
Appendix A
Gamma and Beta Functions

A.1 A Useful Formula

The following formula is valid:∫
Rn

e−|x|
2
dx =

(√
π
)n

.

This is an immediate consequence of the corresponding one-dimensional identity∫ +∞

−∞

e−x2
dx =

√
π ,

which is usually proved from its two-dimensional version by switching to polar
coordinates:

I2 =
∫ +∞

−∞

∫ +∞

−∞

e−x2
e−y2

dydx = 2π

∫
∞

0
re−r2

dr = π .

A.2 Definitions of Γ (z) and B(z,w)

For a complex number z with Rez > 0 define

Γ (z) =
∫

∞

0
tz−1e−tdt.

Γ (z) is called the gamma function. It follows from its definition that Γ (z) is analytic
on the right half-plane Rez > 0.

Two fundamental properties of the gamma function are that

Γ (z+1) = zΓ (z) and Γ (n) = (n−1)! ,

where z is a complex number with positive real part and n ∈ Z+. Indeed, integration
by parts yields

Γ (z) =
∫

∞

0
tz−1e−t dt =

[
tze−t

z

]∞

0
+

1
z

∫
∞

0
tze−t dt =

1
z

Γ (z+1).

Since Γ (1) = 1, the property Γ (n) = (n− 1)! for n ∈ Z+ follows by induction.
Another important fact is that
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418 A Gamma and Beta Functions

Γ
( 1

2

)
=
√

π .

This follows easily from the identity

Γ
( 1

2

)
=
∫

∞

0
t−

1
2 e−t dt = 2

∫
∞

0
e−u2

du =
√

π .

Next we define the beta function. Fix z and w complex numbers with positive
real parts. We define

B(z,w) =
∫ 1

0
tz−1(1− t)w−1 dt =

∫ 1

0
tw−1(1− t)z−1 dt.

We have the following relationship between the gamma and the beta functions:

B(z,w) =
Γ (z)Γ (w)
Γ (z+w)

,

when z and w have positive real parts.
The proof of this fact is as follows:

Γ (z+w)B(z,w) = Γ (z+w)
∫ 1

0
tw−1(1− t)z−1 dt

= Γ (z+w)
∫

∞

0
uw−1

(
1

1+u

)z+w

du t = u/(1+u)

=
∫

∞

0

∫
∞

0
uw−1

(
1

1+u

)z+w

vz+w−1e−v dvdu

=
∫

∞

0

∫
∞

0
uw−1sz+w−1e−s(u+1) dsdu s = v/(1+u)

=
∫

∞

0
sze−s

∫
∞

0
(us)w−1e−su duds

=
∫

∞

0
sz−1e−s

Γ (w)ds

= Γ (z)Γ (w) .

A.3 Volume of the Unit Ball and Surface of the Unit Sphere

We denote by vn the volume of the unit ball in Rn and by ωn−1 the surface area of
the unit sphere Sn−1. We have the following:

ωn−1 =
2π

n
2

Γ ( n
2 )

and
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vn =
ωn−1

n
=

2π
n
2

nΓ ( n
2 )

=
π

n
2

Γ ( n
2 +1)

.

The easy proofs are based on the formula in Appendix A.1. We have(√
π
)n =

∫
Rn

e−|x|
2
dx = ωn−1

∫
∞

0
e−r2

rn−1 dr ,

by switching to polar coordinates. Now change variables t = r2 to obtain that

π
n
2 = ωn−1

2

∫
∞

0
e−tt

n
2−1 dt = ωn−1

2 Γ
( n

2

)
.

This proves the formula for the surface area of the unit sphere in Rn.
To compute vn, write again using polar coordinates

vn = |B(0,1)|=
∫
|x|≤1

1dx =
∫

Sn−1

∫ 1

0
rn−1 dr dθ =

1
n

ωn−1 .

Here is another way to relate the volume to the surface area. Let B(0,R) be the
ball in Rn of radius R > 0 centered at the origin. Then the volume of the shell
B(0,R + h) \B(0,R) divided by h tends to the surface area of B(0,R) as h → 0. In
other words, the derivative of the volume of B(0,R) with respect to the radius R is
equal to the surface area of B(0,R). Since the volume of B(0,R) is vnRn, it follows
that the surface area of B(0,R) is nvnRn−1. Taking R = 1, we deduce ωn−1 = nvn.

A.4 Computation of Integrals Using Gamma Functions

Let k1, . . . ,kn be nonnegative even integers. The integral∫
Rn

xk1
1 · · ·x

kn
n e−|x|

2
dx1 · · ·dxn =

n

∏
j=1

∫ +∞

−∞

x
k j
j e−x2

j dx j =
n

∏
j=1

Γ

(k j +1
2

)
expressed in polar coordinates is equal to(∫

Sn−1
θ

k1
1 · · ·θ kn

n dθ

)∫
∞

0
rk1+···+knrn−1e−r2

dr ,

where θ = (θ1, . . . ,θn). This leads to the identity∫
Sn−1

θ
k1
1 · · ·θ kn

n dθ = 2Γ

(k1 + · · ·+ kn +n
2

)−1 n

∏
j=1

Γ

(k j +1
2

)
.

Another classical integral that can be computed using gamma functions is the
following:
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π/2

0
(sinϕ)a(cosϕ)b dϕ =

1
2

Γ ( a+1
2 )Γ ( b+1

2 )

Γ ( a+b+2
2 )

,

whenever a and b are complex numbers with Rea >−1 and Reb >−1.
Indeed, change variables u = (sinϕ)2; then du = 2(sinϕ)(cosϕ)dϕ , and the pre-

ceding integral becomes

1
2

∫ 1

0
u

a−1
2 (1−u)

b−1
2 du =

1
2

B
(a+1

2
,

b+1
2

)
=

1
2

Γ ( a+1
2 )Γ ( b+1

2 )

Γ ( a+b+2
2 )

.

A.5 Meromorphic Extensions of B(z,w) and Γ (z)

Using the identity Γ (z + 1) = zΓ (z), we can easily define a meromorphic exten-
sion of the gamma function on the whole complex plane starting from its known
values on the right half-plane. We give an explicit description of the meromorphic
extension of Γ (z) on the whole plane. First write

Γ (z) =
∫ 1

0
tz−1e−tdt +

∫
∞

1
tz−1e−tdt

and observe that the second integral is an analytic function of z for all z ∈ C. Write
the first integral as

∫ 1

0
tz−1

{
e−t −

N

∑
j=0

(−t) j

j!

}
dt +

N

∑
j=0

(−1) j/ j!
z+ j

.

The last integral converges when Rez > −N − 1, since the expression inside the
curly brackets is O(tN+1) as t → 0. It follows that the gamma function can be de-
fined to be an analytic function on Rez > −N − 1 except at the points z = − j,
j = 0,1, . . . ,N, at which it has simple poles with residues (−1) j

j! . Since N was arbi-
trary, it follows that the gamma function has a meromorphic extension on the whole
plane.

In view of the identity

B(z,w) =
Γ (z)Γ (w)
Γ (z+w)

,

the definition of B(z,w) can be extended to C×C. It follows that B(z,w) is a mero-
morphic function in each argument.

A.6 Asymptotics of Γ (x) as x → ∞

We now derive Stirling’s formula:
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lim
x→∞

Γ (x+1)( x
e

)x√2πx
= 1 .

First change variables t = x+ sx
√

2
x to obtain

Γ (x+1) =
∫

∞

0
e−ttx dt =

(
x
e

)x√
2x
∫ +∞

−
√

x/2

(
1+ s

√
2
x

)x

e2s
√

x/2
ds .

Setting y =
√ x

2 , we obtain

Γ (x+1)( x
e

)x√2x
=
∫ +∞

−∞

((
1+ s

y

)y

es

)2y

χ(−y,∞)(s)ds.

To show that the last integral converges to
√

π as y→ ∞, we need the following:
(1) The fact that

lim
y→∞

((
1+ s/y

)y

es

)2y

→ e−s2
,

which follows easily by taking logarithms and applying L’Hôpital’s rule twice.
(2) The estimate, valid for y≥ 1,

((
1+ s

y

)y

es

)2y

≤


(1+ s)2

es when s≥ 0,

e−s2
when −y < s < 0,

which can be easily checked using calculus. Using these facts, the Lebesgue dom-
inated convergence theorem, the trivial fact that χ−y<s<∞ → 1 as y → ∞, and the
identity in Appendix A.1, we obtain that

lim
x→∞

Γ (x+1)( x
e

)x√2x
= lim

y→∞

∫ +∞

−∞

((
1+ s

y

)y

es

)2y

χ(−y,∞)(s)ds

=
∫ +∞

−∞

e−s2
ds

=
√

π.

A.7 Euler’s Limit Formula for the Gamma Function

For n a positive integer and Rez > 0 we consider the functions
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Γn(z) =
∫ n

0

(
1− t

n

)n
tz−1 dt

We show that
Γn(z) =

n!nz

z(z+1) · · ·(z+n)

and we obtain Euler’s limit formula for the gamma function

lim
n→∞

Γn(z) = Γ (z) .

We write Γ (z)−Γn(z) = I1(z)+ I2(z)+ I3(z), where

I1(z) =
∫

∞

n
e−ttz−1 dt ,

I2(z) =
∫ n

n/2

(
e−t −

(
1− t

n

)n
)

tz−1 dt ,

I3(z) =
∫ n/2

0

(
e−t −

(
1− t

n

)n
)

tz−1 dt .

Obviously I1(z) tends to zero as n→∞. For I2 and I3 we have that 0≤ t < n, and by
the Taylor expansion of the logarithm we obtain

log
(

1− t
n

)n
= n log

(
1− t

n

)
=−t−L ,

where

L =
t2

n

(1
2

+
1
3

t
n

+
1
4

t2

n2 + · · ·
)

.

It follows that
0 < e−t −

(
1− t

n

)n
= e−t − e−Le−t ≤ e−t ,

and thus I2(z) tends to zero as n→ ∞. For I3 we have t/n≤ 1/2, which implies that

L ≤ t2

n

∞

∑
k=0

1
(k +1)2k−1 =

t2

n
c .

Consequently, for t/n≤ 1/2 we have

0≤ e−t −
(

1− t
n

)n
= e−t(1− e−L)≤ e−tL ≤ e−t ct2

n
.

Plugging this estimate into I3, we deduce that

|I3(z)| ≤
c
n

Γ (Rez+2) ,

which certainly tends to zero as n→ ∞.
Next, n integrations by parts give
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Γn(z) =
n
nz

n−1
n(z+1)

n−2
n(z+2)

· · · 1
n(z+n−1)

∫ n

0
tz+n−1 dt =

n!nz

z(z+1) · · ·(z+n)
.

This can be written as

1 = Γn(z)zexp
{

z
(

1+
1
2

+
1
3

+ · · ·+ 1
n
− logn

)} n

∏
k=1

(
1+

z
k

)
e−z/k .

