CHAPTER 8

SEQUENCES OF FUNCTIONS

In previous chapters we have often made use of sequences of real numbers. In this chapter
we shall consider sequences whose terms are functions rather than real numbers.
Sequences of functions arise naturally in real analysis and are especially useful in obtaining
approximations to a given function and defining new functions from known ones.

In Section 8.1 we will introduce two different notions of convergence for a sequence of
functions: pointwise convergence and uniform convergence. The latter type of convergence
is very important, and will be the main focus of our attention. The reason for this focus is
the fact that, as is shown in Section 8.2, uniform convergence ‘“‘preserves” certain
properties in the sense that if each term of a uniformly convergent sequence of functions
possesses these properties, then the limit function also possesses the properties.

In Section 8.3 we will apply the concept of uniform convergence to define and derive
the basic properties of the exponential and logarithmic functions. Section 8.4 is devoted to
a similar treatment of the trigonometric functions.

Section 8.1 Pointwise and Uniform Convergence

Let A C R be given and suppose that for each n € N there is a function f,, : A — R; we
shall say that (f;,) is a sequence of functions on A to R. Clearly, for each x € A, such a
sequence gives rise to a sequence of real numbers, namely the sequence

(1) (fu(x)),

obtained by evaluating each of the functions at the point x. For certain values of x € A the
sequence (1) may converge, and for other values of x € A this sequence may diverge. For
each x € A for which the sequence (1) converges, there is a uniquely determined real
number lim(f,(x)). In general, the value of this limit, when it exists, will depend on the
choice of the point x € A. Thus, there arises in this way a function whose domain consists
of all numbers x € A for which the sequence (1) converges.

8.1.1 Definition Let (f,) be a sequence of functionson A C Rto R, let Ay C A, and let
f :Ag — R. We say that the sequence (f,) converges on A to f if, for each x € A, the
sequence (f,(x)) converges to f(x) in R. In this case we call f the limit on A, of the
sequence ( f,). When such a function f exists, we say that the sequence (f,,) is convergent
on Ay, or that (f,) converges pointwise on Ay.

It follows from Theorem 3.1.4 that, except for a possible modification of the domain
Ay, the limit function is uniquely determined. Ordinarily we choose A to be the largest set
possible; that is, we take Ay to be the set of all x € A for which the sequence (1) is
convergent in R.
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242 CHAPTER 8 SEQUENCES OF FUNCTIONS

In order to symbolize that the sequence (f,) converges on Ag to f, we sometimes
write

f=1lim(f,) on Ay, or f,—f on A
Sometimes, when f,, and f are given by formulas, we write

f(x)=limf,(x) for x €Ay or f,(x)—f(x) for x €A,

8.1.2 Examples (a) lim(x/n) =0 for x € R.
For n € N, let f,,(x) := x/n and let f(x) := 0 for x € R. By Example 3.1.6(a), we
have lim(1/n) = 0. Hence it follows from Theorem 3.2.3 that

lim(f,(x)) =lim(x/n) = xlim(1/n) =x-0=0

for all x € R. (See Figure 8.1.1.)

A
(1,g(1))
f2
f3
= f
Figure 8.1.1 f,(x) = x/n Figure 8.1.2 g,(x) = x"

(b) lim(x").

Let g,(x) :=x" for x € R,n € N. (See Figure 8.1.2.) Clearly, if x = 1, then the
sequence (g,(1)) = (1) converges to 1. It follows from Example 3.1.11(b) that lim(x") = 0
for 0 < x < 1 and it is readily seen that this is also true for —1 < x < 0. If x = —1, then
g,(—=1) = (—1)", and it was seen in Example 3.2.8(b) that the sequence is divergent.
Similarly, if |x| > 1, then the sequence (x") is not bounded, and so it is not convergent in R.
We conclude that if

g(x).:{o for —-1<x<1,
) 1 for x=1,

then the sequence (g,) converges to g on the set (—1,1].
(©) lim((x* + nx)/n) = xfor x € R.

Let /,(x):= (x> +nx)/n for x eR, n €N, and let h(x):=x for x € R. (See
Figure 8.1.3.) Since we have /,(x) = (x*/n) + x, it follows from Example 3.1.6(a)
and Theorem 3.2.3 that /1,(x) — x = h(x) for all x € R.
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rhthhn h

Figure 8.1.3 7, (x) = (x2 + nx)/n Figure 8.14 F,(x) = sin(nx + n)/n

(d) lim((1/n) sin(nx + n)) = 0 for x € R
Let F,,(x) := (1/n) sin(nx + n) for x € R, n € N, and let F(x) := 0 for x € R. (See
Figure 8.1.4.) Since |sin y| < 1 for all y € R we have

(2) |Fulx) = F(x)| = <

S|=

I .
;sm(nx +n)

for all x € R. Therefore it follows that lim(F,(x)) = 0 = F(x) for all x € R. The reader
should note that, given any ¢ > 0, if n is sufficiently large, then |F,,(x) — F(x)| < ¢ for all
values of x simultaneously! O

Partly to reinforce Definition 8.1.1 and partly to prepare the way for the important
notion of uniform convergence, we reformulate Definition 8.1.1 as follows.

8.1.3 Lemma A sequence (f,) of functions on A CR to R converges to a function
f: Ao — Ron Aq if and only if for each ¢ > 0 and each x € Ay there is a natural number
K (&, x) such that if n > K(g,x), then

3) [fu(x) —F(x)] <.

We leave it to the reader to show that this is equivalent to Definition 8.1.1. We wish to
emphasize that the value of K (¢, x) will depend, in general, on both ¢ > 0 and x € A,. The
reader should confirm the fact that in Examples 8.1.2(a—c), the value of K (¢, x) required to
obtain an inequality such as (3) does depend on both ¢ > 0 and x € Ay. The intuitive reason
for this is that the convergence of the sequence is “‘significantly faster’” at some points than
itis at others. However, in Example 8.1.2(d), as we have seen in inequality (2), if we choose
n sufficiently large, we can make |F,(x) — F(x)| < ¢ for a/l values of x € R. It is precisely
this rather subtle difference that distinguishes between the notion of the “‘pointwise
convergence’’ of a sequence of functions (as defined in Definition 8.1.1) and the notion of
“uniform convergence.”

Uniform Convergence

8.1.4 Definition A sequence (f,) of functions on A C R to R converges uniformly on
Ao C A to a function f: Ay — R if for each & > 0 there is a natural number K(¢)
(depending on ¢ but not on x € Ag) such that if n > K(¢), then

(4) |fa(x) —f(x)] <& for all x € Ay.
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In this case we say that the sequence (f;,) is uniformly convergent on A,. Sometimes we
write

fn = f on Ao, or fn(x) = f(X) for x € Ap.

It is an immediate consequence of the definitions that if the sequence (f;,) is uniformly
convergent on A to f, then this sequence also converges pointwise on A to fin the sense of
Definition 8.1.1. That the converse is not always true is seen by a careful examination of
Examples 8.1.2(a—c); other examples will be given below.

It is sometimes useful to have the following necessary and sufficient condition for a
sequence (f,) to fail to converge uniformly on Ay to f.

8.1.5 Lemma A sequence (f,) of functions on A C R to R does not converge uniformly
onAg C A to afunctionf : Ay — R if and only if for some gy > 0 there is a subsequence
(fn.) of (fy) and a sequence (xi) in Ag such that

(5) | e (i) = f(xk)| > €0 for all keN.

The proof of this result requires only that the reader negate Definition 8.1.4; we
leave this to the reader as an important exercise. We now show how this result can be
used.

8.1.6 Examples (a) Consider Example 8.1.2(a). If we let n; := k and x; := k, then
fr(xx) = 1sorthat | f,, (xx) — f(xx)| = |1 — O] = 1. Therefore the sequence ( ;) does not
converge uniformly on R to f.

(b) Consider Example 8.1.2(b). If ny := k and x4 := (%)1/1{’ then
|gn, (i) — ()| = [5 - 0] = 5.

