
CS361: Computer Architecture

Instruction Sets: MIPS

Slides prepared from the original slides of Hennessy
and Patterson

This Lecture

• RISC vs. CISC

• Starting MIPS ISA

Instruction Sets

• Instruction: The word of a computer’s
language.

• Instruction set: The set or vocabulary of all the
instructions.

• Instruction sets are the attributes visible to
the programmer.

• They can broadly be classified as
– Reduced Instruction Set Computing (RISC)

– Complex Instruction Set Computing (CISC)

RISC vs. CISC

• Reduced Instruction
Set Computing

• Software centric
approach

• Instructions are
simple (fixed size)

• A reduced number of
instructions

• Instructions on
average take very few
cycles (single cycle)

• Complex Instruction Set
Computing

• Hardware centric
approach

• Instructions are
complex (different
sizes)

• A large number of
instructions

• Instructions on average
take a large number of
cycles

MIPS

• Acronym for Million Instructions per Second

• Developed at Stanford by John L. Hennessy
and his team

• RISC

• Used in embedded devices

• Used very frequently for educational purposes

MIPS Arithmetic Instructions

• Each MIPS arithmetic instruction

– performs only one operation and

– must always have three variables (variables?).

MIPS add

• C code: a = b + c ;

• Assembly code: (human-friendly machine
instructions)

add a, b, c # a is the sum of b and c

• Machine code: (hardware-friendly machine
instructions)

00000010001100100100000000100000

MIPS add Example from C with
Multiple Operands

• C code a = b + c + d + e;
• translates into the following assembly code:

add a, b, c
add a, a, d
add a, a, e

• Instructions are simple: fixed number of operands (unlike C)
• A single line of C code is converted into multiple lines of
• assembly code

9

MIPS Subtract

C code f = (g + h) – (i + j);
translates into the following assembly code:

add f, g, h
sub f, f, i
sub f, f, j

10

Operands

• In C, each “variable” is a location in memory

• In hardware, each memory access is expensive – if
variable a is accessed repeatedly, it helps to bring the
variable into an on-chip register and operate on the
registers

• To simplify the instructions, MIPS require that each
instruction (add, sub) only operate on registers

• Note: the number of operands (variables) in a C program is
very large; the number of operands in assembly is fixed…
The number of registers is limited

11

Registers in MIPS

• The MIPS ISA has 32 registers (x86 has 8 registers)

• Each register is 32-bit wide (modern 64-bit architectures
have 64-bit wide registers)

• A 32-bit entity (4 bytes) is referred to as a word

• To make the code more readable, registers are
partitioned as $s0-$s7 (C/Java variables), $t0-$t9
(temporary variables)… (Complete set of registers later)

MIPS Add Using Registers

• C code: a = b + c ;

• Assembly code: (human-friendly machine instructions)
add $s0, $s1, $s2 # assuming $s0, $s1, $s2

corresponds to a,b,c respectively

• Machine code: (hardware-friendly machine instructions)
00000010001100100100000000100000

13

Memory Operands

• Values must be fetched from memory before (add and sub)
instructions can operate on them

Load word
lw $t0, memory-address

Store word
sw $t0, memory-address

How is memory-address determined?

Register Memory

Register Memory

14

Memory Address

• The compiler organizes data in memory… it knows the
location of every variable (saved in a table)… it can fill
in the appropriate mem-address for load-store instructions

int a, b, c, d[10]

Memory

…

Base address

15

Immediate Operands

• An instruction may require a constant as input

• An immediate instruction uses a constant number as one
of the inputs (instead of a register operand)

addi $s0, $zero, 1000 # the program has base address
1000 and this is saved in $s0
$zero is a register that always
equals zero

addi $s1, $s0, 0 # this is the address of variable a
addi $s2, $s0, 4 # this is the address of variable b
addi $s3, $s0, 8 # this is the address of variable c
addi $s4, $s0, 12 # this is the address of variable d[0]

16

Memory Instruction Format

• The format of a load instruction:

destination register
source address

lw $t0, 8($t3)

any register
a constant that is added to the register in brackets

17

Example

Convert to assembly:

C code: d[3] = d[2] + a;

18

Example

Convert to assembly:

C code: d[3] = d[2] + a;

Assembly: # addi instructions as before
lw $t0, 8($s4) # d[2] is brought into $t0
lw $t1, 0($s1) # a is brought into $t1
add $t0, $t0, $t1 # the sum is in $t0
sw $t0, 12($s4) # $t0 is stored into d[3]

19

Recap – Numeric Representations

• Decimal 3510

• Binary 001000112

• Hexadecimal (compact representation)
0x 23 or 23hex

0-15 (decimal) 0-9, a-f (hex)

20

Instruction Formats

Instructions are represented as 32-bit numbers (one word),
broken into 6 fields

R-type instruction add $t0, $s1, $s2
000000 10001 10010 01000 00000 100000
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
op rs rt rd shamt funct

opcode source source dest shift amt function

I-type instruction lw $t0, 32($s3)
6 bits 5 bits 5 bits 16 bits

opcode rs rd constant

22

Logical Operations

Logical ops C operators Java operators MIPS instr

• Shift Left << << sll
• Shift Right >> >>> srl
• Bit-by-bit AND & & and, andi
• Bit-by-bit OR | | or, ori
• Bit-by-bit NOT ~ ~ nor