Taking limits as n→ ∞, we obtain an infinite product form of Euler’s limit formula,

1 = Γ (z)zeγz
∞

∏
k=1

(
1+

z
k

)
e−z/k ,

where Rez > 0 and γ is Euler’s constant

γ = lim
n→∞

1+
1
2

+
1
3

+ · · ·+ 1
n
− logn .

The infinite product converges uniformly on compact subsets of the complex plane
that excludes z = 0,−1,−2, . . . , and thus it represents a holomorphic function in this
domain. This holomorphic function multiplied by Γ (z)zeγz is equal to 1 on Rez > 0
and by analytic continuation it must be equal to 1 on C\{0,−1,−2, . . .}. But Γ (z)
has simple poles, while the infinite product vanishes to order one at the nonpositive
integers. We conclude that Euler’s limit formula holds for all complex numbers z;
consequently, Γ (z) has no zeros and Γ (z)−1 is entire.

An immediate consequence of Euler’s limit formula is the identity

1
|Γ (x+ iy)|2

=
1

|Γ (x)|2
∞

∏
k=0

(
1+

y2

(k + x)2

)
,

which holds for x and y real with x /∈ {0,−1,−2, . . .}. As a consequence we have
that

|Γ (x+ iy)| ≤ |Γ (x)|

and also that
1

|Γ (x+ iy)|
≤ 1
|Γ (x)|

eC(x)|y|2 ,

where

C(x) =
1
2

∞

∑
k=0

1
(k + x)2 ,

whenever x ∈ R\{0,−1,−2, . . .} and y ∈ R.
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A.8 Reflection and Duplication Formulas for the Gamma
Function

The reflection formula relates the values of the gamma function of a complex num-
ber z and its reflection about the point 1/2 in the following way:

sin(πz)
π

=
1

Γ (z)
1

Γ (1− z)
.

The duplication formula relates the entire functions Γ (2z)−1 and Γ (z)−1 as follows:

1
Γ (z)Γ (z+ 1

2 )
=

π−
1
2 22z−1

Γ (2z)
.

Both of these could be proved using Euler’s limit formula. The reflection formula
also uses the identity

∞

∏
k=1

(
1− z2

k2

)
=

sin(πz)
πz

,

while the duplication formula makes use of the fact that

lim
n→∞

(n!)2 22n+1

(2n)!n1/2 = 2π
1/2 .

These and other facts related to the gamma function can be found in Olver [208].



Appendix B
Bessel Functions

B.1 Definition

We survey some basics from the theory of Bessel functions Jν of complex order
ν with Reν > −1/2. We define the Bessel function Jν of order ν by its Poisson
representation formula

Jν(t) =

( t
2

)ν

Γ (ν + 1
2 )Γ ( 1

2 )

∫ +1

−1
eits(1− s2)ν ds√

1− s2
,

where Reν > −1/2 and t ≥ 0. Although this definition is also valid when t is a
complex number, for the applications we have in mind, it suffices to consider the
case that t is real and nonnegative; in this case Jν(t) is also a real number.

B.2 Some Basic Properties

Let us summarize a few properties of Bessel functions. We take t > 0.
(1) We have the following recurrence formula:

d
dt

(
t−ν Jν(t)

)
=−t−ν Jν+1(t), Reν >−1/2.

(2) We also have the companion recurrence formula:

d
dt

(
tν Jν(t)

)
= tν Jν−1(t), Reν > 1/2.

(3) Jν(t) satisfies the differential equation:

t2 d2

dt2 (Jν(t))+ t
d
dt

(Jν(t))+(t2−ν
2)Jν(t) = 0 .

(4) If ν ∈Z+, then we have the following identity, which was taken by Bessel as the
definition of Jν for integer ν :

Jν(t) =
1

2π

∫ 2π

0
eit sinθ e−iνθ dθ =

1
2π

∫ 2π

0
cos(t sinθ −νθ)dθ .

425
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(5) For Reν >−1/2 we have the following identity:

Jν(t) =
1

Γ ( 1
2 )

( t
2

)ν ∞

∑
j=0

(−1) j Γ ( j + 1
2 )

Γ ( j +ν +1)
t2 j

(2 j)!
.

(6) For Reν > 1/2 the identity below is valid:

d
dt

(Jν(t)) =
1
2
(
Jν−1(t)− Jν+1(t)

)
.

We first verify property (1). We have

d
dt

(
t−ν Jν(t)

)
=

i
2νΓ (ν + 1

2 )Γ ( 1
2 )

∫ 1

−1
seits(1− s2)ν− 1

2 ds

=
i

2νΓ (ν + 1
2 )Γ ( 1

2 )

∫ 1

−1

it
2

eits (1− s2)ν+ 1
2

ν + 1
2

ds

= − t−ν Jν+1(t),

where we integrated by parts and used the fact that Γ (x +1) = xΓ (x). Property (2)
can be proved similarly.

We proceed with the proof of property (3). A calculation using the definition of
the Bessel function gives that the left-hand side of (3) is equal to

2−ν tν+1

Γ (ν + 1
2 )Γ ( 1

2 )

∫ +1

−1
eist
(

(1− s2)t +2is(ν + 1
2 )
)

(1− s2)ν− 1
2 ds ,

which in turn is equal to

−i
2−ν tν+1

Γ (ν + 1
2 )Γ ( 1

2 )

∫ +1

−1

d
ds

(
eist(1− s2)ν+ 1

2
)

ds = 0 .

Property (4) can be derived directly from (1). Define

Gν(t) =
1

2π

∫ 2π

0
eit sinθ e−iνθ dθ ,

for ν = 0,1,2, . . . and t > 0. We can show easily that G0 = J0. If we had

d
dt

(
t−ν Gν(t)

)
=−t−ν Gν+1(t), t > 0,

for ν ∈ Z+, we would immediately conclude that Gν = Jν for ν ∈ Z+. We have
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d
dt

(
t−ν Gν(t)

)
= − t−ν

(
ν

t
Gν(t)− dGν

dt
(t)
)

= − t−ν

∫ 2π

0

ν

2πt
eit sinθ e−iνθ − 1

2π

(
d
dt

eit sinθ

)
e−iνθ dθ

= − t−ν

2π

∫ 2π

0
i

d
dθ

(
eit sinθ−iνθ

t

)
+(cosθ − isinθ)eit sinθ e−iνθ dθ

= − t−ν

2π

∫ 2π

0
eit sinθ e−i(ν+1)θ dθ

= − t−ν Gν+1(t) .

For t real, the identity in (5) can be derived by inserting the expression

∞

∑
j=0

(−1) j (ts)
2 j

(2 j)!
+ isin(ts)

for eits in the definition of the Bessel function Jν(t) in Appendix B.1. Algebraic
manipulations yield

Jν(t) =
(t/2)ν

Γ ( 1
2 )

∞

∑
j=0

(−1) j 1
Γ (ν + 1

2 )
t2 j

(2 j)!
2
∫ 1

0
s2 j−1(1− s2)ν− 1

2 sds

=
(t/2)ν

Γ ( 1
2 )

∞

∑
j=0

(−1) j 1
Γ (ν + 1

2 )
t2 j

(2 j)!
Γ ( j + 1

2 )Γ (ν + 1
2 )

Γ ( j +ν +1)

=
(t/2)ν

Γ ( 1
2 )

∞

∑
j=0

(−1) j Γ ( j + 1
2 )

Γ ( j +ν +1)
t2 j

(2 j)!
.

To derive property (6) we first multiply (1) by tν and (2) by t−ν ; then we use the
product rule for differentiation and we add the resulting expressions.

For further identities on Bessel functions, one may consult Watson’s monograph
[288].

B.3 An Interesting Identity

Let Re µ >− 1
2 , Reν >−1, and t > 0. Then the following identity is valid:∫ 1

0
Jµ(ts)sµ+1(1− s2)ν ds =

Γ (ν +1)2ν

tν+1 Jµ+ν+1(t) .

To prove this identity we use formula (5) in Appendix B.2. We have
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0
Jµ(ts)sµ+1(1− s2)ν ds

=

( t
2

)µ

Γ ( 1
2 )

∫ 1

0

∞

∑
j=0

(−1) jΓ ( j + 1
2 ) t2 j

Γ ( j + µ +1)(2 j)!
s2 j+µ+µ(1− s2)ν sds

=
1
2

( t
2

)µ

Γ ( 1
2 )

∞

∑
j=0

(−1) jΓ ( j + 1
2 ) t2 j

Γ ( j + µ +1)(2 j)!

∫ 1

0
u j+µ(1−u)ν du

=
1
2

( t
2

)µ

Γ ( 1
2 )

∞

∑
j=0

(−1) jΓ ( j + 1
2 ) t2 j

Γ ( j + µ +1)(2 j)!
Γ (µ + j +1)Γ (ν +1)

Γ (µ +ν + j +2)

=
2νΓ (ν +1)

tν+1

( t
2

)µ+ν+1

Γ ( 1
2 )

∞

∑
j=0

(−1) jΓ ( j + 1
2 ) t2 j

Γ ( j + µ +ν +2)(2 j)!

=
Γ (ν +1)2ν

tν+1 Jµ+ν+1(t) .

B.4 The Fourier Transform of Surface Measure on Sn−1

Let dσ denote surface measure on Sn−1 for n≥ 2. Then the following is true:

d̂σ(ξ ) =
∫

Sn−1
e−2πiξ ·θ dθ =

2π

|ξ | n−2
2

J n−2
2

(2π|ξ |) .

To see this, use the result in Appendix D.3 to write

d̂σ(ξ ) =
∫

Sn−1
e−2πiξ ·θ dθ

=
2π

n−1
2

Γ ( n−1
2 )

∫ +1

−1
e−2πi|ξ |s(1− s2)

n−2
2

ds√
1− s2

=
2π

n−1
2

Γ ( n−1
2 )

Γ ( n−2
2 + 1

2 )Γ ( 1
2 )

(π|ξ |) n−2
2

J n−2
2

(2π|ξ |)

=
2π

|ξ | n−2
2

J n−2
2

(2π|ξ |) .

B.5 The Fourier Transform of a Radial Function on Rn

Let f (x) = f0(|x|) be a radial function defined on Rn, where f0 is defined on [0,∞).
Then the Fourier transform of f is given by the formula
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f̂ (ξ ) =
2π

|ξ | n−2
2

∫
∞

0
f0(r)J n

2−1(2πr|ξ |)r
n
2 dr .

To obtain this formula, use polar coordinates to write

f̂ (ξ ) =
∫

Rn
f (x)e−2πiξ ·x dx

=
∫

∞

0

∫
Sn−1

f0(r)e−2πiξ ·rθ dθ rn−1dr

=
∫

∞

0
f0(r) d̂σ(rξ )rn−1dr

=
∫

∞

0
f0(r)

2π

(r|ξ |) n−2
2

J n−2
2

(2πr|ξ |)rn−1dr

=
2π

|ξ | n−2
2

∫
∞

0
f0(r)J n

2−1(2πr|ξ |)r
n
2 dr .

