Types of GIS

- Vector GIS
 - Raster GIS

•

•

Hybrid GIS

Technology is moving towards hybrid GIS Raster Vector Integration

Vector Representation

Vector formats

- Discrete representations of reality

- Raster formats
 - Use square cells to model reality

Reality (A highway)

Raster Representation

Attribute Data

District Name	Area	Population
Peshawar	395 sq. km.	6,75,341
Swabi	385 sq. km.	2,57,086
Dir lower	119 sq. km.	1,72,952

-E)	Industry Information	Ð	Industry Information
-	Agriculture Census	Ð	Education and Health

SPATIAL AND NON-SPATIAL DATA

Map: City blocks

City blocks	Land use	
001	Institutional	
007	Commorcial	
002		
003	Commercial	
004	Residential	
005	Residential	
006	Residential	
007	Industrial	
008	Residential	
009	Industrial	
010	Industrial	
011	Residential	
012	Industrial	
013	Residential	
014	Residential	
015	Residential	

SPATIAL DATA c: Commercial n: Industrial i: Institutional h: Recreational r: Residential w: Water

NON-SPATIAL DATA

Analysis of Data

Display

2-o

1.INPUT OF DATAOData collection

(Both Geographical & Statistical)

OData verification

OData transfer
OData editing

2.DATA STORAGE

On hard disk
On floppy disk
On CDs

3.MANIPULATION OF DATA • Cartographic function a.Scale changes b.Vector-Raster changes c.Projection changes d.Map embellishment like adding north, title, scale and legend etc (continued....)

3.MANIPULATION OF DATA O Data integration (Core of GIS) a.Maps over laying b.Spatial transformation

- c.Spatial aggregation
- (continued.....)

HOW G.I.S. WILL ANALYSE THE DATA

Example: Selection of waste disposal site for Peshawar city under the following conditions

- The selected site should be located within 20 km distance from the city center, but further than 300 meters from any existing built-up area.
- 2. The site should be located on clay-rich soils, with a maximum thickness of 5 meters and clay content greater than 50%.
- **3**. The site should have an area of at least 2 hectares. *(Continue....)*

HOW G.I.S. WILL ANALYSE THE DATA

Example: Selection of waste disposal site for Peshawar city under the following conditions

- 4. Should have an area, which do not have an important economic or ecological value.
- 5. Site should be located on a terrain with slope less than
 20 degree to prevent erosion and to assure accessibility.
- 6. Should be free from active landslides.

HOW G.I.S. WILL ANALYSE THE DATA

Following data are available for data input

- a. Contour map indicated in degrees
- **b**. Landuse map
- c. Road map
- d. Slide map with landslide distribution
- e. City map
- f. Borehole tables
- g. Geological map

FORMULAS WILL BE USED AS

Lslide=iff((slide="dormant")or(slide="active"),1,0) Luse=iff((landuse="barren")or(landuse="forest"),1,0)

3.MANIPULATION OF DATA • Feature measurement a.Number of features b.Calculate distance, area c.Statistical analysis like crossing of tables and correction

4. DATA OUTPUT • Data presentation a. Maps b. Tables c. Diagrams

DATA TRANSFERING/DATA SHARING

YOU SHOULD BE CLEAR IN MIND WHILE ENTERING DATA INTO COMPUTER

