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THE RIEMANN-STIELTJES INTEGRAL

The present chapter is based on a definition of the Riemann integral which
depends very explicitly on the order structure of the real line. Accordingly,
we begin by discussing integration of real-valued functions on intervals. Ex-
tensions to complex- and vector-valued functions on intervals follow in later
sections. Integration over sets other than intervals is discussed in Chaps. 10

and 11.

DEFINITION AND EXISTENCE OF THE INTEGRAL
6.1 Definition Let [a, b] be a given interval. By a partition P of [a, b] we
mean a finite set of points x,, x4, ..., X,, where
a =XOSX15 e Sx,,_lﬁx,,=b.
We write

A.x,=x,—xi_1 (i=1,...,n).
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Now suppose f is a bounded real function defined on [a, b]. Corresponding to
each partition P of [a, b] we put

M, =supf(x) (x-ySx<x),
m; = inf f(x) X1 <x<x),

UP, f) =§1 M, Ax,,

L(P,f) =i_zlmi Axi,

and finally

® J[ rax = int U, 1),
b

@ [ fdx=supL(P.),

where the inf and the sup are taken over all partitions P of [a, b]. The left
members of (1) and (2) are called the upper and lower Riemann integrals of f
over [a, b], respectively. \

If the upper and lower integrals are equal, we say that f is Riemann-
integrable on [a, b}, we write fe # (that'is, # denotes the set of Riemann-
integrable functions), and we denote the common value of (1) and (2) by

® [[rax
or by

b
(4) [ reax.

This is the Riemann integral of f over [a, b]. Since f is bounded, there
exist two numbers, m and M, such that

m<f(x)<M (a<x<b).
Hence, for every P,
mb —a) < L(P,f) < UP,f) < M(b - a),
so that the numbers L(P, f) and U(P,f) form a bounded set. This shows that
the upper and lower integrals are defined for every bounded function f. The
question of their equality, and hence the question of the integrability of f; is a

more delicate one. Instead of investigating it separately for the Riemann integral,
we shall immediately consider a more general situation.
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6.2 Definition Let o be a monotonically increasing function on [a, b] (since
a(a) and a(b) are finite, it follows that « is bounded on [a, b]). Corresponding to
each partition P of [a, b], we write

Aa; = afx;) — o(x;-1).

It is clear that Aa, > 0. For any real function f which is bounded on [a, 5]
we put

n
U(P’f’ d)= Z Mi Aah
i=1

n
L(P’f; a) = Z m; Adia
i=1

where M;, m; have the same meaning as in Definition 6.1, and we define

il
) f fda = inf U(P, £, &),

b
© [ fdu=supL(P,f, a),

the inf and sup again being taken over all partitions.
If the left members of (5) and (6) are equal, we denote their common
value by

) [[ran

or sometimes by

b
® [ 76 dat.

This is the Riemann-Stieltjes integral (or simply the Stieltjes integral) of
f with respect to a, over [a, b].

If (7) exists, i.e., if (5) and (6) are equal, we say that f is integrable with
respect to «, in the Riemann sense, and write f € %(«).

By taking a(x) = x, the Riemann integral is seen to be a special case of
the Riemann-Stieltjes integral. Let us mention explicitly, however, that in the
general case o need not even be continuous.

A few words should be said about the notation. We prefer (7) to (8), since
the letter x which appears in (8) adds nothing to the content of (7). It is im-
material which letter we use to represent the so-called “‘variable of integration.”
For instance, (8) is the same as

[0 doty)
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The integral depends on f, «, a and b, but not on the variable of integration,
which may as well be omitted.

The role played by the variable of integration is quite analogous to that
of the index of summation: The two symbols

f:ci, 2 C

i=1 k=1

mean the same thing, since each means ¢, + ¢, + *** +¢,.

Of course, no harm is done by inserting the variable of integration, and
in many cases it is actually convenient to do so.

We shall now investigate the existence of the integral (7). Without saying
o every time, f will be assumed real and bounded, and « monotonically increas-

ing on [a, b]; and, when there can be no misunderstanding, we shall write f in

place of r

6.3 Definition We say that the partition P* is a refinement of P if P* o P
(that is, if every point of P is a point of P*). Given two partitions, P, and P,,
we say that P* is their common refinement if P* =P, U P,.

