof of the local-flatness
theorem, and its extension from a single point P to an entire geodesic 7.

1.7 Metric determinant

The quantity \/—g, where g = det[gqs], occurs frequently in differential geometry.
We first note that /g'/g, where ¢’ = det[gyp'], is the Jacobian of the transforma-
tion £ — 2 (®). To see this, recall from ordinary differential calculus that under
such a transformation, d*z = Jd*z', where J = det[0z®/8z'] is the Jacobian.
Now consider the transformation of the metric,

_ 9z® 9P
ga’ﬁ’ - amal amﬁl gaﬁ

Because the determinant of a product of matrices is equal to the product of their
determinants, this equation implies g’ = gJ?, which proves the assertion.

As an important application, consider the transformation from xa', a local
Lorentz frame at P, to £, an arbitrary coordinate system. The four-dimensional
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volume element around P is d'z’ = J 1d'z = \/g/g' d*z. But since ¢’ = —1, we

have that
V—gd'z (1.7.1)

is an invariant volume element around the arbitrary point P. This result generalizes
to a manifold of any dimension with a metric of any signature; in this case, | g|1/ 2dng
is the invariant volume element, where n is the dimension of the manifold.
We shall now derive another useful result,
u 1., 1
Th,, = 39" Juva = \/T—g(’/_g),a' (1.7.2)
Consider, for any matrix M, the variation of In |[det M| induced by a variation of
M’s components. Using the product rule for determinants, we have

0ln |det M|

In|det(M + dM)| — In |det M|
det(M + 6M)
detM
= IndetM (M + 6§ M)
= Indet(1+ M~ '6M).

= In

We now use the identity det(1+€) = 1+ Tre + O(e?), valid for any “small” matrix
€. (Try proving this for 3 x 3 matrices.) This gives
Sln|detM| = In(1+Tr M 16M)
= TrM~6M.

Substituting the metric tensor in place of M gives §1n |g| = g*6gap, or
9 o

_— — 2B

8.’13'” ln |g| =g gaﬁaﬂ‘

This establishes Eq. (1.7.2).
Equation (1.7.2) gives rise to the divergence formula: For any vector field A%,

o 1 «
A%, = \/T_g(\/_—gA )’a. (1.7.3)
A similar result holds for any antisymmetric tensor field B*5:
1
B8 _ Ve

These formulae are useful for the efficient computation of covariant divergences.

1.8 Levi-Civita tensor

The permutation symbol [a 8+ 4], defined by

+1 if av4 is an even permutation of 0123
[@B~yd =< -1 if a6 is an odd permutation of 0123 (1.8.1)
0 if any two indices are equal

is a very useful, non-tensorial quantity. For example, it can be used to give a
definition for the determinant: For any 4 x 4 matrix Mg,

det[Mog] = [afy6]MooMigMyyMss
(1.8.2)
= [aBv0]|MaoMpgi M,y Mss.
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Either equality can be established by brute-force computation. The well-known
property that det[Mpa,] = det[Myp] follows directly from Eq. (1.8.2).
We shall now show that the combination

Eapys = V—glaB ] (1.8.3)
is a tensor, called the Levi-Civita tensor. Consider the quantity
0z 0z° 0xY 0x°
Oz 9zh' Oz 9z’

which is completely antisymmetric in the primed indices. This must therefore be
proportional to [a' 8’ v' 8']:

[aBv4d]

Oz OxP Ox" Ox’
Oz 0xP' Oz Oz9'

for some proportionality factor A. Putting o/3'~'6" = 0123 yields

[a 8] =o' B+ '],

0z® 928 0z 0x°
0zY" Oz dx? Oz3"”’
which determines A. But the right-hand side is just the determinant of the matrix

dx*/dx® | that is, the Jacobian of the transformation z (z®). So A = 1/g'/g, and
we have

A=lafvd]

Oz~ 0zP dx7 dx° - ot
Va!) [aﬂlyé] o1 0zP 9z Oz° =v -9 [Oé B Y 6]

This establishes the fact that e43,6 does indeed transform as a type-(0,4) tensor.
The preceding proof could have started instead with the relation

9z 9z 0z 8z

—NITA Al st
[aﬂfy(s]axa 8.’[55 ax’y 6.’56 —A[OKIB’Y(S],
implying X' = /g/¢' and showing that
gh18 — _\/% [aB 4] (1.8.4)

transforms as a type-(4,0) tensor. (The minus sign is important.) It is easy to
check that this is also the Levi-Civita tensor, obtained from e,g,5 by raising all
four indices. Alternatively, we may show that £a8,6 = gaugprgyrgspe®’ . This
relation implies

1 1
£ [ — ]/)\ v A i — = —gq,
0123 /=g [tV A plgong1v92293p \/_—g!] A%

which is evidently compatible with Eq. (1.8.3).
The Levi-Civita tensor is used in a variety of contexts in differential geometry.
We will meet it again in Chapter 3.

1.9 Curvature
The Riemann tensor R%, ; may be defined by the relation

At - A" = —R"

5 gAY (1.9.1)

which holds for any vector field A%. Evaluating the left-hand side explicitly yields

Raﬁ’ﬁ = Fa,@d,'y - Faﬁ'y,é +I F“ﬂg - Famsr (1.9.2)

w
Y Bv*
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The Riemann tensor is obviously antisymmetric in the last two indices. Its other
symmetry properties can be established by evaluating R%_; in a local Lorentz frame
at some point P. A straightforward computation gives

w1

Rapys 2 (gaé,ﬁ“r ~ 9av,86 — 9Bs,0y T gﬂmaé)v

and this implies the tensorial relations

Raﬁ’)‘é = _Rﬂa’yé = _Raﬁ5'y = R’yéaﬁ (193)

and
Ruopy + Ruvap + Rugya =0, (1.9.4)

which are valid in any coordinate system. A little more work along the same lines
reveals that the Riemann tensor satisfies the Bianchi identities,

Ruvapiy + Ruvyasp + Ruvpysa = 0. (1.9.5)

In addition to Eq. (1.9.1), the Riemann tensor satisfies the relations

PusaB — PusBa = R0ppy (1.9.6)

and
T, 5 — T 50 = —R'asT + B 0sTY, (1.9.7)
which hold for arbitrary tensors po and T'%. Generalization to tensors of higher
ranks is obvious: the number of Riemann-tensor terms on the right-hand side is
equal to the number of tensorial indices.
Contractions of the Riemann tensor produce the Ricci tensor R and the Ricci
scalar R. These are defined by

Rap = R*

s R=FR%. (1.9.8)

It is easy to show that R,p is a symmetric tensor. The FEinstein tensor is defined
by

1
Gag = Rag — 5 Rgag; (1.9.9)
this is also a symmetric tensor. By virtue of Eq. (1.9.5), the Einstein tensor satisfies
G 5 =0, (1.9.10)
the contracted Bianchi identities.
The Finstein field equations,
G*P = 8n TP, (1.9.11)

relate the spacetime curvature (as represented by the Einstein tensor) to the dis-
tribution of matter (as represented by 7%, the stress-energy tensor). Equation
(1.9.10) implies that the stress-energy tensor must have a zero divergence: T*? 5=
0. This is the tensorial expression for energy-momentum conservation. Equaﬁon
(1.9.10) implies also that of the ten equations (1.9.11), only six are independent.
The metric can therefore be determined up to four arbitrary functions, and this
reflects our complete freedom in choosing the coordinate system. We note that the
field equations can also be written in the form

1
R = & (T"‘B -5 Tgaﬂ), (1.9.12)

where T' = T'¢, is the trace of the stress-energy tensor.
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1.10 Geodesic deviation

The geometrical meaning of the Riemann tensor is best illustrated by examining
the behaviour of neighbouring geodesics. Consider two such geodesics, vy and 71,
described by relations z*(t) in which ¢ is an affine parameter; the geodesics can
be either spacelike, timelike, or null. We want to develop the notion of a deviation
vector between these two geodesics, and derive an evolution equation for this vector.

For this purpose we introduce, in the space between o and 71, an entire family of
interpolating geodesics (Fig. 1.3). To each geodesic we assign a label s € [0, 1], such
that v9 comes with the label s = 0 and y; with s = 1. We collectively describe these
geodesics with relations z%(s,t), in which s serves to specify which geodesic and ¢
is an affine parameter along the specified geodesic. The vector field u* = 9z* /0t is
tangent to the geodesics, and it satisfies the equation uo‘;ﬂuﬁ =0.

If we keep ¢ fixed in the relations x(s,t) and vary s instead, we obtain another
family of curves, labelled by ¢t and parameterized by s; in general these curves will
not be geodesics. The family has £* = Jz*/0s as its tangent vector field, and the
restriction of this vector to 9, £%*|s=0, gives a meaningful notion of a deviation
vector between vy and ;. We wish to derive an expression for its acceleration,

2¢a
Ddtﬁ = (&puP) 07, (1.10.1)
in which it is understood that all quantities are to be evaluated on ~y. In flat
spacetime, the geodesics 79 and 7, are straight, and although their separation may
change with ¢, this change is necessarily linear: D?¢%/dt? = 0 in flat spacetime.
A nonzero result for D?£%/dt? will therefore reveal the presence of curvature, and
indeed, this vector will be found to be proportional to the Riemann tensor.
It follows at once from the relations u® = 0z /0t and £* = 0z /Js that

£,6% = £.u% =0 = £2quf = el (1.10.2)

We also have at our disposal the geodesic equation, u® ﬂuﬂ = 0. These equations
can be combined to prove that £%u, is constant along 7o:

Uo = (gaua);ﬁuﬁ

= g e+ uapu”

= ¢ uq

1 (e}
= 5(“ ua);Bfﬁ

Figure 1.3: Deviation vector between two neighbouring geodesics.
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because u®u, = € is a constant. The parameterization of the interpolating geodesics
can therefore be tuned so that on g, £€% is everywhere orthogonal to u®:

£%uq = 0. (1.10.3)

This means that the curves ¢ = constant cross 7y orthogonally. This adds weight
to the interpretation of £* as a deviation vector.

We may now calculate the relative acceleration of 1 with respect to vo. Starting
from Eq. (1.10.1) and using Egs. (1.9.1) and (1.10.2), we obtain

D2§a
dt?

(§%pu ),'yu’y
(u’; &%), u’
= u® §Bu'y + u®pEh w0
(u®,5 — R%p, u”)fBM +ulgu 7757
= (u ;7“7);[556 —uu ;ﬁgﬁ - R uﬁvuufﬁlﬂ + uoéﬂuﬁwf’y‘

The first term vanishes by virtue of the geodesic equation, while the second and
fourth terms cancel out, leaving

D2£a
dt?
This is the geodesic deviation equation. It shows that curvature produces a rela-

tive acceleration between two neighbouring geodesics; even if they start parallel,
curvature prevents the geodesics from remaining parallel.

% 5P’ (1.10.4)

1.11 Fermi normal coordinates

The proof of the local-flatness theorem presented in Sec. 1.6 gives very little in-
dication as to how one might construct a coordinate system that would enforce
Egs. (1.6.1). Our purpose in this section is to return to this issue, and provide a
more geometric proof of the theorem. In fact, we will extend the theorem from a
single point P to an entire geodesic . For concreteness we will take the geodesic
to be timelike.

We will show that we can introduce coordinates & = (¢,2®) such that near ~,
the metric can be expressed as

gt = —-1- Rtatb(t)wamb + 0(1.3)7
2
Jta — _gRtbac(t)mbxc + 0(1'3)7 (1111)
1
Gab = 6ab - 3Racbd( ) + O( )

These coordinates are known as Fermi normal coordinates, and t is proper time
along the geodesic v, on which the spatial coordinates z® are all zero. In Eq. (1.11.1),
the components of the Riemann tensor are evaluated on <y, and they depend on ¢
only. It is obvious that Eq. (1.11.1) enforces gngly = 73 and F“aﬂh = 0. The
local-flatness theorem therefore holds everywhere on the geodesic.

1.11.1 Geometric construction

We will use % = (t,2%) to denote the Fermi normal coordinates, and 2 will refer
to an arbitrary coordinate system. We imagine that we are given a spacetime with
a metric g, g’ expressed in these coordinates.
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We consider a timelike geodesic v in this spacetime. Its tangent vector is u"",
and we let ¢ be proper time along . On this geodesic we select a point O at which
we set ¢ = 0. At this point we erect an orthonormal basis €f (the subscript u

serves to label the four basis vectors), and we identify é,?" with the tangent vector
u® at O. From this we construct a basis everywhere on « by parallel transporting

éfjl away from O. QOur basis vectors therefore satisfy

! ! 7 7

egu’ =0, & =u”, (1.11.2)

as well as .
Jarpr €% 65 =, (1.11.3)

everywhere on 7. Here, 7, = diag(—1,1,1,1) is the Minkowski metric.

Consider now a spacelike geodesic 3 originating at a point P on v, at which
t = tp. This geodesic has a tangent vector vo", and we let s denote proper distance
along ; we set s = 0 at P. We assume that at P, v® is orthogonal to u® , so that
it admits the decomposition

o
(Y

=QeeY. (1.11.4)

o a

To ensure that v® is properly normalized, the expansion coefficients must satisfy
3.60%0° = 1. By choosing different coefficients Q® we can construct new geodesics
B that are also orthogonal to v at P. We shall denote this entire family of spacelike
geodesics by S(tp, 2%).

The Fermi normal coordinates of a point ) located off the geodesic v are con-
structed as follows (Fig. 1.4). First we find the unique geodesic that passes through
(@ and intersects vy orthogonally. We label the intersection point P, and we call this
geodesic ﬂ(tp,Q“Q), with tp denoting proper time at the intersection point, and

¢ the expansion coefficients of v® at that point. We then assign to ) the new
coordinates

2 =tp, 2" =0%sq, (1.11.5)

where sg is proper distance from P to (). These are the Fermi normal coordinates

of the point ). Generically, therefore, z* = (¢,02%s), and we must now figure out
how these coordinates are related to % , the original system.

1.11.2  Coordinate transformation

For this purpose, we note first that we can describe the family of geodesics (¢, 2%)
by relations of the form z* (¢,2%,s). In these, the parameters ¢ and Q* serve to

Figure 1.4: Geometric construction of the Fermi normal coordinates.
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specify which geodesic, and s is proper distance along this geodesic. If we substitute
s = 0 in these relations, we recover the description of the timelike geodesic « in
terms of its proper time ¢; the parameters Q2 are then irrelevant. The tangent to

the geodesics 5(t, Q%) is
v = (‘% ) : (1.11.6)
9s )y qa

the notation explicitly indicates that the derivative with respect to s is taken while
keeping t and Q® fixed. This vector satisfies the geodesic equation and is subjected
to the initial condition v® ;=g = Q%¢%". But the geodesic equation is invariant
under a rescaling of the affine parameter, s — s/c¢, in which ¢ is a constant. Under
this rescaling, v* = cv® and as a consequence, we have that Q2% — ¢Q?. We have
therefore established the identity = (t,9Q9,s) = z (t,cQ*, s/c), and as a special
case, we find

z® (t,9% 5) = 2% (t, 2%, 1) = 2% (z). (1.11.7)

By virtue of Egs. (1.11.5), this relation is the desired transformation between z®
and the Fermi normal coordinates.
Now, as a consequence of Eqgs. (1.11.4), (1.11.6), and (1.11.7), we have

Qa‘éa, _ Ual _ 8(13'(1 _ 8-73(1 a
N v 63 s=0 61-11 s=0 ’
which shows that
oz o
=é&r. (1.11.8)
ox° N

From our previous observation that the relations z* (t,2%,0) describe the geodesic
v, we also have

oz
ot

1
a

=u® = e, (1.11.9)

Equations (1.11.8) and (1.11.9) tell us that on vy, dz® /0z# = &3 .

1.11.8 Deviation vectors

Suppose now that in the relations z® (t,Q°, 5), the parameters Q% are varied while
keeping ¢t and s fixed. This defines new curves that connect different geodesics 8 at
the same proper distance s from their common intersection point P on «y. This is
very similar to the construction described in Sec. 1.10, and the vectors

o '
¢ = (am )ts (1.11.10)
are deviation vectors relating geodesics (t, Q%) with different coefficients 2. Sim-
ilarly,
' oz
& = ( ) (1.11.11)
ot /s qe

is a deviation vector relating geodesics 8(t, 2*) that start at different points on ~,
but share the same coefficients Q®. The four vectors defined by Eqgs. (1.11.10) and
(1.11.11) satisfy the geodesic deviation equation, Eq. (1.10.4). (It must be kept
in mind that in this equation, the tangent vector is Ua’, not ua', and the affine
parameter is s, not t.)
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1.11.4 Metric on vy

The components of the metric in the Fermi normal coordinates are related to the
old components by the general relation

oz oz’
00 = g gap I

Evaluating this on v yields gagly = ég'ég’ga:ﬁ:, after using Egs. (1.11.8) and
(1.11.9). Substituting Eq. (1.11.3), we arrive at

9ap |, = Tap- (1.11.12)

This states that in the Fermi normal coordinates, the metric is Minkowski every-
where on the geodesic .

1.11.5 First deriwatives of the metric on vy

To evaluate the Christoffel symbols in the Fermi normal coordinates, we recall from
Eq. (1.11.5) that the curves z° = ¢, 2* = Q%s are geodesics, so that these relations
must be solutions to the geodesic equation,

d*z® dzP dx”

- &3 - =
ds? ey ds ds
This gives T'%_(z®)Q°Q° = 0. On 7, the Christoffel symbols are functions of ¢
only, and are therefore independent of Q%. Since these coefficients are arbitrary, we
conclude that I'% |, = 0. To obtain the remaining components, we recall that the
basis vectors €j; are parallel transported along v, so that
de2
n a
— 4T
a s
since ¢] = u®. By virtue of Eqs. (1.11.8) and (1.11.9), we have that é5 = ¢%, in the
Fermi normal coordinates, and the parallel-transport equation implies I“’ﬁth =0.
The Christoffel symbols are therefore all zero on y. We shall write this as

AB Ay _
'Y|—y éuéy =0,

9ap |, = 0. (1.11.13)

This proves that the Fermi normal coordinates enforce the local-flatness theorem
everywhere on the timelike geodesic ~.

1.11.6 Second derivatives of the metric on y

We next turn to the second derivatives of the metric, or the first derivatives of the
connection. From the fact that I'%,, is zero everywhere on 7, we obtain immediately

T%. 4|, = 0. (1.11.14)

From the definition of the Riemann tensor, Eq. (1.9.2), we also get

L%, = Ryl (1.11.15)
The other components are harder to come by. For these we must involve the devi-
ation vectors £ introduced in Eqs. (1.11.10) and (1.11.11). These vectors satisfy
the geodesic deviation equation, Eq. (1.10.4), which we write in full as
d2§a d{y
B Bevod
7s2 T o (Rys + D%y = D205+ D%, J07670° = .
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According to Egs. (1.11.5), (1.11.6), (1.11.10), and (1.11.11), we have that v® =
0%6%, & = 0%, and £ = s6% in the Fermi normal coordinates. If we substitute
£* = & in the geodesic deviation equation and evaluate it at s = 0, we find
T%.cly = R%e¢ly, which is just a special case of Eq. (1.11.15).

To learn something new, let us substitute {* = £ instead. In this case we find

20%, 0 + 5 (B + Topq = D% T + D%, T, ) 2007 = 0.

Before evaluating this on 7 (which would give 0 = 0), we expand the first term in
a power series in s:

r*, = I“"ab|7 + sFaab7u|vv” + 0(32) = sl"“ab,d|’yﬂd + 0(32).
Dividing through by s and then evaluating on 7, we arrive at
(R +30%,.4) | 207 = .

Because the coefficients Q2 are arbitrary, we conclude that the quantity within the
brackets, properly symmetrized in the indices b and d, must vanish. A little algebra
finally reveals

o 1

r ab,C|»y = _S(Raabc + Rabac) |’Y' (1.11.16)

Equations (1.11.14), (1.11.15), and (1.11.16) give the complete set of derivatives of
the Christoffel symbols on 7.

It is now a simple matter to turn these equations into statements regarding the
second derivatives of the metric at 7. Because the metric is Minkowski everywhere
on the geodesic, only the spatial derivatives are nonzero. These are given by

Jtt,ab = _2Rtatb|,y:
2

Gta,bc = _g (Rtbac + thab) |’Y’ (1.11.17)
1

9ab,cd = _g (Racbd + Radbc) |’Y'

From Egs. (1.11.12), (1.11.13), and (1.11.17) we recover Egs. (1.11.1), the expansion
of the metric about -y, to second order in the spatial displacements .

1.11.7 Riemann tensor in Fermi normal coordinates

To express a given metric as an expansion in Fermi normal coordinates, it is nec-
essary to evaluate the Riemann tensor on the reference geodesic, and write it as a
function of ¢ in this coordinate system. This is not as hard as it may seem. Because
the Riemann tensor is evaluated on 7, we need to know the coordinate transforma-
tion only at +; as was noted above, this is given by dz® [0zt = éﬁ'. We therefore
have, for example,

! ’ ! ’
_ PNTAPNGLPN G PN
Riabe(t) = Ruyarpry € €5 € €] .

The difficult part of the calculation is therefore the determination of the orthonormal
basis (which is parallel transported on the reference geodesic). Once this is known,
the Fermi components of the Riemann tensor are obtained by projection, and these
will naturally be expressed in terms of ¢.
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1.12 Bibliographical notes

Nothing in this text can be claimed to be entirely original, and the bibliographical
notes at the end of each chapter intend to give credit where credit is due. During
the preparation of this chapter I have relied on the following references: d’Inverno
(1992); Manasse and Misner (1963); Misner, Thorne, and Wheeler (1973); Wald
(1984); and Weinberg (1972).

More specifically:

Sections 1.2, 1.4, and 1.6 are based on Secs. 6.3, 6.2, and 6.11 of d’Inverno,
respectively. Sections 1.7 and 1.8 are based on Secs. 4.7 and 4.4 of Weinberg,
respectively. Section 1.10 is based on Sec. 3.3 of Wald. Finally, Sec. 1.11 and
Problem 10 below are based on the paper by Manasse and Misner.

1.13 Problems

Warning: The results derived in Problem 9 are used in later portions of this book.

1. The surface of a two-dimensional cone is embedded in three-dimensional flat
space. The cone has an opening angle of 2. Points on the cone which all
have the same distance r from the apex define a circle, and ¢ is the angle that
runs along the circle.

a) Write down the metric of the cone, in terms of the coordinates r and ¢.

b) Find the coordinate transformation z(r, ¢), y(r, ¢) that brings the metric
into the form ds? = dx? + dy®. Do these coordinates cover the entire
two-dimensional plane?

c) Prove that any vector parallel transported along a circle of constant r on
the surface of the cone ends up rotated by an angle 8 after a complete
trip. Express § in terms of a.

2. Show that if t* = dz®/d) obeys the geodesic equation in the form [ ﬁtﬂ =
Kt%, then u® = dz®/d\* satisfies ua;ﬁuﬁ = 0 if A* and )\ are related by
dX\*/dX\ = exp [ k(\) dA.

3. a) Let z*(\) describe a timelike geodesic parameterized by a nonaffine param-
eter A, and let t* = dz®/d\ be the geodesic’s tangent vector. Calculate
how € = —t,t* changes as a function of A.

b) Let £ be a Killing vector. Calculate how p = £,t® changes as a function
of A\ on that same geodesic.

c) Let b* be such that in a spacetime with metric go8, £59as = 2¢gas, Where
¢ is a constant. (Such a vector is called homothetic.) Let *(7) describe
a timelike geodesic parameterized by proper time 7, and let u®* = dz® /dr
be the four-velocity. Calculate how q = b,u® changes with 7.

4. Prove that the Lie derivative of a type-(0,2) tensor is given by £,Ths =
Topspu® +ub Tup + “”;,BTau-

5. Prove that f(al) and 56"2), as given in Sec. 1.5, are indeed Killing vectors of
spherically symmetric spacetimes.

6. A particle with electric charge e moves in a spacetime with metric g, in the
presence of a vector potential A,. The equations of motion are uygu’ =
eF,puP, where u® is the four-velocity and Fps = Ag.q — Aa;p. It is assumed
that the spacetime possesses a Killing vector £%, so that £,g43 = £¢44 = 0.
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10.

11.

12.

Prove that
(Ua + eAa)Ea

is constant on the world line of the charged particle.

In flat spacetime, all Cartesian components of the Levi-Civita tensor can be
obtained from €4y, = 1 by permutation of the indices. Using its tensorial
property under coordinate transformations, calculate 4545 in the following
coordinate systems:

a) Spherical coordinates (t,r,6, ¢).

b) Spherical-null coordinates (u,v,0,¢), where u =t —r and v =t +r.

Show that your results are compatible with the general relation eqgys =
V—glaB~d] if [tr6¢] = 1 in spherical coordinates, while [uvf¢] = 1 in
spherical-null coordinates.

In a manifold of dimension n, the Weyl curvature tensor is defined by

2 2
Caprs = Raprs — ——5 (ga[vaﬂﬁ - gﬁhRé]a) o) = 2) Fanls:

Show that it possesses the same symmetries as the Riemann tensor. Also,
prove that any contracted form of the Weyl tensor vanishes identically. This
shows that the Riemann tensor can be decomposed into a tracefree part given
by the Weyl tensor, and a trace part given by the Ricci tensor. The Einstein
field equations imply that the trace part of the Riemann tensor is algebraically
related to the distribution of matter in spacetime; the tracefree part, on the
other hand, is algebraically independent of the matter. Thus, it can be said
that the Weyl tensor represents the true gravitational degrees of freedom of
the Riemann tensor.

Prove that the relations

6(;?”1/ = Ra;u/ﬁgﬂi Dé-a = _Raﬁfﬁ

are satisfied by any Killing vector £€*. Here, O = V*V, is the curved-
spacetime d’Alembertian operator. [Hint: Use the cyclic identity for the
Riemann tensor, R,a5y + Ruyas + Rupya = 0.]

Express the Schwarzschild metric as an expansion in Fermi normal coordinates
about a radially infalling, timelike geodesic.

Construct a coordinate system in a neighbourhood of a point P in spacetime,
such that gog|p = 1ag, gas,u|p =0, and

1
Gabouv|p = —3 (Rausy + Rawpy) | p-
Such coordinates are called Riemann normal coordinates.

A particle moving on a circular orbit in a stationary, axially symmetric space-
time is subjected to a dissipative force which drives it to another, slightly
smaller, circular orbit. During the transition, the particle loses an amount SE
of orbital energy (per unit rest-mass), and an amount §L of orbital angular
momentum (per unit rest-mass). You are asked to prove that these quantities
are related by 6E = Q 6L, where Q is the particle’s original angular velocity.

By “circular orbit” we mean that the particle has a four-velocity given by

u® = (& + Q&)
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where 5&) and §(°‘¢) are the spacetime’s timelike and rotational Killing vectors,
respectively; Q and v are constants.

You may proceed along the following lines: First, express 7 in terms of E
and L. Second, find an expression for du®, the change in four-velocity as the
particle goes from its original orbit to its final orbit. Third, prove the relation

uadu® = y(6E — Q4L),

from which the theorem follows.
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CHAPTER 2
(FEODESIC CONGRUENCES

Our purpose in this chapter is to develop the mathematical techniques required in
the description of congruences, the term designating an entire system of noninter-
secting geodesics. We will consider separately the cases of timelike geodesics and
null geodesics. (The case of spacelike geodesics does not require a separate treat-
ment, as it is virtually identical to the timelike case; it is also less interesting from
a physical point of view.) We will introduce the expansion scalar, as well as the
shear and rotation tensors, as a means of describing the congruence’s behaviour.
We will derive a useful evolution equation for the expansion, known as Raychaud-
huri’s equation. On the basis of this equation, we will show that gravity tends to
focus geodesics, in the sense that an initially diverging congruence (geodesics flying
apart) will be found to diverge less rapidly in the future, and that an initially con-
verging congruence (geodesics coming together) will converge more rapidly in the
future. And we will present Frobenius’ theorem, which states that a congruence is
hypersurface orthogonal — the geodesics are everywhere orthogonal to a family of
hypersurfaces — if and only if its rotation tensor vanishes.

The chapter begins (Sec. 2.1) with a review of the standard energy conditions
of general relativity, since some of these are required in the proof of the focusing
theorem. It continues (Sec. 2.2) with a simple introduction to the expansion scalar,
shear tensor, and rotation tensor, based on the kinematics of a deformable medium.
Congruences of timelike geodesics are then presented in Sec. 2.3, and the case of
null geodesics is treated in Sec. 2.4.

The techniques presented in this chapter are used in many different areas of
gravitational physics. Most notably, they are used in the mathematical descrip-
tion of event horizons, a topic covered in Chapter 5. They also play a key role
in the formulation of the singularity theorems of general relativity, a topic that
(unfortunately) is not covered in this book.

2.1 Energy conditions

2.1.1 Introduction and summary

In the context of classical general relativity, it is reasonable to expect that the
stress-energy tensor will satisfy certain conditions, such as positivity of the energy
density and dominance of the energy density over the pressure. Such requirements
are embodied in the energy conditions, which are summarized in Table 2.1.

To put the energy conditions in concrete form it is useful to assume that the
stress-energy tensor admits the decomposition

TP = pégel +py el + pyégel + pségel, (2.1.1)

23
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Table 2.1: Energy conditions.

Name Statement Conditions

Weak Topv®v? >0 p>0, p+p;i>0
Null Tosk®kP >0 p+pi >0

Strong (Top — 3T gap)v*v? >0 p+>;pi>0, p+pi>0
Dominant —T%vP future directed p>0, p>|pil

in which the vectors €j; form an orthonormal basis; they satisfy the relations

9aplel =y, (2.1.2)

where n,, = diag(—1,1,1,1) is the Minkowski metric. (It goes without saying
that the basis vectors are functions of the coordinates.) Equations (2.1.1) and
(2.1.2) imply that the quantities p (energy density) and p; (principal pressures) are
eigenvalues of the stress-energy tensor, and éj; are the normalized eigenvectors.
The inverse metric can neatly be expressed in terms of the basis vectors. It is

easy to check that the relation
g =nrrenes, (2.1.3)

where n*¥ = diag(—1,1,1,1) is the inverse of 7,,, is compatible with Eq. (2.1.2).
Equations such as (2.1.3) are called completeness relations.
If the stress-energy tensor is that of a perfect fluid, then p; = ps = p3 = p.
Substituting this into Eq. (2.1.1) and using Eq. (2.1.3) yields
Top pegeq +p(efe] + egel + égeq)
pege +p(g°° +egey)
(p+p)éges +pg*’.

Il

The vector é§ is identified with the four-velocity of the perfect fluid.

Some of the energy conditions are formulated in terms of a normalized, future-
directed, but otherwise arbitrary timelike vector v®; this represents the four-velocity
of an arbitrary observer in spacetime. In terms of the orthonormal basis, such a
vector can be expressed as

e = 'y(ég +aef+bey+ cég‘), y=0—-a®>-b* - 02)—1/2, (2.1.4)

where a, b, and c are arbitrary functions of the coordinates, such that a?+b%+c? < 1.
We will also need an arbitrary, future-directed null vector £%*. This we shall express
as

k* =e5 +a ey +b'és + ' é3, (2.1.5)

where a’, b', and ¢’ are arbitrary functions of the coordinates, such that a'2 + b2 +
¢’? = 1. Recall that the normalization of a null vector is always arbitrary.

2.1.2 Weak energy condition

The weak energy condition states that the energy density of any matter distribu-
tion, as measured by any observer in spacetime, must be nonnegative. Because an



2.1 Energy conditions 25

observer with four-velocity v® measures the energy density to be Tagvavﬁ , we must
have
Topv®o® >0 (2.1.6)

for any future-directed timelike vector v*. To put this in concrete form we substitute
Egs. (2.1.1) and (2.1.4), which gives

p+a’py +b%py + *p3 > 0.

Because a, b, ¢, are arbitrary, we may choose a = b = ¢ = 0, and this gives p > 0.
Alternatively, we may choose b = ¢ = 0, which gives p + a’?p; > 0. Recalling that
a? must be smaller than unity, we obtain 0 < p+a?p, < p+p1. So p+p1 > 0, and
similar expressions hold for p; and p3. The weak energy condition therefore implies

p>0, p+pi >0. (2.1.7)

2.1.3 Null energy condition

The null energy condition makes the same statement as the weak form, except that
v® is replaced by an arbitrary, future-directed null vector £%*. Thus,

Tak®k? >0 (2.1.8)

is the statement of the null energy condition. Substituting Egs. (2.1.1) and (2.1.5)
gives
p+api+b%ps +?ps > 0.

Choosing b = ¢ = 0 enforces @' = 1, and we obtain p + p; > 0, with similar
expressions holding for ps and p3. The null energy condition therefore implies

p+pi > 0. (2.1.9)

Notice that the weak energy condition implies the null form.

2.1.4 Strong energy condition

The statement of the strong energy condition is
1 a B
(T - 5 Tgap )0’ >0, (2.1.10)

or Tagfuavﬁ > —%T, where v is any future-directed, normalized, timelike vector.
Because Top — %Tga@ = R,p/87 by virtue of the Einstein field equations, the
strong energy condition is really a statement about the Ricci tensor. Substituting
Egs. (2.1.1) and (2.1.4) gives

Y (p + a’py + b°p2 + ¢°ps) > = (p — p1 — p2 — p3).

N | =

Choosing a = b = ¢ = 0 enforces v = 1, and we obtain p + p; + ps + p3 > 0.
Alternatively, choosing b = ¢ = 0 implies 72 = 1/(1 — a?), and after some simple
algebra we obtain p + p; + ps + p3 > a®(p2 + p3 — p — p1). Because this must hold
for any a® < 1, we have p + p; > 0, with similar relations holding for ps and ps.
The strong energy condition therefore implies

p+pi+p2+p3 >0, p+pi>0. (2.1.11)

It should be noted that the strong energy condition does not imply the weak form.
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2.1.5 Dominant energy condition

The dominant energy condition embodies the notion that matter should flow along
timelike or null world lines. Its precise statement is that if v* is an arbitrary,
future-directed, timelike vector field, then

—T"évﬁ is a future-directed, timelike or null, vector field. (2.1.12)

The quantity —T"évﬁ is the matter’s momentum density as measured by an observer
with a four-velocity v*, and this is required to be timelike or null. Substituting
Egs. (2.1.1) and (2.1.4) and demanding that —T%vﬁ not be spacelike gives

p* —a’p” — b’pe® — *ps® > 0.

Choosing a = b = ¢ = 0 gives p?> > 0, and demanding that —T%vﬂ be future
directed selects the positive branch: p > 0. Alternatively, choosing b = ¢ = 0 gives
p? > a®p1%. Because this must hold for any a? < 1, we have p > |p1|, having taken
the future direction for —T‘};vﬁ . Similar relations hold for p» and p3. The dominant
energy condition therefore implies

p>0,  p>|pil (2.1.13)

2.1.6 Violations of the energy conditions

While the energy conditions typically hold for classical matter, they can be violated
by quantized matter fields. A well-known example is the Casimir vacuum energy
between two conducting plates separated by a distance d:

w2 h

P= 7720 at

Although quantum effects allow for a localized violation of the energy conditions,
recent work suggests that there is a limit to the amount by which the energy con-
ditions can be violated globally. In this context it is useful to formulate averaged
versions of the energy conditions. For example, the averaged null energy condition
states that the integral of T,3k®k” along a null geodesic v must be nonnegative:

/ Toapk®kP dX > 0.
Y

Such averaged energy conditions play a central role in the theory of traversable
wormholes. The averaged null energy condition is known to always hold in flat
spacetime, for noninteracting scalar and electromagnetic fields in arbitrary quantum
states; this is true in spite of the fact that T,sk*k® can be negative somewhere along
the geodesic. Its status in curved spacetimes is not yet fully settled. A complete
discussion, as of 1994, can be found in Matt Visser’s book.

2.2 Kinematics of a deformable medium

2.2.1 Two-dimensional medium

As a warmup for what is to follow, consider, in a purely Newtonian context, the
internal motion of a two-dimensional deformable medium. (Picture this as a thin
film of Jell-O; see Fig. 2.1.) How the medium actually moves depends on its internal
dynamics, which will remain unspecified for the purpose of this discussion. From a
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Figure 2.1: Two-dimensional deformable medium.

purely kinematical point of view, however, we may always write that for a sufficiently
small displacement £* about a reference point O,
dge
dt

= B (1)€" + 0(€?),

for some tensor B%. The time dependence of this tensor is determined by the
medium’s dynamics. For short time intervals,

£°(t1) = £ (to) + A" (o),

where

AE* = B% (t0)&b (to) At + O(At?),
and At =t —to. To describe the action of B% we will consider the simple figure
— a circle — described by £ (tg) = ro(cos @, sin ¢).
2.2.2 FExpansion
Suppose first that B¢ is proportional to the identity matrix, so that

19 o
[ 2
Bi=(% )

where § = B%. Then A¢(* = %OTOAt(cos ¢,sin ¢), which corresponds to a change
in the circle’s radius: ;1 = ro + %GT’OAt. The corresponding change in area is then
AA = A — Ay = mro20At, so that

1 AA

The quantity 6§ is therefore the fractional change of area per unit time; we shall call
it the ezpansion parameter. This is actually a function, as 8 may depend on time
and on the choice of reference point O.

2.2.8 Shear

Suppose next that B% is symmetric and tracefree, so that

a __ U+ UX
B= (70 7).
x +
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Figure 2.2: Effect of the shear tensor.

Then AL? = roAt(oy cos @ + ox sin @, —o4 sin @ + o« cos ¢). The parametric equa-
tion describing the new figure is 71(¢) = ro(1 + 04 Atcos2¢ + o Atsin2¢). If
ox = 0, this represents an ellipse with major axis oriented along the ¢ = 0 di-
rection (Fig. 2.2). If, on the other hand, o, = 0, then the ellipse’s major axis is
oriented along ¢ = w/4. The general situation is an ellipse oriented at an arbitrary
angle. It is easy to check that the area of the figure is not affected by the transfor-
mation. What we have, therefore, is a shearing of the figure, and o4 and o are
called the shear parameters. These may also vary over the medium.

2.2.4 Rotation

Finally, we suppose that B% is antisymmetric, so that

e [ 0 w
(%),

Then AE® = rowAt(sin @, — cos ¢), and the new displacement vector is £*(t1) =
ro(cos @', sin¢'), where ¢' = ¢ — wAt. This clearly represents an overall rotation
of the original figure, which also leaves its area unchanged; w is called the rotation
parameter.

2.2.5 (General case

The most general matrix BY% has 2 x 2 = 4 components, and it may be expressed

as
lg 0 o o 0 w
a 2 + X
B (% ) (0 2+ (L 0)

The action of this most general tensor is a linear combination of expansion, shear,
and rotation. The tensor can also be expressed as

1
By = 50 Oab + 0ap + Wab,

where 6 = B?, (the expansion scalar) is the trace part of Bap, 0ap = B(ep) — %06,11,
(the shear tensor) is the symmetric-tracefree part of Bap, and wepy = Bigy (the
rotation tensor) is the antisymmetric part of Bygp.

2.2.6 Three-dimensional medium

In three dimensions, the tensor B,; would be expressed as

1
By, = 30 Oab + Oap + Wab,
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where § = B, is the expansion scalar, oap = B(ap) — %Géab the shear tensor, and
wab = Bqep) the rotation tensor. In the three-dimensional case, the expansion is the
fractional change of volume per unit time:

_ 1 AV
VAt
To see this, treat the three-dimensional relation

£ (t1) = (6% + B%A1)E (to)

as a coordinate transformation from £%(tg) to £%(¢1). The Jacobian of this trans-
formation is

J = det[s% + B%Af

1+ Tx[B%At]
= 14 6At.

This implies that volumes at to and ¢; are related by Vi = (1 4+ 0A¢)V, so that
Vof = (Vi — Vp)/At. This argument shows also that the volume is not affected by
the shear and rotation tensors.

2.3 Congruence of timelike geodesics

Let € be an open region in spacetime. A congruence in € is a family of curves such
that through each point in & there passes one and only one curve from this family.
(The curves do not intersect; picture this as a tight bundle of copper wires.) In this
section we will be interested in congruences of timelike geodesics, which means that
each curve in the family is a timelike geodesic; congruences of null geodesics will be
considered in the following section. We wish to determine how such a congruence
evolves with time. More precisely stated, we want to determine the behaviour of the
deviation vector £* between two neighbouring geodesics in the congruence (Fig. 2.3),
as a function of proper time 7 along the reference geodesic. The geometric setup is
the same as in Sec. 1.10, and the relations

utuy, = —1, u"‘;ﬁuﬂ =0, u"‘;ﬁfﬂ = §°§5u5, u“é, =0,

where u® = dz®/dr is tangent to the geodesics, will be assumed to hold. Notice in
particular that £ is orthogonal to u®: the deviation vector points in the directions
transverse to the flow of the congruence.

2.8.1 Transverse metric

Given the congruence and the associated timelike vector field u®, the spacetime
metric go3 can be decomposed into a longitudinal part —usug and a transverse
part hyg given by

hag = gap + UqUg. (2.3.1)

The transverse metric is purely “spatial”, in the sense that it is orthogonal to
u® u®hag = 0 = hapuP. Tt is effectively three-dimensional: in a comoving
Lorentz frame at some point P within the congruence, u, = (—1,0,0,0), 9o =
diag(—1,1,1,1), and hqg £ diag(0,1,1,1). We may also note the relations h®, =3

and h® h¥; = h°%.
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Figure 2.3: Deviation vector between two neighbouring members of a congruence.

2.8.2 Kinematics

We now introduce the tensor field
Baﬁ = Uq;8- (232)

Like hqg, this tensor is purely transverse, as u®Byg = u®uUq,g = %(uaua);g =0
and B,su® = ua,su® = 0. It determines the evolution of the deviation vector: from
£%5uP = u®pEP we immediately obtain

£%5u’ = B%¢EP, (2.3.3)

and we see that BY% measures the failure of £&* to be parallel transported along the
congruence.

Equation (2.3.3) is directly analogous to the first equation of Sec. 2.2. We may
decompose B,g into trace, symmetric-tracefree, and antisymmetric parts. This
gives

1
Baﬁ = 56' ha,@ + 0ap + Wag, (2.3.4)

where § = B%, = u?%, is the expansion scalar, 0,5 = B(ag)—%é? hap the shear tensor,
and wag = Blqg] the rotation tensor. These quantities come with the same inter-
pretation as in Sec. 2.2. In particular, the congruence will be diverging (geodesics
flying apart) if > 0, and it will be converging (geodesics coming together) if 8 < 0.

2.8.8 Frobenius’ theorem

Some congruences have a vanishing rotation tensor, wss = 0. These are said to be
hypersurface orthogonal, meaning that the congruence is everywhere orthogonal to
a family of spacelike hypersurfaces foliating & (Fig. 2.4). We now provide a proof
of this statement.

The congruence will be hypersurface orthogonal if 4 is everywhere proportional
to n%, the normal to the hypersurfaces. Supposing that these are described by
equations of the form ®(x®) = ¢, where ¢ is a constant specific to each hypersurface,
then n, o< ® o and

U = _N@,Ot;

for some proportionality factor u. (We suppose that @ increases toward the future,
and the positive quantity p can be determined from the normalization condition
u®uq = —1.) Differentiating this equation gives uq;3 = —pu®.03 — ® opt,5. Consider
now the completely antisymmetric tensor

1
UlaspUn] = 31 (Uaiptiy + Uyialip + UsiyUa — UBialy — UaiyUs — Uyiplia)-
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Figure 2.4: Family of hypersurfaces orthogonal to a congruence of timelike geode-
sics.

Direct evaluation of the right-hand side, using ®.3, = @43, returns zero. We
therefore have

hypersurface orthogonal = U[;8Uy] = 0. (2.3.5)

The converse of this statement, that u[,,3u,) = 0 implies the existence of a scalar
field ® such that uq x ® 4, is also true (but harder to prove).

Equation (2.3.5) is a useful result, because whether or not u® is hypersurface
orthogonal can be decided on the basis of the vector field alone, without having
to find ® explicitly. We note that the geodesic equation u";ﬂuﬁ = 0 was never
used in the derivation of Eq. (2.3.5). We also never used the fact that u®* was
normalized. Equation (2.3.5) is therefore quite general: A congruence of curves
(timelike, spacelike, or null) is hypersurface orthogonal if and only if u[q,gu, = 0,
where u® is tangent to the curves. This statement is known as Frobenius’ theorem.

We now return to our geodesic congruence, and use Egs. (2.3.2) and (2.3.4) to
calculate

MUaptly] = 2(Ufas8]Uy + Uy;a)UB T+ U5 Ua)
2(Blaguy + Blyajug + Bigyjta)

= 2(WaplUy + WyalUs + WayUa).

If we put the left-hand side to zero and multiply the right-hand side by u”, we obtain
wap = 0, because wyqu” = 0 = wg,u?. (Recall the purely transverse property of
B,s.) Therefore,

hypersurface orthogonal = wap = 0. (2.3.6)

This concludes the proof of our initial statement.

Notice that Eq. (2.3.6) holds for timelike geodesics only, whereas Eq. (2.3.5)
is general. In fact, Eq. (2.3.6) could have been derived much more directly, but
in doing so we would have bypassed the more general formulation of Frobenius’
theorem. The direct proof goes as follows.

If u® is hypersurface orthogonal, then u, = —pu® , for some scalars p and ®. It
follows from wag = u[s;5 and the symmetry of ®,,5 that

1
Wap = —Prapp = PG

But we know that was must be orthogonal to u®, and the relation wagu” = 0 implies
p.a = —(u,pu’)uy. This, in turn, establishes that the rotation tensor vanishes
identically: wqg = 0.
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We have learned that p must be constant on each hypersurface, because it varies
only in the direction orthogonal to the hypersurfaces. Thus, p can be expressed as
a function of ®, and defining a new scalar ¥ = [ p(®) d®, we find that u, is not
only proportional to a gradient, it is equal to one: u, = —¥ ,. Notice that if u,
can be expressed in this form, then it automatically satisfies the geodesic equation:
Ua;pt” = Uiog WP = Vg, UF = 3(TFT 5), = 3 (uPug)ia = 0.

In summary:

A vector field u* (timelike, spacelike, or null, and not necessarily geodesic)
is hypersurface orthogonal if there exists a scalar field ® such that ug, < @4,
which implies u[q,gu,) = 0. If the vector field is timelike and geodesic, then it is
hypersurface orthogonal if there exists a scalar field ¥ such that u, = —¥ ,, which
implies wap = U,z = 0.

