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CHAPTER 8

SEQUENCES OF FUNCTIONS

In previous chapters we have often made use of sequences of real numbers. In this chapter

we shall consider sequences whose terms are functions rather than real numbers.

Sequences of functions arise naturally in real analysis and are especially useful in obtaining

approximations to a given function and defining new functions from known ones.

In Section 8.1 wewill introduce two different notions of convergence for a sequence of

functions: pointwise convergence and uniform convergence. The latter type of convergence

is very important, and will be the main focus of our attention. The reason for this focus is

the fact that, as is shown in Section 8.2, uniform convergence ‘‘preserves’’ certain

properties in the sense that if each term of a uniformly convergent sequence of functions

possesses these properties, then the limit function also possesses the properties.

In Section 8.3 we will apply the concept of uniform convergence to define and derive

the basic properties of the exponential and logarithmic functions. Section 8.4 is devoted to

a similar treatment of the trigonometric functions.

Section 8.1 Pointwise and Uniform Convergence

Let A � R be given and suppose that for each n 2 N there is a function f n : A ! R ; we

shall say that ( fn) is a sequence of functions on A to R . Clearly, for each x 2 A, such a

sequence gives rise to a sequence of real numbers, namely the sequence

ð1Þ f n xð Þð Þ;
obtained by evaluating each of the functions at the point x. For certain values of x 2 A the

sequence (1) may converge, and for other values of x 2 A this sequence may diverge. For

each x 2 A for which the sequence (1) converges, there is a uniquely determined real

number lim f n xð Þð Þ. In general, the value of this limit, when it exists, will depend on the

choice of the point x 2 A. Thus, there arises in this way a function whose domain consists

of all numbers x 2 A for which the sequence (1) converges.

8.1.1 Definition Let f nð Þ be a sequence of functions on A � R to R , let A0 � A, and let

f : A0 ! R . We say that the sequence f nð Þ converges on A0 to f if, for each x 2 A0, the

sequence f n xð Þð Þ converges to f (x) in R . In this case we call f the limit on A0 of the

sequence f nð Þ. When such a function f exists, we say that the sequence f nð Þ is convergent
on A0, or that f nð Þ converges pointwise on A0.

It follows from Theorem 3.1.4 that, except for a possible modification of the domain

A0, the limit function is uniquely determined. Ordinarily we choose A0 to be the largest set

possible; that is, we take A0 to be the set of all x 2 A for which the sequence (1) is

convergent in R .
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In order to symbolize that the sequence f nð Þ converges on A0 to f, we sometimes

write

f ¼ lim f nð Þ on A0; or f n ! f on A0:

Sometimes, when fn and f are given by formulas, we write

f xð Þ ¼ lim f n xð Þ for x 2 A0; or f n xð Þ ! f xð Þ for x 2 A0:

8.1.2 Examples (a) lim(x=n) ¼ 0 for x 2 R.

For n 2 N, let f n xð Þ :¼ x=n and let f xð Þ :¼ 0 for x 2 R. By Example 3.1.6(a), we

have lim(1=n) ¼ 0. Hence it follows from Theorem 3.2.3 that

lim f n xð Þð Þ ¼ limðx=nÞ ¼ x limð1=nÞ ¼ x � 0 ¼ 0

for all x 2 R . (See Figure 8.1.1.)

(b) lim(xn).

Let gnðxÞ :¼ xn for x 2 R ; n 2 N. (See Figure 8.1.2.) Clearly, if x ¼ 1, then the

sequence (gn(1)) ¼ (1) converges to 1. It follows from Example 3.1.11(b) that lim(xn) ¼ 0

for 0 � x < 1 and it is readily seen that this is also true for �1 < x < 0. If x ¼ �1, then

gnð�1Þ ¼ ð�1Þn, and it was seen in Example 3.2.8(b) that the sequence is divergent.

Similarly, if xj j > 1, then the sequence (xn) is not bounded, and so it is not convergent in R .

We conclude that if

gðxÞ :¼ 0 for �1 < x < 1;
1 for x ¼ 1;

�

then the sequence (gn) converges to g on the set ð�1; 1�.
(c) limððx2 þ nxÞ=nÞ ¼ x for x 2 R .

Let hnðxÞ:¼ x2 þ nxð Þ=n for x 2 R, n 2 N , and let hðxÞ :¼ x for x 2 R. (See

Figure 8.1.3.) Since we have hnðxÞ ¼ x2=nð Þ þ x, it follows from Example 3.1.6(a)

and Theorem 3.2.3 that hnðxÞ ! x ¼ hðxÞ for all x 2 R .

Figure 8.1.2 gn(x) ¼ xnFigure 8.1.1 fn(x) ¼ x=n
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(d) lim((1=n) sin(nx þ n)) ¼ 0 for x 2 R.

Let FnðxÞ :¼ ð1=nÞ sinðnxþ nÞ for x 2 R ; n 2 N ; and let FðxÞ :¼ 0 for x 2 R. (See

Figure 8.1.4.) Since j sin y j � 1 for all y 2 R we have

ð2Þ FnðxÞ � FðxÞj j ¼ 1

n
sinðnxþ nÞ

����
���� � 1

n

for all x 2 R . Therefore it follows that lim(Fn(x)) ¼ 0 ¼ F(x) for all x 2 R . The reader

should note that, given any e > 0, if n is sufficiently large, then FnðxÞ � FðxÞj j < e for all
values of x simultaneously! &

Partly to reinforce Definition 8.1.1 and partly to prepare the way for the important

notion of uniform convergence, we reformulate Definition 8.1.1 as follows.

8.1.3 Lemma A sequence ( fn) of functions on A � R to R converges to a function

f : A0 ! R on A0 if and only if for each e > 0 and each x 2 A0 there is a natural number

Kðe; xÞ such that if n � Kðe; xÞ, then
ð3Þ f nðxÞ � f ðxÞj j < e:

We leave it to the reader to show that this is equivalent to Definition 8.1.1. We wish to

emphasize that the value of Kðe; xÞ will depend, in general, on both e > 0 and x 2 A0. The

reader should confirm the fact that in Examples 8.1.2(a–c), the value of Kðe; xÞ required to
obtain an inequality such as (3) does depend on both e > 0 and x 2 A0. The intuitive reason

for this is that the convergence of the sequence is ‘‘significantly faster’’ at some points than

it is at others. However, in Example 8.1.2(d), as we have seen in inequality (2), if we choose

n sufficiently large, we can make FnðxÞ � FðxÞj j < e for all values of x 2 R . It is precisely

this rather subtle difference that distinguishes between the notion of the ‘‘pointwise

convergence’’ of a sequence of functions (as defined in Definition 8.1.1) and the notion of

‘‘uniform convergence.’’

Uniform Convergence

8.1.4 Definition A sequence ( fn) of functions on A � R to R converges uniformly on

A0 � A to a function f : A0 ! R if for each e > 0 there is a natural number KðeÞ
(depending on e but not on x 2 A0) such that if n � KðeÞ, then
ð4Þ f nðxÞ � f ðxÞj j < e for all x 2 A0:

Figure 8.1.4 Fn(x) ¼ sin(nx þ n)=nFigure 8.1.3 hn (x) ¼ (x2 þ nx)=n
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In this case we say that the sequence ( fn) is uniformly convergent on A0. Sometimes we

write

f n F f on A0; or f nðxÞ F f ðxÞ for x 2 A0:

It is an immediate consequence of the definitions that if the sequence ( fn) is uniformly

convergent on A0 to f, then this sequence also converges pointwise on A0 to f in the sense of

Definition 8.1.1. That the converse is not always true is seen by a careful examination of

Examples 8.1.2(a–c); other examples will be given below.

It is sometimes useful to have the following necessary and sufficient condition for a

sequence ( fn) to fail to converge uniformly on A0 to f.

8.1.5 Lemma A sequence ( fn) of functions on A � R to R does not converge uniformly

on A0 � A to a function f : A0 ! R if and only if for some e0 > 0 there is a subsequence

f nk
� �

of f nð Þ and a sequence xkð Þ in A0 such that

ð5Þ f nkðxkÞ � f xkð Þ�� �� � e0 for all k 2 N :

The proof of this result requires only that the reader negate Definition 8.1.4; we

leave this to the reader as an important exercise. We now show how this result can be

used.

8.1.6 Examples (a) Consider Example 8.1.2(a). If we let nk :¼ k and xk :¼ k, then

f nkðxkÞ ¼ 1 so that f nkðxkÞ � f ðxkÞ
�� �� ¼ 1� 0j j ¼ 1. Therefore the sequence ( fn) does not

converge uniformly on R to f.

(b) Consider Example 8.1.2(b). If nk :¼ k and xk :¼ 1
2

� �1=k
, then

gnkðxkÞ � gðxkÞ
�� �� ¼ 1

2
� 0

�� �� ¼ 1
2
:

Therefore the sequence (gn) does not converge uniformly on ð�1; 1� to g.

(c) Consider Example 8.1.2(c). If nk :¼ k and xk :¼ �k, then hnk ðxkÞ ¼ 0 and hðxkÞ ¼
�k so that hnk ðxkÞ � hðxkÞj j ¼ k. Therefore the sequence (hn) does not converge uni-

formly on R to h. &

The Uniform Norm

In discussing uniform convergence, it is often convenient to use the notion of the uniform

norm on a set of bounded functions.

