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Preface

Vector analysis, which had its beginnings in the middle of the 19th century, has in recent
years become an essential part of the mathematical background required of engineers, phy-
sicists, mathematicians and other scientists. This requirement is far from accidental, for not
only does vector analysis provide a concise notation for presenting equations arising from
mathematical formulations of physical and geometrical problems but it is also a natural aid
in forming mental pictures of physical and geometrical ideas. In short, it might very well be
considered a most rewarding language and mode of thought for the physical sciences.

This book is designed to be used either as a textbook for a formal course in vector
analysis or as a very useful supplement to all current standard texts. It should also be of
considerable value to those taking courses in physics, mechanics, electromagnetic theory,
aerodynamics or any of the numerous other fields in which vector methods are employed.

Each chapter begins with a clear statement of pertinent definitions, principles and
theorems together with illustrative and other descriptive material. This is followed by
graded sets of solved and supplementary problems. The solved problems serve to illustrate
and amplify the theory, bring into sharp focus those fine points without which the student
continually feels himself on unsafe ground, and provide the repetition of basic principles
so vital to effective teaching. Numerous proofs of theorems and derivations of formulas
are included among the solved problems. The large number of supplementary problems
with answers serve as a complete review of the material of each chapter.

Topics covered include the algebra and the differential and integral calculus of vec-
tors, Stokes’ theorem, the divergence theorem and other integral theorems together with
many applications drawn from various fields. Added features are the chapters on curvilin-
ear coordinates and tensor analysis which should prove extremely useful in the study of
advanced engineering, physics and mathematics.

Considerably more material has been included here than can be covered in most first
courses. This has been done to make the book more flexible, to provide a more useful book
of reference, and to stimulate further interest in the topics.

The author gratefully acknowledges his indebtedness to Mr. Henry Hayden for typo-
graphical layout and art work for the figures. The realism of these figures adds greatly to
the effectiveness of presentation in a subject where spatial visualizations play such an im-
portant role.

M. R. SPIEGEL

Rensselaer Polytechnic Institute

June, 1959
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Chapter 1

A VECTOR is a quantity having both magnitnde and direction, such as displacement, velocity, force,
and acceleration.
ittty

Graphically a Vector is represented by an arrow OP (Fig.1) de-
fining the direction, the magnitude of the vector being indicated by
the length of the arrow. The tail end O of the arrow is called the
origin or initial point of the vector, and the head P is called the -
terminal point or terminus. |7

Analytically a vector is represented by a letter with an arrow
over it, as A in Fig.1, and its magnitude is denoted by |A| or A.In
printed works, bold faced type, such as A, is used to indicate the
vector A while IA| or A indicates its magnitude. We shall use this Fig.1

B e .
bold faced notation in this book. The vector OP is also ingEated as
OP or OP; in such case we shall denote its magnitude by OP, |OP[.
or IOPI. '

A SCALAR is a quantity having magnitude but l’g@direction, e.g. mass, length, time, (,LeLn_ma,r_a.mr.Q‘ and
any real number, Scalars are indicated by letters in ordinary type as in elementary alge-

bra. Operations with scalars follow the same rules as in elementary algebra.

VECTOR ALGEBRA. The operations of addition, subtraction and multiplication familiar in the alge-
bra of numbers or scalars are, with suitable definition, capable of extension
to an algebra of vectors. The following definitions are fundamental.

1. Two vectors A and B are equal if they have the same magnitude and direction regardless of
the position of their initial points. Thus A=B in Fig.2.

2. A vector having direction opposite to that of vector A but having the same magnitude is de-
noted by --A (Fig.3).

Fig. 2 Fig.3
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The sum or resultant of vectors A and B is a
vector C formed by placing the initial point of B
on the terminal point of A and then joining the
initial point of A to the terminal point of B
(Fig.4). This sum is written A+B, i.e. C =A+B.

The definition here is equivalent to the par-
allelogram law for vector addition (see Prob.3).

Extensions to sums of more than two vectors
are immediate (see Problem 4).

Fig.4

The difference of vectors A and B, represented by A—B, is that vector C which added to B
yields vector A. Equivalently, A-B can be defined as the sum A+(-B).

If A=B, then A—B is defined as the null or zero vector and is represented by the sym-
bol 0 or simply 0. It has zero magnitude and no specific direction. A vector which is not
null is a proper vector. All vectors will be assumed proper unless otherwise stated.

The product of a vector A by a scalarm is a vector mA with magnitude \m‘ times the magni~-
tude of A and with direction the same as or opposite to that of A, according as m is positive
or negative. If m=0, mA is the null vector.

LAWS OF VECTOR ALGEBRA. If A,B and C are vectors and m and n are scalars, then

1. A+B = B+A Commutative Law for Addition

2. A+ (B+C) = (A+B)+ C Associative Law for Addition

3. mA = Am Commutative Law for Multiplication
4. m (@A) = (mn)A Associative Law for Multiplication
5. (m+n)A = mA+nA Distributive Law

6. m(A+B) = mA+ mB Distributive Law

Note that in these laws only multiplication of a vector by one or more scalars is used. In Chap-
ter 2, products of vectors are defined.

These laws enable us to treat vector equations in the same way as ordinary algebraic equations.
For example, if A+B = C thenby transposing A = C-B.

A UNIT VECTOR is a vector having unit magnitude, If
A is a vector with magnitude A#0,

———
then A/A is a unit vector having the sameg direction as_,
A.

Any vector A can be represented by a unit vector a
in the direction of A multiplied by the magnitude of A.In
symbols, A = Aa.

THE RECTANGULAR UNIT VECTORS i, j, k. Animpor-

tant set of
unit vectors are those having the directions of the pos-
itive x, y, and z axes of a three dimensional rectangu-
lar coordinate system, and are denoted respectively by
i,j, and k (Fig.5).

We shall use right-handed rectangular coordinate
systems unless otherwise stated. Such a system derives

Fig.5
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its name from the fact that a right threaded screw rotat-
ed through 90° from Ox to Oy will advance in the pos-
itive z direction, as in Fig.5 above.

In general, three vectors A, B and C which have
coincident initial points and are not coplanar, i.e. do
not lie in or are not parallel to the same plane, are said
to form a right-handed system or dextral system if a
right threaded screw rotated through an angle less than
180° from A to B will advance in the direction C as
shown in Fig.6.

Fig. 6 &vw b o )

COMPONENTS OF A VECTOR. é_rﬂ vector A in 3 di-

mensions can be repre- z
sented with initial point at the ofizin O of & YeCTangular
coordinate system (Fig.7). Let (A, Ay, AS) be the
rectangular coordinates of the terminal point of vector A
with initial point at O. The vectors AjlL, Azj, and A3k
are called the rectangular component vectors or simply
component vectors of A in the x, y and z directions re-
‘spectively. Al, A2 and A3 are called the rectangular
components or simply components of A in the x, y and z
directions respectively.

The sum or resultant of A;i, A,j and Azk is the
vector A so that we can write Fig.7

A = Aji+Aj+AK

/2 2 3
The magnitude of A is A = |A] = VA, + A, +A

3
In particular, the position vector or radius vector r from O to the point (x,y,z) is written

r = xi +yj +:zk

and has magnitude r = lrl = vx?+ y2 + 22,

SCALAR FIELD. If to each point (x,y,z) of a region R in space there corresponds a number or scalar
then ¢ is called a scalar function of position or scalar point function
and we say that a scalar field ¢ has been defined in R.

Examples. (I) The temperature at any point within or on the earth’s surface at a certain time
defines a scalar field.

(2) P(x,y,2) = 7y — 22 defines a scalar field.

A scalar field which is independent of time is called a stationary or steady-state scalar field.

VECTOR FIELD. If to each point (x,y,z) of a region R in space there corresponds a vector V(x,y,z),

then V is called a vector function of position or vector point function and we say
that a vector field V has been defined in R.

Examples. (I) If the velocity gt any pojnt (x,y,z) within a moving fluid is known at a certain
time, then a vector field is defined.

(2) V(x,y,2) = xy%i - 2y23j + x%zk defines a vector field.
R am

A vector field which is independent of time is called a stationary or steady-state vector field.
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SOLVED PROBLEMS

1. State which of the following are scalars and which are vectors.
(a) weight (c) specific heat (e) density (g) volume (1) speed
(b) calorie  (d) momentum (f) energy (k) distance  (j) magnetic field intensity

Ans. (a) vector  (c) scalar  (e) scalar  (g) scalar (i) scalar
(b) scalar (d) vector  (f) scalar (k) scalar  (j) vector

2. Represent graphically (a) a force of 10 1b in a direction 30° north of east
(b) a force of 15 1b in a direction 30° east of north.

N
N [

Unit=51b

5 2

\“\‘0

30

Fig.(a) Fig.(b)

Choosing the unit of magnitude shown, the required vectors are as indicated above.

3. An automobile travels 3 miles due north, then 5 miles northeast. Represent these displacements
graphically and determine the resultant displacement () graphically, (b) analytically.

Vector OP or A represents displacement of 3 mi due north.

N

Vector PQ or B represents displacement of 5 mi north east.

Vector 0Q or C represents the resultant displacement or
sum of vectors A and B, i.e. € = A+B. This is the triangle
law of vector addition.

The resultant vector 0Q can also be obtained by con-
structing the diagonal of the parallelogram OPQR having vectors
OP =A and OR (equal to vector PQ or B) as sides. This is the
parallelogram law of vector addition.

(@) Graphical Determination of Resultant. Lay off the 1 mile

unit on vector 0Q to find the magnitude 7.4 mi (approximately).
Angle EOQ=61.5°, using a protractor. Then vector 0Q has W
magnitude 7.4 mi and direction 61.5° north of east.

(b) Analytical Determination of Resultant. From triangle OPQ, Unit =1mile
denoting the magnitudes of A, B, C by A, B, C, we have by s
the law of cosines

c? = a2+ p%_ 2AB cos Z0PQ = 32 + 5% — 23)(5) cos 135° = 34 +15/2 = 55.21

and C = 7.43 (approximately).

A C

By the law of sines, - = .
sin Z OQP sin Z OPQ

Then
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A sin / 3(0.707
sin ZOQP = Smc OPQ _ (7 43) = 0.2855 and ZOQP = 16°35".

Thus vector 0Q has magnitude 7.43 mi and direction (45° +16°35') = 61°35" north of east.

4. Find the sum or resultant of the following displacements:
A, 10 ft northwest; B, 20 ft 30°north of east; C, 35 ft due south. See Fig.(a)below.

At the terminal point of A place the initial point of B.

At the terminal point of B place the initial point of C.
The resultant D is formed by joining the initial point of A to the terminal point of C, i.e. D = A+B+C.

Graphically the resultant is measured to have magnitude of 4.1 units =20.5ft and direction 60°south of E.

For an analytical method of addition of 3 or more vectors, either in a plane or in space see Problem 26.

Q

N 9
/
(o}
P 30
A C
- 459 B
o 50°
 — D
Unit = 5 ft
S
R
Fig.(a) Fig.(b)

5. Show that addition of vectors is commutative, i.e. A+B = B+A. See Fig.(b)above.

oP +PQ = 0Q or A+B = C,
and OR +RQ = 09 or B+A = C.

Then A+B = B+A.

6. Show that the addition of vectors is associative, i.e. A+(B+C) = (A+B) +C.

OP +PQ = 0Q = (A+B), B 0

and PQ +QR = PR = (B+C).
OP +PR = OR = D, i.e. A+(B+C) = D.
0Q +QR = OR = D, i.e. (A+B)+ C = D.

Then A+(B+C) = (A+B) +C.

Extensions of the results of Problems 5 and 6 show
that the order of addition of any number of vectors is im-
material. o

7. Forces F;, F,, ..., Fg act as shown on object P. What force is needed to prevent P from mov-
ing ?
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Since the order of addition of vectors is immaterial, we may start with any vector, say F;. To F; add
F,, then F,, etc. The vector drawn from the initial point of F; to the terminal point of Fy is the resultant
R, i.e. R = F1+F2+F3+F4+F5+F6 .

The force needed to prevent P from moving is —R which is a vector equal in magnitude to R but opposite
in direction and sometimes called the equilibrant.

8. Given vectors A, B and C (Fig.la), construct (@) A-B+2C (b) 3C ~ 3(2A-B).

(@)

Fig. 1(a) Fig. 2(a)

(b)

Fig. 1(b) Fig. 2(b)
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An airplane moves in a northwesterly direction at -W
125 mi/hr relative to the ground, due to the fact
there is a westerly wind of 50 mi/hr relative to
the ground. How fast and in what direction would
the plane have traveled if there were no wind ?

Let W = wind velocity
A\

n

velocity of plane with wind

. | ——
Vb = velocity of plane without wind Unit = 25 mi/hr
Then V, = V, +W o V, = V, =W = V, +(-W

A\ has magnitude 6.5 units =163 mi/hr and direction 33° north of west.

Given two non-collinear vectors a and b, find an expression for any vector r lying in the plane de-
termined by a and b.

Non-collinear vectors are vectors which are not parallel to
the same line. Hence when their initial points coincide, they
determine a plane. Let r be any vector lying in the plane of a
and b and having its initial point coincident with the initial
points of a and b at 0. From the terminal point R of r construct
lines parallel to the vectors a and b and complete the parallel-
ogram ODRC by extension of the lines of action of a and b if
necessary. From the adjoining figure

OD = x(0A) = xa, where x is a scalar
OC = y(OB) = yb, where y is a scalar.

But by the parallelogram law of vector addition
OR =0OD+0OC or r =xa+tyb

which is the required expression. The vectors xa and yb are called component vectors of rinthedirections
a and b respectively. The scalars x and y may be positive or negative depending on the relative orientations
of the vectors. From the manner of construction it is clear that x and y are unique for a given a, b, andr.
The vectors a and b are called base vectors in a plane.

Given three non-coplanar vectors a, b, and ¢, find an expression for any vector r in three dimen-
sional space.

Non-coplanar vectors are vectors which are not paral-
lel to the same plane. Hence when their initial points co-
incide they do not lie in the same plane.

Let r be any vector in space having its initial point co-
incident with the initial points of a, b and ¢ at 0. Through
the terminal point of r pass planes parallel respectively
to the planes determined by a and b, b and ¢, and a and c;
and complete the parallelepiped PQRSTUV by extension of
the lines of action of a, b and ¢ if necessary. From the
adjoining figure,

OV = x(0A) xa where x is a scalar
OP = y(0OB) = yb where y is a scalar
oT z(0C) zc¢ where z is & scalar.

i
il

But OR = OV+VQ+QR = OV+OP+OT or r = xatyb+tzc.

From the manner of construction it is clear that x, ¥ and z are unique for a given a, b, c and r.
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13.

14.

15.

16.

17.
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The vectors xa, yb and zc are called component vectors of r in directions a, b and ¢ respectively. The
vectors a, b and ¢ are called base vectors in three dimensions.

As a special case, if a,b and ¢ are the unit vectors i, j and k, which are mutually perpendicular, we
see that any vector r can be expressed uniquely in terms of i, j, k by the expression r = xi+yj +zk.

Also, if ¢=0 then r must lie in the plane of a and b so the result of Problem 10 is obtained.

Prove that if a and b are non-collinear then xa+yb = 0 implies x =y =0.

Suppose x £0. Then xa+yb = 0 implies xa=—-yb or a=—(y/x)b, i.e. a and b mustbe parallel to
to the same line (collinear) contrary to hypothesis. Thus x =0; then yb =0, from which y = 0.

If x;a+y,b = x,a+y,b, wherea and b are non-collinear, then %, =x, and y,=y,.

x1a+y1b = x2a+y2b can be written
@ty b= (xaty,h) = 0 or (xj-x)a+ (- y)b = 0.

Hence by Problem 12, 3= x,=0, y;=y,=0 or =% =%, 5 =y,.

Prove that if a, b and ¢ are non-coplanar then xa+yb+zc = 0 implies x=y=2=0.

Suppose x#0. Then xa+yb+zc =0 implies xa = —yb—ze or a= —(y/x)b~(z/x)c. But
~(y/x )b — (z/x)c is a vector lying in the plane of b and ¢ (Problem 10), i.e. a lies in the plane of b and ¢
which is clearly a contradiction to the hypothesis that a, b and ¢ are non-coplanar. Hence x =0. By sim-
ilar reasoning, contradictions are obtained upon supposing y #0 and z #0.

Ifxla+ylb+zc = x

1 a+y,b+z

¢, where a, b and ¢ are non-coplanar, then X1=%,, ¥1=Yps

2 2

le 22 .

The equation can be written (x,-x,)a + (y;—y,)b + (z;—2,)c = 0. Then by Problem 14, x;-x
¥ ~¥p=0, 24=2,=0 or x;=x,, y;=y,, 27=%,.

:0'

2

Prove that the diagonals of a parallelogram bisect each other.

Let ABCD be the given parallelogram with diagonals in-
tersecting at P.

Since BD+a =b, BD =b—a. Then BP = x(b—a).
Since AC = a+t+bh, AP = y(a+h).

But AB = AP + PB = AP — BP,
ie. a = y@@a+bh) —x(b—a) = (x +y)a + (y —x)b.

Since a and b are non-collinear we have by Problem 13, 4
x+y=1 and y—x =0, i.e. x =y = 7 and P is the mid- b

point of both diagonals.

If the midpoints of the consecutive sides of any quadrilateral are connected by straight lines,
prove that the resulting quadrilateral is a parallelogram.
Let ABCD be the given quadrilateral and P, @, R, S the midpoints of its sides. Refer to Fig.(a) below.
Then PQ =3(a+b), QR = z(b+c), RS = 3(c+d), SP = z(d+a).
But a+h+c+d =0. Then
PQ = 3(a+h) = —%(c+d) = SR and QR = %(b+c) = —3(d+a) = PS

Thus opposite sides are equal and parallel and PQRS is a parallelogram.




18.

VECTORS and SCALARS 9

Let Py, P,, P3 be points fixed relative to an origin O and let ry, r,, r; be position vectors from
O to each point. Show that if the vector equation ayr, + a,r, + asls = 0 holds with respect to
origin O then it will hold with respect to any other origin 0' if and only if ayt aytag = 0.

Let 1, 1, and r be the position vectors of Py, P, and P; with respect to 0’ and let v be the position
vector of O' with respect to 0. We seek conditions under which the equation alr'l-l— azr'2 + aar'3 =0 will
hold in the new reference system.

. From Fig.(d) below, it is clear that I{=Vv+ r'l, r, :v+r'2, r3 =V +r'3 so that aqry 1 a,r, +a§r5 =0
ecomes

+ + = a (V) + a (VEED) + a (VHTy)
all'l 021‘2 aal‘s = al v rl 112 \ l'2 (13 v r3

- 4 ' .
= (al+ a2+a3)v +aqr oy, + asry = 0
The result alrj'_ ta, ré + as r; = 0 will hold if and only if

(al-i—a +a3)v =0, ie. a,+ c12+az5 = 0.

2

The result can be generalized.

Fig.(a) Fig.(b)

19. Find the equation of a straight line which passes through two given points 4 and B having posi-

tion vectors a and b with respect to an origin O.

Let r be the position vector of any point P on the line
through 4 and B.

From the adjoining figure,

OA +AP = OP or a+AP =1, ie. AP=-r-a
and OA+AB = OB or a+AB = b, i.e. AB=b-a

Since AP and AB are collinear, AP=tAB or r—a=t(b—a).
Then the required equation is

r = a+ t(b-a) or r = (I1-t)a +thb

If the equation is written (1—-¢t)a+tb—r = 0, the sum
of the coefficients of a, band ris 1—-:z+¢—1 = 0. Hence by
Problem 18 it is seen that the point P is always on the line
joining A and B and does not depend on the choice of origin
0, which is of course as it should be.

Another Method. Since AP and PB are collinear, we have for scalars m and n:

mAP = nPB or m(r—a) = n(b—r)

. ma + nb . .
Solving, r = — which is called the symmetric form.
m n
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20.

21.

22.

23.
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(a) Find the position vectors r, and r, for the
points P(2, 4, 3) and Q(1,~5,2) of a rectangular
coordinate system in terms of the unit vectors
i, j, k. (b) Determine graphically and analyti-
cally the resultant of these position vectors. 0(1,~5,2) ik

1l

(@) r, = OP = OC + CB + BP 2i +4j + 3k

1
r, = 0Q OD + DE +EQ = i-5j+2k

(b Graphically, the resultant of r, andr, is obtained
as the diagonal OR of parallelogram OPRQ. Ana-
lytically, the resultant of r, and r, is given by x

rptr, = (21 +4j +3Kk) + (i-5j+2%k) = 3i—j+5k

Prove that the magnitude A of the vector A =
. . R 2 2 2
Aji+ A,i+4.k is A= vA + A, + A .
By the Pythagorean theorem,
— —— — 2
_(@PF = ©OY + @P)
where OP de_ngtes the _magnitu_@g of vector OP, etc.
similarly, (00) = (OR)Y + (RQY.
Then (OP). = (ORZ + (RQY + (QPY or

2 _ 42 2 2 _ 2 2 2
AT = A1+A2+A3, i.e. 4 = A1+A2+A3.

Given r, = 3i-2j+Kk, r, = 9i — 4j - 3k, r, = —i+2+2%, find the magnitudes of
(@yrg, (B)r tr,+tr, (¢) 2r,— 3r,— 5ry.

@ |l = |—i+2+2k] = VD24 @74 @7 = 3,

(B) rbrbr, = (Gi-2 4R+ (=& =30 + (-1 42 = 4 -4j + Ok = 4i -4
Then |r +r,+r,| = lai—gj+ok| = V&P + (—07+ (7 = V32 = &2,

(c) 2r, —3r, 51y = 231 —2j +k) ~ 3(2i —4j —3Kk) — 5(—1i+2j+2k)
= Gi—4j+2k—6i+12j+9k+5i—10j—10k = 5i - 2j + k.

Then |2r, - 31,5t | = lsi—2i+k | = V(®Z+ (=27 + (1P = v30.
If r,=2i-j+k, 1,= i+3i-2k, 1, = ~2i+j-3k and 1, = 3i+ 9j + 5k, find scalars a,b,c such

that r, = ar, + br, + cr, .
We require 3i+2j+5k = a(i—-j+k) + b(i+3j—2k) + c(~2i+j—3k)
= (2a +b=2c)i + (~a+3b+c)j + (a—2b—3c)k.
Since i, j, k are non-coplanar we have by Problem 15,
2a +b—~2c = 3, —a+38b+c =2, a—-2b—3c = 5.
Solving, a=-2, b=1, ¢=-3 and r,=-2r,+r,—3r,.
The vector r, is said to be linearly dependent onr,, r,,and ry; in other words r,, I, Iy and r, constitute a

linearly dependent set of vectors. On the other hand any three (or fewer) of these vectors are linearly in-
dependent.

In general the vectors A, B, C, ... are called linearly dependent if we can find a set of scalars,
a,b,c,..., notall zero, sothat cA+bsB+cC+... = 0, otherwise they are linearly independent.
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24. Find a unif vector parallel to the resultant of vectors I, = 2i + 4j - 5k, I, = i+2j+3k.
Resultant R = rtr, = (2i +4j ~5k) + (i +2j+3k) = 3i +6j — 2k.

R= |R| = |si+6j-2k| = V(3%+ (6P + (-2 = 7.

g
Then a unit vector parallel to R is R . 3i+6i-2k _ 3, + g;i -2
R T 7 T 7

3. 6. 2 3.2, ,62 2.2
Check: =i+ =j - = = =Y + (=Y + (- = = 1,
ec Tt i 7k1 .\/(7) (7) ( 7)

25. Determine the vector having initial point P(xl, Yyo Zy) z

and terminal point Q(x,, y,, z,) and find its magnitude. ‘P(xi,’yi,zi)

The position vector of P is r, = x,1 +y,j + z k.

The position vector of Q is 1, = x,i + 5, + z,k.
_ Olxo, ¥5,25)
r, + PQ=r , Of

PQ=r,-r = (x2i+y2j+22k)— (xli+y1j+z1k)

=w,=x)i ¥ (y, = 3)i+ (z,—z)k.

Magnitude of PQ =PQ = V(x,~x,) + (y,— 3,)° + (z, ~z,)".

Note that this is the distance between points P and Q. x

26. Forces A, B and C acting on an object are given in terms of their components by the vector equa-
tions A=4,i+Aj+Ak, B=Bi+Bji+Bk, C=Ci+Cj+ C,;k. Find the magnitude of the
resultant of these forces.

Resultant force R = A+B+C = (4,+ B, + C)i+ (A +B,y+ C)i + (Ag+ By + C K.

Magnitude of resultant = /(A1+ Bl+ C1)2 + (A2+ B2+ CQ)Q + (A3+ B,3 + CS)Q .

The result is easily extended to more than three forces.

27. Determine the angles o, 3 and v which the vector
" r=xi+yj+zk makes with the positive direc- z
tions of the coordinate axes and show that

cos® & +cos”’ B +cos®y = 1.

Referring to the figure, triangle OA4AP is a right
triangle with right angle at 4; then cos 0 = ﬁ . Sim-
ilarly from right triangles OBP and OCP, cos B = %
and cos 7y = ﬁ . Also, lrI: r= m

x z
Then cos & ==, cosB=%, cos Y = — from

which ®, 3,7 can be obtained. From these it follows A4
that
x2+ y2 + 22

7‘2

cos206+00328+cos2'y: = 1.

The numbers cos &, cos [, cos 7y are called the direction cosines of the vector OP.

28. Determine a set of equations for the straight line passing through the points P(xi, Yy 31) and
Q(ny y21 z2)~
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Let r, and r, be the position vectors of P and Q respec-
tively, and r the position vector of any point R on the line

P{“’i{ﬂ-‘zkﬂ‘k‘» o
joining P and Q. . .

ps

1

r1+PR r or PR=r—r1

r, + PQ = T or PQ = r,— 1,

" Q(xﬁt Y25 22)
1 2 2 v e

But PR = tPQ where ¢t is a scalar. Then r-r, =
z(r2 - '1) is the required vector equation of the straight line
(compare with Problem 19). L

¥y

In rectangular coordinates we have, since r = xi +yj + zk,

(i +yi+2k) = ity itz = o[Ggl tyd ¥R - ity dT z,K)]
" - Al + (=i + (2 =2k = o[l = )i+ — )i b (2 - z,)k]
Since i, j, k are non-coplanar vectors we have by Problem 15,
% - %y = t(xQ——xl), y= ¥, = t(72—71)' z—z, = t(ZQ—Zl)

as the parametric equations of the line, ¢ being the parameter. Eliminating ¢, the equations become

x= % Y~ Y _ EFTZ

2~ % Yo= 71 =%

X

29. Given the scalar field defined by @ (x,y,z) = 3x°z - xy®> + 5, find ¢ at the points
(@) (0,0,0), () (1,-2,2) () (-1,-2,-3).

@ #(0,0,0) = 3(0)%(0) — (0)©0° + 5 = 0-0+5 =5
LB P(,-2,2) = P@ - (=2’ +5 = 6+8+5 = 19

() B(=1,-2,-3) = 3(-1*(-3) — (-1(=2 + 5 = -9 -8 +5 = -12

30. Graph the vector fields defined by:
(@ V(x,y) = xi +yi, () Vix,y) = —xi-yi, (¢) V(x,y,2) = xi +yj + zk.

(a) At each point (x,y), except (0, 0), of the xy plane there is defined a unique vector xi+yj of magnitude

x* + yQ_ having direction passing through the origin and outward from it. To simplify graphing proce-
dures, note that all vectors associated with points on the circles x?+y?=a% a >0 have magnitude
a. The field therefore appears as in Figure (a) where an appropriate scale is used.

S ONEY

Fig.(a) Fig.(b)

¥ ¥y

o~
]
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A
i
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X
X
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(b) Here each vector is equal to but opposite in direction to the corresponding one in (a). The field there-
fore appears as in Fig.(b).

In Fig.(a) the field has the appearance of a fluid emerging from a point source O and flowing in the
directions indicated. For this reason the field is called a source field and O is a source.

In Fig.(b) the field seems to be flowing toward 0, and the field is therefore called a sink field and O
is a sink.

In three dimensions the corresponding interpretation is that a fluid is emerging radially from (or pro-
ceeding radially toward) a line source (or line sink).

The vector field is called two dimensional since it is independent of z.

(¢) since the magnitude of each vector is vx? + 42 + z2, all points on the sphere 22+ y24 22 = 42, a> 0
have vectors of magnitude o associated with them. The field therefore takes on the appearance of that
of a fluid emerging from source O and proceeding in all directions in space. This is a three dimension-
al source field.

SUPPLEMENTARY PROBLEMS

Which of the following are scalars and which are vectors? (a) Kinetic energy, (b) electric field intensity,
(c) entropy, (d) work, (e) centrifugal force, (f) temperature, (g) gravitational potential, (%) charge, (i) shear-
ing stress, (j) frequency.
Ans. (a) scalar, (b) Vector, (c) scalar, (d) scalar, (e) vector, (f) scalar, (g) scalar, (k) scalar, (i) vector

(/) scalar

An airplane travels 200 miles due west and then 150 miles 60° north of west. Determine the resultant dis-
placement (@) graphically, (b) analytically.
Ans. magnitude 304.1 mi (50v37), direction 25°17' north of east (arc sin 3v111/74)

Find the resultant of the following displacements: A, 20 miles 30%south of east; B, 50 miles due west;
C, 40 miles northeast; D, 30 miles 60° south of west.
Ans. magnitude 20.9 mi, direction 21°39’ south of west

Show graphically that —(A-B) = —A + B.

An object P is acted upon by three coplanar forces as shown in Fig.(a) below. Determine the force needed
to prevent P from moving. A4ns. 323 b directly opposite 150 1b force

Given vectors A, B, C and D (F'ig.(b) below). Construct (a) 3A~ 2B— (C — D) (&) %C + %(A— B +2D).

-------<ﬂ--~.,-‘-~‘~
\J
N
A “—’—”jif’ffff
C
Y

]

1501b

1001b

Fig.(a) Fig.(b)
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If ABCDEF are the vertices of a regular hexagon, find the resultant of the forces represented by the vec-
tors AB, AC, AD, AE and AF. Ans. 3 AD

If A and B are given vectors show that (a) |A+B| < lA]+ |B|, () IA—B‘ big lA‘ —|Bl.
show that |a+B+c| <Al +|B|+lcl.