Therefore the sequence (g,) does not converge uniformly on (—1,1] to g.

(c) Consider Example 8.1.2(c). If ny := k and x; := —k, then A, (x;) = 0 and A(x;) =
—k so that |fy, (xx) — h(xx)| = k. Therefore the sequence (/,) does not converge uni-
formly on R to 4. O

The Uniform Norm

In discussing uniform convergence, it is often convenient to use the notion of the uniform
norm on a set of bounded functions.

8.1.7 Definition If A C R and ¢ : A — R is a function, we say that ¢ is bounded on
A if the set ¢(A) is a bounded subset of R. If ¢ is bounded we define the uniform norm of
@ on A by

(6) | ¢ll4 == sup{|e(x)| : x € A}.
Note that it follows that if ¢ > 0, then

(7) | oll, <e = lp(x)] < for all x € A.

8.1.8 Lemma A sequence (f,) of bounded functions on A C R converges uniformly on A

to f if and only if || f, — |l — 0.
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Proof. (=)If (f,,) converges uniformly on A to f, then by Definition 8.1.4, given any ¢ > 0
there exists K(¢) such that if n > K(¢) and x € A then

[fu(x) =f(¥)] <.
From the definition of supremum, it follows that || f,, — f||, < ¢ whenever n > K(¢). Since
¢ > 0 is arbitrary this implies that || f,, — ]|, — O.
(&= If||f, —fllx — 0, then given ¢ > 0 there is a natural number H(e) such that if
n > H(e) then || f,, — f]|, < &. It follows from (7) that |f,(x) — f(x)| < eforalln > H(e)
and x € A. Therefore (f,,) converges uniformly on A to f. QE.D.

We now illustrate the use of Lemma 8.1.8 as a tool in examining a sequence of
bounded functions for uniform convergence.

8.1.9 Examples (a) We cannot apply Lemma 8.1.8 to the sequence in Example 8.1.2(a)
since the function f,(x) — f(x) = x/n is not bounded on R.

For the sake of illustration, let A := [0, 1]. Although the sequence (x/n) did not
converge uniformly on R to the zero function, we shall show that the convergence is
uniform on A. To see this, we observe that

1
1w =flla = sup{lx/n - 0] :0<x <1} =

so that || f, — f||4 — O. Therefore (f;) is uniformly convergent on A to f.
(b) Letg,(x):=x"forxcA:=[0,1]andn € N, and let g(x) := 0 for 0 < x < I and
g(1) := 1. The functions g, (x) — g(x) are bounded on A and

g, —gll, = su x" for 0<x<1 1
&n — 8lla = 8P for x=1 N

for any n € N. Since || g, — g||, does not converge to 0, we infer that the sequence (g,,)
does not converge uniformly on A to g.

(c) We cannot apply Lemma 8.1.8 to the sequence in Example 8.1.2(c) since the function
hp(x) — h(x) = x?/n is not bounded on R.
Instead, let A := [0, 8] and consider

|| hn — hl[, = sup{x*/n: 0 < x < 8} = 64/n.

Therefore, the sequence (/,,) converges uniformly on A to /.

(d) If we refer to Example 8.1.2(d), we see from (2) that || F), — F||g < 1/n. Hence (F,)
converges uniformly on R to F.

(e) Let G(x) := x"(1 — x) for x € A := [0, 1]. Then the sequence (G,(x)) converges to
G(x) := 0foreach x € A. To calculate the uniform norm of G, — G = G, on A, we find the
derivative and solve

G(x)=x"n—(n+1)x)=0
to obtain the point x, := n/(n + 1). This is an interior point of [0, 1], and it is easily

verified by using the First Derivative Test 6.2.8 that G,, attains a maximum on [0, 1] at x,,.
Therefore, we obtain

n 1
||GI1HA:Gn(xn):(1+1/I’l) ~m’

which converges to (1/e) -0 = 0. Thus we see that convergence is uniform on A. [
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By making use of the uniform norm, we can obtain a necessary and sufficient condition
for uniform convergence that is often useful.

8.1.10 Cauchy Criterion for Uniform Convergence Let (f,,) be a sequence of bounded
functions on A C R. Then this sequence converges uniformly on A to a bounded function f
if and only if for each & > 0 there is a number H(g) in N such that for allm,n > H(e), then

f o =Falla <. -

Proof. (=)Iff, = f on A, then given ¢ > 0 there exists a natural number K (% 8) such
that if n > K (J¢) then || £, — f]|, < 1&. Hence, if both m,n > K(L¢), then we conclude
that

(X)) = fu ()| < |fn () =f O+ 1fu(x) —f(X)| <36 +52=¢

for all x € A. Therefore || f,, — f,||4 < & for m,n > K(3¢) =: H(e).
(<) Conversely, suppose that for ¢ > 0 there is H(¢) such that if m,n > H(e), then
[ — Fulls < & Therefore, for each x € A we have

(8) [fin (%) = Fu(Ol < 1 fo —Fulla <& for m,n > H(e).

It follows that (f,,(x)) is a Cauchy sequence in R; therefore, by Theorem 3.5.5, it is a
convergent sequence. We define f : A — R by

f(x) = lim(f,(x)) for xc€A.
If we let n — oo in (8), it follows from Theorem 3.2.6 that for each x € A we have
|fm(x) = f(x)| <&  for m>H(e).

Therefore the sequence (f,,) converges uniformly on A to f. QED.

Exercises for Section 8.1

Show that lim(x/(x 4+ n)) = 0 for all x € R,x > 0.

Show that lim(nx/(1 + n’x*)) = 0 for all x € R.

Evaluate lim(nx/(1 + nx)) for x € R, x > 0.

Evaluate lim(x"/(1 + x")) for x e R, x > 0.

Evaluate lim((sin nx)/(1 + nx)) for x € R, x > 0.

Show that lim(Arctan nx) = (7r/2)sgn x for x € R.

Evaluate lim(e ") for x € R, x > 0.

Show that lim(xe ") =0 for x € R, x > 0.

Show that lim(x?e™"*) = 0 and that lim(n*x?e¢™"*) = 0 for x € R, x > 0.

Show that lim((cos x)*") exists for all x € R. What is its limit?

O X N kW

—_ =
—_ O

Show that if @ > 0, then the convergence of the sequence in Exercise 1 is uniform on the interval
[0, a], but is not uniform on the interval [0, c0).

12. Show that if @ > 0, then the convergence of the sequence in Exercise 2 is uniform on the interval
[a, c0), but is not uniform on the interval [0, c0).

13. Show that if @ > 0, then the convergence of the sequence in Exercise 3 is uniform on the interval
[a, o0), but is not uniform on the interval [0, 0o).
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14. Show that if 0 < b < 1, then the convergence of the sequence in Exercise 4 is uniform on the
interval [0, b], but is not uniform on the interval [0, 1].

15. Show that if @ > 0, then the convergence of the sequence in Exercise 5 is uniform on the interval
[a, c0), but is not uniform on the interval [0, co).

16. Show that if @ > 0, then the convergence of the sequence in Exercise 6 is uniform on the interval
[a, 00), but is not uniform on the interval (0, co).

17. Show that if @ > 0, then the convergence of the sequence in Exercise 7 is uniform on the interval
[a, c0), but is not uniform on the interval [0, co).

18. Show that the convergence of the sequence in Exercise 8 is uniform on [0, co).

19. Show that the sequence (x2e™"*) converges uniformly on [0, o).

20. Show thatif @ > 0, then the sequence (1n>x%e™") converges uniformly on the interval [a, 00), but

that it does not converge uniformly on the interval [0, co).

21. Show that if (f,), (g,) converge uniformly on the set A to f, g, respectively, then (f,, + g,)
converges uniformly on A to f 4 g.

22. Show thatiff,(x) := x4+ 1/mandf(x) := x for x € R, then (f,,) converges uniformly on R to f,
but the sequence ( fﬁ) does not converge uniformly on R. (Thus the product of uniformly
convergent sequences of functions may not converge uniformly.)