8.1.7 Definition If A � R and w : A ! R is a function, we say that w is bounded on

A if the set w(A) is a bounded subset of R . If w is bounded we define the uniform norm of
w on A by

ð6Þ j wj jjA :¼ sup wðxÞj j : x 2 Af g:
Note that it follows that if e > 0, then

ð7Þ j wj jjA � e () wðxÞj j � e for all x 2 A:

8.1.8 Lemma A sequence ( fn) of bounded functions on A � R converges uniformly on A

to f if and only if j f n � fj jjA ! 0.
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Proof. ()) If ( fn) converges uniformly on A to f, then by Definition 8.1.4, given any e > 0

there exists K(e) such that if n � KðeÞ and x 2 A then

f nðxÞ � f ðxÞj j � e:

From the definition of supremum, it follows that j f n � fj jjA � e whenever n � KðeÞ. Since
e > 0 is arbitrary this implies that j f n � fj jjA ! 0.

(() If j f n � fj jjA ! 0, then given e > 0 there is a natural number H(e) such that if

n � HðeÞ then j f n � fj jjA � e. It follows from (7) that f nðxÞ � f ðxÞj j � e for all n � HðeÞ
and x 2 A. Therefore ( fn) converges uniformly on A to f. Q.E.D.

We now illustrate the use of Lemma 8.1.8 as a tool in examining a sequence of

bounded functions for uniform convergence.

8.1.9 Examples (a) We cannot apply Lemma 8.1.8 to the sequence in Example 8.1.2(a)

since the function f nðxÞ � f ðxÞ ¼ x=n is not bounded on R .

For the sake of illustration, let A :¼ ½0; 1�. Although the sequence (x=n) did not

converge uniformly on R to the zero function, we shall show that the convergence is

uniform on A. To see this, we observe that

j f n � fj jjA ¼ sup x=n� 0j j : 0 � x � 1f g ¼ 1

n

so that j f n � fj jjA ! 0. Therefore ( fn) is uniformly convergent on A to f.

(b) Let gnðxÞ :¼ xn for x 2 A :¼ ½0; 1� and n 2 N , and let gðxÞ :¼ 0 for 0 � x < 1 and

gð1Þ :¼ 1. The functions gnðxÞ � gðxÞ are bounded on A and

j gn � gj jjA ¼ sup
xn for 0 � x < 1

0 for x ¼ 1

� �
¼ 1

for any n 2 N. Since j gn � gj jjA does not converge to 0, we infer that the sequence (gn)

does not converge uniformly on A to g.

(c) We cannot apply Lemma 8.1.8 to the sequence in Example 8.1.2(c) since the function

hnðxÞ � hðxÞ ¼ x2=n is not bounded on R .

Instead, let A :¼ ½0; 8� and consider

j hn � hj jjA ¼ sup x2=n : 0 � x � 8
� � ¼ 64=n:

Therefore, the sequence (hn) converges uniformly on A to h.

(d) If we refer to Example 8.1.2(d), we see from (2) that j Fn � Fj jj
R
� 1=n. Hence (Fn)

converges uniformly on R to F.

(e) Let GðxÞ :¼ xnð1� xÞ for x 2 A :¼ ½0; 1�. Then the sequence (Gn(x)) converges to

GðxÞ :¼ 0 for each x 2 A. To calculate the uniform norm ofGn � G ¼ Gn on A, we find the

derivative and solve

G0
nðxÞ ¼ xn�1ðn� ðnþ 1ÞxÞ ¼ 0

to obtain the point xn :¼ n=ðnþ 1Þ. This is an interior point of [0, 1], and it is easily

verified by using the First Derivative Test 6.2.8 that Gn attains a maximum on [0, 1] at xn.

Therefore, we obtain

jGnj jjA ¼ Gn xnð Þ ¼ ð1þ 1=nÞ�n � 1

nþ 1
;

which converges to ð1=eÞ � 0 ¼ 0. Thus we see that convergence is uniform on A. &
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Bymaking use of the uniform norm, we can obtain a necessary and sufficient condition

for uniform convergence that is often useful.

8.1.10 Cauchy Criterion for Uniform Convergence Let ( fn) be a sequence of bounded

functions on A � R . Then this sequence converges uniformly on A to a bounded function f

if and only if for each e > 0 there is a number H(e) in N such that for all m; n � HðeÞ, then
j f m � f nj jjA � e. &

Proof. ()) If f n F f on A, then given e > 0 there exists a natural number K 1
2
e

� �
such

that if n � K 1
2
e

� �
then j f n � fj jjA � 1

2
e. Hence, if both m; n � K 1

2
e

� �
, then we conclude

that

f mðxÞ � f nðxÞj j � f mðxÞ � f ðxÞj j þ f nðxÞ � f ðxÞj j � 1
2
eþ 1

2
e ¼ e

for all x 2 A. Therefore j f m � f nj jjA � e for m; n � K 1
2
e

� � ¼: HðeÞ.
(() Conversely, suppose that for e > 0 there is H(e) such that if m; n � HðeÞ, then

j f m � f nj jjA � e. Therefore, for each x 2 A we have

ð8Þ f mðxÞ � f nðxÞj j � j f m � f nj jjA � e for m; n � HðeÞ:
It follows that (fn(x)) is a Cauchy sequence in R ; therefore, by Theorem 3.5.5, it is a

convergent sequence. We define f : A ! R by

f ðxÞ :¼ lim f nðxÞð Þ for x 2 A:

If we let n ! 1 in (8), it follows from Theorem 3.2.6 that for each x 2 A we have

f mðxÞ � f ðxÞj j � e for m � HðeÞ:
Therefore the sequence ( fn) converges uniformly on A to f. Q.E.D.

Exercises for Section 8.1

1. Show that lim(x=(x þ n)) ¼ 0 for all x 2 R ; x � 0.

2. Show that lim(nx=(1 þ n2x2)) ¼ 0 for all x 2 R .

3. Evaluate lim(nx=(1 þ nx)) for x 2 R ; x � 0.

4. Evaluate lim(xn=(1 þ xn)) for x 2 R ; x � 0.

5. Evaluate lim((sin nx)=(1 þ nx)) for x 2 R ; x � 0.

6. Show that lim(Arctan nx) ¼ (p=2)sgn x for x 2 R.

7. Evaluate lim(e�nx) for x 2 R ; x � 0.

8. Show that lim xe�nxð Þ ¼ 0 for x 2 R ; x � 0.

9. Show that lim x2e�nxð Þ ¼ 0 and that lim n2x2e�nxð Þ ¼ 0 for x 2 R ; x � 0.

10. Show that limð cos pxð Þ2nÞ exists for all x 2 R . What is its limit?

11. Show that if a> 0, then the convergence of the sequence in Exercise 1 is uniform on the interval

[0, a], but is not uniform on the interval [0, 1).

12. Show that if a> 0, then the convergence of the sequence in Exercise 2 is uniform on the interval

[a, 1), but is not uniform on the interval [0, 1).

13. Show that if a> 0, then the convergence of the sequence in Exercise 3 is uniform on the interval

[a, 1), but is not uniform on the interval [0, 1).
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14. Show that if 0 < b < 1, then the convergence of the sequence in Exercise 4 is uniform on the

interval [0, b], but is not uniform on the interval [0, 1].

15. Show that if a> 0, then the convergence of the sequence in Exercise 5 is uniform on the interval

[a, 1), but is not uniform on the interval [0, 1).

16. Show that if a> 0, then the convergence of the sequence in Exercise 6 is uniform on the interval

[a, 1), but is not uniform on the interval (0, 1).

17. Show that if a> 0, then the convergence of the sequence in Exercise 7 is uniform on the interval

[a, 1), but is not uniform on the interval [0, 1).

18. Show that the convergence of the sequence in Exercise 8 is uniform on [0, 1).

19. Show that the sequence x2e�nxð Þ converges uniformly on [0, 1).

20. Show that if a> 0, then the sequence n2x2e�nxð Þ converges uniformly on the interval [a,1), but

that it does not converge uniformly on the interval [0, 1).

21. Show that if ( fn), (gn) converge uniformly on the set A to f, g, respectively, then ( fn þ gn)

converges uniformly on A to f þ g.

22. Show that if f nðxÞ :¼ xþ 1=n and f ðxÞ :¼ x for x 2 R, then ( fn) converges uniformly on R to f,

but the sequence f 2n
� �

does not converge uniformly on R . (Thus the product of uniformly

convergent sequences of functions may not converge uniformly.)

23. Let ( fn), (gn) be sequences of bounded functions on A that converge uniformly on A to f, g,

respectively. Show that f ngnð Þ converges uniformly on A to fg.

24. Let ( fn) be a sequence of functions that converges uniformly to f on A and that satisfies f nðxÞj j �
M for all n 2 N and all x 2 A. If g is continuous on the interval �M;M½ �, show that the sequence

(g � fn) converges uniformly to g � f on A.

Section 8.2 Interchange of Limits

It is often useful to know whether the limit of a sequence of functions is a continuous

function, a differentiable function, or a Riemann integrable function. Unfortunately, it is

not always the case that the limit of a sequence of functions possesses these useful

properties.