Two towns A and B are situated directly opposite each other on the banks of a river whose width is 8 miles
and which flows at a speed of 4 mi/hr. A man located at 4 wishes to reach town C which is 6 miles up-
stream from and on the same side of the river as town B. If his boat can travel at a maximum speed of 10
mi/hr and if he wishes to reach C in the shortest possible time what course must he follow and how long
will the trip take?

Ans. A straight line course upstream making an angle of 34°28" with the shore line. 1 hr 25 min.

A man travelling southward at 15 mi/hr observes that the wind appears to be coming from the west. On in-
creasing his speed to 25 mi/hr it appears to be coming from the southwest. Find the direction and speed of
the wind. Anrs. The wind is coming from a direction 56°18" notth of west at 18 mi/hr.

A 100 1b weight is suspended from the center of a rope
as shown in the adjoining figure. Determine the ten-
sion T in the rope. Ans. 100 lb

I{LLLLLL LSS LS

Simplify 2A+B+3C— {A-2B-2(2A-3B-0C) }.
Ans. BA-3B+C

If a and b are non-collinear vectors and A = (x +4y)a +
(2x+y+1Db and B = (y—2x+2)a+ (2x—3y—-1)b,
find x and y such that 3A = 2B.

Ans. x=2, y=-1

1001b

The base vectors a ,a,,a, are given in terms of the base vectors b1’b2' b:3 by the relations

a, = 2bl+3b2—-b3, a, = b1—2b2+ 2b3, a, = —2b1+l)2—2b3
If F= 3b1—— b2 + 2b3 , express F in terms of a,,a, and a, . Ans. 2:;11 + 5a2 + 3:;13

If a,b, ¢ are non-coplanar vectors determine whether the vectors r, = 2a—3b+ec, r, = 3a—5b+2c, and

r, = 4a— 5b+ ¢ are linearly independent or dependent. Ans. Linearly dependent since r;= 5r1— 2r2 .
If A and B are given vectors representing the diagonals of a parallelogram, construct the parallelogram.

Prove that the line joining the midpoints of two sides of a triangle is parallel to the third side and has one
half of its magnitude.

() If O is any point within triangle 4BC and P, Q, R are midpoints of the sides AB, BC, CA 1espectively,
prove that OA+0OB +0C = OP+0Q +OR.

(b) Does the result hold if O is any point outside the triangle? Prove your result. Ans. Yes

In the adjoining figure, ABCD is a parallelogram with 4

P and Q the midpoints of sides BC and CD respec- 8
tively. Prove that 4P and AQ trisect diagonal BD at

the points E and F. F

Prove that the medians of a triangle meet in a common
point which is a point of trisection of the medians.

Prove that the angle bisectors of a triangle meet in a
common point.

Show that there exists a triangle with sides which are 0
equal and parallelto the medians of any given triangle.

Let the position vectors of points P and Q relative to an origin O be given by p and q respectively. If R is
a point which divides line P( into segments which are in the ratio m:n show that the position vector of R
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isgiven by r - mp 7 nq and that this is independent of the origin.
m+n
If I.E,,...,Iy are the position vectors of masses My s My ey My respectively relative to an origin O,

show that the position vector of the centroid is given by

mlr1 + m2r2 t oo+ mgly

r =
my+om, .t oy

and that this is independent of the origin.

A quadrilateral ABCD has masses of 1,2,3 and 4 units located respectively at its vertices 4 (-1, ~2, 2),
B(3,2,-1), C(1,-2,4), and D(3,1,2). Find the coordinates of the centroid. Ans. (2,0,2)

Show that the equation of a plane which passes through three given points A4, B, C not in the same straight
line and having position vectors a, b, ¢ relative to an origin 0, can be written
ma + nb + pc

m+n+p

where m,n,p are scalars. Verify that the equation is independent of the origin.

The position vectors of points P and Q are given by r, = 2i +3j—k, r2=4i—3j +2k. Determine PQ in
terms of i, j, k and find its magnitude. Ans. 2i—6j +3k, 7

If A=3i-j~4k, B=-2i+4j—3k, C=i+2j—k, find
(@) 2A-B+3C, (b) [A+B+C|, (¢) |3A-2B+4C|, (d) a unit vector parallel to 34 —2B +4C.

Ans. (@) 11i—8Kk (b)V/93 (c)V/398 (4) SA=2B+4C
398

The following forces act on a particle P: F, = 2i+ 3j- 5k, F,= ~5i+j + 3k, F,= i—2j +4Kk, F,= 4j—
3j -2k, measured in pounds. Find (a) the resultant of the forces, (b) the magnitude of the resultant.
Ans. (@) 2i—j () V5

In each case determine whether the vectors are linearly independent or linearly dependent:
(@) A=2i+j-3k, B=i—4k, C=4i+3j~k, (b) A= i-3j+2k, B=2i—4j—k, C=3i+2j-k.
Ans. (a) linearly dependent, (b) linearly independent

Prove that any four vectors in three dimensions must be linearly dependent.

Show that a necessary and sufficient condition that the vectors A =4,1 +4,i +A4.k, B =B,i+B,j +B.k
A, 4, A,
C=C,i+C,j+C, Kk be linearly independent is that the determinant B, B, B, | be different from zero.
C.C C
1 2 3

(@) Prove that the vectors A=3i+j~2k, B= ~i+ 3j+4k, €C=4i-2j—6k can form the sides of a triangle.
(b) Find the lengths of the medians of the triangle.

Ans. (b) V6, 3v/114, +/150

Given the scalar field defined by @(x,y,z) = 4yz°+ 3xyz =22+ 2, Find (a) P(1,~1,-2), (b) $(0,-3,1).
Ans. (a) 36 (b) =11

Graph the vector fields defined by

@) Vix,y) = xi-yi, () Vx,y) =yi-xj, (c) Vix,y,z) = —ityitzk

1/962-§—y2+z2



Chapter 2

THE DOT OR SCALAR PRODUCT of two vectors A and B, denoted by A-B (read A dot B), is de-
fined as the product of the magnitudes of A and B and the cosine

of the angle & between them. In symbols,
A:B = ABcos6 DSOS

ST P
Note’that A- B is a scalar and not a vector.

The following laws are valid:

1. A'B = B-A Commutative Law for Dot Products

2. A -/(B7+C) = A-B + A C Distributive Law

3. m(A-B) = (mA)'B = A (mB) = (A*B)m, where m is a scalar.

4. ii=jj=kk=1, i-j=jk=ki=0
5.1 A =Ai+Ai+4k and B = B,i + B,i + Bk, then
A-B = A,B, + 4B, + 4,8,
— 42 _ 2 2 2
A-A =A% = A2+ 4, + 4]

B2+ BZ + B

0]

B-B = B?

6. f A°AB=0 and Aand B are’ not null vectors, then A and B are perpendicular. )

P i S - ot

THE CROSS OR VECTOR PRODUCT of A and B is a vector C = AxB (read A cross B). The mag-
nitude of AxB is defined as the product of the magnitudes of

A and B and the sine of the angle & between them. The direction of the vector C = A xB is perpen-
dicular to the plane of A and B and such that A, B and C form a right-handed system. In symbols,

AxB - ABsinfu, 05 6%T

where u is a unit vector indicating the direction of AxB. If A=B, or if A is parallel to B, then
sin@ =0 and we define AxB=0. o
A ————— ey

The following laws are valid:
1L (Commutative Law for Cross Products Fails.)
2. Ax(B+C) = AXB + AXC Distributive Law

3. m(AxB) = mA)xB = AX (mB) = (AxB)m, where m is a scalar.
et st A

4. ixi = jxj = kxk =0, ix'=r ’><k=Si)kxi=S‘)
L IX] ] ] J

5.1 A = Aji + 4, + Ak end B = Bji+Bj+ Bk, then

16
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i b k
AxB = |4, A, A,
B, B, B,
6. The magnitude of AxB is the same as the area of a parallelogram with sides A and B.

7. If AxB =0, and A and B are not null vectors, then A and B are parallel.
e

TRIPLE PRODUCTS. Dot and cross multiplication of three vectors A,B and € may produce mean-
ingful products of the form (A-B)C, A-(BxC) and Ax (BxC). The follow-
ing laws are valid:

1. (A-B)C # A(B-C)

2. A-(BxC) = B-(CxA) = C -(AxB) = volume of a parallelepiped having A, B and C as edges,
or the negative of this volume, according as A, B and C do or do not form a right-handed sys-
tem. If A = Aji+ Aoj+ A3k, B = Byi+ Byj+ Bgk and € = Cqi+ Cyj + Cgk, then

Ai AQ AG
A-BxC) = |B, B, B,
Cl CQ CS
3. AXx BxC) # (AXB)xC (Associative Law for Cross Products Fails)
MW

4. AX(BxC) = (A-C)B - (A-B)C
(AXB)XC = (A-C)B - (B-C)A

The product A-(BxC) is sometimes called the scalar triple product or box product and may be
denoted by [ABC]. The product Ax (BxC) is called the vector triple product.

In A+ (BXC) parentheses are sometimes omitted and we write A - BXxC (see Problem 41). How-
ever, parentheses must be used in Ax (BxC) (see Problems 29 and 4.

RECIPROCAL SETS OF VECTORS. The sets of vectors a,b,c and a’,b’,c’ are called reciprocal
sets or systems of vectors if

ara’ = b-b = ¢c-¢' = 1

: bxe

a' = XS b o= S22 ¢ = 210

a-bxe’ a-bxc' a-bxc

where a:bxc # 0. See Problems 53 and 54.
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SOLVED PROBLEMS

THE DOT OR SCALAR PRODUCT.

1. Prove A:B = B-A.

A-B = ABcos 8 = BAcos & = B-A

Then the commutative law for dot products is valid.

2. Prove that the projection of A on B is equal to A-b, where
b is a unit vector in the direction of B.

Through the initial and terminal points of A pass planes per-
pendicular to B at G and H respectively as in the adjacent figure;
then

Projectionof AonB = GH = EF = Acos 8 = A+b

3. Prove A:(B+C) = A-B + A-C.

Let a be a unit vector in the direction of A; then

Projection of (B+C)on A = proj. of Bon A + proj. of C on A

(B+C)-a = B:ra + C-a
Multipiving by 4,

(B+C)-4da = B-4da + C-4a
and B+C)*'A = B-A + C-A

Then by the commutative law for dot products,
A (B+C) = A*B + A-C

and the distributive law is valid.

4. Provethat (A+B)-(C+D) = A-C+A-D+B-C+B-D.

By Problem 3, (A+B)-(C+D) = A-(C+D)+B-(C+D) = A-C +A-D +B-C+B-D

The ordinary laws of algebra are valid for dot products.

y 4
5. Evaluate each of the following.
@ i-i = |i] il ecos 0° = M@ =1
@y i-k = |i] |k] cos 90° = (H@W(© = 0
@ k-j = || |i] cos 90° = (H@W© =0

@) j-(2i-3j+k) = 2j-i~3j-i+i-k = 0-3+0 = -3
(e) Qi-H-@i+tk) = 2i (3L +k) —j- Bi+k) = 6iri+2'k—-3jri-jk =6+0-~0~-0 =256

6. If A = Aji+Aj+ Ak and B = B, +B,i+ Bk, prove that A-B = A,B + A4,B,+ A, B, .
A-B = (A;i+4,] +AK) - (Byi+B,j+Bgk)

= Ai-(Bi+Bi+Bk) + Ayj-(Byi+Byi+BK) + Ak (Byi+Byi+ Bk

AB A + ABAY + A Bk + AB 3o + ApBo3ed + ABod K + AgByked + A.Bok-d + A Blck
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= AB, + AB, + 4,8,

since i-i = j+j = k-k = 1 and all other dot products are zero.

A = Aji+Aj+ Ak showthat A = VAA = Va2 + 42 + 42,

A-A = ()(A)cos 0° = 4°. Then 4=VA-A.
Also, AA = (Ad + A5 +AK) - (A1 +A,0 + 4 k)
= APUAY + (A)(A) + (4) (A = AT + A2 + A2

by Problem 6, taking B = A

Then 4= VA.A = /Af + A; + A§ is the magnitude of A. Sometimes A-A is written A®.

Find the angle between A = 2i+2j~k and B = 6i-3j+2k.

A-B=4Bcos B, A=V +° +(=D%2 =3, B =v62+(-32+ @272 =7
AB = (B + D=+ (-1)(2) = 12-6-2 = 4

A-B _ 4 = % - 01905 and 6 =7¢° approximately.

Then cos & = —_—
AB (3) () 21

. If A-B =0 and if 4 and B are not zero, show that A is perpendicular to B.

If A*B = ABcos @ =0, then cos =0 or & =90°. Conversely,if 6=90°, A*B =0.

Determine the value of @ sothat A = 2i+ej+k and B = 4i—2j -2k are perpendicular.

From Problem 9, A and B are perpendicular if A-B =0. )
Ther AB = (2)(4) + (@)(-2) + (1)(~2) = 8—=22 —2 =0 for a

1l
w

Show that the vectors A=3i-2j+k, B=i-3j+5k, C=2i+j-4k form a right triangle.

We first have to show that the vectors form a triangle. »

(3)

(2) @)

(1) (1)

(a) b)
From the figures it is seen that the vectors will forrﬁ a triangle if

(a) one of the vectors, say (3), is the resultant or sum of (1) and (2),
(b) the sum or resultant of the vectors (1)+(2)+(3) is Zero,

according as (a) two vectors have a common terminal point or (5) none of the vectors have a common terminal
point. By irial we find A =B +C so that the vectors do form a triangle.

Since A B = (3)(1) + (~2)(-3)+ (1)(5) =14, A-C = (3)(2) + (=2)(1) + (1)(-4) =0, and
B-C = (1)(2) +(=3)(1) + (5)(—4) = —21, it follows that A and C are perpendicular and the triangle is a
right triangle. '



20 The DOT and CROSS PRODUCT

12. Find the angles which the vector A = 3i -6 +2k makes with the coordinate axes.

Let O, B,"y be the angles which A makes with the positive x,y, 2z axes respectively.

Ari = (A)(1) cos & = V(3)2+(=6)2+(2)” cos & = Tcos &
Ai = (3i—6j+2K) i = 8i-i—6ji+2k-i =3
Then cos 00 = 3/7 =0.4286, and O = 64.6° approximately.
Similarly, cos B =—6/7, B=149° and cosy=2/7, Y= 73.4°.
The cosines of 0, B, and 7y are called the direction cosines of A. (See Prob. 27, Chap. 1).

13. Find the projection of the vector A =i—2j+k onthe vector B =4i-4j+ k.

4i—4j+T 4. 4, 1
A unit vector in the direction B is b = g . ok (LS S Si+ gk
V(@) +(~4)2+ (12
o o 4. 4. T
Projection of A on the vector B = A-b = ({1i-2j+k)- (-9—1—§]+§k)
4 4 7. _ 19
= 3 = Hr D = = -
(1)(9) (—2)( 9) ()(9) 5

14. Prove the law of cosines for plane triangles.
From Fig.(¢) below, B +C = A or Cc =A-B.
Then c:C = (A-B) -(A-B) = A-A+B-B-~2A'B
and c2? = A2+ B? - 24B cos 0.

Fig.(a) Fig.(b) -

15. Prove that the diagonals of a rhombus are perpendicular. Refer to Fig.(b) above.

0Q =OP +PQ =A+B
OR+RP =OP or B+RP=A and RP =A-B
Then OQ-RP = (A+B)-(A—B) = A°—B® = 0, since 4=B.

Hence 0Q is perpendicular to RP .

16. Determine a unit vector perpendicular to the plane of A =2i-6j~ 3k and B =4i+3j-Kk.

L.et vector C = cli + c2j +c3k be perpendicular to the plane of A and B. Then C is perpendicular to A
and also to B. Hence,

1]
(=]

C-A
C'B = 4c¢ + 362— gy

2c1— 6c2— 3c:3 or (1) 201 - 6c2 = 3¢

1]
o

or (2) 4c, + 3¢, [
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; ; . _1 - _ 1 - 1. 1.
Solving (1) and (2) simultaneously: 4= 5% 6= - 3G C= g (El 3 + k).
c cs(%i - %j + k) 3 9 6
Then a unit vector in the direction of C is c = = i(7i - 71' + 7k)_

1 1
‘/c:f[(?%(— 7+ Y]

17. Find the work done in moving an object along a vector r = 3i + 2j — 5k if the applied force is
F =2i —j-k. Refer to Fig.(a) below.

Work done = (magnitude of force in direction of motion) (distance moved)
= (Feos () = F-r
= (2i-j-K)-@Bi+2i—5k) = 6—-2+5 = 9,

Fig.(a)

Fig.(b)

18. Find an equation for the plane perpendicular to the vector A=2i+3j+6k and passing through the
terminal point of the vector B =i + 5j + 3k (see Fig.(b) above).
Let r be the position vector of point P, and Q the terminal point of B,

Since PQ =B —r is perpendicular to A, B—1)-A=0 or r*A=B-A is the required equation of the
plane in vector form. In rectangular form this becomes

(i +yJ +2zK)-(2i +3j +6k) = (i +5j+3K)-(2i +3j + 6k)
or 2x +3y +6z2 = (1)(2) + (5)(3) + (3)(6) = 35

19. In Problem 18 find the distance from the origin to the plane.

The distance from the origin to the plane is the projection of B on A.

2i+3j+6k 2. 3. @

= =i+ =j + =k.
V(22 +@BR +e2 T 7 7

A unit vector in direction Ais a = % =

Then, projection of Bon A = B-a = (i+5j+3k)-<%i +%j +$k) = 1(%) + 5(%) + 3<§—) = 5.

20. If A is any vector, prove that A = (A-Di + (A§)j + (A IOk,
Since A = Ajf + A0 + Ak,  A-i = Ayjiei + Aiei + Agked = A4
Similarly, A.j =4, and A.k =4, .

Then A =Ayi+4,0+4k = (A-Di+(A-§)j+(A-K)K.

1
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THE CROSS OR YECTOR PRODUCT.

21. Prove AxXB = -BXA.

Fig.(a) Fig.(b)

AXB=C has magnitude 4B sin O and direction such that A,Band C form a right-handed system
(Fig.(a) above).

BXA=D has magnitude B4 sin @ and direction such that B, A and D form a right-handed system
(Pig.(b) above).

Then D has the same magnitude as C but is opposite in direction, i.e. C=-D or AXB = -BXA,

The commutative law for cross products is not valid.

22 If AxB=0 andif A and B are not zero, show that A is parallel to B.

If AXB =AB sin & u =0, then sin&=0 and 9 =0°or 180°.

23. Show that |AxB| + |a-B|” = |al”|Bl.
|A><BIQ+ |A-B\2 = \AB sin & u|2+ ‘AB cos@\2 = A%B?sin’0 + A%B®cos®O
= A2B? = IAIQlB\Q
24. Evaluate each of the following.
(@) ixji =k (f ixi =0
) ixk =1 (g) ixk = —kxi = —j
(¢) kxi =] (R) (2)x(3K) = 6ixk = 6i
@) kxji= —jxk = —1 (i) (3i) x(=2k) = —-B6ixk = 6j
(e) ixi =0 () 2j><i—3k=—2k-—3k=-—5k

25 Prove that Ax (B+C) = AXB + AxC for the
case where A is perpendicular to B and also to
C.

Since A is perpendicular to B, AXB is a vector
perpendicular to the plane of A and B and having mag-
nitude AB sin 90° = 4B or magnitude of AB. This
is equivalent to multiplying vector B by A and rotating
the resultant vector through 90° to the position
shown in the adjoining diagram.

Similarly, A XC is the vector obtained by multi-
plying C by 4 and rotating the resultant vector through
00° to the position shown.

In like manner, Ax (B + C) is the vector obtained
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by multiplying B+ ¢ by 4 and rotating the resultant vector through 90° to the position shown.

Since Ax(B+C) is the diagonal of the parallelogram with AXB and AxC as sides, we have
AXx(B+C) = AXB + AxC.

26. Prove that AXx(B+C) = AxB + AXC in the gen-
eral case where A, B and C are non-coplanar.

Resclve B into two component vectors, one perpen-~
dicular to A and the other parallel to A, and denote them
by B, and B ,respectively. Then B = B, +B,.

If Ois the angle between A and B, then B,= B sin§.
Thus the magnitude of AXB, is 4B sin & the same as
the magnitude of AXB. Also, the direction of A XB, is
the same as the direction of AxXB. Hence AXB,;=AXB.

Similarly if C is resolved into two component vec-
tors C; and C,, parallel and perpendicular respectively
to A, then AxC, = AxC.

Also, since B+C = B +Bu+C.+C) = (Bi+C)+(B,+C,) it follows that
Ax (B, +C) = AX(B+0O).
Now B, and €, are vectors perpendicular to A and so by Problem 25,
AX(B,;+Cy) = AXB; + AXC,
Then AX(B+C) = AXB + AxC

and the distributive law holds. Multiplying by —1, using Prob. 21, this becomes (B+C)X A = BXA + CxA.
Note that the order of factors in cross products is important. The usual laws of algebra apply only if prop-
er order is maintained.

i i k
1. If A =Aji+ 455+ 4k and B = By + Boi + Bsk, provethat AxB = | A4, A, A
By By, Bs

AXB = (41i+A45] +A43k) x (Byi + Boj + Bgk)
= Ali X (Bll + BQJ +Bgl() + AQJ X (Bll + BQJ +ng) + Ask X (Bil + BQj +Bsk)
= AlBiiXi +AlBQin +A133i><k +AQBlei +AQBQij +Angij +A381k>(i +A332k><j + Angka

. i i k
= ‘(AQBQ —AsBQ)i + (A3B1 - AlBs)J' + (A:LBQ —_ AQBl)k = Aj_ AQ A3
28. If A=2i-3j-k and B=i+4j-2k, find (¢) AXB, G)B %A, (¢c)(A+B) x (A -B). :
i i k
(@) AxB = (21 -3j—-Kk) x i+4j—-2k) = 2 -3 -1
1 4 -2
-3 -1 2 -1 2 -3
= i -] = 10i + 3j + 11k
"4—2' ”1 -2 +k,1 4, e
Another Method.

(2L-3-K) XA +4j-2K) = 2Ax(i+4j-2k) - ixX(1+4f—2Kk) — kx(+4j-2Kk)

= 2ixi+ 8ixj—4ixk—3jxi-12jxj + 6ixk — kxi—4kxj + 2kx k

0 +8k +4j +3k—~0+6i—j+4i+0 = 10i +3j + 11k

Bods..
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i i k
) BxA = (i+4j-2K) x (2i-3j-k) = |1 4 =2
2 -3 -1
- 1 -2 1 4
= i 4 2‘—1‘ +k‘ \=~10i—3j-—11k.
-3 -1 2 -1 2 -3
Comparing with (@), AXB = —B XA . Note that this is equivalent to the theorem: If two rows of

a determinant are interchanged, the determinant changes sign.

(c) A+B = (2i—-3i-k + {+4i-2k) = 3i +j~-3k
(21 -3j—k) — (i +4i-2k) = i—-T7+k

A-B

i k
Then (A+B)X (A—B) = (3i+j—3K) x (i-Ti+kK) = |3 ]1 -3
1 -7 1
i _; "fl - JH —i\ + k\? _H = —20i - 6] — 22K.
Another Method.
(A+B)x (A-B) = Ax (A-B) + Bx (A—-B)
- AXA—AxB +BxA—BxB = 0 —AXxB—AxB—0 = —2AxB
= _—92(10i+3j+11K) = —20i — 6j — 22k, using (a).

29. If A=3i-j+2%, B=2i+j-k, and C=i-2i+2, find (a) (AxB)xC, ) Ax®BxC).

i i k
(¢) AXB = |3 -1 21 = —i+7j +5k.
1 -1
i j k
Then (AXB)XC = (—=i+7j+5k) x i-2j+2Kk) = -1 7 5] = 24i +7j — 5k.
1 -2 2
i i k
()] B><C=‘2 1 —-1| = 0i —5j -5k = -5j— 5Kk.
1 -2 2
i i k
Then AX(®BxC) = (3i—j+2K) x (~=bj~5k) = |3 -1 2t = 15i + 15§ — 15k.
0 -5 -H

Thus (AXB)XC #AX(BXC), showing the need for parentheses in AXB XC to avoid ambiguity.

30. Prove that the area of a parallelogram with sides A
and B is |AxB]|.

]
|
|
Area of parallelogram = 4 |B]| ‘|
A |
= |A|sin & |B| (B
!
= |AxB]. :
: [
Note that the area of the triangle with sides A and \ || .
B =L|AxB]. B "

31. Find the area of the triangle having vertices at P(1,3,2), Q(2,-1,1), R(-1,2,3).

PQ = (2-Di+(-1-3j+ (1 -k = i-4j—Kk
PR (=1-1i+@=-3)j+@B-Dk = 2i—-jtk



32.

33.

34.
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From Problem 30,

V(=572 + (1P + (=92 = $V107.

area of triangle = %’PQXPR’ = %I(i—4j—k)><(~2i—j+k)|
i i k
=3l 1 -4 —1f| = $|-siti-ok| =
-2 -1 1

Determine a unit vector perpendicular to the plane of A =2i — 6i—3k and B=4i+3j-Kk.

AXB is a vector perpendicular to the plane of A and B.

i ] k
AxXB = |2 -6 =3 15i — 10§ + 30k
4 3 -1
. % {107+

A unit vector parallel to AX B is AXB = 151 - 10j + 30k - = %i - %j + %k .

laxB|  V(15%+ (—10)2+ (30)2
Another unit vector, opposite in direction, is (-3i +2j —6k)/7.
Compare with Problem 18,

Prove the law of sines for plane triangles.
A

Let a,b and c represent the sides of triangle 4BC
as shown in the adjoining figure; then a+b+c¢ = 0. Mul-

tiplying by a X, b x and ¢ X in succession, we find

aXbhb = bxe = ¢cxa
ie. absin C = besinAd = casin B
sin4d _ sinB _ sinC
or = =
a b c

Consider a tetrahedron with faces Fi,E,FK,F, .
Let V;,V,,%,V, be vectors whose magnitudes are
respectively equal to the areas of F, ,F,, F5, F, and
whose directions are perpendicular to these faces
in the outward direction. Show that Vi VotV = 0.

By Problem 30, the area of a triangular face deter-

mined by R and S is 3|RxS].

The vectors associated with each of the faces of

the tetrahedron are

Vi = 3AxB, V,= $BxC, V,= 3CxA,

Nj—

Then V1 + VQ + Vg + V4

V,= 3(C—A)x(B—A)

[AXB + BXC + CxA + (C—A)x(B—A)]

= 3[AXB + BXC + CxA + CxB — CxA ~ AxB + AxA] = 0.

This result can be generaliZed to closed polyhedra and in the limiting case to any closed surface.

Because of the application presented here it is sometimes

we speak of the vector area.

25

convenient to assign a direction to area and

35. Find an expression for the moment of a force F about a point P.

The moment M of F about P is in magnitude equal to F times the perpendicular distance from P to the
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line of action of F. Then if r is the vector from P to the ini-
tial point Q of F,

M = F(rsin@ = rFsinf = lexF|

If we think of a right-threaded screw at P perpendicular
to the plane of r and F, then when the force F acts the screw
will move in the direction of rxF. Because of this it is con-
venient to define the moment as the vector M = rX F.

36. A rigid body rotates about an axis through point O with
angular speed @. Prove that the linear velocity v of a
point P of the body with position vector r is given by
v =wx r, where @ is the vector with magnitude w whose
direction is that in which a right-handed screw would
advance under the given rotation.

Since P travels in a circle of radius r sin g, the magni-
tude of the linear velocity v is w(r sin 0) = |wxr|. Also, v
must be perpendicular to both @ and r and is such that r,w and
v form a right-handed system.

Then v agrees both in magnitude and direction with @ Xr;
hence v = @ xr, The vector@ is called the angular velocity.

TRIPLE PRODUCTS.

37. Show that A+ (BxC)is in absolute value equal
to the volume of a parallelepiped with sides
A,Band C.

Let n be a unit normal to parallelogram I,
having the direction of BXC, and let A be the
height of the terminal point of A above the par-
allelogram /.

[}

Volume of parallelepiped (height k) (area of parallelogram I)
@A-m(Bxc)
A-{|Bxc|n} = A-BXO

If A,B and C do not form a right-handed system, A.n < 0 and the volume = ‘ A+ (BxC) l .

"

38. If A =A,i+Aj+Ask, B= Bqi + Boj + Bk, C= C,i+Coj +Csk  show that

Ay A 4s

A- BxC) = |B: Bz Bs

C: Co GCsl
i i Kk
A-(BxC) = A+ |By; Bo Bs
¢, Co Cs

~ (Agi + Agj + Ask) - [(BoCa—BsCx)i + (BsCy=BiCa)i + (B1Co—BoC1 k]

Aq Ao Az
A1 (BoCs—BgCo) + Ap(BsCi— B.Cs) + Ag(B1Co—B2C1) = | Ba By Bs
Ci Cr Cs

u
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40.

41.

42.

43.
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Evaluate (2 -3j) - [d+j~-k)x@i-k)] .

2 -3 0
By Problem 38, the result is 1 1 -1! = 4.
3 0 -1

Another Method. The result is equal to
(2i=3j) - [ix(Bi-K) + jx(3i~k) - kx(3i~k)]
(2i - 3j) - [3i><i —ixk + 3jxi - jxk - 3kxi + kxk]
Ci-3p-0+j-3k—-i—~3j+0)
(2i-30) (-i-2j-3K) = (2)(=1) + (-3)(=2) + (0)(-3) = 4.

Prove that A: (BxC) = B-(CxA) = C-:(AXB).

A1 AQ A3
By Problem 38, A-(BxXC) = |[B; B, Bj
€1 C; Cs

By a theorem of determinants which states that interchange of two rows of a determinant changes its
sign, we have

4, A5 As B; B, Bj B1 By Bj
By By Bs| = — |4y Ay Ag| = |Ci Cp Cs| = B-(CxA)
€y Co Gy €1 Cy Cq Ay Ay A
A1 As As € Cy C4 Ci1 Cy Gy
B1 BQ Bg = - Bi BQ Bg = A1 AQ A3 = C.(AXB)
C1 Co Cj A4y A4, As By B, Bj

Show that A:- (BxC) = (AXB)-C .