23. Let (f,), (gn) be sequences of bounded functions on A that converge uniformly on A to f, g,
respectively. Show that (f,g,) converges uniformly on A to fg.

24. Let(f,) be a sequence of functions that converges uniformly to fon A and that satisfies | f,,(x)| <
M foralln € Nandall x € A. If g is continuous on the interval [—M, M], show that the sequence
(g o f,) converges uniformly to g o f on A.

Section 8.2 Interchange of Limits

It is often useful to know whether the limit of a sequence of functions is a continuous
function, a differentiable function, or a Riemann integrable function. Unfortunately, it is
not always the case that the limit of a sequence of functions possesses these useful
properties.

8.2.1 Examples (a) Letg,(x):= x"forx € [0, 1]and n € N. Then, as we have noted in
Example 8.1.2(b), the sequence (g,) converges pointwise to the function

{0 for 0<x<1,

g(x) = 1 for x=1.

Although all of the functions g, are continuous at x = 1, the limit function g is not
continuous at x = 1. Recall that it was shown in Example 8.1.6(b) that this sequence does
not converge uniformly to g on [0, 1].
(b) Each of the functions g,(x) = x" in part (a) has a continuous derivative on [0,1].
However, the limit function g does not have a derivative at x = 1, since it is not continuous
at that point.
(¢) Letf,: [0,1] — R be defined for n > 2 by
nx for 0<x<1/n,

Fn(x) := < —n*(x —2/n) for 1/n<x<2/n,

0 for 2/n<x<1.
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(See Figure 8.2.1.) It is clear that each of the functions f;, is continuous on [0, 1]; hence it is
Riemann integrable. Either by means of a direct calculation, or by referring to the
significance of the integral as an area, we obtain

1
/ fa(x)dx=1 for n>2.
0

The reader may show that f,,(x) — 0 for all x € [0, 1]; hence the limit function f vanishes
identically and is continuous (and hence integrable), and fol f(x)dx = 0. Therefore we
have the uncomfortable situation that:

1 1
/ f(x)dx =0 # 1 =1lim / £, (x)dx.
0 0

X

2 1

n

Figure 8.2.1 Example 8.2.1(c)

(d) Those who consider the functions f;, in part (c) to be “artificial”” may prefer to consider
the sequence (h,) defined by h,(x) := 2nxe™™ for x € [0,1], n € N. Since h, = H',,
where H,(x) := —e ™™, the Fundamental Theorem 7.3.1 gives

/1 ho(x)dx =H,(1) —H,(0) =1—¢".
0

It is an exercise to show that /i(x) := lim(/,(x)) = 0 for all x € [0, 1]; hence

I I
/ h(x)dx # lim/ hy(x)dx. O
0 0

Although the extent of the discontinuity of the limit function in Example 8.2.1 (a) is
not very great, it is evident that more complicated examples can be constructed that will
produce more extensive discontinuity. In any case, we must abandon the hope that the limit
of a convergent sequence of continuous [respectively, differentiable, integrable] functions
will be continuous [respectively, differentiable, integrable].

It will now be seen that the additional hypothesis of uniform convergence is sufficient
to guarantee that the limit of a sequence of continuous functions is continuous. Similar
results will also be established for sequences of differentiable and integrable functions.

Interchange of Limit and Continuity

8.2.2 Theorem Let (f,) be a sequence of continuous functions on a set A C R and sup-
pose that (f,,) converges uniformly on A to a functionf : A — R. Thenfis continuous on A.
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Proof. By hypothesis, given ¢ > 0 there exists a natural number H := H (% a) such that if
n > Hthen |f,(x) — f(x)| < Jeforall x € A. Let ¢ € A be arbitrary; we will show that fis
continuous at ¢. By the Triangle Inequality we have

|f(x) =f() < |f(x) = Fu()| + [fu(x) = fa()] + | fule) = f(c)]
< %8 + | fu(x) = fu(c)] "‘%8-

Since fy is continuous at ¢, there exists a number 6 :=§ (%8,C, f H) > 0 such that if
|x —¢| < 8 and x € A, then |fy(x) — fy(c)| < $e. Therefore, if [x —¢| < & and x € A,
then we have | f(x) — f(c)| < e. Since ¢ > 0 is arbitrary, this establishes the continuity of f
at the arbitrary point ¢ € A. (See Figure 8.2.2.) QED.

(x lfﬂ (-x))

(e, fe))

(x, £ (x))

(e, fy (e))

Figure 8.2.2 |f(x) —f(c)| <e

Remark Although the uniform convergence of the sequence of continuous functions
is sufficient to guarantee the continuity of the limit function, it is not necessary.
(See Exercise 2.)

Interchange of Limit and Derivative

We mentioned in Section 6.1 that Weierstrass showed that the function defined by the series
o0
f(x):= Z 2% cos (3kx)
k=0

is continuous at every point but does not have a derivative at any point in R. By considering
the partial sums of this series, we obtain a sequence of functions (f,) that possess a
derivative at every point and are uniformly convergent to f. Thus, even though the sequence
of differentiable functions (f,,) is uniformly convergent, it does not follow that the limit
function is differentiable. (See Exercises 9 and 10.)

We now show that if the sequence of derivatives ( f,,) is uniformly convergent, then all
is well. If one adds the hypothesis that the derivatives are continuous, then it is possible to
give a short proof, based on the integral. (See Exercise 11.) However, if the derivatives are
not assumed to be continuous, a somewhat more delicate argument is required.

8.2.3 Theorem LetJ C R be a bounded interval and let (f,,) be a sequence of functions
on J to R. Suppose that there exists xo € J such that (f,(xo)) converges, and that the
sequence ( f;) of derivatives exists on J and converges uniformly on J to a function g.

Then the sequence (f,,) converges uniformly on J to a function f that has a derivative at

every point of J and f' = g.
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Proof. Leta < bbe the endpoints of J and let x € J be arbitrary. If m,n € N, we apply the
Mean Value Theorem 6.2.4 to the difference f,,, — f,, on the interval with endpoints x, x.
We conclude that there exists a point y (depending on m, n) such that

Fn(X) = (%) = Fn(x0) = £ (x0) + (x = x0){fin(y) = fu(3)}-

Hence we have
(1) ||fm 7fn||] < |fm(x0) 7fn(x0)‘ + (b - a)”frln 7f'/l||‘]

From Theorem 8.1.10, it follows from (1) and the hypotheses that ( f,(xo)) is convergent
and that (f;,) is uniformly convergent on J, that (f;) is uniformly convergent on J. We
denote the limit of the sequence (f,,) by f Since the f, are all continuous and the
convergence is uniform, it follows from Theorem 8.2.2 that f is continuous on J.

To establish the existence of the derivative of f at a point ¢ € J, we apply the Mean
Value Theorem 6.2.4 to f,,, — f,, on an interval with end points ¢, x. We conclude that there
exists a point z (depending on m, n) such that

{fm(x) = £2(x)} = {fm(0) =fu(0)} = (x = ){fn(2) = fu(2)}-

Hence, if x # ¢, we have

fm(x) _fm(c) _ fn(x) _fn(c)

X —cC X —=cC

< || fon = fall,-

Since (f;;) converges uniformly on J, if ¢ > 0 is given there exists H(¢) such that if m, n >
H(¢) and x # ¢, then

fm(x) _fm(c) _fn(x) _fn(c)

X—=C X—C

<eé.