2.3.4 Raychaudhuri’s equation

We now want to derive an evolution equation for 6, the expansion scalar. We begin
by developing an equation for B,g itself:

Bagpu" = ugpuut
(ua;uﬁ - Ra,,guu")u”

= (Uayu?)ip — Vot — Ravguu’u

= —BouB"; — Rappruu”.
The equation for # is obtained by taking the trace:

a9

dr
It is then easy to check that B**Bg, = 0% + 0*P04p — w*Pwas. Making the
substitution, we arrive at

de 1

- = —592 — 0% 045 + W*Pwep — Ragu®uP. (2.3.7)
This is Raychaudhuri’s equation for a congruence of timelike geodesics. We note that
since the shear and rotation tensors are purely spatial, 2 oap > 0and w“ﬁwag >0,

with the equality sign holding if and only if the tensor is identically zero.

= —B*’Bgq — RopuuP.

2.8.5 Focusing theorem

The importance of Eq. (2.3.7) for general relativity is revealed by the following
theorem: Let a congruence of timelike geodesics be hypersurface orthogonal, so that
wap = 0, and let the strong energy condition hold, so that (by virtue of the Einstein
field equations) Raguauﬂ > 0. Then the Raychaudhuri equation implies
% = —% 62 — 0*P 0,5 — Ropu®u® <0.

The expansion must therefore decrease during the congruence’s evolution. Thus, an
initially diverging (8 > 0) congruence will diverge less rapidly in the future, while
an initially converging (6 < 0) congruence will converge more rapidly in the future.
This is the statement of the focusing theorem. Its physical interpretation is that
gravitation is an attractive force when the strong energy condition holds, and the
geodesics get focused as a result of this attraction.

It also follows from Raychaudhuri’s equation that under the conditions of the
focusing theorem, df/dr < —16?. This can be integrated at once, giving

m%ﬂz%*+g,
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Figure 2.5: Geodesics converge into a caustic of the congruence.

where 6y = 0(0). This shows that if the congruence is initially converging (6y < 0),
then (1) — —oo within a proper time 7 < 3/|6o|. The interpretation of this result
is that the congruence will develop a caustic, a point at which some of the geodesics
come together (Fig. 2.5). Obviously, a caustic is a singularity of the congruence,
and equations such as (2.3.7) lose their meaning at such points.

2.8.6 FExample

As an illustrative example, let us consider the congruence of comoving world lines
in an expanding universe with metric

ds* = —dt* + a*(t) (da® + dy* + dz?),

where a(t) is the scale factor. The tangent vector field is u, = —9,t, and a quick
calculation reveals that

a
Baﬁ = U8 = E haﬁa

where an overdot indicates differentiation with respect to ¢t. This shows that the
shear and rotation tensors are both zero for this congruence. The expansion, on the
other hand, is given by ) L d
_ % _ 3
0= 3(1 =3 dta .
This illustrates rather well the general statement (made in Sec. 2.3.8 below) that
the expansion is the fractional rate of change of the congruence’s cross-sectional

volume (which is here proportional to a®).

2.3.7 Another example

As a second example, we consider a congruence of radial, marginally bound, timelike
geodesics of the Schwarzschild spacetime. The metric is

ds?> = —fdt*> + f~1dr? + r? dQ?,

where f = 1—2M/r and d? = d#? + sin? § d¢?. For radial geodesics, u? = u® =0,
and the geodesics are marginally bound if 1 = F = —uag(c;) = —u¢. This means
that the conserved energy is precisely equal to the rest-mass energy, and this gives
us the equation u* = 1/f. From the normalization condition g,pu®u® = —1 we
also get u™ = £4/2M /r; the upper sign applies to outgoing geodesics, and the lower
sign applies to ingoing geodesics.

The four-velocity is therefore given by

w8y = f 1O, % V2M/ro,, Ug dz® = —dt + f*1\/2M/rdr.
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It follows that u, is equal to a gradient: u, = —® ,, where

1 2M -1
vJ2M + Lin (L/ )

2 \r/2M +1
This means that the congruence is everywhere orthogonal to the spacelike hyper-

surfaces & = constant.
The expansion is calculated as

=t F4AM

(V=9u%) , = 5 (P,

where a prime indicates differentiation with respect to r. Completing the calculation
gives

0==%_4/—.
2V rd
Not surprisingly, the congruence is diverging (6 > 0) if the geodesics are outgoing,
and converging (6 < 0) if the geodesics are ingoing. The rate of change of the
expansion is calculated as df/dr = (df/dr)(dr/dr) = 8'u", and the result is

@ __om
dr — 23’

As dictated by the focusing theorem, df/dr is negative in both cases.

2.3.8 Interpretation of 0

We now prove that 6 is equal to the fractional rate of change of 4V, the congruence’s
cross-sectional volume: 1 d

0= 5V ar oV. (2.3.8)
Although this may already be obvious from Egs. (2.3.3) and (2.3.4), it is still in-
structive to go through a formal proof. The first step is to introduce the notions of
cross section, and cross-sectional volume.

Select a particular geodesic v from the congruence, and on this geodesic, pick
a point P at which 7 = 7p. Construct, in a small neighbourhood around P, a
small set §X(7p) of points P’ such that (i) through each of these points there passes
another geodesic from the congruence, and (ii) at each point P’, 7 is also equal to
Tp. This set forms a three-dimensional region, a small segment of the hypersurface
7 = 7p (Fig. 2.6). We assume that the parameterization has been adjusted so that
v intersects dX(7p) orthogonally. (There is no requirement that other geodesics
do, as the congruence may not be hypersurface orthogonal.) We shall call 6¥(7p)
the congruence’s cross section around the geodesic v, at proper time 7 = 7p. We
want to calculate the volume of this hypersurface segment, and compare it with the
volume of §X(7q), where @ is a neighbouring point on +y.

We introduce coordinates on 6X(7p) by assigning a label y* (a = 1,2,3) to
each point P’ in the set. Recalling that through each of these points there passes
a geodesic from the congruence, we see that we may use y° to label the geodesics
themselves. By demanding that each geodesic keep its label as it moves away from
0% (7p), we simultaneously obtain a coordinate system y® in 6X(7g) or any other
cross section. This construction therefore defines a coordinate system (7,y?) in a
neighbourhood of the geodesic «y, and there exists a transformation between this
system and the one originally in use: z® = x*(7,y®). Because y° is constant along

the geodesics, we have
1ﬂ=<@i). (2.3.9)
or ya
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Figure 2.6: Congruence’s cross section about a reference geodesic.

On the other hand, the vectors

o [0x®
e = ( 3 )T (2.3.10)

are tangent to the cross sections. These relations imply £,e% = 0, and we also have
uq €2 = 0 holding on v (and only 7).
We now introduce a three-tensor hgp, defined by

Bap = Gap €€5 . (2.3.11)

(A three-tensor is a tensor with respect to coordinate transformations y* — y"', but
a scalar with respect to transformations z® — x® .) This acts as a metric tensor on
0¥(7): For displacements contained within the set (so that dr = 0), z® = z%(y*),
and

ds?

gop dz® dz?

oz® ozP
= su( G ) (G ')

= (gapeley) dydy’
hap dy"dy".

Thus, hgp is the three-dimensional metric on the congruence’s cross sections. Be-
cause v is orthogonal to its cross sections (uq €¥ = 0), we have that hep = hagp eg‘ef
on 7, where hop = gap + Uaup is the transverse metric. If we define h?® to be the
inverse of hgp, then it is easy to check that

hoP = pob e2el (2.3.12)

on 4.

The three-dimensional volume element on the cross sections, or cross-sectional
volume, is 8V = vhd®y, where h = det[h,;]. Because the coordinates y® are
comoving (since each geodesic moves with a constant value of its coordinates), d®y
does not change as the cross section §X(7) evolves from 7 = 7p to 7 = 7¢g. A change
in 6V therefore comes entirely from a change in Vh:

1 d .. 1d . 1,,,dha
Ry =t L =



36 Geodesic congruences

We must now calculate the rate of change of the three-metric:

dhap
dr

(s eqey) v

= YoB (eg;uuu) ef + 9ap eg (ef;uuu)
= Gap (ua;ueg)eg + 9op 63 (uﬁ,ueg)
= Upia egef + Ua;p egeg

= (Bag + Bga)elel. (2.3.13)
Multiplying by h% and evaluating on v, so that Eq. (2.3.12) may be used, we obtain

a dhab ab o
he? o (Bag + Bga) (h* eley)

= 2B,sh*?
= 2Baﬁgaﬁ
= 26.

This proves that

1 d
g = Trdr Vh, (2.3.14)

which is the same statement as in Eq. (2.3.8).

2.4 Congruence of null geodesics

We now turn to the case of null geodesics. The geometric setup is the same as in
the preceding section, except that the tangent vector field, denoted k¢, is null. We
assume that the geodesics are affinely parameterized by A, so that k* = dz®/dA.
The deviation vector will again be denoted £, and we again take it to be orthogonal
to, and Lie transported along, the geodesics. The following equations therefore hold:

kkq =0, kO%kP =0, k%% =€%k°, k*¢ =0.

As in the preceding section, we will be interested in the transverse properties of
the congruence, which are described by the deviation vector £€*. We can, however,
anticipate some difficulties, because here the condition k*¢, = 0 fails to remove an
eventual component of £ in the direction of £*. One of our first tasks, therefore,
will be to isolate the purely transverse part of the deviation vector. This we will do
with the help of h,g, the transverse metric.

2.4.1 Transverse metric

To isolate the part of the metric that is transverse to k¢ is not entirely straightfor-
ward when k® is null. The expression hi, 5 = gap + kaks does not work, because
hgﬁkﬁ = ko # 0. To see what must be done, let us go to a local Lorentz frame at
some point P, and let us introduce the null coordinates u = ¢t —z and v = t+z. The
line element can then be expressed as ds®> = —du dv + dy® + dz%. Supposing that
k? is tangent to the curves u = constant, we see that the transverse line element is
d3® = dy® + dz*: the transverse metric is two-dimensional. This clearly has to do
with the fact that ds? = 0 for displacements along the v direction.

To isolate the transverse part of the metric we need to introduce another null
vector field N, such that N k* # 0. Because the normalization of a null vector is
arbitrary, we may always impose kN, = —1. If ky, = —9,u in the local Lorentz
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frame, then we might choose N, = —%aav. Now consider the object hog = gap +
koNp+ Nokg. This is clearly orthogonal to both k% and N®: hagk? = hagNP = 0.
Furthermore, h,p = diag(0,0,1,1) in the local Lorentz frame, and h,p is properly
transverse and two-dimensional. This, therefore, is the object we seek.

Let us now summarize the preceding discussion. For a congruence of null
geodesics, the transverse metric is obtained as follows: Given the null vector field
k®, select an auxiliary null vector field N, and choose its normalization to be such
that k*N, = —1. Then the transverse metric is given by

hag = gap + kaNg + Nokg. (2.4.1)
It satisfies the relations

hapk® = hapNP =0,  h% =2, h%h"5 =h%, (2.4.2)

a

which confirm that hep is purely transverse (orthogonal to both k* and N%) and
effectively two-dimensional.

Evidently, the conditions N*N, = 0 and k*N, = —1 do not determine N,
uniquely. This implies that the transverse metric is not unique. As we shall see,
however, quantities such as the expansion of the congruence will turn out to be the
same for all choices of auxiliary null vector. Further aspects of this non-uniqueness
are explored in Sec. 2.6, Problem 6.

2.4.2 Kinematics
As before, we introduce the tensor field
Bop = kays (2.4.3)
as a measure of the failure of £ to be parallel transported along the congruence:
£%5k° = B%¢P. (2.4.4)

As before, B,g is orthogonal to the tangent vector field: k*B,s = 0 = Bagk”.
However, B, is not orthogonal to N, and Eq. (2.4.4) has a non-transverse com-
ponent that should be removed.

We begin by isolating the purely transverse part of the deviation vector, which
we denote £*. Because hap is itself purely transverse, it is easy to see that

£* = ho et = £ + (N.EM)k” (2.4.5)

is the desired object. Its covariant derivative in the direction of &% represents the
relative velocity of two neighbouring geodesics. It is given by

& kP = b, BVl + b, €V kP,

where we have inserted Eq. (2.4.4) in the first term of the right-hand side. Calcu-
lating the second term gives

&gk" = 1, BE" + (Niip k%),

and we see that the vector §~“’ ﬁkﬁ has a component along k#. Once again we remove
this by projecting with h%,. Using the last of Egs. (2.4.2), we obtain
(E3K7) =hu(EK7) = ho,BLE
he, Bk, £"
= h%h"sB"E°
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for the transverse_components of the relative velocity. In the first line we have
replaced §” with 5” because B¥ k¥ = 0. In the third line we have inserted the
relation .f” h”ﬁ§5 this holds because £” is already purely transverse.

We have obtained

(£25k°) = B%EP, (2.4.6)
where B
Bop = h*,h"s B (2.4.7)

is the purely transverse part of B,,,, = k. This can be expressed in a more explicit
form by using Eq. (2.4.1):

Bag = (94 +kaN* + Nok*) (94" + kgN” + Ngk¥) B
= (g +kyN* + Nak‘”)(Buﬁ + kﬁB,“,NV)
= Bag+ kaN*Byg + kgBoyN* + kokgBu, N*N”. (2.4.8)

Equation (2.4.6) governs the purely transverse behaviour of the null congruence,
and the vector Baafﬁ can be interpreted as the transverse relative velocity between
two neighbouring geodesics.

As before, the evolution tensor Baﬁ will be decomposed into its irreducible parts:

1
Bug = 50 hag + 0ap + wWap, (2.4.9)

where § = Baa is the expansion scalar, 0,3 = B(QB) - %6 hqp the shear tensor, and
Wap = B{aﬁ] the rotation tensor. The expansion is given more explicitly by

0 = gaﬂBag
= gaﬁBaﬁ,

which follows from Eq. (2.4.8) and the fact that B,g is orthogonal to k*. From this
we obtain
6 = k2. (2.4.10)

We see explicitly that 8 does not depend on the choice of auxiliary null vector N%:
the expansion is unique. The geometric meaning of the expansion will be considered
in detail below; we will show that 6 is the fractional rate of change (per unit affine-
parameter distance) of the congruence’s cross-sectional area. (Recall that here, the
transverse space is two-dimensional.)

2.4.8 Frobenius’ theorem

We now show that if the vector field k¢ is such that w,s = 0, then the congruence
is hypersurface orthogonal, in the sense that k, must be proportional to the normal
® , of a family of hypersurfaces described by ®(z“) = c¢. These hypersurfaces must
clearly be null: g*#® ,® 5 x g*Pk,ks = 0. Furthermore, because k® is at once
parallel and orthogonal to ® , (k®® , = 0), the vector k® is also tangent to the
hypersurfaces. The null geodesics therefore lie within the hypersurfaces (Fig. 2.7);
they are called the null generators of the hypersurfaces ®(z%) = c.

We begin with the general statement of Frobenius’ theorem derived in Sec. 2.3.3:
the congruence is hypersurface orthogonal if and only if k[4,3k,] = 0. This condition
implies Bl,g1ky + B[,a)ks + Bg, ko = 0, and transvecting with N7 gives

Biag) = BlyalksN" + BigykaN”

= 1(Byaks — Bayks + Bgyka — Bygka)N”
= B,Y[akﬁ]]\m + k[aB,B],YN'Y.
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® = constant

Figure 2.7: Family of hypersurfaces orthogonal to a congruence of null geodesics.

But from Eq. (2.4.8) we also have
Biag) = Blag) — Bulakg) N* — kiaBgluN*,
and it follows immediately that B{aﬁ] = 0. We therefore have
hypersurface orthogonal = wap =0, (2.4.11)

and this concludes the proof. (In Sec. 2.6, Problem 6 we show that if wag = 0 for
a specific choice of auxiliary null vector N*, then wyg = 0 for all possible choices.)

The congruence is hypersurface orthogonal if there exists a scalar field ®(z%)
which is constant on the hypersurfaces and ko = —u® , for some scalar p. In this
form, k, automatically satisfies the geodesic equation:

ka;ﬂkﬂ = _(N(I);aﬁ"'q),aﬂ,ﬂ)kﬁ
= —(1,69°) ka,

where we have used ®,,3®* = ®,3,®” = $(®3®”), = 0. This is the general
form of the geodesic equation, corresponding to a parameterization that is not affine.
Affine parameterization is recovered if p k% = 0, that is, if 4 does not vary along
the geodesics.

2.4.4 Raychaudhuri’s equation

The derivation of the null version of Raychaudhuri’s equation proceeds much as in
Sec. 2.3.4. In particular, the equation

de

= —B*®Bg, — Rosk®k?
follows from the same series of steps. It is then easy to check that B®’Bg, =
B Bg, = 16% + 0*P 045 — w*Pw,s, which gives

% = —%92 - Ua’eo'ag +w°"3wa5 - Ragkak‘ﬁ. (2.4.12)
This is Raychaudhuri’s equation for a congruence of null geodesics. It should be
noted that this equation is invariant under a change of auxiliary null vector N%;
this is established in Sec. 2.6, Problem 6. We also note that because the shear
and rotation tensors are purely transverse, aaﬁaaﬁ > 0 and waﬁwag > 0, with the
equality sign holding if and only if the tensor vanishes.



40 Geodesic congruences

2.4.5 Focusing theorem

The null version of the focusing theorem goes as follows: Let a congruence of null
geodesics be hypersurface orthogonal, so that w,s = 0, and let the null energy
condition hold, so that (by virtue of the Einstein field equations) R,sk*k? > 0.
Then the Raychaudhuri equation implies

do 1

o —502 — 0045 — Ragk®kP <0,

which means that the geodesics are focused during the evolution of the congruence.
Integrating df/d\ < —16? yields

where 6y = 0(0). This shows that if the congruence is initially converging (6o < 0),
then §(\) - —oo within an affine parameter A < 2/|6y|. As in the case of a timelike
congruence, this generally signals the occurrence of a caustic.

2.4.6 FEzample

As an illustrative example, let us consider the congruence formed by the generators
of a null cone in flat spacetime. The geodesics emanate from a single point P (which
we place at the origin of the coordinate system) and they radiate in all directions.
(Note that P is a caustic of the congruence.) In spherical coordinates, the geodesics
are described by the relations ¢t = A\, » = A, § = constant, and ¢ = constant, in
which A is the affine parameter. The tangent vector field is

ko = —0u(t —r).

We must find an auxiliary null vector field N® that satisfies ko, N* = —1. If
we assume that N lies entirely within the (¢,r) plane, the unique solution is
No = —3084(t + 7). With this choice we find that the transverse metric is given
by has = diag(0,0,72,7%sin ). A straightforward calculation gives By = ko, =
diag(0,0,r,rsin? @), and we see that B, is already transverse for this choice of N¢.
We have found

1
Bag = — hag,
B r B

and this shows that the shear and rotation tensors are both zero for this congruence.
The expansion, on the other hand, is given by

2 1 d
r 4xr? d

(47r?).

This verifies the general statement (made in Sec. 2.4.8 below) that the expansion is
the fractional rate of change of the congruence’s cross-sectional area.

We might ask how making a different choice for N* would affect our results. It
is easy to check that the vector N, dz® = —dt + r sin 6 d¢ satisfies both N,N® =0
and N,k® = —1. Tt is therefore an acceptable choice of auxiliary null vector field.
This choice leads to a complicated expression for the transverse metric, which now
has components along ¢ and r. And while the expression for B,g does not change,
we find that Bag is no longer equal to B,g, and is much more complicated that
the expression given previously. You may check, however, that the relation Ba/g =
hag/r is not affected by the change of auxiliary null vector. Our results for 8, gog,
and w,g are therefore preserved.
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2.4.7 Another example

As a second example, we consider the radial null geodesics of Schwarzschild space-
time. For df = d¢ = 0, the Schwarzschild line element reduces to

ds> = —fdt* + f~'dr? = — f(dt — f ' dr)(dt + f~ " dr),
where f =1 — 2M/r. The displacements will be null if ds?> = 0. If we define
u=t—r" v=t+r",

where r* = [ f~'dr = r+2MIn(r/2M —1), we find that u = constant on outgoing
null geodesics, while v = constant on ingoing null geodesics. The vector fields

k" = —0,u, ko = —0,v

are null, and they both satisfy the geodesic equation, with +r as an affine parameter
for k2., and —r as an affine parameter for k2. As their labels indicate, k3"t is
tangent to the outgoing geodesics, while kI* is tangent to the ingoing geodesics.
The congruences are clearly hypersurface orthogonal. Their expansions are easily

calculated:
2
0=+-,
r

where the positive (negative) sign refers to the outgoing (ingoing) congruence. We
also have
dé 2

P
which is properly negative.

2.4.8 Interpretation of 0

We shall now give a formal proof of the statement that § is the fractional rate of
change of the congruence’s cross-sectional area:

1 d

S =5aa

SA, (2.4.13)
where JA is measured in the purely transverse directions. The proof is very sim-
ilar to what was presented in Sec. 2.3.8; the only crucial difference concerns the
dimensionality of the transverse space.

We pick a particular geodesic v from the congruence, and on this geodesic we
select a point P at which A = Ap. We then consider the null curves to which N¢
is tangent, and we let u be the parameter on these auziliary curves; we adjust the
parameterization so that p is constant on the null geodesics. The auxiliary curve
that passes through P is called 3, and we have that at P, u = u.,. The cross section
0S5 (Ap) is defined to be a small set of points P’ in a neighbourhood of P such that (i)
through each of these points there passes another geodesic from the congruence and
another auxiliary curve, and (ii) at each point P’, X is also equal to Ap and p is equal
to p,. This set forms a two-dimensional region, the intersection of small segments
of the hypersurfaces A = Ap and p = p,. We assume that the parameterization
has been adjusted so that both v and 3 intersect §S(Ap) orthogonally. (There is
no requirement that other curves do.)

We introduce coordinates in 6S(Ap) by assigning a label 84 (A = 1,2) to each
point in the set. Recalling that through each of these points there passes a geodesic
from the congruence, we see that we may use 64 to label the geodesics themselves.
By demanding that each geodesic keep its label as it moves away from 6S(Ap), we
simultaneously obtain a coordinate system 64 in any other cross section §S(\). This
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construction therefore produces a coordinate system (A, u, 0A) in a neighbourhood
of the geodesic v, and there exists a transformation between this system and the
one originally in use: z® = z%(\, u, 04). Because p and 64 are constant along the

geodesics, we have
K = (%) .
OA w04

4= (2)
064 "
are tangent to the cross sections. These relations imply £;e% = 0, and we have also
that on v (and only v), ko e§ = Ny eg = 0.

The remaining steps are very similar to those carried out in Sec. 2.3.8, and it
will suffice to present a brief outline. The two-tensor

On the other hand, the vectors

OAB = a8 eie%

acts as a metric on dS(\). The cross-sectional area is therefore defined by 6A =
Vo d?8, where o = det[o4p]. The inverse 04 of the two-metric is such that on -,
hof = gAB e4el where hap = gap + kaNjg + Naks is the transverse metric. The

relation
dO'AB

dA
follows, and taking its trace yields

= (Bag + Bga) ei{e’g

g L 94
IV

This statement is equivalent to Eq. (2.4.13).

Vo.

2.5 Bibliographical notes

During the preparation of this chapter I have relied on the following references:
Carter (1979); Visser (1995); and Wald (1984).

More specifically:

Section 2.1 is based on Sec. 9.2 of Wald and Chapter 12 of Visser. Sections 2.3
and 2.4 are based partially on Sec. 9.2 and Appendix B of Wald, as well as Sec. 6.2.1
of Carter.

2.6 Problems

Warning: The results derived in Problem 8 are used in later portions of this book.

1. Consider a curved spacetime with metric
ds®> = —dt?® + d* + 2 (€) dQ?,

where the function r(£) is such that (i) it is minimum at £ = 0, with a value
g, and (ii) it asymptotically becomes equal to || as £ — +oo.

a) Argue that this spacetime contains a traversable wormhole between two
asymptotically-flat regions, with a throat of radius rq.

b) Find which energy conditions are violated at £ = 0.
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2. We examine the congruence of comoving world lines of a Friedmann-Robert-

son-Walker spacetime, whose metric is

ds? = —dt* + a®(t) ( +7r? dQ2> ,

1 — kr2

where a(t) is the scale factor, and k a constant normalized to either +1 or
zero. The vector tangent to the congruence is u* = 9z /0t.

a) Show that the congruence is geodesic.

b) Calculate the expansion, shear, and rotation of this congruence.

c) Use the Raychaudhuri equation to deduce

a 47
- = —— 3
. 3 (p+ 3p),

where p is the energy density of a perfect fluid with four-velocity u®, and
p is the pressure.

In this problem we consider the vector field

u®0 = \/ﬁiM/r <8t + \/Waa)

in Schwarzschild spacetime; the vector is expressed in terms of the usual
Schwarzschild coordinates, and M is the mass of the black hole.

a) Show that the vector field is timelike and geodesic. Describe the geodesics
to which u® is tangent.

b) Calculate the expansion of the congruence. Explain why the expansion is
positive in the northern hemisphere and negative in the southern hemi-
sphere. Explain also why the expansion is singular at the north and
south poles.

¢) Compute the rotation tensor for this congruence. Check that its square is

given by
by, - M (1-6M/r\?
= g \1-3M/r)
d) Calculate df/dr and check that Raychaudhuri’s equation is satisfied.

Derive the following evolution equations for the shear and rotation tensors of
a congruence of timelike geodesics:

2 1
Cappu’ = —50 Oap = Oau0'y — Wauw'y + 3 (0" oy — W wWyw ) hag
1
— Cappy uw'u” + 5325,
2
Wit = —50 Wap — Tapw'y — Wapas.

Here, Coypy is the Weyl tensor (Sec. 1.13, Problem 8), and R}] = R}, —
5(h* RY Yhop is the “transverse-tracefree” part of the Ricci tensor; its trans-
verse part is Ry 5 = h/*hg’ Ry, .

5. In this problem we consider a spacetime with metric

r2 + a%cos® 6

ds®> = —dt?
y + r2 + a2

dr? + (r® + a® cos® ) d6? + (r® + a®) sin® 0 d¢?,
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where a is a constant, together with a congruence of null geodesics with tan-
gent vector field
a

ka6a=8t+8r+r2+a2

8.

a) Check that k“ is null, that it satisfies the geodesic equation, and that r is
an affine parameter.

b) Find a suitable auxiliary null vector N and calculate the congruence’s
expansion, shear, and rotation. In particular, verify the following results:
2a? cos® 0
(r?2 + a? cos?0)?’

2r
6= r2 +a2cos26’ Iap =0, g =

These show that the congruence is diverging, shear-free, and that it is
not hypersurface orthogonal.

c) Show that the coordinate transformation

T = \/r2 + a? sinf cos ¢, y =112+ a? sinf sin @, z =1 cosf

brings the metric to the standard Minkowski form for flat spacetime.
Express k“ in this coordinate system.

. The auxiliary null vector field N¢ introduced in Sec. 2.4 is not unique, and in

this problem we examine various consequences of this fact. For the purpose of
this discussion we introduce vectors €% (A = 1,2) pointing in the two direc-
tions orthogonal to both k® and N, and we choose them to be orthonormal,
so that they satisfy gop €465 = dap. We also introduce the 2 x 2 matrix

By = Baﬂ éiéga

the projection of the tensor B,g = kqo;s in the transverse space spanned by
the vectors €9. In the following we shall use d4p and 548 to lower and raise
uppercase latin indices; for example, BAB = §AM§BN B, .

a) Derive the following relations:

hed =64P eqel,  B*P =BAPeqe],
0 =04pB*E, 0P =o4Pe5e], W =wrBegel,

where 048 = 1(BAB + BBA —§ §48) and wA® = 1 (BAP — BB4). These

confirm that the tensors hog, Bag, 0ag, and wag are all orthogonal to
both £%* and N®. We now must determine how a change of auxiliary null
vector field affects these results.

b) The vector N* must satisfy the relations N*N, = 0 and k*N, = —1.
Prove that the transformation
N® 5 N'® = N® 4 ¢k + ¢4 3,
where ¢ = %CACA, is the only one that preserves the defining relations
for the auxiliary null vector. (The coefficients ¢4 are arbitrary.)
c) Calculate how h*? changes under this transformation.
d) Calculate how B*? changes.

e) Show that 6 is invariant under the transformation.



2.6 Problems 45

f) Prove that 0®? changes according to
0'® = (cAcPaap) kK + (Ao B) k& + (Pagt) eG4k’ + oAP &5é5,.
This shows that if 0,3 = 0 for one choice of N¢, then o,3 = 0 for any

other choice. Prove that 0*%0,4 is invariant under the transformation.

g) Prove that w® changes according to
Wb = (cAwAB) kaé% — (cBwBA) ésk® + wABes é%.
This shows that if wag = 0 for one choice of N¢, then w,g = 0 for any

other choice. Prove that w®w,g is invariant under the transformation.

These results imply that the Raychaudhuri equation is invariant under a
change of auxiliary null vector field. They also show that wa,g = 0 implies
hypersurface orthogonality for any choice of N¢.

7. We now want to derive evolution equations for the shear and rotation tensors
of a congruence of null geodesics. For this purpose it is useful to refer back to
the basis k%, N, %, and the 2 x 2 matrix Bap = Bap €5¢%, introduced in
Problem 6. We shall also need

Rap = Rapgy €5k"5k",  Tap = épuély k"

Notice that Rap is a symmetric matrix, while I' 4 g is antisymmetric. Notice
also that it is possible to set I' 4 g = 0 by choosing €4 to be parallel transported
along the congruence.

a) First, derive the main evolution equation,

dBaB
d\

b) Second, decompose the various matrices into their irreducible parts, as

= —BACBCB — Rap + FACBCB + FBCBAC.

1 1
Buap = 50 0AB + 0B + wWaB, Rap = 5«%’ 0aB + Cas,

where oap and Csp are both symmetric and tracefree, while wap is
antisymmetric. Prove that Z = Ra/ak"‘kﬂ and Cap = Copugw éjk“é%k”,
where Cypg, is the Weyl tensor (Sec. 1.13, Problem 8). Then introduce
the parameterization

_ U+ ax _ C+ Cx
UAB—(O_X —0+>’ CAB—(CX —C+>

for the symmetric-tracefree matrices, and

0 w 0 T
wap=\ __ o | Ta={ _p o

for the antisymmetric matrices.
¢) Third, and finally, derive the following explicit forms for the evolution
equations,
do
dX\
doy

W = —00’+—C++2F0’X,

do
X\
dw
dX

—%02 —2(04% +0x%) +20° - £,

= —fox —Cx _2F(7+a

= —fw.
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Check that the equation for 6 agrees with the form of Raychaudhuri’s
equation given in the text. Recall that we can always set I' = 0 by taking
€9 to be parallel transported along the congruence; this eliminates the
coupling between the shear parameters.

8. Retrace the steps of Sec. 2.4, but without the assumption that the null
geodesics are affinely parameterized. Show that:
a) Equation (2.4.8) stays unchanged.
b) The expansion is now given by § = k%, — k, where & is defined by the
relation k%gk? = K k.

¢) Raychaudhuri’s equation now takes the form

db 1
=Rl 502 — 0P aap + w*Pwas — Raph®kP.



CHAPTER 3
HYPERSURFACES

This chapter covers three main topics that can all be grouped under the rubric
of hypersurfaces, the term designating a three-dimensional submanifold in a four-
dimensional spacetime.

The first part of the chapter (Secs. 3.1 to 3.3) is concerned with the intrinsic
geometry of a hypersurface, and it examines the following questions: Given that
the spacetime is endowed with a metric tensor g,g, how does one define an induced,
three-dimensional metric hy; on a particular hypersurface? And once this three-
metric has been introduced, how does one define a vectorial surface element that
allows vector fields to be integrated over the hypersurface? While these questions
admit straightforward answers when the hypersurface is either timelike or spacelike,
we will see that the null case requires special care.

The second part of the chapter (Secs. 3.4 to 3.6) is concerned with the extrinsic
geometry of a hypersurface, or how the hypersurface is embedded in the enveloping
spacetime manifold. We will see how the spacetime curvature tensor can be decom-
posed into a purely intrinsic part — the curvature tensor of the hypersurface —
and an extrinsic part that measures the bending of the hypersurface in spacetime;
this bending is described by a three-dimensional tensor K, known as the extrinsic
curvature. We will see what constraints the Einstein field equations place on the
induced metric and extrinsic curvature of a hypersurface.

The third part of the chapter (Secs. 3.7 to 3.11) is concerned with possible
discontinuities of the metric and its derivatives across a hypersurface. We will
consider the following question: Suppose that a hypersurface partitions spacetime
into two regions, and that we are given a distinct metric tensor in each region; does
the union of the two metrics form a valid solution to the Einstein field equations? We
will see that the conditions for an affirmative answer are that the induced metric and
the extrinsic curvature must be the same on both sides of the hypersurface. Failing
this, we will see that a discontinuity in the extrinsic curvature can be explained by
the presence of a thin distribution of matter — a surface layer — at the hypersurface.
(The induced metric can never be discontinuous: the hypersurface would not have a
well-defined intrinsic geometry.) We will first develop the mathematical formalism
of junction conditions and surface layers, and then consider some applications.

3.1 Description of hypersurfaces

3.1.1 Defining equations

In a four-dimensional spacetime manifold, a hypersurface is a three-dimensional
submanifold that can be either timelike, spacelike, or null. A particular hypersurface
Y. is selected either by putting a restriction on the coordinates,

d(z*) =0, (3.1.1)

47
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Figure 3.1: A three-dimensional hypersurface in spacetime.

or by giving parametric equations of the form
x* = z%(y*), (3.1.2)

where y* (a = 1,2,3) are coordinates intrinsic to the hypersurface. For example,
a two-sphere in a three-dimensional flat space is described either by ®(z,y,z) =
2 + y2 + 22 — R?2 = 0, where R is the sphere’s radius, or by = Rsinfcos ¢,
y = Rsinfsin¢, and z = Rcos#, where 8 and ¢ are the intrinsic coordinates.
Notice that the relations z*(y®) describe curves contained entirely in ¥ (Fig. 3.1).

3.1.2 Normal vector

The vector ® , is normal to the hypersurface, because the value of ® changes
only in the direction orthogonal to ¥. A wunit normal n, can be introduced if the
hypersurface is not null. This is defined by

-1 if ¥ is spacelike

+1  if ¥ is timelike (3.1.3)

nng =€ = {
and we demand that n® point in the direction of increasing ®: n“® , > 0. It is
easy to check that n, is given by
ed
o = —7a1/2 (3.1.4)
|g“"<I>’H<I>,,,

if the hypersurface is either spacelike or timelike.
The unit normal if not defined when ¥ is null, because g**® ,® , is then equal
to zero. In this case we let
ko =—® (3.1.5)

be the normal vector; the sign is chosen so that k¢ is future-directed when ® in-
creases toward the future. Because k® is orthogonal to itself (k®k, = 0), this vector
is also tangent to the null hypersurface ¥ (Fig. 3.2). In fact, by computing k‘fﬁkﬁ
and showing that it is proportional to k%, we can prove that k® is tangent to null
geodesics contained in X. We have kq,gk? = @,,50° = ®5,8F = L(® 38F),,;
because ® 3@ is zero everywhere on ¥, its gradient must be directed along k,,
and we have that (® 5®*)., = 2kk, for some scalar k. We have found that the
normal vector satisfies
kgkP = kk®,

the general form of the geodesic equation. The hypersurface is therefore generated
by null geodesics, and k® = dz*/d\ is tangent to the generators. In general, the
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®=0

Figure 3.2: A null hypersurface and its generators.

parameter A is not affine, but in special situations in which the relations ®(z%) =
constant describe a whole family of null hypersurfaces (so that ® 3®* is zero not
only on ¥ but also in a neighbourhood around ¥), k = 0 and A is an affine parameter.
When the hypersurface is null, it is advantageous to install on ¥ a coordinate
system that is well adapted to the behaviour of the generators. We therefore let the
parameter X\ be one of the coordinates, and we introduce two additional coordinates
64 (A = 2,3) to label the generators; these are constant on each generator, and
they span the two-dimensional space transverse to the generators. Thus, we shall

adopt
y* = (\,04) (3.1.6)

when ¥ is null; varying A while keeping #“ constant produces a displacement along
a single generator, and changing #4 produces a displacement across generators.

3.1.8 Induced metric

The metric intrinsic to the hypersurface X is obtained by restricting the line element
to displacements confined to the hypersurface. Recalling the parametric equations
z® = z*(y?), we have that the vectors

oz®
o — 1.
ey By (3.1.7)

are tangent to curves contained in ¥. (This implies that eZn, = 0 in the non-null
case, and €%k, = 0 in the null case.) Now, for displacements within X,

ds% = gapdx®dz’
Oz ozP
— o = dy® = d b
gﬁ(ay“ y)(ay” y)
= hgpdy®dy®, (3.1.8)
where
hap = Gap egef (3.1.9)

is called the induced metric, or first fundamental form, of the hypersurface. It is
a scalar with respect to transformations z¢ — 2 of the spacetime coordinates,
but it transforms as a tensor under transformations y® — y“' of the hypersurface
coordinates. We will refer to such objects as three-tensors.

These relations simplify when the hypersurface is null and we use the coordinates
of Eq. (3.1.6). Then e§ = (02%/0)\)ga = k%, and it follows that h1; = gask®k® =0
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and hig = gask®e’ = 0, because by construction, e% = (8z*/864) is orthogonal
to k%. In the null case, therefore,

ds% = oap d6”de®, (3.1.10)

where
a B a Oz
OAB = YaB €4€p; €a=\294 ) (3.1.11)
A

Here the induced metric is a two-tensor.
We conclude by writing down completeness relations for the inverse metric. In
the non-null case,

9% = en®nf 4 hobelel (3.1.12)

where h?® is the inverse of the induced metric. Equation (3.1.12) is verified by
computing all inner products between n® and e%. In the null case we must introduce,
everywhere on ¥, an auxiliary null vector field N® satisfying N,k* = —1 and
Nye% =0 (see Sec. 2.4). Then the inverse metric can be expressed as

9%% = —k*NP — N°kP 4+ 04Beg el (3.1.13)
where 04% is the inverse of o4p5. Equation (3.1.13) is verified by computing all
inner products between k%, N¢, and e%.

3.1.4 Light cone in flat spacetime

An example of a null hypersurface in flat spacetime is the future light cone of an
event P, which we place at the origin of a Cartesian coordinate system z*. The
defining relation for this hypersurface is ® = t —r = 0, where r2 = 22 +y?+ 22. The
normal vector is kg = —04(t—r) = (=1,2/r,y/r, z/r). A suitable set of parametric
equations is t = A\, x = Asinfcos¢, y = Asinfsin¢g, and z = Acosé, in which
y® = (A, 0,¢) are the intrinsic coordinates; A is an affine parameter on the light
cone’s null generators, which move with constant values of 84 = (8, ¢).

From the parametric equations we compute the hypersurface’s tangent vectors,

e = %i)\ = (1, sin § cos ¢, sin f sin ¢, cos §) = k2,
e = 6;;0 = (1, Acos 8 cos ¢, Acos 8 sin ¢, —Asin §),
eg = 85;5 = (1, —Asin @ sin ¢, Asin § cos ¢, 0).

You may check that these vectors are all orthogonal to £%. Inner products between
eg and e‘; define the two-metric o4p, and we find

oap d6Ade® = N2 (dB? + sin® 6 d¢?).

Not surprisingly, the hypersurface has a spherical geometry, and X is the areal radius
of the two-spheres.

It is easy to check that the unique null vector N¢ that satisfies the relations
Nok® = =1 and Nye§ = 0 is N® = %(1,—sinf cos ¢, —sinfsin ¢, — cos ). You
may also verify that the vectors k*, N%, and e% combine as in Eq. (3.1.13) to form
the inverse Minkowski metric.
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3.2 Integration on hypersurfaces

3.2.1 Surface element (non-null case)

If ¥ is not null, then
ds = |h|Y2 dBy, (3.2.1)

where h = det[hgp], is an invariant three-dimensional volume element on the hyper-
surface. To avoid confusing this with the four-dimensional volume element /—g d*z,
we shall refer to dX as a surface element. The combination n.,dX is a directed sur-
face element that points in the direction of increasing ®. In the null case these
quantities are not defined, because h = 0 and n, does not exist.

To see how Eq. (3.2.1) must be generalized to incorporate also the null case, we
consider the infinitesimal vector field

AT, = €uapy bl d°y, (3.2.2)
where €408y = v/—g[pa 7] is the Levi-Civita tensor. We will show below that
d¥, = enydX (3.2.3)

when the hypersurface is not null. Thus, apart from a factor e = +1, d¥, is a
directed surface element on X. Notice that when ¥ is spacelike, the factor e = —1
makes dY.,, a past-directed vector; this is a potential source of confusion. Notice
also that Eq. (3.2.2) remains meaningful even when the hypersurface is null. By
continuity, therefore, d%, is also a directed surface element on a null hypersurface.

Because dY, is proportional to the completely antisymmetric Levi-Civita ten-
sor, its sign depends on the ordering of the coordinates y', y2, and y®. But this
ordering is a priori arbitrary, and we need a convention to remove the sign ambi-
guity. We shall choose an ordering that makes the scalar f = euag,yn“e‘feg el a
positive quantity. Notice that this convention was already adopted when we went
from Eq. (3.2.2) to Eq. (3.2.3): n®*d%, =d¥ > 0.

As a first example of how this works, consider a hypersurface of constant ¢ in
Minkowski spacetime. If & = ¢, then n, = —04t is the future-directed normal
vector. If we choose the ordering y* = (z,y, 2), we find that f = €4,,. = 1 has the
correct sign. Equation (3.2.2) implies d¥, = 6@ dzdydz = —n, dzdydz, which is
compatible with Eq. (3.2.3).

As a second example, we take a surface of constant z in Minkowski spacetime.
We take ® = z, and n, = 0, points in the direction of increasing ®. We choose
the ordering y* = (y,t,z) because f = €zyt2 = —E€zty: = Etay> = 1 has then the
correct sign. [Notice that the more tempting ordering y* = (t,y, z) would produce
the wrong sign.] With this choice, Eq. (3.2.2) implies d¥,, = 6%, dtdydz = n,, dtdydz,
which is compatible with Eq. (3.2.3).

We now turn to the derivation of Eq. (3.2.3). It is clear that d¥, must be
proportional to n,, because ele,qay e?eg es = 0 by virtue of the antisymmetric
property of the Levi-Civita tensor. So we may write

a By _
EnaBy €1€2€3 = Efny,
where f = suagvn“e‘f‘eg e5. Because f is a scalar, we may evaluate it in any con-
venient coordinate system 2®. We choose our coordinates so that 2° = &, and on
. . . . . . . *
¥ we identify % with the intrinsic coordinates y®. Then f = /—gn®. In these

coordinates, g*® = g*#® ,® 5, and ne = ¢ |g®®|~!/? is the only nonvanishing com-

ponent of the normal. Tt follows that n® = g®*n, = g®®ne = [g®®|'/2, and we

have that f = |gg®®|'/2. We now use the definition of the matrix inverse to write

g%® = cofactor(ges)/g, where the cofactor of a matrix element is the determinant
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obtained after eliminating the row and column to which the element belongs. This
determinant is clearly h, and we conclude that

f=[hl2.

While this result was obtained in the special coordinates x?, it is valid in all co-
ordinate systems because h, like hgp, is a scalar with respect to four-dimensional
coordinate transformations. This result shows that when ¥ is not null, Eq. (3.2.3)
is indeed equivalent to Eq. (3.2.2).

3.2.2  Surface element (null case)

As we have seen in Sec. 3.1.2, when ¥ is null we identify y* with )\, the parameter
on the hypersurface’s null generators, and the remaining coordinates, denoted 64,
are constant on the generators. Then e = k%, d®y = d\ d?6, and we may write the
directed surface element as

d¥, = k"dS,.dA, (3.2.4)

where
dSy, = €uvpy €5e] d*0 (3.2.5)

is interpreted as an element of two-dimensional surface area. We will show below
that this can also be expressed as

dSap = 2k[aN5]\/Ed29, (3.2.6)

where N, is the auxiliary null vector field introduced in Eq. (3.1.13), and o =
det[oap], with o4p the two-metric defined by Eq. (3.1.11). Combining Eq. (3.2.6)
with Eq. (3.2.4) yields

dY o = —ko/0o d?0d). (3.2.7)

The interpretation of this result is clear: Apart from a minus sign, the surface
element is directed along k,, the normal to the null hypersurface; the factor d\
represents an element of parameter-distance along the null generators, and /o d26
is an element of cross-sectional area — an element of two-dimensional surface area
in the directions transverse to the generators.

There is also an ordering issue with the coordinates #4, and our convention shall
be that the scalar f = euup,V “k"eg e5 must be a positive quantity. Notice that
this convention was already adopted when we went from Eq. (3.2.5) to Eq. (3.2.6):
NekB dS,ps = /o d*0 > 0.

As an example, consider a surface u = constant in Minkowski spacetime, where
u =t — z. The normal vector is ko, = —0,(t — z), and we may choose the ordering
64 = (y, ). Then N, = —10,(t + z) satisfies all the requirements for an auxiliary
null vector field. It is easy to check that with these choices, f = 1 (which is properly
positive). We obtain dS;, = dydz = —dSg, and since ¢ can be identified with the
affine parameter A\, Eq. (3.2.4) implies dX; = dtdydz = —d%,. These results are
compatible with Eq. (3.2.7).