As an application we take f (x) = χB(0,1), where B(0,1) is the unit ball in Rn. We
obtain

(χB(0,1))̂ (ξ ) =
2π

|ξ | n−2
2

∫ 1

0
J n

2−1(2π|ξ |r)r
n
2 dr =

J n
2
(2π|ξ |)
|ξ | n

2
,

in view of the result in Appendix B.3. More generally, for Reλ >−1, let

mλ (ξ ) =

{
(1−|ξ |2)λ for |ξ | ≤ 1,
0 for |ξ |> 1.

Then

mλ
∨ (x) =

2π

|x| n−2
2

∫ 1

0
J n

2−1(2π|x|r)r
n
2 (1− r2)λ dr =

Γ (λ +1)
πλ

J n
2 +λ (2π|x|)
|x| n

2 +λ
,

using again the identity in Appendix B.3.

B.6 Bessel Functions of Small Arguments

We seek the behavior of Jk(r) as r → 0+. We fix a complex number ν with Reν >
− 1

2 . Then we have the identity

Jν(r) =
rν

2νΓ (ν +1)
+Sν(r) ,

where

Sν(r) =
(r/2)ν

Γ (ν + 1
2 )Γ ( 1

2 )

∫ +1

−1
(eirt −1)(1− t2)ν− 1

2 dt
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and Sν satisfies

|Sν(r)| ≤ 2−Reν rReν+1

(Reν +1) |Γ (ν + 1
2 )|Γ ( 1

2 )
.

To prove this estimate we note that

Jν(r) =
(r/2)ν

Γ (ν + 1
2 )Γ ( 1

2 )

∫ +1

−1
(1− t2)ν− 1

2 dt +Sν(r)

=
(r/2)ν

Γ (ν + 1
2 )Γ ( 1

2 )

∫
π

0
(sin2

φ)ν− 1
2 (sinφ)dφ +Sν(r)

=
(r/2)ν

Γ (ν + 1
2 )Γ ( 1

2 )
Γ (ν + 1

2 )Γ ( 1
2 )

Γ (ν +1)
+Sν(r) ,

where we evaluated the last integral using the result in Appendix A.4. Using that
|eirt −1| ≤ r|t|, we deduce the assertion regarding the size of |Sν(r)|.

It follows from these facts and the estimate in Appendix A.7 that for 0 < r ≤ 1
and Reν >−1/2 we have

|Jν(r)| ≤C0 ec0 |Imν |2 rReν ,

where C0 and c0 are constants depending only on Reν . Note that when Reν ≥ 0,
the constant c0 may be taken to be absolute (such as c0 = π2).

B.7 Bessel Functions of Large Arguments

For r > 0 and complex numbers ν with Reν >−1/2 we prove the identity

Jν(r) =
(r/2)ν

Γ (ν + 1
2 )Γ ( 1

2 )

[
ie−ir

∫
∞

0
e−rt(t2 +2it)ν− 1

2 dt− ieir
∫

∞

0
e−rt(t2−2it)ν− 1

2 dt
]
.

Fix 0 < δ < 1/10 < 10 < R < ∞. We consider the region Ωδ ,R in the complex
plane whose boundary is the set consisting of the interval [−1 + δ ,1− δ ] union a
quarter circle centered at 1 of radius δ from 1−δ to 1+ iδ , union the line segments
from 1 + iδ to 1 + iR, from 1 + iR to −1 + iR, and from −1 + iR to −1 + iδ , union
a quarter circle centered at −1 of radius δ from −1+ iδ to −1+δ . This is a simply
connected region on the interior of which the holomorphic function (1− z2) has no
zeros. Since Ωδ ,R is contained in the complement of the negative imaginary axis,
there is a holomorphic branch of the logarithm such that log(t) is real, log(−t) =
log |t|+ iπ , and log(it) = log |t|+ iπ/2 for t > 0. Since the function log(1− z2) is
well defined and holomorphic in Ωδ ,R, we may define the holomorphic function

(1− z2)ν− 1
2 = e(ν− 1

2 ) log(1−z2)
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for z ∈Ωδ ,R. Since eirz(1− z2)ν− 1
2 has no poles in Ωδ ,R, Cauchy’s theorem yields

i
∫ R

δ

eir(1+it)(t2−2it)ν− 1
2 dt +

∫ 1−δ

−1+δ

eirt(1− t2)ν− 1
2 dt

+ i
∫

δ

R
eir(−1+it)(t2 +2it)ν− 1

2 dt +E(δ ,R) = 0 ,

where E(δ ,R) is the sum of the integrals over the two small quarter-circles of radius
δ and the line segment from 1 + iR to −1 + iR. The first two of these integrals are
bounded by constants times δ , the latter by a constant times R2Reν−1e−rR; hence
E(δ ,R)→ 0 as δ → 0 and R→ ∞. We deduce the identity∫ +1

−1
eirt(1−t2)ν− 1

2 dt = ie−ir
∫

∞

0
e−rt(t2 +2it)ν− 1

2 dt− ieir
∫

∞

0
e−rt(t2−2it)ν− 1

2 dt .

Estimating the two integrals on the right by putting absolute values inside and mul-
tiplying by the missing factor rν 2−ν(Γ (ν + 1

2 )Γ ( 1
2 ))−1, we obtain

|Jν(r)| ≤ 2
(r/2)Reν e

π
2 |Imν |

|Γ (ν + 1
2 )|Γ ( 1

2 )

∫
∞

0
e−rttReν− 1

2
(√

t2 +4
)Reν− 1

2 dt ,

since the absolute value of the argument of t2±2it is at most π/2. When Reν > 1/2,
we use the inequality (

√
t2 +4)Reν− 1

2 ≤ 2Reν− 3
2
(
tReν− 1

2 +2Reν− 1
2
)

to get

|Jν(r)| ≤ 2
(r/2)Reν e

π
2 |Imν |

|Γ (ν + 1
2 )|Γ ( 1

2 )
2Reν− 3

2

[
Γ (2Reν)

r2Reν
+2Reν

Γ (Reν + 1
2 )

rReν+ 1
2

]
.

When 1/2≥ Reν >−1/2 we use that
(√

t2 +4
)Reν− 1

2 ≤ 1 to deduce that

|Jν(r)| ≤ 2
(r/2)Reν e

π
2 |Imν |

|Γ (ν + 1
2 )|Γ ( 1

2 )
Γ (Reν + 1

2 )

rReν+ 1
2

.

These estimates yield that for Reν >−1/2 and r ≥ 1 we have

|Jν(r)| ≤C0(Reν) eπ|Imν |+π2|Imν |2 r−1/2

using the result in Appendix A.7. Here C0 is a constant that depends only on Reν .

B.8 Asymptotics of Bessel Functions

We obtain asymptotics for Jν(r) as r → ∞ whenever Reν > −1/2. We have the
following identity for r > 0:
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Jν(r) =

√
2

πr
cos
(

r− πν

2
− π

4

)
+Rν(r) ,

where Rν is given by

Rν(r) =
(2π)−

1
2 rν

Γ (ν + 1
2 )

ei(r− πν
2 − π

4 )
∫

∞

0
e−rttν+ 1

2
[
(1+ it

2 )ν− 1
2 −1

]dt
t

+
(2π)−

1
2 rν

Γ (ν + 1
2 )

e−i(r− πν
2 − π

4 )
∫

∞

0
e−rttν+ 1

2
[
(1− it

2 )ν− 1
2 −1

]dt
t

and satisfies |Rν(r)| ≤Cν r−3/2 whenever r ≥ 1.
To see the validity of this identity we write

ie−ir(t2 +2it)ν− 1
2 = (2t)ν− 1

2 e−i(r− νπ
2 − π

4 )(1− it
2 )ν− 1

2 ,

−ieir(t2−2it)ν− 1
2 = (2t)ν− 1

2 ei(r− νπ
2 − π

4 )(1+ it
2 )ν− 1

2 .

Inserting these expressions into the corresponding integrals in the formula proved
in Appendix B.7, adding and subtracting 1 from each term (1± it

2 )ν− 1
2 , and multi-

plying by the missing factor (r/2)ν/Γ (ν + 1
2 )Γ ( 1

2 ), we obtain the claimed identity

Jν(r) =

√
2

πr
cos
(

r− πν

2
− π

4

)
+Rν(r) .

It remains to estimate Rν(r). We begin by noting that for a,b real with a > −1
we have the pair of inequalities

|(1± iy)a+ib−1| ≤ 3(|a|+ |b|)
(
2

a+1
2 e

π
2 |b|
)

y when 0 < y < 1 ,

|(1± iy)a+ib−1| ≤ (1+ y2)
a
2 e

π
2 |b|+1≤ 2

(
2

a+1
2 e

π
2 |b|
)

ya when 1≤ y < ∞ .

The first inequality is proved by splitting into real and imaginary parts and applying
the mean value theorem in the real part. Taking ν− 1

2 = a+ ib, y = t/2, and inserting
these estimates into the integrals appearing in Rν , we obtain

|Rν(r)| ≤ 2
1
2 Reν 2

1
4 e

π
2 |Imν |rReν

(2π)1/2|Γ (ν + 1
2 )|

[
3
√

2|ν |
2

∫ 2

0
e−rttReν+ 3

2
dt
t

+
2
√

2
2Reν

∫
∞

2
e−rtt2Reν dt

t

]
.

It follows that for all r > 0 we have

|Rν(r)| ≤ 2
2

1
2 Reν e

π
2 |Imν |

|Γ (ν + 1
2 )|

[
|ν |

Γ (Reν + 3
2 )

r3/2 +
r−Reν

2Reν

∫
∞

2r
e−tt2Reν dt

t

]

≤ 2
2

1
2 Reν e

π
2 |Imν |

|Γ (ν + 1
2 )|

[
|ν |

Γ (Reν + 3
2 )

r3/2 +
2Reν

rReν

Γ (2Reν)
er

]
,
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using that e−t ≤ e−t/2e−r for t ≥ 2r. We conclude that for r ≥ 1 and Reν > −1/2
we have

|Rν(r)| ≤C0(Reν)
e

π
2 |Imν | (|ν |+1)
|Γ (ν + 1

2 )|
r−3/2 ,

where C0 is a constant that depends only on Reν . In view of the result in Ap-
pendix A.7, the last fraction is bounded by another constant depending on Reν

times eπ2(1+|Imν |)2
.



Appendix C
Rademacher Functions

C.1 Definition of the Rademacher Functions

The Rademacher functions are defined on [0,1] as follows: r0(t) = 1; r1(t) = 1 for
0 ≤ t ≤ 1/2 and r1(t) =−1 for 1/2 < t ≤ 1; r2(t) = 1 for 0 ≤ t ≤ 1/4, r2(t) =−1
for 1/4 < t ≤ 1/2, r2(t) = 1 for 1/2 < t ≤ 3/4, and r2(t) = −1 for 3/4 < t ≤ 1;
and so on. According to this definition, we have that r j(t) = sgn(sin(2 jπt)) for
j = 0,1,2, . . . . It is easy to check that the r j’s are mutually independent random
variables on [0,1]. This means that for all functions f j we have∫ 1

0

n

∏
j=0

f j(r j(t))dt =
n

∏
j=0

∫ 1

0
f j(r j(t))dt .

