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CHAPTER 7

THE RIEMANN INTEGRAL

We have already mentioned the developments, during the 1630s, by Fermat and Descartes

leading to analytic geometry and the theory of the derivative. However, the subject we

know as calculus did not begin to take shape until the late 1660s when Isaac Newton

created his theory of ‘‘fluxions’’ and invented the method of ‘‘inverse tangents’’ to find

areas under curves. The reversal of the process for finding tangent lines to find areas was

also discovered in the 1680s by Gottfried Leibniz, who was unaware of Newton’s

unpublished work and who arrived at the discovery by a very different route. Leibniz

introduced the terminology ‘‘calculus differentialis’’ and ‘‘calculus integralis,’’ since

finding tangent lines involved differences and finding areas involved summations.

Thus, they had discovered that integration, being a process of summation, was inverse

to the operation of differentiation.

During a century and a half of development and refinement of techniques, calculus

consisted of these paired operations and their applications, primarily to physical problems.

In the 1850s, Bernhard Riemann adopted a new and different viewpoint. He separated the

concept of integration from its companion, differentiation, and examined the motivating

summation and limit process of finding areas by itself. He broadened the scope by

considering all functions on an interval for which this process of ‘‘integration’’ could

be defined: the class of ‘‘integrable’’ functions. The Fundamental Theorem of Calculus

became a result that held only for a restricted set of integrable functions. The viewpoint of

Riemann led others to invent other integration theories, the most significant being

Lebesgue’s theory of integration. But there have been some advances made in more

recent times that extend even the Lebesgue theory to a considerable extent. We will give a

brief introduction to these results in Chapter 10.

Bernhard Riemann
(Georg Friedrich) Bernhard Riemann (1826–1866), the son of a poor

Lutheran minister, was born near Hanover, Germany. To please his

father, he enrolled (1846) at the University of G€ottingen as a student of
theology and philosophy, but soon switched to mathematics. He inter-

rupted his studies at G€ottingen to study at Berlin under C. G. J. Jacobi,
P. G. J. Dirichlet, and F. G. Eisenstein, but returned to G€ottingen in 1849
to complete his thesis under Gauss. His thesis dealt with what are now

called ‘‘Riemann surfaces.’’ Gauss was so enthusiastic about Riemann’s

work that he arranged for him to become a privatdozent at G€ottingen in
1854. On admission as a privatdozent, Riemann was required to prove himself by delivering a

probationary lecture before the entire faculty. As tradition dictated, he submitted three topics, the

first two of which he was well prepared to discuss. To Riemann’s surprise, Gauss chose that he

should lecture on the third topic: ‘‘On the hypotheses that underlie the foundations of geometry.’’

After its publication, this lecture had a profound effect on modern geometry.

Despite the fact that Riemann contracted tuberculosis and died at the age of 39, he made

major contributions in many areas: the foundations of geometry, number theory, real and complex

analysis, topology, and mathematical physics.
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We begin by defining the concept of Riemann integrability of real-valued functions

defined on a closed bounded interval of R , using the Riemann sums familiar to the reader

from calculus. This method has the advantage that it extends immediately to the case of

functions whose values are complex numbers, or vectors in the space Rn. In Section 7.2, we

will establish the Riemann integrability of several important classes of functions: step

functions, continuous functions, and monotone functions. However, we will also see that

there are functions that are notRiemann integrable. The Fundamental Theorem of Calculus

is the principal result in Section 7.3. We will present it in a form that is slightly more

general than is customary and does not require the function to be a derivative at every point

of the interval. A number of important consequences of the Fundamental Theorem are also

given. In Section 7.3 we also give a statement of the definitive Lebesgue Criterion for

Riemann integrability. This famous result is usually not given in books at this level, since

its proof (given in Appendix C) is somewhat complicated. However, its statement is well

within the reach of students, who will also comprehend the power of this result. In Section

7.4, we discuss an alternative approach to the Riemann integral due to Gaston Darboux that

uses the concepts of upper integral and lower integral. The two approaches appear to be

quite different, but in fact they are shown to be equivalent. The final section presents

several methods of approximating integrals, a subject that has become increasingly

important during this era of high-speed computers. While the proofs of these results

are not particularly difficult, we defer them to Appendix D.

An interesting history of integration theory, including a chapter on the Riemann

integral, is given in the book by Hawkins cited in the References.

Section 7.1 Riemann Integral

We will follow the procedure commonly used in calculus courses and define the Riemann

integral as a kind of limit of theRiemann sums as the normof the partitions tend to 0. Sincewe

assume that the reader is familiar—at least informally—with the integral from a calculus

course, we will not provide a motivation of the integral, or discuss its interpretation as the

‘‘area under the graph,’’ or its many applications to physics, engineering, economics, etc.

Instead, we will focus on the purely mathematical aspects of the integral.

However, we first define some basic terms that will be frequently used.

Partitions and Tagged Partitions

If I :¼ a; b½ � is a closed bounded interval in R , then a partition of I is a finite, ordered set

P :¼ x0; x1; . . . ; xn�1; xnð Þ of points in I such that

a ¼ x0 < x1 < � � � < xn�1 < xn ¼ b:

(See Figure 7.1.1.) The points of P are used to divide I ¼ [a, b] into non-overlapping

subintervals

I1 :¼ x0; x1½ �; I2 :¼ x1; x2½ �; . . . ; In :¼ xn�1; xn½ �:

Figure 7.1.1 A partition of [a, b]
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Often we will denote the partition P by the notation P ¼ xi�1; xi½ �f gni¼1. We define the

norm (or mesh) of P to be the number

ð1Þ jjPjj :¼ max x1 � x0; x2 � x1; . . . ; xn � xn�1f g:
Thus the norm of a partition is merely the length of the largest subinterval into which the

partition divides [a, b]. Clearly, many partitions have the same norm, so the partition is not

a function of the norm.

If a point ti has been selected from each subinterval Ii ¼ xi�1; xi½ �, for i ¼ 1; 2; . . . ; n,
then the points are called tags of the subintervals Ii. A set of ordered pairs

_P :¼ xi�1; xi½ �; tið Þf gni¼1

of subintervals and corresponding tags is called a tagged partition of I; see Figure 7.1.2.

(The dot over the P indicates that a tag has been chosen for each subinterval.) The tags can

be chosen in a wholly arbitrary fashion; for example, we can choose the tags to be the left

endpoints, or the right endpoints, or the midpoints of the subintervals, etc. Note that an

endpoint of a subinterval can be used as a tag for two consecutive subintervals. Since each

tag can be chosen in infinitely many ways, each partition can be tagged in infinitely many

ways. The norm of a tagged partition is defined as for an ordinary partition and does not

depend on the choice of tags.

If _P is the tagged partition given above, we define the Riemann sum of a function

f : a; b½ � ! R corresponding to _P to be the number

ð2Þ S f ;
�P� �

:¼
Xn
i¼1

f tið Þ xi � xi�1ð Þ:

We will also use this notation when _P denotes a subset of a partition, and not the entire

partition.

The reader will perceive that if the function f is positive on [a, b], then the Riemann

sum (2) is the sum of the areas of n rectangles whose bases are the subintervals Ii ¼
xi�1; xi½ � and whose heights are f tið Þ. (See Figure 7.1.3.)

Figure 7.1.2 A tagged partition of [a, b]

Figure 7.1.3 A Riemann sum
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Definition of the Riemann Integral

We now define the Riemann integral of a function f on an interval [a, b].

7.1.1 Definition A function f : a; b½ � ! R is said to be Riemann integrable on [a, b] if

there exists a number L 2 R such that for every e > 0 there exists de > 0 such that if _P is

any tagged partition of [a, b] with jj _Pjj<de, then

S f ;
�P� �� L

�� �� < e:

The set of all Riemann integrable functions on [a, b] will be denoted by R a; b½ �.

Remark It is sometimes said that the integral L is ‘‘the limit’’ of the Riemann sums

S f : _P� �
as the norm jj _Pjj ! 0. However, since S f ; _P� �

is not a function of jj _Pjj, this limit

is not of the type that we have studied before.

First wewill show that if f 2 R a; b½ �, then the number L is uniquely determined. It will

be called the Riemann integral of f over [a, b]. Instead of L, we will usually write

L ¼
Z b

a

f or

Z b

a

f xð Þdx:

It should be understood that any letter other than x can be used in the latter expression, so

long as it does not cause any ambiguity.

7.1.2 Theorem If f 2 R a; b½ �, then the value of the integral is uniquely determined.

Proof. Assume that L0 and L00 both satisfy the definition and let e > 0. Then there exists

d0e=2 > 0 such that if _P1 is any tagged partition with jj _P1jj < d0e=2, then

S f ; _P1

� �� L0
�� �� < e=2:

Also there exists d00e=2 > 0 such that if _P2 is any tagged partition with jj _P2jj < d00e=2, then

S f ;
�P2

� �� L00
�� �� < e=2:

Now let de :¼ min d0e=2; d00e=2
� �

> 0 and let _P be a tagged partition with jj _Pjj < de. Since

both jj _Pjj < d0e=2 and jj _Pjj < d00e=2, then

S f ;
�P� �� L0

�� �� < e=2 and S f ;
�P� �� L00

�� �� < e=2;

whence it follows from the Triangle Inequality that

L0 � L00j j ¼ L0 � S f ;
�P� �þ S f ;

�P� �� L00
�� ��

� L0 � S f ;
�P� ��� ��þ S f ;

�P� �� L00
�� ��

< e=2þ e=2 ¼ e:

Since e > 0 is arbitrary, it follows that L0 ¼ L00. Q.E.D.

The next result shows that changing a function at a finite number of points does not

affect its integrability nor the value of its integral.

7.1.3 Theorem If g is Riemann integrable on [a, b] and if f xð Þ ¼ g xð Þ except for a finite
number of points in [a, b], then f is Riemann integrable and

R b

a
f ¼ R b

a
g.
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Proof. If we prove the assertion for the case of one exceptional point, then the extension

to a finite number of points is done by a standard induction argument, which we leave to the

reader.

Let c be a point in the interval and let L ¼ R b

a
g. Assume that f xð Þ ¼ g xð Þ for all x 6¼ c.

For any tagged partition _P, the terms in the two sums S f ; _P� �
and S g; _P� �

are identical

with the exception of at most two terms (in the case that c ¼ xi ¼ xi�1 is an endpoint).

Therefore, we have

S f ;
�P� �� S g;

�P� ��� �� ¼ S f xið Þ � g xið Þð Þ xi � xi�1ð Þj j � 2 g cð Þj jþ f cð Þj jÞ jj �Pjj:�
Now, given e > 0, we let d1 > 0 satisfy d1< e= 4 f cð Þj j þ g cð Þj jð Þð , and let d2 > 0 be such

that jj _Pjj < d2 implies S g; _P� �� L
�� �� < e=2. We now let d :¼ min d1; d2f g. Then, if

jj _Pjj < d, we obtain

S f ;
�P� �� L

�� �� � S f ;
�P� �� S g;

�P� ��� ��þ S g;
�P� �� L

�� �� < e=2þ e=2 ¼ e:

Hence, the function f is integrable with integral L. Q.E.D.

Some Examples

If we use only the definition, in order to show that a function f is Riemann integrable we

must (i) know (or guess correctly) the value L of the integral, and (ii) construct a de that will

suffice for an arbitrary e > 0. The determination of L is sometimes done by calculating

Riemann sums and guessing what L must be. The determination of de is likely to be

difficult.

In actual practice, we usually show that f 2 R a; b½ � by making use of some of the

theorems that will be given later.

7.1.4 Examples (a) Every constant function on [a, b] is in R a; b½ �.
Let f xð Þ :¼ k for all x 2 a; b½ �. If _P :¼ xi�1; xi½ �; tið Þf gni¼1 is any tagged partition of

[a, b], then it is clear that

S f ;
�P� � ¼ Xn

i¼1

k xi � xi�1ð Þ ¼ k b� að Þ:

Hence, for any e > 0, we can choose de :¼ 1 so that if jj _Pjj < de, then

S f ;
�P� �� k b� að Þ�� �� ¼ 0 < e:

Since e > 0 is arbitrary, we conclude that f 2 R a; b½ � and R b

a
f ¼ k b� að Þ.

(b) Let g : 0; 3½ � ! R be defined by g xð Þ :¼ 2 for 0 � x � 1, and g xð Þ :¼ 3 for 1 <
x � 3. A preliminary investigation, based on the graph of g (see Figure 7.1.4), suggests

that we might expect that
R 3

0
g ¼ 8.

Figure 7.1.4 Graph of g
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Let _P be a tagged partition of [0,3] with norm< d; wewill show how to determine d in

order to ensure that S g; _P� ��8j < e
�� . Let _P1 be the subset of _P having its tags in [0,1]

where g(x) ¼ 2, and let _P2 be the subset of _P with its tags in (1, 3] where g(x) ¼ 3. It is

obvious that we have

ð3Þ S g;
�P� � ¼ S g;

�P1

� �þ S g;
�P2

� �
:

If we let U1 denote the union of the subintervals in _P1, then it is readily shown that

ð4Þ 0; 1� d½ � � U1 � 0; 1þ d½ �:
For example, to prove the first inclusion, we let u 2 0; 1� d½ �. Then u lies in an interval

Ik :¼ xk�1; xk½ � of _P1, and since jj _Pjj < d, we have xk � xk�1 < d. Then xk�1 � u �
1� d implies that xk � xk�1 þ d � 1� dð Þ þ d � 1. Thus the tag tk in Ik satisfies tk � 1

and therefore u belongs to a subinterval whose tag is in [0,1], that is, u 2U1. This proves the

first inclusion in (4), and the second inclusion can be shown in the same manner. Since

g tkð Þ ¼ 2 for the tags of _P1 and since the intervals in (4) have lengths 1� d and 1þ d,

respectively, it follows that

2 1� dð Þ � S g;
�P1

� � � 2 1þ dð Þ:
A similar argument shows that the union of all subintervals with tags ti 2 1; 3ð � contains
the interval 1þ d; 3½ � of length 2� d, and is contained in 1� d; 3½ � of length 2þ d.