Let us consider a more complicated example: the light cone of Sec. 3.1.4. The
vectors k%, N*, and e are displayed in that section, and the cone’s intrinsic coor-
dinates are y* = (A, 6, ¢). We want to compute dX, for this hypersurface, starting
with the definition of Eq. (3.2.2). We know that dX, must point in the direction
of the normal, so that d¥, = —fk, d0d¢d\, where f = szNuk"egeg. If we
let N* = el and k¥ = €Y, we can write this as f = [uv Br]elelese] = det E,
where E is the matrix constructed by lining up the four basis vectors. Its deter-
minant is easy to compute, and we obtain f = A2sinf = /o. We therefore have
dY, = —ky\/o d*6d), which is just the same statement as in Eq. (3.2.7).
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We must now give a proper derivation of Eq. (3.2.6). The steps are somewhat
similar to those leading to Eq. (3.2.3). We begin by noting that the tensor €,,,5, e'g el
is orthogonal to €% and antisymmetric in the indices p and v. It may be expressed
as

EpvPy €§€g = ka[uNu] = f(kuNu - Npku)a

where f = e,,8, N pEved e5 > 0. To evaluate f we choose our coordinates z such
that 2° = ®, and z® = y® = (),64) on X. In these coordinates, kp = 1 and k* =1
are the only nonvanishing components of the normal vector, N® = 1 comes as a
consequence of the normalization condition Nk, = —1, and ¢®® = 0 follows from
the fact that k, is null. Using this information, we deduce that f = v/—9, and we
must now compute the metric determinant in the specified coordinates. For this
purpose, we note that the completeness relations of Eq. (3.1.13) imply the following
structure for the inverse metric:

0 1 0
g'=|1 —2N* -N4 |;
0 _NA JAB

this immediately implies det g~! = —det[¢4#], or /=g = /o. We therefore have

f:\/g,

which holds in any coordinate system xz®. This shows that Eq. (3.2.6) is indeed
equivalent to Eq. (3.2.5), and this implies that Eq. (3.2.7) is equivalent to Eq. (3.2.2)
when ¥ is null and coordinates y® = (\,64) are placed on the hypersurface.

3.2.3 FElement of two-surface

The interpretation of
dSy, = euvpy €5e] d*0

as a directed element of two-dimensional surface area is not limited to the con-
sideration of null hypersurfaces. Here we consider a typical situation, in which
a two-dimensional surface S is imagined to be embedded in a three-dimensional,
spacelike hypersurface X.

The hypersurface ¥ is described by an equation of the form ®(z®) = 0, and
by parametric relations z®(y®); ne x 0, ® is the future-directed unit normal, and
the vectors e* = 9z®*/0y® are tangent to the hypersurface. The metric on X,
induced from gqg, is hap = gap e;“ef , and we have the completeness relations g®* =
—nonf + hat e‘;ef.

The two-surface S is introduced as a submanifold of ¥. It is described by an
equation of the form w(y®) = 0, and by parametric relations y®(#4), in which
64 are coordinates intrinsic to S; r, o 8,9 is the outward unit normal, and the
three-vectors e = dy®/004 are tangent to the two-surface. The metric on S,
induced from hgup, is 04 = hap e‘j;e%, and we have the completeness relations
hob = papb 4 gAB %l

The parametric relations y%(#“) and 2*(y®) can be combined to give the rela-
tions z*(#4), which describe how S is embedded in the four-dimensional spacetime.
The vectors

o Oz Oz 0oy* . ,
€4 = A T A — ‘“a €A
00 Oy® 00
are tangent to S, and
r* =r%el, rqn® =0
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is normal to S. The vector n® is also normal to S, and we have that the two-
surface admits two normal vectors: a timelike normal n® and a spacelike normal
r®. We note that the spacelike normal can be related to a gradient, r, « 0,%, if
we introduce, in a neighbourhood of ¥, a function ¥(z%) such that ¥|y = ¢. In
this description, the induced metric on S is still

OAB = hab eje%
= (gapeaey) ehels
= gas(eded) (eels)
= gapeiel,
and the completeness relations
g8 = —nonf 4+ ropP 4 548 eje%

are easily established from our preceding results.

We want to show that dS,s can be expressed neatly in terms of the timelike
normal n?®, the spacelike normal r®, and /o d?6, the induced surface element on S.
The expression is

dSa[;z = —2n[ar5]\/5d26, (328)

where 0 = det[o4g]. The derivation of this result involves familiar steps. We first
note that because €,,3, eg eq is orthogonal to e and antisymmetric in p and v, it
may be expressed as

Epv By egeg = _an[uru] = _f(nuru - Tpnu),
where f = Ewgvn”r"egeg > 0. To evaluate f we adopt coordinates z° = @,
2! = ¥, and on S we identify z# with #4. In these coordinates, ng = —(—g®®)~1/2
is the only nonvanishing component of the timelike normal, r¢ = (g¥¥)"1/2 is

the only nonvanishing component of the spacelike normal, and from the fact that
these vectors are orthogonal we infer ¢®¥ = 0. From all this we find that f? =
99%%g%Y, which we rewrite as f2 = cofactor(ges ) cofactor(gyy)/g. We also have

cofactor(gaw) = 0, and these two equations give us enough information to deduce

f=+o.

This result is true in any coordinate system .
As a final remark, we note that the vectors n® and r® can be combined to form
null vectors k¢ and N®. The appropriate relations are

ke = % (n®+1r%), N°= % (n — r%),

and these vectors are the null normals of the two-surface S. It is easy to check that
with these substitutions, Eq. (3.2.8) takes the form of Eq. (3.2.6).

3.3 Gauss-Stokes theorem

3.8.1 First version

We consider a finite region ¥ of the spacetime manifold, bounded by a closed
hypersurface 0% (Fig. 3.3). The signature of the hypersurface is not restricted; it
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oY

.. 2% = const_.-”’

Figure 3.3: Proof of the Gauss-Stokes theorem.

may have segments that are timelike, spacelike, or null. We will show that for any
vector field A%* defined within 7/,

/ A%/ —gdtz = A*dx,, (3.3.1)
v oy
where d¥,, is the surface element defined by Eq. (3.2.2).

To prove this result, known as Gauss’ theorem, we construct the following co-
ordinate system in #. We imagine a nest of closed hypersurfaces foliating ¥, with
the boundary 8% forming the outer layer of the nest. (Picture this as the many
layers of an onion.) We let 2° be a constant on each one of these hypersurfaces, with
2% = 1 designating 87, and z° = 0 the zero-volume hypersurface at the “centre” of
¥. While z° grows “radially outward” from this “centre”, we take the remaining
coordinates z° to be angular coordinates on the closed hypersurfaces z° = constant.
The coordinates y® on 0% are then identified with these angular coordinates.

Using such coordinates, the left-hand side of Eq. (3.3.1) becomes

/VAcga\/——gd‘ix - /y(\/—_gAa),ad“m
/dxoj[(\/—_gAO),o d3x+/dm07{(\/—_gAa),a d3x
z /dmO%fJTngdgx

[l

*

z0=1

= %\/—gAOd%
z0=0
= j{ V=g A® d3y.
v

In the first line we have used the divergence formula for the vector field A*. The
second integral of the second line vanishes because x® are angular coordinates and
the integration is over a closed three-dimensional surface. (Understanding this
statement requires some thought. Try working through a three-dimensional version
of the proof, using spherical coordinates in flat space.) In the fourth line, the
contribution at 2° = 0 vanishes because the “hypersurface” z° = 0 has zero volume.
It is easy to check that in the specified coordinates, d¥o = 8°\/—g &3y, giving

A%ds, = ¢ A%/—gd’y
v av
for the right-hand side of Eq. (3.3.1). The two sides are therefore equal in the
specified coordinate system; because Eq. (3.3.1) is a tensorial equation, this suffices
to establish the validity of the theorem.
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b

¥

Figure 3.4: Two spacelike surfaces and their normal vectors.

3.3.2 Conservation

Gauss’ theorem has many useful applications. An example is the following conser-
vation statement.
Suppose that a vector field j* has a vanishing divergence,

i% = 0.

Then fz j®d¥, = 0 for any closed hypersurface ¥. Supposing now that j* vanishes
at spatial infinity, we can choose X to be composed of two spacelike hypersurfaces,
¥, and X5, extending all the way to infinity (Fig. 3.4), and of a three-cylinder at
infinity, on which j* = 0. Then

/ jad2a+/ j*dS, = 0.
21 E2

On each of the spacelike hypersurfaces, d€, = —novh d®y, where ny is the outward
normal to the closed surface ¥, and h is the determinant of the induced metric on
the spacelike hypersurfaces. Letting n, = naqa on Yo and ng = —n1, on Xy, where
Ni1q and ne, are both future directed, we have

=0 = [ jmavhdy = / i®nsavh dy. (3.3.2)
’ 21 E2

The interpretation of this result is clear: If j* is a divergence-free vector, then the

“total charge” [ j*n, d¥ is independent of the hypersurface on which it is evaluated.

This is obviously a statement of “charge” conservation.

3.3.3 Second version

Another version of Gauss’ theorem (usually called Stokes’ theorem) involves a three-
dimensional region ¥ bounded by a closed two-surface 0%. It states that for any
antisymmetric tensor field B*? in %,

1
/E B 5 dSa = 5 . B8 dS,, (3.3.3)

where dS,p is the two-surface element defined by Eq. (3.2.5).

The derivation of this identity proceeds along familiar lines. We construct a
coordinate system such that (i) z° is constant on the hypersurface ¥, (ii) z!
constant describes a nest of closed two-surfaces in ¥ (with z! = 1 representing 0%
and ' = 0 the zero-area surface at the “centre” of ¥), and (iii) z# are angular
coordinates on the closed surfaces (with #4 = 24 on 9%).
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It is easy to check that with such coordinates, dX, = §%/—gdz'dr?dz®. The
left-hand side of Eq. (3.3.3) becomes

1
B*? 4y, = / — (/=g B?) 5d%,
|77 [ = =B
= /(\/—gBO'B),Bd.rldxzdm3
)
= /dacl f(\/—gBm),l da:?dm3+/dm1 }{(\/—gBOA),A dz’dz®

1:1

= %\/—gBmda:zd:c?’
- ?{ V=g B" d%.
%

In the first line we have used the divergence formula for an antisymmetric tensor
field. The explicit expression for d¥, was substituted in the second line. The
second integral of the third line vanishes because 24 are angular coordinates and
the domain of integration is a closed two-surface. In the fourth line, the lower limit
of integration does not contribute because the “surface” z' = 0 has zero area.

It is easy to check that in the specified coordinate system, B*? dS,5 = (B —
B10),/=gd?§ = 2B°',/=gd?§. The right-hand side of Eq. (3.3.3) therefore reads

1 *
= f B* S, = f B'\/—gd?6.
2 0% ox

Equation (3.3.3) follows from the equality of both sides in the specified coordinate
system.

z
z1=0

3.4 Differentiation of tangent vector fields

3.4.1 Tangent tensor fields

(For the remainder of Chapter 3, except for Sec. 3.11, we shall assume that the
hypersurface ¥ is either spacelike or timelike. In Sec. 3.11 we shall return to the
case of null hypersurfaces.)

Once we are presented with a hypersurface ¥, it is a common situation to have
tensor fields A®# that are defined only on ¥ and which are purely tangent to the
hypersurface. Such tensors admit the following decomposition:

Aaﬁ... — Aab... egegl cee, (341)

where e® = 9z®/0y® are basis vectors on . Equation (3.4.1) implies that A*#'n, =
A*Ppg = ... =0, which confirms that A% is tangent to the hypersurface. We
note that an arbitrary tensor 7% can always be projected down to the hyper-
surface, so that only its tangential components survive. The quantity that effects
the projection is h®? = h“begeg = ¢g*¥ —en®nf, and h“uhﬂ,, ---THY is evidently
tangent to the hypersurface.

The projections

Agp... €8€) - = Agp... = hamhpy -+ - A™ (3.4.2)

give the three-tensor A% associated with the tangent tensor field A*5-; latin
indices are lowered and raised with hq, and h®, respectively. Equations (3.4.1)
and (3.4.2) show that one can easily go back and forth between a tangent tensor
field A% and its equivalent three-tensor A%". We emphasize that while A%
transforms as a tensor under a transformation y* — y“' of the coordinates intrinsic
to X, it is a scalar under a transformation z® — 2 of the spacetime coordinates.
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3.4.2 Intrinsic covariant derivative

We wish to consider how tangent tensor fields are differentiated. We want to relate
the covariant derivative of A% (with respect to a connection that is compatible
with the spacetime metric g,s) to the covariant derivative of A%*", defined in terms
of a connection that is compatible with the induced metric hyp. For simplicity, we
shall restrict our attention to the case of a tangent vector field A%, such that

A% = A%

a?

A%, =0, Ag = Agel.

Generalization to three-tensors of higher ranks will be obvious.

We define the intrinsic covariant derivative of a three-vector A, to be the pro-
jection of A,z onto the hypersurface:

Ay = Ansp e (3.4.3)

We will show that A,;, as defined here, is nothing but the covariant derivative of
A, defined in the usual way in terms of a connection I'%,, that is compatible with
hap-

To get started, let us express the right-hand side of Eq. (3.4.3) as

Aa;ﬁegebﬂ = (Aaeg);ﬁeg_Aaeg;ﬁeg

= Aa,Bebﬁ - em;ﬁefAceZ
9A, 927 5

= Wa—yb - e’cyea»y;ﬁeb AC

= Aa,b - FcabAca

where we have defined
Fcab = eZea%ﬁef. (344)

Equation (3.4.3) then reads
Aa,|b = Aa,b - FcabAu (345)

which is the familiar expression for the covariant derivative.

The connection used here is the one defined by Eq. (3.4.4), and we would like
to show that it is compatible with the induced metric. In other words, we would
like to prove that T.qp, as defined by Eq. (3.4.4), can also be expressed as

Ceap = (hca,b + hcb,a - hab,c)- (346)

N =

This could be done by directly working out the right-hand side of Eq. (3.4.4). It is

easier, however, to show that the connection is such that hep|c = hag;y eg‘ef el =0.
Indeed,

a B _ a B
hapryegepel = (gap —ENnanp),yeqe, el
_ a B
= —&(na;ynp + nang;y) g€, €/

= 0,

because n, € = 0. Intrinsic covariant differentiation is therefore the same operation
as straightforward covariant differentiation of a three-tensor.
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3.4.83 Extrinsic curvature

The quantities A, = Aq; 56365 are the tangential components of the vector A% Bef .
The question we would like to investigate now is whether this vector possesses also
a normal component.

To answer this we re-express A° ﬂebﬁ as gauA”. ef and decompose the metric into

its normal and tangential parts, as in Eq. (3.1.1’2). This gives
A%el) = (en®ny + h*MeSem,) A" sep
= e(nuA"ge))n® + ho™ (Aget el e,

and we see that only the second term is tangent to the hypersurface. We now use
Eq. (3.4.3) and the fact that A* is orthogonal to n#:

Aa;ﬂef = ¢ ("u;ﬁAuef)”a + b Apeg
= A% eq —eAC (nu,pete;)n.
At this point we introduce the three-tensor
Koy = noyp egef, (3.4.7)

called the extrinsic curvature, or second fundamental form, of the hypersurface X.
In terms of this, we have

Ao‘;ﬂef = A% eq —eA*Kqpn®, (3.4.8)

and we see that Aa|b gives the purely tangential part of the vector field, while
—eA*K,p represents the normal component. This answers our question: the normal
component vanishes if and only if the extrinsic curvature vanishes.
We note that if e is substituted in place of A%, then A° = §°, and Egs. (3.4.5),
(3.4.8) imply
egsﬁef =T°,,ed —eKgpn“. (3.4.9)
This is known as the Gauss-Weingarten equation.

The extrinsic curvature is a very important quantity; we will encounter it often
in the rest of this book. We may prove that it is a symmetric tensor:

Ko = Kop. (3.4.10)

The proof is based on the properties that (i) the vectors e and n® are orthogonal,
and (ii) the basis vectors are Lie transported along one another, so that e, ﬁe’f =

e,;“;ﬁeg. We have

— B
el = —naciack
— a B
= —Nna€pge,
— a
= nageper,

and Eq. (3.4.10) follows. The symmetry of the extrinsic curvature implies the
relations

1
Ko = n(a;g)egef =3 (£nga5)eg‘ef, (3.4.11)

and the extrinsic curvature is therefore intimately related to the normal derivative
of the metric tensor.
We also note the relation

K = h"Kq = n®,, (3.4.12)
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which shows that K is equal to the expansion of a congruence of geodesics that
intersect the hypersurface orthogonally (so that their tangent vector is equal to n®
on the hypersurface). From this result we conclude that the hypersurface is convex
if K > 0 (the congruence is diverging), or concave if K < 0 (the congruence is
converging).

We see that while h,p is concerned with the purely intrinsic aspects of a hyper-
surface’s geometry, K, is concerned with the extrinsic aspects — the embedding
of the hypersurface in the enveloping spacetime manifold. Taken together, these
tensors provide a virtually complete characterization of the hypersurface.

3.5 Gauss-Codazzi equations

3.5.1 General form

We have introduced the induced metric h,, and its associated intrinsic covariant
derivative. A purely intrinsic curvature tensor can now be defined by the relation

Aclab - Ac‘ba = _RcdabAd, (3.5.1)
which of course implies
Ry =T 0 = Thap + Tnalan — Tl a0 (3.5.2)

The question we now examine is whether this three-dimensional Riemann tensor
can be expressed in terms of R 5 — the four-dimensional version — evaluated on
3.

To answer this we start with the identity

(eg;ﬂef) el = (I‘d peq — eKgpn® ),Ye'cy

which follows immediately from Eq. (3.4.9). We first develop the left-hand side:

— a B v

LHS = (ea;ﬁeb)wec
— e By a B oy
= €g;876p€c T €4;6,Cc

Sel e B(F bced eKpnP)
e”’ +14 (Thqe8 — eKaqn®) —eKbceg;ﬁnﬁ.

= €ap0©y

= €1,

Next we turn to the right-hand side:

RS = ([%,e5 —eKqn® ) el
d
= T .eq+ I ab€din€e — EKap,cn® — eKapn®, €l
_ 1d
= T%, .5 +T%,(T%.es —eKgen®) — eKqpon® — eKopn®, €]
We now equate the two sides and solve for e ﬂ,yef e?. Subtracting a similar ex-
pression for gy ﬂe'geb gives —R%, Bve“ef €Y, the quantity we are interested in. After
)
some algebra, we find
RV . e%ePe) = et +e(K, )t + eKopn*, ] — eKqen” e’
aﬁfy a®b - abc ™m able — aclb ab aclt'.g€p -

Projecting along eq, gives

RaB'yé egefezeg = Rabcd + 6(I{ad-[{bc - Kachd)7 (353)
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and this is the desired relation between R,p.q and the full Riemann tensor. Pro-
jecting instead along n, gives

Ruaﬁvn“egefez = Kapje — Kaclp- (3.5.4)

Equations (3.5.3) and (3.5.4) are known as the Gauss-Codazzi equations. They
reveal that the spacetime curvature can be expressed in terms of the intrinsic and
extrinsic curvatures of a hypersurface.

3.5.2  Contracted form

The Gauss-Codazzi equations can also be written in contracted form, in terms of
the Einstein tensor Gog = Rop — %Rgag. The spacetime Ricci tensor is given by

Rag = 9" Ryavs

(En”n +hM"eb e )Rua,,g

mn v
eRpavpnt'n” + K" Ryaupeh ey,

and the Ricci scalar is

R = g*°Ras
= (en®n? + h%e%e)) (eRpaupn?n” + K™ Ryqupel el)

= 25h“bRua,,3n“egn"eb + h“bhm"RHm,gefn e"ef
A little algebra then reveals the relations
—26Gopn®nP =R +e(K" K, — K?) (3.5.5)

and
Gapegn =K*,, — K . (3.5.6)

Here, R = h“bR”}mb is the three-dimensional Ricci scalar. The importance of
Egs. (3.5.5) and (3.5.6) lies with the fact that they form part of the Einstein field
equations on a hypersurface X; this observation will be elaborated in the next
section. We note that Gp egef , the remaining components of the Einstein tensor,
cannot be expressed solely in terms of h,p, K,p, and related quantities.

3.5.8 Ricci scalar

We now complete the computation of the four-dimensional Ricci scalar. Our starting
point is the relation

R = 2eh® R,ml,gn“ean”eﬁ + h®PR™ R0 pet e enef,

which was derived previously. The first term is simplified by using the completeness
relation (3.1.12) and the fact that R,a.,sn#n®n’n® = 0; it becomes 2eR,sn®nP.
Using the definition of the Riemann tensor, we rewrite this as

Ropn®nP = —ncﬁaﬂnﬂ + na;ﬁanﬁ

= —(na;anﬁ);g + na;anﬂ;ﬁ + (n";ﬁnﬁ);a - naﬁnﬂa
In the second term of this last expression we recognize K2, where K = no, is
the trace of the extrinsic curvature. The fourth term, on the other hand, can be
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expressed as

noéﬁnﬂ;a = P9 napnuw

= (enPnt 4+ BPH)(enn” + B )na.sm ..

(enPn® + hPP) R ng sy

= hﬁuh(wna;ﬁ"uw
hbmh“"na;geg‘ebﬁnm,,e%e;

= MR Ko Kmn

= KupK™

= K™K,,.

In the second line we have inserted the completeness relation (3.1.12) and used the
notation h®? = h‘lbeg‘ef . In the third and fourth lines we have used the fact that
n®ng;s = 1(n®ng),s = 0. In the sixth line we have substituted the definition (3.4.7)
for the extrinsic curvature. Finally, in the last line we have used the fact that K,
is a symmetric three-tensor.

The previous manipulations take care of the first term in our starting expression
for the Ricci scalar. The second term is simplified by substituting the Gauss-Codazzi
equation (3.5.3),

h“bhm"Ruauﬁe"megeZef = pobpmn [Rmanb + e(KmpKan — KmnKab)]
= R+e(K™K, — K?).

Putting all this together, we arrive at

R="R+¢e(K* - K"Kq) +2¢(n%n” —n®n’y) . (3.5.7)

This is the four-dimensional Ricci scalar evaluated on the hypersurface 3. This
result will be put to good use in Chapter 4.

3.6 Initial-value problem

3.6.1 Constraints

In Newtonian mechanics, a complete solution to the equations of motion requires
the specification of initial values for the position and velocity of each moving body.
In field theories, a complete solution to the field equations requires the specification
of the field and its time derivative at one instant of time.

A similar statement can be made for general relativity. Because the Einstein
field equations are second-order partial differential equations, we would expect that
a complete solution should require the specification of go5 and gng,: at one instant
of time. While this is essentially correct, it is desirable to convert this decidedly
noncovariant statement into something more geometrical.

The initial-value problem of general relativity starts with the selection of a
spacelike hypersurface ¥ which represents an “instant of time”. This hypersurface
can be chosen freely. On this hypersurface we put arbitrary coordinates y°.

The spacetime metric g,3, when evaluated on ¥, has components that charac-
terize displacements away from the hypersurface. (For example, gy is such a com-
ponent if ¥ is a surface of constant ¢.) These components cannot be given meaning
in terms of the geometric properties of ¥ alone. To provide meaningful initial values
for the spacetime metric, we must consider displacements within the hypersurface
only. In other words, the initial values for gog can only be the six components of
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the induced metric hap = gap egef ; the remaining four components are arbitrary,
and this reflects the complete freedom in choosing the spacetime coordinates .

Similarly, the initial values for the “time derivative” of the metric must be
described by a three-tensor that carries information about the derivative of the
metric in the direction normal to the hypersurface. Because Kq = 3(£,943) egef ,
the extrinsic curvature is clearly an appropriate choice.

The initial-value problem of general relativity therefore consists in specifying two
symmetric tensor fields, hqp and K,p, on a spacelike hypersurface . In the complete
spacetime, hgp is interpreted as the induced metric on the hypersurface, while K
is the extrinsic curvature. These tensors cannot be chosen freely: they must satisfy
the constraint equations of general relativity. These are given by Egs. (3.5.5) and
(3.5.6), together with the Einstein field equations Gog = 87T ,s:

R+ K? — KKy, = 167T,pn%n” = 167p (3.6.1)

and
K’y — Ko = 81Tapegn’ = 87j,. (3.6.2)

a

The remaining components of the Einstein field equations provide evolution equa-
tions for hyp and K,p; these will be considered in Chapter 4.

3.6.2 Cosmological initial values

As an example, let us solve the constraint equations for a spatially flat, isotropic,
and homogeneous cosmology. To satisfy these requirements, the three-metric must
take the form

ds* = a*(dz? + dy* + d2?),

where a is the scale factor, which is a constant on the hypersurface. Isotropy and
homogeneity also imply p = constant, j, = 0, and

1
Ko = g Khab;

where K is a constant. The second constraint equation is therefore trivially satisfied.
The first one implies
2 .
167mp=K? - KYK,, = 3 K2,

and this provides the complete solution to the initial-value problem.

To recognize the physical meaning of this last equation, we use the fact that
in the complete spacetime, K = n%,, where n® is the unit normal to surfaces of
constant ¢t. The full metric is given by the Friedmann-Robertson-Walker form

ds® = —dt?® + a*(t)(dz® + dy® + d2?),

so that ny, = —0,t and K = 3a/a, where an overdot indicates differentiation with
respect to t. The first constraint equation is therefore equivalent to

3(a/a)? = 8mp,

which is one of the Friedmann equations governing the evolution of the scale factor.

3.6.3 Moment of time symmetry

We notice from the previous example that K,, = 0 when a¢ = 0, that is, the
extrinsic curvature vanishes when the scale factor passes through a turning point of
its evolution. Because the dynamical history of the scale factor is time-symmetric
about the time ¢ = tg at which the turning point occurs, we may call this time a
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moment of time symmetry in the evolution of the spacetime. Thus, K,;, = 0 at this
moment of time symmetry.

Generalizing, we shall call any hypersurface ¥ on which K,; = 0 a moment of
time symmetry in spacetime. Because K is essentially the “time derivative” of the
metric, a moment of time symmetry corresponds to a turning point of the metric’s
evolution, at which its “time derivative” vanishes. The dynamical history of the
metric is then “time-symmetric” about ¥. From Eq. (3.6.2) we see that a moment
of time symmetry can occur only if j, = 0 on that hypersurface.

3.6.4 Stationary and static spacetimes

A spacetime is stationary if it admits a timelike Killing vector £%. This means that
in a coordinate system (¢, %) in which £€* = §%, the metric does not depend on the
time coordinate t: gog,: =0 (see Sec. 1.5). For example, a rotating star gives rise
to a stationary spacetime if its mass and angular velocity do not change with time.

A stationary spacetime is also static if the metric does not change under a time
reversal, t — —t. For example, the spacetime of a rotating star is not static because
a time reversal changes the direction of rotation. In the specified coordinate system,
invariance of the metric under a time reversal implies g = 0. This, in turn, implies
that the Killing vector is proportional to a gradient: &, = g#0at. Thus, a spacetime
is static if the timelike Killing vector field is hypersurface orthogonal.

We may show that if a spacetime is static, then K., = 0 on those hypersurfaces
3 that are orthogonal to the Killing vector; these hypersurfaces therefore represent
moments of time symmetry. If ¥ is orthogonal to £%, then its unit normal must given
by ne = &, where 1/u? = —£*€,. This implies that na.s = péap + €att s, and
N(w;8) = &alt,p) because &, is a Killing vector. That K, = 0 follows immediately
from Eq. (3.4.11) and the fact that ¢, is orthogonal to eg.

3.6.5 Spherical space, moment of time symmetry

As a second example, we solve the constraint equations for a spherically symmetric
spacetime at a moment of time symmetry. The three-metric can be expressed as

ds®> = [1—2m(r)/r] L dr? + r2d02,

for some function m(r); to enforce regularity of the metric at r = 0 we must impose
m(0) = 0. The Ricci scalar is given by 3R = 4m/'/r?, with a prime denoting
differentiation with respect to r. Because K,; = 0 at a moment of time symmetry,
Eq. (3.6.1) implies 167p = 3R. Solving for m(r) gives

m(r) :/ 4 p(r') dr'.
0

This states, loosely speaking, that m(r) is the mass-energy contained inside a sphere
of radius r, at the selected moment of time symmetry.

3.6.6 Spherical space, empty and flat

We now solve the constraint equations for a spherically symmetric space empty of
matter (so that p = 0 = j%). We assume that we can endow this space with a flat

metric, so that
hap dy®dy® = dr® + 1> dQ*.

We also assume that the hypersurface does not represent a moment of time sym-
metry. While the flat metric and K,;, = 0 make a valid solution to the constraints,
this is a trivial configuration — a flat hypersurface in a flat spacetime.
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Let n, = 0,7 be a unit vector that points radially outward on the hypersurface.
The fact that K, is a spherically symmetric tensor means that it can be expressed
as

Koy = K1(r)ngnp + Kao(r) (hep — ngns),

with K3 representing the radial component of the extrinsic curvature, and K, the
angular components. In the usual spherical coordinates (r,6,¢), we have K% =
diag(K1, K2, K»), which is the most general expression admissible under the as-
sumption of spherical symmetry.

Because the space is empty and flat, the first constraint equation reduces to
K? - K®K,; = 0, an algebraic equation for K; and K. This gives us the condition
(2K, + K3)K3 = 0. Choosing K2 = 0 would eventually return the trivial solution
Kup, = 0. We choose instead Ko = —2K; and re-express the extrinsic curvature as

Ku = K(’I‘) (; hap — na”b) s
where K = —3K; is the sole remaining function to be determined.
To find K(r), we turn to the second constraint equation, K ba| » — K,o = 0, which
becomes
1
3

With K , = K'n, (with a prime denoting differentiation with respect to r), ”b|b =

Ko+ (Kn'y + K pn")ng + Kngpn” =0.

2/r, and na“,nb = 0 (because the radial curves are geodesics of the hypersurface),
we arrive at 2rK' + 3K = 0. Integration yields

K(r) = Ko(r/r0)*?,

with Ky denoting the value of K at the arbitrary radius ro.

We have found a nontrivial solution to the constraint equations for a spherical
space that is both empty and flat. The physical meaning of this configuration will
be revealed in Sec. 3.13, Problem 1.

3.6.7 Conformally-flat space

A powerful technique for generating solutions to the constraint equations consists
of writing the three-metric as

hab = V" Gap,

where 1(y®) is a scalar field on the hypersurface. Such a metric is said to be
conformally related to the flat metric, and the space is said to be conformally flat.
For this metric the Ricci scalar is R = —8¢°V?24), and Eq. (3.6.1) takes the form
of Poisson’s equation,

V2¢ = —27pest,

where

pett = Y° [P+ % (KabKab — K2)]

is an effective mass density on the hypersurface. At a moment of time symmetry,
this simplifies to peg = 1°p, and one possible strategy for solving the constraint is
to specify peg, solve for ¢, and then see what this produces for the actually mass
density p. If p = 0 at the moment of time symmetry, then the constraint becomes
Laplace’s equation V2 = 0, and this admits many interesting solutions. A well-
known example is Misner’s (1960) solution, which describes two black holes about
to undergo a head-on collision. This initial data set has been vigourously studied
by numerical relativists.
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3.7 Junction conditions and thin shells

The following situation sometimes presents itself: A hypersurface ¥ partitions
spacetime into two regions ¥+ and ¥~ (Fig. 3.5). In ¥ T the metric is g;“ﬂ, and
it is expressed in a system of coordinates z§. In ¥~ the metric is g4, and it is
expressed in coordinates x®. We ask: what conditions must be put on the metrics
to ensure that ¥ T and ¥~ are joined smoothly at ¥, so that the union of g;rﬂ and

9ap forms a valid solution to the Einstein field equations? To answer this question
is not entirely straightforward because in practical situations, the coordinate sys-
tems z§ will often be different, and it may not be possible to compare the metrics
directly. To circumvent this difficulty we will endeavour to formulate junction con-
ditions that involve only three-tensors on Y. In this section we will assume that X
is either timelike or spacelike; we will return to the case of a null hypersurface in
Sec. 3.11.

3.7.1 Notation and assumptions

We assume that the same coordinates y® can be installed on both sides of the
hypersurface, and we choose n®, the unit normal to X, to point from ¥~ to #*.
We suppose that an overlapping coordinate system z®, distinct from z§, can be
introduced in a neighbourhood of the hypersurface. (This is for our short-term
convenience; the final formulation of the junction conditions will not involve this
coordinate system.) We imagine ¥ to be pierced by a congruence of geodesics that
intersect it orthogonally. We take ¢ to denote proper distance (or proper time)
along the geodesics, and we adjust the parameterization so that £ = 0 when the
geodesics cross the hypersurface; our convention is that £ is negative in ¥~ and
positive in ¥ 7. We can think of £ as a scalar field: The point P characterized by
the coordinates ¢ is linked to ¥ by a member of the congruence, and £(z?) is the
proper distance (or proper time) from ¥ to P along this geodesic. Our construction
implies that n® is equal to dx®/d¢ at the hypersurface, and that

Ne = €044, (3.7.1)

we also have n®n, = e.

We will use the language of distributions. We introduce the Heaviside distribu-
tion O(¢), equal to +1 if £ > 0, 0 if £ < 0, and indeterminate if £ = 0. We note the
following properties:

d

(=0, OUne-H=o0, =

0(6) =4(0),

where §(£) is the Dirac distribution. We also note that the product ©(£)§(¢) is not
defined as a distribution.

Figure 3.5: Two regions of spacetime joined at a common boundary.
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The following notation will be useful:
[A] = A(al/+)|2 - A(77)|E,

where A is any tensorial quantity defined on both sides of the hypersurface; [4] is
therefore the jump of A across ¥. We note the relations

[n®] = [eg] =0, (3.7.2)

where e = 0z*/0y®. The first follows from the relation n® = dz*/d¢ and the
continuity of both £ and z® across ¥; the second follows from the fact that the
coordinates y® are the same on both sides of the hypersurface.

3.7.2  First junction condition

We begin by expressing the metric g,g, in the coordinates %, as a distribution-
valued tensor:

9gap = O(f) ggﬂ +O0(=0) 9,5 (3.7.3)

where gfﬁ is the metric in ¥ % expressed in the coordinates z*. We want to know if
the metric of Eq. (3.7.3) makes a valid distributional solution to the Einstein field
equations. To decide, we must verify that geometrical quantities constructed from
gags, such as the Riemann tensor, are properly defined as distributions. We must
then try to eliminate, or at least give an interpretation to, singular terms that might
arise in these geometric quantities.

Differentiating Eq. (3.7.3) yields

Jopy = O(0) giﬁ,ry +0(-¢) g(;ﬁ,ry +ed(¢) [gaﬁ] Ty,

where Eq. (3.7.1) was used. The last term is singular, and it causes problems when
we compute the Christoffel symbols, because it generates terms proportional to
©(£)4(f). If the last term were allowed to survive, therefore, the connection would
not be defined as a distribution. To eliminate this term, we impose continuity
of the metric across the hypersurface: [go3] = 0. This statement holds in the
coordinate system z® only. However, we can easily turn this into a coordinate-
invariant statement: 0 = [gaﬁ]egef = [ga/gegef ]; this last step follows by virtue of
Eq. (3.7.2). We have obtained

[has] =0, (3.7.4)

the statement that the induced metric must be the same on both sides of 3. This
is clearly required if the hypersurface is to have a well-defined geometry. Equation
(3.7.4) will be our first junction condition, and it is expressed independently of the
coordinates z* or z%.

3.7.8 Riemann tensor

To find the second junction condition requires more work: we must calculate the
distribution-valued Riemann tensor. Using the results obtained thus far, we have
that the Christoffel symbols are
— + -
%, =0T +0(-0)T,
where Fiﬁoﬁ/ are the Christoffel symbols constructed from gfﬁ. A straightforward
calculation then reveals

%0 = OO T s +0(=O)T 7 5 +5(0)[%, ]ns,
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and from this follows the Riemann tensor:

a575 = 6(@ R—i_ﬁcfyé + 6(_@ R_ﬁya + 6(£)Aa575; (3.7.5)
where
A = 5([Faﬂé]”v - [Faﬂ'y]n6)- (3.7.6)

We see that the Riemann tensor is properly defined as a distribution, but the
d-function term represents a curvature singularity at ¥. Our second junction con-
dition will seek to eliminate this term. Failing this, we will see that a physical
interpretation can nevertheless be given to the singularity. This is our next topic.

3.7.4 Surface stress-energy tensor

Although they are constructed from Christoffel symbols, the quantities A%, ; form
a tensor, because the difference between two sets of Christoffel symbols is a tensorial
quantity (see Sec. 1.2). We must now find an explicit expression for this tensor.

The fact that the metric is continuous across X in the coordinates ¢ implies
that its tangential derivatives must also be continuous. This means that if g,g, is
to be discontinuous, the discontinuity must be directed along the normal vector n®.
There must therefore exist a tensor field k.3 such that

[908.4] = Kap s (3.7.7)

this tensor is given explicitly by

Kag = €[gap |07 (3.7.8)

Equation (3.7.7) implies

[T%,] = 3 (K%ny + K% ng = Kgyn®),
and we obtain
€
%ys = 3 (k%mgn., — K% npng — ksn n, + Kgynns).

This is the é-function part of the Riemann tensor.
Contracting over the first and third indices gives the §-function part of the Ricci
tensor: c
Aup =AY, 5= §(/<;Wn’“‘n5 + Kugnfng — Knang — €Kqa),

where k = k%,. After an additional contraction we obtain the J-function part of
the Ricci scalar,
A=A% = e(fe,wn”n" — 5/@).

With this we form the é-function part of the Einstein tensor, and after using the
Einstein field equations, we obtain an expression for the stress-energy tensor:

Tap = O(0) T, + O(—£) Ts + 6(6)Sap, (3.7.9)

where 87553 = Aag — 1 Agas. In Eq. (3.7.9), the first and second terms represent
the stress-energy tensors of regions ¥+ and ¥, respectively. The é-function term,
on the other hand, comes with a clear interpretation: it is associated with the
presence of a thin distribution of matter — a surface layer, or a thin shell — at X;
this thin shell has a surface stress-energy tensor given by Sqg.
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3.7.5 Second junction condition

Explicitly, the surface stress-energy tensor is given by
16meSag = Kuanfng + Kuan*ng — knang — ekas — (Kun#n” — €k)gas-

From this we notice that S, is tangent to the hypersurface: Sasn® = 0. It therefore
admits the decomposition
S8 = S“begeg, (3.7.10)

where S, = Saﬁeg‘ebﬁ is a symmetric three-tensor. This is evaluated as follows:

16wS = —/iageg‘ef — s(m,“,n“n" — sm) hap
= —naﬁe‘;ef — Kuw (g’“’ — hm"e”mefb)hab + Khap
= —/-cageg‘ef + h™" kel er hop.
On the other hand, we have
[na?ﬁ] = - [F’Yaﬂ]n’Y

1 v
= —= (KyanB + EysNa — Kapny) N

2
= % (6Kas — Kyangn” — Kygnan’),
which allows us to write
[Kus] = [nais]ese] = 5 kagetey.
Combining these results, we obtain
Sab =~ ([Kas] = [K]has), (3.7.11)

which relates the surface stress-energy tensor to the jump in extrinsic curvature
from one side of ¥ to the other. The complete stress-energy tensor of the surface
layer is

T3P = 5(6) S%elel. (3.7.12)

We conclude that a smooth transition across ¥ requires [K,;] = 0 — the extrin-
sic curvature must be the same on both sides of the hypersurface. This require-
ment does more than just remove the §-function term from the Einstein tensor: In
Sec. 3.13, Problem 4 you will be asked to prove that [K,p] = 0 implies A%_; = 0,
which means that the full Riemann tensor is then nonsingular at X.

The condition [K4] = 0 is our second junction condition, and it is expressed
independently of the coordinates z® and x%. If this condition is violated, then
the spacetime is singular at X, but the singularity comes with a straightforward
interpretation: a surface layer with stress-energy tensor TSB is present at the hy-
persurface.

Notice that a minor miracle is at work here: When [Kgp] # 0, only the Ricci
part of the Riemann tensor acquires a singularity, and it is this part that can readily
be associated with matter. The remaining part of the Riemann tensor — the Weyl
part — is smooth even when the extrinsic curvature is discontinuous.

3.7.6 Summary

The junction conditions for a smooth joining of two metrics at a hypersurface
(assumed not to be null) are

[hap] = [Kab] = 0.
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If the extrinsic curvature is not the same on both sides of X, then a thin shell with
surface stress-energy tensor

€
Sur = == ([Ka] = [K]har)
is present at ¥. The complete stress-energy tensor of the surface layer is given by
Eq. (3.7.12) in the overlapping coordinates z®. In the coordinate system z§ used

originally in ¥, it is
Taﬁ — Sab 61’1 6‘7’.5: (5(6)
T oy ) \ oyb '

This follows from Eq. (3.7.12) by a simple coordinate transformation from z% to
z%; such a transformation leaves both £ and S%° invariant.

This formulation of the junction conditions is due to Darmois (1927) and Israel
(1966). The thin-shell formalism is due to Lanczos (1922 and 1924) and Israel
(1966); an extension to null hypersurfaces will be considered in Sec. 3.11.

3.8 Oppenheimer-Snyder collapse

In 1939, J. Robert Oppenheimer and his student Hartland Snyder published the first
solution to the Einstein field equations that describes the process of gravitational
collapse to a black hole. For simplicity, they modeled the collapsing star as a
spherical ball of pressureless matter with a uniform density. (A perfect fluid with
negligible pressure is usually called dust.) The metric inside the dust is a Friedmann-
Robertson-Walker (FRW) solution, while the metric outside is the Schwarzschild
solution (Fig. 3.6). The question considered here is whether these metrics can be
joined smoothly at their common boundary, the surface of the collapsing star.
The metric inside the collapsing dust (which occupies the region ¥ ) is given
by
ds?. = —dr’® + a®(1) (dx” + sin® x dQ?), (3.8.1)
where 7 is proper time on comoving world lines (along which x, 6, and ¢ are all

constant), and a(7) is the scale factor. By virtue of the Einstein field equations,
this satisfies

@ +1= = e, (3.8.2)

¥+ : Schwarzschild

Figure 3.6: The Oppenheimer-Snyder spacetime.
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where an overdot denotes differentiation with respect to 7. By virtue of energy-
momentum conservation in the absence of pressure, the dust’s mass density p sat-
isfies

3
pa® = constant = & Omax (3.8.3)

where ayax is the maximum value of the scale factor. The solution to Egs. (3.8.2)
and (3.8.3) has the parametric form

a(n) = Famax(1+cosn),  T(n) = 5amax(n + siny);

the collapse begins at 7 = 0 when a = amax, and it ends at n = 7 when a = 0. The
hypersurface ¥ coincides with the surface of the collapsing star, which is located at
X = Xo in our comoving coordinates.

The metric outside the dust (in the region ¥ 1) is given by

ds® = —fdt* + f~tdr* +r* dQ?, f=1-2M/r, (3.8.4)

where M is the gravitational mass of the collapsing star. As seen from the outside, &
is described by the parametric equations r = R(7), t = T'(7), where 7 is proper time
for observers comoving with the surface. Clearly, this is the same 7 that appears in
the metric of Eq. (3.8.1).

It is convenient to choose y* = (7,6, ¢) as coordinates on ¥. This implies that
e? = u®, where u® is the four-velocity of an observer comoving with the surface of
the collapsing star.

We now calculate the induced metric. As seen from ¥, the metric on X is

dst = —dr? + a*(7) sin? xo dQ?.
As seen from ¥ T, on the other hand,
ds% = —(FT? — F7'R?) dr® + R*(1) d?,

where F' = 1—2M/R. Because the induced metric must be the same on both sides
of the hypersurface, we have

R(r) =a(r)sinye, FT°-F'R*=1 (3.8.5)

The first equation determines R(7), and the second equation can be solved for T:

=VE+F = B(R,R). (3.8.6)

This equation can be integrated for T'(), and the motion of the boundary in ¥+
is completely determined.

The unit normal to X can be obtained from the relations nou® = 0, nan® = 1.
As seen from ¥, u® 8, = 0; and n; dz® = ady; we have chosen nX > 0 so that
n® is directed toward ¥ . As seen from ¥, u§ 9, = T8 + RO, and nf de® =
—Rdt + T dr, with a consistent choice for the sign.

The extrinsic curvature is defined on either side of ¥ by Ky = nq,pes eb The
nonvanishing components are K,, = nggu®u® = —n,u Buﬁ = —a®n, (where a®
is the acceleration of an observer comoving with the surface) Kopgp = ng,p, and
Kgp =ng,s. A straightforward calculation reveals that as seen from ¥,

K7, =0, K')=K’,=a""cotxo. (3.8.7)

The first relation follows immediately from the fact that the comoving world lines
of a FRW spacetime are geodesics. As seen from ¥'t,

K], =8/R, KY,=K},=8/R, (3.8.8)
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where B(R, R) is defined by Eq. (3.8.6).

To have a smooth transition at the surface of the collapsing star, we demand
that K,; be the same on both sides of the hypersurface. It is therefore necessary
for u$ to satisfy the geodesic equation (a$ = 0) in ¥*. It is easy to check that the
geodesic equation implies R? + F = E2, where E = —u, is the (conserved) energy
parameter of the comoving observer. This relation implies 8 = E, and the fact that
f is a constant enforces K7 = 0, as required. On the other hand, [K 90] = 0 implies

cot xo/a = B/R = E/(asin xq), or

B = E = cos xo- (3.8.9)

We have found that the requirement for a smooth transition at ¥ is that the hyper-
surface be generated by geodesics of both ¥~ and #*, and that the parameters £
and xo be related by Eq. (3.8.9). With the help of Egs. (3.8.2), (3.8.5), and (3.8.6),
we may turn Eq. (3.8.9) into
4

M= ?” pR®, (3.8.10)
which equates the gravitational mass of the collapsing star to the product of its
density and volume. This relation has an immediate intuitive meaning, and it
neatly summarizes the complete solution to the Oppenheimer-Snyder problem.

3.9 Thin-shell collapse

As an application of the thin-shell formalism, we consider the gravitational collapse
of a thin spherical shell. We assume that spacetime is flat inside the shell (in ¥ 7).
Outside (in ¥ 1), the metric is necessarily a Schwarzschild solution (by virtue of the
assumed spherical symmetry). We assume also that the shell is made of pressureless
matter, in the sense that its surface stress-energy tensor is constrained to have the
form

S = guu®, (3.9.1)

in which o is the surface density and u® = dy®/dr the shell’s velocity field. Our
goal is to derive the shell’s equations of motion under the stated conditions.
Using the results derived in the preceding section, we have

KL, = PBi/R,
K{, = K%,=B+/R,

By JR2+1-2M/R,
B = VR:+1,

where R(7) is the shell’s radius, and M its gravitational mass. As we did before,
we use (7,0, ¢) as coordinates on X.. Equation (3.7.11) allows us to calculate the
components of the surface stress-energy tensor, and we find

The second equation can be integrated immediately, giving (84 — 8- )R = constant.
Substituting this into the first equation yields 47 R0 = —constant.
We have obtained

47R%*0c = m = constant (3.9.2)
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and _ — B4+ = m/R. The first equation states that m, the shell’s rest mass, stays
constant during the evolution. Squaring the second equation converts it to

2
M=mV1+R?— ;”—R, (3.9.3)

which comes with a nice physical interpretation. The first term on the right-hand
side is the shell’s relativistic kinetic energy, including rest mass. The second term is
the shell’s binding energy, the work required to assemble the shell from its dispersed
constituents. The sum of these is the total (conserved) energy, and this is equal to
the shell’s gravitational mass M. Equation (3.9.3) provides a vivid illustration of
the general statement that all forms of energy contribute to the total gravitational
mass of an isolated body.