(2)

If we take the limit in (2) with respect to m and use Theorem 3.2.6, we have

‘f C) _ fn(x) _fn(c)

X—C X —=cC

<e.

provided that x # ¢, n > H(e). Since g(c) = lim(f,,(c)), there exists N(¢) such that if n >
N(e), then |f,(c) — g(c)| < &. Now let K := sup{H(e), N(¢)}. Since fx(c) exists, there
exists 8x(e) > 0 such that if 0 < |x — ¢| < §k(¢), then

fK(x) —fK(C) _fllf(c) <e.
x—c
Combining these inequalities, we conclude that if 0 < |x — ¢| < 8¢(¢), then
fx) =10
- 3e.
TEZLO o) <30

Since ¢ > 0 is arbitrary, this shows that f'(c) exists and equals g(c). Since ¢ € J is arbitrary,
we conclude that f'= g on J. QED.

Interchange of Limit and Integral

We have seen in Example 8.2.1(c) that if () is a sequence R|[a, b] that converges on [, b]
to a function fin R|a, b], then it need not happen that

3) / f=1im [ f

—
n—o0o a
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We will now show that uniform convergence of the sequence is sufficient to guarantee that
this equality holds.

8.2.4 Theorem Let (f,) be a sequence of functions in Rla,b] and suppose that (f,)
converges uniformly on [a, b] to f. Then f € Rla,b] and (3) holds.

Proof. 1t follows from the Cauchy Criterion 8.1.10 that given ¢ > 0 there exists H(¢) such
that if m > n > H(¢) then

—& < fu(x) —=f,(x) <e for x€la,b].

Theorem 7.1.5 implies that

—e(b—a) < /abfm /abfn <e(b—a).

Since ¢ > 0 is arbitrary, the sequence ( ff fm) is a Cauchy sequence in R and therefore
converges to some number, say A € R.

We now show f € R|a, b] with integral A. If ¢ > 0 is given, let K(¢) be such that if m >
K(e), then | f,,(x) — f(x)| < & for all x € [a,b]. If P := {([xi_1,X], %)}, is any tagged
partition of [, b] and if m > K(¢), then

IS(fi P) = S(f; P)| (4) = f(t:) H(xi — xi1)
D ) = f(1)](xi = xi1)
i=1

Ze —xio1) =¢(b—a).

We now choose r > K(¢) such that |f fr—A| <e¢ and we let 8, > 0 be such that
|f f, = S(f,;P)| < & whenever ||P|| < 8,.. Then we have

IN

IN

IS(f;P) = Al < IS(f3P) = S(fs P)| + 'S(fr; / fr + / fr= ‘
<éeb-—a)t+ete=c¢b—a+2).
But since ¢ > 0 is arbitrary, it follows that f € R[a, b] and f: f=A. QE.D.

The hypothesis of uniform convergence is a very stringent one and restricts the utility
of this result. In Section 10.4 we will obtain some far-reaching generalizations of Theorem
8.2.4. For the present, we will state a result that does not require the uniformity of the
convergence, but does require that the limit function be Riemann integrable. The proof is
omitted.

8.2.5 Bounded Convergence Theorem Let (f;,) be a sequence in Ra, b] that converges
on [a, b] to a function f € Rla,b] . Suppose also that there exists B > 0 such that
|f.(x)| < B for all x € [a,b], n € N. Then equation (3) holds.
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Dini’s Theorem

We will end this section with a famous theorem due to Ulisse Dini (1845-1918) that gives a
partial converse to Theorem 8.2.2 when the sequence is monotone. We will present a proof
using nonconstant gauges (see Section 5.5).

8.2.6 Dini’s Theorem Suppose that (f,,) is a monotone sequence of continuous functions
on I:=[a, b] that converges on I to a continuous function f. Then the convergence of the
sequence is uniform.

Proof. We suppose that the sequence (f,,) is decreasing and let g,,, :=f;,, — f. Then (g,,,) isa
decreasing sequence of continuous functions converging on [ to the O-function. We will
show that the convergence is uniform on I.

Given ¢ > 0, t € I, there exists m,, € N such that 0 < g,, () < &/2. Since g,, , is
continuous at ¢, there exists ,(¢) > 0 such that 0 < g, (x) < ¢ for all x € I satisfying
|x — 1] < 8,(¢). Thus, 8, is a gauge on I, and if P = {(;,1;)}"_, is a §, -fine partition, we set
M, = max{m,,,...,my, }. If m > M, and x € I, then (by Lemma 5.5.3) there exists an
index i with |x — #;] < 8,(¢;) and hence

0 < g(x) < gy (x) <
Therefore, the sequence (g,,) converges uniformly to the O-function. Q.ED.
It will be seen in the exercises that we cannot drop any one of the three hypotheses:

(i) the functions f,, are continuous, (ii) the limit function f'is continuous, (iii) / is a closed
bounded interval.

Exercises for Section 8.2

1. Show that the sequence (x"/(1 + x")) does not converge uniformly on [0, 2] by showing that the
limit function is not continuous on [0, 2].

2. Prove that the sequence in Example 8.2.1(c) is an example of a sequence of continuous functions
that converges nonuniformly to a continuous limit.

3. Construct a sequence of functions on [0, 1] each of which is discontinuous at every point of [0, 1]
and which converges uniformly to a function that is continuous at every point.

4. Suppose (f,) is a sequence of continuous functions on an interval / that converges uniformly on /
to a function f. If (x,) C I converges to xo € I, show that lim(f,,(x,)) = f(xo).

5. Letf: R — R be uniformly continuous on R and let f,,(x) := f(x + 1/n) for x € R. Show that
(f,) converges uniformly on R to f.

6. Letf,(x):=1/(1 + x)" for x € [0, 1]. Find the pointwise limit f of the sequence (f,,) on [0, 1].
Does (f,) converge uniformly to f on [0, 1]?

7. Suppose the sequence (f,,) converges uniformly to f on the set A, and suppose that each f,, is
bounded on A. (That is, for each n there is a constant M,, such that |f,(x)| < M, forall x € A.)
Show that the function f is bounded on A.

8. Let f(x) := nx/(1 + nx?) for x € A := [0, oo). Show that each [ 1s bounded on A,

but the pointwise limit f of the sequence is not bounded on A. Does (f,,) converge uniformly to
fon A?
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Let f, (x) := x"/n for x € [0, 1]. Show that the sequence (f,) of differentiable functions
converges uniformly to a differentiable function fon [0, 1], and that the sequence (f;) converges
on [0, 1] to a function g, but that g(1) # f'(1).

Let g,(x) := e ™ /n for x > 0,n € N. Examine the relation between lim(g,) and lim( g},).

Let:= [a, b] and let (f;,) be a sequence of functions on I — R that converges on I to f. Suppose
that each derivative f;, is continuous on I and that the sequence (£},) is uniformly convergent to g
on I. Prove that f(x) — f(a) = [ g(¢)dt and that f'(x) = g(x) for all x € I.

Show that lim flz e dx = 0.

If @ > 0, show that lim [ (sin nx) /(nx)dx = 0. What happens if a = 0?

Letf,(x) := nx/(1 + nx) for x € [0, 1]. Show that (,,) converges nonuniformly to an integrable
function f and that fol f(x)dx = lim fol Fo(x)dx.

Let g,(x) := nx(1 — x)" for x € [0, 1], n € N. Discuss the convergence of (g,) and (fol g,dx).

Let {ry, 72, ..., 7, ...} be an enumeration of the rational numbers in 7 := [0, 1], and let f, :
I — R be defined to be 1 if x =ry,...,r, and equal to O otherwise. Show that f, is Riemann
integrable for eachn € N, that f (x) < f,(x) <--- <f,(x) < ---, and that f(x) := lim(f,(x))
is the Dirichlet function, which is not Riemann integrable on [0, 1].

Letf,(x) := 1forx € (0,1/n) andf,(x) := O elsewhere in [0, 1]. Show that (f,) is a decreasing
sequence of discontinuous functions that converges to a continuous limit function, but the
convergence is not uniform on [0, 1].

Letf,(x) := x" forx € [0,1], n € N. Show that (f,,) is a decreasing sequence of continuous func-
tions that converges to a function that is not continuous, but the convergence is not uniformon [0, 1].

Let f,(x) := x/nforx € [0,00), n € N. Show that (f;,) is a decreasing sequence of continuous
functions that converges to acontinuous limit function, but the convergence isnot uniformon [0, 00).