To see the validity of this identity, we write its right-hand side as

f0(1)
n

∏
j=1

∫ 1

0
f j(r j(t))dt = f0(1)

n

∏
j=1

f j(1)+ f j(−1)
2

=
f0(1)
2n ∑

S⊂{1,2,...,n}
∏
j∈S

f j(1)∏
j/∈S

f j(−1)

and we observe that there is a one-to-one and onto correspondence between sub-
sets S of {1,2, . . . ,n} and intervals Ik =

[ k
2n , k+1

2n

]
, k = 0,1, . . . ,2n−1, such that the

restriction of the function ∏
n
j=1 f j(r j(t)) on Ik is equal to

∏
j∈S

f j(1)∏
j/∈S

f j(−1) .

It follows that the last of the three equal displayed expressions is

f0(1)
2n−1

∑
k=0

∫
Ik

n

∏
j=1

f j(r j(t))dt =
∫ 1

0

n

∏
j=0

f j(r j(t))dt .

C.2 Khintchine’s Inequalities

The following property of the Rademacher functions is of fundamental importance
and with far-reaching consequences in analysis:

435
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For any 0 < p < ∞ and for any real-valued square summable sequences {a j} and
{b j} we have

Bp

(
∑

j
|a j + ib j|2

)1
2
≤
∥∥∥∑

j
(a j + ib j)r j

∥∥∥
Lp([0,1])

≤ Ap

(
∑

j
|a j + ib j|2

)1
2

for some constants 0 < Ap,Bp < ∞ that depend only on p.
These inequalities reflect the orthogonality of the Rademacher functions in Lp

(especially when p 6= 2). Khintchine [155] was the first to prove a special form of
this inequality, and he used it to estimate the asymptotic behavior of certain ran-
dom walks. Later this inequality was systematically studied almost simultaneously
by Littlewood [173] and by Paley and Zygmund [210], who proved the more gen-
eral form stated previously. The foregoing inequalities are usually referred to by
Khintchine’s name.

C.3 Derivation of Khintchine’s Inequalities

Both assertions in Appendix C.2 can be derived from an exponentially decaying
distributional inequality for the function

F(t) = ∑
j
(a j + ib j)r j(t) , t ∈ [0,1],

when a j, b j are square summable real numbers.
We first obtain a distributional inequality for the above function F under the

following three assumptions:

(a)The sequence {b j} is identically zero.
(b)All but finitely many terms of the sequence {a j} are zero.
(c)The sequence {a j} satisfies (∑ j |a j|2)1/2 = 1.

Let ρ > 0. Under assumptions (a), (b), and (c), independence gives∫ 1

0
eρ ∑a jr j(t) dt = ∏

j

∫ 1

0
eρa jr j(t) dt

= ∏
j

eρa j + e−ρa j

2

≤ ∏
j

e
1
2 ρ2a2

j = e
1
2 ρ2

∑a2
j = e

1
2 ρ2

,

where we used the inequality 1
2 (ex +e−x)≤ e

1
2 x2

for all real x, which can be checked
using power series expansions. Since the same argument is also valid for−∑a jr j(t),
we obtain that
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0
eρ|F(t)| dt ≤ 2e

1
2 ρ2

.

From this it follows that

eρα |{t ∈ [0,1] : |F(t)|> α}| ≤
∫ 1

0
eρ|F(t)| dt ≤ 2e

1
2 ρ2

and hence we obtain the distributional inequality

dF(α) = |{t ∈ [0,1] : |F(t)|> α}| ≤ 2e
1
2 ρ2−ρα = 2e−

1
2 α2

,

by picking ρ = α . The Lp norm of F can now be computed easily. Formula (1.1.6)
gives ∥∥F

∥∥p
Lp =

∫
∞

0
pα

p−1dF(α)dα ≤
∫

∞

0
pα

p−12e−
α2
2 dα = 2

p
2 pΓ (p/2) .

We have now proved that∥∥F
∥∥

Lp ≤
√

2
(

pΓ (p/2)
) 1

p
∥∥F
∥∥

L2

under assumptions (a), (b), and (c).
We now dispose of assumptions (a), (b), and (c). Assumption (b) can be easily

eliminated by a limiting argument and (c) by a scaling argument. To dispose of
assumption (a), let a j and b j be real numbers. We have∥∥∥∑

j
(a j + ib j)r j

∥∥∥
Lp

≤
∥∥∥∣∣∑

j
a jr j

∣∣+ ∣∣∑
j

b jr j
∣∣∥∥∥

Lp

≤
∥∥∥∑

j
a jr j

∥∥∥
Lp

+
∥∥∥∑

j
b jr j

∥∥∥
Lp

≤
√

2
(

pΓ (p/2)
) 1

p

((
∑

j
|a j|2

)1
2 +
(
∑

j
|b j|2

)1
2
)

≤
√

2
(

pΓ (p/2)
) 1

p
√

2
(
∑

j
|a j + ib j|2

)1
2
.

Let us now set Ap = 2
(

pΓ (p/2)
)1/p when p > 2. Since we have the trivial esti-

mate
∥∥F
∥∥

Lp ≤
∥∥F
∥∥

L2 when 0 < p ≤ 2, we obtain the required inequality
∥∥F
∥∥

Lp ≤
Ap
∥∥F
∥∥

L2 with

Ap =

{
1 when 0 < p≤ 2,

2 p
1
p Γ (p/2)

1
p when 2 < p < ∞.

Using Sterling’s formula in Appendix A.6, we see that Ap is asymptotic to
√

p as
p→ ∞.
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We now discuss the converse inequality Bp
∥∥F
∥∥

L2 ≤
∥∥F
∥∥

Lp . It is clear that∥∥F
∥∥

L2 ≤
∥∥F
∥∥

Lp when p ≥ 2 and we may therefore take Bp = 1 for p ≥ 2. Let
us now consider the case 0 < p < 2. Pick an s such that 2 < s < ∞. Find a 0 < θ < 1
such that

1
2

=
1−θ

p
+

θ

s
.

Then ∥∥F
∥∥

L2 ≤
∥∥F
∥∥1−θ

Lp

∥∥F
∥∥θ

Ls ≤
∥∥F
∥∥1−θ

Lp Aθ
s
∥∥F
∥∥θ

L2 .

It follows that ∥∥F
∥∥

L2 ≤ A
θ

1−θ
s
∥∥F
∥∥

Lp .

We have now proved the inequality Bp
∥∥F
∥∥

L2 ≤
∥∥F
∥∥

Lp with

Bp =


1 when 2≤ p < ∞,

sup
s>2

A
−

1
p−

1
2

1
2−

1
s

s when 0 < p < 2.

Observe that the function s → A
−
(

1
p−

1
2

)
/
(

1
2−

1
s

)
s tends to zero as s → 2+ and as

s → ∞. Hence it must attain its maximum for some s = s(p) in the interval (2,∞).
We see that Bp ≥ 16 ·256−1/p when p < 2 by taking s = 4.

It is worthwhile to mention that the best possible values of the constants Ap and
Bp in Khintchine’s inequality are known when b j = 0. In this case Szarek [271]
showed that the best possible value of B1 is 1/

√
2, and later Haagerup [116] found

that when b j = 0 the best possible values of Ap and Bp are the numbers

Ap =

{
1 when 0 < p≤ 2,

2
1
2 π

− 1
2p Γ ( p+1

2 ) when 2 < p < ∞,

and

Bp =


2

1
2−

1
p when 0 < p≤ p0,

2
1
2 π

− 1
2p Γ ( p+1

2 ) when p0 < p < 2,
1 when 2 < p < ∞,

where p0 = 1.84742 . . . is the unique solution of the equation 2Γ ( p+1
2 ) =

√
π in the

interval (1,2).

C.4 Khintchine’s Inequalities for Weak Type Spaces

We note that the following weak type estimates are valid:
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4−
1
p B p

2

(
∑

j
|a j + ib j|2

)1
2
≤
∥∥∥∑

j
(a j + ib j)r j

∥∥∥
Lp,∞

≤ Ap

(
∑

j
|a j + ib j|2

)1
2

for all 0 < p < ∞.
Indeed, the upper estimate is a simple consequence of the fact that Lp is a sub-

space of Lp,∞. For the converse inequality we use the fact that Lp,∞([0,1]) is con-
tained in Lp/2([0,1]) and we have (see Exercise 1.1.11)∥∥F

∥∥
Lp/2 ≤ 4

1
p
∥∥F
∥∥

Lp,∞ .

Since any Lorentz space Lp,q([0,1]) can be sandwiched between L2p([0,1]) and
Lp/2([0,1]), similar inequalities hold for all Lorentz spaces Lp,q([0,1]), 0 < p < ∞,
0 < q≤ ∞.

C.5 Extension to Several Variables

We first extend the inequality on the right in Appendix C.2 to several variables. For
a positive integer n we let

Fn(t1, . . . , tn) = ∑
j1

· · ·∑
jn

c j1,..., jnr j1(t1) · · ·r jn(tn),

for t j ∈ [0,1], where c j1,..., jn is a sequence of complex numbers and Fn is a function
defined on [0,1]n.

For any 0 < p < ∞ and for any complex-valued square summable sequence of n
variables {c j1,..., jn} j1,..., jn , we have the following inequalities for Fn:

Bn
p

(
∑
j1

· · ·∑
jn

|c j1,..., jn |2
)1

2
≤
∥∥Fn
∥∥

Lp ≤ An
p

(
∑
j1

· · ·∑
jn

|c j1,..., jn |2
)1

2
,

where Ap,Bp are the constants in Appendix C.2. The norms are over [0,1]n.
The case n = 2 is indicative of the general case. For p≥ 2 we have

∫ 1

0

∫ 1

0
|F2(t1, t2)|p dt1 dt2 ≤ Ap

p

∫ 1

0

(
∑
j1

∣∣∑
j2

c j1, j2r j2(t2)
∣∣2)p

2
dt2

≤ Ap
p

(
∑
j1

(∫ 1

0

∣∣∑
j2

c j1, j2 r j2(t2)
∣∣p dt2

)2
p
)p

2

≤ A2p
p

(
∑
j1

∑
j2

|c j1, jn |2
)p

2
,
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where we used Minkowski’s integral inequality (with exponent p/2≥ 1) in the sec-
ond inequality and the result in the case n = 1 twice.

The case p < 2 follows trivially from Hölder’s inequality with constant Ap = 1.
The reverse inequalities follow exactly as in the case of one variable. Replacing Ap
by An

p in the argument, giving the reverse inequality in the case n = 1, we obtain the
constant Bn

p.
Likewise one may extend the weak type inequalities of Appendix C.3 in several

variables.