From Problem 40, A-(BXC) = C-(AXB) = (AXB)-C

Occasionally A-(B XC) is written without parentheses as A- B X C. In such case there cannot be
any ambiguity since the only possible interpretations are A- (BxC) and (A:B)xC. The latter however
has no meaning since the cross product of a scalar with a vector is undefined.

The result A-BXC = AXB-C is sometimes summarized in the statement that the dot and cross can
be interchanged without affecting the result.

Prove that A-(AxXC) = 0.

From Problem 41, A-(AxC) = (AXA)-C = 0.

Prove that a necessary and sufficient condition for the vectors A, B and C to be coplanar is that
ABxC = 0.
Note that A. BX C can have no meaning other than A (B x ().

If A,B and C are coplanar the volume of the parallelepiped formed by them is zero. Then by Problem
37, A-BXC=0.

Conversely, if A:-BXC =0 the volume of the parallelepiped formed by vectors A, B and C is Zero,
and so the vectors must lie in a plane.

Let ry=xd+y3d +2k, 1p=mi +9i + 2k and rg=xi +y3] +z3k  be the position vectors of
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43.

46.

47.
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points P1(x1,)’1,21), Po%0, Y2, 22) and Ps(xg,¥s,23)-
Find an equation for the plane passing through Pi,
P, and P;.

We assume that Py, P, and Py do not lie in the same
straight line; hence they determine a plane.

Let r=xityj+zk denote the position vector of any
point P(x,y,z) in the plane. Consider vectors PP, =
-1y, P1Pg=13—nN and P;P =t-ry which all lie in
the plane.

By Problem 43, PP PP, X PsP; = 0 or

(r—1y) (k—1) X (Fg=Ty) = 0
In terms of rectangular coordinates this becomes
[x—x)i + (=yDd + (z-2Dk] * [(ig—x)1 + (o= ] + (29-29)k] x [(xg=2)1 + (yg=¥)J + (25-29)K] =0
x — X4 y - }'1 Z = 24
or, using Problem 38, xp—%1 Yo—¥1 ZF2—Fi) T 0.

X3 =%y ¥3—Y1 23— 24

Find an equation for the plane determined by the points P(2,-1,1), F,(3,2,-1) and Py(~1,3,2).

The position vectors of Py, P, P and any point P(x,y, z) are respectively ry=2i—j +k, Iz =3i+2ji—-k,
rg=-—i+3j +9k and r=xi+yjtzk.

Then PPi=r1r-—1, PoP1=To—Ty, PP, = rg—r; all lie in the required plane, so that

(r—ri)-(rQ—rl)x(rs—rl) =0
ie. [x—2)i +(y +Di+ (z-Dk] + [i+3j—2k] x [-81 +4i + k] = ©
[(x—2i+(+Di+ (z=-DK] " [11i + 55 + 13k] = O

H(x=2) +5(+1) +13(z=1) = 0 or  lx+5 +13z = 30.

If the points P,Q and R, not all lying on the same straight line, have position vectors abandc
relative to a given origin, show that axb +bxc +cxa isa vector perpendicular to the plane
of P,QandR.

Let r be the position vector of any point in the plane of P, Q asd R. Then the vectors r—a, b—a and
c —a are coplanar, so that by Problem 43

(r—a)- (n—a) X(c-a) = 0 or (r—a)* (axXb + bxc + exXa) = 0.

Thus axh + bxc + cxa is perpendicular to r—2a and is therefore perpendicular to the plane of P,Q
and R.

Prove: (@) Ax (BxC) = B(A-C)- C(A*B), ) (AXBYxC = B(A-C)‘—A(B-C).
(@) Let A =Aqi+ A +A4sk, B =B,i + Boj +Bgk, C =Cqi +Coj +Cgk.

i i k
(441 + Aoj +4sK) X | B1 Bo Bg

Ci C2 Cs

(A4 + Ao + Aak) X( [BCs—BaColi + [BsC1~Bi1Cs)i + [BiCo= B,Ci} K)

Then AX(BxC)
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i i k
= Ay 4> 43
BoC3~B3Cy BgC1-B1C3 B1Cy—B5Cy

= (ApB1Co~AoBoCy — A3BsCy + AgB1C3)i + (AgBoCsq~ A3BaC, — AyB1Co + A1BoCy) §
+ (A1B3C1 — A1B1C3— AoBoCs + AoBsCo)k

Also  B(A:C) - C(A*B)
= (Bai+Boj +Bgk) (4101 + 45C5 + A5C3) ~ (Cyi + Cof + Cgk) (A1 B4 + AsBy + A3Bg)
(A2B1Co + A3B1Co — A5C1B 5 — A3C1B5)i + (BoA1Cq + B,A3Cg — CoA1By — CoAgBa) §
+ (B3A1C1 + B3AsCo— C3A1 By — CsAoBo)k
and the result follows.

(6) (AXB)XC = -C X (AXB) = —{A(C-B) - B(C-A)} = B(A-C) — A(B-C) upon replacing A, B and
C in (a) by C, A and B respectively.

Note that A X (BXC) # (AXB) X C, i.e. the associative law for vector cross products is not
valid for all vectors A, B, C.

48. Prove: (AxB):(CXD) = (A'C)(B-D) - (A'D)(B-C).

From Problem 41, X-(CXD) = (XXC)-D. Let X = AXB; then

H

(AXB) - (CxD) {taxByxc} - D = {BA-C)-AB-®)} - D

= (A-C)(B:D) - (A-D)(B-C), using Problem 47(b).

49. Prove: AX(BXC) + BX(CXA) + Cx(AxB) = 0.

By Problem 47(a), AX(BXC) = B(A-C)- C(A-B)
BX(CXA) = C(B-A) - A(B-C)

Cx(AxB) = A(C:B) - B(C-A)
Adding, the result follows.

50. Prove: (AxB) x(CxD) = B(A-CxD) — AB-CxD) = C(A-BxD) - D(A-Bx ().
By Problem 47(z), XX(CXD) = &(X:D) — D(X-C). Let X=Ax B; then

(AXB) x (CxD)

C(AxB:'D) ~ D(A xB- C)
= C(A-BXD) ~ D(A-B X()

By Problem 47(b), (AXB) xY = B(A-Y) — A(B-Y). Let Y=CxD; then
(AXB) x (CxD) = B(A-CxD)- A(B:CxD)

51. Let PQR be a spherical triangle whose sides p,q,r are arcs of great circles. Prove that
sinP _ sinQ _ sinR

sin p sin ¢q sin r

Suppose that the sphere (see figure below) has unit radius, and let unit vectors A, B and C be drawn
from the center O of the sphere to P, Q and R respectively. From Problem 50,

(1) (AXB) X (AxC) = (A*BxO)A
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A unit vector perpendicular to AXB and AxC is A,so
that (1) becomes

)] sinr sing sinP A = (A-BxOA or
3) sinr sing sinP? = A-BXxC

By cyclic permutation of p,g,r, P,Q,R and A,B,C we
obtain

) sinp sinr sinQ = B-CXA
(6)) sing sinp sinR = C-AXB

Then since the right hand sides of (3), (4) and (5) are
equal (Problem 40)

sinr sing sinP = sinp sinr sin @ = sing sinp sin R

. . sinp _ sin@ _ sinR
from which we find sinp sin g sin 7

This is called the law of sines for spherical triangles.

Prove: (AXB): (BxC)xX(CxA) = (A-BXC)y.
By Problem 47(a), XX (CXA) = C(X-A) ~ A(X-C). Let X=BxC; then

(BXC) X (CXA) = C(BXC-A) — ABXC-C)
= C(A-BXC) - A(B-CXC) = C(A-Bx0)

Thus (AXB)-(BXC) X (CxA) = (AXB): C(A-BxC)
= (AXB.-C)(A-BXC) = (A:BxC)
. ; bxc ;. €txa ' axbh .
Given the vectors a = ) = and ¢/ = ——— , show thatif a-bxc # 0,
abxc abxc a*bxc

(a) a~a = b’-b = ¢-c = 1,
() a“b =ac =0, b-a =b-c =0, ¢ta =¢-b =0,
(c) if a-bxc =V then d-Wxc' = 1/V,

(d) a',b’,and ¢' are non-coplanar if a,b and ¢ are non-coplanar.

; ’ bx ¢ a-bhxe
(a) a-a = a+a = . = = 1
a‘bxc a*hxe
cx a b.-cxa a-bxc
bbb = b+b = b = xa XC _
a.bxe a-bxc a‘hxc
' ' axbh c.axb a.-bxe
¢c-C = ¢Cc+-C = C = = = 1
a-bxc a-bxe a-bxc
(b) db =b-d = b bx c =b-bxc=bxb-c =0

arbxe arbxe arbxec

Similarly the other results follow. The results can also be seen by noting, for example, that a’ has
the direction of bx ¢ and so must be perpendicular to both b and ¢, from which d-b=0 and a-c=0.

From (a) and (b) we see that the sets of vectors a,b,c and a',b', ¢’ are reciprocal vectors. See
also Supplementary Problems. 104 and 106.
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Then dbxd - (bxc)-(cxa)x(axbh) - (axb).(bx e)x(exa)

Ve Ve
a-bxc)? G
= (—);—c) = === using Problem 52.
V vV vV

(d) By Problem 43, if a,b and ¢ are non-coplanar a-hxc # 0. Then from part (c) it follows that
/ 7 ! 7 I 7
a:bxc # 0, sothat a,b and ¢ are also non-coplanar.

54. Show that any vector r can be expressed in terms of the reciprocal vectors of Problem 53 as
r = (-d)a+ (r-bH)b+ (r-c)e.

From Problem 50, B(A‘:CxD)-A(B:CxD) = C(A*BxD)—D(A-Bx ()

h p - AB:CxD) B(A-CxD) , C(A-BxD)
en B A-BxC  A.BxC A.-BxC

Let A=a, B=b, C=c and D=r. Then

r-bxe r-ecxa r-axb
———a + +

" a‘bxe a‘bxec a-bxc '
B bx ¢ N cXxa b+ axb
N r'(a-bxc)a rGbxe) r (a-bxc)c

(r-a')a + (r-b')b + (r-c')c

SUPPLEMENTARY PROBLEMS

55. Evaluate: (a) k-(i+]), (b) (i — 2k) (G +3k), (c) (2 —j+ 3K)+(3i + 2j — k).
Ans. (@0 (b)—6 (c)1

56. If A=i+3j—2k and B=4i— 2j +4k, find:
@A-B, ()4, (c)B, () [3A+2B], () (2A+B)-(A—2B).
Ans. (a) =10 (b)V14 (c)6 (d)V150 (e)—14

57. Find the angle between: (@) A =3i+2j—6k and B = 4i—3j+k, (B)C =4i—2j+4k and D = 3i—6j—2k.
Ans. (a) 90° (b) arc cos 8/21 = 67°36'

58. For what values of @ are A = ai—2j+k and B = 2ai +aj— 4k perpendicular? Ans. a=2, —1

59. Find the acute angles which the line joining the points (1,-3,2) and (3,~5,1) makes with the coordinate
axes. Ans. arc cos 2/3, arc cos 2/3, arc cos 1/3 or 48°12/, 48°12', 7032’

60. Find the direction cosines of the line joining the points (3,2,~4) and (1,~-1,2).
Ans. 2/7,3/7,—6/7 or —2/7,-3/17,6/1

61. Two sides of a triangle are formed by the vectors A = 3i+6j—2k and B = 4i—j+3k. Determine the angles
of the triangle. Ans. are cos T/V75, arc cos V2675, 90° or 36%4', 53°56', oc°

62. The diagonals of a parallelogram are given by A =3i—4j—k and B = 2i +3j—6k. Show that the parallelo-
gram is a rhombus and determine the length of its sides and its angles.
Ans. 5v3/2, arc cos 23/75, 180° — arc cos 23/75 or 4.33, 72°8', 107°52
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63.

64.

65.

66.

67.
68.

69.

70,

1.
2.

3.

4.

5.

6.

7.

8.

9.

86.

81.

82.

The DOT and CROSS PRODUCT

Tind the projection of the vector 2i—3j +6k on the vector i+ 2j+2k. Ans. 8/3

Find the projection of the vector 4i — 3j + k on the line passing through the points (2,3,—1) and (—2,—4,3).
Ans. 1

If A=4i—j+3k and B = —2f +j — 2Kk, find a unit vector perpendicular to both A and B.
Ans. *(i—2j—2k)/3

Find the acute angle formed by two diagonals of a cube. Ans. arc cos 1/3 or 70032'
Find 2 unit vector parallel to the xy plane and perpendicular to the vector 4i— 3itk. Ans. T (3i+43)/5
Show that A = (2i—2j+k)/3, B = (i+2j+2k)/3 and C = (2i +j— 2k)/3 are mutually orthogonal unit vectors.

Find the work done in moving an object along a straight line from (3,2,—1) to (2,—1,4) in a force field given
by F =4i—3j+2k. Ans. 15

Let F be a constant vector force field. Show that the work done in moving an object around any closed pol-
ygon in this force field is zero.

Prove that an angle inscribed in a semi-circle is a right angle.
Let ABCD be a parallelogram. Prove that AB2+ BC? + CD? + D4® = AC? + BD?.

If ABCD is any quadrilateral and P and Q are the midpoints of its diagonals, prove that
ZB2 + BC2 + CD? + DAZ = AC?+ BD*+ 4P(Q°
This is a generalization of the preceding problem.

(a) Find an equation of a plane perpendicular to a given vector A and distant p from the origin.
(b) Express the equation of (a) in rectangular coordinates.
Ans. (@) r-n=p, where n=A/A4; (b) dix + Aoy + A3z = Ap

Let 14 and rp be unit vectors in the xy plane making angles 0 and B with the positive x-axis.
(a) Prove that rq= cos 0 i + sin® j, ro= cosB i+ sinB j.
(b) By considering r;- 1, prove the trigonometric formulas

cos (OC—B) = cos 0 cos B + sin 0 sinB, cos (0 +B) = cosd cosB— sin sinB

Let a be the position vector of a given point (x,,¥4,21), and r the position vector of any point (x,y,z). De-
scribe the locus of r if (@) |r —al =3, (8) (r—a)-a =0, (c) (r—a)-r=0.
Ans. (a) Sphere, center at (x1,y1,21) and radius 3.

(b) Plane perpendicular to a and passing through its terminal point.

(c) Sphere with center at (x,/2, ¥,/2, z,/2) and radius £ V%Z+ y2+ 22, or a sphere with a as diameter.
1/ 4 ¥y 1 17 Y17 2

Given that A = 3i+j+2k and B = i—2j—4k are the position vectors of points P and Q respectively.
(a) Find an equation for the plane passing through Q and perpendicular to line PQ.

(b) What is the distance from the point (—1,1,1) to the plane ?

Ans. (a) @—B)*(A—B) = 0 or 2x+3y+6z = —28; )5

Evaluate each of the following:
(@) 2§ x(3i—4k), () A+2i)xk, (c) (2i—4k)x(i+2j), (d) (4i+j—2K)x (3i+K), (e) (2i+i—K)x(31—2j+4k).
Ans. (a)—8i—6k, (b)2i—j, (c)8i—4i+4k, d)i—10j—3k, (e)2i—11j—Tk

If A=3i—j—2k and B = 2i+3j+k, find: (@) |AxBIl, (b) (A+2B)x(2A—B), (¢) [(A+BYx(A—B)|.
Ans. (a) V195, (b)—25i+35j—55k, (c) 2V195

If A=i—2j—3k, B=2i+j—k and C =i+3j—2k, find:

@) |[(AxBYyxCl, (c) A (BxQO), (¢) (AxB) x (BxC)

b)Y 1A x (BxCY|, (d) (AxB)-C, (i (AxB)(B+C)

Ans. (a) 5V26, (b)3V10, (c)—20, (d)—20, (e)—40i—20j+20k, (() 35i —35j +35k

Show that if A# 0 and both of the conditions (a) A*B = A-C and (b) AXB = AxC hold simultaneously
then B = C, but if only one of these conditions holds then B # C necessarily.

Find the area of a parallelogram having diagonals A = 3i+j—2k and B =i—3j+4k. Ans. 5V3
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83. Find the area of a triangle with vertices at (3,-1,2), (1,~1,—3) and (4,~3,1). Ans. %VIGS

84.

85.

86.

87.

88.

89.

90.

91.

92.

94.

95.

96.

97.

98.

99.

100.

101.

If A=2i+j—3k and B =i—2j+k, find a vector of magnitude 5 perpendicular to both A and B.

Ans, * %?)_(i+j+k)

Use Problem 75 to derive the formulas
sin(OL—B) = sin @ cos B — cos sinB, sin (0 + B) = sind cos B + cosd sinB

A force given by F = 3i +2j — 4k is applied at the point (1, ~1, 2). Find the moment of F about the point
(2,-1, 3). Ans. 2i—Tj— 2k

The angular velocity of a rotating rigid body about an axis of rotation is given by @ =4i+j—2k. Find the
linear velocity of a point P on the body whose position vector relative to a point on the axis of rotation is
2i—3j+k. Ans. —5i - 8j — 14k

Simplify (A+B)- (B+C)x (C +A). Ans. 2A*BxC

A-a A'b A-c
Prove that (A*BxC)@a-bxe) = B:a B:b B.c
C-a C'b C-c

Find the volume of the parallelepiped whose edges are represented by A=2~3j+4k, B =i+ 2] — k,
C =3i—j+2k. Ans. T

If A.BxC =0, show that either (2) A,B and C are coplanar but no two of them are collinear, or (b) two
of the vectors A,B and C are collinear, or (c¢) all of the vectors A,B and C are collinear.

Find the constant a such that the vectors 2i—j+k, i+2j—3k and 3i+aj+5k are coplanar. Ans. a = —4

- If A=xa+yb +tz,c, B=x, tyb+ze and C=xza +¥b +2z.¢, prove that

%1 Y1 %
ABxC = {x, 5% z,| (a-bxe)

*3 Yz 2

Prove that a necessary and sufficient condition that Ax (BxC) = (AxB)xC is (AXC)Xx B =10. Dis-
cuss the cases where A*B=0 or B-C = 0.

Let points P, Q and R have position vectors r,=31—2j—k, r,=i+3j+4k and .= 2i+j—2k relative to
an origin 0. Find the distance from P to the plane OQR.  Ans., 3

Find the shortest distance from (6,—4,4) to the line joining (2,1,2) and (3,~1,4). Ans. 3

Given points P(2,1,3), 0(1,2,1), R(—1,—2,—2) and S(1,—4,0), find the shortest distance between lines PQ and
RS,  Ans. 3V2

Prove that the perpendiculars from the vertices of a triangle to the opposite sides (extended if necessary)
meet in a point (the orthocenter of the triangle).

Prove that the perpendicular bisectors of the sides of a triangle meet in a point (the circumcenter of the tri-
angle). )

Prove that (AxB).(CxD) + (BxC)-(AxD) + (CxA)-(BxD) = 0.

Let POR be a spherical triangle whose sides P.q,r are arcs of great circles. Prove the law of cosines for
spherical triangles,

Cosp = cosqg cosr + sing sinr cos P

withanalogous formulas for cos g and cos r obtained by cyclic permutation of the letters.
[ Hint: Interpret both sides of the identity (A xB)-(AxC) = (B*C)(A+A) — (A C)y(B- A).]
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102.

103.

104.

105.

106.

The DOT and CROSS PRODUCT

Find a set of vectors reciprocal to the set 2i+3j—k, i—i—2k, —i+2j+2k.

2..,1 8, ,. 1 T.,: 9
=S I —2j+ij—= ——itj—=
Ans 31 3k, 31 i 3k, 31 i 3k
r_ bxe 1 CXa +_ axb,
If a_a-bxc’ P S and c—a-bxc’ prove that
b'xc’ ¢'xa axb'
a = b= T e
a*bxc a-bxc a-bxce
If a,b,c and a',b', ¢’ are such that
a’sa = b-b = ¢hec = 1

a'.b = a’.c = b+a = brec = cca = c'-b =0
prove that it necessarily follows that

s _ bxc p = cxa ! axbh
abxc’ a-bxc’ a-bxc

Prove that the only right-handed self-reciprocal sets of vectors are the unit vectors i,j,Kk.

Prove that there is one and only one set of vectors reciprocal to a given set of no

n-coplanar vectors a,b,c.



Chapter 3

ORDINARY DERIVATIVES OF VECTORS. Let R(u)
be a vector depending on a single scalar variable u.
Then

= Ay —
AR _ R@u+Du) — R(u) OR = R(u+Du) ~ R@)

Au Au

where Au denotes an increment in (see adjoining
figure). 0

The ordinary derivative of the vector R(u) with respect to the scalar u is given by

R _ oy ARy R@tlu) - R

du AMu—0 Au - An—0 Au
if the limit exists.

Since fl—R is itself a vector depending on u, we can consider its derivative with respect to u. If

u
this derivative exists it is denoted by %2% . In like manner higher order derivatives are described.
u

SPACE CURVES. I in particular R(z) is the position vector I(u) joining the origin O of a coordinate
system and any point (x, ¥, 2), then

r{u) = x(u)i + y@w)i + z(u)k
and specification of the vector function r(u) defines x,y and z as(functions of u..

As u changes, the terminal point of r describes
a space curve having parametric equations

x=x(u), y=y@), z=2z(u)

Then é_r_ - r(u+Au) — r(u)
Au

is a vector in the di-
Au

rection of Ar(see adjacent figure). If 1im Ar _ dr
Au—0 Auy du

exists, the limit will be a vector in the direction of
the tangent to the space curve at (x, y,z)and is giv-
en by

If u is the time ¢, % represents the velocity v with

which the terminal point of r describes the curve. Similarly, ﬁ =

along the curve.

represents its acceleration a

d_2_r
dt ~ de?

35
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CONTINVITY AND DIFFERENTIABILITY. A scalar function ¢(u) is called continuous at u if
A1im du+Au) = P(u). Equivalently, ¢(u) is continu-
2%—0

ous at u if for each positive number ¢ we can find some positive number & such that

|qb(u+Au)—<,b(u)| < € whenever 1Aul < 5.

A vector function R(u) = Ry(u)i + Ry(u)i + Ry(u)k is called continuous at u if the three scalar

functions Ra(z), Ro(z) and Rg(u) are continuous at u or if hm R(z +Au) = R(u). Equivalently, R (u)
Ay~0

is continuous at u if for each positive number € we can find some positive number & such that
| R +Au) — R(u) | < € whenever |Aul| < 8.

A scalar or vector function of u is called differentiable of order n if its nth derivative exists. A
function which is differentiable is necessarily continuous but the converse is not true. Unless other-
wise stated we assume that all functions considered are differentiable to any order needed in a par-
ticular discussion,

DIFFERENTIATION FORMULAS. If A, B and C are differentiable vector functions of a scalar u, and
¢ is a differentiable scalar function of u, then

faem 8.3
_
2. E‘%(A-B) = A~?: + ‘é: B
3. %L(AXB) = Ax%]s + i!—AxB
I T
)Mf.#j—u(A-BxC) = A- Bx‘i—g + A ‘f—{% c + %’371'3»5(?
6. di{Ax(BxC)} = Ax(Bx——) + AX(ZB xC) + (% x (Bx C)

The order in these products may be important.

PARTIAL DERIVATIVES OF VECTORS. If A is a vector depending on more than one scalar variable,
say x,v,z for example, then we write A = A(x,y,2z). The
partial derivative of A with tespect to x is defined as

SA o A(x+Ax, y,2) — A(x,y,2)

— = lim

ox Ax—0 Ax

if this limit exists. Similarly,

JA _ lim Ax, y +0y, 2) — A(x,y,2)

dy Ay =0 Ay

oA Ay, z+Az) — Alx,y,2)
= lim

dz Az=o Az
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are the partial derivatives of A with respect to y and z respectively if these limits exist.

The remarks on continuity and differentiability for functions of one variable can be extended to
functions of two or more variables. For example, @ (x,y) is called continuous at (%,y) if
lim ¢ (x+Ax, y +Ay) = ¢(x,y), or if for each positive number € we can find some positive number
ot
§ such that | o (x +Ax, y+0y) — P (x,y)| < € whenever |Ax] < & and |Ay| < 8. similar defi-
nitions hold for vector functions.

For functions of two or more variables we use the term differentiable to mean that the function
has continuous first partial derivatives. (The term is used by others in a slightly weaker sense.)

Higher derivatives can be defined as in the calculus. Thus, for example,

9°A _ 9 ,2A 9°A 9 ,9A 9%A 9 %A

3x2 ' ox ) 3y 3y oy 92 T 3:(3:)
°2°A  _ 3 2A, A _ 9 2A, A _ _@_(BQA
9% Oy Ox Oy ’ Oy ox dy ox "’ Ox 9z° dx 927
. . o ?°a A .
If A has continuous partial derivatives of the second order at least, then e v = v i.e.the
order of differentiation does not matter. x oy yox

Rules for partial differentiation of vectors are similar to those used in elementary calculus for
scalar functions. Thus if A and B are functions of x,¥,% then, for example,

L ?—(A-B) = A-§E + EM-B

‘ Ox Ox Ox

!

LoD 3B . 2a

}2 a%(AxB) = Axax + axxB

i

1, _ 2,3 _ 3,38, 2A
§3 A B = grigamy = {as” v 5B
;\ _ .. 0B _3A 3B, 3 3B, Fa

3y3x ' Jy ox | dx Jy | yox Br SO

DIFFERENTIALS OF VECTORS follow rules similar to those of elementary calculus. For example,
L It A=A4i+Aj + Ak, then dA = dAd + dAj + dAk
2. d(A-B) = A-dB + JA-B

3. d(AxB) = AxdB + dAxB

4 1 A= A@y.z), then dA = Bgy + Py [ JA, )
) ox dy 32 P
i \""’-\T».//\MN e NS S merren it i e

DIFFERENTIAL GEOMETRY involves a study of space curves and surfaces. If C is a space curve

defined by the function r(x), then we have seen that Z—r is a vector in
U

the direction of the tangent to C. If the scalar u is taken as the arc length s measured from some fixed

point on C, then % is a unit tangent vector to C and is denoted by T (see diagram below). The
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rate at which T changes with respect to s is a mea-~

sure of the curvature of C and is given by% . The

direction of g—T— at any given point on C is normal to
S

the curve at that point (see Problem 9), If N is a

unit vector in this normal direction, it is called the

principal normal to the curve. Then t‘%} = kN, where

x is called the curvature of C at the specified point.
The quantity o = 1/« is called the radius of curva-
ture. :

A unit vector B perpendicular to the plane of T and N and such that B =T xN, is called the bi-
normal to the curve. It follows that directions T,N,B form a localized right-handed rectangular co-
ordinate system at any specified point of C. This coordinate system is called the trihedral or triad
at the point. As s changes, the coordinate system moves and is known as the moving trihedral.

A set of relations involving derivatives of the fundamental vectors T, N and B is known collec-
tively as the Frenet-Serret formulas given by
‘iT. _ dN dB

N, N -gB-«kT, X =-
s N g T TBexT o 7N

where 7 is a scalar called the torsion. The quantity o = 1/7 is called the radius of torsion.

The osculating plane to a curve at a point P is the plane containing the tangent and principal
normal at P. The normal plane is the plane through P perpendicular to the tangent. The rectifying
plane is the plane through P which is perpendicular to the principal normal.

MECHANICS often includes a study of the motion of particles along curves, this study being known
as kinematics. In this connection some of the results of differential geometry can be of
value.

A study of forces on moving objects is considered in dynamics. Fundamental to this study is
Newton’s famous law which states that if F is the nef force acting on an object of mass m moving
with velocity v, then

-4
F = dt(mv)

where mv is the momentum of the object. Ifm is constant this becomes F = mé—: = ma, where a is
the acceleration of the object.
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SOLVED PROBLEMS

1. If R(u) = x(u)i +y(u)j +2z(u)k, where x,y and z are differentiable functions of a scalar u, prove

@R _de | dy | ds
that 7= = bt ot Lk

R _ o Retlu) - R@)
du Ay=0 Au
o g @Ay +a@+luyk] - (@i +y@)i +zek]
Ay—0 Ay
oo x@rlu) — xw) o y@tDu) — y@) | oz +Du) — z2(0)
- Alqir}}o Ny o Au U Dy K

_ gz dy. dz
—dul+ d—u_]+ E;k

. o . . dR IR dR IR
2. Given R = sinti + costj + th, find (a)(—h—, b e (e) lg‘t_" (d) l 2

()dR d(s' t)'+d( t)’+d(t)k ti intj +k
a)y — = —+— - — = co — si
r 7 ine)i 7 cost)i % costi ntj
py SR A AR d e 1
(b) 2 - dt(dt = dt(COSt)l— dt(Slnt)J dt() = —ginti — cost j
(c) l’fi—R| = Vicost)2 + (—sinn)? + ()2 = V2
t
IR
) l?’ = /(—sinz)2+ (—cosz)? = 1

3. A particle moves along a curve whose parametric equations are x = e-t, y =2cos 3¢, z = 2sin 3¢,
where ¢ is the time.

(a) Determine its velocity and acceleration at any time.
(b) Find the magnitudes of the velocity and acceleration at ¢ = 0.

(a) The position vector r of the particle is r = xi+ yi+zk = e~ti+ 2cos 3t i+ 2sin3t k.

Then the velocity is v = ? = gty — 6sin3cj + 6cos3t k
t
2
and the acceleration is a = % = e~ti — 15cos 3tj — 18sin3tk
t
dr R dr . R
b)Y At ¢ =0, E;:_1+6k and EF=1—ISJ' Then

magnitude of velocity at ¢ = 0 is V(=1)2+ (87 = V37
magnitude of acceleration at £=0 is V(1)°+ (—18)2 = vV325.