Therefore,

3 2� dð Þ � S g;
�P2

� � � 3 2þ dð Þ:
Adding these inequalities and using equation (3), we have

8� 5d � S g;
�P� � ¼ S g;

�P1

� �þ S g;
�P2

� � � 8þ 5d;

whence it follows that

S g;
�P� �� 8

�� �� � 5d:

To have this final term < e, we are led to take de < e=5.
Making such a choice (for example, if we take de :¼ e=10), we can retrace the

argument and see that S g; _P� �� 8
�� �� < ewhen jj _Pjj < de. Since e > 0 is arbitrary, we have

proved that g 2 R 0; 3½ � and that
R 3

0
g ¼ 8, as predicted,

(c) Let h xð Þ :¼ x for x 2 0; 1½ �; we will show that h 2 R 0; 1½ �.
We will employ a ‘‘trick’’ that enables us to guess the value of the integral by

considering a particular choice of the tag points. Indeed, if Iif gni¼1 is any partition of [0,1]

and we choose the tag of the interval Ii ¼ xi�1; xi½ � to be the midpoint qi :¼ 1
2
xi�1 þ xið Þ,

then the contribution of this term to the Riemann sum corresponding to the tagged partition
_Q :¼ Ii; qið Þf gni¼1 is

h qið Þ xi � xi�1ð Þ ¼ 1

2
xi þ xi�1ð Þ xi � xi�1ð Þ ¼ 1

2
x2i � x2i�1

� �
:

If we add these terms and note that the sum telescopes, we obtain

S h;
�Q� � ¼ Xn

i¼1

1

2
x2i � x2i�1

� � ¼ 1

2
12 � 02
� � ¼ 1

2
:

Now let _P :¼ Ii; tið Þf gni¼1 be an arbitrary tagged partition of [0,1] with jj _Pjj < d so that

xi � xi�1 < d for i ¼ 1; . . . ; n. Also let _Q have the same partition points, but where we
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choose the tag qi to be the midpoint of the interval Ii. Since both ti and qi belong to this

interval, we have ti � qij j < d. Using the Triangle Inequality, we deduce

S h;
�P� �� S h; _Q� ��� �� ¼ Xn

i¼1

ti xi � xi�1ð Þ �
Xn
i�1

qi xi � xi�1ð Þ
�����

�����

�
Xn
i¼1

ti � qij j xi � xi�1ð Þ < d
Xn
i¼1

xi � xi�1ð Þ ¼ d xn � x0ð Þ ¼ d:

Since S h; _Q� � ¼ 1
2
, we infer that if _P is any tagged partition with jj _Pjj < d, then

S h;
�P� �� 1

2

����
���� < d:

Therefore we are led to take de � e. If we choose de :¼ e, we can retrace the argument to

conclude that h 2 R 0; 1½ � and R 1

0
h ¼ R 1

0
x dx ¼ 1

2
.

(d) Let G xð Þ :¼ 1=n for x ¼ 1=n n 2 Nð Þ, and G xð Þ :¼ 0 elsewhere on 0; 1½ �.
Given e > 0, the set E :¼ x : G xð Þ � ef g is a finite set. (For example, if e ¼ 1=10,

then E ¼ 1; 1=2; 1=3; . . . ; 1=10f g.) If n is the number of points in E, we allow for the

possibility that a tag may be counted twice if it is an endpoint and let d :¼ e=2n. For a given
tagged partition _P such that jj _Pjj < d, we let _P0 be the subset of _P with all tags outside of E

and let _P1 be the subset of _P with one or more tags in E. Since G xð Þ < e for each x outside

of E and G xð Þ � 1 for all x in [0,1], we get

0 � S G;
�P� � ¼ S G;

�P0

� �þ S G;
�P1

� �
< eþ 2nð Þd ¼ 2e:

Since e > 0 is arbitrary, we conclude that G is Riemann integrable with integral equal to

zero. &

Some Properties of the Integral

The difficulties involved in determining the value of the integral and of de suggest that it

would be very useful to have some general theorems. The first result in this direction

enables us to form certain algebraic combinations of integrable functions.

7.1.5 Theorem Suppose that f and g are in R a; b½ �. Then:
(a) If k 2 R , the function kf is in R a; b½ � and

Z b

a

kf ¼ k

Z b

a

f :

(b) The function f þ g is in R a; b½ � and
Z b

a

f þ gð Þ ¼
Z b

a

f þ
Z b

a

g:

(c) If f xð Þ � g xð Þ for all x 2 a; b½ �, then
Z b

a

f �
Z b

a

g:
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Proof. If _P ¼ xi�1; xi½ �; tið Þf gni¼1 is a tagged partition of [a, b], then it is an easy exercise

to show that

S kf ; _P� � ¼ kS f ; _P� �
; S f þ g; _P� � ¼ S f ; _P� �þ S g; _P� �

;

S f ; _P� � � S g; _P� �
:

We leave it to the reader to show that the assertion (a) follows from the first equality.

As an example, we will complete the proofs of (b) and (c).

Given e > 0, we can use the argument in the proof of the Uniqueness Theorem 7.1.2 to

construct a number de > 0 such that if
�P is any tagged partition with jj _Pjj < de, then both

ð5Þ S f ;
�P� ��

Z b

a

f

����
���� < e=2 and S g;

�P� ��
Z b

a

g

����
���� < e=2:

To prove (b), we note that

S f þ g;
�P� ��

Z b

a

f þ
Z b

a

g

� �����
���� ¼ S f ;

�P� �þ S g;
�P� ��

Z b

a

f �
Z b

a

g

����
����

� S f ;
�P� ��

Z b

a

f

����
����þ S g;

�P� ��
Z b

a

g

����
����

< e=2þ e=2 ¼ e:

Since e > 0 is arbitrary, we conclude that f þ g 2 R a; b½ � and that its integral is the sum of

the integrals of f and g.

To prove (c), we note that the Triangle Inequality applied to (5) implies

Z b

a

f � e=2 < S f ;
�P� �

and S g;
�P� �

<

Z b

a

gþ e=2:

If we use the fact that S f ; _P� � � S g; _P� �
, we have

Z b

a

f �
Z b

a

gþ e:

But, since e > 0 is arbitrary, we conclude that
R b

a
f � R b

a
g. Q.E.D.

Boundedness Theorem

We now show that an unbounded function cannot be Riemann integrable.

7.1.6 Theorem If f 2 R a; b½ �, then f is bounded on [a, b].

Proof. Assume that f is an unbounded function in R a; b½ � with integral L. Then there

exists d > 0 such that if _P is any tagged partition of a; b½ � with jj _Pjj < d, then we have

S f ; _P� �� L
�� �� < 1, which implies that

ð6Þ S f ;
�P� ��� �� < Lj j þ 1:

Now letQ ¼ xi�1; xi½ �f gnn¼1 be a partition of [a, b] with jjQjj < d. Since fj j is not bounded
on [a, b], then there exists at least one subinterval in Q, say xk�1; xk½ �, on which fj j is not
bounded—for, if fj j is bounded on each subinterval xi�1; xi½ � by Mi, then it is bounded on

[a, b] by max M1; . . . ;Mnf g.
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We will now pick tags for Q that will provide a contradiction to (6). We tag Q by

tt :¼ xi for i 6¼ k and we pick tk 2 xk�1; xk½ � such that

f tkð Þ xk � xk�1ð Þj j > Lj j þ 1þ
���X
i 6¼k

f tið Þ xi � xi�1ð Þ
���:

From the Triangle Inequality (in the form Aþ Bj j � Aj j � Bj j), we have

S f ;
�Q� ��� �� � f tkð Þ xk � xk�1ð Þj j �

���X
i 6¼k

f tið Þ xi � xi�1ð Þ
��� > Lj j þ 1;

which contradicts (6). Q.E.D.

We will close this section with an example of a function that is discontinuous at every

rational number and is not monotone, but is Riemann integrable nevertheless.

7.1.7 Example We consider Thomae’s function h : 0; 1½ � ! R defined, as in Exam-

ple 5.1.6(h), by h xð Þ :¼ 0 if x 2 0; 1½ � is irrational, h 0ð Þ :¼ 1 and by h xð Þ :¼ 1=n if x 2
0; 1½ � is the rational number x ¼ m=n where m; n 2 N have no common integer factors

except 1. It was seen in 5.1.6(h) that h is continuous at every irrational number and

discontinuous at every rational number in [0, l]. See Figure 5.1.2. We will now show that

h 2 R 0; 1½ �.
For e > 0, the set E :¼ x 2 0; 1½ � : h xð Þ � e=2f g is a finite set. (For example, if

e=2 ¼ 1=5, then there are eleven values of x such that h xð Þ � 1=5, namely,

E ¼ 0; 1; 1=2; 1=3; 2=3; 1=4; 3=4; 1=5; 2=5; 3=5; 4=5f g. (Sketch a graph.) We let n

be the number of elements in E and take d :¼ e= 4nð Þ. If _P is a given tagged partition such

that jj _Pjj < d, then we separate _P into two subsets. We let _P1 be the collection of tagged

intervals in _P that have their tags in E, and we let _P2 be the subset of tagged intervals in _P
that have their tags elsewhere in [0, 1]. Allowing for the possibility that a tag of _P1 may be

an endpoint of adjacent intervals, we see that _P1 has at most 2n intervals and the total

length of these intervals can be at most 2nd ¼ e=2. Also, we have 0 < h tið Þ � 1 for each tag

ti in _P1. Consequently, we have S h; _P1

� � � 1 � 2nd � e=2. For tags ti in _P2, we have

h tið Þ < e=2 and the total length of the subintervals in _P2 is clearly less than 1, so that

S h; _P2

� �
< e=2ð Þ � 1 ¼ e=2. Therefore, combining these results, we get

0 � S h;
�P� � ¼ S h;

�P1

� �þ S h;
�P2

� �
< e=2þ e=2 ¼ e:

Since e > 0 is arbitrary, we infer that h 2 R 0; 1½ � with integral 0. &

Exercises for Section 7.1

1. If I :¼ 0; 4½ �, calculate the norms of the following partitions:

(a) P1 :¼ 0; 1; 2; 4ð Þ; (b) P2 :¼ 0; 2; 3; 4ð Þ;
(c) P3 :¼ 0; 1; 1:5; 2; 3:4; 4ð Þ; (d) P4 :¼ 0; :5; 2:5; 3:5; 4ð Þ:

2. If f xð Þ :¼ x2 for x 2 0; 4½ �, calculate the following Riemann sums, where _Pi has the same

partition points as in Exercise 1, and the tags are selected as indicated.

(a) _P1 with the tags at the left endpoints of the subintervals.

(b) _P1 with the tags at the right endpoints of the subintervals.

(c) _P2 with the tags at the left endpoints of the subintervals.

(d) _P2 with the tags at the right endpoints of the subintervals.

3. Show that f : a; b½ � ! R is Riemann integrable on [a, b] if and only if there exists L 2 R such

that for every e > 0 there exists de > 0 such that if _P is any tagged partition with norm

jj _Pjj � de, then S f ; _P� �� L
�� �� � e.
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4. Let _P be a tagged partition of [0, 3].

(a) Show that the unionU1 of all subintervals in _P with tags in [0, 1] satisfies 0; 1� jj _Pjj	 
 �
U1 � 0; 1þ jj _Pjj	 


.

(b) Show that the union U2 of all subintervals in _P with tags in [1,2] satisfies 1þ jj _Pjj;	
2� jj _Pjj � � U2 � 1� jj _Pjj; 2þ jj _Pjj	 


:

5. Let _P :¼ Ii; tið Þf gni¼1 be a tagged partition of [a, b] and let c1 < c2.

(a) If u belongs to a subinterval Ii whose tag satisfies c1 � ti � c2, show that c1 � jj _Pjj � u �
c2 þ jj _Pjj.

(b) If v 2 a; b½ � and satisfies c1 þ jj _Pjj � v � c2 � jj _Pjj, then the tag ti of any subinterval Ii
that contains v satisfies ti 2 c1; c2½ �.

6. (a) Let f xð Þ :¼ 2 if 0 � x < 1 and f xð Þ :¼ 1 if 1 � x � 2. Show that f 2 R 0; 2½ � and evaluate
its integral.

(b) Let h xð Þ :¼ 2 if 0 � x < 1; h 1ð Þ :¼ 3 and h xð Þ :¼ 1 if 1 < x � 2. Show that h 2 R 0; 2½ �
and evaluate its integral.

7. Use Mathematical Induction and Theorem 7.1.5 to show that if f 1; . . . ; f n are in R a; b½ �
and if k1; . . . ; kn 2 R , then the linear combination f ¼

Xn
i¼1

ki f i belongs to R a; b½ � and

R b

a
f ¼

Xn
i¼1

ki

Z b

a

f i.

8. If f 2 R a; b½ � and f xð Þj j � M for all x 2 a; b½ �, show that
R b

a
f

��� ��� � M b� að Þ.
9. If f 2 R a; b½ � and if _Pn

� �
is any sequence of tagged partitions of a; b½ � such that jj _Pnjj ! 0,

prove that
R b

a
f ¼ limn S f ; _Pn

� �
.

10. Let g xð Þ :¼ 0 if x 2 0; 1½ � is rational and g xð Þ :¼ 1=x if x 2 0; 1½ � is irrational. Explain why

g =2 R 0; 1½ �. However, show that there exists a sequence _Pn

� �
of tagged partitions of [a, b] such

that jj _Pnjj ! 0 and limn S g; _Pn

� �
exists.

11. Suppose that f is bounded on [a, b] and that there exists two sequences of tagged partitions of

[a, b] such that jj _Pnjj ! 0 and jj _Qnjj ! 0, but such that limn S f ; _Pn

� � 6¼ limn S f ; _Qn

� �
. Show

that f is not in R a; b½ �.
12. Consider the Dirichlet function, introduced in Example 5.1.6(g), defined by f xð Þ :¼ 1 for x 2

0; 1½ � rational and f xð Þ :¼ 0 for x 2 0; 1½ � irrational. Use the preceding exercise to show that f is

not Riemann integrable on [0, 1].