6.4 Theorem If P* is a refinement of P, then

® L(P,f, o) < L(P*, f, ®)
and
(10 U(P*, f, ®) < U(P, f, o).

Proof To prove (9), suppose first that P* contains just one point more
than P. Let this extra point be x*, and suppose x;.; < x* < x;, where
x;., and x; are two consecutive points of P. Put

w; = inf f(x) (X S x < x%),
w, =inff(x) (x*<x<x).
Clearly w, > m; and w, > m,, where, as before,
m;=inff(x) (x;-;<x<x).
Hence
L(P*,f, ®) — L(P, f, @)
= wy [a(x*) — a(x;-1)] + wala(x;) — a(x*)] — mfo(x;) — a(x;- )
= (wy — m)[a(x*) — a(x;-1)] + (W2 — mp)[a(x;) — a(x*)] = 0.

If P* contains k points more than P, we repeat this reasoning k
times, and arrive at (9). The proof of (10) is analogous.
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6.5 Theorem f: fdo < J_.: fda.

Proof Let P* be the common refinement of two partitions P, and P,.
By Theorem 6.4,

L(Py, f, ®) < L(P*, f. &) < U(P*, f, ) < U(P,, f, ).
Hence
an L(Py, f,0) < U(P,, f, ®).
If P, is fixed and the sup is taken over all P,, (11) gives
(12) [rda<u®,, 1 0.
The theorem follows by taking the inf over all P, in (12).

6.6 Theorem fe #(x) on [a,b] if and only if for every &€ >0 there exists a
partition P such that

(13) U(P,f,0) — L(P,f, o) < e.
Proof For every P we have
LP.fo)< [fdus Ifdoc < U(P, f, ).
Thus (13) implies
0% [fdu— [fau<e.

Hence, if (13) can be satisfied for every ¢ > 0, we have

I fdu= [fde,
that is, '€ Z(x).

Conversely, suppose fe€ #(a), and let ¢ >0 be given. Then there
exist partitions P; and P, such that

(14) U, f0) ~ [ fdu < zf

(15) [ fda— Ly, a)<§.
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We choose P to be the common refinement of P, and P,. Then Theorem
6.4, together with (14) and (15), shows that

UP,f,0) < UP; £, 0) < [ fda+ 5 <L(Py.f,o) + ¢ S LP.S o)+,
so that (13) holds for this partition P.

Theorem 6.6 furnishes a convenient criterion for integrability. Before we
apply it, we state some closely related facts.

6.7 Theorem
(@ If (13) holds for some P and some ¢, then (13) holds (with the same &)
for every refinement of P.
(&) If (13) holds for P ={x,, ..., x,} and if s, t; are arbitrary points in
[xi-h xi]s then

3 1fts) —£(t)] B <.
(0) If fe R(x) and the hypotheses of (b) hold, then
iglf(ti) Aa; — f:f do

Proof Theorem 6.4 implies (a). Under the assumptions made in (b),
both f(s;) and f(¢;) lie in [m;, M ], so that | f(s;) — f(¢;))| < M; —m;. Thus

3 1) = 1) Bt < UR.S, )~ L(P. S,

<eé.

which proves (b). The obvious inequalities

LP,f,0) < Y f(t) Aa; < U(P, f,0)
L(P,f, ®) < [ fdo < U(P, f, o))

and
prove ().

6.8 Theorem If f is continuous on [a, b] then f € %(a) on [a, b].
Proof Let e > 0 be given. Choose > 0 so that
[a(b) — afa)ln < e.

Since f is uniformly continuous on [a, b] (Theorem 4.19), there exists a
0 > 0 such that

(16) /) =f(O)] <n
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ifxela,b], tela, bl and |x —¢t] <.
If P is any partition of [a, b] such that Ax; < é for all /, then (16)
implies that
17 M, —-m<n (@(-1,...,n

and therefore
U(P, f, &) — L(P, f, ) =iZI(M: —m;) A,

< r]iZIAai = n[o(d) — a(a)] < e.
By Theorem 6.6, f€ Z(x).

6.9 Theorem If f is monotonic on [a, bl, and if o is continuous on [a, b}, then
feR(x). (We still assume, of course, that o is monotonic.)