8.2.1 Examples (a) Let gnðxÞ :¼ xn for x 2 ½0; 1� and n 2 N . Then, as we have noted in

Example 8.1.2(b), the sequence (gn) converges pointwise to the function

gðxÞ :¼ 0 for 0 � x < 1;
1 for x ¼ 1:

�

Although all of the functions gn are continuous at x ¼ 1, the limit function g is not

continuous at x ¼ 1. Recall that it was shown in Example 8.1.6(b) that this sequence does

not converge uniformly to g on [0, 1].

(b) Each of the functions gnðxÞ ¼ xn in part (a) has a continuous derivative on [0,1].

However, the limit function g does not have a derivative at x¼ 1, since it is not continuous

at that point.

(c) Let f n : ½0; 1� ! R be defined for n � 2 by

f nðxÞ :¼
n2x for 0 � x � 1=n;
�n2ðx� 2=nÞ for 1=n � x � 2=n;
0 for 2=n � x � 1:

8<
:
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(See Figure 8.2.1.) It is clear that each of the functions fn is continuous on [0, 1]; hence it is

Riemann integrable. Either by means of a direct calculation, or by referring to the

significance of the integral as an area, we obtain

Z 1

0

f nðxÞdx ¼ 1 for n � 2:

The reader may show that f nðxÞ ! 0 for all x 2 ½0; 1�; hence the limit function f vanishes

identically and is continuous (and hence integrable), and
R 1

0
f ðxÞdx ¼ 0. Therefore we

have the uncomfortable situation that:

Z 1

0

f ðxÞdx ¼ 0 6¼ 1 ¼ lim

Z 1

0

f nðxÞdx:

(d) Thosewho consider the functions fn in part (c) to be ‘‘artificial’’ may prefer to consider

the sequence (hn) defined by hnðxÞ :¼ 2nxe�nx2 for x 2 ½0; 1�; n 2 N. Since hn ¼ H0
n,

where HnðxÞ :¼ �e�nx2 , the Fundamental Theorem 7.3.1 givesZ 1

0

hnðxÞdx ¼ Hnð1Þ � Hnð0Þ ¼ 1� e�n:

It is an exercise to show that hðxÞ :¼ limðhnðxÞÞ ¼ 0 for all x 2 ½0; 1�; hence
Z 1

0

hðxÞdx 6¼ lim

Z 1

0

hnðxÞdx: &

Although the extent of the discontinuity of the limit function in Example 8.2.1 (a) is

not very great, it is evident that more complicated examples can be constructed that will

produce more extensive discontinuity. In any case, we must abandon the hope that the limit

of a convergent sequence of continuous [respectively, differentiable, integrable] functions

will be continuous [respectively, differentiable, integrable].

It will now be seen that the additional hypothesis of uniform convergence is sufficient

to guarantee that the limit of a sequence of continuous functions is continuous. Similar

results will also be established for sequences of differentiable and integrable functions.

Interchange of Limit and Continuity

8.2.2 Theorem Let ( fn) be a sequence of continuous functions on a set A � R and sup-

pose that ( fn) converges uniformly on A to a function f : A ! R . Then f is continuous on A.

Figure 8.2.1 Example 8.2.1(c)

248 CHAPTER 8 SEQUENCES OF FUNCTIONS



C08 12/08/2010 14:48:18 Page 249

Proof. By hypothesis, given e > 0 there exists a natural number H :¼ H 1
3
e

� �
such that if

n � H then f nðxÞ � f ðxÞj j < 1
3
e for all x 2 A. Let c 2 A be arbitrary; we will show that f is

continuous at c. By the Triangle Inequality we have

f ðxÞ � f ðcÞj j � f ðxÞ � f HðxÞj j þ f HðxÞ � f HðcÞj j þ f HðcÞ � f ðcÞj j
� 1

3
eþ f HðxÞ � f HðcÞj j þ 1

3
e:

Since fH is continuous at c, there exists a number d :¼ d 1
3
e; c; f H

� �
> 0 such that if

x� cj j < d and x 2 A, then f HðxÞ � f HðcÞj j < 1
3
e. Therefore, if x� cj j < d and x 2 A,

then we have f ðxÞ � f ðcÞj j < e. Since e > 0 is arbitrary, this establishes the continuity of f

at the arbitrary point c 2 A. (See Figure 8.2.2.) Q.E.D.

Remark Although the uniform convergence of the sequence of continuous functions

is sufficient to guarantee the continuity of the limit function, it is not necessary.

(See Exercise 2.)

Interchange of Limit and Derivative

Wementioned in Section 6.1 thatWeierstrass showed that the function defined by the series

f ðxÞ :¼
X1
k¼0

2�kcos 3kx
� �

is continuous at every point but does not have a derivative at any point in R . By considering

the partial sums of this series, we obtain a sequence of functions ( fn) that possess a

derivative at every point and are uniformly convergent to f. Thus, even though the sequence

of differentiable functions ( fn) is uniformly convergent, it does not follow that the limit

function is differentiable. (See Exercises 9 and 10.)

We now show that if the sequence of derivatives f 0n
� �

is uniformly convergent, then all

is well. If one adds the hypothesis that the derivatives are continuous, then it is possible to

give a short proof, based on the integral. (See Exercise 11.) However, if the derivatives are

not assumed to be continuous, a somewhat more delicate argument is required.

8.2.3 Theorem Let J � R be a bounded interval and let ( fn) be a sequence of functions

on J to R . Suppose that there exists x0 2 J such that ð f nðx0ÞÞ converges, and that the

sequence f 0n
� �

of derivatives exists on J and converges uniformly on J to a function g.

Then the sequence ( fn) converges uniformly on J to a function f that has a derivative at

every point of J and f 0 ¼ g.

Figure 8.2.2 f ðxÞ � f ðcÞj j < e
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Proof. Let a< b be the endpoints of J and let x 2 J be arbitrary. Ifm; n 2 N , we apply the

Mean Value Theorem 6.2.4 to the difference fm � fn on the interval with endpoints x0, x.

We conclude that there exists a point y (depending on m, n) such that

f mðxÞ � f nðxÞ ¼ f m x0ð Þ � f n x0ð Þ þ x� x0ð Þ f 0mðyÞ � f 0nðyÞf g:
Hence we have

ð1Þ j f m � f nj jjJ � f m x0ð Þ � f n x0ð Þj j þ ðb� aÞ j f 0m � f 0nj jjJ :
From Theorem 8.1.10, it follows from (1) and the hypotheses that f n x0ð Þð Þ is convergent
and that f 0nð Þ is uniformly convergent on J, that ( fn) is uniformly convergent on J. We

denote the limit of the sequence ( fn) by f. Since the fn are all continuous and the

convergence is uniform, it follows from Theorem 8.2.2 that f is continuous on J.

To establish the existence of the derivative of f at a point c 2 J, we apply the Mean

Value Theorem 6.2.4 to f m � f n on an interval with end points c, x. We conclude that there

exists a point z (depending on m, n) such that

f mðxÞ � f nðxÞf g � f mðcÞ � f nðcÞf g ¼ ðx� cÞ f 0mðzÞ � f 0nðzÞf g:
Hence, if x 6¼ c, we have

f mðxÞ � f mðcÞ
x� c

� f nðxÞ � f nðcÞ
x� c

����
���� � j f 0m � f 0nj jjJ :

Since f 0nð Þ converges uniformly on J, if e > 0 is given there exists H(e) such that if m; n �
HðeÞ and x 6¼ c, then

ð2Þ f mðxÞ � f mðcÞ
x� c

� f nðxÞ � f nðcÞ
x� c

����
���� � e:

If we take the limit in (2) with respect to m and use Theorem 3.2.6, we have

f ðxÞ � f ðcÞ
x� c

� f nðxÞ � f nðcÞ
x� c

����
���� � e:

provided that x 6¼ c, n � H(e). Since gðcÞ ¼ lim f 0n cð Þ� �
, there exists N(e) such that if n �

N(e), then f 0nðcÞ � gðcÞj j < e. Now let K :¼ sup HðeÞ; NðeÞf g. Since f 0KðcÞ exists, there

exists dK(e) > 0 such that if 0 < x� cj j < dKðeÞ, then
f KðxÞ � f KðcÞ

x� c
� f 0KðcÞ

����
���� < e:

Combining these inequalities, we conclude that if 0 < x� cj j < dKðeÞ, then
f ðxÞ � f ðcÞ

x� c
� gðcÞ

����
���� < 3e:

Since e> 0 is arbitrary, this shows that f 0(c) exists and equals g(c). Since c 2 J is arbitrary,

we conclude that f 0¼ g on J. Q.E.D.

Interchange of Limit and Integral

We have seen in Example 8.2.1(c) that if ( fn) is a sequenceR½a; b� that converges on [a, b]
to a function f in R½a; b�, then it need not happen that

ð3Þ
Z b

a

f ¼ lim
n!1

Z b

a

f n:
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We will now show that uniform convergence of the sequence is sufficient to guarantee that

this equality holds.

8.2.4 Theorem Let ( fn) be a sequence of functions in R½a; b� and suppose that ( fn)

converges uniformly on [a, b] to f. Then f 2 R½a; b� and (3) holds.

