CS361: Computer Architecture

Introduction to Computer Architecture

Course Contents

- Introduction to Computer Architecture
- Basics of Computer Architecture
- Detailed Study of different Instruction set types
- RISC
- CISC
- CPU Design
- Memory Organization
- Input / Output Design
- And more ..

Resources

- Computer Organization and Design, (4 $4^{\text {th }}$ Edition) by David A. Patterson and John L. Hennessy ($5^{\text {th }}$ if available)
Other
- Computer Architecture: A Quantitative Approach, (5 ${ }^{\text {th }}$) by John L. Hennessy and David A. Patterson
- Computer Organization and Architecture, (8 $8^{\text {th }}$ Edition) by William Stallings
- Slides uploaded on:
- https://drive.google.com/folderview?id=0B9hP8iqYxX1 OcGx6N1dWU3pXODQ\&usp=sharing

Assessment

- Final-50
- Midterm - 30
- Assignments and quizzes - 20
- All material from the slides including assignments and anything that is suggested for further reading.

Lecture Outline

- Introduction to Computer Architecture
- What is Computer Architecture?
- Basic Operations of a Computer
- Structure of a Computer
- Evolution
- Mechanical Systems
- Electro-Mechanical Systems
- Electronic Systems
- Generations
- Moore's Law
- The x86 Family
- Semi-Conductor Memory
- Performance Gap Between Processors and Memory
- I/O Devices
- Latest Trends in Chip Organization and Architecture
- Past: The Single Processor Chip
- Present: Multicores
- Future: Manycores

What is Computer Architecture?

- Architecture is those attributes visible to the programmer
- These attributes have a direct impact on program execution: instruction set, number of bits used for data representation, I/O mechanisms, addressing techniques.
- More broadly Computer Architecture = Instruction set + hardware + organization

Lecture Outline

- Introduction to Computer Architecture
- What is Computer Architecture?
- Basic Operations of a Computer
- Structure of a Computer
- Evolution
- Mechanical Systems
- Electro-Mechanical Systems
- Electronic Systems
- Generations
- Moore's Law
- The x86 Family
- Semi-Conductor Memory
- Performance Gap Between Processors and Memory
- I/O Devices
- Latest Trends in Chip Organization and Architecture
- Past: The Single Processor Chip
- Present: Multicores
- Future: Manycores

Mechanical Systems

- The Difference Engine (Paper -1823)
- A machine to compute mathematical tables.
- Built later by Swiss engineer Scheutz and his son (displayed in Paris in 1855).

Difference Engine

Electro-Mechanical Systems

- Linear Equation Solver (sometime in 1930s) - Tubes and Electromechanical relays
- Harvard Mark I (1944 at IBM laboratories)
- Howard Aiken - Professor of Physics at Harvard
- Essentially mechanical but had some electro-magnetically controlled relays and gears
- Weighed 5 tons and had 750,000 components
- A synchronizing clock that beat every 0.015 seconds $(66 \mathrm{~Hz})$

Linear Equation Solver

Harvard Mark I

Electronic Computers -- Generations

- $1^{\text {st }}$ Generation- Vacuum Tubes 1946-1957
- $2^{\text {nd }}$ Generation - Transistors 1958-1964
- $3^{\text {rd }}$ Generation - Integrated Circuits Small Scale Integration (SSI) 1965-1971
- upto 3,000 devices per chip
- $4^{\text {th }}$ Generation - Large Scale Integration (LSI) 19711977
- 3,000-100,000 devices on a chip
- $5^{\text {th }}$ Generation - VLSI 1978-1991
- 100,000-100,000,000 devices on a chip
- $6^{\text {th }}$ Generation - ULSI 1991 onwards
- Over 100,000,000 devices on a chip

ENIAC - background

- Electronic Numerical Integrator And Computer
- Eckert and Mauchly
- University of Pennsylvania

- Trajectory tables for weapons
- Started 1943 and finished 1946 which was too late for war effort

ENIAC - details

- Programmed manually by switches
- Huge: 18,000 vacuum tubes, 30 tons, 15,000 square feet
- 140 kW power consumption
- 5,000 additions per second and used Decimal (not binary)

Electronic Discrete Variable Automatic

 Computer (EDVAC)- ENIAC's programming system was external (manually by switches)
- Eckert, Mauchly, John von Neumann and others designed EDVAC to solve this problem
- Solution was the stored program computer
- First Draft of a report on EDVAC was published in 1945

Structure of von Neumann machine

Central Processing Unit (CPU)

Commercial Computers

- 1947 - Eckert-Mauchly Computer Corporation
- UNIVAC I (Universal Automatic Computer)
- US Bureau of Census 1950 calculations
- Late 1950s - UNIVAC II
- Faster
- More memory

Second Generation: Transistors

- Replaced vacuum tubes, made from silicon (sand) Invented 1947 at Bell Labs
- Smaller, Cheaper, Less heat dissipation
- IBM 7000
- DEC-1957
- Produced PDP-1