Proof Let ¢> 0 be given. For any positive integer n, choose a partition

such that

A, = alb) ;— a(a)

(i=1,...,n).
This is possible since « is continuous (Theorem 4.23).

We suppose that fis monotonically increasing (the proof is analogous
in the other case). Then

M;=f(x), m;=jf(x;-,) (i=1,...,n),
so that

o.fow - L0 =225 § 17 — )

~20) - “‘”) U ®) —f@] <e

if n is taken large enough. By Theorem 6.6, f e %().

6.10 Theorem Suppose f is bounded on [a, b), f has only finitely many points
of discontinuity on [a, b], and o is continuous at every point at which f is discon-
tinuous. Then f € A(x).

Proof Let e >0 be given. Put M = sup |f(x)|, let E be the set of points
at which f'is discontinuous. Since E is finite and « is continuous at every
point of E, we can cover E by finitely many disjoint intervals [u;, v;] =
[a, b] such that the sum of the corresponding differences a(v,) — a(u)) is
less than ¢. Furthermore, we can place these intervals in such a way that
every point of E n (a, b) lies in the interior of some [u;, v;].
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Remove the segments (4;, v;) from [a, b]. The remaining set X is
compact. Hence f is uniformly continuous on K, and there exists § > 0
such that |f(s) — f(t)| <eifseK, teK, |s—1t| <d.

Now form a partition P = {x¢, X, ..., x,} of [a, b], as follows:
Each u; occurs in P. Each v; occurs in P. No point of any segment (u;, v;)
occurs in P. If x;_; is not one of the u;, then Ax; < 8.

Note that M; — m, < 2M for every i, and that M; — m,; < & unless
X;-1 is one of the ;. Hence, as in the proof of Theorem 6.8,

U(P, f, «) — L(P, f, o) < [o(b) — a(a)]e + 2Me.

Since ¢ is arbitrary, Theorem 6.6 shows that f'e 2(«).
Note: If fand o have a common point of discontinuity, then f need not

be in #(x). Exercise 3 shows this.

6.11

Theorem Suppose fe R(a) on [a,b], m<f< M, ¢ is continuous on

[m, M), and h(x) = ¢(f(x)) on [a, b]. Then h e R(2) on [a, b).

(13)

(19)

Proof Choose ¢ > 0. Since ¢ is uniformly continuous on [m, M], there
exists 6 >0 such that § <& and |@(s) — o(r)| <¢ if |s—¢| <6 and
s, te[m, M.

Since f'€ #(x), there is a partition P = {x4, x,, ..., x,} of [a, b] such
that

U(P,f, &) — L(P, f, o) < 82,

Let M;, m; have the same meaning as in Definition 6.1, and let M}, m}
be the analogous numbers for 4. Divide the numbers 1, ..., n into two
classes: ie A if M\, —m; <6,ieBif M;—m; > 6.

For i € A, our choice of § shows that M* — m} <.

For ie B, M} — m} < 2K, where K =sup|¢(t)|, m<t< M. By
(18), we have

0y Aoy < Y (M; — m)) Aa; < 62
ieB

ieB
so that ) ;g Aa; < 8. It follows that
UL, hyo)— L(P, hyo) = ) (M —mf) Ao, + Y, (M — m}) Aa,
icd ieB
< e[a(b) — a(a)] + 2K5 < e[a(b) — a(a) + 2K].

Since & was arbitrary, Theorem 6.6 implies that # € 2(«).
Remark: This theorem suggests the question: Just what functions are

Riemann-integrable? The answer is given by Theorem 11.33(b).
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PROPERTIES OF THE INTEGRAL

6.12 Theorem
(@) Iff, € A(e) and f, € A(e) on [a, b], then
Si + 12 € R(w),

¢f e A(a) for every constant ¢, and

f(fl+f2)da=j:f;da+f:f2da,

b b
f cfdoc=cf fda.
(®) Iffi(x) < fa(x) on [a, ], then
b b
L fida< f f» do.
© Iffed(a) on [a,b] and if a <c < b, then fe R(®) on [a, c] and on
[c, b), and
[ fan +fbfdoc =f"fda.
d) Iffe R(@) onla,b] and if | f(x)| < M on [a, b), then
! [ " fda| < M{a(b) — a(@)].