Proof. It follows from the Cauchy Criterion 8.1.10 that given e > 0 there existsH(e) such
that if m > n � H(e) then

�e � f mðxÞ � f nðxÞ � e for x 2 ½a; b�:

Theorem 7.1.5 implies that

�eðb� aÞ �
Z b

a

f m �
Z b

a

f n � eðb� aÞ:

Since e > 0 is arbitrary, the sequence ðR b

a
f mÞ is a Cauchy sequence in R and therefore

converges to some number, say A 2 R.

We now show f 2 R½a; b�with integral A. If e> 0 is given, let K(e) be such that ifm>
K(e), then j f mðxÞ � f ðxÞj < e for all x 2 ½a; b�. If _P :¼ fð½xi�1; xi�; tiÞgni¼1 is any tagged

partition of [a, b] and if m > K(e), then

jSð f m; _PÞ � Sð f ; _PÞj ¼
Xn
i¼1

f mðtiÞ � f ðtiÞf gðxi � xi�1Þ
�����

�����
�

Xn
i¼1

�� f mðtiÞ � f ðtiÞjðxi � xi�1Þ

�
Xn
i¼1

eðxi � xi�1Þ ¼ eðb� aÞ:

We now choose r � K(e) such that j R b

a
f r � Aj < e and we let dr;e > 0 be such that

j R b

a
f r � Sð f r; _PÞj < e whenever jj _Pjj < dr;e. Then we have

jSð f ; _PÞ � Aj � jSð f ; _PÞ � Sð f r; _PÞj þ Sð f r; _PÞ �
Z b

a

f r

����
����þ

Z b

a

f r � A

����
����

� eðb� aÞ þ eþ e ¼ eðb� aþ 2Þ:

But since e > 0 is arbitrary, it follows that f 2 R½a; b� and R b

a
f ¼ A. Q.E.D.

The hypothesis of uniform convergence is a very stringent one and restricts the utility

of this result. In Section 10.4 we will obtain some far-reaching generalizations of Theorem

8.2.4. For the present, we will state a result that does not require the uniformity of the

convergence, but does require that the limit function be Riemann integrable. The proof is

omitted.

8.2.5 Bounded Convergence Theorem Let ( fn) be a sequence inR½a; b� that converges
on [a, b] to a function f 2 R½a; b� . Suppose also that there exists B > 0 such that

j f nðxÞj � B for all x 2 ½a; b�; n 2 N . Then equation (3) holds.
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Dini’s Theorem

Wewill end this section with a famous theorem due to Ulisse Dini (1845–1918) that gives a

partial converse to Theorem 8.2.2 when the sequence is monotone. We will present a proof

using nonconstant gauges (see Section 5.5).

8.2.6 Dini’s Theorem Suppose that (fn) is a monotone sequence of continuous functions

on I :¼ [a, b] that converges on I to a continuous function f. Then the convergence of the

sequence is uniform.

Proof. We suppose that the sequence ( fn) is decreasing and let gm :¼ fm� f. Then (gm) is a

decreasing sequence of continuous functions converging on I to the 0-function. We will

show that the convergence is uniform on I.

Given e > 0, t 2 I, there exists me;t 2 N such that 0 � gme;t
ðtÞ < e=2. Since gme;t

is

continuous at t, there exists deðtÞ > 0 such that 0 � gme;t
ðxÞ < e for all x 2 I satisfying

jx� 1j � deðtÞ. Thus, de is a gauge on I, and if _P ¼ ðIi; tiÞf gni¼1 is a de -fine partition, we set

Me :¼ maxfme;t1 ; . . . ;me;tng. If m � Me and x 2 I, then (by Lemma 5.5.3) there exists an

index i with jx� tij � deðtiÞ and hence

0 � gmðxÞ � gm;tiðxÞ < e:

Therefore, the sequence (gm) converges uniformly to the 0-function. Q.E.D.

It will be seen in the exercises that we cannot drop any one of the three hypotheses:

(i) the functions fn are continuous, (ii) the limit function f is continuous, (iii) I is a closed

bounded interval.

Exercises for Section 8.2

1. Show that the sequence (xn=(1þ xn)) does not converge uniformly on [0, 2] by showing that the

limit function is not continuous on [0, 2].

2. Prove that the sequence in Example 8.2.1(c) is an example of a sequence of continuous functions

that converges nonuniformly to a continuous limit.

3. Construct a sequence of functions on [0, 1] each of which is discontinuous at every point of [0, 1]

and which converges uniformly to a function that is continuous at every point.

4. Suppose ( fn) is a sequence of continuous functions on an interval I that converges uniformly on I

to a function f. If (xn) � I converges to x0 2 I, show that lim( fn(xn)) ¼ f (x0).

5. Let f : R ! R be uniformly continuous on R and let fn(x) :¼ f (x þ 1=n) for x 2 R . Show that

( fn) converges uniformly on R to f.

6. Let fn(x) :¼ 1=(1 þ x)n for x 2 [0, 1]. Find the pointwise limit f of the sequence ( fn) on [0, 1].

Does ( fn) converge uniformly to f on [0, 1]?

7. Suppose the sequence ( fn) converges uniformly to f on the set A, and suppose that each fn is

bounded on A. (That is, for each n there is a constant Mn such that j f nðxÞj � Mn for all x 2 A.)

Show that the function f is bounded on A.

8. Let fn(x) :¼ nx=(1 þ nx2) for x 2 A :¼ [0, 1). Show that each fn is bounded on A,

but the pointwise limit f of the sequence is not bounded on A. Does ( fn) converge uniformly to

f on A?
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9. Let fn (x) :¼ xn=n for x 2 [0, 1]. Show that the sequence ( fn) of differentiable functions

converges uniformly to a differentiable function f on [0, 1], and that the sequence ( f 0n) converges
on [0, 1] to a function g, but that gð1Þ 6¼ f 0ð1Þ.

10. Let gnðxÞ :¼ e�nx=n for x � 0; n 2 N. Examine the relation between lim(gn) and lim( g0n).

11. Let I :¼ [a, b] and let ( fn) be a sequence of functions on I ! R that converges on I to f. Suppose

that each derivative f 0n is continuous on I and that the sequence ( f 0n) is uniformly convergent to g

on I. Prove that f ðxÞ � f ðaÞ ¼ R x

a
gðtÞdt and that f 0ðxÞ ¼ gðxÞ for all x 2 I.

12. Show that lim
R 2

1
e�nx2dx ¼ 0.

13. If a > 0, show that lim
R p

a
ðsin nxÞ=ðnxÞdx ¼ 0. What happens if a ¼ 0?

14. Let f nðxÞ :¼ nx=ð1þ nxÞ for x 2 ½0; 1�. Show that ( fn) converges nonuniformly to an integrable

function f and that
R 1

0
f ðxÞdx ¼ lim

R 1

0
f nðxÞdx.

15. Let gnðxÞ :¼ nxð1� xÞn for x 2 ½0; 1�; n 2 N. Discuss the convergence of (gn) and ðR 1

0
gndxÞ.

16. Let {r1, r2, . . . , rn . . . } be an enumeration of the rational numbers in I :¼ ½0; 1�, and let f n :
I ! R be defined to be 1 if x ¼ r1; . . . ; rn and equal to 0 otherwise. Show that fn is Riemann

integrable for each n 2 N , that f 1ðxÞ � f 2ðxÞ � � � � � f nðxÞ � � � �, and that f ðxÞ :¼ limð f nðxÞÞ
is the Dirichlet function, which is not Riemann integrable on [0, 1].

17. Let f nðxÞ :¼ 1 for x 2 ð0; 1=nÞ and f nðxÞ :¼ 0 elsewhere in [0, 1]. Show that ( fn) is a decreasing

sequence of discontinuous functions that converges to a continuous limit function, but the

convergence is not uniform on [0, 1].

18. Let f nðxÞ :¼ xn for x 2 ½0; 1�; n 2 N . Show that ( fn) is a decreasing sequence of continuous func-

tions that converges to a function that is not continuous, but the convergence isnot uniformon [0, 1].

19. Let f nðxÞ :¼ x=n for x 2 ½0;1Þ; n 2 N . Show that ( fn) is a decreasing sequence of continuous

functionsthatconvergestoacontinuous limit function,buttheconvergenceisnotuniformon[0,1).

20. Give an example of a decreasing sequence ( fn) of continuous functions on [0, 1) that converges

to a continuous limit function, but the convergence is not uniform on [0, 1).

Section 8.3 The Exponential and Logarithmic Functions

We will now introduce the exponential and logarithmic functions and will derive some of

their most important properties. In earlier sections of this book we assumed some

familiarity with these functions for the purpose of discussing examples. However, it is

necessary at some point to place these important functions on a firm foundation in order to

establish their existence and determine their basic properties. We will do that here. There

are several alternative approaches one can take to accomplish this goal. Wewill proceed by

first proving the existence of a function that has itself as derivative. From this basic result,

we obtain the main properties of the exponential function. The logarithm function is then

introduced as the inverse of the exponential function, and this inverse relation is used to

derive the properties of the logarithm function.

The Exponential Function

We begin by establishing the key existence result for the exponential function.

8.3.1 Theorem There exists a function E : R ! R such that:

(i) E0ðxÞ ¼ EðxÞ f or all x 2 R .