Give an example of a decreasing sequence ( f,,) of continuous functions on [0, 1) that converges
to a continuous limit function, but the convergence is not uniform on [0, 1).

Section 8.3 The Exponential and Logarithmic Functions

We will now introduce the exponential and logarithmic functions and will derive some of
their most important properties. In earlier sections of this book we assumed some
familiarity with these functions for the purpose of discussing examples. However, it is
necessary at some point to place these important functions on a firm foundation in order to
establish their existence and determine their basic properties. We will do that here. There
are several alternative approaches one can take to accomplish this goal. We will proceed by
first proving the existence of a function that has itself as derivative. From this basic result,
we obtain the main properties of the exponential function. The logarithm function is then
introduced as the inverse of the exponential function, and this inverse relation is used to
derive the properties of the logarithm function.

The Exponential Function

We begin by establishing the key existence result for the exponential function.

8.3.1 Theorem There exists a function E : R — R such that:

(@ E'(x)=E(x)forallx eR.
Gi) E(0)=1.
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Proof. We inductively define a sequence (E,) of continuous functions as follows:

(1) E\(x):=1+x,

(2) Ep(x):=1+ /OxEn(Z)dt,

for all n € N, x € R. Clearly E; is continuous on R and hence is integrable over any
bounded interval. If E,, has been defined and is continuous on R, then it is integrable over
any bounded interval, so that E,,; is well-defined by the above formula. Moreover, it
follows from the Fundamental Theorem (Second Form) 7.3.5 that E,, , | is differentiable at
any point x € R and that

(3) E,  (x)=E,(x) for neN
An Induction argument (which we leave to the reader) shows that

2 n

+x—+~~~+x— for xeR.
121 n!

(4) Eifx) =1+

Let A > 0 be given; then if |x| <A and m > n > 2A, we have

Kt X"
(5) |Em(x) — En(x)| = W—F—F%
A+l A A\ 7]
_m 1—|—;+"'+<;> ]
An+l
RRCES )

Since lim(A”/n!) = 0, it follows that the sequence (E,,) converges uniformly on the interval
[—A, A] where A > 0 is arbitrary. In particular this means that (E,(x)) converges for each
x € R. We define E: R — R by

E(x) :=limE,(x) for xeR.

Since each x € R is contained inside some interval [—A, A], it follows from Theorem 8.2.2
that E is continuous at x. Moreover, it is clear from (1) and (2) that E,(0) = 1 foralln € N.
Therefore E(0) = 1, which proves (ii).

On any interval [—A, A] we have the uniform convergence of the sequence (E,). In
view of (3), we also have the uniform convergence of the sequence (E),) of derivatives. It
therefore follows from Theorem 8.2.3 that the limit function E is differentiable on [—A, A]
and that

E'(x) = lim(E(x)) = lim(E,_;(x)) = E(x)
for all x € [—A, A]. Since A > 0 is arbitrary, statement (i) is established. Q.ED.

8.3.2 Corollary The function E has a derivative of every order and E "(x) = E(x) for all
neN, xeR
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Proof. 1f n =1, the statement is merely property (i). It follows for arbitrary n € N by
Induction. Q.ED.

8.3.3 Corollary If x > 0, then 1 + x < E(x).

Proof. 1t is clear from (4) that if x > 0, then the sequence (E,, (x)) is strictly increasing.

Hence E|(x) < E(x) for all x > 0. Q.ED.
It is next shown that the function E, whose existence was established in Theorem 8.3.1,

is unique.

8.3.4 Theorem The function E : R — R that satisfies (i) and (ii) of Theorem 8.3.1 is
unique.

Proof. Let E| and E, be two functions on R to R that satisfy properties (i) and (ii) of
Theorem 8.3.1 and let F := E; — E,. Then

F'(x) = E{(x) — E5(x) = E1(x) — Ex(x) = F(x)
for all x € R and
F(0)=E;(0)—E,(0)=1—-1=0.

It is clear (by Induction) that F has derivatives of all orders and indeed that F")(x) = F(x)
forneN, x e R

Let x € R be arbitrary, and let 7, be the closed interval with endpoints 0, x. Since F is
continuous on /,, there exists K > 0 such that |F(¢)| < K forall ¢t € I. If we apply Taylor’s
Theorem 6.4.1 to F on the interval /. and use the fact that F {y (0)=F@0O)=0forallk € N,
it follows that for each n € N there is a point ¢, € I, such that

F'(0) Fo=b o FU(e,) |,
F(X):F(O)+ 1 X+"'+mx + ! X
F
— (C”) xn.
n!
Therefore we have
K n
|F(x)| < |—)'C| forall neN.
n!

But since lim(| x| /n!) = 0, we conclude that F(x) = 0. Since x € R is arbitrary, we infer that
Ei(x) — Ey(x) = F(x) =0 for all x € R. QED.

The standard terminology and notation for the function E (which we now know exists
and is unique) is given in the following definition.

8.3.5 Definition The unique function £ : R — R, such that E'(x) = E(x) for all x € R
and E(0) = 1, is called the exponential function. The number e := E(1) is called Euler’s
number. We will frequently write

exp(x) := E(x) or ¢ :=E(x) for xeR.

The number e can be obtained as a limit, and thereby approximated, in several different
ways. [See Exercises 1 and 10, and Example 3.3.6.]

The use of the notation ¢* for E(x) is justified by property (v) in the next theorem,
where it is noted that if r is a rational number, then E(r) and ¢ coincide. (Rational
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exponents were discussed in Section 5.6.) Thus, the function E can be viewed as extending
the idea of exponentiation from rational numbers to arbitrary real numbers. For a definition
of @* for a > 0 and arbitrary x € R, see Definition 8.3.10.

8.3.6 Theorem The exponential function satisfies the following properties:

(iii) E(x) # Oforall x € R;
(iv) E(x +y) = E(x)E(y) forall x,y € R;
) E(r)y=¢"forallr € Q.

Proof. (iii) Let o € R be such that E(w) = 0, and let J, be the closed interval with
endpoints 0, a. Let K > |E(?)] for all ¢ € J,,. Taylor’s Theorem 6.4.1 implies that for each
n € N there exists a point ¢, € J, such that

"(a (n—1) o )
EM(), . Elc), .
o U =T O

Thus we have 0 < 1 < (K/n!)|e|" for n € N. But since lim(|a|"/n!) =0, this is a
contradiction.

(iv) Let y be fixed; by (iii) we have E(y) # 0. Let G : R — R be defined by

E(x+Yy)
E(y)
Evidently we have G'(x) = E'(x +y)/E(y) = E(x + y)/E(y) = G(x) for all x € R, and
G(0) = E(0+y)/E(y) = 1. It follows from the uniqueness of E, proved in Theorem 8.3.4,
that G(x) = E(x) for all x € R. Hence E(x +y) = E(x)E(y) for all x € R. Since y € R

is arbitrary, we obtain (iv).

(v) It follows from (iv) and Induction that if n € N, x € R, then

E(nx) = E(x)".

G(x) := for xeR.

If we let x = 1/n, this relation implies that

1 nYy”
e=pm=£(n3) = (2(;)):
n n
whence it follows that E(1/n) = e'/". Also we have E(—m) = 1/E(m) = 1/¢" = ¢ for

m € N. Therefore, if m € Z, n € N, we have

E(m/n) = (E(1/n)" = (/)" = """,
This establishes (v). QED.

8.3.7 Theorem The exponential function E is strictly increasing on R and has range
equal to {y € R :y > 0}. Further, we have
(vi) lim E(x)=0 and lim E(x) = oo.
Proof. We know that E(0) =1 > 0and E(x) # 0 for all x € R. Since E is continuous on

R, it follows from Bolzano’s Intermediate Value Theorem 5.3.7 that E(x) > 0 for all
x € R. Therefore E'(x) = E(x) > 0 for x € R, so that E is strictly increasing on R.
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It follows from Corollary 8.3.3 that 2 < e and that lim E(x) = oo. Also, if z > 0, then
X—00

since 0 < E(—z) = 1/E(z) it follows that lim E(x) = 0. Therefore, by the Intermediate
Value Theorem 5.3.7, every y € R with y > 0 belongs to the range of E. QE.D.