(€) Iffe R(w) andfe R(a,), then fe R, + a;) and
[[rde +ay =" rdu + [ 1oy
if fe A(a) and c is a positive constant, then fe #(ca) and
f: fd(ca) = c f: fdu.

Proof If f=f, +f, and P is any partition of [q, b], we have
(20) L(P, fy, @) + L(P, f,, ®) < L(P, f, )
< U(P9f; (1) s U(Pafia a) + U(P9f29 d).

If f, € Z(x) and f, € #(®), let ¢ > 0 be given. There are partitions P;
(j =1, 2) such that

UP;, f,» 0) — L(P;, f;, &) <.
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These inequalities persist if P, and P, are replaced by their common
refinement P. Then (20) implies
UP,f, o) = L(P, f, ®) < 2,

which proves that fe Z(a).

With this same P we have

UPf, o)< [fida+e (j=1,2);
hence (20) implies
[fda < U, f,0) < [ fida+ | f;du+ 2.

Since ¢ was arbitrary, we conclude that

[fda< [fda+ [f,du

If we replace f; and f, in (21) by —f; and —f;, the inequality is
reversed, and the equality is proved.

The proofs of the other assertions of Theorem 6.12 are so similar
that we omit the details. In part (c) the point is that (by passing to refine-
ments) we may restrict ourselves to partitions which contain the point c,
in approximating | f du.

Theorem If fe %(«) and g € A(a) on [a, b], then
(@ f9e (),

b b
®) |f] € R(2) and j fdol < f If] de.

Proof If we take ¢(t) = t2, Theorem 6.11 shows that /2 € Z(a) if f € R(a).
The identity

4g=(+9)*-(f-9)}

completes the proof of (a).
If we take ¢(t) = |t|, Theorem 6.11 shows similarly that |f| € #().
Choose ¢ = +1, so that
¢ffdu=0.

| [fde| =c(fda=[cfdu<-[|f| du,

Then

since ¢f < |f].

6.14 Definition The unit step function I is defined by

B 0 (x<0),
&= {1 (x> 0).
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6.15 Theorem If a <s <b, f is bounded on [a, b], f is continuous at s, and
a(x) = I(x — 5), then

[[ rdx=105.

Proof Consider partitions P = {x,, x;, X,, X3}, where x,=ga, and
X, =8 <x, <x3=>b. Then

U(P,f,d)=M2, L(P,f,“)'—‘mz-

Since f is continuous at s, we see that M, and m, converge to f(s) as
X, 5.

6.16 Theorem Suppose c, =0 forl,2,3,..., Xc, converges, {s,} is a sequence
of distinct points in (a, b), and

22) a(x) = Y ¢, I(x — 5.
n=1
Let f be continuous on [a, b]. Then

e2) [[ran=5 afs.

Proof The comparison test shows that the series (22) converges for
every x. Its sum a(x) is evidently monotonic, and a(a) =0, a(b) = Zc,.
(This is the type of function that occurred in Remark 4.31.)

Let € > 0 be given, and choose N so that

00
Ye<e
NT1

Put
N 0
“l(x) = Z c,,I(x - Sn)’ dz(X) = Z c,,I(x - S,,).
n=1 N+1
By Theorems 6.12 and 6.15,
b N
24 [ fdn =¥ cuf(s).
Since a,(b) — a,(a) < &,

b
(25) Ifa fda, | < Mg,
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where M = sup|f(x)|. Since a =o; + a,, it follows from (24) and (25)
that

b N
29) ['ran= 3 curts

If we let N — o0, we obtain (23).

< Me.

6.17 Theorem Assume o increases monotonically and «' € # on [a, b]. Let f
be a bounded real function on [a, b).
Then fe A(a) if and only if fo' € R. In that case

@7) f: fdo = f: F(O(x) dx.