(ii) Eð0Þ ¼ 1.
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Proof. We inductively define a sequence (En) of continuous functions as follows:

ð1Þ E1ðxÞ :¼ 1þ x;

ð2Þ Enþ1ðxÞ :¼ 1þ
Z x

0
EnðtÞdt;

for all n 2 N ; x 2 R . Clearly E1 is continuous on R and hence is integrable over any

bounded interval. If En has been defined and is continuous on R , then it is integrable over

any bounded interval, so that Enþ1 is well-defined by the above formula. Moreover, it

follows from the Fundamental Theorem (Second Form) 7.3.5 that Enþ1 is differentiable at

any point x 2 R and that

ð3Þ E0
nþ1ðxÞ ¼ EnðxÞ for n 2 N :

An Induction argument (which we leave to the reader) shows that

ð4Þ EnðxÞ ¼ 1þ x

1!
þ x2

2!
þ � � � þ xn

n!
for x 2 R :

Let A > 0 be given; then if jxj � A and m > n > 2A, we have

ð5Þ jEmðxÞ � EnðxÞj ¼ xnþ1

ðnþ 1Þ!þ � � � þ xm

m!

����
����

� Anþ1

ðnþ 1Þ! 1þ A

n
þ � � � þ A

n

	 
m�n�1
" #

<
Anþ1

ðnþ 1Þ! 2:

Since lim(An=n!)¼ 0, it follows that the sequence (En) converges uniformly on the interval

[�A, A] where A > 0 is arbitrary. In particular this means that (En(x)) converges for each

x 2 R . We define E : R ! R by

EðxÞ :¼ limEnðxÞ for x 2 R :

Since each x 2 R is contained inside some interval [�A, A], it follows from Theorem 8.2.2

that E is continuous at x.Moreover, it is clear from (1) and (2) that Enð0Þ ¼ 1 for all n 2 N .

Therefore Eð0Þ ¼ 1, which proves (ii).

On any interval [�A, A] we have the uniform convergence of the sequence (En). In

view of (3), we also have the uniform convergence of the sequence (E0
n) of derivatives. It

therefore follows from Theorem 8.2.3 that the limit function E is differentiable on [�A, A]

and that

E0ðxÞ ¼ limðE0
nðxÞÞ ¼ limðEn�1ðxÞÞ ¼ EðxÞ

for all x 2 [�A, A]. Since A > 0 is arbitrary, statement (i) is established. Q.E.D.

8.3.2 Corollary The function E has a derivative of every order and E (n)(x)¼ E(x) for all

n 2 N ; x 2 R .
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Proof. If n ¼ 1, the statement is merely property (i). It follows for arbitrary n 2 N by

Induction. Q.E.D.

8.3.3 Corollary If x > 0, then 1 þ x < E(x).

Proof. It is clear from (4) that if x > 0, then the sequence (En (x)) is strictly increasing.

Hence E1(x) < E(x) for all x > 0. Q.E.D.

It is next shown that the function E, whose existencewas established in Theorem 8.3.1,

is unique.

8.3.4 Theorem The function E : R ! R that satisfies (i) and (ii) of Theorem 8.3.1 is

unique.

Proof. Let E1 and E2 be two functions on R to R that satisfy properties (i) and (ii) of

Theorem 8.3.1 and let F :¼ E1 � E2. Then

F0ðxÞ ¼ E0
1ðxÞ � E0

2ðxÞ ¼ E1ðxÞ � E2ðxÞ ¼ FðxÞ
for all x 2 R and

Fð0Þ ¼ E1ð0Þ � E2ð0Þ ¼ 1� 1 ¼ 0:

It is clear (by Induction) that F has derivatives of all orders and indeed that FðnÞðxÞ ¼ FðxÞ
for n 2 N ; x 2 R.

Let x 2 R be arbitrary, and let Ix be the closed interval with endpoints 0, x. Since F is

continuous on Ix, there existsK > 0 such that jFðtÞj � K for all t 2 Ix. If we apply Taylor’s

Theorem 6.4.1 to F on the interval Ix and use the fact that F
(k)(0)¼ F(0)¼ 0 for all k 2 N ,

it follows that for each n 2 N there is a point cn 2 Ix such that

FðxÞ ¼ Fð0Þ þ F0ð0Þ
1!

xþ � � � þ Fðn�1Þ

ðn� 1Þ! x
n�1 þ FðnÞðcnÞ

n!
xn

¼ FðcnÞ
n!

xn:

Therefore we have

jFðxÞj � Kjxjn
n!

for all n 2 N :

But since lim(jxj=n!)¼ 0, we conclude that F(x)¼ 0. Since x 2 R is arbitrary, we infer that

E1ðxÞ � E2ðxÞ ¼ FðxÞ ¼ 0 for all x 2 R . Q.E.D.

The standard terminology and notation for the function E (which we now know exists

and is unique) is given in the following definition.

8.3.5 Definition The unique function E : R ! R , such that E0ðxÞ ¼ EðxÞ for all x 2 R

and E(0) ¼ 1, is called the exponential function. The number e :¼ E(1) is called Euler’s

number. We will frequently write

expðxÞ :¼ EðxÞ or ex :¼ EðxÞ for x 2 R :

The number e can be obtained as a limit, and thereby approximated, in several different

ways. [See Exercises 1 and 10, and Example 3.3.6.]

The use of the notation ex for E(x) is justified by property (v) in the next theorem,

where it is noted that if r is a rational number, then E(r) and er coincide. (Rational
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exponents were discussed in Section 5.6.) Thus, the function E can be viewed as extending

the idea of exponentiation from rational numbers to arbitrary real numbers. For a definition

of ax for a > 0 and arbitrary x 2 R, see Definition 8.3.10.

8.3.6 Theorem The exponential function satisfies the following properties:

(iii) EðxÞ 6¼ 0 f or all x 2 R ;

(iv) Eðxþ yÞ ¼ EðxÞEðyÞ f or all x; y 2 R ;

(v) EðrÞ ¼ er f or all r 2 Q :

Proof. (iii) Let a 2 R be such that E(a) ¼ 0, and let Ja be the closed interval with

endpoints 0, a. Let K � jEðtÞj for all t 2 Ja. Taylor’s Theorem 6.4.1 implies that for each

n 2 N there exists a point cn 2 Ja such that

1 ¼ Eð0Þ ¼ EðaÞ þ E0ðaÞ
1!

ð�aÞ þ � � � þ Eðn�1ÞðaÞ
ðn� 1Þ! ð�aÞn�1

þ EðnÞðaÞ
ðnÞ! ð�aÞn ¼ EðcnÞ

n!
ð�aÞn:

Thus we have 0 < 1 � ðK=n!Þjajn for n 2 N. But since limðjajn=n!Þ ¼ 0, this is a

contradiction.

(iv) Let y be fixed; by (iii) we have EðyÞ 6¼ 0. Let G : R ! R be defined by

GðxÞ :¼ Eðxþ yÞ
EðyÞ for x 2 R :

Evidently we have G0ðxÞ ¼ E0ðxþ yÞ=EðyÞ ¼ Eðxþ yÞ=EðyÞ ¼ GðxÞ for all x 2 R , and

Gð0Þ ¼ Eð0þ yÞ=EðyÞ ¼ 1. It follows from the uniqueness of E, proved in Theorem 8.3.4,

that GðxÞ ¼ EðxÞ for all x 2 R . Hence Eðxþ yÞ ¼ EðxÞEðyÞ for all x 2 R . Since y 2 R

is arbitrary, we obtain (iv).

(v) It follows from (iv) and Induction that if n 2 N ; x 2 R , then

EðnxÞ ¼ EðxÞn:

If we let x ¼ 1=n, this relation implies that

e ¼ Eð1Þ ¼ E n � 1
n

	 

¼ E

1

n

	 
	 
n

;

whence it follows that Eð1=nÞ ¼ e1=n. Also we have Eð�mÞ ¼ 1=EðmÞ ¼ 1=em ¼ e�m for

m 2 N . Therefore, if m 2 Z, n 2 N , we have

Eðm=nÞ ¼ Eð1=nÞð Þm ¼ ðe1=nÞm ¼ em=n:
This establishes (v). Q.E.D.

8.3.7 Theorem The exponential function E is strictly increasing on R and has range

equal to fy 2 R : y > 0g. Further, we have

(vi) lim
x!�1EðxÞ ¼ 0 and lim

x!1EðxÞ ¼ 1:

Proof. We know that Eð0Þ ¼ 1 > 0 and EðxÞ 6¼ 0 for all x 2 R . Since E is continuous on

R , it follows from Bolzano’s Intermediate Value Theorem 5.3.7 that EðxÞ > 0 for all

x 2 R . Therefore E0ðxÞ ¼ EðxÞ > 0 for x 2 R, so that E is strictly increasing on R .

256 CHAPTER 8 SEQUENCES OF FUNCTIONS



C08 12/08/2010 14:48:21 Page 257

It follows from Corollary 8.3.3 that 2 < e and that lim
x!1EðxÞ ¼ 1. Also, if z > 0, then

since 0 < Eð�zÞ ¼ 1=EðzÞ it follows that lim
x!�1EðxÞ ¼ 0. Therefore, by the Intermediate

Value Theorem 5.3.7, every y 2 R with y > 0 belongs to the range of E. Q.E.D.

The Logarithm Function

We have seen that the exponential function E is a strictly increasing differentiable function

with domain R and range fy 2 R : y > 0g. (See Figure 8.3.1.) It follows that R has an

inverse function.