Appendix D
Spherical Coordinates

D.1 Spherical Coordinate Formula

Switching integration from spherical coordinates to Cartesian is achieved via the
following identity:∫

RSn−1

f (x)dσ(x) =
∫

π

ϕ1=0
· · ·
∫

π

ϕn−2=0

∫ 2π

ϕn−1=0
f (x(ϕ))J(n,R,ϕ)dϕn−1 · · ·dϕ1,

where

x1 = Rcosϕ1 ,

x2 = Rsinϕ1 cosϕ2 ,

x3 = Rsinϕ1 sinϕ2 cosϕ3 ,

. . .

xn−1 = Rsinϕ1 sinϕ2 sinϕ3 · · ·sinϕn−2 cosϕn−1 ,

xn = Rsinϕ1 sinϕ2 sinϕ3 · · ·sinϕn−2 sinϕn−1 ,

and 0≤ ϕ1, . . . ,ϕn−2 ≤ π , 0≤ ϕn−1 = θ ≤ 2π ,

x(ϕ) = (x1(ϕ1, . . . ,ϕn−1), . . . ,xn(ϕ1, . . . ,ϕn−1)) ,

and
J(n,R,ϕ) = Rn−1(sinϕ1)n−2 · · ·(sinϕn−3)2(sinϕn−2)

is the Jacobian of the transformation.

D.2 A Useful Change of Variables Formula

The following formula is useful in computing integrals over the sphere Sn−1 when
n≥ 2. Let f be a function defined on Sn−1. Then we have∫

RSn−1
f (x)dσ(x) =

∫ +R

−R

∫
√

R2−s2 Sn−2

f
(
s,θ
)

dθ
Rds√
R2− s2

.

To prove this formula, let ϕ ′ = (ϕ2, . . . ,ϕn−1) and
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x′ = x′(ϕ ′) = (cosϕ2,sinϕ2 cosϕ3, . . . ,sinϕ2 · · ·sinϕn−2 sinϕn−1) .

Using the change of variables in Appendix D.1 we express∫
RSn−1

f (x)dσ(x)

as the iterated integral∫
π

ϕ1=0

[∫
π

ϕ2=0
· · ·
∫ 2π

ϕn−1=0
f (Rcosϕ1,Rsinϕ1 x′(ϕ ′))J(n−1,1,ϕ ′)dϕ

′
]

Rdϕ1

(Rsinϕ1)2−n ,

and we can realize the expression inside the square brackets as∫
Sn−2

f (Rcosϕ1,Rsinϕ1 x′)dσ(x′) .

Consequently,∫
RSn−1

f (x)dσ(x) =
∫

π

ϕ1=0

∫
Sn−2

f (Rcosϕ1,Rsinϕ1 x′)dσ(x′)Rn−1(sinϕ1)n−2dϕ1 ,

and the change of variables

s = Rcosϕ1 , ϕ1 ∈ (0,π),

ds =−Rsinϕ1 dϕ1 ,
√

R2− s2 = Rsinϕ1 ,

yields∫
RSn−1

f (x)dσ(x) =
∫ R

−R

{∫
Sn−2

f (s,
√

R2− s2 θ)dθ

}(√
R2− s2

)n−2 Rds√
R2− s2

.

Rescaling the sphere Sn−2 to
√

R2− s2 Sn−2 yields the claimed identity.

D.3 Computation of an Integral over the Sphere

Let K be a function on the line. We use the result in Appendix D.2 to show that for
n≥ 2 we have

∫
Sn−1

K(x ·θ)dθ =
2π

n−1
2

Γ
( n−1

2

) ∫ +1

−1
K(s|x|)

(√
1− s2

)n−3 ds

when x ∈ Rn \ {0}. Let x′ = x/|x| and pick a matrix A ∈ O(n) such that Ae1 = x′,
where e1 = (1,0, . . . ,0). We have
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Sn−1

K(x ·θ)dθ =
∫

Sn−1
K(|x|(x′ ·θ))dθ

=
∫

Sn−1
K(|x|(Ae1 ·θ))dθ

=
∫

Sn−1
K(|x|(e1 ·A−1

θ))dθ

=
∫

Sn−1
K(|x|θ1)dθ

=
∫ +1

−1
K(|x|s)ωn−2

(√
1− s2

)n−2 ds√
1− s2

= ωn−2

∫ +1

−1
K(s|x|)

(√
1− s2

)n−3 ds ,

where ωn−2 = 2π
n−1

2 Γ
( n−1

2

)−1 is the surface area of Sn−2.
For example, we have

∫
Sn−1

dθ

|ξ ·θ |α
= ωn−2

∫ +1

−1

1
|s|α |ξ |α

(1− s2)
n−3

2 ds =
1
|ξ |α

2π
n−1

2 Γ
( 1−α

2

)
Γ
( n−α

2

) ,

and the integral converges only when Reα < 1.

D.4 The Computation of Another Integral over the Sphere

We compute the following integral for n≥ 2:∫
Sn−1

dθ

|θ − e1|α
,

where e1 = (1,0, . . . ,0). Applying the formula in Appendix D.2, we obtain∫
Sn−1

dθ

|θ − e1|α
=
∫ +1

−1

∫
θ∈
√

1−s2 Sn−2

dθ

(|s−1|2 + |θ |2) α
2

ds√
1− s2

=
∫ +1

−1
ωn−2

(1− s2)
n−2

2(
(1− s)2 +1− s2

) α
2

ds√
1− s2

=
ωn−2

2
α
2

∫ +1

−1

(1− s2)
n−3

2

(1− s)
α
2

ds

=
ωn−2

2
α
2

∫ +1

−1
(1− s)

n−3−α
2 (1+ s)

n−3
2 ds ,

which converges exactly when Reα < n−1.
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D.5 Integration over a General Surface

Suppose that S is a hypersurface in Rn of the form S = {(u,Φ(u)) : u ∈ D}, where
D is an open subset of Rn−1 and Φ is a continuously differentiable mapping from D
to R. Let σ be the canonical surface measure on S. If g is a function on S, then we
have ∫

S
g(y)dσ(y) =

∫
D

g(x,Φ(x))
(

1+
n

∑
j=1

|∂ jΦ(x)|2
)1

2
dx .

Specializing to the sphere, we obtain∫
Sn−1

g(θ)dθ =
∫

ξ ′∈Rn−1

|ξ ′|<1

[
g(ξ ′,

√
1−|ξ ′|2)+g(ξ ′,−

√
1−|ξ ′|2)

] dξ ′√
1−|ξ ′|2

.

D.6 The Stereographic Projection

Define a map Π : Rn → Sn by the formula

Π(x1, . . . ,xn) =
(

2x1

1+ |x|2
, . . . ,

2xn

1+ |x|2
,
|x|2−1
1+ |x|2

)
.

It is easy to see that Π is a one-to-one map from Rn onto the sphere Sn minus the
north pole en+1 = (0, . . . ,0,1). Its inverse is given by the formula

Π
−1(θ1, . . . ,θn+1) =

(
θ1

1−θn+1
, . . . ,

θn

1−θn+1

)
.

The Jacobian of the map is verified to be

JΠ (x) =
( 2

1+ |x|2
)n

,

and the following change of variables formulas are valid:∫
Sn

F(θ)dθ =
∫

Rn
F(Π(x))JΠ (x)dx

and ∫
Rn

F(x)dx =
∫

Sn
F(Π−1(θ))JΠ−1(θ)dθ ,

where

JΠ−1(θ) =
1

JΠ (Π−1(θ))
=

(
|θ1|2 + · · ·+ |θn|2 + |1−θn+1|2

2|1−θn+1|2

)n

.
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Another interesting formula about the stereographic projection Π is

|Π(x)−Π(y)|= 2|x− y|(1+ |x|2)−1/2(1+ |y|2)−1/2 ,

for all x, y in Rn.



Appendix E
Some Trigonometric Identities and Inequalities

The following inequalities are valid for t real:

0 < t <
π

2
=⇒ sin(t) < t < tan(t) ,

0 < |t|< π

2
=⇒ 2

π
<

sin(t)
t

< 1 ,

−∞ < t < +∞ =⇒ |sin(t)| ≤ |t| ,

−∞ < t < +∞ =⇒ |1− cos(t)| ≤ |t|2

2
,

−∞ < t < +∞ =⇒ |1− eit | ≤ |t| ,

|t| ≤ π

2
=⇒ |sin(t)| ≥ 2|t|

π
,

|t| ≤ π =⇒ |1− cos(t)| ≥ 2|t|2

π2 ,

|t| ≤ π =⇒ |1− eit | ≥ 2|t|
π

.

The following sum to product formulas are valid:

sin(a)+ sin(b) = 2 sin
(a+b

2

)
cos
(a−b

2

)
,

sin(a)− sin(b) = 2 cos
(a+b

2

)
sin
(a−b

2

)
,

cos(a)+ cos(b) = 2 cos
(a+b

2

)
cos
(a−b

2

)
,

cos(a)− cos(b) = −2 sin
(a+b

2

)
sin
(a−b

2

)
.

The following identities are also easily proved:

N

∑
k=1

cos(kx) = − 1
2

+
sin((N + 1

2 )x)
2sin( x

2 )
,

N

∑
k=1

sin(kx) =
cos( x

2 )− cos((N + 1
2 )x)

2sin( x
2 )

.
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Appendix F
Summation by Parts

Let {ak}∞
k=0, {bk}∞

k=0 be two sequences of complex numbers. Then for N ≥ 1 we
have

N

∑
k=0

akbk = ANbN −
N−1

∑
k=0

Ak(bk+1−bk),

where

Ak =
k

∑
j=0

a j .

More generally we have

N

∑
k=M

akbk = ANbN −AM−1bM −
N−1

∑
k=M

Ak(bk+1−bk) ,

whenever 0≤M ≤ N, where A−1 = 0 and

Ak =
k

∑
j=0

a j

for k ≥ 0.
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Appendix G
Basic Functional Analysis

A quasinorm is a nonnegative functional ‖ · ‖ on a vector space X that satisfies

‖x + y‖X ≤ K(‖x‖X + ‖y‖X ) for some K ≥ 0 and all x,y ∈ X and also ‖λx‖X =
|λ |‖x‖X for all scalars λ . When K = 1, the quasinorm is called a norm. A quasi-

Banach space is a quasinormed space that is complete with respect to the topology

generated by the quasinorm. The proofs of the following theorems can be found in

several books including Albiac and Kalton [1], Kalton Peck and Roberts [150], and

Rudin [230].

The Hahn–Banach theorem. Let X be a normed space and X0 a subspace. Every

bounded linear functional Λ0 on X0 has a bounded extension Λ on X with the same

norm. In addition, if Λ0 is subordinate to a positively homogeneous subadditive

functional P, then Λ may be chosen to have the same property.

Banach–Alaoglou theorem. Let X be a quasi-Banach space and let X∗ be the

space of all bounded linear functionals on X . Then the unit ball of X∗ is weak∗
compact.

Open mapping theorem. Suppose that X and Y are quasi-Banach spaces and

T is a bounded surjective linear map from X onto Y . Then there exists a constant

K < ∞ such that for all x ∈ X we have

‖x‖X ≤ K‖T (x)‖Y .

Closed graph theorem. Suppose that X and Y are quasi-Banach spaces and T is

a linear map from X to Y whose graph is a closed set, i.e., whenever xk,x ∈ X and

(xk,T (xk)) �→ (x,y) in X ×Y for some y ∈ Y , then T (x) = y. Then T is a bounded

linear map from X to Y .