Proof Let ¢ >0 be given and apply Theorem 6.6 to «’: There is a par-
tition P = {x,, ..., x,} of [a, b] such that

28) UP, o) - L(P, o) <s.
The mean value theorem furnishes points ¢; € [x;_,, x;] such that
Ao; = a'(t,) Ax;
fori=1,...,n Ifs e[x;_,, x;], then
n
(29) () = a'(1)] Ax; <,
i=1
by (28) and Theorem 6.7(b). Put M = sup|f(x)|. Since
Zl S(s) Ao = .;f(si)“'(fi) Ax;
it follows from (29) that
(30) -Zlf(s‘) Aa; — 'Zi S(s)e'(sy) Ax;| < Me.
In particular,

S £(s) A, < U(P, fur) + Me,
i=1

for all choices of s, € [x;_;, x;], so that
U, f,a) < UP, fo') + Me.
The same argument leads from (30) to

UP, fa") < UP, f, o) + Me.
Thus
@31 |U(P, f, &) — U(P, fo')| < Me.
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Now note that (28) remains true if P is replaced by any refinement.
Hence (31) also remains true. We conclude that

U: JSdo— T:f ()’ (x) dx | < Me.

But ¢ is arbitrary. Hence
+b +b
(32) [[rde=] feu'(x) ax,

for any bounded f. The equality of the lower integrals follows from (30)
in exactly the same way. The theorem follows.

6.18 Remark The two preceding theorems illustrate the generality and
flexibility which are inherent in the Stieltjes process of integration. If «is a pure
step function [this is the name often given to functions of the form (22)], the
integral reduces to a finite or infinite series. If « has an integrable derivative,
the integral reduces to an ordinary Riemann integral. This makes it possible
in many cases to study series and integrals simultaneously, rather than separately.

To illustrate this point, consider a physical example. The moment of
inertia of a straight wire of unit length, about an axis through an endpoint, at
right angles to the wire, is

1

(33) [ % dm
where m(x) is the mass contained in the interval [0, x]. If the wire is regarded
as having a continuous density p, that is, if m’(x) = p(x), then (33) turns into

1
(34) jo x? p(x) dx.

On the other hand, if the wire is composed of masses m; concentrated at
points x;, (33) becomes

(35) g xtm,.

Thus (33) contains (34) and (35) as special cases, but it contains much
more; for instance, the case in which m is continuous but not everywhere
differentiable.

6.19 Theorem (change of variable) Suppose ¢ is a strictly increasing continuous
function that maps an interval [A, B] onto [a, b). Suppose « is monotonically
increasing on [a, b] and f€ R(x) on [a, b). Define B and g on [A, B] by

(36) BO) = (),  90) =S(e(y)-
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Then g € (B) and
37) f: gdf= f" fda.

Proof To each partition P = {x,, ..., x,} of [a, b] corresponds a partition
Q={yo,...,yn of [4, B, so that x; = ¢(y;). All partitions of [4, B]
are obtained in this way. Since the values taken by f on [x,_,, x,] are
exactly the same as those taken by g on [y;_y, ¥;], we see that

(%) U@Q.g9,p)=UPL S o), L 9,B)=LP,S a)

Since f'€ #(«), P can be chosen so that both U(P, f, «) and L(P, f, «)
are close to | fda. Hence (38), combined with Theorem 6.6, shows that
g € #(P) and that (37) holds. This completes the proof.

Let us note the following special case:
Take a(x) = x. Then f = ¢. Assume ¢’ € &£ on [4, B]. If Theorem
6.17 is applied to the left side of (37), we obtain

b B
(39) [f@ax =] rem)e't)d.

INTEGRATION AND DIFFERENTIATION

We still confine ourselves to real functions in this section. We shall show that
integration and differentiation are, in a certain sense, inverse operations.

6.20 Theorem Letfe R onla,bl. Fora <x <b, put
F(x) = J' f() dt.

Then F is continuous on [a, b); furthermore, if f is continuous at a point xo of
la, b, then F is differentiable at x,, and
F'(x0) = f(x0)-
Proof Since fe &, f is bounded. Suppose |f(t)| <M for a<t<b.
Ifa<x<y<hb, then
y
1FO) - F)| =[] oy | < Moy =

by Theorem 6.12(c) and (d). Given ¢ > 0, we see that
|FO) - F(x)| <,
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provided that |y —x|<é¢/M. This proves continuity (and, in fact,

uniform continuity) of F.
Now suppose f is continuous at x,. Given & > 0, choose é > 0 such

that
|f(t) = f(xo)| <&
if |t — xo] <0, and a < ¢t < b. Hence, if
Xo—0<S<Xg<t<Xo+9 and a<s<t<b,

we have, by Theorem 6.12(d),

O s =2 [V - seon | <o

It follows that F'(x,) = f(xo).