13. Suppose that c � d are points in [a, b]. If w : a; b½ � ! R satisfies w xð Þ ¼ a > 0 for x 2 c; d½ �
and w xð Þ ¼ 0 elsewhere in [a, b], prove that w 2 R a; b½ � and that R b

a
w ¼ a d � cð Þ. [Hint: Given

e > 0 let de :¼ e=4a and show that if jj _Pjj < de then we have a d � c� 2deð Þ � S w; _P� � �
a d � cþ 2deð Þ:�

14. Let 0 � a < b; let Q xð Þ :¼ x2 for x 2 a; b½ � and let P :¼ xi�1; xi½ �f gni¼1 be a partition of [a, b].

For each i, let qi be the positive square root of

1
3
x2i þ xixi�1 þ x2i�1

� �
:

(a) Show that qi satisfies 0 � xi�1 � qi � xi:
(b) Show that Q qið Þ xi � xi�1ð Þ ¼ 1

3
x3i � x3i�1

� �
.

(c) If _Q is the tagged partition with the same subintervals as P and the tags qi, show that

S Q; _Q� � ¼ 1
3
b3 � a3
� �

.

(d) Use the argument in Example 7.1.4(c) to show that Q 2 R a; b½ � and
Z b

a

Q ¼
Z b

a

x2dx ¼ 1
3
b3 � a3
� �

:

15. If f 2 R a; b½ � and c 2 R , we define g on [aþ c; bþ c] by g yð Þ :¼ f y� cð Þ. Prove that

g 2 R aþ c; bþ c½ � and that
R bþc

aþc
g ¼ R b

a
f . The function g is called the c-translate of f.
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Section 7.2 Riemann Integrable Functions

We begin with a proof of the important Cauchy Criterion. We will then prove the Squeeze

Theorem, which will be used to establish the Riemann integrability of several classes of

functions (step functions, continuous functions, and monotone functions). Finally we will

establish the Additivity Theorem.

We have already noted that direct use of the definition requires that we know the value

of the integral. The Cauchy Criterion removes this need, but at the cost of considering two

Riemann sums, instead of just one.

7.2.1 Cauchy Criterion A function: a; b½ � ! R belongs to R a; b½ � if and only if for

every e > 0 there exists he > 0 such that if _P and _Q are any tagged partitions of [a, b]with

jj _Pjj < he and jj _Qjj < he, then

S f ;
�P� �� S f ;

�Q� ��� �� < e: &

Proof. )ð Þ If f 2 R a; b½ � with integral L, let he :¼ de=2 > 0 be such that if _P, _Q are

tagged partitions such that jj _Pjj < he and jj _Qjj < he, then

S f ;
�P� �� L

�� �� < e=2 and S f ;
�Q� �� L

�� �� < e=2:

Therefore we have

S f ;
�P� �� S f ;

�Q� ��� �� � S f ;
�P� �� Lþ L� S f ;

�Q� ��� ��
� S f ;

�P� �� L
�� ��þ L� S f ;

�Q� ��� ��
< e=2þ e=2 ¼ e:

(ð Þ For each n 2 N , let dn > 0 be such that if _P and _Q are tagged partitions with

norms < dn, then

S f ;
�P� �� f f ;

�Q� ��� �� < 1=n:

Evidently we may assume that dn � dnþ1 for n 2 N; otherwise, we replace dn by

d0n :¼ min d1; . . . ; dnf g.
For each n 2 N , let _Pn be a tagged partition with jj _Pnjj < dn. Clearly, if m > n then

both _Pm and _Pn have norms < dn, so that

ð1Þ S f ;
�Pn

� �� S f ;
�Pm

� ��� �� < 1=n for m > n:

Consequently, the sequence S f ; _Pm

� �� �1
m¼1

is a Cauchy sequence in R . Therefore (by

Theorem 3.5.5) this sequence converges in R and we let A :¼ limm S f ; _Pm

� �
.

Passing to the limit in (1) as m ! 1, we have

S f ;
�Pn

� �� A
�� �� � 1=n for all n 2 N :

To see that A is the Riemann integral of f, given e > 0, let K 2 N satisfy K > 2=e. If _Q is

any tagged partition with jj _Qjj < dK , then

S f ;
�Q� �� A

�� �� � S f ;
�Q� �� S f ;

�PK

� ��� ��þ S f ;
�PK

� �� A
�� ��

� 1=K þ 1=K < e:

Since e > 0 is arbitrary, then f 2 R a; b½ � with integral A. Q.E.D.

We will now give two examples of the use of the Cauchy Criterion.
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7.2.2 Examples (a) Let g : 0; 3½ � ! R be the function considered in Example 7.1.4(b).

In that example we saw that if
�P is a tagged partition of [0, 3] with norm jj _Pjj < d, then

8� 5d � S g;
�P� � � 8þ 5d:

Hence if _Q is another tagged partition with jj _Qjj < d, then

8� 5d � S g;
�Q� � � 8þ 5d:

If we subtract these two inequalities, we obtain

S g;
�P� �� S g;

�Q� ��� �� � 10d:

In order to make this final term < e, we are led to employ the Cauchy Criterion with

he :¼ e=20. (We leave the details to the reader.)

(b) The Cauchy Criterion can be used to show that a function f : a; b½ � ! R is not

Riemann integrable. To do this we need to show that: There exists e0 > 0 such that for any

h > 0 there exists tagged partitions _P and _Q with jj _Pjj < h and jj _Qjj < h such that

S f ; _P� �� S f ; _Q� ��� �� � e0.
We will apply these remarks to the Dirichlet function, considered in 5.1.6(g), defined

by f xð Þ :¼ 1 if x 2 0; 1½ � is rational and f xð Þ :¼ 0 if x 2 0; 1½ � is irrational.
Here we take e0 :¼ 1

2
. If _P is any partition all of whose tags are rational numbers then

S f ; _P� � ¼ 1, while if _Q is any tagged partition all of whose tags are irrational numbers

then S f ; _Q� � ¼ 0. Since we are able to take such tagged partitions with arbitrarily small

norms, we conclude that the Dirichlet function is not Riemann integrable. &

The Squeeze Theorem

In working with the definition of Riemann integral, we have encountered two types of

difficulties. First, for each partition, there are infinitely many choices of tags. And second,

there are infinitely many partitions that have a norm less than a specified amount. We have

experienced dealing with these difficulties in examples and proofs of theorems. We will

now establish an important tool for proving integrability called the Squeeze Theorem that

will provide some relief from those difficulties. It states that if a given function can be

‘‘squeezed’’ or bracketed between two functions that are known to be Riemann integrable

with sufficient accuracy, then we may conclude that the given function is also Riemann

integrable. The exact conditions are given in the statement of the theorem. (The idea of

squeezing a function to establish integrability led the French mathematician Gaston

Darboux to develop an approach to integration by means of upper and lower integrals,

and this approach is presented in Section 7.4.)

7.2.3 Squeeze Theorem Let f : a; b½ � ! R . Then f 2 R a; b½ � if and only if for every

e > 0 there exist functions ae and ve in R a; b½ � with

ð2Þ ae xð Þ � f xð Þ � ve xð Þ for all x 2 a; b½ �;
and such that

ð3Þ
Z b

a

ve � aeð Þ < e:

7.2 RIEMANN INTEGRABLE FUNCTIONS 209



C07 12/13/2010 10:5:34 Page 210

Proof. ()) Take ae ¼ ve ¼ f for all e > 0.

(() Let e > 0. Since ae and ve belong to R a; b½ �, there exists de > 0 such that if _P is

any tagged partition with jj _Pjj < de then

S ae;
�P� ��

Z b

a

ae

����
���� < e and S ve;

�P� ��
Z b

a

ve

����
���� < e:

It follows from these inequalities that

Z b

a

ae � e < S ae;
�P� �

and S ve;
�P� �

<

Z b

a

ve þ e:

In view of inequality (2), we have S ae; _P
� � � S f ; _P� � � S ve; _P

� �
, whenceZ b

a

ae � e < S f ;
�P� �

<

Z b

a

ve þ e:

If _Q is another tagged partition with jj _Qjj < de, then we also haveZ b

a

ae � e < S f ;
�Q� �

<

Z b

a

ve þ e:

If we subtract these two inequalities and use (3), we conclude that

S f ;
�P� �� S f ;

�Q� ��� �� <
Z b

a

ve �
Z b

a

ae þ 2e

¼
Z b

a

ve � aeð Þ þ 2e < 3e:

Since e > 0 is arbitrary, the Cauchy Criterion implies that f 2 R a; b½ �. Q.E.D.

Classes of Riemann Integrable Functions

The Squeeze Theorem is often used in connection with the class of step functions. It will be

recalled from Definition 5.4.9 that a function w : a; b½ � ! R is a step function if it has only

a finite number of distinct values, each value being assumed on one or more subintervals of

[a, b]. For illustrations of step functions, see Figures 5.4.3 or 7.1.4.

7.2.4 Lemma If J is a subinterval of [a, b] having endpoints c < d and if wJ xð Þ :¼ 1 for

x 2 J and wJ xð Þ :¼ 0 elsewhere in [a, b], then wJ 2 R a; b½ � and R b

a
wJ ¼ d � c.

Proof. If J ¼ c; d½ � with c � d, this is Exercise 7.1.13 and we can choose de :¼ e=4.
There are three other subintervals J having the same endpoints c and d, namely, [c, d ),

(c, d ], and (c, d ). Since, by Theorem 7.1.3, we can change the value of a function at finitely

many points without changing the integral, we have the same result for these other three

subintervals. Therefore, we conclude that all four functions wJ are integrable with integral

equal to d � c. Q.E.D.

It is an important fact that any step function is Riemann integrable.

7.2.5 Theorem If w : a; b½ � ! R is a step function, then w 2 R a; b½ �.

Proof. Step functions of the type appearing in 7.2.4 are called ‘‘elementary step

functions.’’ In Exercise 5 it is shown that an arbitrary step function w can be expressed

210 CHAPTER 7 THE RIEMANN INTEGRAL



C07 12/13/2010 10:5:34 Page 211

as a linear combination of such elementary step functions:

ð4Þ w ¼
Xm
j¼1

kjwJj
;

where Jj has endpoints cj < dj . The lemma and Theorem 7.1.5(a, b) imply that w 2 R a; b½ �
and that

ð5Þ
Z b

a

w ¼
Xm
j¼1

kj dj � cj
� �

: Q.E.D.

We illustrate the use of step functions and the Squeeze Theorem in the next two

examples. The first reconsiders a function that originally required a complicated

calculation.

7.2.6 Examples (a) The function g in Example 7.1.4(b) is defined by g xð Þ ¼ 2 for

0 � x � 1 and g xð Þ ¼ 3 for 1 < x � 3. We now see that g is a step function and therefore

we calculate its integral to be
R 3

0
g ¼ 2� 1� 0ð Þ þ 3� 3� 1ð Þ ¼ 2þ 6 ¼ 8.

(b) Let h xð Þ :¼ x on [0,1] and let Pn :¼ 0; 1=n; 2=n; . . . ; n� 1ð Þ=n; n=n ¼ 1ð Þ. We

define the step functions an and vn on the disjoint subintervals 0; 1=n½ Þ; 1=n; 2=n½ Þ;
. . . ; n� 2ð Þ=n½ Þ; n� 1ð Þ=nÞ; n� 1ð Þ=n; 1½ � as follows: an xð Þ :¼ h k � 1ð Þ=nð Þ ¼
k � 1ð Þ=n for x in k � 1ð Þ=n; k=n½ Þ for k ¼ 1; 2; . . . ; n� 1, and an xð Þ :¼
h n� 1ð Þ=nð Þ ¼ n� 1ð Þ=n for x in n� 1ð Þ=n; 1½ �. That is, an has the minimum value

of h on each subinterval. Similarly, we define vn to be the maximum value of h on each

subinterval, that is, vn xð Þ :¼ k=n for x in k � 1ð Þ=n; k=n½ Þ for k ¼ 1; 2; . . . ; n� 1, and

vn xð Þ :¼ 1 for x in n� 1ð Þ=n; 1½ �. (The reader should draw a sketch for the case n ¼ 4.)

Then we get

Z 1

0

an ¼ 1

n
0þ 1=nþ 2=nþ � � � þ n� 1ð Þ=nð Þ

¼ 1

n2
1þ 2þ � � � þ n� 1ð Þð Þ

¼ 1

n2
n� 1ð Þn

2
¼ 1

2
1� 1=nð Þ:

In a similar manner, we also get
R 1

0
vn ¼ 1

2
1þ 1=nð Þ. Thus we have

an xð Þ � h xð Þ � vn xð Þ

for x 2 0; 1½ � and
Z 1

0

vn � anð Þ ¼ 1

n
:

Since for a given e > 0, we can choose n so that 1
n
< e, it follows from the Squeeze Theorem

that h is integrable. We also see that the value of the integral of h lies between the integrals

of an and vn for all n and therefore has value 1
2
. &

Wewill now use the Squeeze Theorem to show that an arbitrary continuous function is

Riemann integrable.
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7.2.7 Theorem If f : a; b½ � ! R is continuous on [a, b], then f 2 R a; b½ �.

Proof. It follows from Theorem 5.4.3 that f is uniformly continuous on [a, b]. Therefore,

given e > 0 there exists de > 0 such that if u; v 2 a; b½ � and u� vj j < de, then we have

f uð Þ � f vð Þj j < e= b� að Þ.
Let P ¼ Iif gni¼1 be a partition such that jjPjj < de. Applying Theorem 5.3.4 we let

ui 2 Ii be a point where f attains its minimum value on Ii, and let vi 2 Ii be a point where f

attains its maximum value on Ii.