Uniform boundedness principle. Suppose that X is a quasi-Banach space, Y is

a quasinormed space and (Tα)α∈I is a family of bounded linear maps from X to Y
such that for all x ∈ X there exists a Cx < ∞ such that

sup
α∈I

‖Tα(x)‖Y ≤Cx .

Then there exists a constant K < ∞ such that

sup
α∈I

‖Tα‖X→Y ≤ K .
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Appendix H
The Minimax Lemma

Minimax type results are used in the theory of games and have their origin in the
work of Von Neumann [286]. Much of the theory in this subject is based on convex
analysis techniques. For instance, this is the case with the next proposition, which
is needed in the “difficult” inequality in the proof of the minimax lemma. We refer
to Fan [87] for a general account of minimax results. The following exposition is
based on the simple presentation in Appendix A2 of [98].

Minimax Lemma. Let A, B be convex subsets of certain vector spaces. Assume that
a topology is defined in B for which it is a compact Hausdorff space and assume that
there is a function Φ : A×B→ R

⋃
{+∞} that satisfies the following:

(a) Φ( . ,b) is a concave function on A for each b ∈ B,
(b) Φ(a, .) is a convex function on B for each a ∈ A,
(c) Φ(a, .) is lower semicontinuous on B for each a ∈ A.

Then the following identity holds:

min
b∈B

sup
a∈A

Φ(a,b) = sup
a∈A

min
b∈B

Φ(a,b) .

To prove the lemma we need the following proposition:

Proposition. Let B be a convex compact subset of a vector space and suppose that
g j : B→ R

⋃
{+∞}, j = 1,2, . . . ,n, are convex and lower semicontinuous. If

max
1≤ j≤n

g j(b) > 0 for all b ∈ B ,

then there exist nonnegative numbers λ1,λ2, . . . ,λn such that

λ1g1(b)+λ2g2(b)+ · · ·+λngn(b) > 0 for all b ∈ B .

Proof. We first consider the case n = 2. Define subsets of B

B1 = {b ∈ B : g1(b)≤ 0}, B2 = {b ∈ B : g2(b)≤ 0} .

If B1 = /0, we take λ1 = 1 and λ2 = 0, and we similarly deal with the case B2 = /0. If
B1 and B2 are nonempty, then they are closed and thus compact. The hypothesis of
the proposition implies that g2(b) > 0≥ g1(b) for all b∈ B1. Therefore, the function
−g1(b)/g2(b) is well defined and upper semicontinuous on B1 and thus attains its
maximum. The same is true for −g2(b)/g1(b) defined on B2. We set
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454 H The Minimax Lemma

µ1 = max
b∈B1

−g1(b)
g2(b)

≥ 0 , µ2 = max
b∈B2

−g2(b)
g1(b)

≥ 0 .

We need to find λ > 0 such that λg1(b)+ g2(b) > 0 for all b ∈ B. This is clearly
satisfied if b 6∈ B1

⋃
B2, while for b1 ∈ B1 and b2 ∈ B2 we have

λg1(b1)+g2(b1) ≥ (1−λ µ1)g2(b1) ,
λg1(b2)+g2(b2) ≥ (λ −µ2)g1(b2) .

Therefore, it suffices to find a λ > 0 such that 1−λ µ1 > 0 and λ −µ2 > 0. Such a
λ exists if and only if µ1µ2 < 1. To prove that µ1µ2 < 1, we can assume that µ1 6= 0
and µ2 6= 0. Then we take b1 ∈ B1 and b2 ∈ B2, for which the maxima µ1 and µ2 are
attained, respectively. Then we have

g1(b1)+ µ1g2(b1) = 0 ,

g1(b2)+
1
µ2

g2(b2) = 0 .

But g1(b1) < 0 < g1(b2); thus taking bθ = θb1 +(1−θ)b2 for some θ in (0,1), we
have

g1(bθ )≤ θg1(b1)+(1−θ)g1(b2) = 0 .

Considering the same convex combination of the last displayed equations and using
this identity, we obtain that

µ1µ2θg2(b1)+(1−θ)g2(b2) = 0 .

The hypothesis of the proposition implies that g2(bθ ) > 0 and the convexity of g2:

θg2(b1)+(1−θ)g2(b2) > 0 .

Since g2(b1) > 0, we must have µ1µ2g2(b1) < g2(b1), which gives µ1µ2 < 1. This
proves the required claim and completes the case n = 2.

We now use induction to prove the proposition for arbitrary n. Assume that the
result has been proved for n−1 functions. Consider the subset of B

Bn = {b ∈ B : gn(b)≤ 0} .

If Bn = /0, we choose λ1 = λ2 = · · · = λn−1 = 0 and λn = 1. If Bn is not empty,
then it is compact and convex and we can restrict g1,g2, . . . ,gn−1 to Bn. Using the
induction hypothesis, we can find λ1,λ2, . . . ,λn−1 ≥ 0 such that

g0(b) = λ1g1(b)+λ2g2(b)+ · · ·+λn−1gn−1(b) > 0

for all b ∈ Bn. Then g0 and gn are convex lower semicontinuous functions on B, and
max(g0(b),gn(b)) > 0 for all b ∈ B. Using the case n = 2, which was first proved,
we can find λ0,λn ≥ 0 such that for all b ∈ B we have
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0 < λ0g0(b)+λngn(b)
= λ0λ1g1(b)+λ0λ2g2(b)+ · · ·+λ0λn−1gn−1(b)+λngn(b).

This establishes the case of n functions and concludes the proof of the induction and
hence of the proposition. �

We now turn to the proof of the minimax lemma.

Proof. The fact that the left-hand side in the required conclusion of the minimax
lemma is at least as big as the right-hand side is obvious. We can therefore concen-
trate on the converse inequality. In doing this we may assume that the right-hand side
is finite. Without loss of generality we can subtract a finite constant from Φ(a,b),
and so we can also assume that

sup
a∈A

min
b∈B

Φ(a,b) = 0 .

Then, by hypothesis (c) of the minimax lemma, the subsets

Ba = {b ∈ B : Φ(a,b)≤ 0}, a ∈ A

of B are closed and nonempty, and we show that they satisfy the finite intersection
property. Indeed, suppose that

Ba1 ∩Ba2 ∩·· ·∩Ban = /0

for some a1,a2, . . . ,an ∈ A. We write g j(b) = Φ(a j,b), j = 1,2, . . . ,n, and we ob-
serve that the conditions of the previous proposition are satisfied. Therefore we can
find λ1,λ2, . . . ,λn ≥ 0 such that for all b ∈ B we have

λ1Φ(a1,b)+λ2Φ(a2,b)+ · · ·+λnΦ(an,b) > 0 .

For simplicity we normalize the λ j’s by setting λ1 + λ2 + · · ·+ λn = 1. If we set
a0 = λ1a1 +λ2a2 + · · ·+λnan, the concavity hypothesis (a) gives

Φ(a0,b) > 0

for all b ∈ B, contradicting the fact that supa∈A minb∈B Φ(a,b) = 0. Therefore, the
family of closed subsets {Ba}a∈A of B satisfies the finite intersection property. The
compactness of B now implies

⋂
a∈A Ba 6= /0. Take b0 ∈

⋂
a∈A Ba. Then Φ(a,b0)≤ 0

for every a ∈ A, and therefore

min
b∈B

sup
a∈A

Φ(a,b)≤ sup
a∈A

Φ(a,b0)≤ 0

as required. �



Appendix I
The Schur Lemma

Schur’s lemma provides sufficient conditions for linear operators to be bounded
on Lp. Moreover, for positive operators it provides necessary and sufficient such
conditions. We discuss these situations.

I.1 The Classical Schur Lemma

We begin with an easy situation. Suppose that K(x,y) is a locally integrable function
on a product of two σ -finite measure spaces (X ,µ)× (Y,ν), and let T be a linear
operator given by

T ( f )(x) =
∫

Y
K(x,y) f (y)dν(y)

when f is bounded and compactly supported. It is a simple consequence of Fubini’s
theorem that for almost all x ∈ X the integral defining T converges absolutely. The
following lemma provides a sufficient criterion for the Lp boundedness of T .

Lemma. Suppose that a locally integrable function K(x,y) satisfies

sup
x∈X

∫
Y
|K(x,y)|dν(y) = A < ∞ ,

sup
y∈Y

∫
X
|K(x,y)|dµ(x) = B < ∞ .

Then the operator T extends to a bounded operator from Lp(Y ) to Lp(X) with norm

A1− 1
p B

1
p for 1≤ p≤ ∞.

Proof. The second condition gives that T maps L1 to L1 with bound B, while the first
condition gives that T maps L∞ to L∞ with bound A. It follows by the Riesz–Thorin
interpolation theorem that T maps Lp to Lp with bound A1− 1

p B
1
p . �

This lemma can be improved significantly when the operators are assumed to be
positive.

I.2 Schur’s Lemma for Positive Operators

We have the following necessary and sufficient condition for the Lp boundedness of
positive operators.
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458 I The Schur Lemma

Lemma. Let (X ,µ) and (Y,ν) be two σ -finite measure spaces, where µ and ν are
positive measures, and suppose that K(x,y) is a nonnegative measurable function
on X ×Y . Let 1 < p < ∞ and 0 < A < ∞. Let T be the linear operator

T ( f )(x) =
∫

Y
K(x,y) f (y)dν(y)

and T t its transpose operator

T t(g)(y) =
∫

X
K(x,y)g(x)dµ(x) .

To avoid trivialities, we assume that there is a compactly supported, bounded, and
positive ν-a.e. function h1 on Y such that T (h1) > 0 µ-a.e. Then the following are
equivalent:

(i) T maps Lp(Y ) to Lp(X) with norm at most A.
(ii) For all B > A there is a measurable function h on Y that satisfies 0 < h < ∞

ν-a.e., 0 < T (h) < ∞ µ-a.e., and such that

T t(T (h)
p
p′
)
≤ Bp h

p
p′ .

(iii) For all B > A there are measurable functions u on X and v on Y such that
0 < u < ∞ µ-a.e., 0 < v < ∞ ν-a.e., and such that

T (up′) ≤ Bvp′ ,

T t(vp) ≤ Bup.

Proof. First we assume (ii) and we prove (iii). Define u,v by the equations vp′ =
T (h) and up′ = Bh and observe that (iii) holds for this choice of u and v. Moreover,
observe that 0 < u,v < ∞ a.e. with respect to the measures µ and ν , respectively.

Next we assume (iii) and we prove (i). For g in Lp′(X) we have∫
X

T ( f )(x)g(x)dµ(x) =
∫

X

∫
Y

K(x,y) f (y)g(x)
v(x)
u(y)

u(y)
v(x)

dν(y)dµ(x).