4. A particle moves along the cutve x = 2t2, y = t2— 4¢ , 2 =3t — D5, where ¢t is the time. Find the
components of its velocity and acceleration at time £=1 in the direction i — 3j + 2k.
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Velocity = % = %[2#1 + (2 —4n)j + (3t —B)k]
= 4ti + (w—4)j + 3k = 4i — 2j + 3k ats=1.

c o YR
Unit vector in direction i — 3j + 2k is 1—3i+2k _ 3 + 2K .
V(1) 2+ (—=3)%+ (2F V14

Then the component of the velocity in the given direction is

(41 — 2§ + 3K) (i — 3j + 2k) (A1) + (—=2)(=3) + (3)(2) 16 8v 14

V14 ) V14 V14 7
er d dr d [ }
A i —s = (7 = = |4ei + (2t—4)j + 3k = 4i + 2j + Ok.
cceleration o2 dt(dt) oy ti + ( Vi i 3]
Then the component of the acceleration in the given direction is

(4i +2j + Ok)-(i— 3§ +2k) @) (1) + (2)(=3) + (0)(2) _ :2_ =V 14

V14 V14 V14 i

5. A curve C is defined by parametric equations x =x(s), ¥ =y(s), z =2(s), where s is the arc
length of C measured from a fixed point on C. If r is the position vector of any point on C, show
that dr/ds is a unit vector tangent to C.

dr d, . R dx , dy . dz .
= = = + + = + + = = =
The vector T 7 (xi + ¥ + zk) dsl ds] dsk is tangent to the curve x= x(s), y=y (s),

z = z(s). To show that it has unit magnitude we note that

dr | dro, dye, dze . fAd’ @+ |
ldsl h @+(ds) +(ds) - / (ds ¥? =1

since (ds)? = (dx)2 + (dy)? + (dz)? from the calculus.

6. (@) Find the unit tangent vector to any point on the curve x = t2+1, y=4—-3, z = 2t2—6¢.
¢b) Determine the unit tangent at the point where t=2.

() A tangent vector to the curve at any point is

% = %[(2+1)i +(a—3)j + @2—6nk] = 2i + 4 + (4e—6)k
The magnitude of the vector is Ij—;i = V(22 + (4)2+ (4t —6)2.

2i + 4j + (44—6)k
V(202 + (87 + (46— 6

Then the required unit tangent vectoris T =

. dr ds dr/dt dr
Note that ar LA = o,
ote that since |dt‘ dt ds/dt ds
i +4j +
(b) At¢=2, the unit tangent vector is T = Mtk 2,2, 1,

Jagr@g+ree ° % 3

7. If'A and B are differentiable functions of a scalar u, prove:

%L(A'B) SRS ARG j—u(AxB) o Ax®B L dA g

(@) o T du o du
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lim (A+AAY-(B +ABy — A'B
Au~0 DNu

d
—(A-B
(a) du( )

.. AAB + MA-B + NA-AB
lim

Au—0 Au
= lim A-A—B + A—A-B +%-L\B - A9B LA g
Ay Au Ay A du du

Another Method. Let A = A+ Ayj + Ak, B = Bji + Byj + Bgk. Then

2 A-By = L (4B, + 4By + AsBa)
du du
- (A1d31 + AQdBQ +A3d33) + (dA1B +dAQB + dAaB3) - Ad_q + %A B
du du
(b) (AxB) - 1p AFrDAxB+AB) — AxB
Au~0 Au
= lim AXAB + AAXB + AAxAB
Ay—~0 Au
= lim Ax@ + éé><B + AAxAB - Ax 9B [ dA g
Au—0 Ay Ay Au du du
Another Method. .
i i k
d d
EL<AXB) = Ay As Aa
By B, Bg
Using a theorem on differentiation of a determinant, this becomes
i i k i i k
ddy  dd, ddg| dB _ dA
As Az 43 + du du du - Ax du * d

aB, B, B,
du du du By Ba Bs

8 If A=5i+¢j—°k and B =sinti — costj, find (a)d (A B), (b) (AxB) (c) (A A).

d dB . dA
Z@A-B) = A2 + 2.
@ 5, AB dt | de

(52°1 + ¢ — ¢°k) -+ (costi + sinzj) + (10t + § — 3¢°K) - (sinz i — cost j)

5:°cost + ¢sint + 10rsintz — cost = (5:2—1)cost + 11¢sint

Another Method. A-B = 5:%sint — tcost. Then

2 (A-B) = %(StQSint — tcost) = 5i2cost + 10t sint + ¢ sint — cos:¢

(52— 1) cos t + 11t sint

J J J i i k i i k
1)) ;(AxB) = Ax%B L dA g 562 ¢ -2 + | 10¢ 1 -3¢

dt dt
cost sint 0 sint —cost 0
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[@sinzi — Bcostj + (5t%sint — ¢t cos k]

+ [—8t2costi — 3®sintj + (—10zcosz — sint)k]

(®sint — 32 cost)i — (®cost + 32 ging)j + (5t2sint — sinz — 11z cost)k

Another Method.

i i k
AxB = 5¢2 t —¢3l = —Pcosti— ¥sintj + (-5t cost — ¢t sint)k
sint —cos? 0
d 3 . 2 . 3 2 . . 2 . .
Then E;(AxB) = (t°sint — 3t°cos?)i — (£ cost +3t°sint)j + (5t sint — 11¢ cost — sine)k
d L A dA L dA , | ., dA
(¢) dt(A-A) = A dt + 1t A = 2A e
= 2(5e2i + tf — Bk) - (10¢i + § — 3°K) = 1002 + 26 + 66°
Another Method. A-A = (527 + (@ + (= = 25t* + 2 + &°
Then ;i‘il(zsz4+t2+t6) = 1006 + 2 + 66°.

9. If A has constant magnitude show that A and dA/dt are perpendicular provided ldA/dtl # 0.

Since A has constant magnitude, A-A = constant.
a - dA | dA - JAA
Then dt(A Ay = A d + 4t A = 2A T 0.

Thus A- % = 0 and A is perpendicular to g—tA provided l%\ # 0.

10. Prove i(A-BxC) = A-B><‘i(2 + A-d—BXC + ‘—iA-BXC, where A,B,C are differentiable
du du du du
functions of a scalar u.
d d dA
By Problems 7(c) and 7(), —— A*(BxC) = A-— (BxC) + —'BxC
du du du
dC dB dA
= . 2> == + =
A [Bxdu duXC} du BxC
_ a.ps € .4B dA |
—ABxdu+Adu><C+du BxC
d _dv_dv
11. Evaluate — (V5 X 53).
dt( dt dt'?)
d .. dv _dVv v _d°v B2v_d°v _dv dv _d°V
Zov. i 2Ty = AY Y Ly — + — v X T
By Problem 10, dt(v i dtQ) v dr * dee v a2 g2 dt dt X i
av _ d°V v _ d°V
= V.2 x — + + = Vel x —
de x de3 0 0 dt x de

12. A particle moves so that its position vector is given by r = coswti + sinwtj where @ is a con~-
stant. Show that (e) the velocity v of the particle is perpendicular to r, (b) the acceleration a is
directed toward the origin and has magnitude proportional to the distance fromthe origin, (¢) rxv =
a constant vector.
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dr . . .
(@) v = 7 = —w sinwti + w coswtj
Then r.v = [(coswti + sinwtj] * [—w sinwt i + w cos wt j]

1l

(cos wit) (—w sinwe)+ (sinwe)(w cos wi) =

and r and v are perpendicular.

a2y dv P . o .
= — = —w?coswti — w?sinwtj

b padiiial
® di? di

= —w? [cos wti + sina)tj] = —r

Then the acceleration is opposite to the direction of r, i.e. it is directed toward the origin. Iis
magnitude is proportional to |r| which is the distance from the origin.

() rxv = lcoswri + sinwet j] x [—w sinwt i + @ cos wt j]
i i k
= Ccos Wit sinwt 0| = w(eos?w:t + sin®wi)k = wk, a constant vector.

—w sinwt w coswt 0

Physically, the motion is that of a particle moving on the circumference of a circle with constant
angular speed w. The acceleration, directed toward the center of the circle, is the centripetal accel-

eration.
13. Prove: Ade—B— - dQ—AxB = i(Axd—B - @XB)
) di? di? dt dt dt )
4,98 dA - dB, _ d dA
7GR A Pl M <A at) 2t B
d°B , dA, dB dA dB . d°A B d3A
= Ax B 4 - +2A,p] = Ax2B _ ¢ A
a2 T @ de [ “d: | diz " ] g2 T g <B
14. Show that A. %A - 4d4
dr dt
Let A = Ayi+A4,j+4k. Then 4 = VA2 + A5 + A2 .
dA dA dd dds,
__=_A+A+A—1/2A 22 2
dt ( 1 3) (2 d + 2A2 d + 2143 d
dd,  dA,  dA, A
Mgy gt A A , dA dA
= Z1/2 = s i.e. AE=A'E.
M+ 4o+ A 4
Another Method.
. 2 d _d, 2
Since A-A = A7, - (A-A) = FAGIE
4 ... - a.9A | dA . _ LdA d 42 d_/i
LA = AR+ ERs - 2A7 5 and A = 24
' dA _ dA _ ,dA
Then 2A- i 2Adt or A- i = A d; "

Note that if A is a constant vector A- dA =

0 as in Problem 9.
dt
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15. If A = (2% —«Di + (¥ —y sinx)j + (x* cosy)k, find: g:' %, %—i—%. gyé» ’ai%y’ a?fgx-
%’% = %(2x2y—x4)i + B%(exy-—y sinx)j + %(xgcosy)k
= (dxy — 4®)i + (y&Y —y cosx)j + 2 cosyk
%?A = —aa—(zx2y~x4)i + a%(exﬁ/—y sinx)j + %(xQCOSy)k
= 92%2i + (xeXY—sinx)j — x2siny k
ﬁ = —a—(4xy—4x3)i + 3(ye’@’—y cosx)j + —a—(zx cosy)k
Ox? A Ox Ox
= (4y — 12?)i + (2" +y sinx)j + 2cosy k
B—QA = 3(ZxQ)i + —a—(xexy—-sinx)j - i(x2 siny)k
o2 Jy Sy

= 0 + x2e¥Yj — x%cosy k= 2e¥Vj — x2cosy k

i-%y = —aa;(%f) = :a%(zx?)i + %(xexﬁ’-— sinx)j — i(aﬁ siny)k
= 4xi + (xyeY +e*Y —cosx)j — 2z siny k
2
.;;gx = B% %‘3) = %(uy —4x%i + a%(yexy—y cosx)j + %(Zx cosy)k
= 4xi + (xyeV+e” —cosx)j — 2 siny k
A A
Note that _9A e the order of differentiation is immaterial. This is true in general if A

Jyx  Oxdy’
has continuous partial derivatives of the second order at least.

3

16. If d(x,y,2) = xy®z and A = xzi—xy?j +yz°k, find 3 —23 (A) - at the point (2,—1,1).

x~ Oz

DA = (xy22)(xzi—xy2j+yz2k) = 2292224 — x2ytz i+ xy2 2% k

9 . O 22,24 2.4, i 3,3 - 2,25 § 2,4 § 3,2

——(¢A)—,a—(xyz1—xyz,]+xyzk)—2xyzl—xyj+3xyzk

z z

32 (¢A -igxzz~ 2)4§+3 3,2K) = dxy2z i 9y § 3,2k

’ax—az ) = —ax( ¥zl —Xx j Xy© Z ) = ¥z i — y]+3yz

D bay = Damtrio syt + 5000 = i — P

m( )—éz(xyzy—z:cyj 3y%22Kk) = 4dy“zi — 7]

I x=2,y=—1,z=1 this becomes 412 — 2=1"§ = 4 — 2.

17. Let F depend on x,y,z,t Wwhere x,y and z depend on ¢. Prove that
dF OF OFdx _ OFdy , oFdz

& T % T oxd Toyd Tz
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under suitable assumptions of differentiability.

Suppose that ¥ = F(x,y,z,0)i + Fyx,y,z,6)j + Fx,y,z,t)k.  Then

dF = dFi + dF,j + dFyk

OF, OF, OF; OF, OF, OF, OF, OF,
= l=dt + =Tdx + —dy + ==dz]i + [=2dt + =2dx + =2dy + 224,75
[Spee v 5 e o 7T e i+ [ 5 T, W gl
JF, JF OF 3F,
+ =2dr + =2dx + =2 dy + 22 4z]Kk
[at ! ax x ay 4 az 2]
OF, oF, OF; OF, OF, OF;
= (=Lt i+ —kKdt + (=i + =)+ —"K)dx
SRt E e T
oF, OF, OF; oF, oF, OF;
i+t —j + =—Kdy + (=—1i + —23j + -2 Kk)dz
e T A b It B el ¥
OF JF OF JF
= Z-dt + Zdx + T dy + =—d
dx aw T TR
and so d_F =%+2§‘fﬁ+§ff’l+%dj.
dt Ot Oxdr Oy dt -0k dt
DIFFERENTIAL GEOMETRY.
18. Prove the Frenet-Serret formulas (a) T = kN, ) 4B = —7TN, (¢) N = T7TB—«T.
ds ds ds
. . dT . dT . .
(@) Since T.T =1, it follows from Problem 9 that T't_i? = 0, i.e. 75 s perpendicular to T.
If N is a unit vector in the direction Z?T , then Z?T = KN. We call N the principal normal, x the

curvature and O = 1/« the radius of curvature,

(b) Let B =TxN, so that dB _ T><11E + d—TxN = Txd—N + KNXN = Txd—N'
ds ds ds ds d ds
Then T-é—B = T-Txd—N = 0, sothat T is perpendicular to B
ds ds ds
dB

But from B+B =1 it follows that B-E = 0 (Problem 9), so that ZTB is perpendicular to B and
is thus in the plane of Tand N.

J .
Since f is in the plane of T and N and is perpendicular to T, it must be parallel to N; then B _

—7N. We call B the binormal, 7 the torsion, and O = 1/7 the radius of torsion. g

(¢) Since T,N,B form a right-handed system, so do N, B and T, i.e. N=BxT.

dN _ o 4T _ 4B

Then = BX== + XT = BXKN — TNXT = —xT + 7B = 7B — KT.
ds ds ds

19. Sketch the space curve x =3 cosy¢, y =3 sint, z =4¢ and find
(a) the unit tangent T, (b) the principal normal N, curvature x

and radius of curvature p, (c) the binormal B, torsion 7 and
radius of torsion o .

The space curve is a circular helix (see adjacent figure). Since
=2z/4, the curve has equations x = 3 cos(z/4), y = 3 sin(z/4) and
therefore lies on the cylinder x® +y2 = 9,

(a) The position vector for any point on the curve is
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r = 3costi + 3sincj + 4k
dr _ o .
Then i —3sinti + 3costj + 4k
d__S = Q = l_is.‘.i_[ = i 2 2 2 =
2 - l - /B Jcasing® ¢ (Beosn)” + 4 5
dr dr/dt I 3 . 4
—_ = = — + = 4+ = R
Thus T 7e Is /it 5 sint i 5 costj 5 k
dT d 3 L. 3 . 4 3 . 3 s
22 = (- = + = + = = - = - = t
) It t( 3 sin¢ 1 5 cost§ 5 k) 5 costi 5 sinz j§
dT dT /et 3 3
—_— = = —_ —_— = t
ds ds/dt = 5 C0Sti — o5 sintl
Since ‘;—} = KN, lﬂ\ = |k]INl = « as k2o
3 1 25
Then K = /(-— costf + (— —smt)2 = 38 and P =% = 3 °
From d—T = kN, we obtain N = 1 T = —costi — sinzj.
ds K ds
i J k
3 3 4 3
= X = — = si - . = = = ti — —costj + <Kk
(c) B T XN 5 sine 5 cos 5 sint 1 C b} 5
— cost — sint 0
B 4 . 4 . dB dB/dt 4 . ;- .
== = + = = = == = = ti + — t
7 5 costi 5 sinz j, 7s ds/dt 25 costi 55 sint j§
. s 4 . 4 .. 4 1_25
-— = - -— -— = — + = = = ==
TN T(—costi sint §) 55 costi 35 sintj or T 25 and O e

20. Prove that the radius of curvature of the curve with parametric equations x =x(s), y = y(s), z = z(s)

is givenby p = (A2 ( 2y +<d”] 72
ds?

The position vector of any point on the curve is r = x(s)i + y(s)i t+ z(s)k.

2 2
Then . . U R ST d_T:é_xieryJer_zk.
ds ds ds ds ds ds2 ds?2

d 2
But d—T - KN sothat K = \?l - ‘/(Zf)2 N ( e <‘1 % and theresult follows since o=t
8 S S K

2 3
de dr_dr T
21. Show that . x& > = Z.
ds ds?2  ds® 0°
dr r _dT s dN dK alK d
g " e T . -z - - = -—_ —_— = —_ K2 __K
s T, 752%4s KN, =5 = K7s * s N = K(TB—KT) + =N KTB — K2T + - N
2 3
dr drx dr _ om . 4K
Is’ ds2 Xdsd - T KNX(KTB=K*T + 7= N)
=T« (K2TNxB — k®NXT + KZ—SKNXN) = T.(2TT + KBy = KPT = ;TE
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The result can be written ' ! ;
X b k4

T = [(xu)Q + (}’”)2 " (211)2]_1 xll yu zu

1 " A
x ¥ z

where primes denote derivatives with respect to s, by using the result of Problem 20.

22. Given the space curve x =1t, y=1¢° z = %ts, find (a) the curvature «, () the torsion 7.

(¢) The position vector is r = ¢i + 2§ + %ts k.

Then % = i 4 ot + 22k
dt
ds _ |dr| _ /d_r.ﬂ:\/2 )2 :2y2 = 1 + 22
dt ’dt dt dt 7+ (@7 + (27
dr _odr/dr _ i+ 2uj+ 20k
and T=% ° & 1+ o2
AT (1 +2°)(21 + 4tk) — (i + 265 + 2°k)(41)  —dei + (2—49)j + 4k
de 1+ 29?2 (1 + 26%?
. O\ =
Then 9T _ dTAt _ —4ti + (2—42)3 +atk
ds ds/dt (1 + 2633
Vi—4n? + @—a)? + 4y 2
Since d—T=KN7 K = ld—Tl = (=41) @ 42), @y =5
ds ds (1 + 223 (1 + 269
. 2.\
®) From(@), N=19T . =21+ Q=20+ 2k
K ds 1 + 9%
i J k
2 2 . .
Then B = TxN = |l 2 2| . 2i-2+k
1+ 2¢ 1+ 2 1+ 2 1+ 2¢2
—ot 1 — 22 2
1+ 22 1+ 22 1+ 22
dB _ 4¢i + (42— 2)j — 4k dB _ dB/dt  4i + (4° — 2)j — 4tk
Now — = 55 and —— = = 2.3
dt (1 + 2% ds ds/dt (1 + 29
—%i + (1 -2 + 2%k . dB 2
Also, —TN = —7T . — = - s i = .
so [ Ty ] Since ds TN, we find 7 (1 + 2027

Note that < = 7 for this curve.

23. Find equations in vector and rectangular form for the (a) tangent, (b) principal normal, and (¢)
binormal to the curve of Problem 22 at the point where £ = 1.

Let Ty, Ny and B, denote the tangent, principal normal and binormal vectors at the required point.
Then from Problem 22,
i +2f + 2k -2 — j + 2k 2i — 2 + k

T, = 3 , N, = 3 ; B, = 3
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24.

25. (a) Show that the equation r =r(u,v) represents a surface.

VECTOR DIFFERENTIATION

If A denotes a given vector while T, and r denote respectively the position vectors of the initial point
and an arbitrary point of A, then r—r, is parallel to A and so the equation of A is (r—ro) XA =0.

Equation of tangent is
Then: TEquation of principal normal is
Equation of binormal is

In rectangular form, with r =xi + yj + zk, rog =i +j +
x=1 y—=1 _ z—2/3’ x—1  y—1

-1} X Ty =0

z—2/3 ,

t—ry) XNy = 0
r—ry) XBy = 0

2 k these become respectively

x—1 y—1 _ z-2/3

1 2 2 -2 -1 2
These equations can also be written in parametric form (see Problem 28, Chapter 1).

2 -2 1

Find equations in vector and rectangular form for the (a) osculating plane, (b) normal plane, and
(c) rectifying plane to the curve of Problems 22 and 23 at the point where ¢t = 1.

(@) The osculating plane is the plane which contains the tangent and principal normal. If r is the position
vector of any point in this plane and r,, is the position vector of the point =1, then r-—rg is perpendic-
ular to By, the binormal at the point =1, i.e. t~ry) By~ 0.

®

(c)

The normal plane is the plane which is perpendicular to the tangent vector at the given point. Then

the required equation is (r—rg+ Ty = 0.

The rectifying plane is the plane which is perpendicu-
lar to the principal normal at the given point. The

required equation is (r—rgy) *Ng = 0.

In rectangular form the equations of (a), (b)Y and (¢)

become respectively,
2x—1) — 2(y —1) + L(z—2/3)
I —1+ 2y —1) + 2(z—2/3)
—2x—1)—Ly—1) + 2z—2/3) =

1]

0,
0,
0.

The adjoining figure shows the osculating, normal
and rectifying planes to a curve C at the point P.

r_or

Normal Plane Osculating Plane

Rectifying Plane

(b) Show that -ar « 2T represents a vector normal to the surface.

u v
(¢) Determine a unit normal to the following surface, where ¢ > 0:

(@)

I = acosy sinp i + asing sinv j + acosv Kk

If we consider z to have a fixed value,
say u,, then I =r{sg,v) TIepresents a
curve which can be denoted by z = ug.
Similarly u =u, defines another curve
r=r(,,v). As u varies, therefore, r =
r(u,v) represents a curve which moves in
space and generates a surface S. Then
r=r(u,v) represents the surface S thus
generated, as shown in the adjoining fig-
ure. :

The curves u =ug, U =Uy, -.- represent definite curves on the surface. Similarly v =vy, v=v,,

represent curves on the surface.

By assigning definite values to  and v, we obtain a point on the surface. Thus curves u = ug and
v = v,, for example, intersect and define the point (uq,v4) on the surface. We speak of the pair of num-
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bers (u,v) as defining the curvilinear coordinates on the surface. If all the curves u = constant and
v = constant are perpendicular at each point of intersection, we call the curvilinear coordinate system
orthogonal. For further discussion of curvilinear coordinates see Chapter 7.

(b) Consider point P having coordinates (ug,vg)
on a surface S, as shown in the adjacent dia-
gram. The vector or/ du at P is obtained by
differentiating r with respect to u, keeping
v = constant =v,. From the theory of space
curves, it follows that Or/Ou at P repre-
sents a vector tangent to the curve v - v, at
P, as shown in the adjoining figure. Similar-
ly, or/ v at P represents a vector tangent
to the curve u = constant = un. Since or/ Ou
and Jr/ v represent vectors at P tangent
to curves which lie on the surface S at P, it
follows that these vectors are tangent to the

dr Or
surface at P. Hence it follows that =— x—
Ju” ov
is a vector normal to S at P.
or _ . R o
(c) 8— = —aginu sinv i + a cosu sinv j
u
or _ , . . .
8_ T acosy cosv i + asinu cosv j — asinv k
v
i h] k
dr _ Or
Then — X— = —a sinuz sinv a cosu sinv 0
ou  Bv
a cosu cosv a sinu cosv —a sinv
= —d® cosu sin®v i — &% sinz sin®v i- a” sinv cosv k

represents a vector normal to the surface at any point (u,v).

A unit normal is obtained by dividing é X ﬂ by its magnitude, | or X or [ » given by
Su " O du Ov

Va* cos?u sin*v + ot sin?u sin*v + ao* sin2v cos2v

= Va* (cosZy + sin®s) sin*v + o* sin?v cosZy

a” sinv if sinv > 0

a? sinv if sinv < 0

Va?* sinZv (sin?v + cos2v) = {
Then there are two unit normals given by

t(cosu sinv i + sinu sinv j + coswv k) = +n

It should be noted that the given surface is defined by x=a cosu sinv, y=a sinz sinv, z=a cogv
from which it is seen that x°+ y2+ 2”= &, which is a sphere of radius a. Since r=an, it follows that

n = cosu sinv i + sinu sinv j + cosv k

is the outward drawn unit normal to the sphere at the point (u,v).

26. Find an equation for the tangent plane to the surface z = x° +y2 at the point (1, -1, 2).

Let x=u, y=v, z=u2+v> be parametric equations of the surface. The position vector to any point
on the surface is

r = ui + vj + (u2+v2)k
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Then % = i+2uk = i+ 2k, %}! = j+ 2wk = j—2k atthe point (1,—1,2), where z=1 and v =—1.
i

By Problem 25, a normal n to the surface at this point is

_ or_9or _ . )
n = auXBu = ({+2k)x3{J-—2k)

-2 +2j +k

The position vector to point (1,—1,2) is Ry = i—j+ 2k,
The position vector to any point on the plane is

R = xi+yj+zk

Then from the adjoining figure, R—Rg, is perpendicular to
n and the required equation of the plane is R—Rgy)+n = 0

or [(xi+yj+zk)—(i—j+zk)]-[-—2i+2j+k] =0
i.e. -—2(x-—1)+2(y+1)+(z-—2) =0 or % —2y—z=2.

MECHANICS

27. Show that the acceleration a of a particle which travels along a space curve with velocity v is

given by ,
a = dv T + =N
de P
where T is the unit tangent vector to the space curve, N is its unit principal normal, and o is the

radius of curvature.

Velocity v = magnitude of v multiplied by unit tangent vector T
or v = oT

Differentiating, a = j—:, % wT) = Z—: T + v %
But by Problem 18(a), Lfi—rf = %SI ‘(_j;: = KN% = kvN = vTON
Then a = %’T+v(ﬂg) = ‘;—;’T+%N

This shows that the component of the acceleration is dv/dt in a direction tangent to the path and »%/0 in
a direction of the principal normal to the path. The latter acceleration is often called the centripetal accel-
eration. For a special case of this problem see Problem 12.

28. If r is the position vector of a particle of mass m relative to point O and F is the external force
on the particle, then rxF =M is the torque or moment of F about 0. Show that M =dH/dt, where
H =rxmv and v is the velocity of the particle. ‘

d
M = rxF = rxo (mv) by Newton’s law.
a - d dr
But 7z @xxmv) = 1X 4t (mv) + d X mv

- rxd + x4 +

= X (mv) v X mv LR (mv) 0
. - 4 . dH
i.e. M = 7 xxmv) = Tt

Note that the result holds whether m is constant or not. M is called the angular momentum. The result
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states that the torque is equal to the time rate of change of angular momentum.

This result is easily extended to a system of n particles having respective masses My Mo, .en, my
n
and position vectors LIS PYRREN :1th external forces F,, F, ..., F, . For this case,d H =k§1mk rkx vk
is the total angular momentum, M = 35 rkx Fk is the total torque, and the resultis M = ;}: as before.
k=1

An observer stationed at a point which is fixed rel-
ative to an wyz coordinate system with origin O, as
shown in the adjoining diagram, observes a vector
A =4;i + 4,5 + A,k and calculates its time de-
rivative to be & i+ %]# % k. Later, he
dt dt dt

finds out that he and his coordinate system are ac-
tually rotating with respect to an XYZ coordinate
system taken as fixed in space and having origin
also at 0. He asks, ‘What would be the time de-
rivative of A for an observer who is fixed relative
to the XYZ coordinate system ?°’

(a) If %;A and %‘ denote respectively the time derivatives of A with respect to the fixed
m
and moving systems, show that there exists a vector quantity @ such that
dA) _ dA
dt dt ] T wxA
b m

(b) Let Df and D, be symbolic time derivative operators in the fixed and moving systems re-
spectively. Demonstrate the operator equivalence
D]c = Dm + W X

(e) To the fixed observer the unit vectors i,j,k actually change with time. Hence such an observer would
compute the time derivative of A as

dA _ dAs A, . dd, di dj dk ,

M P77 Tab B e S A Le.
dA| | dA ai di dk
@ APRE AR R Y

Since i is a unit vector, di/d¢ is perpendicular to i (see Problem 9) and must therefore lie in the
plane of j and k. Then

di .
3 2 = %d + 0k
- dji  _ .
Similarly, C)) i - sk + O,
dk . ;
(5) o Ogi + 0]
From i-j =0, differentiation yields i- % + % .j<0. But i.% = o from (4), ang d .y
dt dt dt 4 dt 1
from (3); then a4 = - al .
- —— . dk | di - . sopon . 0k di o
Similarly from i-k = 0, ot dt'k—o and Og=—0,; from j-k=0, it dt'k_o and
Og=—0a,.
di , dj . dk . .
Then Tl (1’.1]+(12k, pri stk—dll, rri —0,i — U] and
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g8, g4, dk

17 27 a7 (=0, 4, — 0 A1 + (@, 4, — 0 AT + (0,4, + Ogd )k

which can be written as

Then if we choose Og =y, —0o =Wy, 04 = wgy the determinant becomes
i i k
wq Wo Wa = wxA
Ay A, Aq

where @ = wii + woi + wgk. The quantity @ is the angular velocity vector of the moving system
with respect to the fixed system.

(b) By definition DfA = %1% = derivative in fixed system
b
dA U .
DmA =7 = derivative in moving system.
m
From (a), DfA = DA + wxA = (D, t@xA

and shows the equivalence of the operators Df =D, +t@x.

30. Determine the (a) velocity and (b) acceleration of a moving particle as seen by the two observ-
ers in Problem 29.

>

(@) Let vector A in Problem 29 be the position vector t of the particle. Using the operator notation of
Problem 29(b), we have

H Dfr = D, +wx)r = Dyr + wxr
But Dfr = vmf = velocity of particle relative to fixed system
Dmr =V pim = velocity of particle relative to moving system
wxr = Vv \F = velocity of moving system relative to fixed system.
Then (I) can be written as
(2) Volf T Voim +wxr

or in the suggestive notation

3 =
@) Yo = Vm  mir

Note that the roles of fixed and moving observers can, of course, be interchanged. Thus the fixed
observer can think of himself as really moving with respect to the other. For this case we must inter-
change subscripts m and f and also change @ to - @ since the relative rotation is reversed. If this is
done, (2) becomes

v = v — WXTr or v = v + @Xr

plm plf plf plm

so that the result is valid for each observer.
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32.

33.

34.