Let ae be the step function defined by ae xð Þ :¼ f uið Þ for x 2 xi�1; xi½ Þ i ¼ 1; . . . ;ð
n� 1Þ and ae xð Þ :¼ f unð Þ for x 2 xn�1; xn½ �. Let ve be defined similarly using the points vi
instead of the ui. Then one has

ae xð Þ � f xð Þ � ve xð Þ for all x 2 a; b½ �:
Moreover, it is clear that

0 �
Z b

a

ve � aeð Þ ¼
Xn
i¼1

f við Þ � f uið Þð Þ xi � xi�1ð Þ

<
Xn
i¼1

e
b� a

� �
xi � xi�1ð Þ ¼ e:

Therefore it follows from the Squeeze Theorem that f 2 R a; b½ �. Q.E.D.

Monotone functions are not necessarily continuous at every point, but they are also

Riemann integrable.

7.2.8 Theorem If f : a; b½ � ! R is monotone on [a, b], then f 2 R a; b½ �.

Proof. Assume that f is increasing on I ¼ a; b½ �. Partitioning the interval into n equal

subintervals Ik ¼ xk�1; xk½ � gives us xk � xk�1 ¼ b� að Þ=n; k ¼ 1; 2; . . . ; n. Since f

is increasing on Ik, its minimum value is attained at the left endpoint xk�1 and its

maximum value is attained at the right endpoint xk. Therefore, we define the step

functions a xð Þ :¼ f xk�1ð Þ and v xð Þ :¼ f xkð Þ for x 2 xk�1; xk½ Þ; k ¼ 1; 2; . . . ; n� 1, and

a xð Þ :¼ f xn�1ð Þ and v xð Þ :¼ f xnð Þ for x 2 xn�1; xn½ �. Then we have a xð Þ � f xð Þ �
v xð Þ for all x 2 I, and

Z b

a

a ¼ b� a

n
f x0ð Þ þ f x1ð Þ þ � � � þ f xn�1ð Þð Þ

Z b

a

v ¼ b� a

n
f x1ð Þ þ � � � þ f xn�1ð Þ þ f xnð Þð Þ:

Subtracting, and noting the many cancellations, we obtain

Z b

a

v� að Þ ¼ b� a

n
f xnð Þ � f x0ð Þð Þ ¼ b� a

n
f bð Þ � f að Þð Þ:

Thus for a given e > 0, we choose n such that n > b� að Þ f bð Þ � f að Þð Þ=e. Then we haveR b

a
v� að Þ < e and the Squeeze Theorem implies that f is integrable on I. Q.E.D.
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The Additivity Theorem

We now return to arbitrary Riemann integrable functions. Our next result shows that the

integral is an ‘‘additive function’’ of the interval over which the function is integrated.

This property is no surprise, but its proof is a bit delicate and may be omitted on a first

reading.

7.2.9 Additivity Theorem Let f :¼ a; b½ � ! R and let c 2 a; bð Þ. Then f 2 R a; b½ � if
and only if its restrictions to [a, c] and [c, b] are both Riemann integrable. In this case

ð6Þ
Z b

a

f ¼
Z c

a

f þ
Z b

c

f :

Proof. (ð Þ Suppose that the restriction f1 of f to [a, c], and the restriction f2 of f to

[c, b] are Riemann integrable to L1 and L2 respectively. Then, given e > 0 there exists d0 > 0

such that if _P1 is a tagged partition of [a, c] with jj _P1jj < d0, then S f 1; _P1

� �� L1
�� �� < e=3.

Also there exists d00 > 0 such that if _P2 is a tagged partition of [c, b] wilh jj _P2jj < d00 then
S f 2; _P2

� �� L2
�� �� < e=3. IfM is a bound for j f j, we define de :¼ min d0; d00; e=6Mf g and let
_P be a tagged partition of [a, b] with jj _Qjj < d. We will prove that

ð7Þ S f ;
�Q� �� L1 þ L2ð Þ�� �� < e:

(i) If c is a partition point of _Q, we split _Q into a partition _Q1 of [a, c] and a partition
_Q2 of [c, b]. Since S f ; _Q� � ¼ S f ; _Q1

� �þ S f ; _Q2

� �
, and since _Q1 has norm < d0 and _Q2

has norm < d00, the inequality (7) is clear.

(ii) If c is not a partition point in _Q ¼ Ik; tkð Þf gmk¼1, there exists k � m such that

c 2 xk�1; xkð Þ. We let _Q1 be the tagged partition of [a, c] defined by

�Q1 :¼ I1; t1ð Þ; . . . ; Ik�1; tk�1ð Þ; xk�1; c½ �; cð Þf g;
and _Q2 be the tagged partition of [c, b] defined by

�Q2 :¼ c; xk½ �; cð Þ; Ikþ1; tkþ1ð Þ; . . . ; Im; tmð Þf g:
A straightforward calculation shows that

S f ;
�Q� �� S f ;

�Q1

� �� S f ;
�Q2

� � ¼ f tkð Þ xk � xk�1ð Þ � f cð Þ xk � xk�1ð Þ
¼ f tkð Þ � f cð Þð Þ � xk � xk�1ð Þ;

whence it follows that

S f ;
�Q� �� S f ;

�Q1

� �� S f ;
�Q2

� ��� �� � 2M xk � xk�1ð Þ < e=3:

But since jj _Q1jj < d � d0 and jj _Q2jj < d � d00, it follows that

S f ;
�Q1

� �� L1
�� �� < e=3 and S f ;

�Q2

� �� L2
�� �� < e=3;

from which we obtain (7). Since e > 0 is arbitrary, we infer that f 2 R a; b½ � and that (6)

holds.

)ð Þ We suppose that f 2 R a; b½ � and, given e > 0, we let he > 0 satisfy the Cauchy

Criterion 7.2.1. Let f1 be the restriction of f to [a, c] and let _P1; _Q1 be tagged partitions of
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[a, c] with jj _P1jj < he and jj _Q1jj < he. By adding additional partition points and tags from

[c, b], we can extend _P1 and _Q1 to tagged partitions _P and _Q of [a, b] that satisfy jj _Pjj < he
and jj _Qjj < he. If we use the same additional points and tags in [c, b] for both _P and _Q, then

S f 1;
�P1

� �� S f 1;
�Q1

� � ¼ S f ;
�P� �� S f ;

�Q� �
:

Since both _P and _Q have norm he, then S f 1; _P1

� �� S f 1;
_Q1

� ��� �� < e. Therefore theCauchy
Condition shows that the restriction f1 of f to [a, c] is inR a; c½ �. In the sameway, we see that

the restriction f2 of f to [c, b] is in R c; d½ �.
The equality (6) now follows from the first part of the theorem. Q.E.D.

7.2.10 Corollary If f 2 R a; b½ � , and if c; d½ � � a; b½ � , then the restriction of f to [c, d ]

is in R c; d½ �.

Proof. Since f 2 R a; b½ � and c 2 a; b½ �, it follows from the theorem that its restriction

to [c, b] is in R c; b½ �. But if d 2 c; b½ �, then another application of the theorem shows that

the restriction of f to c; d½ � is in R c; d½ �. Q.E.D.

7.2.11 Corollary If f 2 R a; b½ � and if a ¼ c0 < c1 < � � � < cm ¼ b, then the restric-

tions of f to each of the subintervals ci�1; ci½ � are Riemann integrable and

Z b

a

f ¼
Xm
i¼1

Z ci

ci�1

f :

Until now, we have considered the Riemann integral over an interval [a, b] where

a < b. It is convenient to have the integral defined more generally.

7.2.12 Definition If f 2 R a; b½ � and if a;b 2 a; b½ � with a < b, we define

Z a

b

f :¼ �
Z b

a

f and

Z a

a

f :¼ 0:

7.2.13 Theorem If f 2 R a; b½ � and if a;b; g are any numbers in [a, b], then

ð8Þ
Z b

a

f ¼
Z g

a

f þ
Z b

g

f ;

in the sense that the existence of any two of these integrals implies the existence of the

third integral and the equality (8).

Proof. If any two of the numbers a;b; g are equal, then (8) holds. Thus we may suppose

that all three of these numbers are distinct.

For the sake of symmetry, we introduce the expression

L a;b; gð Þ :¼
Z b

a

f þ
Z g

b

f þ
Z a

g

f :

It is clear that (8) holds if and only if L a;b; gð Þ ¼ 0. Therefore, to establish the assertion,

we need to show that L ¼ 0 for all six permutations of the arguments a;b, and g.
We note that the Additivity Theorem 7.2.9 implies that L a;b; gð Þ ¼ 0 when

a < g < b. But it is easily seen that both L b; g;að Þ and L g;a;bð Þ equal L a;b; gð Þ.
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Moreover, the numbers

L b;a; gð Þ; L a; g;bð Þ; and L g;b;að Þ

are all equal to �L a;b; gð Þ. Therefore, L vanishes for all possible configurations of these

three points. Q.E.D.

Exercises for Section 7.2

1. Let f : a; b½ � ! R . Show that f =2 R a; b½ � if and only if there exists e0 > 0 such that for every

n 2 N there exist tagged partitions _Pn and _Qn with jj _Pnjj < 1=n and jj _Qnjj < 1=n such that

S f ; _Pn

� �� S f ; _Qn

� ��� �� � e0.

2. Consider the function h defined by h xð Þ :¼ xþ 1 for x 2 0; 1½ � rational, and h xð Þ :¼ 0 for

x 2 0; 1½ � irrational. Show that h is not Riemann integrable.

3. Let H xð Þ :¼ k for x ¼ 1=k k 2 Nð Þ and H xð Þ :¼ 0 elsewhere on [0, 1]. Use Exercise 1, or the

argument in 7.2.2(b), to show that H is not Riemann integrable.

4. If a xð Þ :¼ �x and v xð Þ :¼ x and if a xð Þ � f xð Þ � v xð Þ for all x 2 0; 1½ �, does it follow from

the Squeeze Theorem 7.2.3 that f 2 R 0; 1½ �?
5. If J is any subinterval of [a, b] and if wJ xð Þ :¼ 1 for x 2 J and wJ xð Þ :¼ 0 elsewhere on [a, b], we

say that wJ is an elementary step function on [a, b]. Show that every step function is a linear

combination of elementary step functions.

6. If c : a; b½ � ! R takes on only a finite number of distinct values, is c a step function?

7. If S f ; _P� �
is any Riemann sum of f : a; b½ � ! R , show that there exists a step function

w : a; b½ � ! R such that
R b

a
w ¼ S f ; _P� �

.

8. Suppose that f is continuous on [a, b], that f xð Þ � 0 for all x 2 a; b½ � and that
R b

a
f ¼ 0. Prove

that f xð Þ ¼ 0 for all x 2 a; b½ �.
9. Show that the continuity hypothesis in the preceding exercise cannot be dropped.

10. If f and g are continuous on [a, b] and if
R b

a
f ¼ R b

a
g, prove that there exists c 2 a; b½ � such that

f cð Þ ¼ g cð Þ.
11. If f is bounded by M on [a, b] and if the restriction of f to every interval [c, b] where c 2 a; bð Þ is

Riemann integrable, show that f 2 R a; b½ � and that
R b

c
f ! R b

a
f as c ! aþ. [Hint: Let ac xð Þ :¼

�M and vc xð Þ :¼ M for x 2 ½a; cÞ and ac xð Þ :¼ vc xð Þ :¼ f xð Þ for x 2 c; b½ �. Apply the Squeeze
Theorem 7.2.3 for c sufficiently near a.]

12. Show that g xð Þ :¼ sinð1=xÞ for x 2 ð0; 1� and g 0ð Þ :¼ 0 belongs to R 0; 1½ �.
13. Give an example of a function f : a; b½ � ! R that is in R c; b½ � for every c 2 a; bð Þ but which is

not in R a; b½ �.
14. Suppose that f : a; b½ � ! R , that a ¼ c0 < c1 < � � � < cm ¼ b and that the restrictions of f to

ci�1; ci½ � belong to R ci�1; ci½ � for i ¼ 1; . . . ;m. Prove that f 2 R a; b½ � and that the formula in

Corollary 7.2.11 holds.

15. If f is bounded and there is a finite set E such that f is continuous at every point of a; b½ �nE, show
that f 2 R a; b½ �.

16. If f is continuous on [a, b], a < b, show that there exists c 2 a; b½ � such that we have
R b

a
f ¼

f cð Þ b� að Þ. This result is sometimes called the Mean Value Theorem for Integrals.

17. If f and g are continuous on [a, b] and g xð Þ > 0 for all x 2 a; b½ �, show that there exists c 2 a; b½ �
such that

R b

a
f g ¼ f cð Þ R b

a
g. Show that this conclusion fails if we do not have g xð Þ > 0. (Note

that this result is an extension of the preceding exercise.)
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18. Let f be continuous on [a, b], let f xð Þ � 0 for x 2 a; b½ �, and let Mn :¼ ðR b

a
f nÞ1=n. Show that

lim Mnð Þ ¼ sup f xð Þ : x 2 a; b½ �f g.
19. Suppose that a > 0 and that f 2 R �a; a½ �.

(a) If f is even (that is, if f �xð Þ ¼ f xð Þ for all x 2 0; a½ �Þ, show that
R a

�a
f ¼ 2

R a

0
f .

(b) If f is odd (that is, if f �xð Þ ¼ �f xð Þ for all x 2 0; a½ �Þ, show that
R a

�a
f ¼ 0.

20. If f is continuous on �a; a½ �, show that
R a

�a
f x2ð Þdx ¼ 2

R a

0
f x2ð Þdx.

Section 7.3 The Fundamental Theorem

Wewill now explore the connection between the notions of the derivative and the integral.

In fact, there are two theorems relating to this problem: one has to do with integrating a

derivative, and the other with differentiating an integral. These theorems, taken together,

are called the Fundamental Theorem of Calculus. Roughly stated, they imply that the

operations of differentiation and integration are inverse to each other. However, there are

some subtleties that should not be overlooked.

The Fundamental Theorem (First Form)

The First Form of the Fundamental Theorem provides a theoretical basis for the method of

calculating an integral that the reader learned in calculus. It asserts that if a function f is the

derivative of a function F, and if f belongs to R a; b½ �, then the integral
R b

a
f can be

calculated by means of the evaluation F b
a :¼ F bð Þ � F að Þ�� . A function F such that F0 xð Þ ¼

f xð Þ for all x 2 a; b½ � is called an antiderivative or a primitive of f on [a, b]. Thus, when f

has an antiderivative, it is a very simple matter to calculate its integral.