We now apply Hölder’s inequality with exponents p and p′ to the functions

f (y)
v(x)
u(y)

and g(x)
u(y)
v(x)

with respect to the measure K(x,y)dν(y)dµ(x) on X ×Y . Since(∫
Y

∫
X

f (y)p v(x)p

u(y)p K(x,y)dµ(x)dν(y)
)1

p

≤ B
1
p
∥∥ f
∥∥

Lp(Y )

and
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X

∫
Y

g(x)p′ u(y)p′

v(x)p′ K(x,y)dν(y)dµ(x)
)1

p′
≤ B

1
p′
∥∥g
∥∥

Lp′ (X),

we conclude that∣∣∣∣∫X
T ( f )(x)g(x)dµ(x)

∣∣∣∣≤ B
1
p + 1

p′ ‖ f‖Lp(Y )
∥∥g
∥∥

Lp′ (X).

Taking the supremum over all g with Lp′(X) norm 1, we obtain∥∥T ( f )
∥∥

Lp(X) ≤ B
∥∥ f
∥∥

Lp(Y ).

Since B was any number greater than A, we conclude that∥∥T
∥∥

Lp(Y )→Lp(X) ≤ A ,

which proves (i).
We finally assume (i) and we prove (ii). Without loss of generality, take here

A = 1 and B > 1. Define a map S : Lp(Y )→ Lp(Y ) by setting

S( f )(y) =
(
T t(T ( f )

p
p′
))p′

p (y).

We observe two things. First, f1 ≤ f2 implies S( f1)≤ S( f2), which is an easy con-
sequence of the fact that the same monotonicity is valid for T . Next, we observe that∥∥ f
∥∥

Lp ≤ 1 implies that
∥∥S( f )

∥∥
Lp ≤ 1 as a consequence of the boundedness of T on

Lp (with norm at most 1).
Construct a sequence hn, n = 1,2, . . . , by induction as follows. Pick h1 > 0 on

Y as in the hypothesis of the theorem such that T (h1) > 0 µ-a.e. and such that∥∥h1
∥∥

Lp ≤ B−p′(Bp′−1). (The last condition can be obtained by multiplying h1 by a
small constant.) Assuming that hn has been defined, we define

hn+1 = h1 +
1

Bp′ S(hn).

We check easily by induction that we have the monotonicity property hn ≤ hn+1 and
the fact that

∥∥hn
∥∥

Lp ≤ 1. We now define

h(x) = sup
n

hn(x) = lim
n→∞

hn(x).

Fatou’s lemma gives that
∥∥h
∥∥

Lp ≤ 1, from which it follows that h < ∞ ν-a.e. Since
h≥ h1 > 0 ν-a.e., we also obtain that h > 0 ν-a.e.

Next we use the Lebesgue dominated convergence theorem to obtain that hn → h
in Lp(Y ). Since T is bounded on Lp, it follows that T (hn) → T (h) in Lp(X). It

follows that T (hn)
p
p′ → T (h)

p
p′ in Lp′(X). Our hypothesis gives that T t maps Lp′(X)
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to Lp′(Y ) with norm at most 1. It follows T t
(
T (hn)

p
p′
)
→ T t

(
T (h)

p
p′
)

in Lp′(Y ).
Raising to the power p′

p , we obtain that S(hn)→ S(h) in Lp(Y ).
It follows that for some subsequence nk of the integers we have S(hnk)→ S(h) a.e.

in Y . Since the sequence S(hn) is increasing, we conclude that the entire sequence
S(hn) converges almost everywhere to S(h). We use this information in conjunction
with hn+1 = h1 + 1

Bp′ S(hn). Indeed, letting n→ ∞ in this identity, we obtain

h = h1 +
1

Bp′ S(h) .

Since h1 > 0 ν-a.e. it follows that S(h) ≤ Bp′h ν-a.e., which proves the required
estimate in (ii).

It remains to prove that 0 < T (h) < ∞ µ-a.e. Since
∥∥h
∥∥

Lp ≤ 1 and T is Lp

bounded, it follows that
∥∥T (h)

∥∥
Lp ≤ 1, which implies that T (h) < ∞ µ-a.e. We

also have T (h)≥ T (h1) > 0 µ-a.e. �

I.3 An Example

Consider the Hilbert operator

T ( f )(x) =
∫

∞

0

f (y)
x+ y

dy ,

where x∈ (0,∞). The operator T takes measurable functions on (0,∞) to measurable
functions on (0,∞). We claim that T maps Lp(0,∞) to itself for 1 < p < ∞; precisely,
we have the estimate∫

∞

0
T ( f )(x)g(x)dx ≤ π

sin(π/p)

∥∥ f
∥∥

Lp(0,∞)

∥∥g
∥∥

Lp′ (0,∞) .

To see this we use Schur’s lemma. We take

u(x) = v(x) = x−
1

pp′ .

We have that

T (up′)(x) =
∫

∞

0

y−
1
p

x+ y
dy = x−

1
p

∫
∞

0

t−
1
p

1+ t
dt = B( 1

p′ ,
1
p )v(x)p′ ,

where B is the usual beta function and the last identity follows from the change of
variables s = (1+ t)−1. Now an easy calculation yields

B( 1
p′ ,

1
p ) =

π

sin(π/p)
,
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so the lemma in Appendix I.2 gives that
∥∥T
∥∥

Lp→Lp ≤ π

sin(π/p) . The sharpness of this
constant follows by considering the sequence of functions

hε(x) =

{
x−

1
p +ε when x < 1,

x−
1
p−ε when x ≥ 1,

which satisfies

lim
ε→0

∥∥T (hε)
∥∥

Lp(0,∞)∥∥hε

∥∥
Lp(0,∞)

=
π

sin(π/p)
.

We make some comments related to the history of Schur’s lemma. Schur [237]
first proved a matrix version of the lemma in Appendix I.1 when p = 2. Precisely,
Schur’s original version was the following: If K(x,y) is a positive decreasing func-
tion in both variables and satisfies

sup
m

∑
n

K(m,n)+ sup
n

∑
m

K(m,n) < ∞ ,

then
∑
m

∑
n

amnK(m,n)bmn ≤C‖a‖`2‖b‖`2 .

Hardy–Littlewood and Pólya [121] extended this result to Lp for 1 < p < ∞ and
disposed of the condition that K be a decreasing function. Aronszajn, Mulla, and
Szeptycki [9] proved that (iii) implies (i) in the lemma of Appendix I.2. Gagliardo
in [97] proved the converse direction that (i) implies (iii) in the same lemma. The
case p = 2 was previously obtained by Karlin [151]. Condition (ii) was introduced
by Howard and Schep [131], who showed that it is equivalent to (i) and (iii). A multi-
linear analogue of the lemma in Appendix I.2 was obtained by Grafakos and Torres
[113]; the easy direction (iii) implies (i) was independently observed by Bekollé,
Bonami, Peloso, and Ricci [17]. See also Cwikel and Kerman [65] for an alternative
multilinear formulation of the Schur lemma.

The case p = p′ = 2 of the application in Appendix I.3 is a continuous version of
Hilbert’s double series theorem. The discrete version was first proved by Hilbert in
his lectures on integral equations (published by Weyl [290]) without a determination
of the exact constant. This exact constant turns out to be π , as discovered by Schur
[237]. The extension to other p’s (with sharp constants) is due to Hardy and M.
Riesz and published by Hardy [120].



Appendix J
The Whitney Decomposition of Open Sets in Rn

An arbitrary open set in Rn can be decomposed as a union of disjoint cubes whose
lengths are proportional to their distance from the boundary of the open set. See, for
instance, Figure J.1 when the open set is the unit disk in R2. For a given cube Q in
Rn, we denote by `(Q) its length.

Proposition. Let Ω be an open nonempty proper subset of Rn. Then there exists a
family of closed cubes {Q j} j such that

(a)
⋃

j Q j = Ω and the Q j’s have disjoint interiors.
(b)

√
n`(Q j)≤ dist (Q j,Ω

c)≤ 4
√

n`(Q j).
(c) If the boundaries of two cubes Q j and Qk touch, then

1
4
≤

`(Q j)
`(Qk)

≤ 4 .

(d) For a given Q j there exist at most 12n Qk’s that touch it.

Fig. J.1 The Whitney decomposition of the unit disk.
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Proof. Let Dk be the collection of all dyadic cubes of the form

{(x1, . . . ,xn) ∈ Rn : m j2−k ≤ x j < (m j +1)2−k} ,

where m j ∈ Z. Observe that each cube in Dk gives rise to 2n cubes in Dk+1 by
bisecting each side.

Write the set Ω as the union of the sets

Ωk = {x ∈Ω : 2
√

n2−k < dist(x,Ω c)≤ 4
√

n2−k}

over all k ∈ Z. Let F ′ be the set of all cubes Q in Dk for some k ∈ Z such that
Q∩Ωk 6= /0. We show that the collection F ′ satisfies property (b). Let Q ∈F ′ and
pick x ∈Ωk ∩Q for some k ∈ Z. Observe that

√
n2−k ≤ dist(x,Ω c)−

√
n`(Q)≤ dist(Q,Ω c)≤ dist(x,Ω c)≤ 4

√
n2−k ,

which proves (b).
Next we observe that ⋃

Q∈F ′
Q = Ω .

Indeed, every Q in F ′ is contained in Ω (since it has positive distance from its
complement) and every x ∈Ω lies in some Ωk and in some dyadic cube in Dk.

The problem is that the cubes in the collection F ′ may not be disjoint. We have
to refine the collection F ′ by eliminating those cubes that are contained in some
other cubes in the collection. Recall that two dyadic cubes have disjoint interiors
or else one contains the other. For every cube Q in F ′ we can therefore consider
the unique maximal cube Qmax in F ′ that contains it. Two different such maximal
cubes must have disjoint interiors by maximality. Now set F = {Qmax : Q ∈F ′}.

The collection of cubes {Q j} j = F clearly satisfies (a) and (b), and we now turn
our attention to the proof of (c). Observe that if Q j and Qk in F touch then

√
n`(Q j)≤ dist(Q j,Ω

c)≤ dist(Q j,Qk)+dist(Qk,Ω
c)≤ 0+4

√
n`(Qk) ,

which proves (c). To prove (d), observe that any cube Q in Dk is touched by exactly
3n−1 other cubes in Dk. But each cube Q in Dk can contain at most 4n cubes of F
of length at least one-quarter of the length of Q. This fact combined with (c) yields
(d). �

The following observation is a consequence of the result just proved: Let F =
{Q j} j be the Whitney decomposition of a proper open subset Ω of Rn. Fix 0 <
ε < 1/4 and denote by Q∗

k the cube with the same center as Qk but with side length
(1 + ε) times that of Qk. Then Qk and Q j touch if and only if Q∗

k and Q j intersect.
Consequently, every point in Ω is contained in at most 12n cubes Q∗

k .



Appendix K
Smoothness and Vanishing Moments

K.1 The Case of No Cancellation

Let a,b ∈ Rn, µ,ν ∈ R, and M,N > n. Set

I(a,µ,M;b,ν ,N) =
∫

Rn

2µn

(1+2µ |x−a|)M
2νn

(1+2ν |x−b|)N dx .