(5)
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R . 2
The acceleration of the particle as determined by the fixed observer at 0 is D4r = Df(Dfr). Take Df
of both sides of (I), using the operator equivalence established in Problem 29(b). Then

D]c(D]C ry = Df(Dm I + @xr)
= D, + @ x)(Dyr + wxr)
= Dy(D,r + @xr) + @x(D, T + wxr)

2
= Dpr + D (@xr) + @ x D r + @x (@xr)

or D§cr = D:Lr + 2w xDmr + (me)xr + @ x(@Wxr)
Let a¢)|f = D; r = acceleration of particle relative to fixed system
aﬁ'm = Dfﬂr = acceleration of particle relative to moving system.
Then amlf = 2wxD,r + D, @) xr + @x(Wxr)
= acceleration of moving system relative to fixed system
and we can write af’|f = aﬁw + amlf .

For many cases of importance @ is a constant vector, i.e. the rotation proceeds with constant an-
gular velocity. Then Dmm =0 and

am|f = waDmr + @WXx(wxr) = 2w xv, + @X(@xr)

The quantity mevm is called the Coriolis acceleration and @ x (@ xr) is called the centripetal accel-
eration.

Newton’s laws are strictly valid only in inertial systems, i.e. systems which are either fixed or
which move with constant velocity relative to a fixed system. The earth is not exactly an inertial sys-
tem and this accounts for the presence of the so called ‘fictitious’ extra forces (Coriolis, etc.) which
must be considered. If the mass of a particle is a constant M, then Newton’s second law becomes

) MDpr = F — aM@xD, 1) — M[@x(@xr)]

where Dy denotes d/dt as computed by an observer on the earth, and F is the resultant of all real
forces as measured by this observer. The last two terms on the right of (4) are negligible in most
cases and are not used in practice.

The theory of relativity due to Einstein has modified quite radically the concepts of absolute mo-
tion which are implied by Newtonian concepts and has led to revision of Newton’s laws.

SUPPLEMENTARY PROBLEMS

2 2
-t . - dR dR dR d R
If R=et 2+ 1)j — ik ¢ R 4R R =
R=ci +In6®+ D) ~ tanck, find @ F, HTE, | . I, @ | 2| at =0,
Ans. (a)y—i—k, (BYi+2j, (c)v2, (d)V5
Find the velocity and acceleration of a particle which moves along the curve x =2sin 3¢, y = 2 cos 3z,
Zz=8t at any time z>0. Find the magnitude of the velocity and acceleration.
Ans. v=6cos3ti— 6sin3tj+ 8k, a=—18sin3ti — 18 cos 3t j, [v|=10, |a|=18
Find a unit tangent vector to any point on the curve x = a cos we » ¥y =asinwt, z =bt where a,b,w are
—aw sinwti + aw coswtj + bk

constants.  Ans.

1/a2w2 + b2
It A=¢d—¢j+ (2+1)k and B = (2 ~3)i +j — tk, find

d
@7 A-B), )7 AxB), (&)L |a+B

, (d) ‘%(Ax%) at t=1. Ans. (a) —86, (b) Tj+3k, (e)1,
(d)i+86j+2k
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35. If A=sinui+cosuj+tuk, B=cosui—sinuj—3k,and € =2i+3j—k, find ;—U(AX(BXC)) atu=0.
Ans. Ti+ 6j — 6k
dB dA . ’B  d°A

- .B) if A and B are differentiable functions of s. Ans. A- — 55 B
ds ds? ds

2
37. It A@f)= 320 — (¢+4)j + (¢ —20)k and B() = sinti + 367§ — 3 cost k, find i—g (AXB) at z=0.
Ans. —30i + 14§ + 20k

36. Find —(A

d_A
38. If o

Ans. A = (B —t+2)i + (1—-2j + (¢—4sin0)k

6t1—24t j+4sint k, find A giventhat A = 2i +j and %‘?—=—1—3k at t=0.

39. Show that r = et (C, cos 2t +C, sin2r), where C,; and C, are constant vectors, is a solution of the dif-

2
ferential equation ‘—1—; + 2‘—’3—r + 5r = 0.
dt dt

2
40. Show that the general solution of the differential equation Z 5 + 20 ‘flr + ¢?r = 0, where 0 and w are con-
stants, is
(a)r-e—at \/a-wt+ce—Va-a)t ifOC—w>0
by r = ‘“t(c sin Vew? — 02 ¢ + C, cos Vol — 02y if 02— w? < 0.
() r = e, +Cyr) if 02— P =0,
where C4 and C, are arbitrary constant vectors.

dr dr d°r dr &’r
2 - 2 o = by == + =1+ =0, S22+ 4r = @.
P 4 i 5 =0, (b) e 2d r=0, (c) 72 0

Ans. (a) 1 = C1e5t + Coet, () r = e7Cy + Cot), (¢) r = Cycos 2 +Cpsin

41. Solve (a)

42, Solve % =X, té_tX = -Y,. Ans. X =Cqcost + Cyosine, Y =Cq sin¢ — C, cos ¢
A A XA a A A
43, If A = cosxy i + (3xy — 247 }i — (3x + 2y)k, find 0 By 52’ BxBy Byax .
2
Ans. ‘B;A = —y sinxy i + 3y —4x)§ — 3k, %yé = —x sinxy i + 3xj — 2Kk,
32 2 2 2
5;% = —y® cosxy i — 4j, %y% = —x% cosay i, Bi%y B aay%x = —(xy cosxy + sinxy)i + 3j

It

44, I A = x%yzi — 2% § + xz°k and B

2zi + yi — x?k, find 338 (AXB) at (1,0,~2).
Ans. —4i — 8j y

45. If C; and C, are constant vectors and Adsa constant scalar, show that H = e—?\x (C1 sin Xy +C, cos Ay)
2
satisfies the partial differential equation 8—7 + %;“ = 0.
etw(t— ¥/c)
46. Prove that A = 'O—‘“T—— , where p,isa constant vector, w and ¢ are constant scalars and i =vV—1,
- 5
satisfies the equation —ﬁ + 2 %’% = c% % . This result is of importance in electromagnetic theory,
r
DIFFERENTIAL GEOMETRY
4%. Find (a) the unit tangent T, (b) the curvature K (c) the pnnclpal normal N, (d) the binormal B, and (e) the
torsion T for the space curve x=t—t/3, y =17, z=t+t7/3.
1—Ai + 2 + (1+9k ot 1—F
A.ns.(a)T=( ) ! ( ) (¢) N = — i+
Va3 1442 1+1:2 @ 1
e) T = 71122
. . 2 (1 +1¢%)
2 — —_ + +
¢y K = 1 @ B = ( Hi— 2§ + ¢+ Dk

(1+8Y Va@a +0
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A space curve is defined in terms of the arc Iength parameter s by the equations
x =arc tans, vy = %l/z_ln(sQ +1), z =s —arctans
Find (@) T, ()N, (¢)B, @) K, (e) T, Hhp,@o.

i+V2sj+s2k V2
Ans. (@) T = ——SQ+IS @y Kk = 21
_ . - 2
() N = 281+(123)J+\/§sk ) T = 21/5 (g)g=s +1
s+ 1 s+ 1 Vo
2. . 2
VB = S.A—V2sj+k - s +1
(¢) —'"—-—*——824_1 Hp s

Find « and 7 for the space curve x= ¢, y = >, z=¢° called the twisted cubic,

Vot + o2 + 1 3

Ans., Kk = -_—, 7T = -
(9¢%+ 452+ 1)3/2 9% + 912 + 1

Show that for a plane curve the torsion 7 = 0 .
Show that the radius of curvature of g plane curve with equations y=f(x), 2= 0, i.e. a curve in the xy
o018/2
plane is given by o = [1+f<“y)’]_ .
"
Y

Find the curvature and radius of curvature of the curve with position vector r =a cosu i +b sing j, where
a and b are positive constants. Interpret the case where a=5.

b 1 . . sy . .
Ans. K = 5 5 2 > 5 &z - 5 if a=5, the given curve which is an ellipse, becomes a cir-
(e® sin“u + b° cos®u) e
cle of radius o and its radius of curvature p=a,

Show that the Frenet-Serret formulas can be written in the form Z—ST = wxT, Z‘SN =wxN, ZTB = wxB and
determine @. Ans. @ = TT + kB

Prove that the curvature of the space curve r = r(z) is given numerically by « = _]Lx_l‘s_] , where dots de-
note differentiation with respect to z. | & |
F.rxT
(a) Prove that 7 = *IQ for the space curve r = r(z).
rxr
dr d’r d’r
ds2 7 d
(b) If the parameter ¢ is the arc length s show that 7 = ds > S 2 :3 .
(dr/ds )
.o -
If @=rxr, show that «= (:?3 , T= 9@—2
r

Find « and 7 for the space curve x =& — sin@, y =1 —cosf, z =4 sin(6/2).

Ans, k= L /6" 30050, 7= O +cos ) cos §/2 + 2sinf sinf°
8 12 cos 8 — 4
2

+
Find the torsion of the curve x = ft_ 11 s ¥ = _zt——l » 2 = ¢+ 2, Explain your answer.

Ans. T=0. The curve lies on the plane x — 3y +3z=5.

Show that the equations of the tangent line, principal normal and binormal to the space curve r =r(z) at the
point ¢=¢;, can be written respectively r = IoteTy, T=1,+tNy, 1 =1,+:B,, where ¢ is a parameter.

Find equations for the (a) tangent, (b) principal normal and (c) binormal to the curve x = 3 cost, v = 3 sin¢,
z = 4¢ at the point where £=TI.

Ans. (az) Tangent: r = —3i + 47k + t(—-—gj +%k) or x=-~3, y= —gt. z =47E+%t.
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(b) Normal: r = —31+4Mj+¢ei or %

—3 +¢, y =4T, z2=0.

(c) Binormal: r = —3i +47] +t(%—j +%k) or x=—3, y=4m+ %t, 2 =%t.

Find equations for the (a) osculating plane, (b) normal plane and (¢) rectifying plane to the curve x= 3t-—t3,
y= 3t2, z=3t +:3 at the point where t=1. Ans. @ y—z+1=10, (byytz—1= 0, (c)x=2
(a) Show that the differential of arc length on the surface r=r(u,v) is given by
is? = Edu? + 2Fdudv + Gdv®
o ot _ Ore or o oo _ Ore
where £ = 5050 = () F =9 © 7 w - @

(b) Prove that a necessary and sufficient condition that the u,v curvilinear coordinate system be orthogonal
is F=0.

Find an equation for the tangent plane to the surface z=xy at the point (2,3,6). Ans. 3x +2y —z =6

Find equations for the tangent plane and normal line to the surface 4z =x2—y2 at the point (3,1,2).
Ans. 3x —y — 2z = 4; x=3t+3, y=1—1¢ z2=2—2t

3, 2
_:3&_3111; , where E, F, and G are defined as
VEG —~ F

+

Prove that a unit normal to the surface r=r(,v) is n ==
in Problem 62.

MECHANICS

66.

67.

68.

69.

70.

A particle moves along the curve r = (2 —4)i + (2 +4)j + (8:2 — 3%k, where ¢ is the time. Find the
magnitudes of the tangential and normal components of its acceleration when t=2.
Ans. Tangential, 16 ; normal, 2V 73

If a particle has velocity v and acceleration a along a space curve, prove that the radius of curvature of its

3
path is given numerically by 0 = v

| vxal
An object is attracted to a fixed point O with a force F = f(rr, called a central force, where t is the posi-

tion vector of the object relative to 0. Show that rxv =h where h is a constant vector. Prove that the
angular momentum is constant.

Prove that the acceleration vector of a particle moving along a space curve always lies in the osculating
plane.

(a) Find the acceleration of a particle moving in the xy plane in terms of polar coordinates (,0,(]5) .
(b) What are the components of the acceleration parallel and perpendicular to O ?

Ans. @) T = [(,5—,09552) cos P — (p$+2,b(§5) singli
v [(p—pd?ysing + (ob +2pP) cos ]

®) p-pd?. pP+209
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THE VECTOR DIFFERENTIAL OPERATOR DEL, written V, is defined by
9 9 2 9 9

el

V=Ti+=i+Zk=iZ +j2 + k2

ox oy oz x Ay oz
This vector operator possesses properties analogous to those of ordinary vectors. It is useful in de-
fining three quantities which arise in practical applications and are known as the gradient, the diver-
gence and the curl. The operator V is also known as nabla.

THE GRADIENT. Let qS(x,y, z) be defined and differentiable at each point (x,y,z) in a certain re-
glon of space (i.e. ¢ defines a differentiable scalar field). Then the gradient of ¢
written Vo or grad ¢, is defined by

- (i +9; ., 0 _ 3. , 3. . 3¢
A A AL - I - I
Note that V¢ defines a vector field.

The component of V¢ in the direction of aénit vector a js given byand is called the di-

rectional derivative of ¢ in the direction a. Physically, this is the rate of change of ¢ at (x,y, z) in

fhedifection a.

THE DIVERGENCE. Let V(x,y,z) = Vi + 1§ + ¥,k be defined and differentiable at each point

(%,¥,2z) in a certain region of space (i.e. V defines a differentiable vector field).
Then the divergence of V, written V+V or div V, is defined by

9 . 9 . 9 . .
V.v (gl +a—y;| +$k)-(I{1 + Ui+ %k

]

W, L W, 3,

% By | %

Note the analogy with A-B = 4B, + 4,B, + A,B,. Also note that V-V # V.V,

THE CURL. If V(x,v,z) is a differentiable vector field then the curl or rotation of V, written V x v,
curl V or rot V, is defined by

3

. 9 9 . 9 . .
Vxv = (31 + 3y 50X + Vi + VK

i i k
- o 2 3
ox Jdy Jz

Vl Vz Va

87
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9 9 2 9 9 9
= By Bz i — ax 0z ] + Bx ay k
VQ VS Vl VS Vl V2
- (G ol (G T (5% = 3y K
Note that in the expansion of the determinant the operators .a—ax , % , :5—2 must precede Vi, Vo, Vs .

FORMULAS INVOLVING V. If A and B are differentiable vector functions, and ¢ and  are differen-
tiable scalar functions of position (x,y, z), then

1. Vip+yy = Vp + Vg or grad (@ + ) = grad @ + grad Y

9. V-(A+B) = V-A +V.B o div(A+B) = div A + divB

3. Vx(A+B) = VxA + VxB or curl(A+B) = curl A + curl B
4. V-(pA) = (V)-A + ¢ (V-A)

5. Vx (pA) = (Vp)yxA + o (VxA)

6. V-(AxB) = B-(VxA) — A-(VxB)

7. Ux(AxB) = (B-V)A — B(V-A) — A-HB + A(V-B)

3. V(A-B) = BV)A + A-V)B + Bx(VxA) + A% (VxB)
9.V-<V¢>EV2¢E?22_<2+3_2§2+3_22

3% | 0y | oa?

where v’ = & + i + e is called the Laplaci
Ox? oy? 3.2 © e Laplacian operator.

10. Vx(¥¢) = 0. The curl of the gradient of ¢ is zero.
11. V-(VxA) = 0. The divergence of the curl of A is zero.
12. Vx(¥xA) = VV-4) — VA

In Formulas 9-12, it is supposed that ¢ and A have continuous second partial derivatives.

INVARIANCE. Consider two rectangular coordinate systems or frames of reference xyz and x'y’z'(see

figure below) having the same origin O but with axes rotated with respect to each
other.

A point P in space has coordinates (x,y, z)or
(x1y} z") relative to these coordinate systems. The
equations of transformation between coordinates

of the coordinate transformations are given by

1 (x,y,)
T @yt

Q
It

lux + Loy + lLigz

D) "= px ey sz

<
I

N
|

lox + laoy + lazz

where ljk, j, k=123, represent direction cosines
of the x',y' and z' axes with respecttothe x,y, and
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z axes (see Problem 38). In case the origins of the two coordinate systems are not coincident the
equations of transformation become

x' = lnx + lle + ZISZ + ai
(2) )’l = dgx + lpy + lpz + af
Zl = lgix + lsz + l33 z + aé

where origin O of the xyz coordinate system is located at (af, ab, ai) relative to the x'y'z’ coordinate
system.

The transformation equations (1) define a pure rotation, while equations (2) define a rotation plus
translation. Any rigid body motion has the effect of a translation followed by a rotation. The trans-
formation (1) is also called an orthogonal transformation. A general linear transformation is called
an affine transformation.

Physically a scalar point function or scalar field qb(x,y,z) evaluated at a particular point should
be independent of the coordinates of the point. Thus the temperature at a point is not dependent on
whether coordinates (x,y,z) or (x)y, z) are used. Then if @ (x,y,2) is the temperature at point P with
coordinates (x,y,z) while ¢'(x;y, z") is the temperature at the same point P with coordinates (x| y! z%,
we must have ¢ (x,y,z) = @'(x,y, 2. U p(x,y,2) = @'(x,y, 2", where x,y,z and %,y, z' are related
by the transformation equations (I) or (2), we call ¢ (x,y,z) an invariant with respect to the transfor-
m%tion.QFor example, 2*+y%+2” is invariant under the transformation of rotation (I), since x"+y%+z%=
Ty,

Similarly, a vector point function or vector field A(x,y,z) is called an invariant if A(x,y,z) =
Al(x,y, 2. This will be true if

Ay 0+ Afwy, i + A (nyk = AEYDE + Ay D+ A dy DK

In Chap. 7 and 8, more general transformations are considered and the above concepts are extended.

It can be shown (see Problem 41) that the gradient of an invariant scalar field is an invariant
vector field with respect to the transformations (I) or (2). Similarly, the divergence and curl of an in-
variant vector field are invariant under this transformation.

SOLVED PROBLEMS
THE GRADIENT

L. If $(x,y,2) = 3x°y — y°2%, find Vb (or grad ) at the point (1,-2,—1).

Ve = <%i + a—ayj +a%k)(3x2y~y322)

ia%@ny—yszQ) + j%(3x2y—y322) + ka_az(sxzy_yszz)
= ()‘xyi + (3x2—3y222)j - 2y82k

= 6MEDE + {30 =320} - 2¢=2 -1k

= —12i — 9j — 16k
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2. Prove (a) V(F+G) = VF+VG, (b) V(FG) = F VG + G VF where F and G are differentiable sca-
lar functions of x,y and z.

(ay V(F+6y = (.a%i + .a%j + :s—zk)(F+G)

_ ;.0 . O 9
= i (F¥6) + ].ay(F+G) + kS (F+6)

=%§+ %—+j%—E+j%—f+k%§+k%;
R R N A
= (1.6a Bﬁ aa)F+(1ax+]§+ki)G = VF+VG

® VFG) = %1+%]+%k)(ﬂ;)
= %(FG)I + %(FG)j + %(FG)];
= (F%E+G%f)1 + (Fgf+GgF + (F%—G +Ggf
=F(%—§i+%—fj %k)+G(%F gj %?k)= FVG + GVF

3. Find Vb it (@) ¢ =1n 1], (b)qb:%,

(@) r=xi+yj+zKk Then ‘r\ = \/x2+y2+22 and ¢ =1n ‘r\ = '§1n(x2+y2+z2).

Vo = 3Vin (x2+y2+22)

= %{i—a— In(2+y2+22) + j—a—m(xﬁﬁy?u?) + ki In(x2 +y2+22)}

Ox Jy 9z
1. . 2y 2z ~ xi+yj+:zk _
- 2{11:62+y2+z2 J3.:2+y2+22 * kx2+y2+z2} T Tx2ty2422 0 12

Vi = V(F?Jr—lyé——zz) = V{(x2+y2+z2)-1ﬁ}

) Vo

pe)

- 10 (24242 Y2 4 i (2 ry2e2)” Y2 4 k2 (2 4y2 22" 72
3 3y 3

= i{—%(x2+y2+z2)- 3/22x} + ] {_%(x2+y2+22)" 3/22}’} " k{—%(x2+y2+zg)~ 3/2 22}

_ —xi—zj—-zk .
(952-§-y2+2:2)3/2 r

4. Show that Vr" = nr’" I.
Vi o= V(/a?+y2+22)t = V(x?+y2+z2)”/2

12 {227} 2 {22+ )Y KO {(2+y2+2)
Ox By dz

n/Q}
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nfz -

n/2-

1

nf2-1 22}

i{%(x2+y2+22) Zx} + J{n(x +y +22)

n/2-

Ty} o+ kZ@eted)

= n(x2+y2+22) : (xi+yj+ zk)

2=1 -2
n/ r = nl'n T

H

n (2

Note that if r = rr, where r, is a unit vector in the direction r, then Vilt=pe? r.

’\\
@ Show that Vo is a vector perpendicular to the surface ¢ (x,y,2) = ¢ where ¢ is a constant,

Let r=xi+yj+zk be the position vector to any point P(x,y,z) on the surface. Then dr = dxi +
dyj +dzk lies in the tangent plane to the surface at P.

9 " Ox Oz
ie. Vib.dr = 0 sothat V& is perpendicular to dr and therefore to the surface.

But d¢p = a¢d + ¢d qbdz =0 or <a_¢i + ¢] +a¢k) (dxi + dyj + dzk) =
x }’

6. Find a unit normal to the surface x2y + 2xz = 4 at the point (2,—2,3).

ViPy + 202y = (2y + 22)i + 22§ + 2%k = —2i + 4j + 4k at the point (2,—2,3).

—2i + 4j + 4k 1 2 2

Then a unit normal to the surface = iz__i——g—i—i = ——i + —=j + —k.
V(=2 +(4) +4) 5.3 3

Another unit normal is %i - % - %k having direction opposite to that above.

7. Find an equation for the tangent plane to the surface 2sz—3xy—4x =T at the point (1,—1,2).

V(2x2% = 3xy —4x) = (222—3y—4)i — 3xj + 4dxzk
Then a normal to the surface at the point (1,—1,2)is 7i — 3j + 8k.

The equation of a plane passing through a point whose position vector is r, and which is perpendicular
to the normal Nis (r—r ) +N =0. (See Chap.2, Prob.18.) Then the required equation is

[(xi +yj +2k)—(i—j+2K)]+ (Ti —3j +8Kk) =
or Tx—1) — 3(y+1) + 8z—2) = 0.

8. Let ¢(x,y,z) and P (x+Ax, y+Ay, z+Az) be the temperatures at two neighboring points P(x,y,z)
and Q(x+Ax, y+Ay, z+Az) of a certain region.

(@) Interpret physically the quantity —2 - Patlx, y+Ay, 2+8z) — b (x,y,2) where As is the

A
distance between points P and Q. s
(b) Evaluate 11m Ad _ 9o and interpret physically.
As—o0 As ds

(¢) Show that 9@ - vgp. &
ds ds

(a) Since A¢ is the change in temperature between points P and Q and As is the distance between these

Ag

points, A— represents the average rate of change in temperature per unit distance in the direction from
S

P to Q.
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(b) From the calculus,

Agp = o Ax + o0 Ay + ¢ Az + infinitesimals of order higher than Ax,ly and Az
Ox Oy Oz

6 .l Fly , bl

Then dm RS = EmSTA Y ey A T3 b
ip _pdx  pdy 0Pz

or ds_axds+ayds+52ds

e

Ts represents the rate of change of temperature with respect to distance at point P in a direction

toward Q. This is also called the directional derivative of ¢.

dp dpde Opdy  Opdz % op.  op ds  dy . dz
 c mntya tma D AT k)« (oi+ 508+ 5ok

—~
o
~
1t

- VqS.%E.

Note that since %t—; is a unit vector, Vd)% is the component of V¢ in the direction of this unit
vector.

6. show that the greatest rate of change of ¢, i.e. the maximum directional derivative, takes place
in the direction of, and has the magnitude of, the vector Vo.

By Problem 8(c), ‘é(—ﬁ = Vo ‘—;—r is the projection of Vb in the direction g—: . This projection will be
S S
a maximum when V¢b and %l;' have the same direction. Then the maximum value of gqs_b takes place in the

direction of V¢ and its magnitude is ‘ V¢ l .

10. Find the directional derivative of ¢ =%z + 4xz® at (1,~2,—1) in the direction 2i —j — 2k.

Vo

Vidyz + 4x®) = (2uyz +42550 + 22§ + Py +8xz)k
~ 8i—j— 10k at (1,-2,-1).
The unit vector in the direction of 2i —j — 2k is

. 2i —j— 2k
V(22 + (1) + (—2)°

2, 1. 2
= 31— 37 -3k

Then the required directional derivative is

(=]

= i— § — .g'__];'_g_ = 1__6- 2_ =
Vpoa = (8i—i~10K)-Gi—5i—35 R

ol
et

Since this is positive, ¢ is increasing in this direction.

11. (o) Inwhat direction from the point (2,1,-1) is the directional derivative of ¢ = achz3 a maximum?
(b) What is the magnitude of this maximum?

Vo

V(nyzs) = Qxyzsi + xQZsj + 3x2y22k
—4i —4j+12k at (2,1,~1).

Then by Problem 9,



12.

13.

14.
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{a) the directional derivative is a maximum in the direction qu = —4i —4j + 12k,
(b) the magnitude of this maximumis | V| = V(=42 + (<42 + (127 = V176 = 4/11.

Find the angle between the surfaces x°+y2+22=9 and z =42 +y?—3 at the point (2,—1,2).

The angle between the surfaces at the point is the angle between the normals to the surfaces at the
point.
A normal to «? +y2 +22 =9 at (2,—1,2) is
Vb, = Vi@ +y2+22) = i + 2y + 22k = 4 — 2 + 4k
Anormal to z = x+y®—3 or x2+y%—z =3 at (2,—1,9) is

Vo, = Vir+y2—2) = 2%i + 2% — k = 4i — 2j — k

(Vpp)+ (Vby) = | Vp,| | Vb, | cos 6, where @ is the required angle. Then

(M =2 +4k) (-2~ = |di-2+4k| |4i—21—k]| cos &

16 + 4 — 4 = V@2 +(22+@P VP (-2 (=17 cos O

and cos 8= —— = = 0.5819; thus the acute angle is & = arc cos 0.5819 = 54°95',

16 _ sV
6va1 8

Let R be the distance from a fixed point A(a,b,c) to any point P(x,y,z). Show that VR is a unit
vector in the direction AP = R,

If T, and r; are the position vectors ai+bj +ck and xi tyi+zk of 4 and P respectively, then
R = L, —r, = (x—a)i+ (y—b)j+(z—c)k, sothat R = 1/(x-—a)2+(y-—b)2+(z-—c)2 . Then

VR = V/w—af +(r=bF + (c—cy) = SOt =) + c=c)k _ R
Vis—aY + (y—bY + (z—c) R

is a unit vector in the direction R .

Let P be any point on an ellipse whose foci are at points 4 and B, as shown in the figure below.
Prove that lines AP and BP make equal angles with the tangent to the ellipse at P.

Let R1= AP and R,=BP denote vectors drawn re-
spectively from foci 4 and B to point P on the ellipse, and
let T be a unit tangent to the ellipse at P.

Since an ellipse is the locus of all points P the sum
of whose distances from two fixed points 4 and B is a

constant p, it is seen that the equation of the ellipse is R, R
Ri+Ry=p. / 2
K

By Problem 5, V(R1+R2) is a normal to the ellipse;
hence [V(R;+R)]+T=0 or (VR,)-T = —(VR,).T.

Since VR4 and VR, are unit vectors in direction R4
and R, respectively (Problem 13), the cosine of the angle
between VRQ and T is equal to the cosine of the angle be-
tween VRi and —T; hence the angles themselves are equal.

The problem has a physical interpretation. Light rays (or sound waves) originating at focus A, for
example, will be reflected from the ellipse to focus B.
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THE DIVERGENCE

15. If A = x%i — 2%%2j + xy%2k, find V- A (or div A) at the point (1,—1,1).

1]

V-a (—5 §J+§a—k) (x%i — 2%2§ + 2y%z k)

= ai;(xz) + §-(—2yz) + %(xygz)
s oz — 6%+ = 2D — 61D+ (D=1 = =3 at (L=LD.

16. Given ¢ = 2x3y2z4. (o) Find V-V (or div grad ¢).
2

2

2
(b) Show that V-V¢p = Vqu, where V- = 9, 9 4 9 denotes the Laplacian operator.

axQ Byz a Z2

(@) Vo i—,;-(szyQZA’) + j%({zﬁyzz"') + kéa;

X

( 2x3y2 24)

6962}'224 i + 4,763)’24 j + 8x3y223 k

Then V‘V¢ (;a—l+i]+3k) (6xyz1+4xyz3+8xyzk)
w9 %

= aax(stsz‘*) + :3;(495 vzt + %(Sxyz)

3.4

= 12t o+ et o+ 2%

u

®) V-Vo <31+31 ak) (aqb ¢ ¢k>
X

= 5 % 350
_ 32, 20, 23, T, T Te
23 Y 5% TG T W T e T
2 2
9 ) 2
B H— v
(52+32 327 ¢
17. Prove that V(1) =o.
2
vl - 2, P A S
DGR R E
2 1 . 9 2,~1/2 _ 2,2, 2-3/2
ax(/m) = ax(:)c +y +2%)" = —x(x"ty +2%)
S W G N R
9 Va2 +y? 422 e
= 3x2(x2+y2+22) -5/2 _ (:v52+y2+z2)ms/2 = ____—___ng—-yQ—zQ

(x2+y2+ 22)5/2

Similarly,
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18. Prove:
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a ( 1 2y2__ 22 - xQ 4 —82 ( 1 ) 222__ x2__y2

= (—— = ———— an - =

dy? Va? +y2 422 (x2+y2+22) 52 922 VaZiy?+7° (P +y2+225?

2 2 2
s 8 3 9 1
Then by addition, + = —) (=————==) = 0.
Bxg B 2 V 2+}/2+z2
2

The equation V ¢ = 0 is called Laplace’s equation. It follows that & = 1/r is a solution of this
on,

(a) V-(A+B)
() V-(¢A)

= V-A+V.B
= (Vg)-A + ¢(V-A).

(a) Let A = Ali + AQj +A3k, B = Bj_l + BQ] + Bsk.

%)y V.