Equations (3.9.2) and (3.9.3) are the shell’s equations of motion. It is interesting
to note that if M < m, then the motion exhibits a turning point at R = Ryax =
m?/[2(m—M)]: an expanding shell with M < m cannot escape its own gravitational
pull.

3.10 Slowly rotating shell

Our next application of the thin-shell formalism is concerned with the spacetime of a
slowly rotating, spherical shell. We take the exterior metric to be the slow-rotation
limit of the Kerr solution,

AM
ds? = —fdt* + 1 dr? + 12 d0? — Ta sin? 0 dtde. (3.10.1)

Here, f = 1 — 2M/r, with M denoting the shell’s gravitational mass, and a =
J/M <« M, where J is the shell’s angular momentum. Throughout this section we
will work consistently to first order in a.

The metric of Eq. (3.10.1) is cut off at a radius » = R at which the shell is
located. As viewed from the exterior, the shell’s induced metric is

AM
ds% = —(1 — 2M/R) dt? + R? dQ? — T" sin? 0 dtd¢.

It is possible to remove the off-diagonal term by going to a rotating frame of refer-
ence. We therefore introduce a new angular coordinate v related to ¢ by

¥ =¢—Ot, (3.10.2)

where () is the angular velocity of the new frame with respect to the inertial frame
of Eq. (3.10.1). We anticipate that £ will be proportional to a, and this allows us
to approximate d¢? by di? + 20 dtdip. Substituting this into dsZ returns a diagonal
metric if  is chosen to be

2Ma
With this, the induced metric becomes
hap dy®dy® = —(1 — 2M/R) dt* + R*(d6* + sin® 6 dy)?). (3.10.4)

It is now clear that the shell has a spherical geometry. As Eq. (3.10.4) indicates,
we will use the coordinates y* = (t,0,4) on the shell.

We take spacetime to be flat inside the shell, and we write the Minkowski metric
in the form

ds®> = —(1—2M/R) dt* + dp® + p*(d§”> + sin® 0 dp?), (3.10.5)
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where p is a radial coordinate. This metric must be cut off at p = R and matched
to the exterior metric of Eq. (3.10.1). The shell’s intrinsic metric, as computed from
the interior, agrees with Eq. (3.10.4). Continuity of the induced metric is therefore
established, and we must now turn to the extrinsic curvature.

We first compute the extrinsic curvature as seen from the shell’s exterior. In the
metric of Eq. (3.10.1), the shell’s unit normal is n, = f~/29,r. The parametric
equations of the hypersurface are t = t, 8 = 6, and ¢ = 9 + Qt, and they have
the generic form z* = z%(y*). These allow us to compute the tangent vectors
ey = 0z®/0y®, and we obtain efd, = 0; + 004, €j0, = 0y, and ef}}aa = 0p. From
all this we find that the nonvanishing components of the extrinsic curvature are

K, = — 2
‘ R?\/1-2M/R’
3Masin? 6
t
KQ/} = —

R2\/1-2M/R’
3Ma
K’l/z = F\/1—2M/R,

1
K% = = V1-2M/R=K".

As now seen from the shell’s interior, the unit normal is n, = d,p, and the tangent
vectors are ef0y = 0;, €§0a = g, and €30, = Jy. From this we find that K% =
1/R=K ’/jﬁ are the only two nonvanishing components of the extrinsic curvature.
This could have been obtained directly by setting M = 0 in our previous results.

We have a clear discontinuity in the extrinsic curvature, and Eq. (3.7.11) allows
us to calculate S°°, the shell’s surface stress-energy tensor. After a few lines of
algebra, we obtain

1
t - —_— —_— —
St = 4WR(1 V1 2M/R),
3Masin? 6
87R?\/1—2M/R’
3Ma
Y
sY = —W\/1—2M/R,
o 1—M/R—~/1—2M/R:S¢

o 87R\/1— 2M/R v

These results, while giving us a complete description of the surface stress-energy
tensor, are not terribly illuminating. Can we make sense of this mess?
We will attempt to cast S in a perfect-fluid form,

Stw ==

S5 = gutu® + p(h® + uub), (3.10.6)

in terms of a velocity field u®, a surface density o, and a surface pressure p. How do
we find these quantities? First we notice that Eq. (3.10.6) implies S%4u® = —ou?,
which shows that «® is a normalized eigenvector of the surface stress-energy tensor,
with eigenvalue —o. This gives us three equations for three unknowns, the density
and the two independent components of the velocity field. Once those have been
obtained, the pressure is found by projecting S in the directions orthogonal to u®.
The rest is just a matter of algebra.

We can save ourselves some work if we recognize that the shell must move rigidly
in the ¢ direction, with a uniform angular velocity w. Its velocity vector can then
be expressed as

u® = y(t* + wyp?), (3.10.7)
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where t* = 9y®/0t and ¢* = 0y* /Oy are the Killing vectors of the induced metric
hap- In Eq. (3.10.7), w = dip/dt is the shell’s angular velocity in the rotating frame
of Eq. (3.10.2), and v is determined by the normalization condition, h,pu®u® = —1.
We can simplify things further if we anticipate that w will be proportional to a. For
example, neglecting O(w?) terms when normalizing u® gives

1
Y= i—eM/R

With these assumptions, we find that the eigenvalue equation produces w =
—8%/(—S + S¢¢) and o = —S%,. After simplification, the first equation becomes

(3.10.8)

6Ma 1—2M/R

B (1~ i 2M/R)(1+3/1 - 2M/R)

w= (3.10.9)

and the second is )
o= 1% (1 —/1- 2M/R). (3.10.10)

We now have the surface density and the velocity field. The surface pressure can
easily be obtained by projecting S in the directions orthogonal to u®: p = %(hab +
uqup) S = (S + o), where S = hayS®®. This gives p = 5%, and

_1-M/R-\/1-2M/R
P RV TR (3.10.11)

The shell’s surface stress-energy tensor can therefore be given an interpretation in
terms of a perfect fluid of density o, pressure p, and angular velocity w. When
R is much larger than 2M, Egs. (3.10.9)—(3.10.11) reduce to w ~ 3a/(2R?), 0 ~
M/(47R?), and p ~ M? /(16w R?), respectively.

The spacetime of a slowly rotating shell offers us a unique opportunity to explore
the rather strange relativistic effects associated with rotation. We will conclude this
section with a short description of these effects.

The metric of Eq. (3.10.1) is the metric outside the shell, and it is expressed
in a coordinate system that goes easily into a Cartesian frame at infinity. This is
the frame of the “fixed stars”, and it is this frame which sets the standard of no
rotation. The metric of Eq. (3.10.5), on the other hand, is the metric inside the
shell, and it is expressed in a coordinate system that is rotating with respect to the
frame of the fixed stars. The transformation is given by Eq. (3.10.2), and it shows
that an observer at constant ¢ moves with an angular velocity d¢/dt = Q. Inertial
observers inside the shell are therefore rotating with respect to the fixed stars, with
an angular velocity Q;, = Q. According to Eq. (3.10.3), this is

2Ma

Qin = F

(3.10.12)
This angular motion is induced by the rotation of the shell, and the effect is known
as the dragging of inertial frames. It was first discovered in 1918 by Thirring and
Lense.

The shell’s angular velocity w, as computed in Eq. (3.10.9), is measured in the
rotating frame. As measured in the nonrotating frame, the shell’s angular velocity
is Qghen = dop/dt = dip/dt + Q = w + Qip. According to Egs. (3.10.9) and (3.10.12),
this is

0. _2Ma 1+2,/1—2M/R (31013)
" RS (1= /1-2M/R)(1+3/1- 2M/R)’ o
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When R is much larger than 2M, Qi,/Qnen ~ 4M/(3R), and the internal ob-
servers rotate at a small fraction of the shell’s angular velocity. As R approaches
2M , however, the ratio approaches unity, and the internal observers find themselves
corotating with the shell. This is a rather striking manifestation of frame dragging.
(The phrase “Mach’s principle” is often attached to this phenomenon.) This space-
time, admittedly, is highly idealized, and we may wonder whether corotation could
ever occur in realistic situations. We will see in Chapter 5 that the answer is yes:
a very similar phenomenon occurs in the vicinity of a rotating black hole.

3.11 Null shells

We saw in Secs. 3.1 and 3.2 that the description of null hypersurfaces requires some
care and involves interesting subtleties, and we should not be surprised to find that
the same is true of the description of null surface layers. Our purpose here, in the
last section of Chapter 3, is to face these subtleties and extend the formalism of thin
shells, as developed in Sec. 3.7, to the case of a null hypersurface. The presentation
given here is adapted from Barrabeés and Israel (1991).

3.11.1 Geometry

As in Sec. 3.7 we consider a hypersurface ¥ that partitions spacetime into two
regions ¥ * in which the metric is giﬂ when expressed in coordinates %. Here we
assume that the hypersurface is null, and our convention is such that ¥~ is in the
past of ¥, and ¥ T in its future. We assume also that the hypersurface is singular,
in the sense that the Riemann tensor possesses a d-function singularity at ¥. We
will characterize the Ricci part of this singular curvature tensor, and relate it to the
surface stress-energy tensor of the shell.

(We note in passing that the Weyl part of the curvature tensor may also be
singular at the hypersurface, and that this may happen even in the absence of a
singular Ricci tensor: the two types of singularity are entirely decoupled. This
property is peculiar to null hypersurfaces: in the case of timelike or spacelike shells,
the curvature singularity is completely supported by the Ricci tensor, and the Weyl
tensor is always smooth. In this section we shall be concerned only with the sin-
gularity in the Ricci tensor, and we shall have to leave unexplored the interesting
physical effects associated with a singular Weyl tensor.)

As in Sec. 3.1.2 we install coordinates

y* = (6%

on the hypersurface, and as in Sec. 3.7.1 we assume that these coordinates are
the same of both sides of ¥. We take A to be an arbitrary parameter on the null
generators of the hypersurface, and we use 64 to label the generators. We shall see
below that in general, it is not possible to make A an affine parameter on both sides
of X.

In ¥*, ¥ is described by the parametric relations =% (y*), and we can intro-
duce tangent vectors e, = 0z% /Oy® on each side of the hypersurface. These are
naturally separated into a null vector k that is tangent to the generators, and
two spacelike vectors e 4, that point in the directions transverse to the generators.

Explicitly, 5
o« [0z® o o [0z®
kY = ( an >0A =ey, €4 = (—89‘4))\' (3.11.1)

(Here and below, in order to keep the notation simple, we refrain from using the “+”
label in displayed equations; this should not cause any confusion.) By construction,
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these vectors satisfy
kok® =0 = k,eq. (3.11.2)

On the other hand, the remaining inner products
oaB(\,0°) = gap €€, (3.11.3)
do not vanish, and we assume that they are the same on both sides of X:
[oaB] = 0. (3.11.4)
As in Sec. 3.1.3, we find that it is the two-tensor o0 4p which acts as a metric on X,
ds? = oap d6”dh®,

and the condition (3.11.4) ensures that the hypersurface possesses a well-defined
intrinsic geometry.

As in Sec. 3.1.3 we complete the basis by adding an auxiliary null vector N§
satisfying

N,N* =0, Nyk* = -1, Nye% = 0. (3.11.5)
This gives us the convenient expression
g%% = —k*NP — N°EP + 64PeS el (3.11.6)
A

for the inverse metric on either side of £ (in the coordinates 23 ); 02 is the inverse
of oaB, and it is the same on both sides.

To complete the geometric setup we must introduce a congruence of geodesics
that cross the hypersurface. In Sec. 3.7, in which ¥ was either timelike or space-
like, the congruence was selected by demanding that the geodesics intersect the
hypersurface orthogonally: the vector field u§ tangent to the congruence was set
equal (on ¥) to the normal vector ng. When the hypersurface is null, however, this
requirement does not produce a unique congruence, because a vector orthogonal to
k% can still possess an arbitrary component along k*.

We shall have to give up on the idea of adopting a unique congruence. An
important aspect of our description of null shells is therefore that it involves an
arbitrary congruence of timelike geodesics intersecting X. This arbitrariness comes
with the lightlike nature of the singular hypersurface, and it cannot be removed.
It can, however, be physically motivated: The arbitrary vector field u§ that enters
our description of null shells can be identified with the four-velocity of a family
of observers making measurements on the shell; since many different families of
observers could be introduced to make such measurements, there is no reason to
demand that the vector field be uniquely specified.

We therefore introduce a congruence of timelike geodesics y that arbitrarily
intersect the hypersurface. The geodesics are parameterized by proper time 7,
which is adjusted so that 7 = 0 when a geodesic crosses X; thus, 7 < 0 in ¥ ~, and
7 > 0in #*. The vector tangent to the geodesics is

u® = da:_a
dr
To ensure that the congruence is smooth at the hypersurface, we demand that u%

be “the same” on both sides of . This means that uye?, the tangential projections
of the vector field, must be equal when evaluated on either side of the hypersurface:

(3.11.7)

[—uak®] =0 = [uqek]. (3.11.8)

ficient (together with the geodesic equation) to determine the three independent

If, for example, u® is specified in ¥ ~, then the three conditions (3.11.8) are suf-
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components of u$ in ¥*. We note that —u,N®, the transverse projection of the
vector field, is allowed to be discontinuous at X.

The proper-time parameter on the timelike geodesics can be thought of as a
scalar field 7(z%) defined in a neighbourhood of ¥: Select a point =4 off the hyper-
surface and locate the unique geodesic «y that connects this point to X; the value of
the scalar field at =% is equal to the proper-time parameter of this geodesic at that
point. The hypersurface ¥ can then be defined by the statement

and the normal vector kX will be proportional to the gradient of 7(2%) evaluated
at X. It is easy to check that the expression

or

dze

is compatible with Eq. (3.11.7). We recall that the factor —k,u* in Eq. (3.11.9) is
continuous across X.

ko = —(—kyu*) (3.11.9)

3.11.2 Surface stress-energy tensor

As in Sec. 3.7 we introduce an overlapping coordinate system z®, distinct from
z¢, in a neighbourhood of the hypersurface; the final formulation of our null-shell
formalism will be independent of these coordinates. We express the metric as a
distribution-valued tensor:

9op = O(7) g5 + O(=7) g5,

where gfﬁ(m“) is the metric in #*. We assume that in these coordinates, the metric
is continuous at X: [gag] = 0; Eq. (3.11.4) is compatible with this requirement. We
also have [k®] = [e%] = [N?] = [u®] = 0. Differentiation of the metric proceeds as in
Secs. 3.7.2 and 3.7.3, except that we now write 7 instead of £, and we use Eq. (3.11.9)
to relate the gradient of 7 to the null vector £*. We arrive at a Riemann tensor
that contains a singular part given by

Ry %y = _(_kuuu)_l([ %5 ky — [T%,]ks)d(7), (3.11.10)

where [I'%_] is the jump in the Christoffel symbols across X.

In order to make Eq. (3.11.10) more explicit we must characterize the discon-
tinuous behaviour of gog,,. The condition [g,3] = 0 guarantees that the tangential
derivatives of the metric are continuous:

[9a5,4]k" =0 = [gap ] 6?:-

The only possible discontinuity is therefore in g,g,,/N7, the transverse derivative of
the metric, and we conclude that there must exist a tensor field v, such that

[906.7] = —Vasky- (3.11.11)

This tensor is given explicitly by 7,3 = [gap,~]/N7, and it is now easy to check that
1
[[%,] = =5 (1%ks +7% ks = 18,5%). (3.11.12)
Substituting this into Eq. (3.11.10) gives

(=kuu) " (v kpky — 185k ky — 1% kaks + Y5,k ks)8(7), (3.11.13)

DN =

RE aB’yé =



3.11 Null shells 79

and we see that k% and ~,3 give a complete characterization of the singular part of
the Riemann tensor.

From Eq. (3.11.13) it is easy to form the singular part of the Einstein tensor,
and the Einstein field equations then give us the singular part of the stress-energy
tensor: .

TP = (—k,ut) ™ S8 (1), (3.11.14)
where 1
167 (K" + KPSk = At Kok — ki k™)
is the surface stress-energy tensor of the null shell — up to a factor —k,u# that
depends on the choice of observers making measurements on the shell. Tts expression
can be simplified if we decompose S*? in the basis (k%,e%, N®). For this purpose
we introduce the projections

S8 =

Y4 =Yg €Gk®,  vAB = YapeSe, (3.11.15)

and we use the completeness relation (3.11.6) to find that the vector % k* admits
the decomposition

1
vo k= 3 (", — o Byap)k® + (0*Byg) €% — (Vun k" k") N°.
Substituting this into our previous expression for S*? and involving once more the

completeness relation, we arrive at our final expression for the surface stress-energy
tensor:

S = uk®kP + j4 (k"‘ei +e5kP) +poiBesel. (3.11.16)
Here,
_ 1 B
B= 167 (U ’YAB)

can be interpreted as the shell’s surface density,

as a surface current, and

1
= apB

as a surface pressure.

The surface stress-energy tensor of Eq. (3.11.16) is expressed in the overlapping
coordinates z%. As a matter of fact, the derivation of Eq. (3.11.16) relies heavily on
these coordinates: the introduction of 7,4 rests on the fact that in these coordinates,
gap is continuous at ¥, so that an eventual discontinuity of the metric derivative
must be directed along k¢. In the next subsection we will remove the need to
involve the coordinates z“ in practical applications of the null-shell formalism. For
the time being we simply note that while Eq. (3.11.16) is indeed expressed in the
overlapping coordinates z%, it is a tensorial equation involving vectors (k* and
€%) and scalars (s, j4, and p). This equation can therefore be expressed in any
coordinate system; in particular, when viewed from ¥+, the surface stress-energy
tensor can be expressed in the original coordinates z .

3.11.3 Intrinsic formulation

In Sec. 3.7, the surface stress-energy tensor of a timelike or spacelike shell was
expressed in terms of intrinsic three-tensors — quantities that can be defined on
the hypersurface only. The most important ingredients in this formulation were
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hap, the (continuous) induced metric, and [K,p), the discontinuity in the extrinsic
curvature. We would like to achieve something similar here, and remove the need
to involve an overlapping coordinate system z® to calculate the surface quantities
p, §*, and p.

We can expect that the intrinsic description of the surface stress-energy tensor
of a null shell will involve ¢ 45, the nonvanishing components of the induced metric.
We might also expect that it should involve the jump in the extrinsic curvature of
the null hypersurface, which would be defined by K, = ka3 egef = %(£k 9ap) eg‘e’f .
Not so. The reason is that there is nothing “transverse” about this object: In the
case of a timelike or spacelike hypersurface, the normal n® points away from the
surface, and £5,9.p truly represents the transverse derivative of the metric; when
the hypersurface is null, on the other hand, k* is tangent to the surface, and £4943
is a tangential derivative. Thus, the extrinsic curvature is necessarily continuous
when the hypersurface is null, and it cannot be related to the tensor 7,g defined by
Eq. (3.11.11).

There is, fortunately, an easy solution to this problem: we can introduce a
transverse curvature Cyp that properly represents the transverse derivative of the
metric. This shall be defined by Cop = L(£ngas) €2€) = L(Nays + Na,a)eZes, or

Cab = —Ng el g . (3.11.17)

To arrive at Eq. (3.11.17) we have used the fact that Nyel is a constant, and
the identity eg. Bef = eg‘;,@eg , which states that each basis vector e is Lie trans-
ported along any other basis vector; this property ensures that Cyp, as defined by
Eq. (3.11.17), is a symmetric three-tensor.

In the overlapping coordinates %, the jump in the transverse curvature is given

by
[Cab] = [Naaﬁ] €a€h
= - I:F’YQB:I N’Yegel?

1
= D) Yap €5 €h 5

where we have used Eq. (3.11.12) and the fact that k® is orthogonal to e%. We there-
fore have [Ca] = 27ask®k?, [Can] = 27apedk® = L4, and [Cap] = Lyapedel =
%VAB, where we have involved Eq. (3.11.15). Finally, we find that the surface
quantities can be expressed as

1 . 1 1
gO'AB [CAB], JA = gO’AB [C)\A], pP= —g [C)\,\]. (31118)

We have established that the shell’s surface quantities can all be related to the
induced metric o045 and the discontinuity in the transverse curvature C,,. This
completes the intrinsic formulation of our null-shell formalism.

B==

3.11.4 Summary

A singular null hypersurface ¥ possesses a surface stress-energy tensor characterized
by tangent vectors k¢ and e 4, as well as a surface density u, a surface current 34,
and a surface pressure p. The surface quantities can all be related to a discontinuity
in the surface’s transverse curvature,

Cab = —Naeg.5 ebﬁ,

which is defined on either side of ¥ in the appropriate coordinate system z%. The
relations are

1 . 1 1
M:—S—WUAB[CABL JAZS_WUAB[CAAL p:_8_7r [CM]'
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The surface stress-energy tensor is given by
S = ukkP 4 jA (ke + eSkP) + poiBedes,
and the complete stress-energy tensor of the surface layer is
TP = (—kuu”)_ISO‘La a(r).

In this expression, the factor (—k,u*)~! is continuous at the shell, and the vector
u§ = dz% /dr is tangent to an arbitrary congruence of timelike geodesics (which
represents a family of observers making measurements on the shell). The presence
of this factor implies that p, j4, and p are not the physically-measured surface
quantities; those are instead given by

Mphysical = (_kuuu)ilua j}?hysical = (_kuuﬂ)fle, Dphysical = (_kuuu)ilp-

The arbitrariness associated with the choice of congruence is thus limited to a
single multiplicative factor; the “bare” quantities y, 54, and p are independent of
this choice.

3.11.5 Parameterization of the null generators

Our null-shell formalism is now complete, and it is ready to be involved in applica-
tions. We will consider a few in the following subsections, but we first return to a
statement made earlier, that in general, A cannot be an affine parameter on both
sides of the hypersurface. We shall justify this here, and also consider what happens
to u, j#, and p when the parameterization of the null generators is altered.

Whether or not A is an affine parameter can be decided by computing k., the
“acceleration” of the null vector k. This is defined on either side of the hypersurface
by (Sec. 1.3)

keskP = kk®,

and X\ will be an affine parameter on the ¥+ side of ¥ if k+ = 0. According
to Eq. (3.11.5), k = —Nakaiﬁkﬂ = —Naeiﬁef = Ch», where we have also used
Egs. (3.11.2) and (3.11.17). Equation (3.11.18) then relates the discontinuity in the
acceleration to the surface pressure:

[k] = =8 p. (3.11.19)

We conclude that A can be an affine parameter on both sides of ¥ only when the
null shell has a vanishing surface pressure. When p # 0, A can be chosen to be
an affine parameter on one side of the hypersurface, but it will not be an affine
parameter on the other side.

Additional insight into this matter can be gained from Raychaudhuri’s equation,
which describes the transverse evolution of a congruence of null geodesics (Sec. 2.4).
In Sec. 2.6, Problem 8, Raychaudhuri’s equation was written in terms of an arbi-
trary parameterization of the null geodesics. When the congruence is hypersurface
orthogonal, it reads

Z—i + %02 + 00,5 = K0 — 87 THsk* kP,
where § and o,3 are the expansion and shear of the congruence, respectively; the
equation holds on either side of ¥. The left-hand side of Raychaudhuri’s equation,
because it depends only on the intrinsic geometry of the hypersurface, is guaranteed
to be continuous across the shell. Continuity of the right-hand side therefore implies

(K]0 = 87 [Task*k"]. (3.11.20)
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This relation shows that [k] # 0 (and p # 0) whenever the component T,zk®k?
of the stress-energy tensor is discontinuous at the shell. Thus, we conclude that A
cannot be an affine parameter on both sides of ¥ when [T,5k*k?] # 0. (Notice that
this conclusion breaks down when § = 0, that is, when the shell is stationary.)

Recalling (Sec. 2.4.8) that the expansion 6 is equal to the fractional rate of change
of the congruence’s cross-sectional area, we find that with the help of Eq. (3.11.19),
Eq. (3.11.20) can be expressed as

d
pydS + [T.sk*kP]dS =0, (3.11.21)

where dS = /o d?6 is an element of cross-sectional area on the shell (Sec. 3.2.2).
This equation has a simple interpretation: The first term represents the work done
by the shell as it expands or contracts, while the second term is the energy absorbed
by the shell from its surroundings; Eq. (3.11.21) therefore states that all of the
absorbed energy goes into work.

Having established that A cannot, in general, be an affine parameter on both
sides of the hypersurface, let us now investigate how a change of parameterization
might affect the surface density p, surface current j4, and surface pressure p of
the null shell. Because each generator can be reparameterized independently of any
other generator, we must consider transformations of the form

A= A, 64, (3.11.22)

The question before us is: How do p, j4, and p change under such a transformation?
To answer this we need to work out how the transformation of Eq. (3.11.22)
affects the vectors k%, e%, and N*. We first note that the differential form of

Eq. (3.11.22) is
d\ = € d\ + ca df*, (3.11.23)

o o
ﬂ p— JE— e —_— .
el = (8/\)9,,’ ca = (59‘4>{ (3.11.24)

both e? and c4 depend on y* = (),64), but because they depend on the intrin-
sic coordinates only, we have that [e’] = 0 = [ca]. A displacement within the
hypersurface can then be described either by

where

dz® = k% d\ + €5 do*,
where k® = (0x%/0))g, and e = (9z*/064)y, or by
dz® = k* d) + &% do*,

where k% = (0z%/0\)g, and &% = (0z%/004)y; these relations hold on either side
of ¥, in the relevant coordinate system z. Using Eq. (3.11.23), it is easy to see
that the tangent vectors transform as

E*=e Pk, &% =e3 —caePk® (3.11.25)

under the reparameterization of Eq. (3.11.22). It may be checked that the new basis
vectors satisfy the orthogonality relations (3.11.2), and that the induced metric c4p
is invariant under this transformation: gap = gagéjé% = gageje% = oap. To
preserve the relations (3.11.5) we let the new auxiliary null vector be

Ne =P No 4 %(O’ABCACB)G_'B kY — (GABCB)ej'f,. (3.11.26)
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This transformation ensures that the completeness relation (3.11.6) takes the same
form in the new basis.

It is a straightforward (but slightly tedious) task to compute how the transverse
curvature Cy; changes under a reparameterization of the generators, and to then
compute how the surface quantities transform. You will be asked to go through this
calculation in Sec. 3.13, Problem 8. The answer is that under the reparameterization
of Eq. (3.11.22), the surface quantities transform as

g = eﬁ,u+2cAjA+ (UABcAcB)e*Bp,
7 = 4+ (0*Bcp)ePp (3.11.27)
p = e’p

These transformations, together with Eq. (3.11.25), imply that the surface stress-
energy tensor becomes S*¥ = e A5, We also have (—k,ut)~! = e’ (—k,ut),
and these results reveal that the combination (—k,u*)"1S%% is invariant under
the reparameterization. This, finally, establishes the invariance of TEO‘B , the full
stress-energy tensor of the surface layer.

As a final remark, we note that under the reparameterization of Eq. (3.11.22),
the physically-measured surface quantities transform as

— 2 -A AB

Mphysical = € ﬂﬂphysical + 2CAeB]physical + (U CACB)pphysicaI;

A _ B.A AB ,

Jphysical = € Jphysical + (U CB)pphySICah (3.11.28)
Pphysical = Pphysical;

we see in particular that the physically-measured surface pressure is an invariant.

3.11.6 Imploding spherical shell

For our first application of the null-shell formalism, we take another look at the
gravitational collapse of a thin spherical shell, a problem that was first considered
in Sec. 3.9. Here we imagine that the collapse proceeds at the speed of light, and
that the thin shell lies on a null hypersurface ¥. We take spacetime to be flat inside
the shell (in #~), and write the metric there as

ds® = —dt* +dr? +r? d0?,

in terms of spatial coordinates (7,6, ¢) and a time coordinate ¢_. The metric outside
the shell (in ¥ 1) is the Schwarzschild solution,

ds} = —fdt3 + f~dr® +r*dQ?,

expressed in the same spatial coordinates but in terms of a distinct time ¢, ; here,
f=1—2M/r and M designates the gravitational mass of the collapsing shell.

As seen from ¥, the null hypersurface ¥ is described by the equation t_ +r =
v_ = constant, which means that the induced metric on ¥ is given by ds% = r? dQ2.
As seem from ¥ T, on the other hand, the hypersurface is described by 4 +r*(r) =
v4 = constant, where r*(r) = [ f~1dr = r+2M In(r/2M —1), and this gives rise to
the same induced metric. From these considerations we see that it was permissible
to express the metrics of #* in terms of the same spatial coordinates (r,8, #), but
that t; cannot be equal to ¢{_. The induced metric on the shell is

oap d8*d6P = N?(d6* + sin® 0 d¢?),

where we have set 84 = (6, ) and identified —r with the parameter A on the null
generators of the hypersurface; we shall see that here, A is an affine parameter on
both sides of X.
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As seen from ¥, the parametric equations % = z%(\,#4) describing the
hypersurface have the explicit form t_ =v_ 4+ X, r = —A, § = 0, and ¢ = ¢. These
give us the basis vectors k%0, = 0y — Or, €§0, = 0y, and egaa = 0y, and the basis
is completed by N, dz® = —1(dt—dr). From all this and Eq. (3.11.17) we find that
the nonvanishing components of the transverse curvature are

_ 1
CAB:ZO—AB'

The fact that C',, =0 confirms that A = —r is an affine parameter on the ¥~ side
of X.

As seen from ¥ T, the parametric equations describing the hypersurface are t; =
vy —7r*(=A), r=—-\,0 =0, and ¢ = ¢. The basis vectors are k*8, = f~10; — O,
€§0a = 0, €30, = Oy, and Ny dz* = —2(f dt—dr). The nonvanishing components
of the transverse curvature are now

CXB = Z OAB-
The fact that C;r/\ = 0 confirms that A\ = —r is an affine parameter on the ¥ 1 side
of X; X\ is therefore an affine parameter on both sides.
The angular components of the transverse curvature are discontinuous across
the shell: [Cap] = —(M/r?)oap. According to Eq. (3.11.18), this means that the
shell has a vanishing surface current j4 and a vanishing surface pressure p, but that

its surface density is
M

dmr2’

We have therefore obtained the very sensible result that the surface density of a
collapsing null shell is equal to its gravitational mass divided by its (ever decreasing)
surface area. Notice that pphysical = i for observers at rest in #'~. Because of the
focusing action of the null shell, however, these observers do not remain at rest
after crossing over to the ¥t side: A simple calculation, based on Eq. (3.11.8),
reveals that an observer at rest before crossing the shell will move according to
dr/dr = —(E? — f)'/2 after crossing the shell; the energy parameter E varies from
observer to observer, and is related by E=1-M /rs to the radius rs at which a
given observer crosses the hypersurface.

M:

3.11.7 Accreting black hole

In our second application of the null-shell formalism, we consider a nonrotating
black hole of mass (M —m) which suddenly acquires additional material of mass m
and angular momentum J = aM. We suppose that the accretion process is virtually
instantaneous, that the material falls in with the speed of light, and that J < M?2.
We idealize the accreting material as a singular stress-energy tensor supported on
a null hypersurface X.

The spacetime in the future of ¥ — in ¥+ — is that of a slowly rotating black
hole of mass M and (small) angular momentum aM. We write the metric in ¥+
as in Eq. (3.10.1),

M
ds? = —fdt* + f~ dr? + 17 dQ? — —= sin’ 6 dtdg,

where f = 1—2M/r; this is the slow-rotation limit of the Kerr metric, and through-
out this subsection we will work consistently to first order in the small parameter
a.

As seen from ¥ T, the null hypersurface ¥ is described by v = t +r* = 0, where
r* = [f~tdr = r + 2M In(r/2M — 1); you may check that in the slow-rotation
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limit, every surface v = constant is null. It follows that the vector k% = g®(—08zv)
is normal to ¥ and tangent to its null generators. We have

1 2Ma
(o3 —
k%04 —?Bt—3T+W6¢,
and from this expression we deduce four important properties of the generators.
First, the generators are affinely parameterized by A = —r. Second, as measured by

inertial observers at infinity, the generators move with an (ever increasing) angular

velocity
d¢ _ Q 2Ma

dt generators — 3

Third, 6 is constant on each generator. And fourth, integration of d¢/(—dr) =
2Ma/(r®f) reveals that

¢E¢+;(l+ﬁlnf)

also is constant on the generators.

We shall use y* = (A = —r, 0,4) as coordinates on X; as we have just seen, these
coordinates are well adapted to the generators, and this property is required by the
null-shell formalism. Remembering that dt = —dr/f and d¢ = dyp — (2Ma/r3f) dr
on X, we find that the induced metric is

oap d9*d9® = r?(d6* + sin’® 0 dyp?),

and that the hypersurface is intrinsically spherical.

The parametric description of ¥, as seen from ¥t is £%(—r,0,4), and from
this we form the tangent vectors e§ = k%, ef’ = 47, and ej = 3. The basis is
completed by Ny dz® = 2(—fdt + dr). From Eq. (3.11.17) we obtain

3Ma . ,
Cyy = 5 sin 6, Cig= oy TAB
for the nonvanishing components of the transverse curvature.

The spacetime in the past of ¥ — in ¥~ — is that of a nonrotating black hole
of mass (M — m). Here we write the metric as

ds? = —Fdi? + F~" dr® + 12 (d6? + sin® § dyp?),

in terms of a distinct time coordinate ¢ and the angles 6 and v; we also have F =
1—2(M —m)/r. This choice of angular coordinates implies that inertial observers
within ¥~ corotate with the shell’s null generators; this is another manifestation
of the dragging of inertial frames, a phenomenon first encountered in Sec. 3.10. As
we shall see presently, this choice of coordinates is dictated by continuity of the
induced metric at X.

The mathematical description of the hypersurface, as seen from ¥ ~, is identical
to its external description provided that we make the substitutions t — £, ¢ — 1),
M — M —m, and a — 0. According to this, the induced metric on X is still
given by ds% = r2(d§? +sin® § di)?), as required. The basis vectors are now k0, =
F10; — 0, ef0n = 0, €300 = Dy, and N, dz® = 1(—Fdt + dr). This gives us

_ F
Cup = b 0AB

for the nonvanishing components of the transverse curvature.

The transverse curvature is discontinuous at ¥, and Egs. (3.11.18) allow us to
compute the shell’s surface quantities. Because the generators are affinely param-
eterized by —r on both sides of the shell, we have that p = 0 — the shell has a
vanishing surface pressure. On the other hand, its surface density is given by

om
b=t
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the ratio of the shell’s gravitational mass m to its (ever decreasing) surface area
47r2. Thus far our results are virtually identical to those obtained in the preceding
subsection. What is new in this context is the presence of a surface current j4,
whose sole component is
) 3Ma
Y=
8mrd

This comes from the shell’s rotation, and the fact that the situation is not entirely
spherically symmetric.

To better understand the physical significance of the surface current, we express
the shell’s surface stress-energy tensor,

S = pkkP + j¥ (k*e}, + e kP),

in terms of the vector £* = k® + (j¥/u) eg. This vector is null (when we appro-

priately discard terms of order a? in the calculation of g,5¢®¢?), and it has the
components

£90, ! Oy — O + !

a = 70t — Or n

f f

in the coordinates z® = (¢,7,0,$) used in ¥*; we have set

QauiaOg

2Ma 3Ma
Qfuia = e

f.

2mr

The shell’s surface stress-energy tensor is now given by the simple expression
SF = peeP,

which corresponds to a pressureless fluid of density p moving with a four-velocity
£*. We see that the fluid is moving along null curves (not geodesics!) that do not
coincide with the shell’s null generators, and that the motion across generators is
created by a mismatch between Qquiq, the fluid’s angular velocity, and Qgenerators,
the angular velocity of the generators. The mismatch is directly related to j4:

v

_ J 3Ma

Qrela‘cive = Qﬂuid - Qgenera‘cors = — =
" 2mr

f.

Notice that the fluid rotates faster than the generators, which share their angular
velocity with inertial observers within ¥ ~; such a phenomenon was encountered
before, in the context of the stationary rotating shell of Sec. 3.10. But notice also
that Qrelative decreases to zero as r approaches 2M: the fluid ends up corotating
with the generators when the shell crosses the black-hole horizon.

3.11.8 Cosmological phase transition

In this third (and final) application of the formalism, we consider an intriguing (but
entirely artificial) cosmological scenario according to which the universe was initially
expanding in two directions only, but was then made to expand isotropically by a
sudden explosive event.

The ¥~ region of spacetime is the one in which the universe is expanding in the
z and y directions only. Its metric is

ds® = —dt* + a®(t)(dz® + dy?®) + dz?,

and the scale factor is assumed to be given by a(t) o« t'/2. The cosmological
fluid moves with a four-velocity u® = 0x®/0t, and it has a density and (isotropic)
pressure given by p_ = p_ = 1/(327t2), respectively.
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In the ¥ region of spacetime, the universe expands uniformly in all three
directions. Here the metric is

ds? = —dt? + a®(t) (dz? + dy® + dz3),

with the same scale factor a(t) as in ¥, and the cosmological fluid has a density
and pressure given by p; = 3p; = 3/(32nt?), respectively; this corresponds to a
radiation-dominated universe.

The history of the explosive event that changes the metric from Gop tO g;rB traces
a null hypersurface ¥ in spacetime. This surface moves in the positive z direction,
and as we shall see, it supports a singular stress-energy tensor. The “agent” that
alters the course of the universe’s expansion is therefore a null shell.

As seen from ¥ —, the hypersurface is described by t = z_ + constant, and the
vector k*0, = 0; + 0, is tangent to the null generators, which are parameterized
by t. In fact, because k®;k? = 0, we have that ¢ is an affine parameter on this
side of the hypersurface. The coordinates = and y are constant on the generators,
and we use them, together with ¢, as intrinsic coordinates on X. We therefore have
y® = (t,04), 04 = (x,y), and the shell’s induced metric is

oap d64doP = a®(t)(dz? + dy?).

The remaining basis vectors are ez 0o = 0, €50, = Oy, and N, dz* = —%(dt%—dz,).

The nonvanishing components of the transverse curvature are

1
Cip = P OAB-
We note that on the ¥~ side of ¥, the null generators have an expansion given
by 6 = k%, = 1/t, and that Togk®k® = p_ + p_ = 1/(16xt?), where T7 is the
stress-energy tensor of the cosmological fluid.
As seen from ¥, the description of the hypersurface is obtained by integrating
dt = a(t)dzy, and k%0, = O; + a 10, is tangent to the null generators. We

note that ¢ is not an affine parameter on this side of the hypersurface: we have

that k‘fﬂkﬁ = (2t)7'k*. The remaining basis vectors are €20, = 0Ox, eg0a = 0y,
Ny dz® = —1(dt + adzy), and the nonvanishing components of the transverse
curvature are now 1 1
+ _ +
Cy = 9p AB—4_t‘7AB-

On this side of ¥, the generators have an expansion also given by 8 = 1/t (since
continuity of 6 is implied by continuity of the induced metric), and T,sk*kP =
p+ +py = 1/(8mt?).

The fact that ¢ is an affine parameter on one side of the hypersurface only tells
us that the shell must possess a surface pressure. In fact, continuity of Cap across
the shell implies that p is the only nonvanishing surface quantity. It is given by

1

P= " Tomt

the negative sign indicating that this surface quantity would be better described
as a tension, not a pressure. The shell’s surface stress-energy tensor is S* =
po’Bege. If we select observers comoving with the cosmological fluid as our
preferred observers to make measurements on the shell, then —k,u® = 1 and the
full stress-energy tensor of the singular hypersurface is TSB = §%B§(t — ty), with
ty denoting the time at which a given observer crosses the shell. We see that for
these observers, —p is the physically-measured surface tension.

Finally, we note that the expressions —p = 1/(167t), § = 1/t, and [Task®kP] =
1/(167t?) are compatible with the general relation —p@ = [T,gk®k”] derived in
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Sec. 3.11.5. This shows that the energy released by the shell as it expands is
absorbed by the cosmological fluid, whose density increases by a factor of p; /p_ =
3; this energy is provided by the shell’s surface tension.

3.12 Bibliographical notes

During the preparation of this chapter I have relied on the following references:
Barrabés and Israel (1991); Barrabes and Hogan (1998); de la Cruz and Israel
(1968); Israel (1966); Misner, Thorne, and Wheeler (1973); Musgrave and Lake
(1997); and Wald (1984).

More specifically:

Sections 3.1, 3.2, and 3.3 are based partially on unpublished lecture notes by
Werner Israel. Sections 3.4, 3.5, and 3.9 are based on Israel’s paper. Section 3.6
is based on Sec. 10.2 of Wald. Sections 3.7 and 3.11 (as well as Problem 9 below)
are based on Barrabes and Israel. Section 3.8 is based on Exercise 32.4 of Misner,
Thorne, and Wheeler. Section 3.10 is based on de la Cruz and Israel. Finally,
the examples of Secs. 3.11.7 and 3.11.8 are adapted from Musgrave & Lake, and
Barrabes & Hogan, respectively.

3.13 Problems

Warning: The results derived in Problem 1 are used in later portions of this book.
1. We consider a hypersurface T' = constant in Schwarzschild spacetime, where
1 2M -1
"JaM + 11 (7“/ )
2 \/r/2M +1

We use (r, 0, ¢) as coordinates on the hypersurface.

T=t+4M

a) Calculate the unit normal ny, and find the parametric equations describing
the hypersurface.

b) Calculate the induced metric hqp.

c) Calculate the extrinsic curvature K,;. Verify that your results agree with
those of Sec. 3.6.6, and show that K is equal to the expansion of the
geodesic congruence considered in Sec. 2.3.7.

d) Prove that when it is expressed in terms of the coordinates (T, r,0, ¢), the
Schwarzschild metric takes the form

ds® = —dT? + (dr + \/2M/r dT)” + r? d02°.

This shows very clearly that the sections 7" = constant are intrinsically
flat. [This coordinate system was discovered independently by Painlevé
(1921) and Gullstrand (1922).]

2. A four-dimensional hypersurface is embedded in a flat, five-dimensional space-
time. We use coordinates z# in the five-dimensional world, and express the
metric as

ds? = nap dzdzP = —(d2°)? + (d2')? + (d2?)? + (d2%)? + (d2*)%;

we let uppercase latin indices run from 0 to 4. In the four-dimensional world
we use coordinates z® = (¢, x, 8, ¢). The hypersurface is defined by parametric
relations z4(z®). Explicitly,

2° = a sinh(t/a), z' = a cosh(t/a) cos x, 2? = a cosh(t/a) sin x cosf,
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2% = a cosh(t/a) sin x sin § cos ¢, 2* = a cosh(t/a) sin x sin @ sin ¢,

where a is a constant.

a) Compute the unit normal n” and the tangent vectors e2 = 8z4/8z% to
the hypersurface.

b) Compute the induced metric go3. What is the physical significance of this
four-dimensional metric? Does it satisfy the Einstein field equations?

c) Compute the extrinsic curvature K,. Use the Gauss-Codazzi equations
to prove that the induced Riemann tensor can be expressed as

1
(gavgﬂé _'gaégBW)‘

Roprs = —
afByd a2

This implies that the four-dimensional hypersurface is a spacetime of
constant Ricci curvature.

In this problem we consider a spherically symmetric space at a moment of
time symmetry. We write the three-metric as

ds? = de® + r*(¢£) dQ?,
where £ is proper distance from the centre.

a) Show that in these coordinates, the mass function introduced in Sec. 3.6.5
is given by

m(r) = g [1 - (dr/dé)Q].

b) Solve the constraint equations for a uniform energy density p on the hy-
persurface. Make sure to enforce the asymptotic condition r(¢ — 0) — £,
so that the three-metric is regular at the centre.

¢) Prove that r(¢) can be no larger than ryax = /3/87p.

d) Prove that 2m(rmax) = Tmax, and that m(rmpax) is the maximum value of
the mass function.

e) What happens when £ — 77y, 7

Prove the statement made toward the end of Sec. 3.7.5, that [K,;] = 0 is
a sufficient condition for the regularity of the full Riemann tensor at the
hypersurface X.

Prove that the surface stress-energy tensor of a thin shell satisfies the conser-
vation equation
Sab|b = —e[j],

where j, = ageg‘nﬁ . Interpret this equation physically. (Consider the case
where the shell is timelike.)

The metric
ds® = —dt* + d® + r*(€) dQ?,

where 7(€) = £ when 0 < £ < £y and r(f) = 26y — £ when £y < £ < 24y,
describes a spacetime with closed spatial sections. (What is the volume of a
hypersurface t = constant?) The spacetime is flat in both ¥~ (¢ < £y) and
¥+ (£ > £y), but it contains a surface layer at £ = £g.

a) Calculate the surface stress-energy tensor of the thin shell. Express this
in terms of a velocity field u%, a density o, and a surface pressure p.
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b) Consider a congruence of outgoing null geodesics in this spacetime, with
its tangent vector k, = —04(t — £). Calculate 0, the expansion of this
congruence. Show that it abruptly changes sign (from positive to nega-
tive) at £ = £o. The surface layer therefore produces a strong focusing of
the null geodesics.

¢) Use Raychaudhuri’s equation to prove that the discontinuity in df/d¢ is
precisely accounted for by the surface stress-energy tensor.

. Two Schwarzschild solutions, one with mass parameter m_, the other with

mass parameter m, are joined at a radius » = R(7) by means of a spherical,
massive thin shell. Here, 7 denotes proper time for an observer comoving
with the shell. It is assumed that m_ is the interior mass (m.. is the exterior
mass), that m4 > m_, and that R(7) > 2m for all values of 7. The shell’s
surface stress-energy tensor is given by

5% = (o + p)uu® + ph®,

where u® = dy®/dr is the fluid’s velocity field, o(7) the surface density, p(7)
the surface pressure, and hgyp the induced metric.

a) Derive, and interpret physically, the equation

d 2 d o

b) Find the values of ¢ and p which allow for a static configuration: R(7) =
Ry = constant. Verify that both o and p are positive. [The stability of
these static configurations was examined by Brady, Louko, and Poisson
(1991).]

. Derive the relations (3.11.26).