23

Control Instructions

• Conditional branch: Jump to instruction L1 if register1
equals register2: beq register1, register2, L1
Similarly, bne and slt (set-on-less-than)

• Unconditional branch:
j L1
jr $s0

Convert to assembly:
if (i == j)

f = g+h;
else

f = g-h;

24

Control Instructions

• Conditional branch: Jump to instruction L1 if register1
equals register2: beq register1, register2, L1
Similarly, bne and slt (set-on-less-than)

• Unconditional branch:
j L1
jr $s0

Convert to assembly:
if (i == j) bne $s3, $s4, Else

f = g+h; add $s0, $s1, $s2
else j Exit

f = g-h; Else: sub $s0, $s1, $s2
Exit:

25

Example

Convert to assembly:

while (save[i] == k)
i += 1;

i and k are in $s3 and $s5 and
base of array save[] is in $s6

26

Example

Convert to assembly:

while (save[i] == k)
i += 1;

i and k are in $s3 and $s5 and
base of array save[] is in $s6

Loop: sll $t1, $s3, 2
add $t1, $t1, $s6
lw $t0, 0($t1)
bne $t0, $s5, Exit
addi $s3, $s3, 1
j Loop

Exit:

27

Procedures

• Each procedure (function, subroutine) maintains register values
• When another procedure is called (the callee), the new procedure
takes over the registers.
• Values may have to be saved so we can safely return to the caller.

• Seven steps to follow while calling procedures
1. Place parameters in a place where the procedure can see

them.
2. Transfer control to the procedure.
3. Acquire the storage resources for the procedure.
4. Execute the procedure
5. Place the result value where caller can access it
6. Release the resources acquired for the procedure
7. Return control to caller

28

More Registers in MIPS

• The 32 MIPS registers are partitioned as follows:
 Register 0 : $zero always stores the constant 0
 Regs 2-3 : $v0, $v1 return values of a procedure
 Regs 4-7 : $a0-$a3 input arguments to a procedure
 Regs 8-15 : $t0-$t7 temporaries
 Regs 16-23: $s0-$s7 variables
 Regs 24-25: $t8-$t9 more temporaries
 Reg 28 : $gp global pointer
 Reg 29 : $sp stack pointer
 Reg 30 : $fp frame pointer
 Reg 31 : $ra return address

29

Jump-and-Link

• A special register (storage not part of the register file)
maintains the address of the instruction currently being
executed – this is the program counter (PC)

• The procedure call is executed by invoking the jump-and-link
(jal) instruction

1. the current PC (actually, PC+4) is saved in the register $ra
2. jump to the procedure’s address (the PC is accordingly set to

this address)
jal NewProcedureAddress

30

The Stack
• The registers for a procedure seems volatile

• It seems to disappear every time we switch
procedures

• A procedure’s values are therefore backed up in
memory on a stack.

Proc A’s values

Proc B’s values

Proc C’s values
…

High address

Low address

Stack grows
this way

Proc A

call Proc B
…
call Proc C

…
return

return
return

The Stack - II

• Stack grows from higher values to lower
values.

• Push – Placing data on the stack. The stack
pointer is decremented.

• Pop – Removing data from the stack. The stack
pointer is incremented.

32

Example 1

int leaf_example (int g, int h, int i, int j)
{

int f ;
f = (g + h) – (i + j);
return f;

}

33

Example 1: A Leaf Procedure

int leaf_example (int g, int h, int i, int j)
{

int f ;
f = (g + h) – (i + j);
return f;

}

leaf_example:
addi $sp, $sp, -12
sw $t1, 8($sp)
sw $t0, 4($sp)
sw $s0, 0($sp)
add $t0, $a0, $a1
add $t1, $a2, $a3
sub $s0, $t0, $t1
add $v0, $s0, $zero
lw $s0, 0($sp)
lw $t0, 4($sp)
lw $t1, 8($sp)
addi $sp, $sp, 12
jr $ra

Notes:
In this example, the procedure’s
stack space was used for the caller’s
variables, not the callee’s

The caller took care of saving its $ra and
$a0-$a3.

Saving Registers

• $t0-$t9: 10 temporary registers that are not
preserved on a procedure called

• $s0-$s7: 8 saved registers that must be
preserved on a procedure call

• Therefore, in the example above there is no
need the save the temporary registers. They
are only used for values that are never used
again.

35

Example 2

int fact (int n)
{

if (n < 1) return (1);
else return (n * fact(n-1));

}

36

Example 2

int fact (int n)
{

if (n < 1) return (1);
else return (n * fact(n-1));

}

fact:
addi $sp, $sp, -8
sw $ra, 4($sp)
sw $a0, 0($sp)
slti $t0, $a0, 1
beq $t0, $zero, L1
addi $v0, $zero, 1
addi $sp, $sp, 8
jr $ra

L1:
addi $a0, $a0, -1
jal fact
lw $a0, 0($sp)
lw $ra, 4($sp)
addi $sp, $sp, 8
mul $v0, $a0, $v0
jr $ra

Notes:
The caller saves $a0 and $ra
in its stack space.
Temps are never saved.