19. Prove

Then V:(A+B)

el 2

k)« (B4i + B,j + B3k)

o T K)« (441 + Apj + Agk)
Oz

= (Zi+2j+ ——k) [(4+B)i + (4;+Byj + (Ag+ Bk ]
% Oy
= —aa—x(A1+Bi) + a—ay(A;BQ) + %(A;Ba)
T % % % ox | Oy | o2
= (,(%1 + —§—J + ,(;ik)-(Ali+A2j + AgK)
) 8 9
+ axl + ] + a
=V.A+V.B
@A) = Ve(PAsi + Phsi + PAgk)
9 9 9
= B_x(¢A1) + a—(<}5A2) + 5;@‘43)
_ %, o4y | 9P, o4y , O g
"t ¢ *ay2+¢ay+az‘43+¢az
9 9 3% 4, | B, | g
= A <24
T ety e P )
op. 3 bS] 0
= (a—fl + BZD a¢k) (A + 4o) + Agk) + ¢(—:1 +a—yJ + —
= (Vpy.a + ¢(V-a)
r
V(r—:3 =0.

Let ¢ =r=3 and A=r in the result of Problem 18(b).

Then V.31 =

= —3r

(V73

"WV.r

Yer + (r

-5

r-r + 3% = o,

using Problem 4.
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20. prove V-(UVV —VVU) = UVV =V VU.
From Problem 18(b), with @ =U and A = vy,
V.wVry = (Vi (Vry + uV-Vyy = (V- (Vr) + VA%
Interchanging U and V yields V-(v VOy = (VI-(VD) + v VU,

Then subtracting, V-(UVV) — V(¥ VU) = V- Vv — v Vi)
VUy-(Vvy + UV - [(VVy-(VUy + V VU]

vV - vV

21. A fluid moves so that its velocity at any point is v(x,y,2). Show that the loss of fluid per unit
volume per unit time in a small parallelepiped having center at P(x,y,z) and edges parallel to the
coordinate axes and having magnitude Ax, Ay, Az Tespectively, is given approximately by divv =
Vev.

x

Referring to the figure above,

x component of velocity v at P = v
10
x component of v at center of face AFED = v, — E—aﬁ Ax  approx.
X
1 avi
x component of v at center of face GHCB = v, + S5 Nx approx.
X
9
Then () volume of fluid crossing AFED per unit time = (v, — % B_U_i_ Dy Dy Dz
X
3
(2 volume of fluid crossing GHCB per unit time = (v, + 19 Axy Ay Dz,
2 ox
. 9
Loss in volume per unit time in x direction = (2) = (1) = ¥ AxDy Dz
X
. 2 I » av
Similarly, loss in volume per unit time iny direction = gg N Dy Dz
i
. o . v
loss in volume per unit time in z direction = 8—3 Dx Dy Dz
z
Then, total loss in volume per unit volume per unit time
0 9 L&)
<§”—1 + a—”Q + %)&Ayﬂz
= X Y 2 = divv = V-v

JAY Ay Nz
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This is true exactly only in the limit as the parallelepiped shrinks to P, i.e. as Ax,N\y and Az approach
zero. If there is no loss of fluid anywhere, then V-v = 0. This is called the continuity equation for an in-
compressible fluid. Since fluid is neither created nor destroyed at any point, it is said to have no sources
or sinks. A vector such as v whose divergence is zero is sometimes called solenoidal.

22. Determine the constant ¢ so that the vector V = (x +3y)i + (y—22)j + (x+az)k is solenoidal
A vector V is solenoidal if its divergence is zero (Problem 21).
9 0

Vv o= e o Lo r Seren = 141+

Then V-V=g+2=0 when a= —2.

THE CURL

23. If A =xz"i — 2°zj + 2yz*k, find V x A (or curl A) at the point (1,—1,1).

1}

Vxa (*a“iJf‘a*j+ik)x(x23i—2x2yzj+2yz4k)
% Oy Oz

i j k
- |9 9 9
O Jy 2
xz” —2x2yz 2yz4
3 4 9 ) 3 0 , 0 9
= [ 2@ - 222 + L2 — )i o+ [ —22ye) — L2 ]k
[ay”z’ S, 2yl [az<xz> S (2 i+ [ (D = 5 )]
= (2% + 2%)i + 3x2%) — 4dwyzk = 3j + 4k at (1,—1,1).
24. If A =x%i — 2%zj + 2yzk, find curl curl A.
curlcurl A = Vx(VxA)
i i k
3 3 3 v —
= == = == | = Vx [(2x+22)i — (x°+22)k
Vx| 5 > 5 [(2x+22)i ~ (x"+22)k]
2y — 2z 2yz
i i k
= 53 aﬁ 83 = (2 +2)]
x y z
2x +2z 0 —x -2z

25. Prove: (a) Vx(A+B) = VxA + VxB
(b) Vx(pA) = (Vo) x A + »(V xA).
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(a) Let A = A4,i +4,3 +A4;k, B = B,i +B,j +Bgk. Then:

Vx((A+B) = (% + B%] + ,;Z k) x [(4,+Bpi + (4;+B)i + (Ag+Bok]
i i k
.| 2 9 9
% dy 3z
A+B, A+B, Agt+B,
= [a (A+By — ,?z(A2+BQ)]i + [%(Aiwl) - ;(%(A3+B3)]j
9 3
+ [ "e 4B — 3 = (4,+B)]k
04 4 BAQJ, P4, 94g 94, ’aA1
= [Z28 - + [ - 208); v [~ =2k
[ay 3 32 ox = ay]
9By  ©OBoq. OB, 833 dB, OB,
_—= - + I | '
3 s -l e I ’ay]
= VXA + VXB
® Vx@a) = Vx (P41 + P4, + P41

i

il

i i k
9 K 9
n o 3z

P4, DA, DA,
[58—«75/13) <¢A2)]1 ¥ [ (qSAi)——(qus)]J ¥ [—gi@AQ)——g—@Ap]k
i x Y

[qbaAS + 9Py, - ¢8A2 - %—qﬁAQJi

y By BZ
Q4. . 0P B4y OP , 7. 04 qu 04, 99
+ [ 1y Py —-p2—- T4 -2t -
e [¢ax S m b5 = 5 Ak
B Yoy 1 (2 Yoy (Yo o1y
¢ L =OL T+ (5 =1 (- ay)k]
’a 2 9 0 2
+ [¢ ¢A3——8—2—5A2)1 + (%SAi——aEAs)' + (73%5-42—%5/41“(]

d(VxAa)y + g_qb ¢ o

d(Vxay + (Vo) x A.
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26. Evaluate V-(Axr) if VxA =0,

Let A= Aji+ 4,5 +A4k, r=xi+yj+zk.

i h] k
Then AxXr = Al AQ A3
x Yy z

(zAo — yda)i + (xdg—zA)] + (yA;1— x4k

and V- (AXT)

—a— (245 — yA3) + -a (xAg — zA4y) + —Q(yAl — x45)
Ox Oz

Oy
(%—f—%—fl?) (%?—%is) z(%’ig—aa—/;l)
= [xi+yj+zk]-[(%—/;'°‘—%’%n +(%Af—%i—3)j +(%—ff—%—ji)k]

t

r-(VxA) = r-curlA. If VxA=g this reduces to zero.

27. Prove: (a) Vx(V¢) =0 (curl grad ¢ =0), (b) V-(VxA) =0 (diveurl A =0).

@ Vx (Vpy = Vx(2Py.00;, 2,

% %3
i i k
- |2 9 9
%  d 2
9 % 9
% % 3z

9 op 3 O . 9 o 9 Op .. 9 op 3 9
= (L) — (T (Y - (L (=) - (YK
5&) —wGMN  Sap -sEl 55 55
e Yo, Fe Feo, T Fo
3y 0z 3z 9y 2% Ox 2" %y Jyom
provided we assume that ¢ has continuous second partial derivatives so that the order of differentiation is
immaterial.
i i k
5y V-(V = V. 9 9 9
© V- (VA % O %
4, 4 3
_ w.r,94s 94, Ods  Odq 04, 044
Vil - G- gt - ghud
DM _ My DBy g | 3 By
Ox Oy Oz dy Oz Ox dz Ox Oy
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_ X Fa, | P4 s Fa, | Tay _ .
30z | %y | yox | 0z0x | 929y

4
3 3

assuming that A has continuous second partial derivatives.

Note thé similarity between the above results and the results (CXCm) = (CxC)m =0, where m is a
scalar and C+-(CxA)=(CxC)-A=0.

28. Find curl (r f(r)) where f(r) is differentiable.

curl ¢ F(r)) = Vx@fey
= Vx (= f(Hi+yf(Ni+zfNOK
i j k
9 9 9
O Jy dz
xf) ¥y f® z f(r)
of _ . of,, of _ ,9of; of o
(s, —ygh Gy T IRl g TRk
F A . FD s rm . L0055 guitarty, OoLY g O 2L
But 3;‘(5)(87)_2%6,6( x°ty +2z%) ,__——x2+y2+22 - Similarly, > - an 3 5
Then the result = (zfry—yf—ri)i + (xf—ri—szx-)j + (y%f—xf—,—y)k = 0.
29. Prove V x (VxA) = _ VA + V(V-A).
i h] k
3 2 2
\Y = 2 < <
x (Vxa)y = Vx| o dy 3z
A Az 45
24 04 94 294 04 24
=V CaAs _ 24 1 _ Y484 Yae 21 k
S sl LR w WL 5 4
i k]
. 9 9 2
- O Jy 3z
O4s _ Az o4y _ Mg 94y _ 94s
3y oz 3z | ox 3 Oy
O O _ oAy 0 04y _ sy,
5 % ™) T % e i
O %4s _OAp, O Odp _ Oy,
S %o 3y
d 04, 0dg D Q4s 04,
S 8y L (== — —/A)Y)]k
M vl 3 oy o ]
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T EE TRt C e T e R
, Oy Fay Uy | D4, 4, | P4,
( P21+ 21y o+ + )k
= _%_&_8’41) +(_?i2_§2__82ﬁ)j (_%_8_2142_82’43)1‘
TR T TR ER N 3 9t
2 2 2 2 2 2 2 2 2
04y, 94, ' BAs)i . (BAl +8A22+ BAs)j . (8A1 . OAd; OAg

W oy on Gon | oy B 33 T S T30, 3k

y . ¥ T .
= —_ (‘3} + -a—yQ + 8—22) (Ail + AQJ + Agk)
i DM, e VgD oMy B

i—(=— )+ + a—A—S
Ox  Ox Jy Oz

3 4 3 34, 4,
' Ty %

+ 2 +

YRR Yy, TR

= __VQA +V(%+§é§+%)
% Oy z

= —Va -+ V(V-a)

If desired, the labor of writing can be shortened in this as well as other derivations by writing only the i
components since the others can be obtained by symmetry.

The result can also be established formally as follows. From Problem 47(a), Chapter 2,

(1) AX (BxC) = B(A-C) — (A-B)C
Placing A=B =V and C =F,

V x (VxF) VV-Fy - (V-WF = V(V.F) — VR

Note that the formula (7) must be written so that the operators A and B precede the operand C, otherwise
the formalism fails to apply.

30. If v=cwxr, prove @ = 3 curl v where @ is a constant vector.

i i k
culy = Vxv = Vx(wxr) = Vx |w, w, s
x Y r4

V x [(wgz —way)i + (wgx —wq2)j + (wiy -—a)zx)k]

i i
- 5 a_ay 5 = 21l @l + ok) = 2@,

Woz —Wgy  Wax —WeZ W1y — WoX
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Then @ = sV xv = zcurlv.

This problem indicates that the curl of a vector field has something to do with rotational properties of
the field. This is confirmed in Chapter 6. 1f the field F is that due to a moving fluid, for example, then a
paddle wheel placed at various points in the field would tend to rotate in regions whete curl F# 0, while if

curl F = 0 in the region there would be no rotation and the field F is then called irrotational. A field which
is not irrotational is sometimes called a vortex field.

2
31. 1f V:E=0, V-E =0, VxE=—%—H, VxH = %E, show that E and H satisfy Vo = Ou
¢ ¢

-
2
OH 3 3  OE 9E
V = —— = _———V = —_——( = e eme—
Vx (VxE) VX« at) 5t< ke ot o 3t?
2
By Problem 29, V x (VxE) = _VE +V(V-E) = _V’E. Then VE = %t%
. JE, _ 9 d, 2m IH
Ux (Uxm = Vx 2By - O Uxp) = 2y - _ 201,
Similarly, x (VxH) X(at) 3t< x E) at( az) 52
2
But Vx (VxH) = ~-V’n +V(V-my = ~V’H. Then V' - %—g
t

The given equations are related to Maxwell’s equations of electromagnetic theory.
2

Sy, Bu, u _ Ju

The egquation

%2 92 0z  of

is called the wave equation.

MISCELLANEOUS PROBLEMS.

32. (@) A vector V is called irrotational if curl V=0 (see Problem 30). Find constants a,b,c so that

V = (x +2y taz)i + (bx — 3y —z2)j + (4x +cy + 22)k
is irrotational.

(b) Show that V can be expressed as the gradient of a scalar function.

i j Kk
(@ culV = Vxv = % -S—y éa_z = (c+Di + (@=4)j + (b—2)k

x +2y taz bx —3y—z 4x +cy +2z

This equals zero when a=4, =2, ¢c=—1 and
V = (x+2y +42)i + (2 — 3y —2)§ + (4x —y + 22)k

(6) Assume V = V¢ = Egéi + ﬁ?ﬁj + B_Q_Sk
O Oy Oz

Then (1),—2%5=x+2y+4z, (2)2—;75=2x—3y—'2, (3)%%=4x—}’+22'

Integrating (I) partially with respect to x, keeping ¥ and z constant,

2
@ ¢ = 5o+ my +azt (0.9

where f(y,z) is an arbitrary function of y and z. Similarly from (2) and (3),
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2
®) ¢ = 2y =L g
(6) b = 4xz — yz + 22 + h(x,y).

Comparison of (4), (5) and (6) shows that there will be a common value of ¢ if we choose

N

3 2 2 x2 ) x 3 2
oy = =T P g = F+ S ke =G -
so that
2
¢ :%—§Z—+22+2xy+4xz—yz
Note that we can also add any constant to ¢>. In general if Vx V =0, then we can find ¢ so that V=V,

A vector field V which can be derived from a scalar field ¢ so that V= VqS is called a conservative vector
field and @ is called the scalar potential. Note that conversely if V=V, then VXV = 0 (see Prob.27a).

33. Show that if gb(x,y,z) is any solution of L.aplace’s equation, then qu is a vector which is both
solenoidal and irrotational.

2
By hypothesis, ¢ satisfies Laplace’s equation V ¢ = 0, i.e. V- (V) = 0. Then Vb is solenoidal (see
Problems 21 and 22).

From Problem 27a, Vx (V) = 0 so that Vb is also irrotational.

34. Give a possible definition of grad B.
Assume B = B;i + B,j + Bzk. Formally, we can define gradB as

VB = (2i+25+ 2y (Bii + Boj + Bgk)

x Oy Oz
BB—B:ii + a—ii’ij + %ik
%Ii’;“ + aa—igjj + aa—Bstk
+ %k + %i?kj +%kk

The quantities ii, ij, etec., are called unit dyads. (Note that ij, for example, is not the same as ii)
A quantity of the form

a,ii + a,if + amlk + oa,,§i + aii + a23]k + a&ki + a32kj + amkk

is called a dyadic and the coefficients a4q, aio, ... are its components. An array of these nine compo-
nents in the form

Q11 Q10 13
Qo1 Goo aog

a3y Gao agg

is called a 3 by 3 matrix. A dyadic is a generalization of a vector. Still further generalization leads to
triadics which are quantities consisting of 27 terms of the form a9 111 +apyq jii +.... A study of how
the components of a dyadic or triadic transform from one system of coordinates to another leads to the sub-
ject of tensor analysis which is taken up in Chapter 8.
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Let a vector A be defined by A = A,i + Aoj + 4gk and 2 dyadic @ by
® = aqdi + apij + aizik + il + agedd + aoalk + ag ki + ag ki + ass kk

Give a possible definition of A-®,

Formally, assuming the distributive law to hold,
A = (Aqi + 423+ Ask) @ = Agi- @+ Aoi-®+ Ask-®
As an example, consider i- &. This product is formed by taking the dot product of i with each term of

& and adding results. Typical examples are i ayii, 1- aoij, i apjl, 1+ agokj, etc. If we give mean-
ing to these as follows

foapil = eud-Di = oui since i-i = 1
ieapij = awd-Di = as0d since i-i =1
{-amil = am@-Hi = 0 since i3 = 0
i-axki = agp(i-B)j = 0 since i-k = 0

and give analogous interpretation to the terms of j-® and k-®, then

A

Ay(arqit asp it aig k) + Ao(a21 i+ aop i+ ak) + Ag(azm itasmitass k)

(Ayaqq + Agagy + Agas) 1+ (A1a12+A2022+A3‘132)j + (A1013+A2023+A3033)k

which is a vector.

(a) Interpret the symbol A-V. (b) Give a possible meaning to (A-V)B. (c) Is it possible to
write this as A-VB without ambiguity?

(@) Let A = A4i + Apj + Ask. Then, formally,

AV (A1 + Aad +A3k)-(,§;i+—§—yj +§;k)

9 9 9
Aiax + Az,ay + Asaz

is an operator. For example,
9 0 9 b
AVYD = (Ag= + Ao + Az = A =E & Ap=— + Ag=
( )¢ (1ax QBy Baz)¢ 1 28}' 3
Note that this is the same as A-V.

(b) Formally, using (a) w.ith ¢ replaced by B = Byi+ Boj+ Bsk,

9
z

"

(AV)B (Ai_a- + Agi +Ag)B = Aia—B + dpg== As%‘
z

e dy ? ™

3B, . OBy, OBy

. 9B, 9B, OB
(a7 AZ—B; tAg 1t (A= +42

B2 4,921 v OBj OBg OB,
Oy

5, e, Pk

oz

z

(¢) Use the interpretation of VB as given in Problem 34. 'Then, according to the symbolism established
in Problem 35,

A-VB = (Ali+A2j+A3k)-VB = A4i-VB + 4,j-VB + Agk-VB

OB, OB, OB By, , 9B, OB 0By, , 9B, OB
= Al(ax1+ 3x"+ ,axk? +A2(3y1+ ,ay3+ Byk) +A3(,azl+ az;|+ ,azk)
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%

which gives the Same result as that given in part (b). It follows that (A-V)B = A-VB without ambi-
guity provided the concept of dyadics is introduced-with properties as indicated.

37. If A =2yzi — xyj + x°k, B =% +yzj — xyk and ¢ = %%z, find

(@) (A-V)o,

@) A-V)o

(b) A-Vo

u

(b) AV, (¢) B-VYA, @) (AxV)¢,

(@2yzi — x%§ + x22k) - (%i + a—ay

(zyza—ax - nya% + szB_i) (2x%yz%)

o
+az")]¢

(e) Ax V.

2yzﬁ(2x2yza) - x2yi(2x2yz“3) + sz;a~(2x2y23)

Ox Jy Oz
(2y2)(4xy2®) — (P)(2%2) + (x2®)(6ay2P)
8969/224 - 2x4yz3 + 6x3yz4

3. 3

(2yzi — nyj + xz2%k) o (=50 + <L +

x| Oy

Fo

(2720 — 27y j + 22°Kk) - (day2®i + 220§ + 61y 2k)

89c}/224 - 2&6"'}/23 + 6x3yz4

Comparison with (a) illustrates the result (A-V)gb = A-Vqﬁ.

(¢) B-VYA

@) AxWV)¢

6l h et 2,,3,,2
= [(%i+yz§ — xyk) (8x1+8y +sz)]A
29 , 0O 3 2 0A 0A 0A
= —_— —_ —_— A = — = L2
“e TR, TR T G, Yoy, T omy,
= A(—2yi + K+ yz(2i— x%) — wp(Yyi+ %Wzk)
= (2yzQ — 2xy2)i - (2x3y + nyz)j + (x%22 2x2yz)k
For comparison of this with B-VA, see Problem 36(c).
= [(Zyzi—nyj +x22k)x(:a%i +-a§yj +é%k)]¢
i i k
= 2yz —ny xz? ol
9 9 o
n S Az
. 2 9 . 9 o 9
= — 2%y = — xz2 -2 2= oyz = k(2yz —
[1( y,az xz By) + j(xz o Yz 3, + (2yz ay
op el [ ¢ o
- .2 9P 2 9P, . 2% S F
= (x"y 3, + xz ay)l + (xz 3 2yz _az)] + (2z ay
= (6% + 2%0)1 + (P - 12H%%)) + (Pt

+ xzy;%)]@b

+ oy a—C’b)k

X

+ 4x3y223 Yk
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9 P d
() AxVp = (2yzi - %%y § +szk)x(—,aEi +—,a(—fj + Ta%k)
X

i i k
= 2yz -—ny xz°

op 99 of

Ox Oy Oz

% L | 6 W, % o0

= (—xy—a-z—xf?y)l + (xZQBx—Zyz Bz)] + (2yz -ay+xy x)k

u

— (8xy2? + 23:5)i + (4x2y25 — 122y%%)) + (4Pyz* + 4%k

Comparison with (d) illustrates the result (AX Vo = Ax V.

INVARIANCE

38. Two rectangular xyz and x'y'z’ coordinate systems having the same origin are rotated with re-
spect to each other. Derive the transformation equations between the coordinates of a point in
the two systems.

Let r and r' be the position vectors of any point P in the two systems (see figure on page 58). Then
since r= r',
@ iy o+ K = xi+yi +zk

Now for any vector A we have (Problem 20, Chapter 2),

A = @A+ AT F @K

Then letting A = i,j,k in succession,

i o= (i-ihi o+ od-hi o+ G-KYE = lygi + I+ [
@ i o= Geini o+ Gehi o+ @K = Loi' + lpi + laok'
K = keiyi + iHi o+ k-K)VK' = lwi + lbad + lag K

Substituting equations (2) in (1) and equating coefficients of i', j', k' we find
(3) x' = lax + gy + sz, y' = logx + oy + lonz, z' = lgyx + lagy * lasz

the required transformation equations.

39. Prove i’ = i +lod + Lk
i= lad + o + bk

K logi + laod + lask

For any vector A we have A = (A+i)i + (A-DJ * (A-K)k.

Then letting A = i', j', k' in succession,

@-pi o+ d@-nio+ Rk
Geiyi + GeDi o+ Bk = lgd t ol F loak
G-hi + KD o+ KRk = lggd ¥ e + sk

llli + l12j + l13k

[
[t}

"

=
|
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3
40. Prove that 1521 lﬁm ZM =1 if m=n, and 0 if m#n, where m and n can assume any of the values
1,2,3. -

From equations (2) of Problem 38,

il = 1 = (ggd + g’ + Lagk’y o (liad' + Lpgi + lg1k")
= Uy o+ g+ 13

i = 0 = (i + i 4 LK) - (iod’ + Lod’ + k')
= halio + loglep + lgilg

ik = 0 = (i + i + Iy k') o (Ugi’ + Lgd' + lagk’)

= hglig + llog + Iyl

be proved for m=2 and m=3.

1if m=n

3
the result can be written 2 I, [, = §
0if mpn o oo O8n p=y om o

By writing Smn = { .

The symbol 9, is called Kronecker’s symbol.

41. If ¢(x,y,z) is a scalar invariant with respect to a rotation of axes, prove that grad ¢ is a vector
invariant under this transformation.

By hypothesis qb(x,y,z) = qb'(x',y', z'). To establish the desired result we must prove that

B, % W, W, W,

+ k = + + <7k
- FE £ W

Using the chain rule and the transformation equations (3) of Problem 38, we have

% W Yy | 3, 3
9% %' % Oy’ B %' R M 3y ¥z
o W WY W | 3, o,
9 ' dy ' By 3 Yy I - VR W
% W L Wy w3, ¥, 3
az N axl az ay’ az 3z' az N axl 13 ay’ 28 az' 33

Multiplying these equations by 1i,j, k respectively, adding and using Problem 39, the required result fol-
lows.
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SUPPLEMENTARY PROBLEMS

It ¢

A= 2%i—3yzj+xz°k and ¢ =2z — Ky, find A-Vo and Ax Vg at the point (1,—1,1).
Ans. 5, Ti—j—11k

{

oxz* — Py, find Vb and | Vep | at the point (2,-2,~1).  Ans. 10i—4j— 16k, 293

I F =#z+ ¥ and G = 2% —xy?, find (@) V(F+G) and (b) V(FG) at the point (1,0,-2).
Ans. (a) —4i +9j +k, (b) —8j

Find V lr‘s. Ans. 3rr

Prove Vf(r) = for,

7

Evaluate V(37— 4Vr +2-).  dns. (6-— or=3/2 _ 9~y p

r

1 VU= o*r, find U.  Ans. rY/3 + constant

Find ¢ () such that Vep =—¢ and $(1)=0. Ans. Q)= %(1 ——13—>
r r
St 2t 22 ~
Find Vs where 1 = @ +y" +2%) e FYEED O dps. @=n)eTx
1t Vo = my2®i + 27" § + 3x%y2” k, find Plx.y,2) if B(1,-2,2) = 4. Ans. P = £y + 20
it Vi = (52— 2uyz")1 + (3 + 20y — 222 + (625 — 3%2" )k, find .

Ans. ) = xy? — 2yz° + 3y +(3/2) 2* + constant

If U is a differentiable function of x,y,z , prove VU.dr = dU.

1f F is a differentiable function of x,y,z,t where x,y,z are differentiable functions of ¢, prove that
dF _ OF

OF . dr
dt = Ot + VF dt

If A is a constant vector, prove V(r <Ay = A.
I A(x,y.2) = Agi + Aoj + Agk, show that dA = (VA,-doyi + (VAg-dni + (VAg+dnk.

Prove V(%) = G—VL—E{"—VQ it G#0.

Find a unit vector which is perpendicular to the surface of the paraboloid of revolution z = %2+ y2 at the

2i +4i -k

+v//21

Find the unit outward drawn normal to the surface (x — 2+ y2 +(z +2)2 = 9 at the point (3,1,—4).
Ans. (21 +§ — 2Kk)/3

point (1,2,5). Ans.

Find an equation for the tangent plane to the surface xz” +x% = z — 1 at the point (1,-3,2).
Ans. 2x—y—3z+1 =20

Find equations for the tangent plane and normal line to the surface z = xQ+y2 at the point (2,—1,5).
x — 2 =Y +1 A
, 4 —2 —1

Ans. 4x — 2y —z =5, 5 or x =4t+2, y=—2t—1, z=—t+5

Find the directional derivative of ¢ = axz” — BnyQZ at (2,—1,2) in the direction 2i—3j + 6k.
Ans. 376/17

Find the directional derivative of P = 4e2%~ Y% Z gt the point (1,1,—1) in a direction toward the point

(—3,5,6). Ans. —20/9
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In what direction from the point (1,3,2) is the directional derivative of @ = 2%z —y2 a maximum ? What is
the magnitude of this maximum ?  Ans. Inthe direction of the vector 4i — 65 + 2k, 2V 14

Find the values of the constants a,b,c so that the directional derivative of ¢ = axy® + byz +cz2x® at
(1,2,—1) has a maximum of magnitude 64 in a direction parallel to the z axis. Ans. a=6, b=24, ¢=—8

Find the acute angle between the surfaces xy’z = 3x+z° and 3x”—y®+2z = 1 at the point (1,~2,1).

V6

Ans. arc cos = arc cos —1-; = 19%5'

3
V14 V21
Find the constants « and b so that the surface ax® — byz = (a+2)x will be orthogonal to the surface
4x% +2° = 4 at the point (1,~1,2). Ans. a=5/2, b=1

(@) Let » and v be differentiable functions of x,y and z. Show that a necessary and sufficient condition
that u and v are functionally related by the equation Fu,w)=0 isthat VuxVu =0,
(b) Determine whether u = arc tanx + arc tany and v = lx:y

Ans. (b) Yes (v =tanu)

are functionally related.

(a) Show that a necessary and sufficient condition that u(x,y,z), v(x,y,z) and w(x,y,z) be functionally re-
lated through the equation F(u,w,w)=0 is Vu-VoxVw = 0.
(b) Express Vu- Vo xVw in determinant form. This determinant is called the Jacobian of u,v,w with re-

spect to x,y,z and is written %M or J(BBWy.

<x’y’z) x’yiz

(¢) Determine whether u =x+y+z, v =x"+y?+2% and w = xy +yz +zx are functionally related.
3
ax ay aZ
dv  dv v 2

Ly [ e o —v—2w =

Ans. (b) o ay 3 (¢) Yes (" —v—2w =0)
w w dw
d9x Jy Oz

If A=3xy2"i+20°)~2yz k and ¢ = 3x®—yz, find (a) V- A, (5 AV, (¢)V- (DAY, @) V-V,
at the point (1,—1,1).  Ans. (a) 4, (b) —15, (¢) 1, () 6

Evaluate div (2+%zi — xygzj + 3yzQ k). Ans. dxz — 2xyz +6yz

If ¢ = 3z — y223 +4x3y +2x — 3y — 5, find VQQb. Ans. 6z + 24xy — 22° 6y22

Evaluate V2(1n r). Ans. 1/1°

Prove Vzrn= n(n+1)rn—2 where n is a constant.

It F = (3% —2)i + (x2° +3")j — 27k, find V(V-F) at the point (2,—1,0).  Ans. —6i + 24j — 3%
If @ is a constant vector and v = @xr, prove that divy = 0.

Prove V(@) = ¢V + aVeh-Vih + V.

If U= 3x2y, V=x? — 2y evaluate grad [(grad U). (grad V)] . Ans. (6y22~ 12x¢)i + 6xsz +12xyz k
Evaluate V- (rS r). Ans. 67°

Evaluate V- [rV(l/ra)] . Ans. 3r74

Evaluate VQ[V-(r/rQ)’]. Ans. 2r7%

If A=r/r, find grad divA. Ans. —2r %

2 )
(a) Prove VQf(r) = % + rg% (b) Find f(r) such that VQf(r) =0.

Ans. f(ry= A + B/r where 4 and B are arbitrary constants.
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84. Prove that the vector A = 3y*2°i + 4xz%j — 34%”k is solenoidal.