. Let spacetime be partitioned into two regions #* with metrics

ds%. = —fi dv® + 2dvdr + r? dQ*.

We assume that the coordinate system (v,r,6,¢) is common to both ¥~
and 7. (In each region we could introduce a conventional time coordinate
t+ defined by dt+ = dv — dr/fy, but it is much more convenient to work
with the original system.) In ¥~ we set f = 1 — ro/r, so that the metric
is a Schwarzschild solution with mass parameter M = %ro. In ¥t we set
f+ =1—(r/ro)?, so that the metric is a de Sitter solution with cosmological
constant A = 3/r¢?. (This metric is a solution to the modified Einstein field
equations, Go3 + Agap = 0.) The boundary ¥ between the two regions is the
null surface r = 7y, the common horizon of the Schwarzschild and de Sitter
spacetimes.

Using y* = (v,0, ¢) as coordinates on ¥, calculate the surface quantities p,
j4, and p associated with the null shell. Explain whether your results are
compatible with the general relation pf = [T,3k*k”] derived in Sec. 3.11.5.



CHAPTER 4

LAGRANGIAN AND
HAMILTONIAN FORMULATIONS
OF GENERAL RELATIVITY

Variational principles play a central role in virtually all areas of physics, and general
relativity is no exception. This chapter is devoted to a general discussion of the
Lagrangian and Hamiltonian formulations of field theories in curved spacetime,
with a special focus on general relativity.

The Lagrangian formulation of a field theory (Sec. 4.1) begins with the introduc-
tion of an action functional, which is usually defined as an integral of a Lagrangian
density over a finite region ¥ of spacetime. As we shall see, general relativity
is peculiar in this respect, as its action involves also an integration over 0%, the
boundary of the region ¥'; this is necessary for the well-posedness of the variational
principle. We will, in this chapter, provide a systematic treatment of the boundary
terms in the gravitational action.

The Hamiltonian formulation of a field theory (Sec. 4.2) involves a decomposi-
tion of spacetime into space and time. Geometrically, this corresponds to a foliation
of spacetime into nonintersecting spacelike hypersurfaces . In this 3 + 1 decom-
position, the spacetime metric g,g is decomposed into an induced metric hqp, a
shift vector N, and a lapse scalar N; while the induced metric is concerned with
displacements within X, the lapse and shift are concerned with displacements away
from the hypersurface. The Hamiltonian is a functional of the field configuration
and its conjugate momentum on ¥. In general relativity, the Hamiltonian is a
functional of h,, and its conjugate momentum p®®, which is closely related to the
extrinsic curvature of the hypersurface ¥; the lapse and shift are freely specifiable,
and they do not appear in the Hamiltonian as dynamical variables. The gravita-
tional Hamiltonian inherits boundary terms from the action functional; those are
defined on the two-surface S formed by the intersection of 0% and X.

There is a close connection between the gravitational Hamiltonian and the to-
tal mass M and angular momentum J of an asymptotically-flat spacetime; this
connection is explored in Sec. 4.3. We will see that the value of the gravitational
Hamiltonian for a solution to the Einstein field equations depends only on the con-
ditions at the two-dimensional boundary S. When the spacetime is asymptotically
flat and S is pushed to infinity, the Hamiltonian becomes M if the lapse and shift
are chosen so as to correspond to an asymptotic time translation. For an alternative
choice of lapse and shift, corresponding to an asymptotic rotation about an axis,
the Hamiltonian becomes J, the component of the angular-momentum vector along
this axis. These Hamiltonian definitions for mass and angular momentum form the
starting point, in Sec. 4.3, of a rather broad review of the different notions of mass
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and angular momentum in general relativity.

4.1 Lagrangian formulation

4.1.1 Mechanics

In the Lagrangian formulation of Newtonian mechanics, one is given a Lagrangian
L(q, ), a function of the generalized coordinate ¢ and its velocity ¢ = dg/dt. One
then forms an action functional S[q|,

2]
Sla] = / L(g,q) dt, (4.1.1)

t1

by integrating the Lagrangian over a selected path ¢(t). The path that satisfies the
equations of motion is the one about which S[q] is stationary: Under a variation
dq(t) of this path, restricted by

5q(t1) = 6q(t2) =0 (412)
but otherwise arbitrary in the interval ¢; < ¢t < ta, the action does not vary, 45 = 0.
The change in the action is given by

to

08 oL dt

t1

t
2 (0L OL
= —dg+—20 ) dt
~/t1 (661 179
oL . |* [ (8L d oL
= ——dg +/ (— - ——.)(Sth,
th t1 6q dt 6(]
where, in the last step, we have used d¢ = d(dq)/dt and integrated by parts. The

9q
boundary terms vanish by virtue of Eq. (4.1.2). Because the variation is arbitrary
between t; and t,,

doL OL _
dt 8¢ 0q
This is the Fuler-Lagrange equation for a one-dimensional mechanical system. Gen-
eralization to higher dimensions is immediate.

05=0 = (4.1.3)

4.1.2  Field theory

We now consider the dynamics of a field ¢(z%) in curved spacetime. Although this
field could be of any type (scalar, vector, tensor, spinor), for simplicity we shall
restrict our attention to the case of a scalar field.

In the Lagrangian formulation of a field theory, one is given an arbitrary region
¥ of the spacetime manifold, bounded by a closed hypersurface 9% . One is also
given a Lagrangion density £(q,q,o), a scalar function of the field and its first
derivatives. The action functional is then

Sla) = /y L(¢,00)V=gd'. (4.1.4)

Dynamical equations for g are obtained by introducing a variation dq(z*) that is
arbitrary within ¥ but vanishes everywhere on 9%,

8q/,, =0, (4.1.5)
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and by demanding that 6.5 vanish if the variation is about the actual path g(z%).
Equation (4.1.5) is the field-theoretical counterpart to Eq. (4.1.2).
Upon such a variation (we use the notation &' = 0.2/0q, £~ = 0.2/0q.a),

S = /(.,S,”'Jq%—.,i”a&q,a)\/—gd‘lw
¥

[y (£ 6q+ (£°64)a — 2%, 64) V=g d'x

/(,Sf'—,i,”‘?‘a)éq\/—gd‘iw—}—?{ L6qdE,,
v oY

where Gauss’ theorem (Sec. 3.3) was used in the last step. The surface integral
vanishes by virtue of Eq. (4.1.5), and because dq is arbitrary within ¥, we obtain

02 92 _,, (4.1.6)

This is the Euler-Lagrange equation for a single scalar field q. Generalization to a
collection of fields is immediate, and the procedure can be taken over to fields of
arbitrary tensorial or spinorial types.

As a concrete example, let us consider a Klein-Gordon field 9 with Lagrangian
density

# =3 (400 + 2.

We have £ = —g*y) 5, 2%, = —g*Pi).op, and &' = —m?¢. The Euler-Lagrange
equation becomes
gaﬁw;aﬁ - m2¢ =0,

which is the curved-spacetime version of the Klein-Gordon equation.

4.1.8  General relativity

The action functional for general relativity contains a contribution Sg[g] from the
gravitational field g, and a contribution Sar[¢; g] from the matter fields, which we
collectively denote ¢.

The gravitational action contains a Hilbert term Ig[g]/(167), a boundary term
Ip[g]/(167), and a nondynamical term Iy/(167) that affects the numerical value of
the action but not the equations of motion. More explicitly,

Salg] = 16% (ul9) + Inlg) - Io ), (4.1.7)
where
Inulg] = /y Ry—gd'z, (4.1.8)
Iglg] = 272/ eK|h|'/? dy, (4.1.9)
Iy, = 27{97 eKo|h|'/? dy. (4.1.10)

Here, R is the Ricci scalar in ¥, K is the trace of the extrinsic curvature of 8%, ¢
is equal to +1 where 0% is timelike and —1 where 0¥ is spacelike (it is assumed
that 8% is nowhere null), and A is the determinant of the induced metric on 9%
Coordinates z are used in ¥, and coordinates y* are used on 0%. The factor of
(16m)~! on the right-hand side of Eq. (4.1.7) will be seen to give rise to the factor
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of 8 in the Einstein field equations. The role of Ig[g] in the variational principle
will be elucidated below. The presence of Iy in the action will also be explained,
and this explanation will come with a precise definition for the quantity K.

The matter action is taken to be of the form

Suldig] = /y L6, bas gap)V g 'z, (4.1.11)

for some Lagrangian density .¢. As Eq. (4.1.11) indicates, it is assumed that only
gas, and none of its derivatives, appears in the matter action. This assumption is
made for simplicity, and it could easily be removed.

The complete action functional is therefore

Slg; 6] = / ( ot ) Vgl g 72,, (K — Ko)[h[?dy.  (41.12)

The Einstein field equations, Gapg = 87T43, are recovered by varying S[g, ¢] with
respect to gog. The variation is subjected to the condition

69apyy = 0. (4.1.13)

This implies that hey = gag egebﬁ , the induced metric on 0¥, is held fized during
the variation.

4.1.4  Variation of the Hilbert term

It is convenient to use the variations 6g# instead of 6g,s. These are of course not
independent: the relations g**g,3 = 0% imply

09ap = —YJapgpv 69"". (4.1.14)

We recall (from Sec. 1.7) that the variation of the metric determinant is given by
dIn|g| = g*P8gas = —gapdg®?, which implies

1
0v/—g= ~3 V=995 69°°. (4.1.15)

We also recall (from Sec. 1.2) that although I'%; is not a tensor, the difference
between two sets of Christoffel symbols is a tensor; the variation 6I'%, is therefore
a tensor.

We now proceed with the variation of the Hilbert term in the gravitational
action:

oy = /(5(gaﬁRaﬁ\/—g) dz
%
- /(Ram/—gdgaﬁ+go‘ﬁ\/—géRa5+R6\/—g) d*z
v
1
= /(RQB—ERgQB)JgO‘B\/—gd4x+/ gaﬁ(SRa,@\/—gd‘iw.
v v

In the last step we have used Eq. (4.1.15). The first integral seems to give us what
we need for the left-hand side of the Einstein field equations, but we must still
account for the second integral.

Let us work on this integral. We begin with d Rz, which we calculate in a local
Lorentz frame at a point P:

6Ra/3 = 6(1—‘Ha,ﬂ,u - F“au,ﬁ)
= (6 a,@),u (Fuau),g
= ((H‘paﬁ),u ( Fuau);,g'
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Here, covariant differentiation is defined with respect to the reference metric gqg,
about which the variation is taken. We notice that the last expression is tensorial;
it is therefore valid in any coordinate system. We have found

9*P0Rag =80, Sut = g*PeTH ; — g*HeT’ 4. (4.1.16)

We use the “slash” notation dv* to emphasize the fact that §v* is not the variation
of some quantity v*. Using Eq. (4.1.16), the second integral in 61y becomes

/}/gaﬁdRam/—gd‘lm /’51)”””/—9 d*z

= ]{ dv* dX,,
oy

= 7{ e dvhn, |h|M? dy,
ov

where n, is the unit normal to 0% and € = n#n, = 1.
We must now evaluate dv#n,, keeping in mind that on 0%, dgog = 0 = 5g°P.
Under these conditions,

s loy = %9“" (09va. + 09u8,0 — 9ap.v),
and substituting this into Eq. (4.1.16) yields v, = g*?(6g.8,a — 69ap,u), SO that
n“ﬁvu|ay = n*(en®n® + h*®)(6gu8,0 — 09ap.1)
= n"h(0gup.0 — 09up.u)-

In the first line we have substituted the completeness relations ¢g*° = en®nf + ho8,
where h®f = h“beg‘ef (see Sec. 3.1). To obtain the second line we have multiplied
n®*n# by the antisymmetric quantity within the brackets. Now, because dgng van-
ishes everywhere on 07/, its tangential derivatives must vanish also: dgag, el = 0.
It follows that h®*8g,5,, = 0, and we finally obtain

n”ﬁvu|8y = —h®F§gas mt. (4.1.17)

This is nonzero because the normal derivative of dgqp is not required to vanish on
the hypersurface.
Gathering the results, we obtain

i = [ Gupba™y=ga'a = § eh?sgmp mt B2 dy. (@118)
v oY

The boundary term in Eq. (4.1.18) will be canceled by the variation of Ig[g]: this
is the reason for including a boundary term in the gravitational action. That a
boundary term is needed is due to the fact that R, the gravitational Lagrangian
density, contains second derivatives of the metric tensor, a nontypical feature of field
theories.

4.1.5 Variation of the boundary term

We now work on the variation of Ig[g], as given by Eq. (4.1.9). Because the induced
metric is fixed on 0%, the only quantity to be varied is K, the trace of the extrinsic
curvature. We recall from Sec. 3.4 that
K = n%,
= (en®n® + h*P)ny.g
= haﬁ”a;ﬁ
= haﬁ(na,,@ - F’yaﬁn»y),
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so that its variation is

SK = —h“ﬂdl“"aﬂnv
1
= —5 1" (0guas + 9us.0 — 69as.)n”
1
= § haﬂ(sgaﬁyp,np/;

we have used the fact that the tangential derivatives of dg,s vanish on 9%. We
have obtained

0Ip :?{ eh®P8gap P h|Y? d%y, (4.1.19)
%

and we see that this indeed cancels out the second integral on the right-hand side
of Eq. (4.1.18). Because 61y = 0, the complete variation of the gravitational action
is

1
6SG = —— | Gapdg*\/—gd'z. (4.1.20)
167 v

This produces the correct left-hand side to the Einstein field equations.

4.1.6 Variation of the matter action

Variation of Syr[¢; g], as given by Eq. (4.1.11), yields

/y 5(Lv=g) d'z

_ /, (;g'i 59 /=7 + .,5,”5\/—_9) iz
/t/ (;—’i - %$9a5> 89°P\/—gd'z.

If we define the stress-energy tensor by

0Sm

0%
Tos = 222 4+ Lgos, 4.1.21
B dgoB + 2 gap ( )
then 1
0Sy = —5/ Top 69°P\/—g d'z, (4.1.22)
v

and this produces the correct right-hand side to the Einstein field equations.
We have obtained

5(5@ + SM) =0 = Gop = 81T yg, (4.1.23)

because the variation 6¢g®? is arbitrary within #. The Einstein field equations
therefore follow from a variational principle, and the action functional for the theory
is given by Eq. (4.1.12).

To see that Eq. (4.1.21) gives a reasonable definition for the stress-energy tensor,
let us consider once more a Klein-Gordon field ¢ with Lagrangian density

1
— __ v 2,12
2 = =5 (9" Vb +m?¢?).
It is easy to check that for this, Eq. (4.1.21) becomes
1
Top = Yt = 5 (670 +m*6?) gas.

This is the correct expression for the Klein-Gordon stress-energy tensor. You may
look into the consistency of this result by checking that the statement of energy-
momentum conservation, Taﬁ; 5=0, implies the Klein-Gordon equation.
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4.1.7 Nondynamical term

What is the role of
I() = 2% EK0|h|1/2 d3y
V4

in the gravitational action? Because Iy depends only on the induced metric hgp
(through the factor |h|'/? in the integrand), its variation with respect to g.s gives
zero, and the presence of Iy cannot affect the equations of motion. Its purpose can
only be to change the numerical value of the gravitational action.

Let us first assume that g, is a solution to the vacuum field equations. Then
R = 0 and the numerical value of the gravitational action is

So = — eK|h|'/? dy,
s a8y

where we omit the subtraction term Ky for the time being. Let us evaluate this
for flat spacetime. We choose 0% to consist of two hypersurfaces ¢ = constant
and a large three-cylinder at r = R (Fig. 4.1). It is easy to check that K = 0 on
the hypersurfaces of constant time. On the three-cylinder, the induced metric is
ds®> = —dt*> + R?d0?, so that |h|'/? = R%sind. The unit normal is n, = 9,7, 50
that ¢ = 1 and K = n%, = 2/R. We then have

7{ eK|h'? dy = 8 R(ts — 1),
oY

and this diverges when R — oo, that is, when the spatial boundary is pushed all
the way to infinity. The gravitational action of flat spacetime is therefore infinite,
even when 7 is bounded by two hypersurfaces of constant time. Because this
problem does not go away when the spacetime is curved, this would imply that the
gravitational action is not a well-defined quantity for asymptotically-flat spacetimes.
(Of course, this is not a problem if the spacetime manifold is compact.)

This problem is remedied by Iy. Apart from a factor of 167, this term is chosen to
be equal to the gravitational action of flat spacetime, as regularized by the procedure
used above. The difference I — I is then well defined in the limit R — oo, and
there is no longer a difficulty in defining a gravitational action for asymptotically-
flat spacetimes. (The subtraction term is irrelevant for compact manifolds.) In
other words, the choice

Ky = extrinsic curvature of 0% embedded in flat spacetime (4.1.24)

cures the divergence of the gravitational action, which is then well defined when the
spacetime is asymptotically flat. In particular, Sg = 0 for flat spacetime.

Figure 4.1: The boundary of a region ¥ of flat spacetime.
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4.1.8 Bianchi identities

The Lagrangian formulation of general relativity provides us with an elegant deriva-
tion of the contracted Bianchi identities,

G 5 =0. (4.1.25)

In this approach, Eq. (4.1.25) comes as a consequence of the invariance of Sg[g]
under a change of coordinates in ¥.
To prove this, it is sufficient to consider infinitesimal transformations,

z% = 2'* = 2% + €%, (4.1.26)

where €“ is an infinitesimal vector field, arbitrary within ¥ but constrained to
vanish on 9%. The variation of the metric under such a transformation is

dgaﬁ = g:xﬁ (.’L‘) — 9op (.73)
= 9op(@') — 9ap(@) + gu(@) — gup(a’)
ozt Ox

= gpa 58w () = 9a5(2) + 9ap () — gas(@ +e)
= (6%, - eu,a)((su,ﬁ - 5”,5)9;“/(‘73) — 9ap(T) = gap,u(z)e"

= —e”,agug - eu,ggau = Gap,u€"

= _£ega[‘3a

discarding all terms of the second order in €*. Using Eq. (4.1.14), we find that the
metric variation is

58 = B 4 (B, (4.1.27)

Substituting this into Eq. (4.1.20), we find

816Sq = /Ga'gea;g\/—gd‘ix
v

- / Gaﬁsgea vV —g d'z + Gaﬁéa dEB
v oY

With e€* arbitrary within # but vanishing on 9%, the contracted Bianchi identities
follow from the requirement that §Sg = 0 under the variation of Eq. (4.1.27).

4.2 Hamiltonian formulation

4.2.1 Mechanics

The Hamiltonian formulation of Newtonian mechanics begins with the introduction
of the canonical momentum p, defined by

_aL

= 5 (4.2.1)

p

It is assumed that this relation can be inverted to give ¢ as a function of p and q.
The Hamiltonian is then

H(p,q) =pgq— L. (4.2.2)

Hamilton’s form of the equations of motion can be derived from a variational prin-
ciple. Here, the action is varied with respect to p and q independently, with the
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restriction that g must vanish at the endpoints. Thus,

12
5 = S(pg— H)dt

t1

t2 oH OH
/ (p5<2+d5p——6p——6q>dt
t1 319

0q
t2 t2 H H
+/ —(p+68—)5q+<q—%—)5p dt.
t1 tl q p

Because the variation is arbitrary between ¢; and t3, but dq(t1) = dq(t2) = 0, we
have

pdq

OH )

(4.2.3)

These are Hamilton’s equations.

4.2.2 3+ 1 decomposition

The Hamiltonian formulation of a field theory is more involved. Here, the Hamil-
tonian H{p,q] is a functional of ¢, the field configuration, and p, the canonical
momentum, on a spacelike hypersurface Y. To express the action in terms of the
Hamiltonian, it is necessary to foliate ¥ into a family of spacelike hypersurfaces,
one for each “instant of time”. This is the purpose of the 3 + 1 decomposition.

To effect this decomposition, we introduce a scalar field ¢(z®) such that ¢ =
constant describes a family of nonintersecting spacelike hypersurfaces ¥;. This
“time function” is completely arbitrary; the only requirements are that ¢ be a single-
valued function of %, and n, o« 94t, the unit normal to the hypersurfaces, be a
future-directed timelike vector field.

On each of the hypersurfaces ¥; we install coordinates y®. A priori, the coordi-
nates on one hypersurface need not be related to the coordinates on another hyper-
surface. It is, however, convenient to introduce a relationship, as follows (Fig. 4.2).
Consider a congruence of curves v intersecting the hypersurfaces ¥;. We do not
assume that these curves are geodesics, nor that they intersect the hypersurfaces
orthogonally. We use ¢ as a parameter on the curves, and the vector t* = dz®/dt
is tangent to the curves. It is easy to check that the relation

199,t = 1 (4.2.4)

follows from the construction. A particular curve vp from the congruence defines
a mapping from a point P on ¥; to a point P’ on ¥, and then to a point P"” on

P YQ

Figure 4.2: Foliation of spacetime into spacelike hypersurfaces.
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Y4, and so on. To fix the coordinates of P’ and P, given y*(P) on X, we simply
demand y*(P") = y*(P') = y?(P). Thus, y® is held constant on each of the curves
.

This construction defines a coordinate system (t,y%) in ¥. There exists a trans-
formation between this and the system z® originally in use: z% = z%(t,y*). We

have 5
a_ (0%
oo (2 azs
y
and we define 5
ma
ex = — 4.2.6
(31/“ )t (4.2:6)

to be tangent vectors on ¥;. These relations imply that in the coordinates (t,y?),
t* = §% and e = 6%,. We also have

£t eg‘ = 0, (427)

which holds in any coordinate system.
We now introduce the unit normal to the hypersurfaces:

Ng = —NOyt, nqeo =0, (4.2.8)

where the scalar function N, called the lapse, ensures that n,, is properly normalized.
Because the curves v do not generally intersect ¥; orthogonally, t* is not parallel to
n®. We may decompose t* in the basis provided by the normal and tangent vectors
(Fig. 4.3):

t* = Nn® + N%; (4.2.9)

the three-vector N is called the shift. It is easy to check that Eq. (4.2.9) is com-
patible with Eq. (4.2.4).

We can use the coordinate transformation z* = z*(t,y) to express the metric
in the coordinates (t,y®). We start by writing

dz® = t*dt+ el dy®
= (Ndt)n® + (dy* + N®dt)es,

which follows at once from Eqs. (4.2.5), (4.2.6), and (4.2.9). The line element is
then given by ds? = g,sdz®dz?®, or

ds® = —N2dt? + hgp(dy® + N dt)(dy® + N° dt), (4.2.10)

Figure 4.3: Decomposition of ¢* into lapse and shift.
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where hqy = gagege; is the induced metric on X;.

We may now express the metric determinant g in terms of h = det[hq] and
the lapse function. We recall that g®* = cofactor(gy)/g = h/g, as follows from
Eq. (4.2.10). But g'* = g*Pt 4t 5 = N2g*’n,ng = —N—2, where Eq. (4.2.8) was
used. The desired expression is therefore

V=g = NVh. (4.2.11)

Equations (4.2.9), (4.2.10), and (4.2.11) are the fundamental results of the 3 + 1
decomposition.

4.2.8 Field theory

We now return to the Hamiltonian formulation of a field theory. For simplicity, we
will assume that the field is a scalar, but the procedure can easily be extended to
fields of other tensorial types. We begin by defining the “time derivative” of ¢ to
be its Lie derivative along the flow vector t%,

¢=£ig. (4.2.12)

In the coordinates (t,y%), £:q = 8q/0t, and ¢ reduces to the ordinary time deriva-
tive. We also introduce the spatial derivatives, ¢, = g,n€5. The field’s Lagrangian
density can then be expressed as .2(q, ¢, q.a)-

The field’s canonical momentum p is defined by

p= a%(\/—_gz). (4.2.13)

It is assumed that this relation can be inverted to give ¢ in terms of g, ¢ 4, and p.
The Hamiltonian density is then

H(p,¢:40) =Pi—V—-9Z. (4.2.14)

Because of the factors of /—g in Egs. (4.2.13) and (4.2.14), the Hamiltonian density
is not a scalar with respect to transformations y® — y“'. We might introduce a
scalarized version #calar, defined by S = Vh Heatar = /—9g Hcalar /N, but such
an object would turn out not to be as useful as the original, nonscalar, Hamiltonian
density. The Hamiltonian functional is defined by

H[P,Q]Z/E H(p,q,q,0) d°y. (4.2.15)

The Hamiltonian functional is an ordinary (nonscalar) function of time t¢.

We consider a region ¥ of spacetime foliated by spacelike hypersurfaces ¥
bounded by closed two-surfaces S; (Fig. 4.4); ¥ itself is bounded by the hypersur-
faces X4,, ¥,, and %, the union of all two-surfaces S;. To obtain the Hamilton
form of the field equations, we will vary the action with respect to ¢ and p, treating
the variations dg and dp as independent. We will demand that dg vanish on the
boundaries ¥;,, X4,, and £.

The action functional is given by

to
S = dt/ (pq'—,%")d3y,
t1 I
and variation yields

ta
S = dt/ <p6(1+(j6p— o op — o dq — a 6q’a) d’y.
o JIm, op dq 94,
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S >

R

Figure 4.4: The region ¥, its boundary 9%, and their foliations.

The first term may be integrated by parts:

ta to to
/ dt/ pdgdiy / dti péqd3y—/ dt/ pogdiy
t1 > t1 dt pIM t1 P

12
/ p5qd3y—/ péqd3y—/ dt/ pogd’y
Sty 3ty t1 3t
ta

—/ dt/ pogd’y,

t1 P

because d¢ = 0 on X, and X;,. We treat the last term similarly:

t2 0 t2 0 cal
— [ dt / Sqod’y = — / dt | 22 5q o Vhd
/tl po 6q,a Y t1 po aqﬂl Y
to
- / at § Docar 54,
t1 S aq,a
to
+ dt/ (L}ﬁcalar> sqvVhdy
t N Qa /o

to
/ dt/ (6%> Sqd3y.
t1 I 6(1,0, ,a

In the second line we have used the three-dimensional version of Gauss’ theorem,
with dS, denoting the surface element on S;. In the third line we have used the
divergence formula AaE = h~'/2(h'/2A%) , and the fact that g vanishes on S;.

a
Gathering the results, we have

to
0S8 = dt/ —p+%—(%> dq + cj—% Sp p d*y,
t1 =, 0q 0q,a ,a Op
and o0 o0 oA
_ S _ = 9 4.2.1
05 =0 = P 34 + (6(],& )ﬂ, q ap ( 6)

These are Hamilton’s equations for a scalar field ¢ and its canonical momentum p.
As a concrete example, we consider once again a Klein-Gordon field ¢ with its
Lagrangian density

2 = =3 (" bton +m2?).

For simplicity, we choose our foliation to be such that N = 0. This implies g**
l/gtta gta = 05 and gab = hab' Then . = _%(gttd}z + hab¢,aw,b + m2¢2), b
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—/=99"4, and Eq. (4.2.14) gives

2
p 1
H = _W + 3 /=g (hab¢,a¢7b + m2¢2).
The equations of motion are
p=———p,  p=—vV—gm*+ (V=gh®y) .
/—qg ,

It is easy to check that from these follow the Klein-Gordon equation, g*?t.,5 —
m2y = 0, in the selected foliation.

4.2.4 Foliation of the boundary

Before tackling the case of the gravitational field, we need to provide additional
details regarding the foliation of 4, the timelike boundary of ¥, by the two-surfaces
S. (Refer back to Fig. 4.4.)

The closed two-surface S; is the boundary of the spacelike hypersurface ¥;, on
which we have coordinates y°, tangent vectors e, and an induced metric hqp. It is
described by an equation of the form ®(y®) = 0, or by parametric relations y%(84),
where 64 are coordinates on S;. We use r, to denote the unit normal to S, and we
define an associated four-vector r® by

Y =res. (4.2.17)

This satisfies the relations r®r, = 1 and r*n, = 0, where n® is the normal to ¥;.
The three-vectors e = dy®/d64 are tangent to Sy, so that r,e% = 0. This implies
rq€ey = 0, where

oz®
004"
In this equation, it is understood that z* stands for the functions z(y®(64)), where
z*(y®) are the parametric relations defining 3;.

The induced metric on S; is given by

(4.2.18)

el =egefy =

ds®> = oap d6db®, (4.2.19)

where 045 = hapy €% e, = (gag e®e’)e%el,, or, using Eq. (4.2.18),
A*B B€atp/CACB

OAB = 9ap eje%. (4.2.20)

Its inverse is denoted oA8. The three-dimensional completeness relations, h*® =
rirt + gABe%el, are easily established (see Sec. 3.1). It follows that the four-

dimensional relations, g®# = —n®n® + h*teZel, can be expressed as
9%% = —nnP 4 1P 4 AP eq el (4.2.21)

This can be established directly by computing all inner products between the vectors
n%, r%, and e9.

The extrinsic curvature of S; embedded in ¥; is defined by kap = ra|be%e§’5 (see
Sec. 3.4), or

kaB =rap ejeﬁB. (4.2.22)

We use k to denote its trace: k = c4Bkup.

A priori, the coordinates #4 on a given two-surface (Sy, say) are not related to
the coordinates on another two-surface (Sy, say). To introduce a relationship, we
consider a congruence of curves 8 running on 4, intersecting the two-surfaces S;



104 Lagrangian and Hamiltonian formulations of general relativity

orthogonally, and therefore having n® as their tangent vectors. We demand that if
the curve (p intersects Sy at the point P’ labelled by 64, then the same coordinates
will designate the point P" at which Sp intersects Syv. Because #4 does not vary
along these curves, and because ¢t can be chosen as a parameter, we have

6 (e
ne=N"1{2Z) | (4.2.23)
Ot Jya
where the factor N~1 comes from Eq. (4.2.8) and the normalization condition
n*n, = —1. The construction ensures that n® and e% are everywhere orthogo-
nal.

The hypersurface & is foliated by the two-surfaces S;. We put coordinates z°
on %, and introduce the tangent vectors e = z%/9z¢. The induced metric on %
is then given by

Vij = 9aB ef‘e?. (4.2.24)

Its inverse is v¥/, and the completeness relations take the form
g%P = rorP 4 i e;?‘e?. (4.2.25)

While the coordinates z* are a priori arbitrary, the choice 2¢ = (t,64) is clearly
convenient. In these coordinates,

o o

dz® = (%)ﬂ dt + (gt’%)t g

= Nn®dt+ e do*,
where Eqgs. (4.2.18) and (4.2.23) were used. For displacements within &, the line
element is
ds’y = gapdx®dz®

= gap(Nn®dt + €% d6?) (Nn” dt + € doP)

= (gapn®n®)N? dt* + (gapesey) d6*do”,
where the relation n,e% = 0 was used. We have obtained

yij dZidz? = —N?dt* + o 45 d9”d6P. (4.2.26)

This implies /=y = N+/o, where v and o are the determinants of v;; and oap,
respectively.

Finally, we let .%;; be the extrinsic curvature of % embedded in spacetime. This
is given by

Hij =rap €fie], (4.2.27)

because r,, the unit normal to the two-surfaces S;, is also normal to #. We will
use J to denote its trace: & = 9.,

Table 4.1 provides a list of the various geometric quantities introduced in this
subsection.

Table 4.1: Geometric quantities of ¥;, S;, and .

Surface ¥y Sy B
Unit normal n® re @
Coordinates y° 64 2t
Tangent vectors ey el e
Induced metric Pap OAB Vij

Extrinsic curvature Ka kaB Hij
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4.2.5 Gravitational action

As a first step toward constructing the gravitational Hamiltonian, we must subject
the gravitational action Sg to the 3 + 1 decomposition described in Sec. 4.2.2. Our
starting point is Eq. (4.1.12),

16775(;:/ R\/_—gd4x+27{ eK|h|'? dy,
v oy

where the subtraction term I is omitted for the time being; it will be re-instated
at the end of the calculation. Here, 0% is the closed hypersurface bounding the
four-dimensional region 7', y® are coordinates on 9%, hyp is the induced metric,
K is the trace of the extrinsic curvature, and € = n®n,, where n® is the outward
normal to 0%

Throughout this section, the quantities n®, y®, hqp, and K, have referred specif-
ically to the spacelike hypersurfaces ¥, and we need to be more careful with our
notation. We have seen that #’s boundary is the union of two spacelike hypersur-
faces ¥y, and ¥;, with a timelike hypersurface & (Fig. 4.4):

67/ = Etz (@] (_Etl) @] %

The minus sign in front of ¥, serves to remind us that while the normal to 0%
must be directed outward, the normal to 3, is future-directed and therefore points
inward. With the notation introduced in the preceding subsection, the gravitational
action takes the form

1671'5@:/ Ry=gd'z—2 | KvVhdy+2 K\/Ed3y+2/ A=z,
v B

Etz Etl

and the integration over ¥;, incorporates the extra minus sign just discussed.
The region ¥ is foliated by spacelike hypersurfaces ¥; on which the Ricci scalar
is given by (Sec. 3.5.3)

R = 3R + KabKab - K2 - Q(na,ﬂnﬂ - nanﬁ;ﬁ);a’

where R is the Ricci scalar constructed from hg,. Using Eq. (4.2.11), which we
write as /—gd*z = NVhdtd®y, we have that

ta
/R\/—gd‘la: = / dt/ (3R+K“bKab—K2)N\/Ed3y
v t1 3¢

— 2% n®.nf —nnP ) dx,.
D (negn® — )

The new boundary term can be expressed as integrals over ¥;,, ¥;,, and #. On
Yy, d¥q = neVhd®y — this also incorporates an extra minus sign — and

_2/2 (n®gnf — nanﬂ;ﬁ) dS, = _2/2 nﬁ;B\/ﬁd3y =-2 KVhdy.

t1 t1 iy

We see that this term cancels out the other integral over ¥;, coming from the
original boundary term in the gravitational action. The integrals over ¥4, cancel
out also. There remains a contribution from %, on which d¥, = ro\/—7 d3z, giving

—2/ (no‘;ﬁnli —no‘nﬂ;ﬁ) d¥, = —2/ nc’;ﬁnﬁra\/—vdgz = 2/ ra;/;nanﬂ\/—’ydsz,
B B B

where we have used n%ry, = 0.
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Gathering the results, we have
t2
167Sq = / dt / CR+ KK, — K*)NVhd®y
t1 I
+ 2/ (H + TapnnP) /=y d®z.
B

We now use the fact that £ is foliated by the closed two-surfaces S;. We substitute
=y d®z = Ny/o dtd*§ and express ¢ as

H = A
= ’Yij (Ta;B ef‘e?)
= TaB ('Yij e?ef)
= raple® —ror0),

so that the integrand becomes

K+ ra;ﬁnanﬁ = ra;g(go‘ﬂ —roP 4 nnf)
= rap(0*Pedel)
= "B (ra;geﬁe%)
= o*Blup

= k.

We have used Eqs. (4.2.21) and (4.2.25) in these manipulations. Substituting this
into our previous expression for the gravitational action, we arrive at

to
e = 2 [ a / (3R + KK,y — K2)N\/E &Py
1671' t1 bR

+ 2?{ (k — ko)Nv/o d%v}. (4.2.28)
St

We have re-instated the subtraction term, by inserting kg into the integral over S;.
This is justified by the fact that for flat spacetime, the integral over ¥; vanishes,
so that the sole contribution to Sg comes from the boundary integral; the k¢ term
prevents this integral from diverging in the limit S; — oo, and it ensures that Sg
vanishes identically for flat spacetime. Thus,

ko = extrinsic curvature of S; embedded in flat space.

The ko term makes the gravitational action well defined for any asymptotically-flat
spacetime. For compact spacetime manifolds, this term is irrelevant.

The matter action should also be subjected to the 3+ 1 decomposition. Because
the procedure is straightforward, and because we would do well to keep things as
simple as possible, we shall omit this step here. In the rest of this section we will
consider pure gravity only, and put the matter action to zero.

4.2.6  Gravitational Hamiltonian

To construct the Hamiltonian, we must express Sg in terms of

hap = £hap, (4.2.29)
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where t¢ is the timelike vector field defined by Eq. (4.2.9). We calculate this as
follows. First we recall the definition of the induced metric and write
h =4£ (gaﬁe eb) (£tga[‘3)e ef:

where we have used Eq. (4.2.7). Equation (4.2.9) implies that the Lie derivative of
the metric is given by

£i9ap = tap T 1
(Nna + Na)ig + (Nng + Np)ia
= nalNg+ Nang + N(nas + ng,0) + Nag + Npsa,

where N® = N“%eZ. Finally, projecting this along egef gives
hab =2NKu + Na|b + Nb|a7

where we have used the definitions of extrinsic curvature and intrinsic covariant
differentiation found in Sec. 3.4.
We have obtained

1 4.
Kap = 52 (has = Najy = Noga)- (4.2.30)

The gravitational action therefore depends on hub through the extrinsic curvature.
Notice that the action does not involve N nor N, so that momenta conjugate to N
and N® are not defined. This means that unlike hab, the lapse and the shift are not
dynamical variables. This was to be expected: N and N® only serve to specify the
foliation of ¥ into the spacelike hypersurfaces X;; because this foliation is arbitrary,
we are completely free in our choice of lapse and shift.

The momentum conjugate to hgp is defined by

(\/_.,%G) (4.2.31)

aha,,

where .Z is the “volume part” of the gravitational Lagrangian. (The “bound-
ary part” is independent of hgp.) Because 2 is expressed in terms of Ky, it is
convenient to write Eq. (4.2.31) in the form

0Ky O

167 p® = ey O (1677\/—_g=2’G),

where

167v/—9g %6 = [°R + (h**h*? — hh*) K, Kog) NVR
follows from Eq. (4.2.28). Evaluating the partial derivatives gives
167 p® = Vh (K — Kh?), (4.2.32)

and we see that the canonical momentum is closely related to the extrinsic curvature.
The “volume part” of the Hamiltonian density is

Hy = p® hay — V—g Lo (4.2.33)
Using our previous results, we have
16745 = Vh(E® - Kh®)(2NKu + Najp + Nya)

~ PR+ K®K,, — K*)NVh
= (K"K — K? —°R)NVh +2(K® — Kh®*)N,,vVh
(KK, — K? — 3R)N\/E + 2[(Kab Khe)N, ]Ib\/ﬁ
2(K® — Kh),N,vh.
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The full Hamiltonian is obtained by integrating ¢ over ¥; and adding the bound-
ary terms:

16rHg = / 16747 d>y — 2}{ (k — ko)N+/o d*0
I St

/E [N(K“”Kab — K? —%R) — 2N,(K® — Kh“b)“,] VhdPy
+ 2?£ (K® — Kh*®)N, dSy — 2?£ (k — ko) Nv/o d6.
Writing dSy = ry\/0 d?6, the gravitational Hamiltonian becomes
16rHy = /E [N(K“”Kab — K? _3R) — 2N,(K® — Kh“”)“,] Vhdy
—2 ?i [N(k — ko) — No(K® — Khab)r,,] Vo d2. (4.2.34)

It is understood that here, K,; stands for the function of hys and p®® defined by
Eq. (4.2.32); this is given explicitly by

1
VREK® = 167 (pa” -3 ph“b), (4.2.35)
where p = hgp p®°.

4.2.7 Variation of the Hamiltonian

The equations of motion for the gravitational field are obtained by varying the
action of Eq. (4.2.28) with respect to N, N®, hgp, and p®®, which are all treated as
independent variables. The variation is restricted by the conditions

ON = 0N = 6hy, =0 on Sy, (4.2.36)

but there is no requirement that ép®® vanish on the boundary. As a preliminary
step toward calculating §Sg, we shall now carry out the variation of Hg. The
computations presented here are rather formidable; the punch line is delivered in
Eq. (4.2.46).

We begin with a variation with respect to both N and N®. Taking Eq. (4.2.36)
into account, Eq. (4.2.34) gives

1676y Hg = / (=CON —2C, 6N*)Vhdy, (4.2.37)
2
where A A
C=*R+ K’ - K"Ku, Co=(K}—K3s ). (4.2.38)

This was easy; the remaining variations will require considerably more labour.

To carry out a variation with respect to hqp or p®®, we must express Hg in
terms of these variables, instead of h,, and K as was done in Eq. (4.2.34). Using
Eq. (4.2.35), a few steps of algebra give

16 Hg = Hy, + Hg, (4.2.39)

where

Hy = / [NR Y2 (5% gy — 35%) = N2 3R — 2N b2 (012 ) | | dPy (4.2.40)
Xt
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is the “bulk” term, while
Hg = —2?{ [N(k — ko) — Noh™ V2 pobry | o d?0 (4.2.41)
St

is the “boundary” term. We have introduced the notation ﬂsigma = 16x Hy,,
= 167 p* and so on; this usage was anticipated in Egs. (4.2.38).
We first vary Hg with respect to p2°. From Eq. (4.2.40) we have

0pHyz = | Nh'26,(5"pay — 59°) d°y — 26, | No(h7/25%) 0'/2dy.
¥, s,

We substitute
8p (5" Pab — $9°) = 2(Pab — 5P hap) 59"

inside the first integral, and we integrate the second by parts. This gives
ol = [ 2NN 20— Sha) + N 657 &
N, h=Y255% /7 d?6.
Sy

The boundary term is precisely equal to (minus) the variation of Hg. We therefore
have obtained

SpHa = | Hap0p™ d®y, (4.2.42)
pIA

where )
Hap = INK~1/? (ﬁab - Eﬁhab) + QN(a“,). (4.2.43)

To vary H¢ with respect to hgp is more labourious, and we will rely on compu-
tations already presented in Sec. 4.1. We begin with the bulk term:

onHy = / [—Nhf (5*Pap — 29%)Snh' /2 + Nh =25, (5™ pap — 157)
P

— Nou(h\? 3R)] — 26, & N,hV2 pebry /o d26
St

+20, | Ngjpp* dy,
Xt

in which the last term on the right-hand side of Eq. (4.2.40) was integrated by parts.
The variation of the integral over S; vanishes because hgp is fixed on the boundary.
In the first term within the integral over ¥; we substitute

1
6hh1/2 — 5 h1/2hab6hab,

while in the second term,
5h(ﬁabﬁab— Lp%) = 2(p%, PP - Lp ab)(;h .
In the third term, we use the three-dimensional version of Eq. (4.1.16),
Sph'/? R = —h'/2G™6hay + W1 ? 507,

where G = R — 13Rh? is the three-dimensional Einstein tensor, and dv® =
hebgT¢ . — ho¢dT® . Finally, in the last term we substitute

6hNa|b = Nclbéhac + hacNd(SFde.
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After a few steps of algebra, we obtain
SpHy = /Et [—%Nh_l/z (ﬁcdﬁcd _ %ﬁZ)hab T+ ONRY/2 (ﬁacﬁbc _ %ﬁﬁab)
+ NRU2G + 23O N") | 6hay dy
+ /)E t [-NR'? 50, + ZﬁbCNdM“de] &y

We now leave the first integral alone, and set to work on the second integral,
beginning with the first term. After integrating by parts,

— | Nu'P8 dy = N S0h' 2 dPy — ¢ Novre/o d26
pIN X, St

N S0h 2 dPy + ¢ Nh®Ghgy r°/o d?0,
I St

where the three-dimensional version of Eq. (4.1.17) was used. To express the first
integral in terms of dh,p, we use the relation

1
ore, = 3 hed [(6hda)|b + (6hdb)\a — (6hab)|d]7

which is easy to establish. (Note that the covariant derivative is defined with respect
to the reference metric hgp, about which the variation is taken.) We have

1
80¢ = o (h*he! = h*h*) [(6haa) p + (6hav) 0 — (5hab) a]
and then
1
Noo® = 3 (AN = N 1) [(Ghaa)pp + (Ghav)ja — (5hav),d]
= — (RN = NORYD) (Shap) a;

the second line follows by virtue of the antisymmetry in a and d of the first factor.
After another integration by parts we obtain

— | Nroe dy = / (RN, — N19Y) §hopht/? dPy
>, PN

+ ¢ Nh®Shgp ry/o d?6,
St

where we have used the fact that dhgp vanishes on S;¢. All this takes care of the first
term inside the second integral for 6, Hy,. We now turn to the second term inside
the same integral. We have

/ 2’ NU6T,d%y = / P N[(6hap)ia + (6haa)ip — (6Rba)(a] Ay
M PN

— h—1/2ﬁabNd(6hab)|dh1/2 d3y
o

_/ (h—1/2 ﬁabNd)m(Shabhl/z d3y,
N

where we have integrated by parts and put dhg, = 0 on S;.
Gathering the results, we find that the variation of the bulk term is

SnHy = / PPShay d®y + ¢ Nh®Shey /o d26,
Xt Sy
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where P2 will be written in full below. On the other hand, variation of the bound-
ary term gives

SpnHg = -2 ¢ Nok/od?6,

Sy
and 6k = %h”béhab,crc is the three-dimensional analogue of a result previously
derived in Sec. 4.1.5. Thus,
onHs = — ¢ Nh®6hgy r°v/—0 d?6,

St

and this cancels out the boundary integral in éhfIE. The variation of the full
Hamiltonian is therefore

SwHa = | P™6hayd’y, (4.2.44)
Xt
where
P = NhV2G® — LNWV2(5°eg — L57)h?? + 2N K™V (57, P — Lpp™)
_ pl/2 (Nlab _ habN\cc) _ h1/2(h 1/2 ﬁach)l + 2pc(u,Nb) (4.2.45)

Here, as before, G* = R — 1 3R b7 is the three-dimensional Einstein tensor.
Combining Eqgs. (4.2.37), (4.2.42), and (4.2.44), we find that the complete varia-

tion of the gravitational Hamiltonian, under the conditions of Eq. (4.2.36), is given
by

SHg = / (P 8hap + Ha 65 — C SN — 2€,N*) ¥y, (4.2.46)
3¢
where P = P /(167) is given by Eq. (4.2.45), Hap by Eq. (4.2.43), while C =
C/(167) and C* = C*/(167) are given by Eq. (4.2.38).
4.2.8 Hamilton’s equations

The equations of motion are obtained by varying the gravitational action, expressed

as ¢
2 -
Scz/ dt[/ p"”hadey—HG],
t1 PN

with respect to the independent variables N, N2, h,;, and p®®. Variation yields

t2 - -
8Sa = / dt [ / (p® Shap + hap 6p™) d®y — (SHG] ,
t1 X,

where 0Hg is given by Eq. (4.2.46). After integrating the first term by parts, we
obtain

ta
8Sq = / dt / — Hap) 0p°° — (p*® + P) Shap +CIN +2C, 6N“] d®y.