$3^{\text {rd }}$ Generation Integrated Circuits: Microelectronics

- Literally - "small electronics"
- A computer is made up of gates, memory cells and interconnections
- These can be manufactured on a semiconductor
- e.g. silicon wafer

Moore's Law

- Increased density of components on chip
- Gordon Moore - co-founder of Intel
- Number of transistors on a chip will double every year
- Since 1970's development has slowed a little
- Number of transistors doubles every 18 months
- Cost of a chip has remained almost unchanged
- Higher packing density means shorter electrical paths, giving higher performance
- Smaller size gives increased flexibility
- Reduced power and cooling requirements
- Fewer interconnections increases reliability

Growth in CPU Transistor Count

1 billion
transistor CPU

IBM 360 series (started in 1964)

- Replaced (\& not compatible with) 7000 series
- First planned "family" with a range of computers
- Similar or identical instruction sets
- Similar or identical O/S
- More expensive systems had a higher speed, increasing number of I/O ports, increased memory size and vice versa.

DEC PDP-8(Developed in 1964)

- First minicomputer
- Did not need air conditioned room and Small enough to sit on a lab bench
- \$16,000 as compared to 100k+ for IBM 360
- Embedded applications
- Introduced BUS STRUCTURE

Omnibus

Intel

- 1971-4004
- First microprocessor
- All CPU components on a single chip
-4 bit
- Followed in 1972 by 8008
-8 bit
- Both designed for specific applications
- 1974-8080
- Intel's first general purpose microprocessor

x86 Evolution (1)

- 8080
- first general purpose microprocessor
- 8 bit data path
- Used in first personal computer - Altair
- $8086-5 \mathrm{MHz}-29,000$ transistors
- much more powerful
- 16 bit
- instruction cache, prefetch few instructions
- 80286
- 16 Mbyte memory addressable
- up from 1 Mb
- 80386
- 32 bit
- Support for multitasking
- 80486
- sophisticated powerful cache and instruction pipelining
- built in maths co-processor

x86 Evolution (2)

- Pentium
- Superscalar
- Multiple instructions executed in parallel
- Pentium Pro
- Increased superscalar organization
- branch prediction
- data flow analysis
- speculative execution
- Pentium II
- MMX technology for graphics, video \& audio processing
- Pentium III
- Additional floating point instructions for 3D graphics

x86 EVOIUtion (3)

- Pentium 4
- Further floating point and multimedia enhancements
- Core
- First x86 with dual core
- Core 2
- 64 bit architecture
- Core 2 Quad - $3 \mathrm{GHz}-820$ million transistors
- Four processors on chip
- x86 architecture dominant outside embedded systems
- Organization and technology changed dramatically
- Instruction set architecture evolved with backwards compatibility
- ~1 instruction per month added

Semiconductor Memory

- In 1950s and 1960s magnetic core (or core was used) which was expensive and bulky.
- Introduced in 1970
- Holds 256 bits
- Non-destructive read
- Much faster than magnetic core
- Capacity approximately doubles each year

Processor and Memory Performance

Gap

- Processor speed increased - Memory capacity increased
- Memory speed lags behind processor speec

MHz

Solutions

- Increase number of bits retrieved at one time - Make DRAM "wider" rather than "deeper"
- Change DRAM interface
- Cache
- Reduce frequency of memory access
- More complex cache and cache on chip
- Increase interconnection bandwidth
- High speed buses
- Hierarchy of buses

I/O Devices

- Peripherals with intensive I/O demands
- Large data throughput demands
- Processors can handle this
- Problem moving data
- Solutions:
- Caching
- Buffering
- Higher-speed interconnection buses
- More elaborate bus structures
- Multiple-processor configurations

Lecture Outline

- Introduction to Computer Architecture
- What is Computer Architecture?
- Basic Operations of a Computer
- Structure of a Computer
- Evolution
- Mechanical Systems
- Electro-Mechanical Systems
- Electronic Systems
- Generations
- Moore's Law
- The x86 Family
- Semi-Conductor Memory
- Performance Gap Between Processors and Memory
- I/O Devices
- Latest Trends in Chip Organization and Architecture
- Past: The Single Processor Chip
- Present: Multicores
- Future: Manycores

Past: The Single Processor Chip

- Performance scaling accomplished largely through increases in clock frequency
- Problems
- Heat Dissipation
- Power Consumption
- High Cost required for little gain in performance
- In 2004, Intel cancelled two single core processors because of these problems. Other vendors had already moved onto multicores at the time.

Present: Multicores

- Number of cores per chip: 210s
- Heterogeneous processors: Specialized processors
- Features relevant for programming are
- Shared and coherent caches
- Single Address space
- Non-uniform memory access (NUMA): Memory can be

-	$\begin{aligned} & \hline \mathbf{O} \\ & \underset{\sim}{\sim} \\ & \hline \end{aligned}$
${ }^{\circ} \mathrm{L1}$ cache	$\cup_{\text {L1 cache }}$
L2 cache	L2 cache
memory	

Future: Manycores

- Massively parallel architectures
- Number of cores: 1000s and more
- Memory
- Multiple address spaces
- Non-uniform access timings
- On-chip addressable memory
- Islands of cache coherence