The Logarithm Function

We have seen that the exponential function E is a strictly increasing differentiable function
with domain R and range {y € R : y > 0}. (See Figure 8.3.1.) It follows that R has an
inverse function.

_____/ 0,1) (I'K

Figure 8.3.1 Graph of E Figure 8.3.2 Graph of L

8.3.8 Definition The function inverse to £ : R — R is called the logarithm (or the
natural logarithm). (See Figure 8.3.2.) It will be denoted by L, or by In.

Since E and L are inverse functions, we have

(LoE)(x)=x forall xeR
and

(EoL)(y)=y forall yeR, y>0.
These formulas may also be written in the form
Ine’ = x, M=y,

8.3.9 Theorem The logarithm is a strictly increasing function L with domain
{x € R: x > 0} and range R. The derivative of L is given by

(vii) L'(x)=1/x for x>0.

The logarithm satisfies the functional equation
(viii) L(xy) = L(x) + L(y) for x > 0,y > 0.
Moreover, we have

(ix) L(1)=0 and L(e)=1,

(x) L(x")=rL(x) for x>0,reQ.

(xi) hr& L(x) =—00 and lim L(x) = 0.
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Proof. That L is strictly increasing with domain {x € R : x > 0} and range R follows
from the fact that E is strictly increasing with domain R and range {y € R:y > 0}.

(vii) Since E'(x) = E(x) > 0, it follows from Theorem 6.1.9 that L is differentiable
on (0, co) and that
1 1 1

L/(x):(E’oL)(x):(EoL)(x):; for x € (0,00).

(viii) If x >0,y > 0,letu := L(x) and v := L(y). Then we have x = E(u) and y = E(v).

It follows from property (iv) of Theorem 8.3.6 that
xy = E()E(y) = E(u +v),

so that L(xy) = (L o E)(u+v) = u+ v = L(x) + L(y). This establishes (viii).

The properties in (ix) follow from the relations E(0) = 1 and E(1) = e.

(x) This result follows from (viii) and Mathematical Induction for n € N, and is
extended to r € Q by arguments similar to those in the proof of 8.3.6(v).

To establish property (xi), we first note that since 2 < e, then lim(¢”) = oo and

lim(e™™) = 0. Since L(¢") = n and L(e™") = —n it follows from the fact that L is strictly
increasing that

lim L(x) =limL(¢") =oc0 and lim L(x) =1limL(e™") = —o0. QED.

x—00 x—0+

Power Functions

In Definition 5.6.6, we discussed the power function x — x", x > 0, where r is a rational
number. By using the exponential and logarithm functions, we can extend the notion of
power functions from rational to arbitrary real powers.

8.3.10 Definition If « € R and x > 0, the number x* is defined to be
X =Y = E(aL(x)).
The function x — x* for x > 0 is called the power function with exponent «.

Note If x > 0 and « = m/n where m € Z, n € N, then we defined x* := (x™)"/" in
Section 5.6. Hence we have In x* = « In x, whence x¥ = ¢ ¥ = ¢*"* Hence Definition
8.3.10 is consistent with the definition given in Section 5.6.

We now state some properties of the power functions. Their proofs are immediate
consequences of the properties of the exponential and logarithm functions and will be left
to the reader.

8.3.11 Theorem [fa € R and x, y belong to (0, 00), then:
(a) 1°=1, (b) x*>0,

(¢) (xy)*=x%% (d) (x/y)*=x/y*
8.3.12 Theorem Ifc, B R and x € (0, ), then:

(a) x*P=xo%F (b) (x)f =x¥=(xF)"
(¢) x*=1/x¢ (d) ifa<pB, thenx* <xPforx>1.

The next result concerns the differentiability of the power functions.
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8.3.13 Theorem Leta € R. Then the function x — x* on (0, o) to R is continuous and

differentiable, and
Dx® = ax*~!

Proof. By the Chain Rule we have

for x e (0,00).

Dx* = De”™* = "~ . D(ar In x)

=x- % = ax*! for x € (0,00). QE.D.

It will be seen in an exercise that if « > 0, the power function x — x is strictly increasing
on (0, c0) to R, and that if & < 0, the function x — x¢ is strictly decreasing. (What happens
if o =07)

The graphs of the functions x — x* on (0, co) to R are similar to those in Figure 5.6.8.

The Function log,

If a > 0, a # 1, it is sometimes useful to define the function log,,.
8.3.14 Definition Let a > 0, a # 1. We define

In x
1 =— f € (0,00).
og,(x) na or x € (0,00)
For x € (0, c0), the number log,(x) is called the logarithm of x to the base a. The case a =
e yields the logarithm (or natural logarithm) function of Definition 8.3.8. The case @ = 10
gives the base 10 logarithm (or common logarithm) function log;y often used in
computations. Properties of the functions log, will be given in the exercises.

Exercises for Section 8.3

1. Show that if x > 0 and if n > 2x, then

. ( X xn> ’ 2xn+l
-1+ + =)<

T nl (n+1)!

Use this formula to show that 22 < e < 23, hence e is not an integer.
2. Calculate e correct to five decimal places.
Show that if 0 < x < a and n € N, then
1+£+...+ﬁ<g¥ < 1+£+...+7+7.
1! nl = 1! (n=1)!"
4. Show that if n > 2, then

1 1
O<en— (14+14—t-t—|nl<—<1.
2! n! n+1
Use this inequality to prove that e is not a rational number.
5. If x > 0 and n € N, show that
1
x+1

Use this to show that

n—1

=1-x+xX* -+ 4 (-x)

X2 X X! X (=p)"
nx+1)=x—>+X g dt
n(x+1)=x 13 +(-1) p +/0
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and that

x2 x3 1xn xn+l
1 D (x-S 4=— (=)' < .
n(x+1) (x >+ 3 +(=1) n)'_n+1

6. Use the formula in the preceding exercise to calculate In 1.1 and In 1.4 accurate to four decimal
places. How large must one choose 7 in this inequality to calculate In 2 accurate to four decimal
places?

7. Show that In(e/2) = 1 — In 2. Use this result to calculate In 2 accurate to four decimal places.

8. Letf: R — R be such that f'(x) = f(x) for all x € R. Show that there exists K € R such that
f(x) = Ke" for all x € R.

9. Letay>0fork=1,...,nandletA:= (a +---+ a,)/n be the arithmetic mean of these
numbers. For each &, put x; := a;/A — 1 in the inequality 1 + x < ¢*. Multiply the resulting
terms to prove the Arithmetic—-Geometric Mean Inequality

(©) (@ a)" < @+ a).
Moreover, show that equality holds in (6) if and only if ) = ay = --- = a,.
10. Evaluate L'(1) by using the sequence (1 + 1/n) and the fact that e = lim((1 + 1/n)").
11. Establish the assertions in Theorem 8.3.11.
12. Establish the assertions in Theorem 8.3.12.
13. (a) Show thatif « > 0, then the function x — x* is strictly increasing on (0, co) to R and that

lim x* =0and lim x* = co.
x—0+ X—00

(b) Show that if @ < 0, then the function x — x* is strictly decreasing on (0, co) to R and that

lim x* = coand lim x* = 0.
x—0+ X—00

14. Prove that if a > 0, a # 1, then @°%~ = x for all x € (0, co) and log,(¢’) = y for all y € R.
Therefore the function x — log,x on (0, co) to R is inverse to the function y — & on R.

15. Ifa>0,a# 1, show that the function x — log,x is differentiable on (0, co) and that D log,x =
1/(x In a) for x € (0, 00).