6.21 The fundamental theorem of calculus If f € & on [a, b] and if there is
a differentiable function F on [a, b] such that F’ = f, then

f * f(x) dx = F(b) — F(a).

Proof let ¢ >0 be given. Choose a partition P = {x,, ..., x,} of [a, b]
so that U(P,f) — L(P,f) < &. The mean value theorem furnishes points
t € [xi._l, x,] such that

F(x;) — F(x;-1) = f(t;) Ax;
fori=1,...,n Thus
i;f(ts) Ax; = F(b) — F(a).
It now follows from Theorem 6.7(c) that

<é&.

b
F(b) — F(a) - fa f(x) dx

Since this holds for every ¢ > 0, the proof is complete.

6.22 Theorem (integration by parts) Suppose F and G are differentiable func-
tionson[a,b), FF=feR,and G' =ge R. Then

f:F (x)g(x) dx = F(b)G(b) — F(a)G(a) — L bf (x)G(x) dx.

Proof Put H(x) = F(x)G(x) and apply Theorem 6.21 to H and its deriv-
ative. Note that H' € #, by Theorem 6.13.
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INTEGRATION OF VECTOR-VALUED FUNCTIONS

6.23 Definition Letf, ..., f, be real functions on [a, b], and letf = (3, ..., fi)
be the corresponding mapping of [g, b] into R*. If « increases monotonically
on [a, b}, to say that f € #(x) means that f; € #(«) forj =1, ..., k. If this is the

case, we define
f:fda - (f:fl da, ...,f:fk doc).

In other words, {f du is the point in R* whose jth coordinate is [f; da.

It is clear that parts (@), (c), and (e) of Theorem 6.12 are valid for these
vector-valued integrals; we simply apply the earlier results to each coordinate.
The same is true of Theorems 6.17, 6.20, and 6.21. To illustrate, we state the
analogue of Theorem 6.21.

6.24 Theorem IffandF map [a, b] into R*, iff € & on [a, b, and if F' =f{, then
b
f f(t) dt = F(b) — F(a).

The analogue of Theorem 6.13(b) offers some new features, however, at
least in its proof.

6.25 Theorem If f maps [a, b) into R* and if £ € R(a) for some monotonically
increasing function a on [a, b}, then |f| € #(«), and

(40) l ja"fda < f: I£] do.

Proof 1Iff,, ..., f. are the components of f, then
@) 8] = (724 -+,

By Theorem 6.11, each of the functions f? belongs to #(«); hence so does
their sum. Since x2 is a continuous function of x, Theorem 4.17 shows
that the square-root function is continuous on {0, M], for every real M.
If we apply Theorem 6.11 once more, (41) shows that |f| € %(«).

To prove (40), puty = (Jy, ..., ¥i), where y; = [f; dx. Then we have
y = |f dx, and

y12= Xy = L3, [fde = [ (T 5,5) do.
By the Schwarz inequality,
(42) Ly <ylIf)]  (a<t<b);
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hence Theorem 6.12(b) implies

“3) Iv12 < Iy| [ 1f] da.

If y =0, (40) is trivial. If y # 0, division of (43) by |y| gives (40).

RECTIFIABLE CURVES

We conclude this chapter with a topic of geometric interest which provides an
application of some of the preceding theory. The case k =2 (i.e., the case of
plane curves) is of considerable importance in the study of analytic functions
of a complex variable.

6.26 Definition A continuous mapping y of an interval [a, b] into R* is called
a curve in R*. To emphasize the parameter interval [a, b], we may also say that
y is a curve on [q, b].

If y is one-to-one, y is called an arc.
If y(a) = y(b), y is said to be a closed curve.

It should be noted that we define a curve to be a mapping, not a point set.
Of course, with each curve y in R* there is associated a subset of R¥, namely
the range of y, but different curves may have the same rarge.

We associate to each partition P ={x,, ..., x,} of [a, b] and to each
curve y on [a, b] the number

A, = 3 19x) = 1ol

The ith term in this sum is the distance (in R¥) between the points y(x;-,) and
y(x;). Hence A(P, y) is the length of a polygonal path with vertices at p(xo),
9(x1), ..., P(x,), in this order. As our partition becomes finer and finer, this
polygon approaches the range of y more and more closely. This makes it seem
reasonable to define the length of y as

A(y) = sup A(P, ¥),

where the supremum is taken over all partitions of [a, b].