(4.2.47)
Demanding that the action be stationary implies

hap = Hap, PP =-P%  C=0, C,=0. (4.2.48)

These are the vacuum Einstein field equations in Hamilton form. The first two
govern the evolution of the conjugate variables hq, and p®; it is easy to check that
hab Hap just reproduces the relation between hab and p® 1mplied by Egs. (4.2.30)
and (4.2.35). The last two are the constraints equations first derived in Sec. 3.6;
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the relations C = 0 and C, = 0 are usually referred to as the Hamiltonian and
momentum constraints of general relativity, respectively.

The Hamiltonian formulation of general relativity suggests the following strategy
for solving the Einstein field equations. First, select a foliation of spacetime into
spacelike hypersurfaces by specifying the lapse N and the shift N?; the choice of
foliation is completely arbitrary. Defining h,, to be the induced metric on the
spacelike hypersurfaces, the full spacetime metric is given by Eq. (4.2.10):

ds® = —N2dt? + hap(dy® + N dt)(dy® + N° dt). (4.2.49)

Next, choose initial values for the tensor fields h,, and K,;, where K, is the
extrinsic curvature of the spacelike hypersurfaces. This choice is not entirely arbi-
trary, because the constraint equations must be satisfied: the initial values must be
solutions to

R+ K*>—K"Kq =0, (K*—Kh*),=0, (4.2.50)

where 3R is the Ricci scalar associated with hap, and K = h K ,;. Finally, evolve
these initial values using Hamilton’s equations, hqs = Hap and p®® = —P® which
may be written in the form (Sec. 4.5, Problem 4)

haoy = 2N Koy + £xhap (4.2.51)

and
Ko = Nigp — N(Rap + KKop — 2K, Ky) + £5 K. (4.2.52)

In these equations, the Lie derivatives are directed along N ¢, the shift vector. This
formulation of the field equations, usually referred to as their 3 + 1 decomposition,
is the usual starting point of numerical relativity.

4.2.9  Value of the Hamiltonian for solutions

We now return to Eq. (4.2.34) and ask: What is the value of the gravitational
Hamiltonian when the fields h,j and K, satisfy the vacuum field equations (4.2.50)—
(4.2.52)7 The answer is that by virtue of the constraint equations, only the bound-
ary term contributes to the solution-valued Hamiltonian:

Holution _ _iﬂ [Nk = ko) = No (K — K1), | Vo . (4.2.53)
St

As was discussed previously, this boundary term is relevant only when the spacetime
manifold is noncompact. For compact manifolds, HE'Uton = (. The physical
significance of HEMMtoM for asymptotically-flat spacetimes will be examined in the
next section.

4.3 Mass and angular momentum

4.3.1 Hamiltonian definitions

It is natural to expect that the gravitational mass of an asymptotically-flat space-
time — its total energy — should be related to the value of the gravitational Hamil-
tonian for this spacetime. We will explore this relation in this section, and motivate
another between the Hamiltonian and the spacetime’s total angular momentum.
The solution-valued Hamiltonian, HMoM given by Eq. (4.2.53), depends on
the asymptotic behaviour of the spacelike hypersurface ¥, and on the asymptotic
behaviour of the lapse and shift. While the lapse and shift are always arbitrary, the
fact that the spacetime is asymptotically flat gives us a preferred behaviour for the
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hypersurfaces. We shall demand that 3; asymptotically coincide with a surface of
constant time in Minkowski spacetime: If (t,Z,7, Z) is a Lorentzian frame at infin-
ity, then the asymptotic portion of ¥; must coincide with a surface ¢ = constant.
In this portion of ¥;, the (arbitrary) coordinates y® are related to the spatial
Minkowski coordinates, and we have the asymptotic relations y® — y*(Z,7, 2);
similarly, z% — z°(%, Z, 7, Z). We note that t is proper time for an observer at rest
in the asymptotic region, and infer that this observer moves with a four-velocity
u® = 0x%/0t. Because this vector is normalized and orthogonal to the surfaces
t = constant, it must coincide with the normal vector n®, and we have another
asymptotic relation, n® — 9z*/9t. Substituting this into Eq. (4.2.9) gives us

t“—)N(ai_) +N“(axa>,
ot e dy° J;

an asymptotic relation for the flow vector. This shows that once the asymptotic
behaviour of ¥; has been specified, there is a one-to-one correspondence between
a choice of lapse and shift and a choice of flow vector. The solution-valued Hamil-
tonian can then be regarded either as a function of N and N®, or as a function of
te.

We shall define M, the gravitational mass of an asymptotically-flat spacetime,
to be the limit of Huto" when S, is a two-sphere at spatial infinity, evaluated
with the following choice of lapse and shift: N =1 and N* = 0. From Eq. (4.2.53),

M=—" lim (k — ko)v/o d®6. (4.3.1)

87 Si—x Sy

Here, 0 45 is the metric on Sy, k = 04Pk 4 p is the extrinsic curvature of S; embedded
in Xy, and ko is the extrinsic curvature of S; embedded in flat space. The quantity
defined by Eq. (4.3.1) is called the ADM mass of the asymptotically-flat spacetime;
the name refers to the seminal work by Arnowitt, Deser, and Misner.

The choice N = 1, N® = 0 implies that asymptotically, t* — 9z%/dt, so
that the flow vector generates an asymptotic time translation. The ADM mass
is then just the gravitational Hamiltonian for this choice of flow vector, and we
have made a formal connection between total energy and time translations. This
connection is both deep and compelling, and it can be adapted to give a definition
of total angular momentum. Indeed, the gravitational Hamiltonian should provide
a similar connection between angular momentum and asymptotic rotations, which
are characterized by t* — ¢* = 02*/0¢, where ¢ is a rotation angle defined in the
asymptotic region in terms of the Cartesian frame (Z, g, Z). This corresponds to the
choice N =0, N® = ¢* = 0y*/0¢ of lapse and shift.

We shall define J, the angular momentum of an asymptotically-flat spacetime,
to be (minus) the limit of HZ?I““‘)“ when S; is a two-sphere at spatial infinity,
evaluated with N = 0 and N* = ¢*. From Eq. (4.2.53),

J= 1 lim (Kop — Khap)p®r® /o d*6. (4.3.2)
8m Si—o S,
A minus sign was inserted to recover the usual right-hand rule for the angular
momentum. Notice that this definition of angular momentum refers to a specific
choice of rotation axis, and ¢ is the angle around this axis.

4.83.2 Mass and angular momentum for stationary, axially symmetric
spacetimes

To show that these definitions are in fact reasonable, we shall calculate M and J
for an asymptotically-flat spacetime that is both stationary and axially symmetric.
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In the asymptotic region r > m, the metric of such a spacetime can be expressed
as

2 2 4jsin? 6
ds? = — (1 - Tm) a2 + (1 ¥ Tm) (dr? + 2 d02) — JS% dtdg,  (4.3.3)

where m and j are the spacetime’s mass and angular-momentum parameters, re-
spectively. We will show that M = m and J = j, and confirm that the Hamiltonian
definitions are well founded. We note that the validity of this metric in the asymp-
totic region could always be used to define mass and angular momentum. Our
Hamiltonian definitions are more powerful, however, because they do not involve a
particular coordinate system, and they stay meaningful even when the spacetime is
not stationary nor axially symmetric.

We choose the hypersurfaces ¥; to be surfaces of constant ¢, and n, = —(1 —
m/1)0qt is the unit normal. (Throughout this calculation we work consistently to
first order in m/r.) The induced metric on X, is given by

2
hapdy®dy® = (1 + Tm) (dr® +r* dQ?).

The boundary S; is the two-sphere » = R, and the limit R — oo will be taken at
the end of the calculation. Its unit normal is r, = (1 + m/r)d,r, and

o apdb 9B = (1 + 2%”)}12 dn?

gives the two-metric on S;.
To evaluate M we must first calculate k. This is given by k = r“‘a and a brief

calculation yields k¥ = 2(1 — 2m/R)/R. To this we must subtract ko, the extrinsic
curvature of a two-surface of identical intrinsic geometry, but embedded in flat
space. On this surface,

09 pdodo® = R d02,
where R' = R(14+m/R), so that 6% 5 = 045. We have kg = 2/R' = 2(1-m/R)/R,

and simple algebra yields k — kg = —2m/R?. On the other hand, /o d?6 = R*(1 +
2m/R) sin @ dfd¢, and substitution into Eq. (4.3.1) yields

M =m, (4.3.4)

the desired result.

To evaluate J we must first calculate K521’ = Ky(1 — m/r), where K, =
N8 egef . (The second term in the integrand, K hq,¢r?, vanishes identically.) The
relevant component of the extrinsic curvature is Ky = (1 —m/r)I" . Using

2m 2j
gtt=—<1+—); gt¢=——3;
r r

we find that T = —3j sin® §/r2, and this gives Ky, = —3jsin® §/R2. Substituting
this into Eq. (4.3.2) yields J = (3;/4) [ sin® €6 df, or

J=j, (4.3.5)

the desired result.
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4.8.8 Komar formulae

An appealing feature of the Hamiltonian definitions for mass and angular momen-
tum is that they do not involve a specific choice of coordinates. Alternative defini-
tions that share this property can be produced for stationary and axially symmetric
spacetimes. These are known as the Komar formulae, and they are

M= slfloofg V€], dSas (4.3.6)
and
7= 16—7r sﬁoof{ V() ASap- (4.3.7)

Here, §°‘ is the spacetime’s timelike Killing vector, and §a¢ is the rotational Killing
vector; tiley both satisfy Killing’s equation, {45 + 3, = 0. The surface element is
given by (Sec. 3.2)

dsag = —ZH[QTB]\/EdQH, (4.3.8)

where n, and r, are the timelike and spacelike normals to Sy, respectively.
To establish that these formulae do indeed give M = m and J = j, we must
prove that for the spacetime of Eq. (4.3.3), the relations
—ZV‘J‘fg)narg = —2m/r’* =k — ko, V"‘g@)narﬁ = Kap¢%r®

hold in the limit r — co. We begin with the first relation:

—2V°‘£€t)narﬁ = 25&);Bnarﬁ
= 2F"‘67nar5£&)
= =2(1-2m/r),
= —2m/r?

as required. We have used Killing’s equation in the first line, and inserted n, =
—(1 = m/r)0at, r* = r%e® = (1 —m/r)dz®/0r, and T, = m(1 + 2m/r)/r? in the
following steps. To prove the second relation requires less work:

VeEynars = —E)pnar’
= &ynasr’
= nap(g”ed)(re})
= (”a,ﬁe eb)¢a ’
= ab¢arb'

Once again, Killing’s equation was used in the first line. The second line follows
from the fact that the Killing vector is orthogonal to n®*. In the third line, the
vectors €%, and 7? were decomposed into the basis 2. Finally, the last line follows
from the definition of the extrinsic curvature. These computations prove that the
definitions of Eq. (4.3.6) and (4.3.7) do indeed imply M = m and J = j. We
see that for stationary and axially symmetric spacetimes, the Komar formulae are
equivalent to our Hamiltonian definitions for mass and angular momentum.

The Komar formulae can be turned into hypersurface integrals by invoking
Stokes’ theorem (Sec. 3.3),

7{ B dS,s = 2/ Baﬁ;ﬁ d¥a,
S >
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where B is any antisymmetric tensor field, and S is the two-dimensional boundary
of the hypersurface X. This is possible because when £% is a Killing vector, the
tensor B®? = V*¢P is necessarily antisymmetric. We have

B 5 = (Vo&P)p = —(VPEY),5 = -7,

where [0 = V*V,. Using the fact that all Killing vectors satisfy (J£® = —Raﬁ§5
(Sec. 1.13, Problem 9), we have established the identity

7{ VP dS,p = 2/ 288 d%,.
S )}

Because the hypersurface ¥ is spacelike, we have that d¥, = —ngVh d3y. Using
the FEinstein field equations, we then obtain

1
s by
Finally, combining this with Eqs. (4.3.6) and (4.3.7), we arrive at

1
M=2 /E (Taﬁ -3 Tgag) nag(ﬁt)\/ﬁfy (4.3.9)

and .
J = —/ (Tag — §Tga5) naf(6¢)\/ﬁd3y. (4.3.10)
b>

In these equations, ¥ stands for any spacelike hypersurface that extends to spatial
infinity. If ¥ had two boundaries instead of just one, then an additional contribution
from the inner boundary would appear on the right-hand side of Eqgs. (4.3.9) and
(4.3.10). Such a situation arises when the stationary, axially symmetric spacetime
contains a black hole (see Sec. 5.5.3).

It is a remarkable fact that M and J are defined fundamentally in terms of
integrals over a closed two-surface at infinity. These quantities should therefore be
thought of as properties of the asymptotic structure of spacetime. It is only in the
case of stationary, axially symmetric spacetimes that M and J can be defined as
hypersurface integrals.

4.8.4 Bondi-Sachs mass

The ADM mass was constructed in Sec. 4.3.1 by selecting a closed two-surface
Sy = S(t,r), integrating k — ko over this surface, and then taking the limit r — oo.
Thus,

1

Mapm(t) = — &

?{ (k — ko)v/o d6. (4.3.11)
S(t,r—o0)

Here, S(t,r) denotes a surface of constant ¢ and r which becomes a round two-
sphere of area 4mr? as r — o0o. This limit, which is taken while keeping ¢ fixed, is
what defines “spatial infinity”.

There exists another way of reaching infinity, and to this new limiting procedure
corresponds a distinct notion of mass. This is the Bondi-Sachs mass, which is
obtained by taking S(¢,r) to “null infinity” instead of spatial infinity. To define
this we introduce the null coordinates u = t — r (retarded time) and v = t + r
(advanced time). In these coordinates, a two-surface of constant ¢ and r becomes a
surface of constant u and v, which we denote S(u,v). Null infinity corresponds to
the limit v — oo keeping u fixed, and the Bondi-Sachs mass is defined by

Migs (1) = —— (k — ko)/o &%6. (4.3.12)

- g S(u,v—00)
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The physical importance of the Bondi-Sachs mass comes from the fact that when an
isolated object emits radiation (in the form, say, of electromagnetic or gravitational
waves), the rate of change of Mgs(u) is directly related to the outward flux of
radiated energy. If F' denotes this flux, then the Bondi-Sachs mass satisfies

dMss _ _ f Fy/o d?6. (4.3.13)
du S(u,v—00)

Thus, the mass of a radiating object decreases as the radiation escapes to infinity.
The proof of this statement is rather involved; it can be found in the original papers
by Bondi, Sachs, and their collaborators.

4.8.5 Distinction between ADM and Bondi-Sachs masses: Vaidya
spacetime

For stationary spacetimes, the ADM and Bondi-Sachs masses are identical: there is
no distinction. For the dynamical spacetime of an isolated body emitting gravita-
tional (or other types of) radiation, the two notions of mass are distinct. For such a
system, the Bondi-Sachs mass decreases according to Eq. (4.3.13), while the ADM
mass stays constant.

The metric of a radiating spacetime is difficult to write down; usually it is
expressed as a messy expansion in powers of 1/r. We shall not attempt to deal with
these complications here. For the purpose of illustrating the difference between
the ADM and Bondi-Sachs masses, we shall instead adopt a simple spherically-
symmetric model. Consider the Schwarzschild metric expressed in terms of the null
coordinate u = t—r—2M In(r/2M —1), and allow the mass parameter M to become
a function of retarded time: M — m(u). This new metric is given by

ds* = — f du® — 2 dudr + r* dQ?, f=1-2m(u)/r, (4.3.14)

and it is a good candidate to represent a radiating spacetime. To see if it makes a
sensible solution to the Einstein field equations, let us examine the Einstein tensor,

whose only nonvanishing component is Gy, = —(2/r%)(dm/du). This means that
the stress-energy tensor must be of the form

dm/du
where [, = —0,u is tangent to radial, outgoing null geodesics. This stress-energy

tensor describes a pressureless fluid with energy density p = (—dm/du)/(47r?) mov-
ing with a four-velocity {*. Such a fluid is usually referred to as null dust; it gives
a good description of high-frequency radiation. It is easy to check that the form
(function of u)/r? for the energy density is dictated by energy-momentum conser-
vation. You may also verify that all the standard energy conditions are satisfied
by T,p if dm/du < 0, that is, if m decreases with increasing retarded time. We
conclude that the metric of Eq. (4.3.14), called the outgoing Vaidya metric, makes
a physically reasonable solution to the Einstein field equations.

We wish to compute the ADM and Bondi-Sachs masses for the Vaidya spacetime.
The first step is to select a spacelike hypersurface 3 bounded by a closed two-surface
S; this hypersurface must asymptotically coincide with a surface ¢ = constant of
Minkowski spacetime. A suitable choice is to let X be a surface of constant ¢t = u+r,
for which the unit normal

na=—(2-f)""?0a(u+r)
is everywhere timelike. From Eq. (4.3.14) we obtain that the induced metric on ¥
is
hap dy®dy® = (2 — f) dr? + r? dQ%.
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u = constant

y
\/ t = constant

radiating mass

Figure 4.5: A radiating spacetime.

For S we choose the two-sphere r = R, where R is a constant much larger than the
maximum value of 2m(u); eventually we will take the limit R — co. Recall that
spatial infinity corresponds to keeping ¢ fixed while taking the limit (which means
that u — —o0), whereas null infinity corresponds to keeping u fixed while taking
the limit. The unit normal on S is r, = (2 — f)'/? 8,7, and the induced metric is
oap d9Ad9® = R* dO2.
First we calculate
M(S) = -~ & (k= ko)v/o a0
81 Jg

for the bounded two-surface S; the two different limits to infinity will be taken next.
The extrinsic curvature of S embedded in ¥ is calculated as

e 2] - o o)

and the extrinsic curvature of S embedded in flat space is ko = 2/R. Subtracting,
we have that k— ko = —2m(u)/R?+O(R™3), and integrating over S yields M (S) =
m(u) + O(R™1).

We may now take the limit R — oo. As was mentioned previously, the ADM
mass is obtained by keeping t = u + R fixed while taking the limit. This gives

Mapm(t) = m(—00), (4.3.16)

and we see that the ADM mass is a constant, equal to the initial value of the
mass function. We may therefore say that Mapy represents all the mass initially
present in the spacetime. (This interpretation is quite general and not limited to
this specific example.) For the Bondi-Sachs mass, we must keep u fixed while taking
the limit. This gives

Mgs(u) = m(u), (4.3.17)

and we see that the Bondi-Sachs mass is identified with the mass function of the
Vaidya spacetime. It decreases in response to the outflow of radiation described by
the stress-energy tensor of Eq. (4.3.15). Notice that the field equation

dm

20 —4nr*Tyy, = —4rr? (=T",) = —4nr*F

is compatible with the general mass-loss formula, Eq. (4.3.13).

It may appear paradoxical that the ADM mass of a dynamical spacetime should
be a constant. This, however, is what should be expected of a radiating spacetime
(Fig. 4.5). The ADM mass represents all the mass present on a spacelike hypersur-
face of constant ¢. This hypersurface intersects the central object whose mass does
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decrease as a consequence of radiation loss. But this does not mean that the ADM
mass should decrease, because the hypersurface intersects also the radiation, and
the ADM mass accounts for both forms of energy. The net result is a conserved
quantity. On the other hand, the Bondi-Sachs mass represents all the mass present
on a null hypersurface of constant u. Because this hypersurface fails to intersect
any of the radiation that was emitted prior to the retarded time wu, the net result is
a quantity that decreases with increasing retarded time.

4.83.6  Transfer of mass and angular momentum

We shall now derive expressions for the transfer of mass and angular momentum
across a hypersurface ¥ in a stationary, axially symmetric spacetime.
To begin, consider the vector fields

e =-T%&,, (=T%E,, (4.3.18)

where TP is a test stress-energy tensor that does not influence the spacetime ge-
ometry. From the definition of the stress-energy tensor, €* can be interpreted as an
energy-density flux vector, while ¢% is interpreted as an angular-momentum-density
flux vector.

To see this clearly, consider the simple case of dust, a perfect fluid with stress-
energy tensor T%? = pu®u®, where p is the rest-mass density, and u® the four-
velocity. Energy-momentum conservation implies that u® satisfies the geodesic
equation, and that j* = pu® is a conserved vector: j%, = 0. This vector can be
interpreted as the dust’s momentum density, or equivalently, as a rest-mass flux
vector. Then ¢® = Ej* and ¢* = Lj*, where E = —uafg) is the conserved energy

per unit rest mass, and L = uafz"@ the conserved angular momentum per unit rest

mass. (As we have indicated, both E and L are constants of the motion.) These
relations show quite clearly that ¢ represents a flux of energy density, while £¢ is
a flux of angular-momentum density.

The vectors e* and ¢* are divergence-free. For example,

% =T & + T §pia = 0;

the first term vanishes by virtue of energy-momentum conservation, and the second
vanishes because §(;)5,o is an antisymmetric tensor field. This implies that the
integral of € or £* over a hypersurface 0% enclosing a four-dimensional region ¥
is identically zero. For example,

f e*dx, =0.
oy

This equation states that the total transfer of energy across a closed hypersurface
0V is zero. This is clearly a statement of conservation of total energy — or total
mass.

The boundary 97 can be partitioned into any number of pieces. If one such
piece is the hypersurface X, then the integral of €é* over ¥ represents the mass
transferred across this piece of 8%. Thus,

— B
AM = _/2 %g(t) d¥, (4.3.19)
is the mass transferred across the hypersurface X, and similarly,

—_ a B
AJ = /)D €0, dT, (4.3.20)
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is the angular momentum transferred across X.

For illustration, let us return to our previous example, and let us choose ¥ to be
spacelike and orthogonal to the vector field u®. Then d¥, = —uoVhd3y, and we
find that AM = [, EpVhdPy and AJ = Js LpvVhd?y. The first equation states
that the transfer of energy across ¥ is the integral of Ep, the energy density. The
second equation comes with a very similar interpretation.

4.4 Bibliographical notes

During the preparation of this chapter I have relied on the following references:
Arnowitt, Deser, and Misner (1962); Bondi, van der Burg, and Metzner (1962);
Brown and York (1993), Brown, Lau, and York (1997); Carter (1979); Hawking
and Horowitz (1996); Sachs (1962); Sudarsky and Wald (1992); and Wald (1984).

More specifically:

An overview of the Lagrangian and Hamiltonian formulations of general rela-
tivity is given in Appendix E of Wald. The Hamiltonian formulation was initiated
by Arnowitt, Deser, and Misner, who also introduced the ADM mass. Early treat-
ments of the Hamiltonian formulation often discarded the all-important boundary
terms; careful treatments are given in Sudarsky and Wald, Brown and York, and
Hawking and Horowitz. (Problem 7 below is based on this last paper.) The Hamil-
tonian definitions for mass and angular momentum are taken from Brown and York;
the discussion of Sec. 4.2.4 is also based on their paper. Sections 4.3.3 and 4.3.5
are based on Carter’s Secs. 6.6.1 and 6.6.2, respectively. The Bondi-Sachs mass
was introduced by Bondi and his collaborators in an effort to put the notion of
gravitational-wave energy on a firm footing. The definition given in Sec. 4.3.4 is
due to Brown, Lau, and York. I would like to point out that the first occurrence
of the (k — ko) formula for the ADM mass can be found in a 1988 paper by Katz,
Lynden-Bell, and Israel.

4.5 Problems

1. The Lagrangian density for the free electromagnetic field is
P
167 o
where Fo3 = Ag,o — Aq;p is the Faraday tensor, expressed in terms of the
vector potential A,.

a) Derive the Maxwell field equations for vacuum, Faﬁ; 5 =0,0n the basis of
this Lagrangian density.

b) Show that the stress-energy tensor for the electromagnetic field is given
by

1 1 )
Tos = E(FWFB“ — 7 gasF" F,“,).

2. The Lagrangian density for a point particle of mass m moving on a world line

z%(A) is given by
& = —m/ \/ —9ap2®2P 84(x, z) d),

where 64(z,z") is a four-dimensional, scalarized d-function satisfying

/ Sa(z,x')/—gdtz =1
v
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if 2 is within the domain of integration; we also have 2% = dz®/d)\, and the
parameterization of the world line is arbitrary.

a) Derive an expression for the stress-energy tensor of a point particle. To
simplify this expression, set dA = dr (with 7 denoting proper time on
the world line) at the end of the calculation.

b) Prove that when it is applied to a point particle, the statement TaB; 5=0
gives rise to the geodesic equation for u® = dz®/dr.

c) Explain whether the result of part b) constitutes a valid proof of the state-
ment that the Einstein field equations predict the motion of a massive
body to be geodesic.

Calculate the gravitational action Sg for a region ¥ of Schwarzschild space-
time. Take ¥ to be bounded by the hypersurfaces ¥y,, X¢,, Xg, and X,
where ¥;, (X4,) is the spacelike hypersurface described by t = ¢; (¢t = t2), and
where Xg (X,) is the three-cylinder at r = R (r = p). Here, 2M < p < R.
At the end of the calculation, take the limits R — oo and p — 2M.

. Derive Eq. (4.2.52), the evolution equation for the extrinsic curvature. You

may use ;b“.b = —P% a5 a starting point, or proceed from scratch with the
definition K, = £t(na;geg‘ef ). [Either way, the calculation is tedious! You
may want to consult York (1979).]

Recall that in Sec. 3.6.5 we introduced a mass function m(r) that determines
the three-metric of a spherically symmetric hypersurface. Prove that

1 (k—ko)\/ngG:r(l—\/1—2m/r),
8 Js(r)

where S(r) is a two-surface of constant 7. Use this to show that m(oco) is the
ADM mass of this hypersurface.

In this problem we explore some consequences of Eq. (4.3.9), which gives an
expression for the ADM mass of a stationary spacetime.

a) Prove that the right-hand side of Eq. (4.3.9) is independent of the choice
of hypersurface X.

b) Show that if T@% is the stress-energy tensor of a static perfect fluid, then
Eq. (4.3.9) reduces to

M=/(p+3p)eq’\/5d3y,
X

where p is the mass density, p the pressure, and e?® = —gagﬁa)f(ﬁt).
[Hints: A perfect fluid is static if its four-velocity u® is parallel to f&).
You may assume that the spacetime also is static.]

¢) Specialize to spherical symmetry, and write the spacetime metric as
ds* = = dt> + (1 — 2m/r) " dr® + r2 dQ?,

in which ® and m are functions of r. Refer back to the result of Problem
5 and deduce the identity

/p(1—2m/T)1/2dV:/(p+3p)eq>dV,
) )

where dV = vhd3y is the natural volume element on the hypersurface
3.
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d) Specialize now to a weak-field situation, for which the metric can be ex-
pressed as

ds? = —(1 4 2®) dt? + (1 — 2®)(d2? + dy® + dz*);

the Newtonian potential ® is a function of ¥ = /22 + y2 + 22. Work-
ing consistently in the weak-field approximation, show that the identity
derived in part ¢) reduces to

1
—/ |V<I>|2dV=3/pdV,
87T » »

in which dV and all vectorial operations refer to the three-dimensional
flat space of ordinary vector calculus. The left-hand side represents
(minus) the total gravitational potential energy of the system. For a
monoatomic ideal gas in thermodynamic equilibrium, the right-hand side
represents twice the total kinetic energy of the system. This equation
is therefore a formulation of the virial theorem of Newtonian gravita-
tional physics. The identity of part c) can then be interpreted as the
general-relativistic version of the virial theorem.

7. The ADM mass is usually defined by

1

—_ b _ a 2
- 167 S_}()O(D Yab Da’Y)T \/Ed 07

which is a very different expression from the one appearing in Sec. 4.3.1. Here,
S is the two-surface that encloses the spacelike hypersurface 3. If hg; is the
metric on ¥ in arbitrary coordinates y®, then vq5 = hap —h%,, where h?, is the
metric of flat space in the same coordinates. We also have v = +%, and D,
is the covariant derivative associated with the flat metric h2,, which is used
to raise and lower all indices. Finally, r® is the unit normal of the surface S,

and /o d?0 is the surface element on S.

The purpose of this problem is to prove that this definition is equivalent to
the one given in the text,

1
M=—-— (k — ko)\/o d6,

T JS—oo

where k (ko) is the extrinsic curvature of S embedded in ¥ (flat space). You
may proceed along the following lines:

Because both expressions are invariant under a coordinate transformation, we
may use, in a neighbourhood of S, the coordinates (£,84), where £ is proper
distance off S in the direction orthogonal to S, and #4 are the coordinates
on S which are Lie transported off S along curves orthogonal to S. In these
coordinates, the metric on X is given by

hapdy®dy® = d0* + G a5 (£) d6Ad6®,

where G4p(¢) (which also depends on GA) is such that 645(0) = oap, the
induced metric on S. Similarly,

hydy®dy® = de* + 6% 5 (¢) d6“de®.

Because the induced metrics must agree on S, we also have 6% 5(0) = oaB.
This implies that v, =0 on S.
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Using this information, show that both expressions for M reduce to the same

form,
1

M=—-— ROy /o d?6.
16m S—o0 ’
This is sufficient to prove that the two expressions are indeed equivalent.

8. In this problem we study the transport of energy and angular momentum by
a scalar field ¢ in flat spacetime. The metric is ds? = —dt? + dr? + r? dQ?,
and the scalar field satisfies the wave equation g*1).,5 = —4mp, where p is
a specified source. It can be shown that in the wave zone (where r is much
larger than a typical wavelength of the radiation), the field is given by

oo 4
967,08 = =3 Y aum(w) Ven 6, ) + 0(r2),

where Y., (6, ¢) are spherical harmonics; the amplitudes ag,, are constructed
from p, and they are functions of retarded time v = ¢t — r. The scalar field
comes with a stress-energy tensor

Tas = baths — 3 (V*9) 908,

and we are interested in the transfer of energy and angular momentum across
a null hypersurface ¥ defined by v = constant, where v = t + r is advanced
time.

a) Show that d¥, = —r?k, dudf), where k, = —%(%U and d) = sin 6 dfdo,
is a surface element on X.

b) Prove that for any test field producing a stress-energy tensor T4 the
amount of energy crossing 3 per unit retarded time is

E
aE _ 7{ P Tosk®t? dQ),
du S

where t* = 9z*/0t and S is a two-sphere of constant v and v. Prove
also that the amount of angular momentum flowing across X is given by

47 \ 5
— = - @ Q
. 7{5 P2 T, k® ¢ dQ,
where ¢® = 0z%/0¢.

c) Show that for scalar radiation, the preceding expressions reduce to

dE & & . 2
=2 2 lam(w)]

=0 m=—{¢

and
dJ S & \
du Z Z im G (0)ag,, (v)
£=0 m=—¢

in the limit v — oo. Here, an overdot indicates differentiation with
respect to u, and an asterisk denotes complex conjugation.

d) Suppose that the source producing the scalar radiation is in rigid rotation
around the z axis, in the sense that the ¢ and ¢ dependence of p resides
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entirely in the combination ¢—Qt, where (2 is a constant angular velocity.
Prove that in this situation, the field satisfies

"p,a fa =0,

where £ = t* 4+ Q¢®. Prove also that in the limit v — 00, the transfers
of energy and angular momentum are related by

dE dJ
— =0 —.
du du
This relation applies to any type of radiation emitted by a source in

rigid rotation. It is valid also in curved spacetimes, provided that the
spacetime is stationary, axially symmetric, and asymptotically flat.



CHAPTER 5
BLACK HOLES

The final chapter of this book is devoted to one of the most successful applications
of general relativity, the mathematical theory of black holes. In the first part of the
chapter we explore three exact solutions to the Einstein field equations that describe
black holes; those are the Schwarzschild (Sec. 5.1), Reissner-Nordstrém (Sec. 5.2),
and Kerr (Sec. 5.3) solutions. In Sec. 5.4 we move away from the specifics of
those solutions and consider properties of black holes that can be formulated quite
generally, without relying on the details of a particular metric. In the final section of
this chapter, Sec. 5.5, we present the four fundamental laws of black-hole mechanics.
The most important feature of a black-hole spacetime is the event horizon, a null
hypersurface which acts as a causal boundary between two regions of the spacetime,
the interior and exterior of the black hole. Many physical quantities associated with
the black hole, such as its mass, angular momentum, and surface area, are defined
by integration over the event horizon. The integration techniques introduced in
Chapter 3 will be put to direct use here, as well as the notions of mass and angular
momentum encountered in Chapter 4. And since the event horizon is generated by
a congruence of null geodesics, the methods introduced in Chapter 2 will also be
part of our discussion. So here it all comes together in one final glorious moment!

5.1 Schwarzschild black hole
5.1.1 Birkhoff’s theorem

The Schwarzschild metric,
2M 20\ !
ds? = _(1 - T) dt® + (1 - T) dr? + r? dQ?, (5.1.1)

is the unique solution to the Einstein field equations that describes the vacuum
spacetime outside a spherically symmetric body of mass M. While this object
could have a time-dependent mass distribution, the external spacetime is necessarily
static, and its metric is given by Eq. (5.1.1). This statement, known as Birkhoff’s
theorem, implies that a spherical mass distribution cannot emit gravitational waves.

The proof of the theorem goes as follows. The metric of a spherically symmetric
spacetime can always be cast in the form

ds’ = —e* fdt* + {1 dr® +1r? dO?, (5.1.2)

involving the two arbitrary functions ¢(t,r) and f(¢,r). It is convenient to also
introduce a mass function m(t,r) defined by

2m
f=1- T (5.1.3)
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For the metric of Eq. (5.1.2), the Einstein field equations are

om
o = 47r? (—Ttt) ,

om .
e —4mr? (—T t) ,

(5.1.4)

g—zf =drrf~N(-T%, +T").

The first two equations motivate the name “mass” for the function m(t,r), as —T%
represents the density of mass-energy and —T7, its outward radial flux; they imply
that in vacuum, m(t,r) = M, a constant. The third gives ¢’ = 0, and 9 (¢, ) can be
set equal to zero without loss of generality. The Schwarzschild solution is thereby
recovered.

5.1.2 Kruskal coordinates

The difficulties of the Schwarzschild metric at r = 2M are well known. While the
spacetime is perfectly well behaved there, the coordinates (¢,7) become singular at
r = 2M — they are no longer in a one-to-one correspondence with spacetime events.
This problem can be circumvented by introducing another coordinate system. The
following construction originates from the independent work of Kruskal (1960) and
Szekeres (1960).

Consider a swarm of massless particles moving radially in the Schwarzschild
spacetime — t and r vary, but not § and ¢. It is easy to check that ingoing
particles move along curves v = constant, while outgoing particles move along
curves u = constant, where

u=t-—r" v=t+r*
(5.1.5)
. dr r

In a spacetime diagram using v (advanced time) and u (retarded time) as oblique
coordinates (both oriented at 45 degrees), the massless particles propagate at 45
degrees, just as in flat spacetime (Fig. 5.1). The null coordinates (u,v) are therefore
well suited to the description of (radial) null geodesics. In these coordinates, the
Schwarzschild metric takes the form

ds* = —(1 = 2M/r) dudv + r* d*. (5.1.6)

Here, r appears no longer as a coordinate, but as the function of v and v defined
1

implicitly by 7*(r) = 5(v — u). In these coordinates, the surface r = 2M appears
at v —u = —o00, and it is still the locus of a coordinate singularity.

To see how this coordinate singularity might be eliminated, we focus our at-
tention on a small neighbourhood of the surface r = 2M, in which the rela-
tion r*(r) can be approximated by r* ~ 2MIn|r/2M — 1|. This implies that
r)2M ~1+e" /?M =1 4 e0=0/*M and f ~ 4e(*=w/4M Here and below, the
upper sign refers to the part of the neighbourhood corresponding to » > 2M, while
the lower sign refers to » < 2M. The metric (5.1.6) becomes

ds? ~ F(e=*M du)(e*/*M dv) + r* dQ2.

This expression motivates the introduction of a new set of null coordinates, U and
V', defined by
U =Fe WM, V = eV/tM, (5.1.7)
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inéoing ray

outégoing ray

Figure 5.1: Spacetime diagram based on the (u,v) coordinates.

It is now clear that when expressed in terms of these coordinates, the metric will
be well behaved near r = 2M. Going back to the exact expression (5.1.5) for r*,
we have that e" /2M = ¢(v=w)/4M — L7V or

r/2M L 1) =_ 1
e (ZM ) Uv, (5.1.8)

which implicitly gives r as a function of UV. You may check that the Schwarzschild

metric is now given by

32M3
r

ds? = — e M qUdV + r? dO2. (5.1.9)
This is manifestly regular at » = 2M. The coordinates U and V are called null
Kruskal coordinates. In a Kruskal diagram (a map of the U-V plane; Fig. 5.2),
outgoing light rays move along curves U = constant, while ingoing light rays move
along curves V = constant.

In the Kruskal coordinates, a surface of constant r is described by an equa-
tion of the form UV = constant, which corresponds to a two-branch hyperbola in
the U-V plane. For example, r = 2M becomes UV = 0, while r = 0 becomes
UV = 1. There are two copies of each surface r = constant in a Kruskal diagram.
For example, r = 2M can be either U = 0 or V = 0. The Kruskal coordinates
therefore reveal the existence of a much larger manifold than the portion covered

Figure 5.2: Kruskal diagram.
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by the original Schwarzschild coordinates. In a Kruskal diagram, this portion is
labeled I. The Kruskal coordinates do not only allow the continuation of the metric
through » = 2M into region II, they also allow continuation into regions ITT and
IV. These additional regions, however, exist only in the maximal extension of the
Schwarzschild spacetime. If the black hole is the result of gravitational collapse,
then the Kruskal diagram must be cut off at a timelike boundary representing the
surface of the collapsing object. Regions III and IV then effectively disappear
below the surface of the collapsing star.

5.1.83 Eddington-Finkelstein coordinates

Because of the implicit nature of the relation between r and UV, the Kruskal
coordinates can be awkward to use in some computations. In fact, it is rarely
necessary to employ coordinates that cover all four regions of the Kruskal diagram,
although it is often desirable to have coordinates that are well behaved at r = 2M.
In such situations, choosing v and r as coordinates, or v and r, does the trick.
These coordinate systems are called ingoing and outgoing Eddington-Finkelstein
coordinates, respectively.

It is easy to check that in the ingoing coordinates, the Schwarzschild metric
takes the form

ds* = —(1 — 2M/r) dv® + 2 dvdr + r* dQ?, (5.1.10)

while in the outgoing coordinates,
ds® = —(1—2M/r) du® — 2 dudr + r* dQ>. (5.1.11)

It may also be verified that the (v,r) coordinates cover regions I and II of the
Kruskal diagram, while u and r cover regions IV and I.

The Eddington-Finkelstein coordinates can also be used to construct spacetime
diagrams (Fig. 5.3), but these do not have the property that both ingoing and
outgoing null geodesics propagate at 45 degrees: While ingoing light rays move
with dv = 0, that is, along coordinate lines that can be oriented at 45 degrees, the
outgoing rays move with dv/dr = 2/(1 — 2M/r), that is, with a varying slope.

5.1.4 Painlevé-Gullstrand coordinates

Another useful set of coordinates for the Schwarzschild spacetime are the Painlevé-
Gullstrand coordinates first considered in Sec. 3.13, Problem 1. Here, as with the
Eddington-Finkelstein coordinates, the spatial coordinates (r, 6, ¢) are the same as
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Figure 5.3: Spacetime diagram based on the (v,r) coordinates.
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in the original form of the metric, Eq. (5.1.1), but the time coordinate is different:
T is proper time as measured by a free-falling observer starting from rest at infinity
and moving radially inward.

The four-velocity of such an observer is given by 4*8y = f10; —/1— f0,,
where f = 1—2M/r. From this we deduce that u, = —0,T, where the time function
T is obtained by integrating dT' = dt + f ~'+/1 — f dr = dr, where T is proper time.
(Integration is elementary, and the result appears in Sec. 3.13, Problem 1.) After
inserting this expression for dt into Eq. (5.1.1), we obtain the Painlevé-Gullstrand
form of the Schwarzschild metric:

ds® = —dT? + (dr + \/2M]r dT)* + 12 dQ. (5.1.12)

The coordinates (T,r,0,¢) give rise to a metric that is regular at r = 2M, in
correspondence with the fact that our free-falling observer does not consider this
surface to be in any way special. Because this observer originates in region I of the
spacetime (at r = o0) and ends up in region IT (at r = 0), the new coordinates
cover only these two regions of the Kruskal diagram. By reversing the motion —
letting dr become —dr in Eq. (5.1.12) — an alternative coordinate system can be
produced that covers regions VI and I instead.

From Eq. (5.1.12) we infer a rather striking property of the Painlevé-Gullstrand
coordinates: the hypersurfaces T' = constant are all intrinsically flat. This can be
seen directly from the fact that the induced metric on any such hypersurface is
given by ds? = dr? + r2 d.

5.1.5 Penrose-Carter diagram

The double-null Kruskal coordinates make the causal structure of the Schwarzschild
spacetime very clear, and this is their main advantage. Another useful set of double-
null coordinates is obtained by applying the transformation

U = arctan U, V = arctan V. (5.1.13)

This rescaling of the null coordinates does not affect the appearance of radial light
rays, which still propagate at 45 degrees in a spacetime diagram based on the new
coordinates (Fig. 5.4). However, while the range of the initial coordinates was
infinite (for example, —oco < U < o0), it is finite for the new coordinates (for
example, —7/2 < U<m /2). The entire spacetime is therefore mapped into a finite
domain of the U-V plane. This compactification of the manifold introduces bad
coordinate singularities at the boundaries of the new coordinate system, but these

Figure 5.4: Compactified coordinates for the Schwarzschild spacetime.
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Figure 5.5: Penrose-Carter diagram of the Schwarzschild spacetime.

are of no concern when the purpose is simply to construct a compact map of the
entire spacetime.

In the new coordinates, the surfaces r = 2M are located at U = 0 and V = 0,
and the singularities at r = 0, or UV = 1, are now at U+V = +r/2. The
spacetime is also bounded by the surfaces U = +7/2 and V = +n/2. The four
points (U, V) = (+Z,+Z) are singularities of the coordinate transformation: In the
actual spacetime, the surfaces U =0, U = 00, and UV = 1 never meet.

It is useful to give names to the various boundaries of the compactified spacetime
(Fig. 5.5). The surfaces U = /2 and V = 7 /2 are called future null infinity, and are
labeled £t (pronounced “scri plus”). The diagram makes it clear that .# T contains
the future endpoints of all outgoing null geodesics (those along which r increases).
Similarly, the surfaces U = —m/2 and V= —m/2 are called past null infinity, and
are labeled .# 7. These contain the past endpoints of all ingoing null geodesics
(those along which r decreases). The points at which .#+ and .#~ meet are called
spacelike infinity, and are labeled i®. These contain the endpoints of all spacelike
geodesics. The points (U, V) = (0, 7) and (U,V) = (5,0) are called future timelike
infinity, and are labeled 7. These contain the future endpoints of all timelike
geodesics that do not terminate at r = 0. Finally, the points (U, V) = (0, —%) and
(U,V) = (—%,0) are called past timelike infinity, and are labeled i~. These contain
the past endpoints of all timelike geodesics that do not originate at r = 0. Table
5.1 provides a summary of these definitions.

Compactified maps such as the one displayed in Fig. 5.5 are called Penrose-
Carter diagrams. They display, at a glance, the complete causal structure of the
spacetime under consideration. They make a very useful tool in general relativity.

5.1.6 FEvent horizon

On a Kruskal diagram (Fig. 5.2), all radial light rays move along curves U =
constant or V' = constant. The light cones are therefore oriented at 45 degrees,

Table 5.1: Boundaries of the compactified Schwarzschild spacetime.

Label Name Definition

A Future null infinity v = 00, u finite
I~ Past null infinity u = —o0, v finite
i0 Spatial infinity r = oo, t finite
it Future timelike infinity t = oo, r finite

i Past timelike infinity t = —o0, r finite
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and timelike world lines, which lie within the light cones, move with a slope larger
than unity. The one-way character of the surface r = 2M separating regions I and
IT of the Schwarzschild spacetime is then quite clear: An observer crossing this sur-
face can never retrace her steps, and cannot elude an encounter with the curvature
singularity at » = 0. It is also clear that after crossing r = 2M, the observer can
no longer send signals to the outside world, although she may continue to receive
them. The surface r = 2M therefore prevents any external observer from detecting
what goes on inside. In this context, it is called the black-hole’s event horizon. The
region within the event horizon (region IT) is called the black-hole region of the
Schwarzschild spacetime.

The surface r = 2M that separates regions I and IT must be distinguished from
the surface r = 2M that separates regions IV and I. It is clear that the latter
is an event horizon to all observers living inside region IV (who cannot perceive
what goes on in region I). It is also a one-way surface, because observers from the
outside cannot cross it. To distinguish between the two surfaces r = 2M, it is usual
to refer to the first as a future horizon, and to the second as a past horizon. The
region within the past horizon (region IV) is called the white-hole region of the
Schwarzschild spacetime.

5.1.7 Apparent horizon

Another important property of the surface r = 2M has to do with the behaviour
of outgoing light rays in a neighbourhood of this surface. Here, the term outgoing
will refer specifically to those rays which move on curves U = constant. This is
potentially confusing, because the radial coordinate r does not necessarily increase
along those rays; in fact, r increases only if U < 0 (outside the black hole), and
it decreases if U > 0 (inside the black hole). While the term “outgoing” should
perhaps be reserved to designate rays along which r always increases, this choice of
terminology is fairly standard. Similarly, we will use the term ingoing to designate
light rays which move on curves V = constant. If V > 0, then r decreases along
the ingoing rays; if V' < 0, r increases.

We will show that the expansion of a congruence of outgoing light rays (as
defined above) changes sign at r = 2M. (This should be obvious just from the fact
that r increases along the geodesics that are outside r = 2M, but decreases along
geodesics that are inside.) Outgoing light rays have

ko = —0,U (5.1.14)

as their (affinely parameterized) tangent vector, and their expansion is calculated
as 0 = k%, = |g|"**(|g|'/?k*),o. In Kruskal coordinates, k¥ = |gyv|~! is the
only nonvanishing component of k%, and |g|'/? = |gyv|r?sin®f. This gives § =
2r v /rlguv|, and using Eq. (5.1.8) and (5.1.9), we obtain

U

6):k“":_QMr'

(5.1.15)

As was previously claimed, the expansion is positive for U < 0 (in the past of
r = 2M) and negative for U > 0 (in the future of r = 2M). The expansion
therefore changes sign at » = 2M, and in this context, this surface is called an
apparent horizon. (A similar calculation would reveal that for ingoing light rays,
the expansion is negative everywhere in regions I and II.)