16. If a > 0, a # 1, and x and y belong to (0, co), prove that log, (xy) = log,x + log,y.
17. Ifa>0,a# 1,and b > 0, b # 1, show that

Inb
log,x = (m) logyx  for x € (0,00).

In particular, show that log;ox = (In ¢/In 10) In x = (log;ee) In x for x € (0, 00).

Section 8.4 The Trigonometric Functions

Along with the exponential and logarithmic functions, there is another very important
collection of transcendental functions known as the ‘““trigonometric functions.” These are
the sine, cosine, tangent, cotangent, secant, and cosecant functions. In elementary courses,
they are usually introduced on a geometric basis in terms of either triangles or the unit
circle. In this section, we introduce the trigonometric functions in an analytical manner and
then establish some of their basic properties. In particular, the various properties of the
trigonometric functions that were used in examples in earlier parts of this book will be
derived rigorously in this section.

It suffices to deal with the sine and cosine since the other four trigonometric functions
are defined in terms of these two. Our approach to the sine and cosine is similar in spirit to
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our approach to the exponential function in that we first establish the existence of functions
that satisfy certain differentiation properties.

8.4.1 Theorem There exist functions C: R — R and S : R — R such that
(i) C"(x)=-C(x)andS"(x) = —S(x)forall x € R.
(i) C(0)=1,C'(0) =0, and S(0) =0,5(0) = 1.

Proof. We define the sequences (C,) and (S,) of continuous functions inductively as
follows:

(1) Cl(x) = 13 Sl(x) =X
) Su(x) = / Cot)dt,
(3) Cra0)i=1 - [ 5,0t

forallme N, x e R.

One sees by Induction that the functions C,, and S, are continuous on R and hence they
are integrable over any bounded interval; thus these functions are well-defined by the above
formulas. Moreover, it follows from the Fundamental Theorem 7.3.5 that S,, and C,,, | are
differentiable at every point and that

(4) Si(x) = Cp(x) and Cir1(x) = —=Su(x) for neN,xeR.

Induction arguments (which we leave to the reader) show that

2 ¥ a2
Copi(x) =1 TR TR (1) n)l”
R A2
S =x—=4=— (-1
(V) =x -5 =+ G0 g
Let A > 0 be given. Then if |x| <A and m > n > 2A, we have that (since A/2n < 1/4):
x2n x2n+2 x2m72
) Cn() = G = i~ Gnr i T T am o)
A2n A 2 A 2m—2n—2
< _|14+(Z£ e (=
— (2n)! + <2n> ot (2}1) ]

Since lim(A"/(2n)!) = 0, the sequence (C,) converges uniformly on the interval [~A, A],
where A > 0 is arbitrary. In particular, this means that (C,(x)) converges for each x € R.
We define C : R — R by

C(x) :=1lim Cy(x) for xeR.

It follows from Theorem 8.2.2 that C is continuous on R and, since C,,(0) = 1foralln € N,
that C(0) = 1.
If |x| <A and m > n > 24, it follows from (2) that

S() — Sy(x) = /0 (Ot = Ca(0)
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If we use (5) and Corollary 7.3.15, we conclude that

50) = 5,091 < 3. (194):

whence the sequence (S,) converges uniformly on [—A,A]. We define S: R — R by
S(x) := lim S,,(x) for xeR.

It follows from Theorem 8.2.2 that S is continuous on R and, since S,,(0) = O foralln € N,
that S(0) = 0.

Since C,(x) = —S,_i(x) for n > 1, it follows from the above that the sequence
(Cy) converges uniformly on [—A, A]. Hence by Theorem 8.2.3, the limit function C is
differentiable on [—A, A] and

C'(x) = lim Cyy(x) = lim(=S,-1(x)) = =S(x)  for x € [-A,A].
Since A > 0 is arbitrary, we have
(6) C'(x)=-S(x) for xeR.

A similar argument, based on the fact that S;(x) = C,(x), shows that S is differentiable on
R and that

(7) S'(x)=C(x) forall xeR.
It follows from (6) and (7) that
C"(x) = =(S(x))'=—=C(x)  and §"(x)=(C(x))" = —-5(x)
for all x € R. Moreover, we have
C'(0) = —5(0) =0, §'(0) =C(0) =1.

Thus statements (i) and (ii) are proved. Q.E.D.

8.4.2 Corollary If C, S are the functions in Theorem 8.4.1, then
(i) C'(x) =—S(x) and S'(x) = C(x) for x € R.

Moreover, these functions have derivatives of all orders.

Proof. The formulas (iii) were established in (6) and (7). The existence of the higher order
derivatives follows by Induction. QE.D.

8.4.3 Corollary The functions C and S satisfy the Pythagorean Identity:
(iv) (C(x))*+ (S(x))* = 1forx € R.
Proof. Let f(x) := (C(x))* + (S(x))* for x € R, so that

f(x) =2C(x)(—S(x)) +28(x)(C(x)) =0  for xeR.

Thus it follows that f(x) is a constant for all x € R. But since f(0) =14+0=1, we
conclude that f(x) =1 for all x € R. QED.

We next establish the uniqueness of the functions C and S.

8.4.4 Theorem The functions C and S satisfying properties (i) and (ii) of Theorem 8.4.1
are unique.
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Proof. Let C; and C, be two functions on R to R that satisfy C//(x) = —C;(x) for all
x € Rand C;(0) = 1, Gj(0) = Oforj = 1,2. If welet D := C| — C», then D" (x) = —D(x)
for x € R and D(0) = 0 and D¥)(0) = 0 for all k € N.

Now let x € R be arbitrary, and let /, be the interval with endpoints 0, x. Since D =
Ci—Cyand T :=S8; — S, = C, — Cj are continuous on I, there exists K > 0 such that
|D(#)] < Kand |T(¢)| < K forall z € I.. If we apply Taylor’s Theorem 6.4.1 to D on I, and
use the fact that D(0) = 0, D*)(0) = 0 for k € N, it follows that for each n € N there is a
point ¢, € I such that

D'(0 p"=10) , ,  D"(c,)
D(x) = D(0) + TR 1) X"+ ] "
— D(n)(cn)xn.

Now either D" (c,) = £D(c,) or D" (c,) = £T(c,). In either case we have

K|x|"
n!

ID(x)] < :

But since lim (|x|"/n!) = 0, we conclude that D(x) = 0. Since x € R is arbitrary, we infer
that C;(x) — Ca(x) = 0 for all x € R.

A similar argument shows that if S; and S, are two functions on R — R such that
S7(x) = —=S;(x) for all x € R and S;(0) = 0, $3(0) = 1 for j = 1, 2, then we have S (x) =
Sy(x) for all x € R. QED.

Now that existence and uniqueness of the functions C and S have been established, we
shall give these functions their familiar names.

8.4.5 Definition The unique functions C : R — R and S : R — R such that C"(x) =
—C(x) and §"(x) = —8(x) for all xR and C(0)=1, C'(0) =0, and S(0) =0,
§'(0) = 1, are called the cosine function and the sine function, respectively. We ordinarily
write

cosx := C(x) and sinx := S(x) for xeR.

The differentiation properties in (i) of Theorem 8.4.1 do not by themselves lead to
uniquely determined functions. We have the following relationship.

8.4.6 Theorem Iff:R — R is such that
f1(x)==f(x)  for x€eR,
then there exist real numbers a, 8 such that
f(x) =aC(x)+ BS(x) for xeR
Proof. Let g(x) :=f(0)C(x) +£(0)S(x) for x € R. It is readily seen that g’(x) =
—g(x) and that g(0) = f(0), and since
g'(x) = =f(0)S(x) +f'(0)C(x),

that g’(0) = f'(0). Therefore the function /1 := f — g is such that 4" (x) = —h(x) for all
x € R and /(0) = 0, /'(0) = 0. Thus it follows from the proof of the preceding theorem
that 4(x) = O for all x € R. Therefore f(x) = g(x) for all x € R. QED.
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We shall now derive a few of the basic properties of the cosine and sine functions.

