BCS361: Computer Architecture

Arithmetic for Computers

Unsigned Numbers

- For an N bit system, unsigned numbers are represented from 0 to 2^{N} - 1

$$
\begin{aligned}
& 00000000000000000000000000000000_{\text {two }}=0_{\text {ten }} \\
& 00000000000000000000000000000001_{\text {two }}=1_{\text {ten }} \\
& 00000000000000000000000000000010_{\text {two }}=2_{\text {ten }} \\
& \ldots \\
& 11111111111111111111111111111110_{\text {two }}=4,294,967,293_{\text {ten }} \\
& 11111111111111111111111111111110_{\text {two }}=4,294,967,294_{\text {te }} \\
& 11111111111111111111111111111111_{\text {two }}=4,294,967,295_{\text {ten }}
\end{aligned}
$$

2's Complement - Signed Numbers

```
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~ 0 0 0 0 0 _ { \text { two } } = 0 _ { \text { ten } }
```



```
01111111111111111111111111111 11111 two = 231-1
1000000000000000000000000000 0000 two }=-\mp@subsup{2}{}{31
10000000000000000000000000000001 two =-(\mp@subsup{2}{}{31}-1)
1000000000000000000000000000 0010 two =-(231-2)
1111 1111 1111 1111 1111 1111 1111 1110 two =-2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ~ 1 1 1 1 1 ~ t w o ~ = ~ - 1 ~
```


2's Complement - Conversion

- Each number represents the quantity

$$
x_{31}-2^{31}+x_{30} 2^{30}+x_{29} 2^{29}+\ldots+x_{1} 2^{1}+x_{0} 2^{0}
$$

- More conveniently negate each bit and 1 to get the $2^{\prime} s$ complement.

```
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ~ \rightarrow ~ 2 ~ 3 1 - 1 ~
    \Omega
100000000000000000000000000000001->-(\mp@subsup{2}{}{31}-1)
```


Alternative Representations of Negative Numbers

Two's complement is used for signed numbers in every computer today. The following two representations were discarded because they required additional conversion steps before arithmetic could be performed on the numbers

1. sign-and-magnitude: the most significant bit represents +/- and the remaining bits express the magnitude
2. one's complement: -x is represented by inverting all the bits of x

Both representations above suffer from two zeroes

Sign Extension

- In immediate instructions e.g. we have to add a 32 bit number to a 16 bit constant.
- Before performing this operation the constant needs to be converted to 32 bits. This is done by replicating the most significant bit to fill in the additional bits.

Addition and Subtraction

- Addition is similar to decimal arithmetic
- For subtraction, simply add the negative number - hence, subtract $A-B$ involves negating B 's bits, adding 1 and A

Overflows

- For an unsigned number, overflow happens when the last carry (1) cannot be accommodated
- For a signed number, overflow happens
- when the sum of two positive numbers is a negative result
- when the sum of two negative numbers is a positive result
- The sum of a positive and negative number will never overflow
- MIPS allows addu and subu instructions that work with unsigned integers and never flag an overflow

Multiplication Example

Multiplicand
Multiplier

Product

	$1000_{\text {ten }}$
$\times \quad 1001_{\text {ten }}$	

1000
0000
0000
1000

1001000 ten

In every step

- multiplicand is shifted
- next bit of multiplier is examined (also a shifting step)
- if this bit is 1 , shifted multiplicand is added to the product

Multiplication Hardware Algorithm 1

In every step

- multiplicand is shifted
- next bit of multiplier is examined (also a shifting step)
- if this bit is 1 , shifted multiplicand is added to the product

Multiplication Hardware Algorithm 2

- 32-bit ALU and multiplicand is untouched
- the sum keeps shifting right
- at every step, number of bits in product + multiplier $=64$, hence, they share a single 64-bit register

MIPS Instructions

-The product of two 32-bit numbers can be a 64-bit number
-- hence, in MIPS, the product is saved in two 32-bit registers
mult $\$ \mathrm{~s} 2, \$ \mathrm{~s} 3 \quad$ computes the product and stores it in two "internal" registers that can be referred to as hi and lo
mfhi $\$ \mathrm{~s} 0 \quad$ moves the value in hi into $\$ \mathrm{~s} 0$
mflo \$s1 moves the value in lo into \$s1

Similarly for multu

Multiplication Fast Algorithm

- The previous algorithm requires a clock to ensure that the earlier addition has completed before shifting
- This algorithm can quickly set up most inputs - it then has to wait for the result of each add to propagate down - faster because no clock is involved
-- Note: high transistor cost