In practice, it is convenient to allow some exceptional points c where F0 cð Þ does not
exist in R , or where it does not equal f cð Þ. It turns out that we can permit a finite number of

such exceptional points.

7.3.1 Fundamental Theorem of Calculus (First Form) Suppose there is a finite set E
in [a, b] and functions f, F :¼ a; b½ � ! R such that:

(a) F is continuous on [a, b],

(b) F0 xð Þ ¼ f xð Þ for all x 2 a; b½ �nE,
(c) f belongs to R a; b½ �.

Then we have

ð1Þ
Z b

a

f ¼ F bð Þ � F að Þ:

Proof. We will prove the theorem in the case where E :¼ a; bf g. The general case can

be obtained by breaking the interval into the union of a finite number of intervals (see

Exercise 1).

Let e > 0 be given. Since f 2 R a; b½ � by assumption (c), there exists de > 0 such that if
_P is any tagged partition with jj _Pjj < de, then

ð2Þ S f ;
�P� ��

Z b

a

f

����
���� < e:
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If the subintervals in _P are xi�1; xi½ �, then the Mean Value Theorem 6.2.4 applied to F on

xi�1; xi½ � implies that there exists ui 2 xi�1; xið Þ such that

F xið Þ � F xi�1ð Þ ¼ F0 uið Þ � xi � xi�1ð Þ for i ¼ 1; . . . ; n:

If we add these terms, note the telescoping of the sum, and use the fact that F0 uið Þ ¼ f uið Þ,
we obtain

F bð Þ � F að Þ ¼
Xn
i¼1

F xið Þ � F xi�1ð Þð Þ ¼
Xn
i¼1

f uið Þ xi � xi�1ð Þ:

Now let _Pu :¼ xi�1; xi½ �; uið Þf gni¼1, so the sum on the right equals S f ; _Pu

� �
. If we substitute

F bð Þ � F að Þ ¼ S f ; _Pu

� �
into (2), we conclude that

F bð Þ � F að Þ �
Z b

a

f

����
���� < e:

But, since e > 0 is arbitrary, we infer that equation (1) holds. Q.E.D.

Remark If the function F is differentiable at every point of [a, b], then (by Theorem

6.1.2) hypothesis (a) is automatically satisfied. If f is not defined for some point c 2 E, we

take f cð Þ :¼ 0. Even if F is differentiable at every point of [a, b], condition (c) is not

automatically satisfied, since there exist functions F such that F0 is not Riemann

integrable. (See Example 7.3.2(e).)

7.3.2 Examples (a) If F xð Þ :¼ 1
2
x2 for all x 2 a; b½ �, then F0 xð Þ ¼ x for all x 2 a; b½ �.

Further, f ¼ F0 is continuous so it is inR a; b½ �. Therefore the Fundamental Theorem (with

E ¼ ;) implies that

Z b

a

x dx ¼ F bð Þ � F að Þ ¼ 1
2
b2 � a2
� �

:

(b) If G xð Þ :¼ Arctan x for x 2 a; b½ �, then G0ðxÞ ¼ 1=ðx2 þ 1Þ for all x 2 a; b½ �; also
G0 is continuous, so it is in R a; b½ �. Therefore the Fundamental Theorem (with E ¼ ;)
implies that

Z b

a

1

x2 þ 1
dx ¼ Arctan b� Arctan a:

(c) If A xð Þ :¼ xj j for x 2 �10; 10½ �, then A0 xð Þ ¼ �1 if x 2 ½�10; 0Þ and A0 xð Þ ¼ þ1 for

x 2 0; 10ð �. Recalling the definition of the signum function (in 4.1.10(b)), we have A0 xð Þ ¼
sgn xð Þ for all x 2 �10; 10½ �n 0f g. Since the signum function is a step function, it belongs

to R �10; 10½ �. Therefore the Fundamental Theorem (with E ¼ 0f g) implies that

Z 10

�10

sgn xð Þ dx ¼ A 10ð Þ � A �10ð Þ ¼ 10� 10 ¼ 0:

(d) If H xð Þ :¼ 2
ffiffiffi
x

p
for x 2 0; b½ �, then H is continuous on [0, b] and H0 xð Þ ¼ 1=

ffiffiffi
x

p
for x 2 0; bð �. Since h :¼ H0 is not bounded on (0, b], it does not belong to R 0; b½ � no
matter how we define h 0ð Þ. Therefore, the Fundamental Theorem 7.3.1 does not apply.

(However, we will see in Example 10.1.10(a) that h is generalized Riemann integrable

on [0, b].)

7.3 THE FUNDAMENTALTHEOREM 217



C07 12/13/2010 10:5:37 Page 218

(e) Let K xð Þ :¼ x2cos 1=x2ð Þ for x 2 0; 1ð � and let K 0ð Þ :¼ 0. It follows from the Product

Rule 6.1.3(c) and the Chain Rule 6.1.6 that

K 0 xð Þ ¼ 2x cos 1=x2ð Þ þ 2=xð Þsin 1=x2ð Þ for x 2 0; 1ð �:
Further, as in Example 6.1.7(e), it can be shown that K 0 0ð Þ ¼ 0. Thus K is continuous and

differentiable at every point of [0, 1]. Since it can be seen that the function K 0 is not

bounded on [0, 1], it does not belong toR 0; 1½ � and the Fundamental Theorem 7.3.1 does

not apply toK 0. (However, wewill see from Theorem 10.1.9 thatK 0 is generalizedRiemann

integrable on [0, 1].) &

The Fundamental Theorem (Second Form)

We now turn to the Fundamental Theorem (Second Form) in which wewish to differentiate

an integral involving a variable upper limit.

7.3.3 Definition If f 2 R a; b½ �, then the function defined by

ð3Þ F zð Þ :¼
Z z

a

f for z 2 a; b½ �;

is called the indefinite integral of f with basepoint a. (Sometimes a point other than a is

used as a basepoint; see Exercise 6.)

We will first show that if f 2 R a; b½ �, then its indefinite integral F satisfies a Lipschitz

condition; hence F is continuous on [a, b].

7.3.4 Theorem The indefinite integral F defined by (3) is continuous on [a, b]. In fact, if

f xð Þj j � M for all x 2 a; b½ �, then F zð Þ � F wð Þj j � M z� wj j for all z; w 2 a; b½ �.

Proof. The Additivity Theorem 7.2.9 implies that if z; w 2 a; b½ � and w � z, then

F zð Þ ¼
Z z

a

f ¼
Z w

a

f þ
Z z

w

f ¼ F wð Þ þ
Z z

w

f ;

whence we have

F zð Þ � F wð Þ ¼
Z z

w

f :

Now if �M � f xð Þ � M for all x 2 a; b½ �, then Theorem 7.1.5(c) implies that

�M z� wð Þ �
Z z

w

f � M z� wð Þ;

whence it follows that

F zð Þ � F wð Þj j �
Z z

w

f

����
���� � M z� wj j;

as asserted. Q.E.D.

We will now show that the indefinite integral F is differentiable at any point where f

is continuous.
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7.3.5 Fundamental Theorem of Calculus (Second Form) Let f 2 R a; b½ � and let f be

continuous at a point c 2 a; b½ � . Then the indefinite integral, defined by (3), is differen-

tiable at c and F0 cð Þ ¼ f cð Þ.

Proof. We will suppose that c 2 a; b½ Þ and consider the right-hand derivative of

F at c. Since f is continuous at c, given e > 0 there exists he > 0 such that if

c � x < cþ he, then

ð4Þ f cð Þ � e < f xð Þ < f cð Þ þ e:

Let h satisfy 0 < h < he. The Additivity Theorem 7.2.9 implies that f is integrable on the

intervals a; c½ �; a; cþ h½ � and c; cþ h½ � and that

F cþ hð Þ � F cð Þ ¼
Z cþh

c

f :

Now on the interval c; cþ h½ � the function f satisfies inequality (4), so that we have

f cð Þ � eð Þ � h � F cþ hð Þ � F cð Þ ¼
Z cþh

c

f � f cð Þ þ eð Þ � h:

If we divide by h > 0 and subtract f cð Þ, we obtain

F cþ hð Þ � F cð Þ
h

� f cð Þ
����

���� � e:

But, since e > 0 is arbitrary, we conclude that the right-hand limit is given by

lim
x!0þ

F cþ hð Þ � F cð Þ
h

¼ f cð Þ:

It is proved in the same way that the left-hand limit of this difference quotient also equals

f cð Þ when c 2 a; bð �, whence the assertion follows. Q.E.D.

If f is continuous on all of [a, b], we obtain the following result.

7.3.6 Theorem If f is continuous on [a, b], then the indefinite integral F, defined by (3),

is differentiable on [a, b] and F0 xð Þ ¼ f xð Þ for all x 2 a; b½ �.

Theorem 7.3.6 can be summarized: If f is continuous on [a, b], then its indefinite

integral is an antiderivative of f. We will now see that, in general, the indefinite integral

need not be an antiderivative (either because the derivative of the indefinite integral does

not exist or does not equal f xð Þ).

7.3.7 Examples (a) If f xð Þ :¼ sgn x on �1; 1½ �, then f 2 R �1; 1½ � and has the

indefinite integral F xð Þ :¼ xj j � 1 with the basepoint �1. However, since F0 0ð Þ does

not exist, F is not an antiderivative of f on �1; 1½ �.
(b) If h denotes Thomae’s function, considered in 7.1.7, then its indefinite integral

H xð Þ :¼ R x

0
h is identically 0 on [0, 1]. Here, the derivative of this indefinite integral exists

at every point and H0 xð Þ ¼ 0. But H0 xð Þ 6¼ h xð Þ whenever x 2 Q \ 0; 1½ �, so that H is not

an antiderivative of h on [0, 1]. &
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Substitution Theorem

The next theorem provides the justification for the ‘‘change of variable’’ method that is

often used to evaluate integrals. This theorem is employed (usually implicitly) in the

evaluation by means of procedures that involve the manipulation of ‘‘differentials,’’

common in elementary courses.

7.3.8 Substitution Theorem Let J :¼ a; b½ � and let w : J ! R have a continuous

derivative on J. If f : I ! R is continuous on an interval I containing w Jð Þ, then

ð5Þ
Z b

a

f w tð Þð Þ � w0 tð Þdt ¼
Z w bð Þ

w að Þ
f xð Þdx:

The proof of this theorem is based on the Chain Rule 6.1.6, and will be outlined in

Exercise 17. The hypotheses that f and w0 are continuous are restrictive, but are used to

ensure the existence of the Riemann integral on the left side of (5).

7.3.9 Examples (a) Consider the integral

Z 4

1

sin
ffiffi
t

p
ffiffi
t

p dt.

Here we substitute w tð Þ :¼ ffiffi
t

p
for t 2 1; 4½ � so that w0 tð Þ ¼ 1= 2

ffiffi
t

p� �
is continuous on

[1, 4]. If we let f xð Þ :¼ 2 sin x, then the integrand has the form f 	 wð Þ � w0 and the

Substitution Theorem 7.3.8 implies that the integral equals
R 2

1
2 sinx dx ¼ �2 cos xj21¼

2 cos 1� cos 2ð Þ.

(b) Consider the integral

Z 4

0

sin
ffiffi
t

p
ffiffi
t

p dt.

Since w tð Þ :¼ ffiffi
t

p
does not have a continuous derivative on [0, 4], the Substitution

Theorem 7.3.8 is not applicable, at least with this substitution. (In fact, it is not obvious that

this integral exists; however, we can apply Exercise 7.2.11 to obtain this conclusion. We

could then apply the Fundamental Theorem 7.3.1 to F tð Þ :¼ �2 cos
ffiffi
t

p
with E :¼ 0f g to

evaluate this integral.) &

We will give a more powerful Substitution Theorem for the generalized Riemann

integral in Section 10.1.

Lebesgue’s lntegrability Criterion

We will now present a statement of the definitive theorem due to Henri Lebesgue

(1875–1941) giving a necessary and sufficient condition for a function to be Riemann

integrable, and will give some applications of this theorem. In order to state this result,

we need to introduce the important notion of a null set.

Warning Some people use the term ‘‘null set’’ as a synonym for the terms ‘‘empty set’’

or ‘‘void set’’ referring to ; (¼ the set that has no elements). However, we will always use

the term ‘‘null set’’ in conformity with our next definition, as is customary in the theory of

integration.

7.3.10 Definition (a) A set Z � R is said to be a null set if for every e > 0 there exists a

countable collection ak; bkð Þf g1k¼1 of open intervals such that

ð6Þ Z �
[1
k¼1

ak; bkð Þ and
X1
k¼1

bk � akð Þ � e:
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(b) If Q(x) is a statement about the point x 2 I, we say that Q(x) holds almost every-

where on I (or for almost every x 2 I), if there exists a null set Z � I such that Q(x)

holds for all x 2 InZ. In this case we may write

Q xð Þ for a:e: x 2 I:

It is trivial that any subset of a null set is also a null set, and it is easy to see that the

union of two null sets is a null set. We will now give an example that may be very

surprising.

7.3.11 Example The Q 1 of rational numbers in [0, 1] is a null set.

We enumerate Q 1 ¼ r1; r2; . . .f g. Given e > 0, note that the open interval J1 :¼
r1 � e=4; r1 þ e=4ð Þ contains r1 and has length e=2; also the open interval J2 :¼ r2�ð
e=8; r2 þ e=8) contains r2 and has length e=4. In general, the open interval

Jk :¼ rk � e

2kþ1
; rk þ e

2kþ1

� �

contains the point rk and has length e=2k. Therefore, the union
S1

k¼1Jk of these open

intervals contains every point of Q 1; moreover, the sum of the lengths is
X1
k¼1

e=2k
� � ¼ e.

Since e > 0 is arbitrary, Q 1 is a null set. &

The argument just given can be modified to show that: Every countable set is a null set.