8.4.7 Theorem The function C is even and S is odd in the sense that

(v) C(—x) = C(x) and S(—x) = —S(x) for x € R.

If x, y € R, then we have the “addition formulas”

(vi) C(x +y) = C(x)C(y) = S(x)S(y), S(x+y) =Sx)C(y) + C(x)S(y).

Proof. (v) If p(x) := C(—x) for x € R, then a calculation shows that ¢” (x) = —¢(x) for

x € R. Moreover, ¢(0) = 1 and ¢/(0) = 0 so that ¢ = C. Hence, C(—x) = C(x) for all
x € R. In a similar way one shows that S(—x) = —S(x) for all x € R.

(vi) Lety € R be given and let f(x) := C(x + y) for x € R. A calculation shows that
f"(x) = —f(x) for x € R. Hence, by Theorem 8.4.6, there exists real numbers «, 8 such
that

f(x) = C(x+y) =aC(x) + S(x) and
f1(x) = =S(x +y) = —aS(x) + BC(x)

for x € R. If we let x = 0, we obtain C(y) = o and —S(y) = B, whence the first formula in
(vi) follows. The second formula is proved similarly.
QE.D.

The following inequalities were used earlier (for example, in 4.2.8).
8.4.8 Theorem If x € R, x > 0, then we have
(vii) —x < S(x) <x; (viii) 1 — %xz <C(x)<1;
(ix) x—1ixP<8(x)<x x) 1-1x*<C(x) <1-3ix+Lx%

Proof. Corollary 8.4.3 implies that —1 < C(¢) < 1 for ¢ € R, so that if x > 0, then
X
—x < / C(ndt < x,
0
whence we have (vii). If we integrate (vii), we obtain

—%ng/ S(1) dt
0

1.2
X%

IN

whence we have
—1x? < —C(x) +1 <3x%
Thus we have 1 — %xz < C(x), which implies (viii).

Inequality (ix) follows by integrating (viii), and (x) follows by integrating (ix). Q.E.D.

The number 7 is obtained via the following lemma.

8.4.9 Lemma There exists a root y of the cosine function in the interval (v/2,V/3).
Moreover C(x) > 0 for x € [0,y). The number 2y is the smallest positive root of S.

Proof. Inequality (x) of Theorem 8.4.8 implies that C has a root between the positive root
V2 of x> =2 =0 and the smallest positive root of x* — 12x% + 24 =0, which is

V6 — 23 < /3. We let y be the smallest such root of C.
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It follows from the second formula in (vi) with x = y that §(2x) = 2S(x)C(x). This
relation implies that S(2y) = 0, so that 2y is a positive root of S. The same relation implies
that if 28 > 0 is the smallest positive root of S, then C(8) = 0. Since y is the smallest
positive root of C, we have § = y. QE.D.

8.4.10 Definition Let 7 := 2y denote the smallest positive root of S.
Note The inequality v/2 < y < v/6 — 2+/3 implies that 2.828 < 7 < 3.185.

8.4.11 Theorem The functions C and S have period 2r in the sense that
(xi) C(x+2n) = C(x)and S(x + 27) = S(x) forx € R.
Moreover we have

(xii) S(x)=C(r—x)=-C(x+1in), C(x)=8E7—x)=S(x+1in)foral
x eR.

Proof. (xi) Since S(2x) = 25(x)C(x) and S(xr) = 0, then S(27) = 0. Further, if x =y
in (vi), we obtain C(2x) = (C(x))* — (S(x))?. Therefore C(27) = 1. Hence (vi) with
y = 21 gives

C(x+27) =C(x)C(27) — S(x)S(27) = C(x),
and

S(x+2m) = 8S(x)C(2m) + C(x)S(2m) = S(x).

(xii) We note that C (% n) =0, and it is an exercise to show that § (% 71) =1.If we
employ these together with formulas (vi), the desired relations are obtained. QE.D.

Exercises for Section 8.4

1. Calculate cos(.2), sin(.2) and cos 1, sin 1 correct to four decimal places.
2. Show that |sinx| < 1 and |cosx| < 1 for all x € R.

Show that property (vii) of Theorem 8.4.8 does not hold if x < 0, but that we have |sin x| < |x|
for all x € R. Also show that |sinx — x| < |x|*/6 for all x € R.
4. Show that if x > 0 then

X2 oxt x® x2 x*

l—-—+—=—--——Z <l—"=+4=.
YR 7T R B
Use this inequality to establish a lower bound for 7.
5. Calculate 7 by approximating the smallest positive zero of sin. (Either bisect intervals or use
Newton’s Method of Section 6.4.)

6. Define the sequence (c,) and (s,) inductively by ¢;(x) := 1,s;(x) := x, and

Sn(x) = /Ox e(t)dt,  cpri(x) =14 /Ox sq(t)dt

for all » € N, x € R. Reason as in the proof of Theorem 8.4.1 to conclude that there exist
functions ¢ : R — R and s : R — R such that (j) ¢’(x) = ¢(x) and 5" (x) = s(x) forall x € R,
and (jj) ¢(0) = 1, ¢/(0) = 0 and s(0) = 0, 5/(0) = 1. Moreover, ¢/ (x) = s(x) and 5'(x) = ¢(x)
for all x € R.
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Show that the functions ¢, s in the preceding exercise have derivatives of all orders, and that they
satisfy the identity (c(x))* — (s(x))* = 1 forall x € R. Moreover, they are the unique functions
satistying (j) and (jj). (The functions c, s are called the hyperbolic cosine and hyperbolic sine
functions, respectively.)

If f : R — R is such that f”(x) = f(x) for all x € R, show that there exist real numbers «, 8
such that f(x) = ac(x) + Bs(x) for all x € R. Apply this to the functions f,(x) := e* and
f(x) := e for x € R. Show that ¢(x) =1 (¥ +e ) and s(x) =} (e¥ —e™) for x e R,

Show that the functions c, s in the preceding exercises are even and odd, respectively, and that
c(x+y) = c(x)e(y) +s(x)s(y),  s(x+y) =s(x)c(y) + c(x)s(y),
for all x,y € R.

Show that ¢(x) > 1 for all x € R, that both ¢ and s are strictly increasing on (0, o), and that
lim ¢(x) = lim s(x) = oo.
X—00 X—00



	CHAPTER 8 SEQUENCES OF FUNCTIONS
	8.1 Pointwise and Uniform Convergence
	8.1.1 Definition
	8.1.2 Examples
	8.1.3 Lemma
	8.1.4 Definition
	8.1.5 Lemma
	8.1.6 Examples
	8.1.7 Definition
	8.1.8 Lemma
	8.1.9 Examples
	8.1.10 Cauchy Criterion for Uniform Convergence
	Exercises for Section 8.1

	8.2 Interchange of Limits
	8.2.1 Examples
	8.2.2 Theorem
	8.2.3 Theorem
	8.2.4 Theorem
	8.2.5 Bounded Convergence Theorem
	8.2.6 Dini's Theorem
	Exercises for Section 8.2

	8.3 The Exponential and Logarithmic Functions
	8.3.1 Theorem
	8.3.2 Corollary
	8.3.3 Corollary
	8.3.4 Theorem
	8.3.5 Definition
	8.3.6 Theorem
	8.3.7 Theorem
	8.3.8 Definition
	8.3.9 Theorem
	8.3.10 Definition
	8.3.11 Theorem
	8.3.12 Theorem
	8.3.13 Theorem
	8.3.14 Definition
	Exercises for Section 8.3

	Section 8.4 The Trigonometric Functions
	8.4.1 Theorem
	8.4.2 Corollary
	8.4.3 Corollary
	8.4.4 Theorem
	8.4.5 Definition
	8.4.6 Theorem
	8.4.7 Theorem
	8.4.8 Theorem
	8.4.9 Lemma
	8.4.10 Definition
	8.4.11 Theorem
	Exercises for Section 8.4