To give a proper definition to the term “apparent horizon”, we must first intro-
duce the notion of a trapped surface (Fig. 5.6). Let ¥ be a spacelike hypersurface.
A trapped surface on X is a closed, two-dimensional surface S such that for both
congruences (ingoing and outgoing) of future-directed null geodesics orthogonal to
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trapped surface o

Figure 5.6: Trapped surfaces and apparent horizon of a spacelike hypersurface.

S, the expansion 6 is negative everywhere on S. (It should be clear that each two-
sphere U,V = constant in region II of the Kruskal diagram is a trapped surface.)
Let 7 be the part of X that contains trapped surfaces; this is known as the trapped
region of ¥. The boundary of the trapped region, 0.7, is what is defined to be
the apparent horizon of the spacelike hypersurface X. (In Schwarzschild spacetime,
this would be any two-sphere at » = 2M.) Notice that the apparent horizon is
a marginally trapped surface: For one congruence of null geodesics orthogonal to
07,0 = 0. Notice also that the apparent horizon designates a specific two-surface
S on a given hypersurface ¥. The apparent horizon can generally be extended to-
ward the future (and past) of X, because hypersurfaces to the future (and past) of
3 also contain apparent horizons. The union of all these apparent horizons forms
a three-dimensional surface & called the trapping horizon of the spacetime. (In
Schwarzschild spacetime, this would be the entire hypersurface r = 2M.) In the
following we will not distinguish between the two-dimensional apparent horizon
and the three-dimensional trapping horizon; we will refer to both as the apparent
horizon. (This sloppiness of language is fairly standard.)

5.1.8 Distinction between event and apparent horizons: Vaidya
spacetime

The event and apparent horizons of the Schwarzschild spacetime coincide, and it
may not be clear why the two concepts need to be distinguished. This coinci-
dence, however, is a consequence of the fact that the spacetime is stationary; for
more general black-hole spacetimes, the event and apparent horizons are distinct
hypersurfaces. To illustrate this we introduce a simple, non-stationary black-hole
spacetime.
We express the Schwarzschild metric in terms of ingoing Eddington-Finkelstein
coordinates,
ds®> = —f dv® + 2 dvdr + r* dQ?, (5.1.16)

and we allow the mass function to depend on advanced time v:

(5.1.17)

This gives the ingoing Vaidya metric, a solution to the Einstein field equations with
stress-energy tensor

dm/dv
where [, = —0,v is tangent to ingoing null geodesics. This stress-energy tensor

describes null dust, a pressureless fluid with energy density (dm/dv)/(47r?) and
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four-velocity [*. (A similar, outgoing Vaidya solution was considered in Sec. 4.3.5.
A notable difference between these solutions is that here, the mass function must
increase for Top to satisfy the standard energy conditions.)

Consider the following situation. A black hole, initially of mass my, is irradiated
(with ingoing null dust) during a finite interval of advanced time (between v; and
vy) so that its mass increases to ms. Such a spacetime is described by the Vaidya
metric, with a mass function given by

my v < v
m(v) =< mi2(v) v <v<uvy ,
mo v > Vg

where mj2(v) increases smoothly from m; to ma. We would like to determine the
physical significance of the surfaces r = 2my, r = 2mq2(v), and r = 2ms, and find
the precise location of the event horizon.

It should be clear that » = 2m; and r = 2m describe the apparent horizon when
v < v; and v > vy, respectively. More generally, we will show that the apparent
horizon of the Vaidya spacetime is always located at r = 2m/(v).

The null vector field ky dz® = —f dv + 2dr is tangent to a congruence of out-
going null geodesics. It does not, however, satisfy the geodesic equation in affine-
parameter form: As a brief calculation reveals, kq.5k° = K ko, where & = 2m(v)/r.
To calculate the expansion of the outgoing null geodesics, we need to introduce an
affine parameter \* and a rescaled tangent vector k¢ = dz®/d\*. (The calculation
can also be handled via the results of Sec. 2.6, Problem 8.) As was shown in Sec. 1.3,
the desired relation between these vectors is k¥ = e Tk, where dT'/d)\ = k()\), with
A denoting the original parameter. We have

o = k2,
= e (k% —T k%)

dr’
= e T (kx - =
¢ (va X

= ¢ T (kofa - I‘L).

Here, the factor k¢, —k is the congruence’s expansion when measured in terms of the
initial parameter A\ — it is equal to (64)~'d(6A4)/d)\, where §A is the congruence’s
cross-sectional area. The factor e~! converts it to (§A)~1d(§A)/d\*, and this oper-
ation does not affect the sign of . A simple computation gives k%, = 2(r —m)/r?,
and we arrive at 9
el = = [r —2m(v)].

So 8 = 0 on the surface r = 2m(v), and we conclude that the apparent horizon
begins at r = 2m; for v < vy, follows r = 2m42(v) in the interval v; < v < v2, and
remains at r = 2ms for v > vs.

We may now show that while the apparent horizon is a null hypersurface before
v = vy and after v = vy, it is spacelike in the interval v; < v < vy. This follows at

once from the fact that if ® =r — 2m(v) = 0 describes the apparent horizon, then

dm

9P ® B 5 = —4—

is negative (so that the normal ® , is timelike) if dm/dv > 0 (so that the energy

conditions are satisfied). We therefore see that the apparent horizon is null when
the spacetime is stationary, but that it is spacelike otherwise.

Where is the event horizon? Clearly, it must coincide with the surface r = 2mg

in the future of v = vy. But what is its extension to the past of v = v2?7 Because
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A

Figure 5.7: Black hole irradiated with ingoing null dust.

the event horizon is defined as a causal boundary in spacetime, it must be a null
hypersurface generated by null geodesics (more will be said on this in Sec. 5.4). The
event horizon can therefore not coincide with the apparent horizon in the past of
v = ve. Instead, its location is determined by finding the outgoing null geodesics
of the Vaidya spacetime that connect smoothly with the generators of the surface
r = 2mo. (See Fig. 5.7; a particular example is worked out in Sec. 5.7, Problem 2.)

It is clear that the generators of the event horizon have to be expanding in the
past of v = vy if they are to be stationary (in the sense that § = 0) in the future.
Indeed, supposing that the null energy condition is satisfied (which will be true if
dm/dv > 0), the focusing theorem (Sec. 2.4) implies that the congruence formed by
the null generators of the event horizon will be focused by the infalling null dust; a
zero expansion in the future of v = v, guarantees a positive expansion in the past.
The event horizon is therefore generated by those null geodesics that undergo just
the right amount of focusing, so that after encountering the last of the infalling
matter, their expansion goes to zero.

The event horizon coincides with the apparent horizon only in the future of
v = v2. In the past, because the apparent horizon has a spacelike segment while the
event horizon is everywhere null, the apparent horizon lies within the event horizon,
that is, inside the black hole (Fig. 5.7). As we shall see in Sec. 5.4, this observation
is quite general.

It is a remarkable property of the event horizon that the entire future history of
the spacetime must be known before its position can be determined: The black hole’s
final state must be known before the horizon’s null generators can be identified.
This teleological property is not shared by the apparent horizon, whose location at
any given time (as represented by a spacelike hypersurface) depends only on the
properties of the spacetime at that time.

5.1.9 Killing horizon

The vector t* = 0z /0t is a Killing vector of the Schwarzschild spacetime. While
this vector is timelike outside the black hole, it is null on the event horizon, and it
is spacelike inside:
2M
Gapt®t? =1 - "—.
r
The surface r = 2M can therefore be called a Killing horizon, a hypersurface on
which the norm of a Killing vector goes to zero. In static black-hole spacetimes, the
event, apparent, and Killing horizons all coincide.
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5.1.10 Bifurcation two-sphere

The point (U,V) = (0,0) in a Kruskal diagram, at which the past and future hori-
zons intersect, represents the bifurcation two-sphere of the Schwarzschild spacetime.
This two-surface is characterized by the fact that the Killing vector t* = 9z* /0t
vanishes there. To recognize this, we need to work out the components of this
vector in Kruskal coordinates. From Egs. (5.1.5) and (5.1.7) we get the relation
e!/?M = _V/U, and after using Eq. (5.1.8), we obtain

2 _or—ty2m( T _ 4 2 _ pr+)2m (T _ 4
U =e (2M ), Vi=e (ZM .

Taking partial derivatives with respect to ¢, we arrive at

oY vo V.
aM’ 4M
It follows immediately that t* = 0 at the bifurcation two-sphere. It should be noted
that the bifurcation two-sphere exists only in the maximally extended Schwarzschild
spacetime. If the black hole is the result of gravitational collapse, then the bifurca-
tion two-sphere is not part of the actual spacetime.

According to our previous calculation, ¢V is the only nonvanishing component
of the Killing vector on the future horizon. This implies that ¢, o« —9,U at U =0,
and we have the important result that ¢“ is tangent to the null generators of the
event horizon. This was to be expected from the fact that the event horizon of the
Schwarzschild spacetime is also a Killing horizon.

(5.1.19)

5.2 Reissner-Nordstrom black hole

5.2.1 Deriwation of the Reissner-Nordstrom solution

The Reissner-Nordstrom (RN) metric describes a static, spherically symmetric black
hole of mass M possessing an electric charge ). We begin our discussion with a
derivation of this solution to the Einstein-Maxwell equations.

We assume that the electromagnetic-field tensor F*# has no components along
the § and ¢ directions; this ensures that the field is purely electric when measured
by stationary observers. Under this assumption, the only nonvanishing component
is F'". Maxwell’s equations in vacuum are 0 = Fo‘ﬁ;ﬂ = |g|='/2(|g|'/?F*#) 5. Using
the metric of Eq. (5.1.2), this implies (e¥r?F'")! =0, or

e
FtTZe ¢_2’
r

where () is a constant of integration, to be interpreted as the black-hole charge.
The stress-energy tensor for the electromagnetic field is

1 1 ,
TS =+ (F"‘”Fﬁu — 7 0% F" F,w>,
and a few steps of algebra yield
Q2
o .
T% = py—: diag(—1,-1,1,1). (5.2.1)

The Einstein field equations (5.1.4) imply m’ = Q?/2r%, or m(r) = M — Q?/2r.
The fact that 7%, = T, implies ¢’ = 0, so that ¢ can be set to zero without loss of
generality. The RN solution is therefore

oM Q? oM | Q*\ 7
ds® = —(1 -+ ?—) dt® + (1 -+ %) dr’ +1r2dQ?,  (5.2.2)
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with an electromagnetic-field tensor whose only nonvanishing component is

F'r = % (5.2.3)
Here, M is total (ADM) mass of the spacetime, and @ is the black hole’s electric
charge.

To see that () is indeed the charge, consider a nonsingular charge distribution
on a spacelike hypersurface ., described by a current density j*. An appropriate
definition for total chargeis Q = [, j* dXq, or Q = (4m)~" [5, FO‘B;B dY,, after using
Maxwell’s equations. Using Stokes’ theorem (Sec. 3.3.3), we rewrite this as an
integral over a closed two-surface S bounding the charge distribution. This yields

Gauss’ law,
1
Q=g }é F*5dS,g. (5.2.4)

The advantage of this expression for the total charge is that it is applicable even
when the charge distribution is singular, which is the case in the present application.
Also, this definition of total charge is in the same spirit as the previously encountered
definitions for total mass and angular momentum (Sec. 4.3). Substituting Eq. (5.2.3)
and evaluating for a two-sphere of constant ¢ and r confirms that the @) appearing
in Eq. (5.2.3) is indeed the black hole’s total charge.

5.2.2  Kruskal coordinates
The function f(r) =1 —2M/r + Q*/r? has zeroes at 7 = 1, where

ry= M+ /IE_ QL (5.2.5)

The roots are both real, and the RN spacetime truly contains a black hole, if
|Q| < M. The special case of a black hole with || = M is referred to as an extreme
RN black hole. If |Q] > M, then the RN solution describes a naked singularity at
r=0.

As for the Schwarzschild metric, the coordinates (¢,7) are singular at the outer
horizon (r = r4), and new coordinates must be introduced to extend the metric
across this surface. This can be done with the help of Kruskal coordinates. As we
shall see, however, these coordinates fail to be regular at the inner horizon (r = r_):
Another coordinate transformation is required to extend the metric beyond this
surface. Thus, Kruskal coordinates are specific to a given horizon, and a single
coordinate patch is not sufficient to cover the entire RN manifold (Fig. 5.8). As we
shall see below, the outer horizon in an event horizon for the RN spacetime, and
the inner horizon is an apparent horizon.

Let us first take care of the extension across the outer horizon. We express the
RN metric in the form

ds® = —fdt* + fLdr? +r?dQ?,
where f =1 —2M/r + Q?/r?. Near r = r, this function can be approximated by
f(r) =264 (r—ry),

where 1 = 1 f/(r;). It follows that near r = r,

dr 1
= [ — ~— In|ky(r —ry)|.
b | (r =14
Introducing the null coordinates v = t — r* and v = t + r*, the surface r = r
appears at v — u = —00, and we define the Kruskal coordinates U, and V; by

Uy =Fe ™% Vy =e™, (5.2.6)
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Figure 5.8: Kruskal patches for the Reisser-Nordstrém spacetime.

Here, the upper sign refers to r > r4 and the lower sign refers to r < r4. It is easy
to check that f ~ —2U,V, near r = r,, so that the metric becomes

2
d82 ~ —E dU+dV+ + 7"+2 dQZ

This shows that when expressed in the coordinates (Ui, V) ), the metric is well
behaved at the outer horizon. On the other hand, an exact integration for r*(r)
would reveal that r* — +o0o at the inner horizon, which is then located at v—u = oo,
or UV, = oo; the Kruskal coordinates are singular at the inner horizon.

The coordinates (Uy, V) should be used only in the interval ry < r < 0o, where
r1 > r_ is some cutoff radius. Inside r = ry, another coordinate system must be
introduced. One such system is (¢,7), in which the metric takes the standard form
of Eq. (5.2.2). It is important to understand that this new coordinate patch, which
covers the portion of the RN spacetime corresponding to the interval r_ < r < ry,
is distinct from the original patch covering the region r > r4. And indeed, because
f is now negative, the new ¢ must be interpreted as a spacelike coordinate (because
gt > 0), while r must be interpreted as a timelike coordinate (because g, < 0).

There still remains the issue of extending the spacetime beyond r = r_, where
the new (¢,r) coordinates fail. We want to construct a new set of Kruskal coor-
dinates, U_ and V_, adapted to the inner horizon. Retracing the same steps as
before, we have that near r = r_, the function f can be approximated by

flr) =~ —=2k_(r —r_),

where k_ = 1| f'(r_)|. It follows that

1
fo———Injk_(r—r_)|.
r P n|fs (r—r )|
With v =t —r* and v = t + r*, the surface r = r_ appears at v —u = 400, and we
define the new Kruskal coordinates by

U_ = Fe"¥, V. =—e 5" (5.2.7)

Here, the upper sign refers to r > r_ and the lower sign refers to » < r_. Then
f ~ —2U_V_ and the metric becomes

2
d82 ~ —F dU,dV, -+ 7',2 dQ2

This is manifestly regular across r = r_. The new Kruskal coordinates, however,
are singular at r = r4.

What happens now on the other side of the inner horizon? The most noticeable
feature is that the singularity at » = 0 appears as a timelike surface — this is
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markedly different from what happens inside a Schwarzschild black hole, where the
singularity is spacelike. Because f > 0 when r < r_, r re-acquires its interpretation
as a spacelike coordinate; any surface r = constant < r_ is therefore a timelike
hypersurface, and this includes the singularity. Because it is timelike, the singularity
can be avoided by observers moving within the black hole. This is a striking new
phenomenon, and we should think about this very carefully.

Consider the motion of a typical observer inside a RN black hole (Fig. 5.8).
Before crossing the inner horizon (but after going across the outer horizon), r is a
timelike coordinate and the motion necessarily proceeds with r decreasing. After
crossing r = r_, however, r becomes spacelike, and both types of motion (r decreas-
ing or increasing) become possible. Our observer may therefore decide to reverse
course, and if she does, she will avoid r = 0 altogether. Her motion inside the
inner horizon will then proceed with r increasing, and she will cross, once more, the
surface r = r_. This, however, is another copy of the inner horizon, distinct from
the one encountered previously. (Recall that there are two copies of each surface
r = constant in a Kruskal diagram.) After entering this new r > r_ region, our
observer notices that r has once again become timelike, and finds that reversing
course is no longer possible: her motion must proceed with r increasing, and this
brings her in the vicinity of another surface r = r. Because there is no reason
for spacetime to just stop there, yet another Kruskal patch (U, V4 ) must be intro-
duced to extend the RN metric beyond this horizon. The new Kruskal coordinates
take over where the old patch (U_,V_) leaves off, at the spacelike hypersurface
r=rmri.

The ultimate conclusion to these considerations is that our observer eventually
emerges out of the black hole, through another copy of the outer horizon, into a new
asymptotically-flat universe. Her trip may not end there: Our observer could now
decide to enter the RN black hole that resides in this new universe, and this entire
cycle would repeat! It therefore appears that the RN metric describes more than
just a single black hole. Indeed, it describes an infinite lattice of asymptotically-flat
universes connected by black-hole tunnels.

Such a fantastic spacetime structure is best represented with a Penrose-Carter
diagram (Fig. 5.9). This diagram makes it clear that region bounded by the surfaces

Figure 5.9: Penrose-Carter diagram of the Reisser-Nordstrom spacetime.
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r =ry4 and r = r_ contains trapped surfaces: both ingoing and outgoing light rays
originating from this region converge toward the singularity. The outer and inner
horizons are therefore apparent horizons, but only the outer horizon is an event
horizon.

5.2.8 Radial observers in Reissner-Nordstrom spacetime.

The discovery of black-hole tunnels is so bizarre that it should be backed up by a
solid calculation. Here we consider the geodesic motion of a free-falling observer in
the RN spacetime. It is assumed that the motion proceeds entirely in the radial
direction, and that initially, it is directed inward.

We will first work with the (v,r) coordinates, in which the metric takes the form

ds? = —f dv?® + 2 dvdr + r? dQ?, (5.2.8)

where f =1 —2M/r + Q?/r?. The observer’s four-velocity is u® 9y = 00, + 7 Oy,
where an overdot denotes differentiation with respect to proper time 7. The quantity
E = —unt® = —u,, the observer’s energy per unit mass, is a constant of the motion.
In terms of © and 7, this is given by E = fo—7. On the other hand, the normalization
condition u®u, = —1 gives fo? — 207 = 1, and these equations imply

~ 1/2
T"in = _(E2 - f)1/27 'l.)in = E — (E2 _ f) 5 (529)

where the sign in front of the square root was chosen appropriately for an ingoing
observer.
The equation for 7 can also be written in the form

i+ f = E?, (5.2.10)

which comes with a nice interpretation as an energy equation (Fig. 5.10). Its mes-
sage is clear: After crossing the outer and inner horizons, the observer reaches a
turning point (7 = 0) at a radius rmin < r— such that f(rmmn) = E?. The motion,
which initially was inward, turns outward, and the observer eventually emerges out
of the black hole, into a new external universe. During the outward portion of the
motion, the observer’s four-velocity is given by

B+ (E2-p)"?
f ’

Fout = +(B? = ), o = (5.2.11)

with the opposite sign in front of the square root.

Figure 5.10: Effective potential for radial motion in Reisser-Nordstrom spacetime.
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Figure 5.11: Eddington-Finkelstein patches for the Reisser-Nordstrom spacetime.

Let us examine the behaviour of ¥ as the observer traverses a horizon. When
the motion is inward, we have that ¥ ~ (2E)~! in the limit f — 0. This means
that v stays finite during the first crossings of the outer and inner horizons. When
the motion is outward, o ~ 2E/ f in the limit f — 0, and this means that the
coordinates (v,r) become singular during the second crossing of the inner horizon.
The observer’s motion cannot be followed beyond this point, unless new coordinates
are introduced.

Let us therefore switch to the coordinates (u,r), in which the RN metric takes
the form

ds® = —f du® — 2 dudr + r? dQ°. (5.2.12)

In these coordinates, and during the outward portion of the motion (after the bounce
at r = rmin), the four-velocity is given by

B—(B2—f)'?
f

We have that @ ~ (2E)~! when f — 0, which shows that u stays finite during the
second crossings of the inner and outer horizons.

We see that a large portion of the RN spacetime is covered by the two coordinate
patches employed here (Fig. 5.11). This includes two asymptotically-flat regions
connected by a black-hole tunnel that contains two copies of the outer horizon, and
two copies of the inner horizon. The complete spacetime is obtained by tessellation,
using the patches (v,7) and (u,r) as tiles; this gives rise to the diagram of Fig. 5.9.
Because the completed spacetime contains an infinite number of black-hole tunnels,
an infinite number of coordinate patches is required for its description.

The presence of black-hole tunnels in the RN spacetime is now well established.
These tunnels, of course, have a lot to do with the occurrence of a turning point in
the motion of our free-falling observer. This is a rather striking feature of the RN
spacetime. While turning points are a familiar feature of Newtonian mechanics, in
this context they are always associated with the presence of an angular-momentum
term in the effective potential: the centrifugal force is repulsive, and it prevents an
observer from ever reaching the centre at » = 0. This, however, cannot explain what
is happening here, because the motion was restricted from the start to be purely
radial — there is no angular momentum present to produce a repulsive force. The
gravitational field alone must be responsible for the repulsion, and we are forced to

Fous = +(B2 = 1), tiows = (5.2.13)
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conclude that inside the inner horizon, the gravitational force becomes repulsive! It
is this repulsive gravity that ultimately is responsible for the black-hole tunnels.

Such a surprising conclusion can perhaps be understood better if we recall our
previous expression for the mass function:

QZ

m(r) =M — % (5.2.14)
This relation shows that m(r) becomes negative if r is sufficiently small, and clearly,
this negative mass will produce a repulsive gravitational force. How can we explain
this behaviour for the mass function? We recall that m(r) represents the mass inside
a sphere of radius r. In general, this will be smaller than the total mass M = m(0),
because a sphere of finite radius 7 excludes a certain amount — equal to Q?/(2r)
— of electrostatic energy. If the radius is sufficiently small, then Q2/(2r) > M, and
m(r) < 0. You may check that this always occurs within the inner horizon.

The conclusion that the RN spacetime contains black-hole tunnels is firm. Should
we then feel confident that a trip inside a charged black hole will lead us to a new
universe? This answer is no. The reason is that the existence of such tunnels de-
pends very sensitively on the assumed symmetries of the RN spacetime, namely,
staticity and spherical symmetry. These symmetries would not be exact in a realis-
tic black hole, and slight perturbations have a dramatic effect on the hole’s internal
structure. The tunnels are therefore unstable, and they do not appear in realistic
situations. (More will be said on this in Sec. 5.7, Problem 3.)

5.2.4  Surface gravity

In Sec. 5.2.2, a quantity k4 = 3 f'(r;) was introduced during the construction of
Kruskal coordinates adapted to the outer horizon. We shall name this quantity the
surface gravity of the black hole, and henceforth denote it simply by . As we shall
see in Sec. 5.5, the surface gravity provides an important characterization of black
holes, and it plays a key role in the laws of black-hole mechanics. For the RN black

hole, it is given explicitly by

Ty —T_ M?— Q2
K= = >

= 2.1
27‘+2 T+ (5 5)

where we have used Eq. (5.2.5). Notice that k = 0 for an extreme RN black hole.
On the other hand,
K=— (5.2.16)

for a Schwarzschild black hole.
The name “surface gravity” deserves a justification. Consider, in a static and
spherically symmetric spacetime with metric

ds® = —fdt* + f~1dr® + r* dQ?, (5.2.17)

a particle of unit mass held in place at a radius r. (Here, f is not necessarily
restricted to have the RN form, although this will be the case of interest.) The
four-velocity of the stationary particle is u® = f~1/2t® and its acceleration is
a® = u®4u”. The only nonvanishing component is a” = £ f’, and its magnitude is

a(r) = (gasa®a®) " = 2 121'(r) (5.2.18)

This is the force required to hold the particle at r if the force is applied locally, at
the particle’s position. This, not surprisingly, diverges in the limit » — r;. But
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suppose instead that the particle is held in place by an observer at infinity, by
means of an infinitely long, massless string. What is ax(r), the force applied by
this observer?

To answer this we consider the following thought experiment. Let the observer
at infinity raise the string by a small proper distance ds, thereby doing an amount
W = ands of work. At the particle’s position, the displacement is also ds, but
the work done is W = ads. (You may justify this statement by working in a local
Lorentz frame at .) Suppose now that the work W is converted into radiation that
is then collected at infinity. The received energy is redshifted by a factor f1/2, so
that 0E, = f'/2ads. But energy conservation demands that the energy extracted
be equal to the energy put in, so that §E,, = W,. This implies

aso(r) = fY%a(r) = = f'(r). (5.2.19)

2
This is the force applied by the observer at infinity. This quantity is well behaved
in the limit 7 — r4, and it is appropriate to call ax(r4) the surface gravity of the
black hole. Thus,

K= o (ry) = % £1(ry). (5.2.20)

The surface gravity is therefore the force required of an observer at infinity to hold
a particle (of unit mass) in place at the event horizon.

The surface gravity can also be defined in terms of the Killing vector t*. We have
seen in Sec. 5.1.9 that the event horizon of a static spacetime is also a Killing horizon,
so that ¢t is tangent to the horizon’s null generators. Because t* is orthogonal to
itself on the horizon, it is also normal to the horizon. But & = —t*t, = 0 on
the horizon, and since the normal vector is proportional to ® ., there must exist a
function & such that

(—ttu) , = 2ta (5.2.21)

on the horizon. A brief calculation confirms that this  is the surface gravity: Using
the coordinates (v, r), we have that t* 8, = 9, and t4 dz® = dr on the horizon; with
® = —gy, = f we obtain ® o = f'O,r, which is just Eq. (5.2.21) with k = 1 f'(r3.).
This calculation reveals also that the horizon’s null generators are parameterized
by v, so that t* = dz*/dv.

Because t* is tangent to the horizon’s null generators, it must satisfy the geodesic
equation at r = ry. This comes as an immediate consequence of Eq. (5.2.21) and
Killing’s equation: On the horizon,

t%5t° = Kt®, (5.2.22)

and we see that v is not an affine parameter on the generators. An affine parameter
A can be obtained by integrating the equation d\/dv = e"¥ (Sec. 1.3). This gives
A = V/k, where V = e"” is one of the Kruskal coordinates adapted to the event
horizon — it was denoted V. in Sec. 5.2.2. It follows that on the horizon, the null
vector

k> =V 1> (5.2.23)

satisfies the geodesic equation in affine-parameter form.

It is also possible to obtain an explicit formula for k. Because the congru-
ence of null generators is necessarily hypersurface orthogonal, Frobenius’ theorem
(Sec. 2.4.3) guarantees that the relation

taspty) =0
holds on the event horizon. Using Killing’s equation, this implies

to;pty + tyats + 18,480 = 0,
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and contracting with ¢*# yields
1P taupty = —tyat®st? + tantl ot
= —Ktyat® + KtgtP
= —2K’t,.

We have obtained

1
K2 = -5 t“Pt o5, (5.2.24)

in which it is understood that the right-hand side is evaluated at » = . Equations
(5.2.21), (5.2.22), and (5.2.24) can all be regarded as fundamental definitions of the
surface gravity; these are of course all equivalent.

5.3 Kerr black hole

5.8.1 The Kerr metric

A solution to the Einstein field equations describing a rotating black hole was dis-
covered by Roy Kerr in 1963. (There is also a solution to the Einstein-Maxwell
equations that describes a charged, rotating black hole. It is known as the Kerr-
Newman solution, and it is described in Sec. 5.7, Problem 8.) As we shall see,
the Kerr metric can be written in a number of different ways. In the standard
Boyer-Lindquist coordinates, it is given by

2M 4Marsin® 6 ) >
ds? = _<1_ 2’“) d* - IR dtdg + = sin® 0dg? + Do dr® + p? dp?
p p p A
(5.3.1)
2 2
_ptA s 8, 2, P 52 292
= _Tdt +?sm 0(d¢ — wdt) +Xdr + p© do”,
where
p? =12+ a%cos 0, A=7r2—-2Mr +a?
(5.3.2)
. 2M
¥ = (r* +a?)* — a*Asin’ 6, w=-_Je - 229
966 z

The Kerr metric is stationary and axially symmetric; it therefore admits the Killing
vectors t¢ = 0z /0t and ¢* = 0xz*/0¢. It is also asymptotically flat. The Komar
formulae (Sec. 4.3) confirm that M is the spacetime’s ADM mass, and show that
J = aM is the angular momentum (so that a is the ratio of angular momentum to
mass).

The components of the inverse metric are

e Z ge_ 2Mar g, A-d’sinf
p2A’ pPPA T p?Asin®g ’
(5.3.3)

re é 06 __ i

pz’ 9 = pz‘
The metric and its inverse have singularities at A = 0 and p? = 0. To distinguish
between coordinate and curvature singularities, we examine the squared Riemann
tensor of the Kerr spacetime:

48M?2(r? — a® cos? 6)(p* — 16a>r? cos® 9)
o2 :

R*PYRopys = (5.3.4)
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This reveals that the singularity of the metric at A = 0 is just a coordinate singu-
larity, but that the Kerr spacetime is truly singular at p?> = 0. The nature of the
curvature singularity will be clarified in Sec. 5.3.8.

Various properties of the Kerr spacetime will be examined in the following sub-
sections. To facilitate this discussion we will introduce three families of observers:
zero-angular-momentum observers (ZAMOs), static observers, and stationary ob-
servers.

5.8.2  Dragging of inertial frames: ZAMOQOs

ZAMOs are freely moving observers with zero angular momentum: if u® is the
four-velocity, then L = ua¢® = 0. This implies gort + g¢,¢,¢5 = 0, where an overdot
indicates differentiation with respect to proper time 7. Using Egs. (5.3.1), this
translates to

_dg _

Todt
and we see that ZAMOs possess an angular velocity equal to w = —g¢¢/gse- This
angular velocity increases as the observer approaches the black hole, and it goes in
the same direction as the hole’s own rotation — the ZAMOs rotate with the black
hole. This striking property of the Kerr black hole, which in fact is shared by all
rotating bodies, is called the dragging of inertial frames (see Sec. 3.10). At large
distances from the black hole, w ~ 2J/r3, and the dragging disappears completely
at infinity.

w, (5.3.5)

5.3.83 Static limit: static observers

We now consider static observers in the Kerr spacetime. Such observers have a
four-velocity proportional to the Killing vector t“:

u® = %, (5.3.6)

where the factor v = (—gaﬂtatﬁ)_l/ 2 ensures that the four-velocity is properly
normalized. Because these observers must be held in place by an external agent (a
rocket engine, for example), the motion is not geodesic.

Static observers cannot exist everywhere in the Kerr spacetime. This can be
seen from the fact that ¢ is not everywhere timelike, but becomes null when v =2 =
—gi = 0; when this occurs, Eq. (5.3.6) breaks down. The static limit is therefore
described by gy = 0 or, after using Eqgs. (5.3.1) and (5.3.2), r2 —2Mr+a%cos? 6 = 0.
Solving for r reveals that the static limit is located at r = rg (), where

rs1(0) = M + v/ M? — a? cos? 6. (5.3.7)

Thus, observers cannot remain static when r < rg(6), even if an arbitrarily large
force is applied. Instead, the dragging of inertial frames compels them to rotate
with the black hole. As we shall see, the static limit does not coincide with the
hole’s event horizon. The finite region between the horizon and the static limit is
called the ergosphere of the Kerr spacetime (Fig. 5.12).

5.3.4 FEvent horizon: stationary observers

We now consider observers moving in the ¢ direction with an arbitrary, but uniform,
angular velocity d¢/dt = Q. Because such observers do not perceive any time
variation in the black hole’s gravitational field, they are called stationary observers.
They move with a four-velocity

u® =v(t* + Q¢%), (5.3.8)
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Figure 5.12: Static limit and event horizon of the Kerr spacetime.

where t® +Q¢? is a Killing vector for the Kerr spacetime, and 7 a new normalization
factor given by
T = =gt +06°) (¢ +09)
— g1 — 20919 — Vggp
= 949 (0" = 20Q + gut/99),

where w = —g¢4 /91t
Stationary observers cannot exist everywhere in the Kerr spacetime: the vector
t* + Q¢* must be timelike, and this fails to be true when y~2 is nonpositive. It is
easy to check that the condition y~2 > 0 gives rise to the following requirement on
the angular velocity:
Q_ <2<y, (5.3.9)

where Q4 = wx/w? — g1 /ges. After some algebra, using Egs. (5.3.1) and (5.3.2),
this reduces to

Al/2p2
Ysind’
A stationary observer with 2 = 0 is a static observer, and we already know that
static observers exist only outside the static limit. It must therefore be true that
Q_ changes sign at r = rg(#). This is confirmed by a few lines of algebra, using
Egs. (5.3.7) and (5.3.10). As r decreases further from rg (6), Q_ increases while Q.
decreases. Eventually we arrive at the situation Q_ = Q. , which implies 2 = w; at
this point the stationary observer is forced to move around the black hole with an
angular velocity equal to w. This occurs when A = 0, or 72 — 2M7r + a? = 0, and
the largest solution is r = r, where

ry =M+ M?—a2 (5.3.11)

Notice that the roots of A = 0 are real if and only if a < M, or J < M?: there
is an upper limit on the angular momentum of a black hole. Kerr black holes with
a = M are said to be extremal. For a > M, the Kerr metric describes a naked
singularity.

The vector t* 4+ Q¢* becomes null at » = r;, and stationary observers can-
not exist inside this surface, which we identify with the black hole’s event horizon
(Fig. 5.12). The quantity

QL =wx

(5.3.10)

a

—> 5.3.12
7'+2 + a? ( )

Qg =w(ry) =
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is then interpreted as the angular velocity of the black hole. Stationary observers
just outside the horizon have an angular velocity equal to Qg — they are in a state
of corotation with the black hole.

To confirm that r = r4 is truly the event horizon, we use the property that in a
stationary spacetime, the event horizon is also an apparent horizon — a surface of
zero expansion for a congruence of outgoing null geodesics orthogonal to the surface.
The event horizon must therefore be a null, stationary surface. Now, the normal to
any stationary surface must be proportional to 8,7, and such a surface will be null
if g8 (0,7)(8s7) = g"" = 0. Using Eq. (5.3.3), this implies

A=r?—2Mr+a®=0. (5.3.13)

The largest solution, r = r, designates the event horizon. The other root,

r_=M—+v/M?—-a, (5.3.14)

describes the black hole’s inner apparent horizon, which is analogous to the inner
horizon of the Reissner-Nordstrém black hole.
We have found that the vector

&=t 4 Qo® (5.3.15)

isnull at the event horizon. It is tangent to the horizon’s null generators, which wrap
around the horizon with an angular velocity Q5. Because it is a linear combination
of two Killing vectors, £% is also a Killing vector, and the event horizon of the Kerr
spacetime is a Killing horizon. Notice an important difference between stationary
and static black holes: For a static black hole, t* becomes null at the event horizon;
for a stationary black hole, t* is null at the static limit, and £ becomes null at the
event horizon.

5.3.5 The Penrose process

The fact that t* is spacelike in the ergosphere — the region r4 < r < 74(0) —
implies that the (conserved) energy E = —p,t* of a particle with four-momentum
p* can be of either sign. Particles with negative energy can therefore exist in the
ergosphere, but they would never be able to escape from this region. (Note that
FE < 0 refers to the energy that would be measured at infinity if the particle could
be brought there. Any local measurement of the particle’s energy inside the static
limit would return a positive value.)

It is easy to elaborate a scenario in which negative-energy particles created in
the ergosphere are used to extract positive energy from a Kerr black hole. Imagine
that a particle of energy E; > 0 comes from infinity and enters the ergosphere.
There, it decays into two new particles, one with energy —FE»> < 0, the other with
energy E3 = E; + E; > E;. While the negative-energy particle remains within
the static limit, the positive-energy particle escapes to infinity, where its energy is
extracted. Because Fj3 is larger than the energy of the initial particle, the black
hole must have given off some of its own energy. This is the Penrose process, by
which some of the energy of a rotating black hole can be extracted.

The Penrose process is self-limiting: only a fraction of the hole’s total energy
can be tapped. Suppose that in order to exploit the Penrose process, a rotating
black hole is made to absorb a particle of energy E = —p,t* < 0 and angular
momentum L = p,¢*. Because the Killing vector £€* = t* + Qg ¢* is timelike just
outside the event horizon, the combination E — QgL must be positive; otherwise
the particle would not be able to penetrate the horizon. Thus L < E/Qg, and L
must be negative if £ < 0. The black hole will therefore lose angular momentum
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during the Penrose process. Eventually the hole’s angular momentum will go to
zero, the ergosphere will disappear, and the Penrose process will stop. We might
say that only the hole’s rotational energy can be extracted by the Penrose process.

Note that in a process by which a black hole absorbs a particle of energy E (of
either sign) and angular momentum L, its parameters change by amounts dM = E
and §J = L. Since E — QgL must be positive, we have

oM — Qg dJ > 0.

As we shall see, this inequality is a direct consequence of the first and second laws
of black-hole mechanics.

5.3.6  Principal null congruences

The Boyer-Lindquist coordinates, like the Schwarzschild coordinates, are singular
at the event horizon: While a trip down to the event horizon requires a finite proper
time, the interval of coordinate time ¢ is infinite. Moreover, because the angular
velocity d¢/dt stays finite at the horizon, ¢ also increases by an infinite amount.
We therefore need another coordinate system to extend the Kerr metric beyond the
event horizon. It is advantageous to tailor these new coordinates to the behaviour
of null geodesics. The two congruences considered here (which are known as the
principal null congruences of the Kerr spacetime) are especially simple to deal with;
we will use them to construct new coordinates for the Kerr metric.

It is a remarkable feature of the Kerr metric that the equations for geodesic
motion can be expressed in a decoupled, first-order form. These equations involve
three constants of the motion: the energy parameter E, the angular-momentum
parameter L, and the “Carter constant” 2. (This last constant appears because of
the existence of a Killing tensor. This is explained in Sec. 5.7, Problem 4, which also
provides a derivation of the geodesic equations.) For null geodesics, the equations
are

p’t = —a(aEsin®0 - L) + (r* +a®)P/A,
prr = +VR,

p29 = :i:\/@,

p?d = —(aE—L/sin?6) +aP/A,

in which an overdot indicates differentiation with respect to the affine parameter A,
and

P = E(r®+a?) —al,
R = P-A[(L-aB)"+2],
® = 2+cos’0(a®E* — L?/sin®0).
We simplify these equations by making the following choices:
L = aEsin?0, Q:—(i—aE)Qz—(aECOSZG)Z.

It is easy to check that these imply © = 0, so that our geodesics move with a
constant value of §. We also have P = E p? and R = (E p?)?, which gives

t = E(r* +a%)/A, F=+E, =0, ¢ =aE/A.

The constant E can be absorbed into the affine parameter A. We obtain an ingoing
congruence by choosing the negative sign for 7, and we shall use [* to denote its
tangent vector field:
2o, =t 5 6+ %o (5.3.16)
o — A t T A ¢- 0.
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Choosing instead the positive sign gives an outgoing congruence, with

2
Ko, = Z O + 0 + — 6¢ (5.3.17)

as its tangent vector field.
To give the simplest description of the ingoing congruence, we introduce new
coordinates v and 1 defined by

v=t+r", ¥ =¢+r (5.3.18)
where
r /T Za dr
M Mr_
Pt et In|— — 1] ———_In| - —1  (5.3.19)
M2 — g2 T4 M?2 — q? T_
and
_ a r—ry
/ —dr = N In et (5.3.20)
It is easy to check that in these coordlnates, I" = —1 is the only nonvanishing

component of the tangent vector. This means that v and ¢ (as well as ) are
constant on each of the ingoing null geodesics, and that —r is the affine parameter.
The simplest description of the outgoing congruence is provided by the coordi-

nates (u,r,6,x), where
u=t-—r" x=¢—rh. (5.3.21)

In these coordinates, k" = +1 is the only nonvanishing component of the tangent
vector. This shows that u and x (as well as 6) are constant along the outgoing null
geodesics, and that r is the affine parameter.

The Kerr metric can be expressed in either one of these new coordinate systems.
While the coordinates (v, r,8,1) are well behaved on the future horizon but singular
on the past horizon, the coordinates (u,r,8, x) are well behaved on the past horizon
but singular on the future horizon. For example, a straightforward computation
reveals that after a transformation to the ingoing coordinates, the Kerr metric
becomes

2M
ds? — _<1_ e T) dv?® + 2 dvdr — 2asin® 0 drdi

AM D
ﬂ dvdp + = sin 20 dyp? + p* do>. (5.3.22)

These coordinates produce an extension of the Kerr metric across the future horizon.
Several coordinate patches, both ingoing and outgoing, are required to cover the
entire Kerr spacetime, whose causal structure is very similar to that of the Reissner-
Nordstrom spacetime. We shall return to this point in Sec. 5.3.9.

5.3.7 Kerr-Schild coordinates

Another useful set of coordinates for the Kerr metric is (¢,z,v,z2), the pseudo-
Lorentzian Kerr-Schild coordinates in terms of which the metric takes a particularly
interesting form. These are constructed as follows.

We start with Eq. (5.3.22) and separate out the terms that are proportional to
M. After some algebra, we obtain

ds’ = —dv®+ 2dvdr — 2asin® @ drdiy + (r* + a®) sin? @ dip* + p* db>
4 2Mr

(dv — asin? 0 dip)*.
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The terms that do not involve M have a simple interpretation: they give the metric
of flat spacetime in a rather strange coordinate system. The rest of the line element
can be written neatly in terms of [,: Recalling that [” = —1 is the only nonvanishing
component of [¢, we find that

—lydz® = dv — asin® 8 dy,

and the line element becomes

2Mr 2
d52 = (d82)ﬁat + p—2 (la d.Z'a) - (5323)
The Kerr metric can therefore be expressed as
2Mr
9af = Nag + p—2 lalg, (5.3.24)

where 1,4 is the metric of flat spacetime in the coordinates (v,r,6, ).

Equation (5.3.24) gives us the Kerr metric in a rather attractive form. Any
metric that can be written as gog = 1a3 + Hlalg, where H is a scalar function and
l, a null vector field, is known as a Kerr-Schild metric. It is by adopting such an
expression that Kerr discovered his solution in 1963. (Some general aspects of the
Kerr-Schild decomposition are worked out in Sec. 5.7, Problem 5.)

The next order of business is to find the coordinate transformation that brings
Nap to the standard Minkowski form. The answer is

z +iy = (r +ia)sinf e, z =rcosb, t'=v-—r. (5.3.25)
Going through the necessary algebra does indeed reveal that in these coordinates,
(ds?)gay = —dt? + da? + dy? + d22. (5.3.26)

It is easy to work out the components of [, in this coordinate system. Because the
null geodesics move with constant values of v, 8, and v, we have that & + iy =
—sinfe¥, 7 = —cos#, and £’ = 1, where we have used 7 = —1. Lowering the
indices is a trivial matter (see Sec. 5.7, Problem 5), and expressing the right-hand
sides in terms of the new coordinates gives

re +
r2 +

lade® =dt' + G gy Y
a r“+a

X z
3 dy + —dz. (5.3.27)

The quantity r» must now be expressed in terms of z, y, and z. Starting with
22 4+ 9% = (r? + a®)sin? 4, it is easy to show that

rt— (@2 +y? + 22— ad®)r? —a?? =0, (5.3.28)
which may be solved for r(z,y,z). Equations (5.3.23), (5.3.26)—(5.3.28) give the
explicit form of the Kerr metric in the Kerr-Schild coordinates.

5.3.8 The nature of the singularity
We have seen that the Kerr spacetime possesses a curvature singularity at
pP=r?+a%cos?f =0.

According to this equation, the singularity occurs only in the equatorial plane
(@ = 7w/2), at r = 0. The Kerr-Schild coordinates can help us make sense of
this statement. The relations 2> +y* = (r2 +a?)sin” § and z = r cos § indicate that
the “point” r = 0 corresponds in fact to the entire disk 2 + y? < a? in the plane
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z = 0. The points interior to the disk correspond to angles such that sin?6 < 1.
The boundary,

22 492 = a,
corresponds to the equatorial plane, and this is where the Kerr metric is singular.
The curvature singularity of the Kerr spacetime is therefore shaped like a ring. This
singularity can be avoided: Observers at r = 0 can stay away from the equatorial
plane, and they never have to encounter the singularity; such observers end up going
through the ring.

5.3.9 Maximal extension of the Kerr spacetime

We have already constructed coordinate systems that allow the continuation of the
Kerr metric across the event horizon. We now complete the discussion and show
how the spacetime can also be extended beyond the inner horizon. For simplicity,
we shall work with the section of the Kerr spacetime obtained by setting 8 = 0.
This is the rotation axis, and because the Kerr metric is not spherically symmetric,
this does represent a loss of generality.

Going back to Eq. (5.3.1) and the original Boyer-Lindquist coordinates, we find
that when 6 = 0, the Kerr metric reduces to

2Mr r?+a? .
2 _ (4 2 2
ds® = (1 77‘24-&2) dt” + A dr
A r? 4+ a? r? + a?
or
ds® = —f dudv, (5.3.29)

where u =t — r* and v =t + r* are the coordinates of Sec. 5.3.6. Here,

A (=r)r—r)
7'2+02 ,,.2+a2

f= , (5.3.30)
and r4 = M + +/M? — a? denote the positions of the outer and inner horizons,
respectively. The metric of Eq. (5.3.29) is extremely simple, and the construction
of Kruskal coordinates for the § = 0 section of the Kerr spacetime proceeds just as
for the Reissner-Nordstrom (RN) black hole (Sec. 5.2.2).

We first consider the continuation of the metric across the event horizon. Near
r =ry, Eq. (5.3.30) can be approximated by

f=26(r—ry),
where £ = £ f'(ry). It follows that

dr 1
= 7 ~ Ty In|ky(r —ry)|

and f ~ 2%+ = £2¢r+( =) the upper sign refers to r > r, and the lower
sign to r < r4. Introducing the new coordinates

/r.*

U+ = :Fe*'““", V+ = €K+U, (5331)

we find that near r = r;, the Kerr metric admits the manifestly regular form
ds? ~ =2k > dULdV,.