8.3.8 Definition The function inverse to E : R ! R is called the logarithm (or the

natural logarithm). (See Figure 8.3.2.) It will be denoted by L , or by ln.

Since E and L are inverse functions, we have

ðL � EÞðxÞ ¼ x for all x 2 R

and

ðE � LÞðyÞ ¼ y for all y 2 R ; y > 0:

These formulas may also be written in the form

ln ex ¼ x; eln y ¼ y:

8.3.9 Theorem The logarithm is a strictly increasing function L with domain

fx 2 R : x > 0g and range R . The derivative of L is given by

(vii) L0ðxÞ ¼ 1=x f or x > 0:
The logarithm satisfies the functional equation

(viii) LðxyÞ ¼ LðxÞ þ LðyÞ for x > 0; y > 0:
Moreover, we have

(ix) LðlÞ ¼ 0 and LðeÞ ¼ 1;

(x) LðxrÞ ¼ rLðxÞ for x > 0; r 2 Q :

(xi) lim
x!0þ

LðxÞ ¼ �1 and lim
x!1 LðxÞ ¼ 1:

Figure 8.3.1 Graph of E Figure 8.3.2 Graph of L
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Proof. That L is strictly increasing with domain fx 2 R : x > 0g and range R follows

from the fact that E is strictly increasing with domain R and range fy 2 R : y > 0g.
(vii) Since E0ðxÞ ¼ EðxÞ > 0, it follows from Theorem 6.1.9 that L is differentiable

on (0, 1) and that

L0ðxÞ ¼ 1

ðE0 � LÞðxÞ ¼
1

ðE � LÞðxÞ ¼
1

x
for x 2 ð0;1Þ:

(viii) If x> 0, y> 0, let u :¼ L(x) and v :¼ L(y). Then we have x¼ E(u) and y¼ E(v).

It follows from property (iv) of Theorem 8.3.6 that

xy ¼ EðuÞEðvÞ ¼ Eðuþ vÞ;
so that LðxyÞ ¼ ðL � EÞðuþ vÞ ¼ uþ v ¼ LðxÞ þ LðyÞ. This establishes (viii).

The properties in (ix) follow from the relations Eð0Þ ¼ 1 and Eð1Þ ¼ e.

(x) This result follows from (viii) and Mathematical Induction for n 2 N, and is

extended to r 2 Q by arguments similar to those in the proof of 8.3.6(v).

To establish property (xi), we first note that since 2 < e, then lim(en) ¼ 1 and

lim(e�n) ¼ 0. Since L(en) ¼ n and L(e�n) ¼ �n it follows from the fact that L is strictly

increasing that

lim
x!1 LðxÞ ¼ lim LðenÞ ¼ 1 and lim

x!0þ
LðxÞ ¼ lim Lðe�nÞ ¼ �1: Q.E.D.

Power Functions

In Definition 5.6.6, we discussed the power function x 7! xr; x > 0, where r is a rational

number. By using the exponential and logarithm functions, we can extend the notion of

power functions from rational to arbitrary real powers.

8.3.10 Definition If a 2 R and x > 0, the number xa is defined to be

xa :¼ ea ln x ¼ EðaLðxÞÞ:
The function x 7! xa for x > 0 is called the power function with exponent a.

Note If x > 0 and a ¼ m=n where m 2 Z; n 2 N , then we defined xa :¼ ðxmÞ1=n in

Section 5.6. Hence we have ln xa ¼ a ln x, whence xa ¼ eln xa ¼ ea ln x. Hence Definition

8.3.10 is consistent with the definition given in Section 5.6.

We now state some properties of the power functions. Their proofs are immediate

consequences of the properties of the exponential and logarithm functions and will be left

to the reader.

8.3.11 Theorem If a 2 R and x, y belong to (0, 1), then:

( a ) 1a ¼ 1; ( b ) xa > 0;
( c ) ðxyÞa ¼ xaya; ( d ) ðx=yÞa ¼ xa=ya:

8.3.12 Theorem If a; b 2 R and x 2 ð0; 1Þ, then:
( a ) xaþb ¼ xaxb ( b ) ðxaÞb ¼ xab ¼ ðxbÞa;
( c ) x�a ¼ 1=xa; ( d ) if a < b; then xa < xb f or x > 1:

The next result concerns the differentiability of the power functions.
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8.3.13 Theorem Let a 2 R . Then the function x 7! xa on (0,1) toR is continuous and

differentiable, and

Dxa ¼ axa�1 for x 2 ð0;1Þ:
Proof. By the Chain Rule we have

Dxa ¼ Dea ln x ¼ ea ln x � Dða ln xÞ
¼ xa � a

x
¼ axa�1 for x 2 ð0;1Þ: Q.E.D.

It will be seen in an exercise that if a> 0, the power function x 7! xa is strictly increasing

on (0,1) to R , and that if a< 0, the function x 7! xa is strictly decreasing. (What happens

if a ¼ 0?)
The graphs of the functions x 7! xa on (0,1) to R are similar to those in Figure 5.6.8.

The Function loga

If a > 0, a 6¼ 1, it is sometimes useful to define the function loga.

8.3.14 Definition Let a > 0, a 6¼ 1. We define

logaðxÞ :¼
ln x

ln a
for x 2 ð0;1Þ:

For x 2 (0,1), the number loga(x) is called the logarithm of x to the base a. The case a¼
e yields the logarithm (or natural logarithm) function of Definition 8.3.8. The case a ¼ 10

gives the base 10 logarithm (or common logarithm) function log10 often used in

computations. Properties of the functions loga will be given in the exercises.

Exercises for Section 8.3

1. Show that if x > 0 and if n > 2x, then

ex � 1þ x

1!
þ � � � þ xn

n!

	 
����
���� < 2xnþ1

ðnþ 1Þ!

Use this formula to show that 2 2
3
< e < 2 3

4
, hence e is not an integer.

2. Calculate e correct to five decimal places.

3. Show that if 0 � x � a and n 2 N , then

1þ x

1!
þ � � � þ xn

n!
� ex � 1þ x

1!
þ � � � þ xn�1

ðn� 1Þ!þ
eaxn

n!
:

4. Show that if n � 2, then

0 < en!� 1þ 1þ 1

2!
þ � � � þ 1

n!

	 

n! <

e

nþ 1
< 1:

Use this inequality to prove that e is not a rational number.

5. If x � 0 and n 2 N , show that

1

xþ 1
¼ 1� xþ x2 � x3 þ � � � þ ð�xÞn�1 þ ð�xÞn

1þ x
:

Use this to show that

lnðxþ 1Þ ¼ x� x2

2
þ x3

3
� � � � þ ð�1Þn�1 x

n

n
þ
Z x

0

ð�tÞn
1þ t

dt
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and that

lnðxþ 1Þ � x� x2

2
þ x3

3
� � � � þ ð�1Þn�1 x

n

n

	 
����
���� � xnþ1

nþ 1
:

6. Use the formula in the preceding exercise to calculate ln 1.1 and ln 1.4 accurate to four decimal

places. How large must one choose n in this inequality to calculate ln 2 accurate to four decimal

places?

7. Show that ln(e=2) ¼ 1 � ln 2. Use this result to calculate ln 2 accurate to four decimal places.

8. Let f : R ! R be such that f 0(x) ¼ f (x) for all x 2 R . Show that there exists K 2 R such that

f (x) ¼ Kex for all x 2 R .

9. Let ak > 0 for k ¼ 1, . . . , n and let A :¼ ða1 þ � � � þ anÞ=n be the arithmetic mean of these

numbers. For each k, put xk :¼ ak=A� 1 in the inequality 1 þ x � ex. Multiply the resulting

terms to prove the Arithmetic–Geometric Mean Inequality

ð6Þ a1 � � � anð Þ1=n � 1

n
ða1 þ � � � þ anÞ:

Moreover, show that equality holds in (6) if and only if a1 ¼ a2 ¼ � � � ¼ an.

10. Evaluate L0(1) by using the sequence (1 þ 1=n) and the fact that e ¼ lim
�ð1þ 1=nÞn�.

11. Establish the assertions in Theorem 8.3.11.

12. Establish the assertions in Theorem 8.3.12.

13. (a) Show that if a > 0, then the function x 7! xa is strictly increasing on (0,1) to R and that

lim
x!0þ

xa ¼ 0 and lim
x!1 xa ¼ 1.

(b) Show that if a< 0, then the function x 7! xa is strictly decreasing on (0,1) to R and that

lim
x!0þ

xa ¼ 1 and lim
x!1 xa ¼ 0.

14. Prove that if a > 0, a 6¼ 1, then alogax ¼ x for all x 2 (0, 1) and loga(a
y) ¼ y for all y 2 R .

Therefore the function x 7! logax on (0, 1) to R is inverse to the function y 7! ay on R .

15. If a> 0, a 6¼ 1, show that the function x 7! logax is differentiable on (0,1) and thatD logax¼
1=(x ln a) for x 2 (0, 1).

16. If a > 0, a 6¼ 1, and x and y belong to (0, 1), prove that loga (xy) ¼ logax þ logay.

17. If a > 0, a 6¼ 1, and b > 0, b 6¼ 1, show that

logax ¼ ln b

ln a

	 

logbx for x 2 ð0;1Þ:

In particular, show that log10x ¼ (ln e=ln 10) ln x ¼ (log10e) ln x for x 2 (0, 1).