If A(y) < oo, we say that y is rectifiable.

In certain cases, A(y) is given by a Riemann integral. We shall prove this
for continuously differentiable curves, i.e., for curves y whose derivative y’ is
continuous.
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6.27 Theorem If y' is continuous on [a, b], then y is rectifiable, and
b ’
A =[ 1Y@ d
Proof Ifa<x;_; <x,<b, then

fx‘_l?’(t) dtl < f RRPOIE

X Xi=1

[ pGe) = p(xi-0)| =

Hence
b
AP, < [ |y ar

for every partition P of [a, b]. Consequently,
b !
AW < [ 1Y@ d.

To prove the opposite inequality, let e >0 be given. Since y’ is
uniformly continuous on [a, b], there exists é > 0 such that
Y@=y ()| <e if|s—t| <.

Let P={x,,..., x,} be a partition of [a, b], with Ax; < ¢ for all 7. If
X;_1 < t < Xx;, it follows that

[Y(@®)] < 1y (x)] + e
Hence

fx‘ [7'(0)] dt <17'(x)| Ax; + & Ax;
Xi-1

[" wo+ye)-vol dti +eAx,

[ o+ [ oo - yona+ea
< [9x) = (xi-p)| + 28 Ax;.

If we add these inequalities, we obtain

<

[y de < AP, ) + 266 - @)

< A(y) + 2¢(b — a).
Since € was arbitrary,

[[ 1ol at <A

This completes the proof.
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EXERCISES

1. Suppose « increases on [a, b}, a < x0 < b, « is continuous at xo, f(xo) =1, and
f(x) =0if x # xo. Prove that f € %(«) and that [ fdu= 0,

2. Suppose f >0, f is continuous on [a, b], and f: f(x)dx =0. Prove that f(x)=0

for all x € [a, b]. (Compare this with Exercise 1.)

3. Define three functions B;, B2, B3 as follows: B;(x) =0if x <0, B(x)=1if x>0
for j=1, 2, 3; and B:(0) = 0, B2(0) =1, Bs(0) = 4. Let f be a bounded function on
[—1,1].

(a) Prove that fe #(B,) if and only if f(0+) = f(0) and that then

[rag.=1©.

(b) State and prove a similar result for 8.
(c) Prove that f € %(B,) if and only if f'is continuous at 0.
(d) If fis continuous at 0 prove that

[rdp.=[rdp. = [ rdps =ro.

4. If f(x) = O for all irrational x, f(x) = 1 for all rational x, prove that f ¢ % on[a, b}

for any a < b.

Suppose f is a bounded real function on [a, b}, and f2 € & on [a, b]. Does it

follow that fe #? Does the answer change if we assume that /3 € #?

6. Let P be the Cantor set constructed in Sec. 2.44. Let f be a bounded real function
on [0, 1] which is continuous at every point outside P. Prove that f€ £ on [0, 1].
Hint: P can be covered by finitely many segments whose total length can be made
as small as desired. Proceed as in Theorem 6.10.

7. Suppose f is a real function on (0, 1} and f € & on [¢, 1] for every ¢ > 0. Define

5

[ oo ds=1tim [ 7 ax

if this limit exists (and is finite).
(a) If fe & on [0, 1], show that this definition of the integral agrees with the old
one.
(b) Construct a function f such that the above limit exists, although it fails to exist
with | f] in place of f.

8. Suppose f€ Z on [a, b] for every b > a where a is fixed. Define

@ b
J' f() dx = lim f F() dx
if this limit exists (and is finite). In that case, we say that the integral on the left

converges. If it also converges after f has been replaced by |f], it is said to con-
verge absolutely.



10.

THE RIEMANN-STIELTJES INTEGRAL 139

Assume that f(x) >0 and that f decreases monotonically on [1, ). Prove

that
[ :o £(x) dx
converges if and only if

converges. (This is the so-called “integral test”’ for convergence of series.)