Just as for the RN spacetime, the coordinates Uy and V, are singular at the
inner horizon, and another coordinate patch is required to extend the Kerr metric
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Figure 5.13: Kruskal patches for the Kerr spacetime.

beyond this horizon (Fig. 5.13). The procedure is now familiar. Near r = r_ we
approximate Eq. (5.3.30) by f ~ —2k_(r — r_), where k_ = L|f'(r_)|, so that
f=F2 e=26-1" = 2 ef-(u=2)  The appropriate coordinate transformation is now

U_=Fe~%,  Vp=—e "7, (5.3.32)

and the metric becomes ds? ~ —2x"2dU_dV_.

Just as for the RN spacetime, another copy of the outer horizon presents itself
in the future of the inner horizon, and another Kruskal patch is required to ex-
tend the spacetime beyond this new horizon. This continues ad nauseam, and we
see that the maximally extended Kerr spacetime represents an infinite succession
of asymptotically-flat universes connected by black-hole tunnels. There is more,
however. It is easy to check that in a spacetime diagram based on the (U_,V_)
coordinates, the surface r = 0 is represented by U_V_ = —1. This is a timelike
surface, and on the rotation axis, this surface is nonsingular. The Kerr spacetime
can therefore be extended beyond r = 0, into a region in which r adopts negative
values. This new region has no analogue in the RN spacetime; it contains no hori-
zons, and it becomes flat in the limit » - —oo. Observers in this region interpret
the Kerr metric as describing the gravitational field of a (naked) ring singularity.
You should be able to convince yourself that this singularity has a negative mass.

The maximally extended Kerr spacetime can be represented by a Penrose-Carter
diagram (Fig. 5.14). The resulting causal structure is extremely complex. It should
be kept in mind, however, that the interior of a Kerr black hole is subject to the
same instability as that of a RN black hole (see Sec. 5.2.3 and Sec. 5.7, Problem 3).
The tunnels to other universes, and the regions of negative r, are not present inside
physically realistic black holes.

5.8.10 Surface gravity
As was pointed out in Sec. 5.3.4, the vector
£ =14+ Qyo”, (5.3.33)

where Qg is given by Eq. (5.3.12), is null at the event horizon, and is in fact tangent
to the horizon’s null generators. From the same arguments as those presented in
Sec. 5.2.4, the black hole’s surface gravity « can be defined by

(—¢°¢s)., = 2Kéa, (5.3.34)

or by
€257 = ke®, (5.3.35)
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Figure 5.14: Penrose-Carter diagram of the Kerr spacetime.

or finally, by
1 ...
K2 = -5 E%P ¢ . (5.3.36)
These definitions are all equivalent.

Let us use Eq. (5.3.34) to calculate the surface gravity. The norm of £ is given
by

and differentiation yields
2
B _P
(_E §B);a - i Ava

on the horizon, at which w = Qg and A = 0. We have that A , = 2(rp — M) Oqr
and &, = (1 — a2y sin? ) 8, on the horizon, and a few lines of algebra reveal that
the surface gravity is

ry—M VM2 —a?
=+ = Y . (5.3.37)
r+c+a T4+ a

Notice that this is the same quantity that was denoted k4 in Sec. 5.3.9. Notice also
that ¥ = 0 for an extreme Kerr black hole. And finally, notice that in the general
case, k does not depend on § — the surface gravity is uniform on the event horizon.
We shall return to this remarkable fact in Sec. 5.5.1.

5.83.11 Bifurcation two-sphere

In the coordinates (v,r,8,v) which are regular on the event horizon, £* 9, = 9, +
Qg 0y. This shows that the horizon’s null generators are parameterized by the
advanced-time coordinate v, but as Eq. (5.3.35) reveals, v is not affine. An affine
parameter X is obtained by integrating

ax .,

dv
so that kA = e = V. It follows that on the horizon, the vector k% = V~1&@
satisfies the geodesic equation in affine-parameter form: k< Bkﬁ = 0. [This vector is
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not equal to the k% introduced in Sec. 5.3.6. It is easy to check that these vectors
are related by k%, = 2AkS,/(r? +a?), where the right-hand side is to be evaluated
on the horizon.] If k¥ # 0 and the event horizon is geodesically complete (in the
sense that the null generators can be extended arbitrarily far into the past), the
relation

£ =Vk® (5.3.38)

implies that £* = 0 at V = 0. This defines a closed two-surface called the bifurcation
two-sphere of the Kerr spacetime. The conditions are sometimes violated: The event
horizon of a black hole formed by gravitational collapse is not geodesically complete,
because the horizon was necessarily formed in the finite past; and as we have seen,
the surface gravity of an extreme Kerr black hole (for which M = a) vanishes. In
either one of these situations, the bifurcation two-sphere does not exist.

5.3.12 Smarr’s formula

There exists a simple algebraic relation between the black-hole mass M, its angular
momentum J = Ma, and its surface area A. This is defined by

A= 7(% V7 d%, (5.3.39)

where ¢ is a two-dimensional cross section of the event horizon, described by
v = constant, r =74, 0 <0 <7, and 0 < ¢ < 2r. From Eq. (5.3.22) we find that
the induced metric is given by

)
oap doAde® = p? do? + 2 sin? 0 di)?,

so that /o d?6 = VT sinf dfdy) = (r.2 + a?) sinf dfdy). Integration yields
A=An(ry® +a°). (5.3.40)
The algebraic relation, which was discovered by Larry Smarr in 1973, reads

A
M=2QyJ+ 22, (5.3.41)
47

where Q is the hole’s angular velocity and & its surface gravity. Smarr’s formula
is established by straightforward algebra: Substituting Egs. (5.3.12), (5.3.37), and
(5.3.40) into the right-hand side of Eq. (5.3.41) reveals that it is indeed equal to
M. We will generalize Smarr’s formula, and present an alternative derivation, in
Sec. 5.5.2.

5.3.13 Variation law

It is clear that the surface area of a black hole is a function of its mass and angular
momentum: A = A(M,J). Suppose that a black hole of mass M and angular
momentum J is perturbed so that its parameters evolve to M + M and J + §.J.
(For example, the black hole might absorb a particle, as was considered in Sec. 5.3.5.)
How does the area change? There exists a simple formula relating d A to the changes
in mass and angular momentum. It is

B SA=6M—-QyoJ (5.3.42)
8

To derive this we start with Eq. (5.3.40), which immediately implies

0A
T+ or4 + ada.
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But the horizon radius r; depends on M and a; the defining relation is 7,2 —
2Mr, + a? = 0, and this gives us

(ro —M)oéry =1L M —ada.

This result can be substituted into the preceding expression for § A. The final step
is to relate a to the hole’s angular momentum .J; we have that a = J/M, and this
implies M da = 0J —a dM. Combining these results, we arrive at Eq. (5.3.42) after
involving Egs. (5.3.12) and (5.3.37).

In Sec. 5.3.5 we found that the right-hand side of Eq. (5.3.42) must be positive.
What we have, therefore, is the statement that the surface area of a Kerr black
hole always increases during a process by which it absorbs a particle. This is a
restricted version of the second law of black-hole mechanics, to which we shall
return in Sec. 5.5.4.

5.4 General properties of black holes

The Kerr family of solutions to the Einstein field equations plays an extremely
important role in the description of black holes, but this does not mean that all
black holes are Kerr black holes. For example, a black hole accreting matter is not
stationary, and a stationary hole is not a Kerr black hole if it is tidally distorted
by nearby masses. In this section we consider those properties of black holes that
are quite general, and not specific to any particular solution to the Einstein field
equations.

5.4.1 General black holes

A spacetime containing a black hole possesses two distinct regions, the interior and
exterior of the black hole; they are distinguished by the property that all exter-
nal observers are causally disconnected from events occurring inside. Physically
speaking, this corresponds to the fact that once she has entered the black hole, an
observer can no longer send signals to the outside world.

These fundamental notions can be cast in mathematical terms. Consider an
event p and the set of all events that can be reached from p by future-directed
curves, either timelike or null (Fig. 5.15). This set is denoted J¥(p), and is called
the causal future of p. A similar definition can be given for its causal past, J~(p).
These definitions can be extended to whole sets of events: If S is such a set, then
JT(S) is the union of the causal futures of all the events p contained in S; a similar
definition can be given for J~(5).

Loosely speaking, a spacetime contains a black hole if there exist null geodesics
that never reach future null infinity, denoted .#+. These originate from the black-

Jt(p)

p

J~(p)

Figure 5.15: Causal future and past of an event p.



5.4 General properties of black holes 155

hole interior, a region characterized by the very fact that all future-directed curves
starting from it fail to reach #+. Thus, events lying within the black-hole interior
cannot be in the causal past of #t. The black-hole region B of the spacetime
manifold .# is therefore the set of all events p that do not belong to the causal past
of future null infinity:

B=u#—J (7). (5.4.1)

The event horizon H is then defined to be the boundary of the black-hole region:
H=0B=9(J (). (5.4.2)

The two-dimensional surface obtained by intersecting the event horizon with a
spacelike hypersurface ¥ is denoted #; it is called a cross section of the horizon.

Because the event horizon is a causal boundary, it must be a null hypersurface.
Penrose (1968) was able to establish that the event horizon is a null hypersurface
generated by null geodesics that have no future end points. This means that: (i)
when followed into the past, a generator may, but does not have to, leave the
horizon; (ii) once a generator has entered the horizon, it cannot leave; (iii) two
generators can never intersect, except possibly when they both enter the horizon;
and finally, (iv) through every point on the event horizon, except for those at which
new generators enter, there passes one and only one generator. It should be clear
that the entry points into the event horizon are caustics of the congruence of null
generators (Fig. 5.16).

The black-hole region typically contains trapped surfaces, closed two-surfaces S
with the property that for both ingoing and outgoing congruences of null geodesics
orthogonal to S, the expansion is negative everywhere on S. (Exceptions are the
extreme cases of Kerr, Kerr-Newman, or Reissner-Nordstrom black holes, which do
not contain any trapped surfaces.) The three-dimensional boundary of the region
of spacetime that contains trapped surfaces — the trapped region — is the trapping
horizon, and its two-dimensional intersection with a spacelike hypersurface ¥ is
called an apparent horizon. The apparent horizon is therefore a marginally trapped
surface — a closed two-surface on which one of the congruences has a zero expansion.
The apparent horizon of a stationary black hole typically coincides with the event
horizon. In dynamical situations, however, the apparent horizon always lies within
the black-hole region (Fig. 5.16), unless the null energy condition is violated. (Refer
back to Sec. 5.1.8 for a specific example.)

EH + AH

EH

Figure 5.16: Event and apparent horizons of a black-hole spacetime.
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The presence of trapped surfaces inside a black hole unequivocally announces the
formation of a singularity; this is the content of the beautiful singularity theorems of
Penrose (1965) and Hawking and Penrose (1970). The theorems rely on some form
of energy condition (null for Penrose’s original formulation, strong for the Hawking-
Penrose extension) and require additional technical assumptions. The nature of the
“singularity” predicted by the theorems is rather vague: The singularity is revealed
by the presence inside the black hole of at least one incomplete timelike or null
geodesic, but the physical reason for incompleteness is not identified. In all known
examples satisfying the conditions of the theorems, however, the black hole contains
a curvature singularity at which the Riemann tensor diverges.

5.4.2 Stationary black holes

It was established by Hawking in 1972 that if a black hole is stationary, then it
must be either static or axially symmetric. This means that the spacetime of a
(stationary) rotating hole is necessarily axially symmetric, and that it must ad-
mit two Killing vectors, t* and ¢®. Hawking was also able to show that a linear
combination of these vectors,

€ =% + Qyo°, (5.4.3)

is null at the event horizon. Here, Q is the hole’s angular velocity, which vanishes
if the spacetime is nonrotating (and therefore static). Thus, the event horizon is a
Killing horizon, and & is tangent to the horizon’s null generators: £&* = dz®/dv,
with v denoting the (non-affine) parameter on the geodesics. The hole’s surface
gravity & is then defined by the relation

256P = ke, (5.4.4)

which holds on the horizon. We will prove in Sec. 5.5.2 that  is constant along
the horizon’s null generators. (Indeed, it is uniform over the entire horizon.) This
means that we can replace v by an affine parameter A = V/k, where V = e*?
(Sec. 5.3.10). Then

E* =V e (5.4.5)

satisfies the geodesic equation in affine-parameter form. It follows that if k # 0 and
the horizon is geodesically complete (in the sense that its generators never leave
the horizon when followed into the past), then there exists a two-surface, called the
bifurcation two-sphere, on which £* = 0.

The properties of stationary black holes listed here were all encountered before,
during our description of the Kerr solution. It should be appreciated, however, that
Egs. (5.4.3)-(5.4.5) hold by virtue of the sole fact that the black hole is stationary;
these results do not depend on the specific details of a particular metric.

The observation that a stationary black hole must be axially symmetric if it is
rotating seems puzzling. After all, it should be possible to place a nonsymmetrical
distribution of matter outside the hole, and let it tidally distort the event horizon
in a nonsymmetrical manner. This, presumably, would produce a black hole that
is still stationary and rotating, but not axially symmetric. Hawking and Hartle
(1972) have shown that this, in fact, is false! The reason is that such a distribution
of matter would impart a torque on the black hole, which would force it to spin
down to a nonrotating (and static) configuration. Thus, such a situation would not
leave the black hole stationary.

Additional properties of stationary black holes can be inferred from Raychaud-
huri’s equation,

de

1
d\ - 2 6 - UaBUaﬁ - Raﬂkakﬁa (5.4.6)



5.4 General properties of black holes 157

in which we have put wag = 0 to reflect the fact that the congruence of null genera-
tors is necessarily hypersurface orthogonal. The event horizon will be stationary if
0 and df/d\ are both zero. Using the Einstein field equations and the null energy
condition, Eq. (5.4.6) implies that the stress-energy tensor must satisfy

T.p6%€° =0 (5.4.7)

on the horizon. This means that matter cannot be flowing across the event hori-
zon; if it were, the generators would get focused and the black hole would not be
stationary. Raychaudhuri’s equation also implies

Oap = 0; (5.4.8)

the null generators of the event horizon have a vanishing shear tensor.

5.4.8 Stationary black holes in vacuum

In the absence of any matter in their exterior, stationary black holes admit an
extremely simple description.

If the black hole is static, then it must be spherically symmetric, and it can only
be described by the Schwarzschild solution. This beautiful uniqueness theorem,
the first of its kind, was established by Werner Israel in 1967. It implies that in
the absence of angular momentum, complete gravitational collapse must result in
a Schwarzschild black hole. This seems puzzling, because the statement is true
irrespective of the initial shape of the progenitor, which might have been strongly
nonspherical. The mechanism by which a nonspherical star shakes off its higher
multipole moments during gravitational collapse was elucidated by Richard Price
in 1972: These multipole moments are simply radiated away, either out to infinity
or into the black hole. After the radiation has faded away, the hole settles down to
its final, spherical state.

If the black hole is axially symmetric, then it must be a Kerr black hole. This
extension of Israel’s uniqueness theorem was established by Brandon Carter (1971)
and D.C. Robinson (1975).

The black-hole uniqueness theorems can be generalized to include situations in
which the black hole carries an electric charge. If the black hole is static, then it
must be a Reissner-Nordstrém black hole (Israel, 1968). If it is axially symmetric,
then it must be a Kerr-Newman black hole (Mazur, 1982; Bunting, unpublished).

We see that a black hole in isolation can be described, uniquely and com-
pletely, by just three parameters: its mass, angular momentum, and charge. No
other parameter is required, and this remarkable property is at the origin of John
A. Wheeler’s famous phrase, “a black hole has no hair”. Chandrasekhar (1987) was
well justified to write:

Black holes are macroscopic objects with masses varying from a few solar
masses to millions of solar masses. To the extent that they may be consid-
ered as stationary and isolated, to that extent, they are all, every single one
of them, described ezactly by the Kerr solution. This is the only instance
we have of an exact description of a macroscopic object. Macroscopic ob-
jects, as we see them all around us, are governed by a variety of forces,
derived from a variety of approximations to a variety of physical theories.
In contrast, the only elements in the construction of black holes are our
basic concepts of space and time. They are, thus, almost by definition, the
most perfect macroscopic objects there are in the universe. And since the
general theory of relativity provides a single unique two-parameter family
of solutions for their descriptions, they are the simplest objects as well.
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5.5 The laws of black-hole mechanics

In 1973, Jim Bardeen, Brandon Carter, and Stephen Hawking formulated a set of
four laws governing the behaviour of black holes. These laws of black-hole mechan-
ics bear a striking resemblance to the four laws of thermodynamics. While this
analogy was at first perceived to be purely formal and coincidental, it soon became
clear that black holes do indeed behave as thermodynamic systems. The crucial
step in this realization was Hawking’s remarkable discovery of 1974 that quantum
processes allow a black hole to emit a thermal flux of particles. It is thus possible
for a black hole to be in thermal equilibrium with other thermodynamic systems.
The laws of black-hole mechanics, therefore, are nothing but a description of the
thermodynamics of black holes.

5.5.1 Preliminaries

We begin our discussion of the four laws by collecting a few important results from
preceding chapters; these will form the bulk of the mathematical framework required
for the derivations.

Let y® = (v,04) be coordinates on the event horizon. The advanced-time coor-
dinate v is a non-affine parameter on the horizon’s null generators, and 64 spans
the two-dimensional space transverse to the generators. The vectors

o _ [0z® o _ [0z
o= (%), 4=(am) 51

are tangent to the horizon; they satisfy {,e4 = 0 = £¢€4, and €% = t* + Qo is a
Killing vector. We complete the basis by introducing an auxiliary null vector N¢,
normalized by N,&* = —1. This basis gives us the completeness relations (Sec. 3.1)

9%% = —¢*NP — N*¢% + o*Pefiel,

where 048 is the inverse of o4p = 9ap eje%. The determinant of the transverse

two-metric will be denoted o.
The vectorial surface element on the event horizon can be expressed as (Sec. 3.2)

dS, = —&, dS dv, (5.5.2)

where dS = /o d?6. The two-dimensional surface element on a cross section v =
constant is

dSas = 261, Ny dS. (5.5.3)

We shall denote such a cross section by 2.

Finally, we will need Raychaudhuri’s equation for the congruence of null gener-
ators, expressed in a form that does not require the parameter to be affine. This
was worked out in Sec. 2.6, Problem 8, and the answer is

de 1

= KO — 3 62 — 0P 5,5 — 81T ,pEEP; (5.5.4)
the last term would normally involve the Ricci tensor, but we have used the Einstein
field equations to write it in terms of the stress-energy tensor. We recall that
0 is the fractional rate of change of the congruence’s cross-sectional area: 6 =

(dS)~1d(dS) /dv.
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5.5.2 Zeroth law

The zeroth law of black-hole mechanics states that the surface gravity of a stationary
black hole is uniform over the entire event horizon. We saw in Sec. 5.3.10 that this
statement is indeed true for the specific case of a Kerr black hole, but the scope of
the zeroth law is much wider: the black hole need not be isolated, and its metric
need not be the Kerr metric.

To prove that & is uniform on the event horizon, we need to establish that (i)
k is constant along the horizon’s null generators, and (ii) x does not vary from
generator to generator. We will prove both statements in turn, starting with

1
K= -3 %P ¢np (5.5.5)

as our definition for the surface gravity. (We saw in Sec. 5.2.4 that this relation is
equivalent to 5%65 = k&%) We shall need the identity

ga;uu = Rauuﬂ£[3; (556)

which is satisfied by any Killing vector £*. (This was derived in Sec. 1.13, Problem
9.)
We differentiate Eq. (5.5.5) in the directions tangent to the horizon. (Because
k is defined only on the event horizon, its normal derivative does not exist.) Using
Eq. (5.5.6), we obtain
2’4""%,(1 = _gu;uwaaﬁgﬂ- (557)

The fact that  is constant along the generators follows immediately from this:
K,a€% =0. (5.5.8)

We must now examine how & changes in the transverse directions. Equation (5.5.7)
implies
26K o €4 = —EMY Ryyap €5EP,

and we would like to show that the right-hand side is zero. Let us first assume
that the event horizon is geodesically complete, so that it contains a bifurcation
two-sphere, at which £ = 0. Then the last equation implies that k ,e§ = 0 at the
bifurcation two-sphere. Because k€9 is constant on the null generators (Sec. 5.7,
Problem 6), we have that k ,e4 = 0 on every cross section v = constant of the
event horizon. This shows that the value of k¥ does not change from generator to
generator, and we conclude that x is uniform over the entire event horizon.

It is easy to see that the property k ,e% = 0 must be independent of the existence
of a bifurcation two-sphere. Consider two stationary black holes, identical in every
respect in the future of v = 0 (say), but different in the past, so that only one of them
possesses a bifurcation two-sphere. (We imagine that the first black hole has existed
forever, and that the second black hole was formed prior to v = 0 by gravitational
collapse; the second black hole is stationary only for v > 0.) Our proof that k 4e$ =
0 on all cross sections v = constant of the event horizon applies to the first black
hole. But since the spacetimes are identical for v > 0, the property & ,e4 = 0
must apply also to the second black hole. Thus, the zeroth law is established for all
stationary black holes, whether or not they are geodesically complete.

It is clear that the relation €%V R0z €3€P = 0 must hold everywhere on a sta-
tionary event horizon, but it is surprisingly difficult to prove this. In their original
discussion, Bardeen, Carter, and Hawking establish this identity by using the Ein-
stein field equations and the dominant energy condition (Sec. 5.7, Problem 7). This
restriction was lifted in a 1996 paper by Racz and Wald.
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Figure 5.17: A spacelike hypersurface in a black-hole spacetime.

59.5.8  Generalized Smarr formula

Before moving on to the first law, we generalize Smarr’s formula (Sec. 5.3.12) that
relates the black-hole mass M to its angular momentum .J, angular velocity Qg,
surface gravity x, and surface area A. In the present context, the black hole is
stationary and axially symmetric, but it is not assumed to be a Kerr black hole.

Our starting point is the Komar expressions for total mass and angular momen-
tum (Sec. 4.3.3):

1

1
M=—— 48 dS,3, =
SW}[SV Sas 7= Ton

j{ Ve dS,p,
S

where the integrations are over a closed two-surface at infinity. We consider a space-
like hypersurface ¥ extending from the event horizon to spatial infinity (Fig. 5.17).
Its inner boundary is J#, a two-dimensional cross section of the event horizon, and
its outer boundary is S. Using Gauss’ theorem, as was done in Sec. 4.3.3 (but
without the inner boundary), we find that M and J can be expressed as

1
M= Mg+ 2/ (Taﬁ - 5Tg(w> n®t?vh d3y (5.5.9)
>

and

1
J = JH —/ (Taﬁ — §Tgaﬂ> na¢5\/ﬁd3y, (5510)
X

where My and Jy are the black-hole mass and angular momentum, respectively.
They are given by surface integrals over J¢:

1
My = ——?{ Vet? dS,s (5.5.11)
87 H
and
1
= *#P ds,, .5.12
T W}{”w Sup (5.5.12)

where dS,p is the surface element of Eq. (5.5.3). The interpretation of Egs. (5.5.9)
and (5.5.10) is clear: the total mass M (angular momentum J) is given by a con-
tribution Mg (Jg) from the black hole, plus a contribution from the matter dis-
tribution outside the hole. If the black hole is in vacuum, then M = Mg and
J = Ju.
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Smarr’s formula emerges after a few simple steps. Using Egs. (5.5.3), (5.5.11)
and (5.5.12), we have
1

Mg —2QpJg = _8_”{ Ve (tP + Qu¢P) dSap
K

1
= —— ¢ V*Fds,
8n ?if 3 s

1 g
- _ Biag N
= - %5 éa ﬂds
1
—  _ B
= 47r7£f’€£ NgdS

K
- Eyf” as,

where we have used the relation £*N, = —1 and the fact that k is constant over
. The last integration gives the horizon’s surface area, and we arrive at

A
My =2QxJg + ’Z—ﬂ, (5.5.13)

the generalized Smarr formula.

59.5.4 First law

We consider a quasi-static process during which a stationary black hole of mass M,
angular momentum J, and surface area A is taken to a new stationary black hole
with parameters M +d6M, J+4dJ, and A+§A. The first law of black-hole mechanics
states that the changes in mass, angular momentum, and surface area are related
by
SM = Si SA+Qpol (5.5.14)
T

If the initial and final black holes are in vacuum, then they are Kerr black holes
by virtue of the uniqueness theorems, and a derivation of Eq. (5.5.14) was already
presented in Sec. 5.3.13. That derivation, however, relied heavily on the details of
the Kerr metric. We shall now present a derivation that is quite insensitive to those
details. In particular, we shall not assume that the black hole is in vacuum.

We suppose that a black hole, initially in a stationary state, is perturbed by a
small quantity of matter described by the (infinitesimal) stress-energy tensor Tyg.
As a result, the mass and angular momentum of the black hole increase by amounts
(Sec. 4.3.4)

SM = — /HTOZ;, t? d%, (5.5.15)

and
8J = /H T% ¢ dSa, (5.5.16)

where the integrations are over the entire event horizon. We will be working to
first order in the perturbation T,g, keeping t*, ¢, and d¥, at their unperturbed
values. We assume that at the end of the process, the black hole is returned to
another stationary state.

Substituting the surface element of Eq. (5.5.2) into Eqgs. (5.5.15) and (5.5.16),
we find

SM — QuéJ = / Top (7 + Q) €% dS dv
H

/ dv }f‘%p TopE*¢P dS.
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To work out the integral, we turn to Raychaudhuri’s equation, Eq. (5.5.4). Because
0 and o, are quantities of the first order in T,4, it is appropriate to neglect the
quadratic terms, so that we have

% = k0 — 8T ,o5E%¢EP,

oM — QuéJ = —i/dvf (ﬁ—mﬁ?)ds
8 o dv

- —if 0d5‘ +i/dv7§ 0.ds.
87T o S 87!' A

Because the black hole is stationary both before and after the perturbation, 8(v =
+00) = 0, and the boundary terms vanish. Using the fact that 6 is the fractional
rate of change of the congruence’s cross-sectional area, we obtain

K 1 d
K

oo

and

= — ds
87 A ‘

—0o0

K
= — A
871'6 ’

where 0A is the change in the black hole’s surface area. This is Eq. (5.5.14), the
statement of the first law of black-hole mechanics.

5.5.5 Second law

The second law of black-hole mechanics states that if the null energy condition is
satisfied, then the surface area of a black hole can never decrease: A > 0. This
area theorem was established by Stephen Hawking in 1971.

Glossing over various technical details, the area theorem follows directly from
the focusing theorem (Sec. 2.4.5) and Penrose’s observation that the event horizon
is generated by null geodesics with no future end points. This statement means
that the generators of the event horizon can never run into caustics. (A generator
can enter the horizon at a caustic point, but once in H it will never again meet
another caustic.) The focusing theorem then implies that 6, the expansion of the
congruence of null generators, must be positive, or zero, everywhere on the event
horizon. To see this, suppose that § < 0 for some of the generators. The focusing
theorem then guarantees that these generators will converge into a caustic, at which
0 = —oo. We have a contradiction, and we must conclude that § > 0 everywhere
on the event horizon. This implies that the horizon’s surface area will not decrease,
which is just the statement of the area theorem. (The fact that new generators can
enter the event horizon contributes even further to the growth of its area.)

5.5.6 Third law

The third law of black-hole mechanics states that if the stress-energy tensor is
bounded and satisfies the weak energy condition, then the surface gravity of a black
hole cannot be reduced to zero within a finite advanced time. A precise formulation
of this law was given by Werner Israel in 1986.

We have seen that a black hole of zero surface gravity is an extreme black hole.
(Recall that a Kerr black hole is extremal if a = M; for a Reissner-Nordstrém black
hole, the condition is || = M.) An equivalent statement of the third law is therefore
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that under the stated conditions on the stress-energy tensor, it is impossible for a
black hole to become extremal within a finite advanced time.

The proof of the third law is rather involved, and we will not attempt to go
through it here. Instead of presenting a proof, we will illustrate the fact that the
third law is essentially a consequence of the weak energy condition.

For the purpose of this discussion, we need a black-hole spacetime which is
sufficiently dynamical that it has the potential of becoming extremal at a finite
advanced time v. A simple choice is the charged generalization of the ingoing
Vaidya spacetime, whose metric is given by

ds* = —f dv*® + 2 dvdr + r* d9Q?, (5.5.17)

with )
2
mo) | )
r

f=1-

This metric describes a black hole whose mass m and charge g change with time
because of irradiation by charged null dust, a fictitious form of matter. This inter-
pretation is confirmed by inspection of the stress-energy tensor,

- (5.5.18)

T8 =T384+ T8, (5.5.19)
where - )
T = ploiP =—Z(m-L 5.2
aust = PUT P=tm 5o\ " 2r (5-5.20)
is the contribution from the null dust (I, = —8,v is a null vector), and
e
o H j—
Tow’ = Pdiag(~1,-1,1,1), P=— (5.5.21)

is the contribution from the electromagnetic field. The spacetime of Egs. (5.5.17)
and (5.5.18) will produce a violation of the third law if m(vg) = ¢g(vo) for some
advanced time vy < 00.

An essential aspect of this discussion is the weak energy condition (Sec. 2.1),
which states that the energy density measured by an observer with four-velocity
u® = dz® /dr will always be positive:

Tapu®u® > 0.

Here, T*? is the stress-energy tensor of Eq. (5.5.19). If our observer is restricted to
move in the radial direction only, then T,su®u® = p(dv/dr)? + P. Because dv/dr
can be arbitrarily large, the weak energy condition requires p > 0. In particular, p
must be positive at the apparent horizon, r = r,. (v), where r, = m + (m? — ¢*)/2.
This gives us the following condition:

drr P p(ry) = man — g4 + (m? — ¢@)Y?m > 0, (5.5.22)
where an overdot indicates differentiation with respect to v.

Let us imagine a situation in which the black hole becomes extremal at a finite
advanced time vg. This means that A(vg) = 0, where A(v) = m(v) — ¢q(v). Because
the black hole was not extremal before v = vy, we have that A(v) > 0 for v < vy,
and A(v) must be decreasing as v approaches vg. However, Eq. (5.5.22) implies

m(vo) A(vg) > 0,

according to which A(v) must be increasing. We have a contradiction, and we
conclude that the weak energy condition prevents the black hole from ever becoming
extremal at a finite advanced time.
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5.5.7 Black-hole thermodynamics

The four laws of black-hole mechanics bear a striking resemblance to the laws of
thermodynamics, with k playing the role of temperature, A that of entropy, and
M that of internal energy. Hawking’s discovery that quantum processes give rise
to a thermal flux of particles from black holes implies they do indeed behave as
thermodynamic systems. Black holes have a well-defined temperature, which as a
matter of fact is proportional to the hole’s surface gravity:

h

T=—k.
271_,.;

(5.5.23)
The zeroth law is therefore a special case of the corresponding law of thermodynam-
ics, which states that a system in thermal equilibrium has a uniform temperature.
The first law, when recognized as a special case of the corresponding law of ther-
modynamics, implies that the black-hole entropy must be given by

1

SZE

A (5.5.24)

The second law is therefore also a special case of the corresponding law of thermody-
namics, which states that the entropy of an isolated system can never decrease. In
this regard it should be noted that Hawking radiation actually causes the black-hole
area to decrease, in violation of the area theorem. (The radiation’s stress-energy
tensor does not satisfy the null energy condition.) However, the process of black-
hole evaporation does not violate the generalized second law, which states that the
total entropy, the sum of radiation and black-hole entropies, does not decrease.
The fact that black holes behave as thermodynamic systems reveals a deep
connection between such disparate fields as gravitation, quantum mechanics, and
thermodynamics. This connection is still poorly understood today.

5.6 Bibliographical notes

During the preparation of this chapter I have relied on the following references:
Bardeen, Carter, and Hawking (1973); Carter (1979); Chandrasekhar (1983); Hay-
ward (1994); Israel (1986a); Israel (1986b); Sullivan and Israel (1980); Misner,
Thorne, and Wheeler (1973); Wald (1984); and Wald (1992).

More specifically:

The term “trapping horizon”, used in Secs. 5.1.7 and 5.4.1, was introduced by
Sean Hayward in his 1994 paper. The various definitions for the surface gravity
(Secs. 5.2.4, 5.3.10, 5.4.2, and 5.5.2) are taken from Sec. 12.5 of Wald (1984). The
presentation of the Kerr black hole is based on Secs. 33.1-5 of Misner, Thorne,
and Wheeler, and Secs. 57 and 58 of Chandrasekhar. The definitions for black-
hole region and event horizon are taken from Sec. 12.1 of Wald (1984); trapped
surfaces and apparent horizons are defined in Wald’s Sec. 9.5 and 12.2, respectively.
Penrose’s theorem on the structure of the event horizon (Sec. 5.4.1) is very nicely
discussed in Sec. 34.4 of Misner, Thorne, and Wheeler. Section 9.5 of Wald (1984)
provides a thorough discussion of the singularity theorems. The general properties
of stationary black holes (Sec. 5.4.2) are discussed in Sec. 12.3 of Wald (1984)
and Sec. 6.3.1 of Carter. An overview of the uniqueness theorems of black-hole
spacetimes (Sec. 5.4.3) can be found in Sec. 12.3 of Wald (1984) and Sec. 6.7 of
Carter. In Sec. 5.5, the proofs of the zeroth and first laws are taken from Wald’s
1992 FErice lectures. The generalized Smarr formula is derived in Sec. 6.6.1 of
Carter. The discussion of the second law is adapted from Sec. 6.1.2 of Carter. The
final form of the third law was given in Israel (1986b); my discussion is based on
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Sullivan and Israel. Finally, in the problems below, the material on the Majumdar-
Papapetrou solution is taken from Sec. 113 of Chandrasekhar, the description of
null-dust collapse is adapted from Israel (1986a), and the alternative derivation of
the zeroth law is based on Bardeen, Carter, and Hawking.

5.7 Problems

1. The metric of an extreme () = =M ) Reissner-Nordstrém black hole is given

by
2 —2
ds? = — (1 — %) dt® + (1 — %) dr? + r2 d02.

a) Find an appropriate set of Kruskal coordinates for this spacetime.
b) Show that the region r < M does not contain trapped surfaces.
c) Sketch a Penrose-Carter diagram for this spacetime.

d) Find a coordinate transformation that brings the metric to the form
M\~ M\?® A
ds? = — (1 - ?> dt* + (1 + ?> (dz® + dy® + d2?),

where 72 = 22 +y2 +22. Show that in these coordinates, the electromag-
netic field tensor can be generated from the vector potential A, dz® =
F(1+ M/7)~1 dt, in which the upper (lower) sign gives rise to a positive
(negative) electric charge.

e) Show that the metric
ds* = —® 2 dt* + ®*(dz® + dy® + d2?)

and the vector potential A, dz® = F® ! dt produce an exact solution
to the Einstein-Maxwell equations provided that ®(z) satisfies Laplace’s
equation V2® = 0. Here, V2 is the usual Laplacian operator of three-
dimensional flat space, and & = (z,y,2). This metric is known as the
Magjumdar-Papapetrou solution. Prove that if the spacetime is asymp-
totically flat, then the total charge ) and the ADM mass M are re-
lated by @ = M. Finally, find an expression for ®(x) that corre-
sponds to a collection of N black holes situated at arbitrary positions &,
(n=1,2,---,N).

2. A black hole is formed by the gravitational collapse of null dust. During the
collapse, the metric is given by an ingoing Vaidya solution with mass function
m(v) = v/16. Spacetime is assumed to be flat before the collapse (v < 0), and
after the collapse (v > vg), the metric is given by a Schwarzschild solution
with mass mg = m(vg) = vg/16. We want to study various properties of this
spacetime.

a) Show that in the interval 0 < v < vy, outgoing light rays are described by
the parametric equations

r\) =che™?, v(A) =4e(1+N)e ™,

where c is a constant. Show that v = 4r also describes an outgoing light
ray. Plot a few of these curves in the (v,r) plane, using both positive
and negative values of ¢. Plot also the position of the apparent horizon.

b) Find the parametric equations that describe the event horizon.
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¢) Prove that the curvature singularity at r = 0 is naked, in the sense that it
is visible to observers at large distances. Prove also that at the moment
it is visible, the singularity is massless. [It is generally true that the
central singularity of a spherical collapse must be massless if it is naked.
This was established by Lake (1992).]

In this problem we have a closer look at the instability of black-hole tunnels,
a topic that was mentioned briefly in Secs. 5.2.3 and 5.3.9. We will see that
the instability is caused by the pathological behaviour of the ingoing branch
(v = 00) of the inner horizon (r = r_). For reasons that will become clear, we
shall call this the Cauchy horizon of the black-hole spacetime. For simplicity,
we shall restrict our attention to the Reissner-Nordstrom (RN) spacetime.
[The physics of the Cauchy-horizon instability was this author’s Ph.D. topic;
see Poisson and Israel (1990). The book by Burko and Ori (1997) presents a
rather complete review of this fascinating part of black-hole physics.]

a) Consider an event P located anywhere in the future of the Cauchy horizon.
Argue that the conditions at P are not uniquely determined by initial
data placed on a spacelike hypersurface ¥ located outside the black hole.
Then argue that the Cauchy horizon is the boundary of the region of
spacetime for which the evolution of this data is unique. (This region
is called the domain of dependence of X, and we say that the Cauchy
problem of general relativity is well posed in this region. The Cauchy
horizon is the place at which the evolution ceases to be uniquely deter-
mined by the initial data; the Cauchy problem breaks down. In effect,
the predictive power of the theory is lost at the Cauchy horizon.)

b) Consider a test null fluid in RN spacetime, with stress-energy tensor
T*# = pl®lP, where p is the energy density and I, = —0,v the four-
velocity. The fluid moves parallel to the Cauchy horizon, along ingoing
null geodesics. Prove that p must be of the form

_ L(v)
T Apr?’

where L(v) is an arbitrary function of advanced time v. Show that if a
finite quantity of energy is to enter the black hole, then L — 0 as v — oo.
(How fast must L vanish?) Typically, radiative fields outside black holes
decay in time according to an inverse power law (Price 1972). We shall
therefore take L(v) ~ v™P as v — oo, with p larger than, say, 2.

c) Consider now a free-falling observer inside the RN black hole. This ob-
server moves in the outward radial direction, encounters the null dust,
and measures its energy density to be T,z u®u®, where u® is the ob-
server’s four velocity. Show that as the observer crosses the Cauchy
horizon,

T a, B _ E2 L 2K_v

ap U U = Ay 2 (v)e )

where E = —u,t* and k_ was defined in Sec. 5.2.2. Conclude that the

measured energy density diverges at the Cauchy horizon, even though the

total amount of energy entering the hole is finite. This is the pathology
of the Cauchy horizon, which ultimately is responsible for the instability
of black-hole tunnels.

The equations governing geodesic motion in the Kerr spacetime were given
without justification in Sec. 5.3.6. Here we provide a derivation, which is
valid both for timelike and null geodesics. [The general form of the geodesic
equations can be found in Sec. 33.5 of Misner, Thorne, and Wheeler (1973).]
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a) By definition, a Killing tensor field £,53 is one which satisfies the equa-
tion {(ap;7) = 0. Show that if {5 is a Killing tensor and u® satisfies
the geodesic equation (u®zu® = 0), then &,5u®u? is a constant of the
motion.

b) Verify that

ap = Ak(alp) + 1% g0p
is a Killing tensor of the Kerr spacetime. Here, k“ and [® are the null
vectors defined in Sec. 5.3.6.

b) Write the relations E = —t%uy and L = ¢*u, explicitly in terms of
u® = (t, 7,6,¢). Then invert these relations to obtain the equations for
t and ¢. [Hint: Make sure to involve the inverse metric.]

c) The Carter constant 2 is defined by
bapuul = 2 + (f/ - aE)Z.
By working out the left-hand side, derive the equation for 7. [Hint:

Express k, and [, in terms of the Killing vectors, and then £, u®uf in
terms of E, L, and 7]

d) Finally, use the normalization condition gagu®u® = —( (where ¢ =1 for
timelike geodesics and ¢ = 0 for null geodesics) to obtain the equation
for 6.

5. Let [* be a null, geodesic vector field in flat spacetime. With this vector and
an arbitrary scalar function H we construct a new metric tensor g,g:

JaoB = Nap + Hlalﬁa

where 743 is the Minkowski metric and [, = naglﬁ . Such a metric is called a
Kerr-Schild metric.

a) Show that [* is null with respect to both metrics.
b) Show that g*# = 78 — HI%I® is the inverse metric.

c) Prove that I, = gapl® and 1% = g®Plg. Thus, indices on the null vector
can be lowered and raised with either metric.

d) Calculate the Christoffel symbols for gos. Show that they satisfy the

relations

Hlplg, 1T 5= %Hlalﬁ,

1
1, T" ,

aB = D)
where H = H ,I*.

e) Prove that logﬁlﬁ = 0. Thus, [* is a geodesic vector field in both metrics.

f) Prove that the component R,zl®l# of the Ricci tensor vanishes for any

choice of function H.

6. Complete the discussion of the zeroth law by proving that x o €9 is constant
along the null generators of a stationary event horizon.

7. In this problem we provide an alternative derivation of the zeroth law of
black-hole mechanics. This derivation is based on the original presentation
by Bardeen, Carter, and Hawking (1973); it uses the Einstein field equations
and the dominant energy condition.
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a) We have seen that the vector £% is tangent to the null generators of the
event horizon. It satisfies the following properties: (i) £ is null on the
horizon; (ii) 505,85/3 = k&% on the horizon; (iii) £¢ is a Killing vector; and
(vi) the congruence of null generators has zero expansion, shear, and
rotation. Use these facts to infer

£ap = (KNa + c*ena)ép — £a (kNp + Pepp),

where ¢4 = 04B¢, 5N "‘eg. This relation holds on the horizon only.

b) Prove that the gradient of the surface gravity (in the directions tangent
to the horizon) is given by

R,a = _RaﬂvégﬁN’ygé - (UABCACB)é-a-
This immediately implies that « is constant on each generator: K o{* =

0.
¢) Show that the result of part b) also implies

BC s
K065 = —Rap €36° — 0BC Ropys eGeel, 0.

d) The quantities Bap = a,5 €% €5 and their tangential derivatives must all
vanish on the horizon. Use this observation to derive

Ropys ei{e%eé{‘s =0.

This relations holds on the horizon only.

e) Collecting the results of parts ¢) and d), use the Einstein field equations
to write
K,qa€Q = 8mjaeq,

where j¢ = —T"éfﬁ represents a flux of momentum across the horizon.

f) The dominant energy condition states that j* should be either timelike or
null, and future directed. Use this, together with the stationary condition
Top€®¢P = 0, to prove that j® must be parallel to £*. Under these
conditions, therefore,

K,oeq =0,

and the zeroth law is established.

8. The unique solution to the Einstein-Maxwell equations describing an isolated
black hole of mass M, angular momentum J = aM, and electric charge @ is
known as the Kerr-Newman solution; it was discovered by Newman et al. in
1965. The Kerr-Newman metric can be expressed as

2A b)) ) 2
ds? = —”T 2 + = sin® 0(dg — w dt)? + ”K dr? + p? df?,
where p? = r?4+a%cos? 0, A = r2—2Mr+a’+Q? ¥ = (r2+a?)? —a?Asin? 6,
and w = a(r? + a®> — A)/X. The metric comes with a vector potential

@

Ay da® = 2 (dt — asin® 0 dg).

When @Q =0, A, = 0 and this reduces to the Kerr solution.

a) Find expressions for r;, the radius of the event horizon, and Qp, the
angular velocity of the black hole.
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b) Prove that the vector field

r2 + a? a
la a = T A — Ur A
0 A O — Or + A 0
is tangent to a congruence of ingoing null geodesics. Prove also that
2, 2
v=1t+ r Za dr
and
p=¢+ [ wdr
o A

are constant on each member of the congruence.

c) Show that in the coordinates (v,r,8,1), the Kerr-Newman metric takes
the form

A —a?sin?6

2 2_A .
ds? = _Tdv2+2dvdr—2a%sin29dvd¢

. b
— 2asin’ 0 drdy + p_2 sin? 0 dip® + p? d6>.

Find an expression for A, is this coordinate system.
d) Show that the vectors

€% Oq = Oy + Qi Oy, eg 0o = Oy, ey, O = Oy,
and
a’sin” 0 ry 2+ a?
2(ry2 +a2cos2) °  ry2+4a2cos?f
a 2r,.2 + a?(1 + cos? §)
2(ry24+a?)  ry2+4a?cos?b

N*0, =

¥

form a good basis on the event horizon. In particular, prove that they
give rise to the completeness relations g®° = —(* NP - No¢h 4548 ei{e%
AB

Y
where 07 is the inverse of 4B = gag eie'g.

e) Prove that the surface gravity of a Kerr-Newman black hole is given by
_ ry — M
- ’f’+2 + a? )
Prove also that the hole’s surface area is

A=Adrn(ry® +a°).

f) Compute the black-hole mass My and the black-hole angular momen-
tum Jg of a Kerr-Newman black hole. (These quantities are defined in
Sec. 5.5.3.) Make sure that your results are compatible with the following
expressions:

QZ

2, 2
My = r+ ta 1-— —arctan(a/r”]
2T+

ary

and

2 2 2 2 2
_ ryf+ta Q ryc+a
JH—aT{I-%T‘Q[I—Tarctan(a/r.,.) .

Verify that these expressions satisfy the generalized Smarr formula.
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g) Derive the following alternative version of Smarr’s formula:

A
M =20pJ + 22 4 840,
47

where

r+Q
Bp = — A L™ -_t2
" a€ r=r4 7’+2 + a?

is the electrostatic potential at the horizon.

h) Consider a quasi-static process during which a stationary black hole of
mass M, angular momentum J, and electric charge () is taken to a new
stationary black hole with parameters M + 6M, J + dJ, and @ + 6Q).
Prove that during such a transformation, the hole’s surface area A will
change by an amount JA given by

SM = 8iaA+QH5J+<1>H5Q.
w

This is the first law of black-hole mechanics for charged, rotating black
holes.

9. Consider a quasi-static process during which the surface area of a black hole
changes. (By quasi-static we mean that dA/dv is very small.) Derive the
Hawking-Hartle formula,

dA _ 8t

1
- = — g8 T £26B
i . %)( —0 Oap + Tap®E )dS,

8

in which £* = dz®/dv is tangent to the null generators of the event horizon,
and o,p is their shear tensor. The second term within the integral represents
the effect of accreting matter on the surface area. The first term represents
the effect of gravitational radiation flowing across the horizon.
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