85. Show that A = (2% +8xy°2)i + (32 — 3uy)j — (&7z° + 232)k is not solenoidal but B =xyz” A is
solenoidal.

86. Find the most general differentiable function f@r) so that f(r)r is solenoidal.
Ans. f@) = C/r® where C is an arbitrary constant.

87. Show that the vector field V = —xi=yd is a ''sink field"'. Plot and give a physical interpretation.
\/xQ + yQ
88. If U and V are differentiable scalar fields, prove that VU xVV is solenoidal.

89. If A = 22221 — yzj + 3xz°Kk and ¢ = x”yz, find
@ Vx A, (&)cul (@A), ©Vx(Vxa), @ VIA-cul Al, (e)curl grad (PA) at the point (1,1,1).
Ans. (a)i+j, (b)5i—3j— 4k, (c) 5i +3k, (d)—2i+j+8k, ()0

90. If F = 2%z, G = xy—3z2, find @ VIVF)-V6)], V- [(VFyxV6)], (c)Vx (VFyxV&].
Ans. (a) (2y22 +8x%z — 12xyz)i + (4xyz — 6x22)j + (ny2 xS — Gny)k
) 0
() (% — 2xyz)i — (126% + 2xyz)j + (209” + 1227 +x)k
91. Evaluate Vx (r/r). Ans. 0

92. For what value of the constant a will the vector A = (axy——zs)i + (a—-2)x2j + (1—a)szk have its
curl identically equal to Zero? Ans. a =14

93. Prove curl (¢ grad ®)=0.

94. Graph the vector fields A=xi+yj and B=yi—x]. Compute the divergence and curl of each vector
field and explain the physical significance of the results obtained.
95. If A = x%zi +yz°j — 3xyk, B'= y?i —yzj + 2k and ¢ = ox? +yz, find
@ A- (V). & A-Vrp, © (A-V)B, @ B(@A-V), (o) (V-A)B.
Ans. (a) 4%z +yz%— 3xy2, (b) 4%z +y2t — 3xy? (same as (a)),
(¢) 2y%2% i + (3xy?2 —yz®)j + 2%z Kk,
(d) the operator (x%%zi — xPyz2§ + 2%z k)ga— N R R al I 2yz® k):S*
x i
P,

+ (=3xy% i + 3xy%zj — 657y k)a—
z

(e) (2xy22 + yzzs)i — (2xyzQ+yz4)j + (4x22 + 2z3)k
96. If A = yz2i — 3xz°j + 2yzk, B = 3xi + 4zj — xyk and @ = xyz, find
@ Ax (Vpy, &) (AxVye, (o) (VxA)x B, (@) B-VxA.
Ans. (a) —5:2yz%1 + xy%2?§ + 4xyz> k

b) —SnyZQi + xy222j + 4xyzsk (same as (a))
() 162%1 + (8’yz — 12x2%)j + 3227k @) 245’z + dxyz®

97. Find Ax(VxB) and (AxV) )'I<B at the point (1,—1,2), if A = xz°i+2yj—3xzk and B =3xzi+ 2yzj — k.
Ans. Ax(VxB) = 18i - 12j + 16k, (AxV)xB = 4j + T6k

98. Prove (v-V)v = 3Vo@ — vx (Vxv).

99. Perve V-(AxB) = B-(VX A) — A-(VxB).

100. Prove Vx(AxB) = (B-V)A — B(V-A) — A-VyB + A(V-B).

101. Prove V(A-B) = B-V)A + (A-V)B + Bx(VxA) + Ax (Vx B).

102. Show that A = (6xy +2%)i + (3x% — z)j + (3xz” — y)k is irrotational. Find ¢ such that A = V.
Ans. ¢ = 3%y + xz° — yz + constant
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Show that E = r/r? is irrotational. Find ¢ such that E = — V¢ and such that ¢(a)=0 where a> 0.
Ans, @ = In(a/r)

If A and B are irrotational, prove that Ax B is solenoidal.
If f(r) is aifferentiable, prove that f(r is irrotational.

Is there a differentiable vector function V such that @curl V=r, (B)curl V=2i +j+3k? If so, find V.
Ans. (@) No, (b) V = 3xj + (2y ~x)k + Vb, where ¢ is an arbitrary twice differentiable function.
Show that solutions to Maxwell’s equations
1 BE v 1 9 v v
= = = X = -3 M =0u, * = &7
VxH c o E ¢ 3, H=0 E = 47p
where 0 is a function of x,y,z and ¢ is the velocity of light, assumed constant, are given by

E=—V¢—%8—A H=Vxa

o’
where A and ¢, called the vector and scalar potentials é‘espectively, satisfy the equations2
1 9 1 ¢ 1 9°A
nva+=2L-yg, @V -5 P = —amp, 3y Va-=1
&0 ¢ 9 ¢ c? ¥ P ¢® A2

(a) Given the dyadic & = ii+jj+kk, evaluate r-(®-r) and (r-@)-r. (b)Is there any ambiguity in
writing r-®-r? (c) What does r-@-r = 1 represent geometrically ?

Ans. (@)r-(@-r) = (r-®)-r =x2+y2+22, (b) No, (c) Sphere of radius one with center at the origin.

@I A=xzi—9°j+yk and B = 22§ — xyj + y*k, give a possible significance to (Ax V)B at
the point (1,-1,1).
(b) Is it possible to write the result as A X (VB) by use of dyadics 9
Ans. (a) —4ii~ ij + 3ik — ii — 4ji + 3kk
(b) Yes, if the operations are suitably performed.

Prove that ¢(x,y,z) = x> +y2 +22 is a scalar invariant under a totation of axes.

If A(x,y,z) is an invariant differentiable vector field with respect to a rotation of axes, prove that (a) div A
and (b) curl A are invariant scalar and vector fields respectively under the transformation.

Solve equations (3) of Solved Problem 38 for x,¥,2 in terms of x',y', z',
Ans. x = g’ + lgiy'-l- bt 2, y = lhox + ZQQy'+ Ippz', z = Lig %' + ngyl+ lag 2’
If A and B are invariant under rotation show that A-B and Ax B are also invariant,

Show that under a rotation
V = i i + j A + k _a_ = i'i + Y a
x93y N3 W !

li_ ']
By’+k8z’ =V

Show that the Laplacian operator is invariant under a rotation.



Chapter 5

ORDINARY INTEGRALS OF VECTORS. Let R(u) = Ri(u)i + Ro(w)j§ + Ra(u)k be a vector depending
on a single scalar variable u, where Ri(u), Ro(u), Ro(u) are
supposed continuous in a specified interval: Then

fR(u)du = ile(u)du + ijQ(u)du + kfRs(u)du

is called an indefinite integral of R(u). If there exists a vector S(u) such that R(u) = (—id;(S(u)), then

fR(u)du = fj%(s(u)) du = S(u) +¢c

where ¢ is an arbitrary constant vector independent of u. The definite integral between limits u=a
and z=>b can in such case be written

b b g b
f R(u)du = f %(S(u))du = s@) +c| = S - S@
a
a a

This integral can also be defined as a limit of a sum in a manner analogous to that of elementary in-
tegral calculus.

LINE INTEGRALS. Let r(u) = x(u)i + yu)j + z(u)k, where r(z) is the position vector of (x,y,2),
define a curve C joining points P, and P,, where u=u, and u=u, respectively.

We assume that C is composed of a finite number of curves for each of which r(u) has a contin-
wous derivative. Let A(x,y,z) = A1i +A,i + Ask be a vector function of position defined and con-
tinuous along C. Then the integral of the tangential component of A along C from P, to P,, written as

P2
f A'dl‘ = fA-dl' = fA1 dx + A.2 dy + Ag dz
Py ¢ ¢

is an example of a line integral. If A is the force F on a particle moving along C, this line integral
represents the work done by the force. If C is a closed curve (which we shall suppose is a simple
closed curve, i.e. a cutve which does not intersect itself anywhere) the integral around C is often

denoted by
‘{A-dr = f Ajdx + Aydy + Agdz

In aerodynamics and fluid mechanics this integral is called the circulation of A about C, where A
represents the velocity of a fluid.

In general, any integral which is to be evaluated along a curve is called a line integral. Such
integrals can be defined in terms of limits of sums as are the integrals of elementary calculus.

For methods of evaluation of line integrals, see the Solved Problems.

The following theorem is important.

82
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THEOREM. If A=Vg¢ everywhere in a region R of space, defined by a1 Sx < ay, by Sy<ob,,
¢1 £z 5 ey, where ¢(x,y,z) is single-valued and has continuous derivatives in R,

then

1

Py
1. f A-dr is independent of the path C in R joining P, and P.
P,
. f A-dr =0 around any closed curve C in R.

C

In such case A is called a conservative vector field and ¢ is its scalar potential.

A vector field A is conservative if and only if VxA=0, or equivalently A=Vg¢. In such case
Adr = Ay dx + Ay dy + A3dz = do, an exact differential. See Problems 10-14.

SURFACE INTEGRALS. Let S be a two-sided surface, such as shown in the figure below. Let one

side of S be considered arbitrarily as the positive side (if S is a closed
surface this is taken as the outer side). A unit normal n to any point of the positive side of § is
called a positive or outward drawn unit normal.

Associate with the differential of surface
area dS a vector dS whose magnitude is dS and
whose direction is that of n. Then dS =n dS.
The integral

[[vo - ffans

S

is an example of a surface integral called the
flux of A over S. Other surface integrals are

Jloss forss [fre

where ¢ is a scalar function. Such integrals can
be defined in terms of limits of sums as in ele-
mentary calculus (see Problem 17).

The notation # is sometimes used to indicate integration over the closed surface §. Where

S
no confusion can arise the notation f may also be used,
S

To evaluate surface integrals, it is convenient to express them as double integrals taken over
the projected area of the surface S on one of the coordinate planes. This is possible if any line per-
pendicular to the coordinate plane chosen meets the surface in no more than one point, However, this

does not pose any real problem since we can generally subdivide S into surfaces which do satisfy
this restriction.

VOLUME INTEGRALS. Consider a closed surface in space enclosing a volume V. Then

[l fffon

are examples of volume integrals or space integrals as they are sometimes called. For evaluation of
such integrals, see the Solved Problems.



84 VECTOR INTEGRATION

SOLVED PROBLEMS

2
1. If Ru) = (w—udi + 2% i — 3k, find (a) fR(u) du and (b)f R(u) du .
1

(a) fR(u) du = f [(u—uQ)i + ol — 3k]du
= if(u—uQ)du + jquSdu + kf-—Bdu

2 3 4
= i(%_%+cl) + j(“?+ cp) + K(—3u tcg)
2 3 4
= (”7—”3)1 + ‘—‘2—3' — 3uk + ec41 + i * cgk
2 3 4
= (“5_93—)1 + "7]' — 3k + ¢

where ¢ is the constant vector cgi + coJ + ¢ca k.

fQ u o ut . lQ
(b) From (a), A Ru)du = (?-—-3-)1 + i - 3uk + ¢ N
2 8., 2. R I o
- (E-Du+Zi-s@k el = [ - Lyi+ 45 - 3Dk + e
. By 4 15y _
= 61 + 5 i 3k
Another Method.
2 2 2 2
fi R)du = iJ‘1 (w—u2ydu + jfl udy + Kk _L - 3du
s w2 Wl 2 cout 2 2 - 5. 15 .
Aoy s adpl, ¢ kel = -l v P -
2. The acceleration of a particle at any time ¢20 1is given by
a = Z_Z = 12cos2ti — 8sin2tj + 16tk

If the velocity v and displacement r are zero at t=0, find v and r at any time.

u

Integrating, Vv if 12 cos 2t dt  + jf—85in2tdt + kf 16¢ dt

6sin2ti + 4cos2ti + 8Fk + ¢

Putting v=0 when ¢=0, we find 0 = 0i + 4j + Ok +¢q and ¢ = —4].

Then v = 6sin2ti + (4cos2t—4)J + 82k

gsin2ti + (dcos2t—4)i + 8t2Kk.

dr
so that i

Integrating, T istintht + jf(4 cos 2t — 4) dt + kf 8¢ di

—3co82ti + (2sin2t—487§ + %tak + €

Putting r=0 when £=0, 0 = —3i +0j + 0k + co and ;= 31i.
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Then r = (3—3cos2¢)i + (2sin2t—4s)j + %f’k.

2
3. Evaluate fA X %t—é dt .

2
d dA dA dA _dA d A
= == - =2 4 22 xS
dt(Ax dt ) Ax de? dt > dt di?

dA
s =5 = = — + .
Integrating, f A>< dt f d dt de A X I c

4. The equation of motion of a particle P of mass m is given by

mg—i = f(ryn

85

where r is the position vector of P measured from an origin O, r, is a unit vector in the direction r,

and f(r) is a function of the distance of P from O.
(a) Show that r x % = ¢ where ¢ is a constant vector.

(b) Interpret physically the cases f(r) <0 and f(r)>0.
(c) Interpret the result in (a) geometrically.

(d) Describe how the results obtained relate to the motion of the planets in our solar system.

2

(2) Multiply both sides of m Zt = f(r)ry by rx. Then
2

dr
mrxﬁ = f(rxr, = 0

since r and r; are collinear and so rxr; = 0. Thus
dT _ 4o car
rxdt = 0 and dt(rxdt) 0

Integrating, r x % = ¢, where ¢ is a constant vector. (Compare with Problem 3).

2

(b)Y If f(r) <0 the acceleration Z—t; has direction opposite to r;; hence the force is directed toward O and

the particle is always attracted toward O.

If f(r)> 0 the force is directed away from O and the particle is under the influence of a repulsive

force at 0.

A force directed toward or away from a fixed point O and having magnitude depending only on the

distance r from O is called a central force.

(¢) Intime A¢ the particle moves from M to N (see ad-
joining figure). The area swept out by the position
vector in this time is approximately half the area of
a parallelogram with sides r and Ar, or 4r x Ar,
Then the approximate area swept out by the radius
vector per unit fime is §r x ﬁ— hence the instan-

t
taneous time rate of change in area is
lim erﬁr = %rxﬂ =
At-0 ¢ ds
where v is the instantaneous velocity of the parti-

!
irxv
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(d)
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cle. The quantity H = %r X % = %rx v is called the areal velocity. From part (a),
Areal Velocity = H = 4rx g—; = constant

Since r-H = 0, the motion takes place in a plane, which we take as the xy plane in the figure above.

A planet (such as the earth) is attracted toward the sun according to Newton’s universal law of gravita-
tion, which states that any two objects of mass m and M respectively are attracted toward each other

with a force of magnitude F = Gﬂ;lgm , where r is the distance between objects and G is a universal

constant. Let m and M be the masses of the planet and sun respectively and choose a set of coordi-
nate axes with the origin O at the sun. Then the equation of motion of the planet is

& GMm & GM
mop S T n or -

a2 2 n
assuming the influence of the other planets to be negligible.

According to part (¢), a planet moves around the sun so that its position vector sweeps out equal
areas in equal times. This result and that of Problem 5 are two of Kepler’s famous three laws which he

deduced empirically from volumes of data compiled by the astronomer Tycho Brahe. These laws ena-
bled Newton to formulate his universal law of gravitation. For Kepler's third law see Problem 36.

5. Show that the path of a planet around the sun is an ellipse with the sun at one focus.

o))

)

(3)

From Problems 4(c) and 4(d),

v _ _GCM
d - T eh
rxy = 2H = h
Now r = LR that
oW r=711I4, dt_rdt dtri S0 thal
dr. dr dr.
h = rxv = rr1><(rd—t1+arl) = T21’1>(~d—t1—
dv GM dr
From (1), — xh = —7r1xh = —GMrlx(rlxd—ti)
dr. dr. dr
= —GM Rt — )] = oML
l(ry dt)ﬁ (ry19) T M T
using equation (3) and the fact that rl.d—d% = 0 (Problem 9, Chapter 3).
R . dv d
But since h is a constant vector, I x h = E(vx h) so that
4 - dry
dt(vxh) = GM dt
Integrating, vxh = GMry +p
from which r-(vxh) = GMr.ry +rp
= GMr + rrep = GMr + rpcost

where p is an arbitrary constant vector with magnitude p, and & is the angle between p and ry.

Since r-(vxh) = ¢xv)-h = h-h = h2, we have B = GMr + rp cos g and

i 5 - Y/GM

GM +p cos & 1+ (p/GM) cos O
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From analytic geometry, the polar equation of a conic

Y
section with focus at the origin and eccentricity € is
a N . .
"= {+tcoos O where a is a constant. Comparing this Planet
with the equation derived, it is seen that the required “or f
orbit is a conic section with eccentricity € =p/GM. J x
!

The orbit is an ellipse, parabola or hyperbola accord- 10
ing as € is less than, equal to or greater than one.
Since orbits of planets are closed curves it follows
that they must be ellipses.

a

Blbse 1= eos D

LINE INTEGRALS

6. If A= (3x° +6y)1 — 14yzj + 20xz2k, evaluate f A-dr from (0,0,0) to (1,1,1) alongthe follow-
ing paths C: c
(@) x =i, y =12, z2=1°,
(b) the straight lines from (0,0,0) to (1,0,0), then to (1,1,0), and then to (1,1,1).
(¢) the straight line joining (0,0,0) and (1,1,1).

f Adr = f[(3x2+6y)i— 14yzj +20x22k ]« (dxi + dyj + dz k)
c c

f(3x2+6y) dx — layzdy + 20x%dz
77

(@) If x=¢, y=¢7, z=1°, points (0,0,0) and (1,1,1) correspond to £= 0 and =1 respectively. Then

1
fC:A-dr = f (B +6%)de — 142 (%) d(2) + 20@)(°)? d(°)

=0
1
= f 92 dt — 288 dr + 60¢° di
t=0
1 1
= (9°—28:°+60°) dr = 3P — a4 +6°| = 5
[e]
=0

Another Method.
Along C, A = 91— 14:°) + 20k and r=axi+yj+zk =i +2j +°k and dr = (i +2¢j +3:2Kk) dt.

1
Then fA-dr = f(9t2i—14t5j+20t7k)-(i+2tj+3t2k)dt
¢ t=0
1
f 9F — 28:% + 60:%)dr = 5
(o]

H

(b) Along the straight line from (0,0, 0)to (1,0,0) ¥=0,2=0,dy=0,dz=0 while x varies from 0 to 1. Then
the integral over this part of the path is

1 1 1
f (35°+6(0)) dx ~ 14(0)(0)(0) + 20x(0)2(0) = f 37 dx = 0| = 1
x=0Q x=0
Along the straight line from (1,0, 0) to (1,1,0) %=1, z=0, dx=0, dz=0 while y varies from 0 to 1.
Then the integral over this part of the path is TS————

1
(3(1°+6y)0 — 14y(0)dy + 20(1)(02 0 = 0

¥=0
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Along the straight line from (1,1,0) to (1,1,1) x=1,y=1,dx=0,dy=0 while z varies from 0 to 1.
Then the integral over this part of the path is

* 1 3 1
20 2
(3(1)2+6(1))0 — 14(1) 2(0) + 20(1)2z° dz = f 2022dz = 32 . - ?0
2=0 220
Adding, fA-dr = 1+0+% - -2-33
c

(¢) The straight line joining (0,0,0) and (1,1,1) is given in parametric form by x=¢, y=¢t, z=¢. Then

l§

1
f A-dr f (32+66) de — 14(t) (1) de + 20(0) ) de
¢
=0

1 1
f 32+ 6t — 142 +206°y dt = f (6t —1172+208%) de = 133
t=0

=0

%. Pind the total work done in moving a particle in a force field given by F = 3xyi — 5zj + 10k

along the curve x =¢2+1, y = 22, z=¢> from t=1 to t=2.

Total work = fF-dr = f(3xyi—5zj+10xk)-(dxi+dyj+dzk)
¢ c

f3xydx — 5zdy + 10x dz
c
2

S +1)(22) d(P+1) — B()d@®) + 107 +1)d(°)

t

(125 + 106* + 12:° + 30:2)dr = 303

=1
2
1
8. If F=3xyi — y2 j, evaluate f F-dr where C is the curve in the xy plane, y = 2x2, from (0,0)
to (1,2). C

Since the integration is performed in the xy plane (2=0), we cantake r = xi + yj. Then

fF-dr = f(3xyi—y2j‘)-(dxi+dyj)
¢ ¢
= f 3xy dx — y? dy
c

First Method. Lt x=¢ in y= 9x°. Then the parametric equations of C are x=t,y= 2t*. Points (0,0) and
(1,2) correspond to £=0 and t=1 respectively. Then

1 1
fF-dr = f () (262 dt — (26°Y d(2®) = f (62— 165y dt = —%
¢ 2o 20
Second Method. Substitute y= 2x¢2 directly, where x goes from 0 to 1. Then
1 1
fF-dr = f 3x(w”)dx — (27 d(B®) = f (6x°—162") dx = —%

C X=0 %=0
Note that if the curve were traversed in the opposite sense, i.e. from (1,2) to (0,0), the value of the integral
would have been 7/6 instead of — 7/6.
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9. Find the work done in moving a particle once around a circle € in the xy plane, if the circle has
center at the origin and radius 3 and if the force field is given by

F = (2¢ —y +2)i + (x+y—zQ)j + (3x — 2y +42)k

In the plane z=0, F = (2x—y)i + (» +y)i+ (3x—2y)k and dr =dxi+dyj so that the work done is

f F-dr = f [(2x—y)i + (x+y)i + Bx—2)k] - [dxi + dyj)
¢ c

f (2% —y)dx + (x +y) dy
C

Choose the parametric equations of the circle as x= 3cos t, y=3sins
where ¢ varies from 0 to 27 (see adjoining figure). Then the line integral
equals

277

[2(3cost) - 3sine] [~3sinelds + [3cost +3sine] [3 cost)dt

=0 ¢

21 9 277 .
= f (9 — 9sintcost)dr = 9 — 2 sin?: ’ = 18~¢
o 2 o)

In traversing C we have chosen the counterclockwise direction indicated
in the adjoining figure. We call this the positive direction, or say that C
has been traversed in the positive sense. If C were traversed in the clock-
wise (negative) direction the value of the integral would be — 187,

r=xi+yj
=3costi+3sintj

10. (@) If F =V, where ¢ is single-valued and has continuous partial derivatives, show that the
work done in moving a particle from one point P, = (x4, ¥1,Z4) in this field to another point
Py = (x4, 5, 25) is independent of the path joining the two points.
(b) Conversely, if F-dr is independent of the path C joining any two points, show that there
C
exists a function ¢ such that F=Ve,

By F
f F-dr = V- dr
B B

fPQ op., 0P o

=i+ =Lj + =2kK). i +dyj+
5 (ax i > J 3 k). (dxi +dyj +dzk)
1

(a) Work done

1"

B 3 o¢ o¢
j;)l gdx + aa’y + gdl

PQ
fP dp = PP = PP = Pxa,ys,z0) — Plraryssza)

1

Then the integral depends only on points P; and P, and not on the path joining them. This is true
of course only if d)(x,y,z) is single-valued at all points P, and P,.

(b) Let F = Fji + Ej + F;k. By hypothesis, f F-dr is independent of the path C joining any two
c
points, which we take as (x4,¥4, z4) and (%,y,z) respectively. Then

(x,y,2) (%,y,2)
Dx,y,z) = F-dr = Fidx + Fody + Fydz
(%1, 71, 21) (%1, %1, 21)

is independent of the path joining (%1,¥1,24) and (x,y,z). Thus



90

VECTOR INTEGRATION

(x+Ax,y,2) (%,¥,2)
f F.dr — F-dr
(%1, Y1, 21)

(%1, ¥1, 21)
(%1, ¥1, 21) (x+Ax,y,2)
F-dr + f F-dr
(x,}'»z) (xis Y1, zi)

(x+lx,y,2) (x+Ax,y,2)
f F-dr = Fidx + Fo,dy + Fdz
(%,5,2) (x,y,2)

(,‘15(x+Ax, Y., Z) - (nb(xryrz)

"

i

Since the last integral must be independent of the path joining (x,y,z) and (x+Ax,y,2), we may choose
the path to be a straight line joining these points so that dy and dz are zero. Then

Pxtx, y, 2) — Dlx,y,2) 1 (xtAx,y,2)
Ax = e Fl dx
(%,y,2)
- . op
Taking the limit of both sides as MAx -0, we have ™ F.
3 9
Similarly, we can show that ﬁ =F, and —é =F.
S 2
o) o [
Then F = Fi+Fj+Fk = 2, +——géj $ 22y V.
R W
Fo
If F-dr is independent of the path C joining P; and P,, then F is called a conservative field.

Py
follows that if F= qu then F is conservative, and conversely.

Proof using vectors. If the line integral is independent of the path, then

11. (a)
(b)

(@)

%)

(%,y,2) (x,5,2)
qb(x,y,z) = f Fedr = f F-% ds
. (xlsyls zl) (xlr ¥, zl) §

. s do _ dr dep _ dr
By differentiation, 7= = F-—-. But 7= = V¢-ds

so that (V(]‘)—F)-Z—E = 0.

Since this must hold irrespective of % , we have F= qu.

If F is a conservative field, prove that curlF=Vx F=0 (i.e. F is irrotational).
Conversely, if VxF=0 (i.e. F is irrotational), prove that F is conservative.

If F is a conservative field, then by Problem 10, F = V@b.
Thus curl F = Vx Vqﬁ = 0 (see Problem 27(a), Chapter 4).

i j k
V= 9 9 9.
If VXF=20, then o By 3 0 and thus
F 1 3
% % Oh_ 3  3m M
ay T %z 9z  ox % ay

We must prove that F = Vqﬁ follows as a consequence of this.

The work done in moving a particle from (x4, y1, z1) to (x,y,z) in the force field F is

It
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f Fi,y,zydx + F(x,y,z)dy + Fy(x,y,z) dz
C

where C is a path joining (xs,v4,z,) and (*,y,z). Let us choose as a particular path the straight {ine

segments from (x4, ¥4, z1) to (%,y1,21) to (x,y,24) to (x,y,2) and call @ (x,y,2) the work done along this
particular path. Then

X y V4
P(xy,z) = f Fi(x,y1,21) dx +f Fo(x,y,21) dy +f Fy(x,y,2) dz
X1 Y1 29

It follows that

&
g = FS(xvyrz)

9¢

Z OF
Folx,y,29) + f =3 (x,y,z) dz
ay i ' Zq ay

z
= Fo(x,y,24) +f a—FQ(x,y,z)dz
.. o

1

z
= Bx,y,z)) + FBxy,2) !21 = By, z) + Fryz) — Fx,y,z)) = Fy(xy,z)

2 Y OF Z JF
% = Fi(x,y1,29) + f a—:(x.y,zi) dy + f *gf(x,y,Z)dz
Y- 24

1

y Z 9
= Fi(x,y1,29) +f %ﬁ(x,y.zi)dy + f 8—F1<X.y,2)dz
no Y z, 9%

1 1

y z
= F(,ynz) + FGy,z)|  + Fxy, |
Y1 Z

= Fi(x,y1,29) + Fi(x,y,2;) — Fi(x,y1,29) + Fi{xyz) ~ Fy(x,y,2q) = F(x,y,2)
0 o o
Then F = Fi+Fj+FEk = jéi+—‘7>j+—k = Vo.
LTt s,

Thus a necessary and sufficient condition that a field F be conservative is that curlF = VxF = 0.

12. (a) Show that F = (2xy +z°)i + x%j + 3xz2Kk is a conservative force field. (b) Find the sca-~
lar potential. (c¢) Find the work done in moving an object in this field from (1,-2,1) to (3,1,4).

() From Problem 11, a necessary and sufficient condition that a force will be conservative is that
curlF = Vxp = ¢,

i i k
0 e e

Now Vxp - = =~ = | = o.
? Ox 2
2y + 2% a2 3xz2

Thus F is a conservative force field.
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(b) First Method.

9 9 3
By Problem 10, F = Vo or —-céi +-(éj + —qbk = (2xy+zs)i +%2j + 3xz°k. Then
Ox dy Oz

I g—f = 2xy +2° ) g—f = % 3) g—? = 3x2?

Integrating, we find from {I), (2) and (3) respectively,
gb = x2y + xz° 4 fy,2)

<,‘Z5 = ny +  g(x,z)

¢

W

xz° + h(x,y)

These agree if we choose f(y,2) =0, g(x,2) = %2>, hix,y) = %’y sothat ¢ = x2y +xz°> to which may
be added any constant.

Second Method.
since F is conservative, f F-dr is independent of the path C joining (%1,y1,21) and (x,y,%).

C
Using the method of Problem 11(),

x ¥ z
dx,y,z) = f (2xy1 + Sydxe + f 2 dy + f Inz2 dz
x 21

1 Y1

4

2 3 |" 2 \y |
= X +xz + x + xz
( Y1 1) X1 Ylyy 21
2 3 2 3 2 2 3 3
= x + xz - x - x 2 + x —_ + x —
N 1 171 171 y ¥ z Xz,
2 3 2 3
= xy + xz = Xy - %I = ny + xz° + constant

Third Method. Fedr = Vpedr = gi)dx + —’ai&dy + @dz = do
3 3y 52

Then dp = Fedr = (2xy +2%3ydx + x2dy + 3x22dz
= (2xy dx +x2 dyy + (23 dx + 3xz2 dz)
= d (ny) + d@®) = d(ny +xz°)

3

and ¢ = x2y + xz° + constant.

b
F.dr
P,

1

(¢) Work done

I

B
f (2oy +2%) dx + 2 dy + 3x2” dz
Py

PQ 3 PQ (311»4)
= d(x2 +xz7) = 2y + xz° = x%y + xz° = 202
b b y
(1:_2; 1)
i) 5

Another Method.

From patt (), P(x.y,2) = ny + xz° + constant.

Then work done = @(3,1,4) — ¢ (1,-2,1) = 202.
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Fo
Prove that if F-dr is independent of the path joining any two points P, and P, in a given
2]

region, then f Fedr = 0 for all closed paths in the region and conversely.

Let PyAP,BP; (see adjacent figure) be a closed curve. Then

4
fF-dr = f Fedr = f Fedr + f F.dr @
PyAF,BP, P AR, P,BR,
= f Fedr — f Fdr =
Pl 4B, PBE,

since the integral from P, to P, along a path through 4 is the same as
that along a path through B, by hypothesis.