Section 8.4 The Trigonometric Functions

Along with the exponential and logarithmic functions, there is another very important

collection of transcendental functions known as the ‘‘trigonometric functions.’’ These are

the sine, cosine, tangent, cotangent, secant, and cosecant functions. In elementary courses,

they are usually introduced on a geometric basis in terms of either triangles or the unit

circle. In this section, we introduce the trigonometric functions in an analytical manner and

then establish some of their basic properties. In particular, the various properties of the

trigonometric functions that were used in examples in earlier parts of this book will be

derived rigorously in this section.

It suffices to deal with the sine and cosine since the other four trigonometric functions

are defined in terms of these two. Our approach to the sine and cosine is similar in spirit to
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our approach to the exponential function in that we first establish the existence of functions

that satisfy certain differentiation properties.

8.4.1 Theorem There exist functions C : R ! R and S : R ! R such that

(i) C00ðxÞ ¼ �CðxÞ and S00ðxÞ ¼ �SðxÞ f or all x 2 R :

(ii) Cð0Þ ¼ 1;C0ð0Þ ¼ 0; and Sð0Þ ¼ 0; S0ð0Þ ¼ 1:

Proof. We define the sequences (Cn) and (Sn) of continuous functions inductively as

follows:

ð1Þ C1ðxÞ :¼ 1; S1ðxÞ :¼ x;

ð2Þ SnðxÞ :¼
Z x

0
CnðtÞdt;

ð3Þ Cnþ1ðxÞ :¼ 1�
Z x

0
SnðtÞdt;

for all n 2 N , x 2 R .

One sees by Induction that the functions Cn and Sn are continuous on R and hence they

are integrable over any bounded interval; thus these functions are well-defined by the above

formulas. Moreover, it follows from the Fundamental Theorem 7.3.5 that Sn and Cnþ1 are

differentiable at every point and that

ð4Þ S0nðxÞ ¼ CnðxÞ and C0
nþ1ðxÞ ¼ �SnðxÞ for n 2 N ; x 2 R :

Induction arguments (which we leave to the reader) show that

Cnþ1ðxÞ ¼ 1� x2

2!
þ x4

4!
� � � � þ ð�1Þn x2n

ð2nÞ! ;

Snþ1ðxÞ ¼ x� x3

3!
þ x5

5!
� � � � þ ð�1Þn x2nþ1

ð2nþ 1Þ! :

Let A > 0 be given. Then if xj j � A and m > n > 2A, we have that (since A=2n < 1=4):

ð5Þ CmðxÞ � CnðxÞj j ¼ x2n

ð2nÞ!�
x2nþ2

ð2nþ 2Þ!þ � � � 	 x2m�2

ð2m� 2Þ!
����

����

� A2n

ð2nÞ! 1þ A

2n

	 
2

þ � � � þ A

2n

	 
2m�2n�2
" #

<
A2n

ð2nÞ!
16

15

	 

:

Since limðA2n=ð2nÞ!Þ ¼ 0, the sequence (Cn) converges uniformly on the interval ½�A;A�,
where A > 0 is arbitrary. In particular, this means that (CnðxÞ) converges for each x 2 R .

We define C : R ! R by
CðxÞ :¼ lim CnðxÞ for x 2 R :

It follows from Theorem 8.2.2 thatC is continuous onR and, sinceCnð0Þ ¼ 1 for all n 2 N ,

that Cð0Þ ¼ 1.

If xj j � A and m � n > 2A, it follows from (2) that

SmðxÞ � SnðxÞ ¼
Z x

0

CmðtÞ � CnðtÞf gdt:
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If we use (5) and Corollary 7.3.15, we conclude that

SmðxÞ � SnðxÞj j � A2n

ð2nÞ!
16

15
A

	 

;

whence the sequence (Sn) converges uniformly on ½�A;A�. We define S : R ! R by

SðxÞ :¼ lim SnðxÞ for x 2 R :

It follows from Theorem 8.2.2 that S is continuous on R and, since Snð0Þ ¼ 0 for all n 2 N ,

that Sð0Þ ¼ 0.

Since C0
nðxÞ ¼ �Sn�1ðxÞ for n > 1, it follows from the above that the sequence

(C0
n) converges uniformly on ½�A;A�. Hence by Theorem 8.2.3, the limit function C is

differentiable on ½�A;A� and
C0ðxÞ ¼ limC0

nðxÞ ¼ limð�Sn�1ðxÞÞ ¼ �SðxÞ for x 2 ½�A;A�:
Since A > 0 is arbitrary, we have

ð6Þ C0ðxÞ ¼ �SðxÞ for x 2 R :

A similar argument, based on the fact that S0nðxÞ ¼ CnðxÞ, shows that S is differentiable on
R and that

ð7Þ S0ðxÞ ¼ CðxÞ for all x 2 R :

It follows from (6) and (7) that

C00ðxÞ ¼ �ðSðxÞÞ0 ¼ �CðxÞ and S00ðxÞ ¼ ðCðxÞÞ0 ¼ �SðxÞ
for all x 2 R . Moreover, we have

C0ð0Þ ¼ �Sð0Þ ¼ 0; S0ð0Þ ¼ Cð0Þ ¼ 1:

Thus statements (i) and (ii) are proved. Q.E.D.

8.4.2 Corollary If C, S are the functions in Theorem 8.4.1, then

(iii) C0ðxÞ ¼ �SðxÞ and S0ðxÞ ¼ CðxÞ for x 2 R .

Moreover, these functions have derivatives of all orders.

Proof. The formulas (iii) were established in (6) and (7). The existence of the higher order

derivatives follows by Induction. Q.E.D.

8.4.3 Corollary The functions C and S satisfy the Pythagorean Identity:

(iv) ðCðxÞÞ2 þ ðSðxÞÞ2 ¼ 1 for x 2 R .

Proof. Let f ðxÞ :¼ ðCðxÞÞ2 þ ðSðxÞÞ2 for x 2 R , so that

f 0ðxÞ ¼ 2CðxÞð�SðxÞÞ þ 2SðxÞðCðxÞÞ ¼ 0 for x 2 R :

Thus it follows that f (x) is a constant for all x 2 R . But since f ð0Þ ¼ 1þ 0 ¼ 1, we

conclude that f ðxÞ ¼ 1 for all x 2 R . Q.E.D.

We next establish the uniqueness of the functions C and S.

8.4.4 Theorem The functions C and S satisfying properties (i) and (ii) of Theorem 8.4.1

are unique.

262 CHAPTER 8 SEQUENCES OF FUNCTIONS



C08 12/08/2010 14:48:24 Page 263

Proof. Let C1 and C2 be two functions on R to R that satisfy C00
jðxÞ ¼ �CjðxÞ for all

x 2 R andCjð0Þ ¼ 1,C0
jð0Þ ¼ 0 for j ¼ 1; 2. If we letD :¼ C1 � C2, thenD

00ðxÞ ¼ �DðxÞ
for x 2 R and Dð0Þ ¼ 0 and DðkÞð0Þ ¼ 0 for all k 2 N .

Now let x 2 R be arbitrary, and let Ix be the interval with endpoints 0; x. Since D ¼
C1 � C2 and T :¼ S1 � S2 ¼ C0

2 � C0
1 are continuous on Ix, there exists K > 0 such that

DðtÞj j � K and TðtÞj j � K for all t 2 Ix. If we apply Taylor’s Theorem 6.4.1 toD on Ix and

use the fact that Dð0Þ ¼ 0; DðkÞð0Þ ¼ 0 for k 2 N, it follows that for each n 2 N there is a

point cn 2 Ix such that

DðxÞ ¼ Dð0Þ þ D0ð0Þ
1!

xþ � � � þ Dðn�1Þð0Þ
ðn� 1Þ! x

n�1 þ DðnÞðcnÞ
n!

xn

¼ DðnÞðcnÞ
n!

xn:

Now either DðnÞðcnÞ ¼ 	DðcnÞ or DðnÞðcnÞ ¼ 	TðcnÞ. In either case we have

DðxÞj j � K xj jn
n!

:

But since lim xj jn=n!ð Þ ¼ 0, we conclude that DðxÞ ¼ 0. Since x 2 R is arbitrary, we infer

that C1ðxÞ � C2ðxÞ ¼ 0 for all x 2 R .

A similar argument shows that if S1 and S2 are two functions on R ! R such that

S00jðxÞ ¼ �SjðxÞ for all x 2 R and Sjð0Þ ¼ 0, S0jð0Þ ¼ 1 for j ¼ 1, 2, then we have S1ðxÞ ¼
S2ðxÞ for all x 2 R . Q.E.D.

Now that existence and uniqueness of the functions C and S have been established, we

shall give these functions their familiar names.

8.4.5 Definition The unique functions C : R ! R and S : R ! R such that C00ðxÞ ¼
�CðxÞ and S00ðxÞ ¼ �SðxÞ for all x 2 R and Cð0Þ ¼ 1, C0ð0Þ ¼ 0, and Sð0Þ ¼ 0,

S0ð0Þ ¼ 1, are called the cosine function and the sine function, respectively. We ordinarily

write

cos x :¼ CðxÞ and sinx :¼ SðxÞ for x 2 R :

The differentiation properties in (i) of Theorem 8.4.1 do not by themselves lead to

uniquely determined functions. We have the following relationship.