Then we have

I(a,µ,M;b,ν ,N)≤C0
2min(µ,ν)n(

1+2min(µ,ν)|a−b|
)min(M,N) ,

where

C0 = vn

(
M4N

M−n
+

N4M

N−n

)
and vn is the volume of the unit ball in Rn.

To prove this estimate, first observe that∫
Rn

dx
(1+ |x|)M ≤ vnM

M−n
.

Without loss of generality, assume that ν ≤ µ . Consider the cases 2ν |a−b| ≤ 1 and
2ν |a−b| ≥ 1. In the case 2ν |a−b| ≤ 1 we use the estimate

2νn

(1+2ν |x−a|)N ≤ 2νn ≤ 2νn2min(M,N)

(1+2ν |a−b|)min(M,N) ,

and the result is a consequence of the estimate

I(a,µ,M;b,ν ,N)≤ 2νn2min(M,N)

(1+2ν |a−b|)min(M,N)

∫
Rn

2µn

(1+2µ |x−a|)M dx .

In the case 2ν |a−b| ≥ 1 let Ha and Hb be the two half-spaces, containing the points
a and b, respectively, formed by the hyperplane perpendicular to the line segment
[a,b] at its midpoint. Split the integral over Rn as the integral over Ha and the integral
over Hb. For x∈Ha use that |x− b| ≥ 1

2 |a− b|. For x ∈ Hb use a similar inequality
and the fact that 2ν |a−b| ≥ 1 to obtain
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2µn

(1+2µ |x−a|)M ≤ 2µn

(2µ 1
2 |a−b|)M

≤ 4M2(ν−µ)(M−n)2νn

(1+2ν |a−b|)M .

The required estimate follows.

K.2 The Case of Cancellation

Let a,b ∈ Rn, M,N > 0, and L a nonnegative integer. Suppose that φµ and φν are
two functions on Rn that satisfy

|(∂ α
x φµ)(x)| ≤ Aα 2µn 2µL

(1+2µ |x− xµ |)M , for all |α|= L,

|φν(x)| ≤ B2νn

(1+2ν |x− xν |)N ,

for some Aα and B positive, and∫
Rn

φν(x)xβ dx = 0 for all |β | ≤ L−1,

where the last condition is supposed to be vacuous when L = 0. Suppose that N >
M +L+n and that ν ≥ µ . Then we have∣∣∣∣∫Rn

φµ(x)φν(x)dx
∣∣∣∣≤C00

2µn2−(ν−µ)L

(1+2µ |xµ − xν |)M ,

where
C00 = vn

N−L−M
N−L−M−n

B ∑
|α|=L

Aα

α!
.

To prove this statement, we subtract the Taylor polynomial of order L−1 of φµ

at the point xν from the function φµ(x) and use the remainder theorem to control the
required integral by

B ∑
|α|=L

Aα

α!

∫
Rn

|x− xν |L2µn2µL

(1+2µ |ξx− xµ |)M
2νn

(1+2ν |x− xν |)N dx ,

for some ξx on the segment joining xν to x. Using ν ≥ µ and the triangle inequality,
we obtain

1
1+2µ |ξx− xµ |

≤ 1+2ν |x− xν |
1+2µ |xµ − xν |

.

We insert this estimate in the last integral and we use that N > L+M +n to deduce
the required conclusion.
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K.3 The Case of Three Factors

Given three numbers a,b,c we denote by med(a,b,c) the number with the property
min(a,b,c)≤med(a,b,c)≤max(a,b,c).

Let xν ,xµ ,xλ ∈ Rn. Suppose that ψν , ψµ , ψλ are functions defined on Rn such
that for all N > n sufficiently large there exist constants Aν ,Aµ ,Aλ < ∞ such that

|ψν(x)| ≤ Aν

2νn/2

(1+2ν |x− xν |)N ,

|ψµ(x)| ≤ Aµ

2µn/2

(1+2µ |x− xµ |)N ,

|ψλ (x)| ≤ Aλ

2λn/2

(1+2λ |x− xλ |)N ,

for all x ∈ Rn. Then the following estimate is valid:∫
Rn
|ψν(x)| |ψµ(x)| |ψλ (x)|dx

≤
CN,n Aν Aµ Aλ 2−max(µ,ν ,λ )n/2 2med(µ,ν ,λ )n/2 2min(µ,ν ,λ )n/2

((1+2min(ν ,µ)|xν − xµ |)(1+2min(µ,λ )|xµ − xλ |)(1+2min(λ ,ν)|xλ − xν |))N

for some constant CN,n > 0 independent of the remaining parameters.
Analogous estimates hold if some of these factors are assumed to have cancella-

tion and the others vanishing moments. See the article of Grafakos and Torres [114]
for precise statements of these results and applications. Similar estimates with m
factors, m ∈ Z+, are studied in Bényi and Tzirakis [21].



Glossary

A⊆ B A is a subset of B (not necessarily a proper subset)

A $ B A is a proper subset of B

Ac the complement of a set A

χE the characteristic function of the set E

d f the distribution function of a function f

f ∗ the decreasing rearrangement of a function f

fn ↑ f fn increases monotonically to a function f

Z the set of all integers

Z+ the set of all positive integers {1,2,3, . . .}

Zn the n-fold product of the integers

R the set of real numbers

R+ the set of positive real numbers

Rn the Euclidean n-space

Q the set of rationals

Qn the set of n-tuples with rational coordinates

C the set of complex numbers

Cn the n-fold product of complex numbers

T the unit circle identified with the interval [0,1]

Tn the n-dimensional torus [0,1]n

|x|
√
|x1|2 + · · ·+ |xn|2 when x = (x1, . . . ,xn) ∈ Rn

Sn−1 the unit sphere {x ∈ Rn : |x|= 1}
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e j the vector (0, . . . ,0,1,0, . . . ,0) with 1 in the jth entry and 0 elsewhere

log t the logarithm with base e of t > 0

loga t the logarithm with base a of t > 0 (1 6= a > 0)

log+ t max(0, log t) for t > 0

[t] the integer part of the real number t

x · y the quantity ∑
n
j=1 x jy j when x = (x1, . . . ,xn) and y = (y1, . . . ,yn)

B(x,R) the ball of radius R centered at x in Rn

ωn−1 the surface area of the unit sphere Sn−1

vn the volume of the unit ball {x ∈ Rn : |x|< 1}

|A| the Lebesgue measure of the set A⊆ Rn

dx Lebesgue measure

AvgB f the average 1
|B|
∫

B f (x)dx of f over the set B〈
f ,g
〉

the real inner product
∫

Rn f (x)g(x)dx〈
f |g
〉

the complex inner product
∫

Rn f (x)g(x)dx〈
u, f
〉

the action of a distribution u on a function f

p′ the number p/(p−1), whenever 0 < p 6= 1 < ∞

1′ the number ∞

∞′ the number 1

f = O(g) means | f (x)| ≤M|g(x)| for some M for x near x0

f = o(g) means | f (x)| |g(x)|−1 → 0 as x → x0

At the transpose of the matrix A

A∗ the conjugate transpose of a complex matrix A

A−1 the inverse of the matrix A

O(n) the space of real matrices satisfying A−1 = At

‖T‖X→Y the norm of the (bounded) operator T : X → Y

A≈ B means that there exists a c > 0 such that c−1 ≤ B
A ≤ c

|α| indicates the size |α1|+ · · ·+ |αn| of a multi-index α = (α1, . . . ,αn)

∂ m
j f the mth partial derivative of f (x1, . . . ,xn) with respect to x j

∂ α f ∂
α1
1 · · ·∂ αn

n f

C k the space of functions f with ∂ α f continuous for all |α| ≤ k
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C0 the space of continuous functions with compact support

C00 the space of continuous functions that vanish at infinity

C ∞
0 the space of smooth functions with compact support

D the space of smooth functions with compact support

S the space of Schwartz functions

C ∞ the space of smooth functions
⋃

∞
k=1 C k

D ′(Rn) the space of distributions on Rn

S ′(Rn) the space of tempered distributions on Rn

E ′(Rn) the space of distributions with compact support on Rn

P the set of all complex-valued polynomials of n real variables

S ′(Rn)/P the space of tempered distributions on Rn modulo polynomials

`(Q) the side length of a cube Q in Rn

∂Q the boundary of a cube Q in Rn

Lp(X ,µ) the Lebesgue space over the measure space (X ,µ)

Lp(Rn) the space Lp(Rn, | · |)

Lp,q(X ,µ) the Lorentz space over the measure space (X ,µ)

Lp
loc(R

n) the space of functions that lie in Lp(K) for any compact set K in Rn

|dµ| the total variation of a finite Borel measure µ on Rn

M (Rn) the space of all finite Borel measures on Rn

Mp(Rn) the space of Lp Fourier multipliers, 1≤ p≤ ∞

M p,q(Rn) the space of translation-invariant operators that map Lp(Rn) to Lq(Rn)∥∥µ
∥∥

M

∫
Rn |dµ| the norm of a finite Borel measure µ on Rn

M the centered Hardy–Littlewood maximal operator with respect to balls

M the uncentered Hardy–Littlewood maximal operator with respect to balls

Mc the centered Hardy–Littlewood maximal operator with respect to cubes

Mc the uncentered Hardy–Littlewood maximal operator with respect to cubes

Mµ the centered maximal operator with respect to a measure µ

Mµ the uncentered maximal operator with respect to a measure µ

Ms the strong maximal operator

Md the dyadic maximal operator
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211. J. Peetre, Nouvelles propriétés d’ éspaces d’ interpolation, C. R. Acad. Sci. Paris 256

(1963), 1424–1426.
212. M. C. Pereyra, Lecture Notes on Dyadic Harmonic Analysis, in “Second Summer School

in Analysis and Mathematical Physics,” pp. 1–60, S. Pérez-Esteva and C. Villegas-Blas
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262. E. M. Stein and J. O. Strömberg, Behavior of maximal functions in Rn for large n, Arkiv

f. Math. 21 (1983), 259–269.
263. E. M. Stein and G. Weiss, Interpolation of operators with change of measures, Trans.

Amer. Math. Soc. 87 (1958), 159–172.
264. E. M. Stein and G. Weiss, An extension of theorem of Marcinkiewicz and some of its

applications, J. Math. Mech. 8 (1959), 263–284.
265. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Prince-

ton Univ. Press, Princeton, NJ, 1971.
266. E. M. Stein and N. J. Weiss, On the convergence of Poisson integrals, Trans. Amer. Math.

Soc. 140 (1969), 34–54.
267. P. Stein, On a theorem of M. Riesz, J. London Math. Soc. 8 (1933), 242–247.
268. V. D. Stepanov, On convolution integral operators, Soviet Math. Dokl. 19 (1978), 1334–

1337.
269. R. Strichartz, A multilinear version of the Marcinkiewicz interpolation theorem, Proc.

Amer. Math. Soc. 21 (1969), 441–444.
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functions, Soobšč. Akad. Nauk Gruzin. 5 (1970), 277–279.

278. G. O. Thorin, An extension of a convexity theorem due to M. Riesz, Fys. Säellsk. Förh. 8
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