Division

At every step,

- shift divisor right and compare it with current dividend
- if divisor is larger, shift 0 as the next bit of the quotient
- if divisor is smaller, subtract to get new dividend and shift 1 as the next bit of the quotient

		$1001_{\text {two }}$	Quotient
Divisor	$1000{ }_{\text {two }}$	$1001010_{\text {two }}$	Dividend

01001010			
10000000			
Quo: 0	01001010	$01000000 \rightarrow$	00001010
$00100000 \rightarrow$	00001010		
00001000			
0	010	01001	

At every step,

- shift divisor right and compare it with current dividend
- if divisor is larger, shift 0 as the next bit of the quotient
- if divisor is smaller, subtract to get new dividend and shift 1
as the next bit of the quotient

Divide Example

- Divide $7_{\text {ten }}\left(00000111_{\text {two }}\right)$ by $2_{\text {ten }}\left(0010_{\text {two }}\right)$

Iter	Step	Quot	Divisor	Remainder
0	Initial values			
1				
2				
3				
4				
5				

Divide Example

- Divide $7_{\text {ten }}\left(00000111_{\text {two }}\right)$ by $2_{\text {ten }}\left(0010_{\text {two }}\right)$

Iter	Step	Quot	Divisor	Remainder
0	Initial values	0000	00100000	00000111
1	Rem = Rem - Div	0000	00100000	11100111
	Rem < 0 \rightarrow +Div, shift 0 into Q	0000	00100000	00000111
	Shift Div right	0000	00010000	00000111
2	Same steps as 1	0000	00010000	11110111
		0000	00010000	00000111
		0000	00001000	00000111
3	Same steps as 1	0000	00000100	00000111
4	Rem = Rem - Div	0000	00000100	00000011
	Rem >= 0 \rightarrow shift 1 into Q	0001	00000100	00000011
	Shift Div right	0001	00000010	00000011
5	Same steps as 4	0011	00000001	00000001

Hardware for Division

A comparison requires a subtract; the sign of the result is examined; if the result is negative, the divisor must be added back

Efficient Division

Efficient Division Example

Iter	Step	Divisor	Remainder
0	Initial values	0010	00000111
1	$(\text { Rem })_{7-4}=(\text { Rem })_{7-4}$ - Div	0010	11100111
	$(\text { Rem })_{7-4}<0 \rightarrow$ +Div		
	Shift Rem left with 0 as least significant(LSB)		00000111
2	Same steps as 1	00001110	
			11101110
		00001110	
3	Same steps as 1	00011100	
4	$(\text { Rem })_{7-4}=(\text { Rem })_{7-4}$ - Div	11111100	
	$(\text { Rem })_{7-4}>=0 \rightarrow$ Shift Rem left with 1 as LSB	00011100	
5	$(\text { Rem })_{7-4}=(\text { Rem })_{7-4}$ - Div	0010	00011000
	$(\text { Rem })_{7-4}>=0 \rightarrow$ Shift Rem left with 1 as LSB	00110001	

After 5 iterations the lower half (bits 3-0) contains the quotient and the upper half (bits 7-4) should be shifted right to get the remainder.

Divisions involving Negatives

- Simplest solution: convert to positive and adjust sign later
- Note that multiple solutions exist for the equation:

Dividend = Quotient x Divisor + Remainder

+7 div +2	Quo $=$	Rem $=$
-7 div +2	Quo $=$	Rem $=$
+7 div -2	Quo $=$	Rem $=$
-7 div -2	Quo $=$	Rem $=$

Divisions involving Negatives

- Simplest solution: convert to positive and adjust sign later
- Note that multiple solutions exist for the equation:

Dividend $=$ Quotient \times Divisor + Remainder

$$
\begin{array}{rlll}
+7 & \text { div }+2 & \text { Quo }=+3 & \text { Rem }=+1 \\
-7 & \text { div }+2 & \text { Quo }=-3 & \text { Rem }=-1 \\
+7 & \text { div } & -2 & \text { Quo }=-3 \\
-7 \text { div } & \text { Rem }=+1 \\
\text { Quo }=+3 & \text { Rem }=-1
\end{array}
$$

Convention: Dividend and remainder have the same sign
Quotient is negative if signs disagree
These rules fulfil the equation above

Floating Point

- Done in the class

The SPIM Simulator

- Download QtSPIM and try it.