However, it can be shown that there exist uncountable null sets in R ; for example, the

Cantor set that will be introduced in Definition 11.1.10.

We now state Lebesgue’s Integrability Criterion. It asserts that a bounded function on

an interval is Riemann integrable if and only if its points of discontinuity form a null set.

7.3.12 Lebesgue’s Integrability Criterion A bounded function f : a; b½ � ! R is

Riemann integrable if and only if it is continuous almost everywhere on [a, b].

A proof of this result will be given in Appendix C. However, we will apply Lebesgue’s

Theorem here to some specific functions, and show that some of our previous results follow

immediately from it. We shall also use this theorem to obtain the important Composition

and Product Theorems.

7.3.13 Examples (a) The step function g in Example 7.1.4(b) is continuous at every

point except the point x ¼ 1. Therefore it follows from the Lebesgue Integrability Criterion

that g is Riemann integrable.

In fact, since every step function has at most a finite set of points of discontinuity, then:

Every step function on [a, b] is Riemann integrable.

(b) Since it was seen in Theorem 5.6.4 that the set of points of discontinuity of a monotone

function is countable, we conclude that: Every monotone function on [a, b] is Riemann

integrable.

(c) The function G in Example 7.1.4(d) is discontinuous precisely at the points D :¼
1; 1=2; . . . ; 1=n; . . .f g. Since this is a countable set, it is a null set and Lebesgue’s Criterion

implies that G is Riemann integrable.

(d) The Dirichlet function was shown in Example 7.2.2(b) not to be Riemann integrable.

Note that it is discontinuous at every point of [0, 1]. Since it can be shown that the

interval [0, 1] is not a null set, Lebesgue’s Criterion yields the same conclusion.
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(e) Let h : 0; 1½ � ! R be Thomae’s function, defined in Examples 5.1.6(h) and 7.l.7.

In Example 5.1.6(h), we saw that h is continuous at every irrational number and is

discontinuous at every rational number in [0, 1]. By Example 7.3.11, it is discontinuous on

a null set, so Lebesgue’s Criterion implies that Thomae’s function is Riemann integrable on

[0, 1], as we saw in Example 7.1.7. &

We now obtain a result that will enable us to take other combinations of Riemann

integrable functions.

7.3.14 Composition Theorem Let f 2 R a; b½ � with f a; b½ �ð Þ � c; d½ � and let w :
c; d½ � ! R be continuous. Then the composition w 	 f belongs to R a; b½ �.

Proof. If f is continuous at a point u 2 a; b½ �, then w 	 f is also continuous at u. Since the

set D of points of discontinuity of f is a null set, it follows that the set D1 � D of points of

discontinuity of w 	 f is also a null set. Therefore the composition w 	 f also belongs to

R a; b½ �. Q.E.D.

It will be seen in Exercise 22 that the hypothesis that w is continuous cannot be

dropped. The next result is a corollary of the Composition Theorem.

7.3.15 Corollary Suppose that f 2 R a; b½ �. Then its absolute value fj j is inR a; b½ �, andZ b

a

f

����
���� �

Z b

a

fj j � M b� að Þ;

where f xð Þj j � M for all x 2 a; b½ �.

Proof. We have seen in Theorem 7.1.6 that if f is integrable, then there existsM such that

f xð Þj j � M for all x 2 a; b½ �. Let w tð Þ :¼ tj j for t 2 �M; M½ �; then the Composition

Theorem implies that fj j ¼ w 	 f 2 R a; b½ �. The first inequality follows from the fact that

� fj j � f � fj j and 7.1.5(c), and the second from the fact that f xð Þj j � M. Q.E.D.

7.3.16 The Product Theorem If f and g belong to R a; b½ �, then the product fg belongs

to R a; b½ �.

Proof. If w tð Þ :¼ t2 for t 2 �M; M½ �, it follows from the Composition Theorem that

f 2 ¼ w 	 f belongs to R a; b½ �. Similarly, f þ gð Þ2 and g2 belong to R a; b½ �. But since we
can write the product as

f g ¼ 1

2
f þ gð Þ2 � f 2 � g2

h i
;

it follows that f g 2 R a; b½ �. Q.E.D.

Integration by Parts

We will conclude this section with a rather general form of Integration by Parts for the

Riemann integral, and Taylor’s Theorem with the Remainder.

7.3.17 Integration by Parts Let F,G be differentiable on [a, b] and let f :¼ F0 and
g :¼ G0 belong to R a; b½ � . Then

ð7Þ
Z b

a

fG ¼ FG
b

a

���� �
Z b

a

Fg:
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Proof. By Theorem 6.1.3(c), the derivative FGð Þ0 exists on [a, b] and

FGð Þ0 ¼ F0Gþ FG0 ¼ fGþ Fg:

Since F, G are continuous and f, g belong to R a; b½ �, the Product Theorem 7.3.16 implies

that fG and Fg are integrable. Therefore the Fundamental Theorem 7.3.1 implies that

FG
b

a

���� ¼
Z b

a

FGð Þ0 ¼
Z b

a

fGþ
Z b

a

Fg;

from which (7) follows. Q.E.D.

A special, but useful, case of this theorem is when f and g are continuous on [a, b] and

F, G are their indefinite integrals F xð Þ :¼ R x

a
f and G xð Þ :¼ R x

a
g.

We close this section with a version of Taylor’s Theorem for the Riemann Integral.

7.3.18 Taylor’s Theorem with the Remainder Suppose that f 0; . . . ; f nð Þ; f nþ1ð Þ exist
on [a, b] and that f nþ1ð Þ 2 R a; b½ �. Then we have

ð8Þ f bð Þ ¼ f að Þ þ f 0 að Þ
1!

b� að Þ þ � � � þ f nð Þ að Þ
n!

b� að Þn þ Rn;

where the remainder is given by

ð9Þ Rn ¼ 1

n!

Z b

a

f nþ1ð Þ tð Þ � b� tð Þndt:

Proof. Apply Integration by Parts to equation (9), with F tð Þ :¼ f nð Þ tð Þ and G tð Þ :¼
b� tð Þn=n!, so that g tð Þ ¼ � b� tð Þn�1= n� 1ð Þ!, to get

Rn ¼ 1

n!
f nð Þ tð Þ � b� tð Þn

���t¼b

t¼a
þ 1

n� 1ð Þ!
Z b

a

f nð Þ tð Þ � b� að Þn�1
dt

¼ � f nð Þ að Þ
n!

� b� að Þn þ 1

n� 1ð Þ!
Z b

a

f nð Þ tð Þ � b� tð Þn�1
dt:

If we continue to integrate by parts in this way, we obtain (8). Q.E.D.

Exercises for Section 7.3

1. Extend the proof of the Fundamental Theorem 7.3.1 to the case of an arbitrary finite set E.

2. If n 2 N and Hn xð Þ :¼ xnþ1= nþ 1ð Þ for x 2 a; b½ �, show that the Fundamental Theorem 7.3.1

implies that
R b

a
xndx ¼ bnþ1 � anþ1

� �
= nþ 1ð Þ. What is the set E here?

3. If g xð Þ :¼ x for xj j � 1 and g xð Þ :¼ �x for xj j < 1 and if G xð Þ :¼ 1
2
x2 � 1
�� ��, show thatR 3

�2
g xð Þdx ¼ G 3ð Þ � G �2ð Þ ¼ 5=2.

4. Let B xð Þ :¼ � 1
2
x2 for x < 0 and B xð Þ :¼ 1

2
x2 for x � 0. Show that

R b

a
xj jdx ¼ B bð Þ � B að Þ.

5. Let f : a; b½ � ! R and let C 2 R .

(a) If F : a; b½ � ! R is an antiderivative of f on [a, b], show that FC xð Þ :¼ F xð Þ þ C is also

an antiderivative of f on [a, b].

(b) IfF1 andF2 are antiderivatives of f on [a, b], show thatF1 �F2 is a constant function on

[a, b].
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6. If f 2 R a; b½ � and if c 2 a; b½ �, the function defined by Fc zð Þ :¼ R z

c
f for z 2 a; b½ � is called the

indefinite integral of f with basepoint c. Find a relation between Fa and Fc.

7. We have seen in Example 7.1.7 that Thomae’s function is inR 0; 1½ �with integral equal to 0. Can
the Fundamental Theorem 7.3.1 be used to obtain this conclusion? Explain your answer.

8. Let F(x) be defined for x � 0 by F xð Þ :¼ n� 1ð Þx� n� 1ð Þn=2 for x 2 n� 1; n½ Þ; n 2 N.

Show that F is continuous and evaluate F0 xð Þ at points where this derivative exists. Use this

result to evaluate
R b

a
½x�½ �dx for 0 � a < b, where ½x�½ � denotes the greatest integer in x, as defined

in Exercise 5.1.4.

9. Let f 2 R a; b½ � and define F xð Þ :¼ R x

a
f for x 2 a; b½ �.

(a) Evaluate G xð Þ :¼ R x

c
f in terms of F, where c 2 a; b½ �.

(b) Evaluate H xð Þ :¼ R b

x
f in terms of F.

(c) Evaluate S xð Þ :¼ R sin x

x
f in terms of F.

10. Let f : a; b½ � ! R be continuous on [a, b] and let v : c; d½ � ! R be differentiable on [c, d] with

v c; d½ �ð Þ � a; b½ �. If we define G xð Þ :¼ R v xð Þ
a

f , show that G0 xð Þ ¼ f v xð Þð Þ � v0 xð Þ for all

x 2 c; d½ �.
11. Find F0 xð Þ when F is defined on [0, 1] by:

(a) F xð Þ :¼ R x2

0
1þ t3ð Þ�1

dt: (b) F xð Þ :¼ R x

x2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p
dt:

12. Let f : 0; 3½ � ! R be defined by f xð Þ :¼ x for 0 � x < 1; f xð Þ :¼ 1 for 1 � x < 2 and f xð Þ :¼ x

for 2 � x � 3. Obtain formulas for F xð Þ :¼ R x

0
f and sketch the graphs of f and F. Where is F

differentiable? Evaluate F0 xð Þ at all such points.

13. The function g is defined on [0, 3] by g xð Þ :¼ �1 if 0 � x < 2 and g xð Þ :¼ 1 if 2 � x � 3. Find

the indefinite integral G xð Þ ¼ R x

0
g for 0 � x � 3, and sketch the graphs of g and G. Does

G0 xð Þ ¼ g xð Þ for all x in [0, 3]?

14. Show there does not exist a continuously differentiable function f on [0, 2] such that

f 0ð Þ ¼ �1; f 2ð Þ ¼ 4, and f 0 xð Þ � 2 for 0 � x � 2. (Apply the Fundamental Theorem.)

15. If f : R ! R is continuous and c > 0, define g : R ! R by g xð Þ :¼ R xþc

x�c
f tð Þdt. Show that g is

differentiable on R and find g0 xð Þ.
16. If f : 0; 1½ � ! R is continuous and

R x

0
f ¼ R 1

x
f for all x 2 0; 1½ �, show that f xð Þ ¼ 0 for all

x 2 0; 1½ �.
17. Use the following argument to prove the SubstitutionTheorem7.3.8. DefineF uð Þ :¼ R u

w að Þ f xð Þdx
for u 2 I, and H tð Þ :¼ F w tð Þð Þ for t 2 J. Show that H0 tð Þ ¼ f w tð Þð Þw0 tð Þ for t 2 J and that

Z w bð Þ

w að Þ
f xð Þdx ¼ F w bð Þð Þ ¼ H bð Þ ¼

Z b

a

f w tð Þð Þw0 tð Þdt:

18. Use the Substitution Theorem 7.3.8 to evaluate the following integrals.

(a)

Z 1

0

t
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p
dt; (b)

Z 2

0

t2 1þ t3
� ��1=2

dt ¼ 4=3;

(c)

Z 4

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ffiffi

t
pp

ffiffi
t

p dt; (d)

Z 4

1

cos
ffiffi
t

p
ffiffi
t

p dt ¼ 2 sin 2� sin1ð Þ:

19. Explain why Theorem 7.3.8 and/or Exercise 7.3.17 cannot be applied to evaluate the following

integrals, using the indicated substitution.

(a)

Z 4

0

ffiffi
t

p
dt

1þ ffiffi
t

p w tð Þ ¼ ffiffi
t

p
; (b)

Z 4

0

cos
ffiffi
t

p
dtffiffi

t
p w tð Þ ¼ ffiffi

t
p

;

(c)

Z 1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2 tj j

p
dt w tð Þ ¼ tj j; (d)

Z 1

0

dtffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p w tð Þ ¼ Arcsin t:
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20. (a) If Z1 and Z2 are null sets, show that Z1 [ Z2 is a null set.

(b) More generally, if Zn is a null set for each n 2 N , show that
S1

n¼1Zn is a null set. [Hint:

Given e > 0 and n 2 N , let Jnk : k 2 N
� �

be a countable collection of open intervals whose

union contains Zn and the sum of whose lengths is � e=2n. Now consider the countable

collection Jnk : n; k 2 N
� �

.]

21. Let f ; g 2 R a; b½ �.
(a) If t 2 R , show that

R b

a
tf 
 gð Þ2 � 0.

(b) Use (a) to show that 2
R b

a
f g

��� ��� � t
R b

a
f 2 þ 1=tð Þ R b

a
g2 for t > 0.

(c) If
R b

a
f 2 ¼ 0, show that

R b

a
f g ¼ 0.

(d) Now prove that
R b

a
f g

��� ���2 � R b

a
f gj j

� �2

� R b

a
f 2

� �
� R b

a
g2

� �
. This inequality is called the

Cauchy-Bunyakovsky-Schwarz Inequality (or simply the Schwarz Inequality).

22. Let h : 0; 1½ � ! R be Thomae’s function and let sgn be the signum function. Show that the

composite function sgn 	 h is not Riemann integrable on [0, 1].