Pseudo Instructions

Pseudoinstruction Translation

bge $rt, $rs, LABEL
slt $t0, $rt, $rs
beq $t0, $zero, LABEL

bgt $rt, $rs, LABEL
slt $t0, $rs, $rt
bne $t0, $zero, LABEL

ble $rt, $rs, LABEL
slt $t0, $rs, $rt
beq $t0, $zero, LABEL

blt $rt, $rs, LABEL
slt $t0, $rt, $rs
bne $t0, $zero, LABEL

Assemblers allow programmers to use pseudo-instructions like blt, which it
then translates to two or more instructions

38

Saves on Stack

• Caller saved
 $a0-a3 -- old arguments must be saved before setting new
arguments for the callee
 $ra -- must be saved before the jal instruction over-writes this
value
 $t0-t9 -- if you plan to use your temps after the return, save them

note that callees are free to use temps as they please
 You need not save $s0-s7 as the callee will take care of them

• Callee saved
 $s0-s7 -- before the callee uses such a register, it must save the

old contents since the caller will usually need it on return
 local variables -- space is also created on the stack for variables

local to that procedure

39

Memory Organization

• The space allocated on stack by a procedure is termed the activation
record (includes saved values and data local to the procedure) – frame
pointer points to the start of the record and stack pointer points to the
end – variable addresses are specified relative to $fp as $sp may
change during the execution of the procedure

• $gp points to area in memory that saves global variables
• Dynamically allocated storage (with malloc()) is placed on the heap

Stack

Dynamic data (heap)

Static data (globals)

Text (instructions)

40

Dealing with Characters

• Instructions are also provided to deal with byte-sized
and half-word quantities: lb (load-byte), sb, lh, sh

• These data types are most useful when dealing with
characters, pixel values, etc.

• C employs ASCII formats to represent characters – each
character is represented with 8 bits and a string ends in
the null character (corresponding to the 8-bit number 0)

42

Example

Convert to assembly:
void strcpy (char x[], char y[])
{

int i;
i=0;
while ((x[i] = y[i]) != `\0’)
i += 1;

}

43

Example

Convert to assembly:
void strcpy (char x[], char y[])
{

int i;
i=0;
while ((x[i] = y[i]) != `\0’)

i += 1;
}

strcpy:
addi $sp, $sp, -4
sw $s0, 0($sp)
add $s0, $zero, $zero
L1: add $t1, $s0, $a1
lb $t2, 0($t1)
add $t3, $s0, $a0
sb $t2, 0($t3)
beq $t2, $zero, L2
addi $s0, $s0, 1
j L1
L2: lw $s0, 0($sp)
addi $sp, $sp, 4
jr $ra

Instructions Format

• R-type instruction add $t0, $s1, $s2
000000 10001 10010 01000 00000 100000
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

op rs rt rd shamt funct
opcode source source dest shift amt function

• I-type instruction lw $t0, 32($s3)
6 bits 5 bits 5 bits 16 bits

opcode rs rt constant

• J-Type instruction jump instruction
6 bits 26 bits
opcode constant

45

Large Constants

• Immediate instructions can only specify 16-bit constants

• The lui instruction is used to store a 16-bit constant into
the upper 16 bits of a register… thus, two immediate
instructions are used to specify a 32-bit constant

• The destination PC-address in a conditional branch is
specified as a 16-bit constant, relative to the current PC

• A jump (j) instruction can specify a 26-bit constant; if more
bits are required, the jump-register (jr) instruction is used

MIPS Addressing Modes Summary

1. Register addressing: operand is a register

2. Immediate addressing: operand is a constant
within the instruction itself

op rs rt rd … funct Register

op rs rt Immediate

Memory

MIPS Addressing Modes Summary
3. Base addressing: where the operand is at the memory
location whose address is the sum of a register and a constant

4. PC-relative addressing: where the address is the sum of
the PC and a constant in the instruction

Register

+

op rs rt Address

Word HalfByte

Memory

PC

+

op rs rt Address

Word

MIPS Addressing Modes Summary

5. Pseudodirect addressing: where the jump
address is the 26 bits of the instruction
concatenated with the upper bits of the PC.

Memory

PC

:

op Address

Word

49

IA-32 Instruction Set

• Intel’s IA-32 instruction set has evolved over time –
old features are preserved for software compatibility

• Numerous complex instructions – complicates hardware
design (Complex Instruction Set Computer – CISC)

• Instructions have different sizes, operands can be in
registers or memory, only 8 general-purpose registers,
one of the operands is over-written

• RISC instructions are more amenable to high performance
(clock speed and parallelism) – modern Intel processors
convert IA-32 instructions into simpler micro-operations