8.4.6 Theorem If f : R ! R is such that

f 00ðxÞ ¼ �f ðxÞ for x 2 R ;

then there exist real numbers a, b such that

f ðxÞ ¼ aCðxÞ þ bSðxÞ for x 2 R :

Proof. Let gðxÞ :¼ f ð0ÞCðxÞ þ f 0ð0ÞSðxÞ for x 2 R. It is readily seen that g00ðxÞ ¼
�gðxÞ and that gð0Þ ¼ f ð0Þ, and since

g0ðxÞ ¼ �f ð0ÞSðxÞ þ f 0ð0ÞCðxÞ;
that g0ð0Þ ¼ f 0ð0Þ. Therefore the function h :¼ f � g is such that h00ðxÞ ¼ �hðxÞ for all
x 2 R and hð0Þ ¼ 0, h0ð0Þ ¼ 0. Thus it follows from the proof of the preceding theorem

that hðxÞ ¼ 0 for all x 2 R . Therefore f ðxÞ ¼ gðxÞ for all x 2 R . Q.E.D.
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We shall now derive a few of the basic properties of the cosine and sine functions.

8.4.7 Theorem The function C is even and S is odd in the sense that

(v) Cð�xÞ ¼ CðxÞ and Sð�xÞ ¼ �SðxÞ for x 2 R .

If x, y 2 R , then we have the ‘‘addition formulas’’

(vi) Cðxþ yÞ ¼ CðxÞCðyÞ � SðxÞSðyÞ; Sðxþ yÞ ¼ SðxÞCðyÞ þ CðxÞSðyÞ.

Proof. (v) If wðxÞ :¼ Cð�xÞ for x 2 R, then a calculation shows that w00ðxÞ ¼ �wðxÞ for
x 2 R . Moreover, wð0Þ ¼ 1 and w0ð0Þ ¼ 0 so that w ¼ C. Hence, Cð�xÞ ¼ CðxÞ for all
x 2 R . In a similar way one shows that Sð�xÞ ¼ �SðxÞ for all x 2 R .

(vi) Let y 2 R be given and let f ðxÞ :¼ Cðxþ yÞ for x 2 R. A calculation shows that

f 00ðxÞ ¼ �f ðxÞ for x 2 R. Hence, by Theorem 8.4.6, there exists real numbers a, b such

that

f ðxÞ ¼ Cðxþ yÞ ¼ aCðxÞ þ bSðxÞ and

f 0ðxÞ ¼ �Sðxþ yÞ ¼ �aSðxÞ þ bCðxÞ
for x 2 R. If we let x ¼ 0, we obtain CðyÞ ¼ a and�SðyÞ ¼ b, whence the first formula in

(vi) follows. The second formula is proved similarly.
Q.E.D.

The following inequalities were used earlier (for example, in 4.2.8).

8.4.8 Theorem If x 2 R , x � 0, then we have

(vii) �x � SðxÞ � x; (viii) 1� 1
2
x2 � CðxÞ � 1;

(ix) x� 1
6
x3 � SðxÞ � x; (x) 1� 1

2
x2 � CðxÞ � 1� 1

2
x2 þ 1

24
x4.

Proof. Corollary 8.4.3 implies that �1 � CðtÞ � 1 for t 2 R, so that if x � 0, then

�x �
Z x

0

CðtÞdt � x;

whence we have (vii). If we integrate (vii), we obtain

� 1
2
x2 �

Z x

0

SðtÞ dt � 1
2
x2;

whence we have

� 1
2
x2 � �CðxÞ þ 1 � 1

2
x2:

Thus we have 1� 1
2
x2 � CðxÞ, which implies (viii).

Inequality (ix) follows by integrating (viii), and (x) follows by integrating (ix). Q.E.D.

The number p is obtained via the following lemma.

8.4.9 Lemma There exists a root g of the cosine function in the interval (
ffiffiffi
2

p
;

ffiffiffi
3

p
).

Moreover CðxÞ > 0 for x 2 ½0; gÞ. The number 2g is the smallest positive root of S.

Proof. Inequality (x) of Theorem 8.4.8 implies that C has a root between the positive rootffiffiffi
2

p
of x2 � 2 ¼ 0 and the smallest positive root of x4 � 12x2 þ 24 ¼ 0, which isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6� 2
ffiffiffi
3

pp
<

ffiffiffi
3

p
. We let g be the smallest such root of C.
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It follows from the second formula in (vi) with x ¼ y that Sð2xÞ ¼ 2SðxÞCðxÞ. This
relation implies that Sð2gÞ ¼ 0, so that 2g is a positive root of S. The same relation implies

that if 2d > 0 is the smallest positive root of S, then CðdÞ ¼ 0. Since g is the smallest

positive root of C, we have d ¼ g. Q.E.D.

8.4.10 Definition Let p :¼ 2g denote the smallest positive root of S.

Note The inequality
ffiffiffi
2

p
< g <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6� 2

ffiffiffi
3

pp
implies that 2:828 < p < 3:185.

8.4.11 Theorem The functions C and S have period 2p in the sense that

(xi) Cðxþ 2pÞ ¼ CðxÞ and Sðxþ 2pÞ ¼ SðxÞ for x 2 R .

Moreover we have

(xii) SðxÞ ¼ C 1
2
p� x

� � ¼ �C xþ 1
2
p

� �
; CðxÞ ¼ S 1

2
p� x

� � ¼ S xþ 1
2
p

� �
for all

x 2 R .

Proof. (xi) Since Sð2xÞ ¼ 2SðxÞCðxÞ and SðpÞ ¼ 0, then Sð2pÞ ¼ 0. Further, if x ¼ y

in (vi), we obtain Cð2xÞ ¼ ðCðxÞÞ2 � ðSðxÞÞ2. Therefore Cð2pÞ ¼ 1. Hence (vi) with

y ¼ 2p gives

Cðxþ 2pÞ ¼ CðxÞCð2pÞ � SðxÞSð2pÞ ¼ CðxÞ;
and

Sðxþ 2pÞ ¼ SðxÞCð2pÞ þ CðxÞSð2pÞ ¼ SðxÞ:

(xii) We note that C 1
2
p

� � ¼ 0, and it is an exercise to show that S 1
2
p

� � ¼ 1. If we

employ these together with formulas (vi), the desired relations are obtained. Q.E.D.

Exercises for Section 8.4

1. Calculate cos(.2), sin(.2) and cos 1, sin 1 correct to four decimal places.

2. Show that sin xj j � 1 and cos xj j � 1 for all x 2 R .

3. Show that property (vii) of Theorem 8.4.8 does not hold if x < 0, but that we have sinxj j � xj j
for all x 2 R . Also show that sin x� xj j � xj j3=6 for all x 2 R .

4. Show that if x > 0 then

1� x2

2
þ x4

24
� x6

720
� cos x � 1� x2

2
þ x4

24
:

Use this inequality to establish a lower bound for p.

5. Calculate p by approximating the smallest positive zero of sin. (Either bisect intervals or use

Newton’s Method of Section 6.4.)

6. Define the sequence (cn) and (sn) inductively by c1ðxÞ :¼ 1; s1ðxÞ :¼ x, and

snðxÞ :¼
Z x

0

cnðtÞdt; cnþ1ðxÞ :¼ 1þ
Z x

0

snðtÞdt

for all n 2 N , x 2 R . Reason as in the proof of Theorem 8.4.1 to conclude that there exist

functions c : R ! R and s : R ! R such that (j) c00ðxÞ ¼ cðxÞ and s00ðxÞ ¼ sðxÞ for all x 2 R ,

and (jj) cð0Þ ¼ 1, c0ð0Þ ¼ 0 and sð0Þ ¼ 0, s0ð0Þ ¼ 1. Moreover, c0ðxÞ ¼ sðxÞ and s0ðxÞ ¼ cðxÞ
for all x 2 R .
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7. Show that the functions c, s in the preceding exercise have derivatives of all orders, and that they

satisfy the identity ðcðxÞÞ2 � ðsðxÞÞ2 ¼ 1 for all x 2 R . Moreover, they are the unique functions

satisfying (j) and (jj). (The functions c, s are called the hyperbolic cosine and hyperbolic sine

functions, respectively.)

8. If f : R ! R is such that f 00ðxÞ ¼ f ðxÞ for all x 2 R , show that there exist real numbers a, b

such that f ðxÞ ¼ acðxÞ þ bsðxÞ for all x 2 R . Apply this to the functions f 1ðxÞ :¼ ex and

f 2ðxÞ :¼ e�x for x 2 R. Show that cðxÞ ¼ 1
2
ex þ e�xð Þ and sðxÞ ¼ 1

2
ex � e�xð Þ for x 2 R.

9. Show that the functions c, s in the preceding exercises are even and odd, respectively, and that

cðxþ yÞ ¼ cðxÞcðyÞ þ sðxÞsðyÞ; sðxþ yÞ ¼ sðxÞcðyÞ þ cðxÞsðyÞ;
for all x; y 2 R .

10. Show that cðxÞ � 1 for all x 2 R , that both c and s are strictly increasing on (0;1), and that

lim
x!1 cðxÞ ¼ lim

x!1 sðxÞ ¼ 1.
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