Section 7.4 The Darboux Integral

An alternative approach to the integral is due to the French mathematician Gaston Darboux

(1842–1917). Darboux had translated Riemann’s work on integration into French for

publication in a French journal and inspired by a remark of Riemann, he developed a

treatment of the integral in terms of upper and lower integrals that was published in 1875.

Approximating sums in this approach are obtained from partitions using the infima and

suprema of function values on subintervals, which need not be attained as function values

and thus the sums need not be Riemann sums.

This approach is technically simpler in the sense that it avoids the complications of

working with infinitely many possible choices of tags. But working with infima and

suprema also has its complications, such as lack of additivity of these quantities. Moreover,

the reliance on the order properties of the real numbers causes difficulties in extending the

Darboux integral to higher dimensions, and, more importantly, impedes generalization to

more abstract surfaces such as manifolds. Also, the powerful Henstock-Kurzweil approach

to integration presented in Chapter 10, which includes the Lebesgue integral, is based on

the Riemann definition as given in Section 7.1.

In this section we introduce the upper and lower integrals of a bounded function on an

interval, and define a function to be Darboux integrable if these two quantities are equal.

We then look at examples and establish a Cauchy-like integrability criterion for the

Darboux integral. We conclude the section by proving that the Riemann and Darboux

approaches to the integral are in fact equivalent, that is, a function on a closed, bounded

interval is Riemann integrable if and only if it is Darboux integrable. Later topics in the

book do not depend on the Darboux definition of integral so that this section can be

regarded as optional.

Upper and Lower Sums

Let f : I ! R be a bounded function on I ¼ a; b½ � and let P ¼ x0; x1; . . . ; xnð Þ be a

partition of I. For k ¼ 1; 2; . . . ; n we let

mk :¼ inf f xð Þ : x 2 xk�1; xk½ �f g; Mk :¼ sup f xð Þ : x 2 xk�1; xk½ �f g:
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The lower sum of f corresponding to the partition P is defined to be

L f ;Pð Þ :¼
Xn
k¼1

mk xk � xk�1ð Þ;

and the upper sum of f corresponding to P is defined to be

U f ;Pð Þ :¼
Xn
k¼1

Mk xk � xk�1ð Þ:

If f is a positive function, then the lower sum L f ;Pð Þ can be interpreted as the area of the
union of rectangleswith base xk�1; xk½ � and heightmk. (See Figure 7.4.1.) Similarly, the upper

sumU f ;Pð Þ can be interpreted as the area of the union of rectangles with base xk�1; xk½ � and
heightMk. (See Figure 7.4.2.) The geometric interpretation suggests that, for a given partition,

the lower sum is less than or equal to the upper sum. We now show this to be the case.

7.4.1 Lemma If f :¼ I ! R is bounded and P is any partition of I, then

L f ;Pð Þ � U f ;Pð Þ.

Proof. Let P :¼ x0; x1; . . . ; xnð Þ. Since mk � Mk for k ¼ 1; 2; . . . ; n and since

xk � xk�1 > 0 for k ¼ 1; 2; . . . ; n; it follows that

L f ;Pð Þ ¼
Xn
k¼1

mk xk � xk�1ð Þ �
Xn
k¼1

Mk xk � xk�1ð Þ ¼ U f ;Pð Þ: Q.E.D.

If P :¼ x0; x1; . . . ; xnð Þ andQ :¼ y0; y1; . . . ; ymð Þ are partitions of I, we say thatQ is a

refinement of P if each partition point xk 2 P also belongs to Q (that is, if P � Q). A

refinementQ of a partitionP can be obtained by adjoining a finite number of points toP. In
this case, each one of the intervals xk�1; xk½ � into which P divides I can be written as the

union of intervals whose end points belong to Q; that is,

xk�1; xk½ � ¼ yj�1; yj
	 
 [ yj ; yjþ1

	 
 [ � � � [ yh�1; yh½ �:
We now show that refining a partition increases lower sums and decreases upper sums.

7.4.2 Lemma If f : I ! R is bounded, if P is a partition of I, and if Q is a refinement of

P, then
L f ;Pð Þ � L f ;Qð Þ and U f ;Qð Þ � U f ;Pð Þ

Proof. Let P ¼ x0; x1; . . . ;xnð Þ. We first examine the effect of adjoining one point to P.
Let z 2 I satisfy xk�1 < z < xk and let P0 be the partition

P0 :¼ x0; x1; . . . ; xk�1; z; xk; . . . ; xnð Þ;

Figure 7.4.1 L f ;Pð Þ a lower sum Figure 7.4.2 U f ;Pð Þ an upper sum
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obtained from P by adjoining z to P. Let m0
k and m00

k be the numbers

m0
k :¼ inf f xð Þ : x 2 xk�1; z½ �f g; m00

k :¼ inf f xð Þ : x 2 z; xk½ �f g:
Then mk � m0

k and mk � m00
k (why?) and therefore

mk xk � xk�1ð Þ ¼ mk z� xk�1ð Þ þmk xk � zð Þ � m0
k z� xk�1ð Þ þm00

k xk � zð Þ:
If we add the terms mj xj � xj�1

� �
for j 6¼ k to the above inequality, we obtain

L f ;Pð Þ � L f ;P0ð Þ.
Now if Q is any refinement of P (i.e., if P � Q), then Q can be obtained from P by

adjoining a finite number of points to P one at a time. Hence, repeating the preceding

argument, we infer that L f ;Pð Þ � L f ;Qð Þ.
Upper sums are handled similarly; we leave the details as an exercise. Q.E.D.

These two results are now combined to conclude that a lower sum is always smaller

than an upper sum even if they correspond to different partitions.

7.4.3 Lemma Let f : I ! R be bounded. If P1;P2 are any two partitions of I, then

L f ;P1ð Þ � U f ;P2ð Þ.

Proof. LetQ :¼ P1 [ P2 be the partition obtained by combining the points ofP1 andP2.

ThenQ is a refinement of bothP1 andP2. Hence, by Lemmas 7.4.1 and 7.4.2, we conclude

that

L f ;P1ð Þ � L f ;Qð Þ � U f ;Qð Þ � U f ;P2ð Þ: Q.E.D.

Upper and Lower Integrals

We shall denote the collection of all partitions of the interval I by P Ið Þ. If f : I ! R is

bounded, then each P in P Ið Þ determines two numbers: L f ;Pð Þ and U f ;Pð Þ. Thus, the
collection P Ið Þ determines two sets of numbers: the set of lower sums L f ;Pð Þ for

P 2 P Ið Þ, and the set of upper sums U f ;Pð Þ for P 2 P Ið Þ. Hence, we are led to the

following definitions.

7.4.4 Definition Let I :¼ a; b½ � and let f : I ! R be a bounded function. The lower

integral of f on I is the number

L fð Þ :¼ sup L f ;Pð Þ : P 2 P Ið Þf g;
and the upper integral of f on I is the number

U fð Þ :¼ inf U f ;Pð Þ : P 2 P Ið Þf g:
Since f is a bounded function, we are assured of the existence of the numbers

mI :¼ inf f xð Þ : x 2 If g and MI :¼ sup f xð Þ : x 2 If g:
It is readily seen that for any P 2 P Ið Þ, we have

mI b� að Þ � L f ;Pð Þ � U f ;Pð Þ � MI b� að Þ:
Hence it follows that

ð1Þ mI b� að Þ � L fð Þ and U fð Þ � MI b� að Þ:
The next inequality is also anticipated.
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7.4.5 Theorem Let I ¼ a; b½ � and let f : I ! R be a bounded function. Then the lower

integral L fð Þ and the upper integral U fð Þ of f on I exist. Moreover,

ð2Þ L fð Þ � U fð Þ:

Proof. If P1 and P2 are any partitions of I, then it follows from Lemma 7.4.3 that

L f ;P1ð Þ � U f ;P2ð Þ. Therefore the number U f ;P2ð Þ is an upper bound for the set

L f ;Pð Þ : P 2 P Ið Þf g. Consequently, L fð Þ, being the supremum of this set, satisfies

L fð Þ � U f ;P2ð Þ. Since P2 is an arbitrary partition of I, then L fð Þ is a lower bound for the
set U f ;Pð Þ : P 2 P Ið Þf g. Consequently, the infimum U fð Þ of this set satisfies the

inequality (2). Q.E.D.

The Darboux Integral

If I is a closed bounded interval and f : I ! R is a bounded function, we have proved in

Theorem 7.4.5 that the lower integral L fð Þ and the upper integral U fð Þ always exist.

Moreover, we always have L fð Þ � U fð Þ. However, it is possible that we might have

L fð Þ < U fð Þ, as we will see in Example 7.4.7(d). On the other hand, there is a large class

of functions for which L fð Þ ¼ U fð Þ.

7.4.6 Definition Let I ¼ a; b½ � and let f : I ! R be a bounded function. Then f is said

to beDarboux integrable on I if L fð Þ ¼ U fð Þ. In this case theDarboux integral of f over
I is defined to be the value L fð Þ ¼ U fð Þ.

Thus we see that if the Darboux integral of a function on an interval exists, then the

integral is the unique real number that lies between the lower sums and the upper sums.

Since we will soon establish the equivalence of the Darboux and Riemann integrals,

we will use the standard notation
R b

a
f or

R b

a
f xð Þ dx for the Darboux integral of a function

f on a; b½ �. The context should prevent any confusion from arising.

7.4.7 Examples (a) A constant function is Darboux integrable.

Let f xð Þ :¼ c for x 2 I :¼ a; b½ �. If P is any partition of I, it is easy to see that

L f ;Pð Þ ¼ c b� að Þ ¼ U f ;Pð Þ (See Exercise 7.4.2). Therefore the lower and upper

integrals are given by L fð Þ ¼ c b� að Þ ¼ U fð Þ. Consequently, f is integrable on I andR b

a
f ¼ R b

a
c dx ¼ c b� að Þ:

(b) Let g be defined on [0, 3] as follows: g xð Þ :¼ 2 if 0 � x � 1 and g xð Þ :¼ 3 if

2 < x � 3. (See Example 7.1.4(b).) For e > 0, if we define the partition

Pe :¼ 0; 1; 1þ e; 3ð Þ, then we get the upper sum

U g;Peð Þ ¼ 2 � 1� 0ð Þ þ 3 1þ e� 1ð Þ þ 3 2� eð Þ ¼ 2þ 3eþ 6� 3e ¼ 8:

Therefore, the upper integral satisfies U gð Þ � 8. (Note that we cannot yet claim

equality because U gð Þ is the infimum over all partitions of [0, 3].) Similarly, we get

the lower sum

L g;Peð Þ ¼ 2þ 2eþ 3 2� eð Þ ¼ 8� e;

so that the lower integral satisfies L gð Þ � 8. Then we have 8 � L gð Þ � U gð Þ � 8, and

hence L gð Þ ¼ U gð Þ ¼ 8. Thus the Darboux integral of g is
R 3

0
g ¼ 8.
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(c) The function h xð Þ :¼ x is integrable on [0, 1].

Let Pn be the partition of I :¼ 0; 1½ � into n subintervals given by

Pn :¼ 0;
1

n
;
2

n
; . . . ;

n� 1

n
;
n

n
¼ 1

� �
:

Since h is an increasing function, its infimum and supremum on the subinterval

k � 1ð Þ=n; k=n½ � are attained at the left and right end points, respectively, and are thus

given by mk ¼ k � 1ð Þ=n and Mk ¼ k=n. Moreover, since xk � xk�1 ¼ 1=n for all

k ¼ 1; 2; . . . ; n, we have

L h;Pnð Þ ¼ 0þ 1þ � � � þ n� 1ð Þð Þ=n2; U h;Pnð Þ ¼ 1þ 2þ � � � þ nð Þ=n2:
If we use the formula 1þ 2þ � � � þm ¼ m mþ 1ð Þ=2, for m 2 N, we obtain

L h;Pnð Þ ¼ n� 1ð Þn
2n2

¼ 1

2
1� 1

n

� �
; U h;Pnð Þ ¼ n nþ 1ð Þ

2n2
¼ 1

2
1þ 1

n

� �
:

Since the set of partitions Pn : n 2 Nf g is a subset of the set of all partitions of P Ið Þ of I,
it follows that

1

2
¼ sup L h;Pnð Þ : n 2 Nf g � sup L h;Pð Þ : P 2 P Ið Þf g ¼ L hð Þ;

and also that

U hð Þ ¼ inf U h;Pð Þ : P 2 P Ið Þf g � inf U h;Pnð Þ : n 2 Nf g ¼ 1

2
:

Since 1
2
� L hð Þ � U hð Þ � 1

2
, we conclude that L hð Þ ¼ U hð Þ ¼ 1

2
. Therefore h is

Darboux integrable on I ¼ [0, 1] and
R 1

0
h ¼ R 1

0
x dx ¼ 1

2
:

(d) A nonintegrable function.

Let I :¼ 0; 1½ � and let f : I ! R be the Dirichlet function defined by

f xð Þ :¼ 1 for x rational;
:¼ 0 for x irrational:

IfP :¼ x0; x1; . . . ; xnð Þ is any partition of [0, 1], then since every nontrivial interval contains
both rational numbers and irrational numbers (see the Density Theorem 2.4.8 and its

corollary), we have mk ¼ 0 and Mk ¼ 1. Therefore, we have L f ;Pð Þ ¼ 0; U f ;Pð Þ ¼ 1;
for all P 2 P Ið Þ, so that L fð Þ ¼ 0; U fð Þ ¼ 1: Since L fð Þ 6¼ U fð Þ, the function f is not

Darboux integrable on [0, 1].

We now establish some conditions for the existence of the integral.

7.4.8 Integrability Criterion Let I :¼ a; b½ � and let f : I ! R be a bounded function

on I. Then f is Darboux integrable on I if and only if for each e > 0 there is a partitionPe of

I such that

ð3Þ U f ;Peð Þ � L f ;Peð Þ < e:

Proof. If f is integrable, then we have L fð Þ ¼ U fð Þ. If e > 0 is given, then from the

definition of the lower integral as a supremum, there is a partition P1 of I such that L fð Þ �
e=2 < L f ;P1ð Þ: Similarly, there is a partition P2 of I such that U f ;P2ð Þ < U fð Þ þ e=2:
If we let Pe :¼ P1 [ P2, then Pe is a refinement of both P1 and P2. Consequently, by
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Lemmas 7.4.1 and 7.4.2, we have

L fð Þ � e=2 < L f ;P1ð Þ � L f ; Peð Þ
� U f ;Peð Þ � U f ;P2ð Þ < U fð Þ þ e=2:

Since L fð Þ ¼ U fð Þ, we conclude that (3) holds.