. Show that integration by parts can sometimes be applied to the “improper”

integrals defined in Exercises 7 and 8. (State appropriate hypotheses, formulate a
theorem, and prove it.) For instance show that

°°cosx _J‘ smx
01+x (1'+'x)2

Show that one of these integrals converges absolutely, but that the other does not,

Let p and g be positive real numbers such that
.1.. +l =1,
P 4q
Prove the following statements.
(a) If >0 and v >0, then
q
w<=+ 2.
p q

Equality holds if and only if u? = v%.
(b) If fe R(a), g € R(2), f=0,9 >0, and

f:fvda= 1= f:gv da,
then
f@@gL

(¢) If fand g are complex functions in %(«), then

<{[irtea ([ 1o1e e

This is Holder’s inequality. When p=qg=2 it is usually called the Schwarz
inequality. (Note that Theorem 1.35 is a very special case of this.)

(d) Show that Holder’s inequality is also true for the “improper’’ integrals de-
scribed in Exercises 7 and 8.

fﬁw
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11. Let « be a fixed increasing function on [a, b]. For u € #(«), define

b 1/2
uuu,={f Iu]’doc} )

Suppose £, g, h € #(«), and prove the triangle inequality

Wf=hl<If—glla+ llg — Al

as a consequence of the Schwarz inequality, as in the proof of Theorem 1.37.
12, With the notations of Exercise 11, suppose fe€ %#(x) and £>0. Prove that
there exists a continuous function g on [a, b} such that ||f—gl|l. <e.
Hint: Let P={xo, ..., xa} be a suitable partition of [a, b], define

Xy —
Ax,

t— Xi-y

t
S+ Ax,

g(t)=

S(x)

ifxi. <t <x
13. Define

)= f” 'sin (¢7) dr.

(@) Prove that | f(x)| < 1/x if x > 0.
Hint: Put t? = 4 and integrate by parts, to show that f(x) is equal to

cos (x?) cos[(x+1)*] J“"“” cos u
2x 2(x+1) <2 4u3'?

Replace cos u by —1.
(b) Prove that

u.

2xf(x) = cos (x?) — cos [(x + 1)*] + r(x)

where |r(x)| < ¢/x and c is a constant.
(c) Find the upper and lower limits of xf(x), as x — .

(d) Does f "sin (+2) dr converge?
14. Deal similarly with

[ = IH lsin (e) dt.

Show that
e*| f(x)] <2
and that
&*f(x) = cos (e*) — e~ cos (e**1) + r(x),

where |r(x)| < Ce~*, for some constant C.
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Suppose f'is a real, continuously differentiable function on [a, 6], f(@) =f(b) =0,
and

b
f Fx) dx = 1.
Prove that

[wreoreds= -1

and that
[Urera- [wrwdos 1.

For 1 <s < o, define
(=3 .
A=t 1’
(This is Riemann’s zeta function, of great importance in the study of the distri-
bution of prime numbers.) Prove that

@ t=s [ 2

1 xs+l dx

and that

6 1= —s[ e,

s—1

where [x] denotes the greatest integer < x.

Prove that the integral in (b) converges for all s > 0.

Hint: To prove (a), compute the difference between the integral over [1, N}
and the Nth partial sum of the series that defines {(s).
Suppose « increases monotonically on [a, b}, g is continuous, and g(x) = G’(x)
for a < x <b. Prove that

f :a(x)g(x) dx = G(b)a(b) — G(a)oa@) — f G da.

Hint: Take g real, without loss of generality. Given P = {xo, X1, ..., Xn},
choose ¢; € (x;-1, x;) so that g(¢;) Ax; = G(x;) — G(x,~,). Show that

‘.i; a(x)g(t) Ax, = G(bYa(b) — G(a)a(a) — ,; G(xi-1) Aay.

Let vy, v2, ys be curves in the complex plane, defined on [0, 27] by
‘y‘(t) = e, ‘)/z(t) = g2t ‘)r‘s(t) — g2nit sin (1/1)

Show that these three curves have the same range, that y; and y, are rectifiable,
that the length of y, is 2w, that the length of y, is 4, and that y, is not rectifiable.
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19. Let y, be a curve in R¥, defined on [a, b]; let ¢ be a continuous 1-1 mapping of
[c, d] onto [a, b], such that #(c) = a; and define y,(s) = y,($(s)). Prove that y, is
an arc, a closed curve, or a rectifiable curve if and only if the same is true of y,.
Prove that y, and y, have the same length.