To establish the converse, we first observe that for any partition P we have

L f ;Pð Þ � L fð Þ and U fð Þ � U f ;Pð Þ. Therefore,
U fð Þ � L fð Þ � U f ;Pð Þ � L f ;Pð Þ:

Now suppose that for each e > 0 there exists a partition Pe such that (3) holds.

Then we have

U fð Þ � L fð Þ � U f ;Peð Þ � L f ;Peð Þ < e:

Since e > 0 is arbitrary, we conclude that U fð Þ � L fð Þ. Since the inequality L fð Þ � U fð Þ
is always valid, we have L fð Þ ¼ U fð Þ. Hence f is Darboux integrable. Q.E.D.

7.4.9 Corollary Let I ¼ a; b½ � and let f : I ! R be a bounded function. If Pn : n 2 Nf g
is a sequence of partitions of I such that

lim
n

U f ;Pnð Þ � L f ;Pnð Þð Þ ¼ 0;

then f is integrable and lim
n
L f ;Pnð Þ ¼ R b

a
f ¼ limn U f ;Pnð Þ.

Proof. If e > 0 is given, it follows from the hypothesis that there exists K such that if

n � K then U f ;Pnð Þ � L f ;Pnð Þ < e, whence the integrability of f follows from the

Integrability Criterion. We leave the remainder of the proof as an exercise. Q.E.D.

The significance of the corollary is the fact that although the definition of the Darboux

integral involves the set of all possible partitions of an interval, for a given function, the

existence of the integral and its value can often be determined by a special sequence of

partitions.

For example, if h xð Þ ¼ x on [0, 1] and Pn is the partition as in Example 7.4.7(c), then

lim U h;Pnð Þ � L h;Pnð Þð Þ ¼ lim 1=n ¼ 0

and therefore
R 1

0
x dx ¼ limU h;Pnð Þ ¼ lim 1

2
1þ 1=nð Þ ¼ 1

2
:

Continuous and Monotone Functions

It was shown in Section 7.2 that functions that are continuous or monotone on a closed

bounded interval are Riemann integrable. (See Theorems 7.2.7 and 7.2.8.) The proofs

employed approximation by step functions and the Squeeze Theorem 7.2.3 as the main

tools. Both proofs made essential use of the fact that both continuous functions and

monotone functions attain a maximum value and a minimum value on a closed bounded

interval. That is, if f is a continuous or monotone function on [a, b], then for a partition

P ¼ x0; x1; . . . ; xnð Þ, the numbersMk ¼ sup f xð Þ : x 2 Ikf g andmk ¼ inf f xð Þ :f x 2 Ikg,
k ¼ 1; 2; . . . ; n, are attained as function values. For continuous functions, this is Theorem
5.3.4, and for monotone functions, these values are attained at the right and left endpoints

of the interval.

If we define the step function v on [a, b] by v xð Þ :¼ Mk for x 2 ½xk�1; xkÞ for

k ¼ 1; 2; . . . ; n� 1, and v xð Þ :¼ Mn for x 2 xn�1; xn½ �, then we observe that the Riemann
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integral of v is given by
R b

a
v ¼ Pn

k¼1

Mk xk � xk�1ð Þ. (See Theorem 7.2.5.) Now we

recognize the sum on the right as the upper Darboux sum U f ;Pð Þ, so that we have

Z b

a

v ¼
Xn
k¼1

Mk xk � xk�1ð Þ ¼ U f ;Pð Þ:

Similarly, if the step function a is defined by a xð Þ :¼ mk for x 2 xk�1; xk½ Þ, k ¼ 1;
2; . . . ; n� 1, and a xð Þ :¼ mn for x 2 xn�1; xn½ �, then we have the Riemann integral

Z b

a

a ¼
Xn
k¼1

mk xk � xk�1ð Þ ¼ L f ;Pð Þ:

Subtraction then gives us

Z b

a

v� að Þ ¼
Xn
k¼1

Mk �mkð Þ xk � xk�1ð Þ ¼ U f ;Pð Þ � L f ;Pð Þ:

We thus see that the Integrability Criterion 7.4.8 is the Darboux integral counterpart to the

Squeeze Theorem 7.2.3 for the Riemann integral.

Therefore, if we examine the proofs of Theorems 7.2.7 and 7.2.8 that establish the

Riemann integrability of continuous and monotone functions, respectively, and replace the

integrals of step functions by the corresponding lower and upper sums, then we obtain

proofs of the theorems for the Darboux integral. (For example, in Theorem 7.2.7 for

continuous functions, we would have ae xð Þ ¼ f uið Þ ¼ mi and ve xð Þ ¼ f við Þ ¼ Mi and

replace the integral of ve � ae with U f ;Pð Þ � L f ;Pð Þ:)
Thus we have the following theorem. We leave it as an exercise for the reader to write

out the proof.

7.4.10 Theorem If the function f on the interval I ¼ [a, b] is either continuous or

monotone on I, then f is Darboux integrable on I.

The preceding observation that connects the Riemann and Darboux integrals plays a

role in the proof of the equivalence of the two approaches to integration, which we now

discuss. Of course, once equivalence has been established, then the preceding theorem

would be an immediate consequence.

Equivalence

We conclude this section with a proof that the Riemann and Darboux definitions of the

integral are equivalent in the sense that a function on a closed, bounded interval is Riemann

integrable if and only if it is Darboux integrable, and their integrals are equal. This is not

immediately apparent. The Riemann integral is defined in terms of sums that use function

values (tags) together with a limiting process based on the length of subintervals in a

partition. On the other hand, the Darboux integral is defined in terms of sums that use

infima and suprema of function values, which need not be function values, and a limiting

process based on refinement of partitions, not the size of subintervals in a partition. Yet the

two are equivalent.

The background needed to prove equivalence is at hand. For example, if a function is

Darboux integrable, we recognize that upper and lower Darboux sums are Riemann

integrals of step functions. Thus the Integrability Criterion 7.4.8 for the Darboux integral
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corresponds to the Squeeze Theorem 7.2.3 for the Riemann integral in its application. In

the other direction, if a function is Riemann integrable, the definitions of supremum and

infimum enable us to choose tags to obtain Riemann sums that are as close to upper and

lower Darboux sums as we wish. In this way, we connect the Riemann integral to the upper

and lower Darboux integrals. The details are given in the proof.

7.4.11 Equivalence Theorem A function f on I ¼ [a, b] is Darboux integrable if and

only if it is Riemann integrable.

Proof. Assume that f is Darboux integrable. For e > 0, let Pe be a partition of [a, b] such

that U f ;Peð Þ � L f ;Peð Þ < e. For this partition, as in the preceding discussion, we define

the step functions ae and ve on [a, b] by ae xð Þ :¼ mk and ve xð Þ :¼ Mk for

x 2 xk�1; xk½ Þ; k ¼ 1; 2; . . . ; n� 1, and ae xð Þ :¼ mn; ve xð Þ :¼ Mn for x 2 xn�1; xn½ �,
where, as usual, Mk is the supremum and mk the infimum of f on Ik ¼ xk�1; xk½ �. Clearly
we have

ð4Þ ae xð Þ � f xð Þ � ve xð Þ for all x in a; b½ �:
Moreover, by Theorem 7.2.5, these functions are Riemann integrable and their integrals are

equal to

ð5Þ
Z b

a

ve ¼
Pn
k¼1

Mk xk � xk�1ð Þ ¼ U f ;Peð Þ;
Z b

a

ae ¼
Pn
k¼1

mk xk � xk�1ð Þ ¼ L f ;Peð Þ:

Therefore, we have Z b

a

ve � aeð Þ ¼ U f ;Peð Þ � L f ;Peð Þ < e:

By the Squeeze Theorem 7.2.3, it follows that f is Riemann integrable. Moreover, we note

that (4) and (5) are valid for any partition P and therefore the Riemann integral of f lies

between L f ;Pð Þ and U f ;Pð Þ for any partition P. Therefore the Riemann integral of f is

equal to the Darboux integral of f.

Now assume that f is Riemann integrable and let A ¼ R b

a
f denote the value of the

integral. Then, f is bounded by Theorem 7.1.6, and given e > 0, there exists d > 0 such that

for any tagged partition _P with jj _Pjj < d, we have S f ; _P� �� A
�� �� < e, which can be written

ð6Þ A� e < S f ; _P� �
< Aþ e:

If P ¼ x0; x1; . . . ; xnð Þ, then because Mk ¼ sup f xð Þ : x 2 Ikf g is a supremum, we can

choose tags tk in Ik such that f tkð Þ > Mk � e= b� að Þ. Summing, and noting thatPn
k¼1

xk � xk�1ð Þ ¼ b� a; we obtain

ð7Þ S f ; _P� �¼Pn
k¼1

f tkð Þ xk � xk�1ð Þ>Pn
k¼1

Mk xk � xk�1ð Þ�e ¼ U f ;Pð Þ�e � U fð Þ�e:

Combining inequalities (6) and (7), we get

Aþ e > S f ; _P� � � U fð Þ � e;

and hence we have U fð Þ < Aþ 2e. Since e > 0 is arbitrary, this implies that U fð Þ � A.

In the same manner, we can approximate lower sums by Riemann sums and show that

L fð Þ > A� 2e for arbitrary e > 0, which implies L fð Þ � A. Thus we have obtained the

inequality A � L fð Þ � U fð Þ � A, which gives us L fð Þ ¼ U fð Þ ¼ A ¼ R b

a
f . Hence, the

function f is Darboux integrable with value equal to the Riemann integral. Q.E.D.
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Exercises for Section 7.4

1. Let f xð Þ :¼ xj j for �1 � x � 2. Calculate L f ;Pð Þ and U f ;Pð Þ for the following partitions:

(a) P1 :¼ �1; 0; 1; 2ð Þ, (b) P2 :¼ �1;�1=2; 0; 1=2; 1; 3=2; 2ð Þ.
2. Prove if f xð Þ :¼ c for x 2 a; b½ �, then its Darboux integral is equal to c b� að Þ.
3. Let f and g be bounded functions on I :¼ a; b½ �. If f xð Þ � g xð Þ for all x 2 I, show that L fð Þ �

L gð Þ and U fð Þ � U gð Þ.
4. Let f be bounded on [a, b] and let k > 0. Show that L kfð Þ ¼ kL fð Þ and U kfð Þ ¼ kU fð Þ.
5. Let f, g, h be bounded functions on I :¼ a; b½ � such that f xð Þ � g xð Þ � h xð Þ for all x 2 I. Show

that if f and h are Darboux integrable and if
R b

a
f ¼ R b

a
h, then g is also Darboux integrable withR b

a
g ¼ R b

a
f .

6. Let f be defined on [0, 2] by f xð Þ :¼ 1 if x 6¼ 1 and f 1ð Þ :¼ 0. Show that the Darboux integral

exists and find its value.

7. (a) Prove that if g xð Þ :¼ 0 for 0 � x � 1
2
and g xð Þ :¼ 1 for 1

2
< x � 1, then the Darboux

integral of g on [0, 1] is equal to 1
2
.

(b) Does the conclusion hold if we change the value of g at the point 1
2
to 13?

8. Let f be continuous on I :¼ a; b½ � and assume f xð Þ � 0 for all x 2 I. Prove if L fð Þ ¼ 0, then

f xð Þ ¼ 0 for all x 2 I.

9. Let f 1 and f 2 be bounded functions on a; b½ �. Show that L f 1ð Þ þ L f 2ð Þ � L f 1 þ f 2ð Þ.
10. Give an example to show that strict inequality can hold in the preceding exercise.

11. If f is a bounded function on [a, b] such that f xð Þ ¼ 0 except for x in c1; c2; . . . ; cnf g in [a, b],

show that U fð Þ ¼ L fð Þ ¼ 0.

12. Let f xð Þ ¼ x2 for 0 � x � 1. For the partition Pn :¼ 0; 1=n; 2=n; . . . ; n� 1ð Þ=n; 1ð Þ, calculate
L f ;Pnð Þ and U f ;Pnð Þ, and show that L fð Þ ¼ U fð Þ ¼ 1

3
. ðUse the formula 12 þ 22

þ � � � þm2 ¼ 1
6
m mþ 1ð Þ 2mþ 1ð Þ:Þ

13. Let Pe be the partition whose existence is asserted in the Integrability Criterion 7.4.8. Show that

if P is any refinement of Pe, then U f ;Pð Þ � L f ;Pð Þ < e.

14. Write out the proofs that a function f on [a, b] is Darboux integrable if it is either (a) continuous,

or (b) monotone.

15. Let f be defined on I :¼ a; b½ � and assume that f satisfies the Lipschitz condition

f xð Þ � f yð Þj j � K x� yj j for all x; y in I. If Pn is the partition of I into n equal parts, show

that 0 � U f ;Pnð Þ � R b

a
f � K b� að Þ2=n:

Section 7.5 Approximate Integration

The Fundamental Theorem of Calculus 7.3.1 yields an effective method of evaluating the

integral
R b

a
f provided we can find an antiderivative F such that F0 xð Þ ¼ f xð Þ when

x 2 a; b½ �. However, when we cannot find such an F, we may not be able to use the

Fundamental Theorem. Nevertheless,when f is continuous, there are a number of techniques

for approximating the Riemann integral
R b

a
f by using sums that resemble the Riemann sums.

One very elementary procedure to obtain quick estimates of
R b

a
f , based on Theorem

7.1.5(c), is to note that if g xð Þ � f xð Þ � h xð Þ for all x 2 a; b½ �, then
Z b

a

g �
Z b

a

f �
Z b

a

h:
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