Conversely if fF-dr = 0, then

f Fedr = fF-dr + f Fedr = fF-dr — fF-dr = 0

P, AE,BP, P AR, B8R P AR, P BP,
so that, f Fedr = f F-dr.
P AR, PBB

(a) Show that a necessary and sufficient condition that Fidx + Fo dy + F; dz be an exact differ-
ential is that VX F = 0 where F = F,i + F,j + k.

(b) Show that (y2z° cosx — 4x%z) dx + 2z%y sinx dy + (3y%z? sinx — x*) dz is an exact dif-
ferential of a function ¢ and find ¢.

9 9
(@) Suppose Fydx + Fydy + Fydz = dpp = fdx + é—?dy + g—%dz, an exact differential. Then
o4
since x,y and z are independent variables,

E; L
F1=‘§¢: F2-:§: F3='8Lf

O
and so F=F11+F2j+F3k=§—z5i +—g—;—bj +g—f}k = qu. Thus VxF:Vqub:o,

Conversely if VxF =0 then by Problem 11, F=Vo and so F-dr= Vb dr = dp, i.e.
Fidx + Fody + F3dz = dob, an exact differential.

%) F = (sz’3 cosx — 4x32)i + 2zsy sinxj + (3y2z2 sinx —x4)k and VxF is computed to be zero,
so that by part (a)

(v°2° cosx — P2y ds + 2%y sinx dy + (3y%z% sinx —x*ydz = d¢h

By any of the methods of Problem 12 we find ¢ = y2z3 sinx — x*z + constant.

Let F be a conservative force field such that F = -Voé. Suppose a particle of constant mass m
to move in this field. If 4 and B are any two points in space, prove that

P + 2mef = PB) + fmy]

4
where Y, and v, are the magnitudes of the velocities of the particle at 4 and B respectively.
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2

mas mil dr_ e &t _mod i)

F=ma=m 5. Then F 7 mo a2 5 dt (dt)
B B

i sdr o= M2 S N S o

Integrating, L F-dr 5 IA MYy Yy -
B B B

it F=-Vo, F-dr = — Vpedr = — dp = ) — dB).
A 4 4

Then @A) — B = émv; - %mvj and the result follows.

@ (A) is called the potential energy at A and %rruf is the kinetic energy at 4. The result states that
the total energy at 4 equals the total energy at B (conservation of energy). Note the use of the minus sign

in F=-Vo.

16. If ¢ = nyzQ, F=axyl—z]+ %>k and C is the curve x=t2,y=2t, z=t> from t=0 to t=1,
evaluate the line integrals (a) f ¢ dr, (b) f Fxdr.
C C

wmyz? = 2(2)20)(®Y = 4,

xi+yj+zk = £i+2i+F 0k, and

(@) AlongC, ¢

-
"

dr = (2i+ 2 +3°Kde. Then

1
fqﬁdr = f 4P (21 + 2§ + 32 K) de
¢

t=0
1 1 1 8 4

= if 8 0ds + 8:°ds + Kk 128td; = 2i+ 3§tk
R 5 o 11 5

(b) AlongC, F=xyi—zj+x°k= 2%%i —£°§ + £k

Then Fxdr = (2°1i— 5+ £k x (2i+2f+ 3% k) de
i j k
e e A |a = [af-ahi o+ =i (4 +2ryk] de
% 2 3
1 1 1
and fodr = if (—32—2*)de + jf (-4t2ydt  + kJ- (a®+2c*y de
c [e] e} 0
9. _ 25 .1
= —710! 3d T Bk

SURFACE INTEGRALS.

17. Give a definition of jf A.n dS over a surface S in terms of limit of a sum.
S

Subdivide the area S into M elements of area AS¢ where p=1,2,3,..., M. Choose any point P¢ within
ASﬁ whose coordinates are (xP’yﬁ’zﬁ)‘ Define A(azp,y¢,2¢) = Aj-,. Let ny, be the positive unit normal {o

ASb at P. Form the sum



18.

19.
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M
2, Apny As,
p=1

where A¢-n¢ is the normal component
of Ap at P¢.

Now take the limit of this sum as
M-o in such a way that the largest di-
mension of each AS¢, approaches zero.
This limit, if it exists, is called the
surface integral of the normal compo-

—Y

nent of A over S and is denoted by
If A-ndS Ax, Ay
S P

Suppose that the surface S has projection R on the xy plane (see figure of Prob.17). Show that

ffA-na’S - {fA-nlli;:—':lll

S

By Problem 17, the surface integral is the limit of the sum

.4
123) 2 LYSIN ASp
p=1
The projection of Asﬁ on the xy plane is ’(% ASﬁ)-k' or ’nb-kl ASb which is equal to Ax;b Ayﬁ
sothat AS, = —? P Thyg the sum (1) becomes
P I n,-k '
X Ay I
=PI
2) A,+n )
751 PP n, k |

By the fundamental theorem of integral calculus the limit of this sum as M—~o in such a manner that

the largest Axﬁ and Ayyb approach zero is
 dx dy
A-n ’n-k’
R

and so the required result follows.

Dy,
Strictly speaking, the resuit AS, = ——ﬁ———ﬁ is only approximately true but it can be shown on closer
ﬁ I nﬁ <k I

examination that they differ from each other by infinitesimals of order higher than Axi, Ayﬁ » and using this
the limits of (1) and (2) can in fact be shown equal.

Evaluate ff A-ndS, where A = 18zi — 12§ + 3yk and S is that part of the plane
N

2x +3y +6z = 12 which is located in the first octant.

The surface S and its projection R on the xy plane are shown in the figure below.
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From Problem 17,

=
>

[f s

S R

To obtain n note that a vector perpendicular to the surface 2x +3y +6z = 12 is given by V(2x+3y+62) =
9i + 3j + 6k (see Problem 5 of Chapter 4). Then a unit normal to any point of S (see figure above) is

2i +3j + 6k
n = __1—_J_6_ = %_1 + %] +%k
/22+32+62
Thus mk = (2i+3j+8Kk-k = & andso dxdy _ 14,4
U L T lnk| 8
_ . . 2. .3..6, _ 36z—36+18 _ 36— 12
Also A-mn = (1821—12]+3yk)~(,71+71+,7k) = ———‘7 = —~———~7 ’
19

— 2% — 3
using the fact that z = 22T from the equation of S. Then

6
dx dy 36 — 12, T
A-ndS = A.n|n-k| = (~——,7——)—6—dxdy = (6 — 2x)dx dy
R R r

S

To evaluate this double integral over R, keep x fixed and integrate with respect to ¥ from y=0 (P in

the figure above)to y = 12 — 2% (Q in the figure above); then integrate with respect to x from x=0 to

3
%x=6. In this manner R is completely covered. The integral becomes
6 (12~2x)/3 6 42
(6 — 2y dy dx = (24— 12¢ + 73 )dx = 24
x=0 y=0 x=0

If we had chosen the positive unit normal n opposite to that in the figure above, we would have obtained
the result —24.

20. Evaluate ff A-ndS, where A = zi +xj — 3y?zk and S is the surface of the cylinder
N

x?+y2=16 included in the first octant between z=0 and z=5.

Project S on the xz plane as in the figure below and call the ptojection R. Note that the projection of
S on the xy plane cannot be used here. Then
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ffA-ndS = ffA-n dx d,z
|n-jj
R

S
A normal to x°+y® = 16 is V(x2+y?) = 2xi+2yj. 7
Thus the unit normal to S as shown in the adjoining [\"
figure, is z
P
n = 261+ 2y j _ xityj P
V(Y +(2yY * !
since x”+y”=16 on . e
i+vi €
An = (zi+xj—3%k) . (% 4”) - é(xz-kxy) N
oo xityi oy
nej = —‘*4 ] 4"
Then the surface integral equals
N 5 4 5
ﬂudxdz = (—22 . +x)dcdz = f (4z +8)dz = 90
Y \/16—--x2
R z=0 x=0 z=0

21. Evaluate ff ¢ndS where ¢ = %xyz and S is the surface of Problem 20.
N

We have {f@ﬂds - {qunﬁ

. xityj A . : .
Using n = g s Mi=7 asin Problem 20, this last integral becomes
5 4 o
ff%xz(xi+yj) dx dz = % f f (x2zi+xz1/16—x2j)dxdz
R z=0 x=0
5
= g f (%zi+%‘§zj>dz = 100i + 100j
z=0

22. If F=yi+(x—22)j—xyk, evaluate ff (VxF).n dS where S is the surface of the sphere

S
x%+y2+22 = 4® above the xy plane.
i i
VxF = A ‘ i g = i j —
o Y o | | FRrrimmh

¥y x—2xz —xy

A normal to x%+y% +2% = 42 is

V(x2+y2+22) = 2xi+ 2yj + 2zk
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Then the unit normal n of the figure above is given by

0 = 2wi+2yi+2z2k _ xityj+zk
/4x2+4y2+422 a

: 2, .2
since x2+y +2% = %,

The projection of S on the xy plane is the region R bounded by the circle x2+y? =

ure above). Then

ff(VxF)-n ds = f (VxF)-n dx dy
| n-k|
S R

ff (xi+yj——2zk)-(xi +yaj+zk) dx dy

z/a
R
Va2 +
= f f 3(x y)—2a dy dx
Va?—x?— o2
N a“—x“—y

a—x

a®, z=0 (see fig-

using the fact that z = Va®—x®—y?. To evaluate the double integral, transform to polar coordinates (0, b
where x = p cos @, y = p sing and dydx isreplaced by o do d¢. The double integral becomes

27 a 3 2 2m 3(/O —a)+a
f f W apag - f f p dp db
Va2— 02 1/02—,02

$=0 p=0 $=0 p=0
2m
e
\/a -
$=0 p=0

)dp dp

2m
_ f [(aQ_pQ)S/Q — VPP ‘Zzo] dob

®=0

23. If F=4dxzi —y°j +yzk, evaluate ff F.n dS

where S is the surface of the cube bounded by x=0,
x=1, y=0, y=1, z=0, z=1,

Face DEFG: m=i, x=1. Then

1 1
ﬂF-ndS = ff (4zi—y2j+yzk)~idydz
o YO

DEFG
1 1
= ff 4z dydz = 2
0 e]
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Face ABCO: n=—1i, x=0. Then
11
IfF‘-ndS = ff (—-y2j+yzk)-(—i)dydz
o Yo
ABCO
Face ABEF: n=j,y=1. Then
1,1
ij-nds = ff (Axzi—j+zk)-jdxdz
o Yo
ABEF
Face OGDC: n=—j, y=0. Then
11
jf}?-nds = ff (4xzi)« (~j)dxdz = 0
0 Yo
0GDC
Face BCDE: n=k, z=1. Then
1 1
ﬂF-ndS = ff (4xi-—-y2j+yk)-kdxdy
o Yo
BCDE
Face AFGO: n=—k, z=0. Then
1 1
ffF-ndS = ff -2 (=K dxdy = 0
o Yo
AFGO
Adding, ﬂF-ndS = 24+ 0 +(=1) +0+ 3

N

24. In dealing with surface integrals we have restricted

Give an example of a surface which is not two-sided.

Take a strip of paper such as ABCD as shown in
the adjoining figure. Twist the strip so that points 4 and
B fall on D and C respectively, as in the adjoining fig-
ure. If n is the positive normal at point P of the surface,
we find that as n moves around the surface it reverses
its original direction when it reaches P again. If we
tried to color only one side of the surface we would find
the whole thing colored. This surface, called a Moebius
strip, is an example of a one-sided surface. This is
sometimes called a non-orientable surface. A two-sided
surface is orientable.

VOLUME INTEGRALS

25. Let ¢ =45x?y and let ¥ denocte the closed region
Y

y=0, z=0. (a) Express

99

0

bounded by the planes 4x +2y+z=8,x=0,
¢ dV as the limit of a sum. (b) Evaluate the integral in (a).
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(@)

(b)

VECTOR INTEGRATION

Subdivide region V into M cubes having volume
AY, = Doy Ny, Nz, k=1,2,..., M as indicated 2
in the adjoining figure and let (x ,yk,zk) be a
point within this cube. Define qb(xk,yk,zk) =
¢, Consider the sum

N
(1) 2 PRlH
k=1

<

taken over all possible cubes in the region.
The limit of this sum, when M~ in such a
manner that the largest of the quantities AHZ
will approach zero, if it exists, is denoted by

f f ¢ dV. 1t can be shown that this limit
4

is independent of the method of subdivision if
¢ is continuous throughout V.

In forming the sum (I) over all possible cubes in the region, it is advisable to proceed in an order-
ly fashion. One possibility is to add first all terms in (I) corresponding to volume elements contained
in a column such as PQ in the above figure. This amounts to keeping x, and y,, fixed and adding over
all zk’s. Next, keep %, fixed but sum over all yk's. This amounts to adding all columns such as PQ
contained in a slab RS, and consequently amounts to summing over all cubes contained in such a slab.
Finally, vary xp. This amounts to addition of all slabs such as RS.

In the process outlined the summation is taken first over zj's then over ¥y'S and finally over x}’s .
However, the summation can clearly be taken in any other order.

The ideas involved in the method of summation outlined in (a) can be used in evaluating the integral.
Keeping x and y constant, integrate from z=0 (base of column PQ) to z = 8~—4x—2y (top of column
P(Q). Next keep x constant and integrate with respect to y. This amounts to addition of columns having
bases in the xy plane (z=0) located anywhere from R (where y = 0) to S (where 4x+2y=8 or y=4—2x),
and the integration is from y=0 to y =4 -—2x. Finally, we add all slabs parallel to the yz plane, which
amounts to integration from x=0 to x= 2. The integration can be written

2 4-2x 8=ltx =2y 2 4=-2x
f f f 45%° y dz dy dx 45 f f Ky (8—dx— ) dydx
z=0

x=0 y=0 x=0 ¥=0

I

2
45f %x2(4—2x)3 dx = 128

x=0

Note: Physically the result can be interpreted as the mass of the region V in which the density o)
varies according to the formula ¢ =452y .

26. Let F = 2xzi—xj + ygk. Evaluate fff F dV where V is the region bounded by the sur-

4

faces x=0, y=0, y=6, z=x°, z=4.

The region V is covered (a) by keeping x and y fixed and integrating from z= 2 toz=4 (base to top of

column PQ), (b) then by keeping x fixed and integrating from y=0 to y=6 (R to S in the slab), (¢) finally
integrating from x=0 to x=2 (where z=x° meets z= 4). Then the required integral is
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2 by 2 r6pu 2 by
lfff 2z dzdy dx — jf ff x dzdydx + kf ff y2dzdydx
0vo Jx? 0 Yo Yx2 0 Yo Yx2

x

1281 —~ 24§ + 384k

27. Find the volume of the region common to the intersecting cylinders x?+y? =42 and x®+2% =42,

Required volume = g times volume of region shown in above figure

a a2 -x2 a2~ x2
8 f f f dzdydx
z=0

x=0 =0

a Va2 -x? a s
8 f Va2—x? dy dx 8 f (@a2—x2)dx = 1—6—;—

x=0 y=0 x=0
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28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

VECTOR INTEGRATION

SUPPLEMENTARY PROBLEMS
18
If R@) = (32—1)i +(2—60)] — 4¢k, find (o) fR(t) dt and (b) j; R(t) d¢ .

Ans. (@) (B—t¥Di + (2t—3t2)j — 22k + ¢ (b) 501 — 32j — 24k
/2
Evaluate f (3 sinui + 2 cosuj)du Ans. 31+ 2j
0

2 2
I A@) = ti— 2§+ (¢—1)k and B() = 2:2i + 6tk, evaluate (a)f A-B dt, (b) f AxB dt.
40, , 64 o 0
Ans. (@) 12 (b) —24i — ?j + ?k

2 2
Let A=ti—3j+2tk,B=i—2j+2k,C=3i+tj—k. Evaluate (a)f A-BxC dt, (b)f AX(BxC) dt.
1 1

Ans. (@0 (b —%Zi - %j + 1—251(

The acceleration a of a particle at any time ¢ > 0 is given by a= e_ti — (¢ +1)j + 3 sint k. If the veloc-
ity v and displacement r are Zero at =0, find v and r at any time.

Ans. v=(1— e~hyi — (32+60)j + (3 —3 cost)k, T = (t—1+e“t)i — (3+312)j + (3t—3 sinn)k

The acceleration a of an object at any time ¢ is given by a = —gij, where gis a constant. At t=0 the ve-
locity is given by v = vpCOS Hai + vpsin 6,3 and the displacement r=0. Find v and r at any time ¢ > 0.
This describes the motion of a projectile fired from a cannon inclined at angle B with the positive x-axis
with initial velocity of magnitude vo.

Ans. v=vpcos0pi + (vosinbo—gH)i, t= (v cos Bt i + [(vosinbOo)t — sgi2)i

3
Evaluate f A-%‘dt i A2) = 2i—j+2% and A(3) = 4i—2i+3k. dns. 10
2

Find the areal velocity of a particle which moves along the path r = a cos W? i + b sinwetj where a,b,w
are constants and ¢ is time. Ans. zabwk

Prove that the squares of the periods of planets in their motion around the sun are proportional to the cubes
of the major axes of their elliptical paths (Kepler’s third law).

A= (+3)i +xzi+ (yz—x)k, evaluate f A-dr along the following paths C:
&4

(@) x =262, y =t, z=t° from £=0 to t=1,

(b) the straight lines from (0,0,0) to (0,0,1), then to (0,1,1), and thento (2,1,1),

(c) the straight line joining (0,0,0) and (2,1,1).

Ans. (a) 288/35 bY10 (¢) 8

I F = (5xy~6x2)i + (2y —4x)j, evaluate f F-dr along the curve C in the xy plane, y=x3 from the
point (1,1) to (2,8). Ans. 35 ¢

¥ F = (2x+y)i + (3y —x)j, evaluate f F-dr where C is the curve in the xy plane consisting of the
¢

straight lines from (0,0) to (2,0) and then to (3,2). Ans. 11

Find the work done in moving a particle in the force field F = 3x2i + (2xz—y)j + 2 k along
(a) the straight line from (0,0,0) to (2,1,3).

(b)the space curve x =262,y =t, 2 =4/7—¢ from t=0 tot=1.

(c) the curve defined by x2=4y, 3x®=8z from x=0 to x=2.

Ans. (a) 16 (b) 14.2 (c) 16
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45.

46.

47.

48.

49.

50.

51.

52.

53.
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Evaluate f F-dr where F = (x—3y)i + (y —2x)j and C is the closed curve in the xy plane, x =2cost,
4

y =3 sint from ¢=0 to t=27. Ans. 87, if C is traversed in the positive (counterclockwise) direction.

If T is a unit tangent vector to the curve C, r=r(u), show that the work done in moving a particle in a force

field F along C is given by f F-T ds where s is the arc length.
4

I F = (2% +y2)i + (3y —4x)j, evaluate f F-dr around the triangle C of F’iéure 1, (a) in the indicated
¢

direction, (b) opposite to the indicated direction. Ans. (@) —14/3 (b) 14/3
~(1,1)

-y = %2

Fig. 1 Fig.2

Evaluate f A-dr around the closed curve C of Fig.2 above if A = (x—y)i + (x +y)i. Ans. 2/3
c

¥ A= (y—2x)i + (3x+2y)j, compute the circulation of A about a circle C in the xy plane with center at
the origin and radius 2, if C is traversed in the positive direction. Ans. 877

(@) If A = (dxy —3x222)i + 2%%j — 22k, prove that A-dr is independent of the curve C joining
Y Cc

two given points. (b) Show that there is a differentiable function ¢ such that A = Vb and find it.
Ans. (b) ¢ = 2x%y — x®2% + constant

(a) Prove that F = (yQ cosx + zs)i + (2y sinx — 4)j + (3xz2+2)k is a conservative force field.
(b) Find the scalar potential for F.

(c) F'ind the work done in moving an object in this field from 0,1,-1) to (77/2,—1, 2).

Ans. (b) ¢ = y®sinx + x2° — 4y + 2z + constant (c) 15 + 477

4
Prove that F = r?r is conservative and find the scalar potential. Ans. ¢ = _r4_ + constant

Determine whether the force field F = 2xzi + (x®—y)j + (22 —x2)k is conservative or non-conservative.
Ans. non-conservative

Show that the work done on a particle in moving it from 4 to B equals its change in kinetic energies at
these points whether the force field is conservative or not.

Evaluate f A-dr along the curve «2 +y2 =1, z=1 in the positive direction from (0,1,1) to (1,0,1) if
c , ——
A= (yz+20)i + xz§ + (xy+2z)k.  Ans. 1 7

e e i

(a)If E=rr, is there a function ¢ such that E= -V 9 1f so, find it. (b) Evaluate f E+dr if C is any
¢
3
simple closed curve. Ans. (a) qS = — % + constant (b)) O
Show that (2x cosy +z siny)dx + (xz cosy — x2siny)dy + x siny dz is an exact differential. Hence
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54.

55.

56.

57.

58.

59.

60.

61.

62.

63.
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solve the differential equation (2x cosy +z siny)dx + (xz cosy — x? siny)dy + x siny dz = 0.
Ans. x2cosy + xz siny = constant

Solve (a) (e™” +3x%y2)dx + (2x3y—xe-y) dy = 0,
() (z — e Fsiny)dx + (1 +e Xcosy)dy + (x—8z)dz = 0.

Ans. (a) xe~Y + x%y2 = constant (b) xz + e “siny +y — 4z° = constant

If ¢ = 2xy2z + x°y, evaluate f ¢ dr where C
¢
(a) is the curve x=t, y=¢2, z=¢> from ¢=0 to z=1
(b) consists of the straight lines from (0,0,0) to (1,0,0), then to (1,1,0), and thento (1,1,1).
11, 15

+ Bk (b)%j + %

19. 11
Ans. (a) 351 + 153 T

If F=2i—-2zj+xk, evaluate f Fxdr along the curve x =cost, y =sint, z =2cost from ¢=0
¢

to t=7/2. Ans. (2 —-Di + (T— )i

I A= B3x+y)i —xj + (y—2)k and B = 2i —3j +k, evaluate f (AxB)x dr around the circle in the
c
xy plane having center at the origin and radius 2 traversed in the positive direction. Ans. 47(Ti+3j)

Evaluate ff A-n dS for each of the following cases.

S
(@) A = yi+ 2¢j — zk and S is the surface of the plane 2x +y = 6 in the first octant cut off by the plane
z=4.
(3) A = (x+y2)i — 2xj + 2yzk and S is the surface of the plane 2x+y +2z = 6 in the first octant.
Ans. (a) 108 (b) 81

If F=2i-—zj+x2k and S is the surface of the parabolic cylinder y®=8x in the first octant bounded

by the planes y =4 and z=6, evaluate ff F-ndS. Ans. 132
S

Evaluate ﬂ A-ndS over the entire surface S of the region bounded by the cylinder x2+z%2=9, x =0,

N
y=0, z=0 and y=8, if A = 6zi + (2x+y)j — xk. Ans. 1877

Evaluate [fr-n dS over: (a) the surface S of the unit cube bounded by the coordinate planes and the

S
planes x=1, y=1, z=1; (b) the surface of a sphere of radius a with center at (0,0,0).
Ans. (a)3 (b) 47a®

Evaluate ﬂ A-n dS over the entire surface of the region above the xy plane bounded by the cone

S
22 = x2+y2 and the plane z=4, if A = dxzi + xyz°j + 3zk. Ans. 3207

(a) Let R be the projection of a surface S on the xy plane. Prove that the surface area of S is given by

ff‘ﬁ + (%‘if + (%Z-)2 dxdy if the equation for S is z = f(x,y).
Y
R
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o) ) 0
/_F) + (BF)z " (aF 2
(b) What is the surface area if S has the equation F(x,¥,2)=0? Ans. ﬂ |8 l dxdy
F
Jz

Find the surface area of the plane x + 2y +2z =12 cut off by: (a) x=0, y=0,x=1,y=1; (b) x=0, y=0,
and x2+y°=16. Ans. (a) 3/2 (b) 677

Find the surface area of the region common to the intersecting cylinders x?+y2 =a? and %2+ z2 = a2,

Ans. 16a2

Evaluate (a) ﬂ(VxF)-n dS and (b) ff¢ nds if F=(x+2)i— 3z +xk, ¢ = dx+3y—2z,
S

and S is the surface of 2x+y+2z = 6 bounded by x=0, x=1, ¥=0 and y=2.
Ans. (@)1 (b) 2i+j+ 2k

Solve the preceding problem if S is the surface of 2x+y+ 2z = 6 bounded by « =0,y =0, and z=0.
Ans. (a) 9/2 (b)) 72i +36j + T2k

Evaluate f[ Vx2+y2 dxdy over the region R in the xy plane bounded by x2 +y?=36. Ans. 1447
b4

Evaluate ﬁ (2x+y)dV, where V is the closed region bounded by the cylinder z = 4—x° and the

12
planes x=0,y=0,y=2 and z=0. Ans. 80/3

(2x2~32)i — 2xyj —~ 4xk, evaluate (a) fffVF dV and () fffoF‘dV, where V is
14

the closed region bounded by the planes x =0, ¥=0,2=0 and 2x+2y+z =4, Ans. (a) % () g(j—k)



Chapter 6

THE DIVERGENCE THEOREM OF GAUSS states that if ¥ is the volume bounded by a closed sur-
face S and A is a vector function of position with con-

tinuous derivatives, then [—\,

/:[ V-AdV = /fA-ndS = ﬁA-ds

b N

where n is the positive (outward drawn) normal to S.

STOKES' THEOREM states that if S is an open, two-sided surface bounded by a closed, non-inter-
secting curve C (simple closed curve) then if A has continuous derivatives

fA-dr = ff(VxA)-n s = ff(VxA)-dS
¢ v S 9 s

where C is traversed in the positive direction. The direction of C is called positive if an observer,
walking on the boundary of S in this direction, with his head pointing in the direction of the positive
normal to S, has the surface on his left.

GREEN’S THEOREM IN THE PLANE. I R is a closed region of the xy plane bounded by a simple
closed curve C and if ¥ and N are continuous functions of x

and y having continuous derivatives in R, then
“f ,ON oM
I - =)dxd
ff 3 T B Y

fde +Ndy
c

b4
where C is traversed in the positive (coum direction, Unless otherwise stated we shall
always assume f to mean that the integral is described in the positive sense.

]

Green’s theorem in the plane is a special case of Stokes’ theorem (see Problem 4). Also, it is
of interest to notice that Gauss’ divergence theorem is a generalization of Green’s theorem in the
plane where the (plane) region R and its closed boundary (curve) C are replaced by a (space) region
V and its closed boundary (surface) S. For this reason the divergence theorem is often called Green’s
theorem in space (see Problem 4),

Green’s theorem in the plane also holds for regions bounded by a finite number of simple
closed curves which do not intersect (see Problems 10 and 11).

106
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RELATED INTEGRAL THEOREMS.

L ffﬁqSVQxb + (V). (Vldv = ff(cbW)-ds
v S

This is called Green’s first identity or theorem.

2. fff<¢V2¢— Yy v = ff@bw— Vo). ds
12 S
This is called Green’s second identity or symmetrical theorem. See Problem 21,
3. /] VxAdV = / nxA)dS = ﬂdeA
7 N S
Note that here the dot product of Gauss’ divergence theorem is replaced by the cross product.
See Problem 23.
4. fcbdr = f mxVep)ydS = ﬂdeV¢
¢ 5

S

5. Let y tepresent either a vector or scalar function according as the symbol o denotes a dot or
cross, or an ordinary multiplication. Then

/ffvo¢dv - fanL/JdS = fdeo¢

v s )
fdrmp - ff(nxV)°¢dS = ff(deV)o¢
¢ s s

Gauss’ divergence theorem, Stokes’ theorem and the results 3 and 4 are special cases of these.
See Problems 22, 23, and 34.

INTEGRAL OPERATOR FORM FOR V. It is of interest that, using the terminology of Problem 19,
the operator V can be expressed symbolically in the form

V (o] = i —1— # o
o0 AV as
Aas

where o denotes a dot, cross or an ordinary multiplication (see Problem 25). The result proves use-
ful in extending the concepts of gradient, divergence and curl to coordinate systems other than rec-
tangular (see Problems 19, 24 and also Chapter 7).
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SOLVED PROBLEMS

GREEN’S THEOREM IN THE PLANE

1. Prove Green’s theorem in the plane if C is a closed F
curve which has the property that any straight line
parallel to the coordinate axes cuts C in at most two ,
points. At

Let the equations of the curves AEB and AFB (see
adjoining figure) be y=Yi(x) and y =Yy(x) respectively.
If R is the region bounded by C, we have

b () b b
oM 27 om I(x)
f gy— dx dy f f a dy |dx = f M(x,y) .y2=Y1(x) dx = f [M(x,YQ) - M(x,Yl)] dx
R

x=a Ly=Lx) x=a ¢

©
L)
1
1
I
]
|
Qb

<]
o N

b

a
= —fM<x,Y1>dx - fM(x.Y2>dx - —§de
a b 4
Then 1y fde = ——ff%ﬁidxdy
0 4
R

Similarly let the equations of curves EAF and EBF be x=X;(y) and x=Xy(y) respectively. Then

3 f Toy) f
ff:éil dx dy f f -g—ivdx dy = f NXo,y) — N(X1,y)] dy
e

R y=e x=X4(y)

e f
f N(Xy,y)dy + f NXo,y)dy = dey
f e 4
Then (2) dey = f a—Ndxdy
X

¢ R
Adding (I) and (2), fde +Ndy = ff(-aﬂ - 13Ll)dxdy.
o f Ox ay
2. Verify Green’s theorem in the plane for y

(L,1)
ﬁ(xy +y2ydx + x2dy where C is the
C

closed curve of the region bounded by
y=x and y=x2.

y=x and y =« intersect at (0,0) and (1,1).
The positive direction in traversing C is as
shown in the adjacent diagram.
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Along y = %2, the line integral equals

[\le—l
[en} o]

1 1
f () +2%) dx + (D (2x)dx = f B2+t dx =
0 o]

Along y =« from (1,1) to (0,0) the line integral equals

[} 0
f ((x)(x)+x9> dx + x2dx = f 3x2dx = —1
I 1

. . s . 19 _ - 1
Then the required line integral = 20 1 20
ON oM p) o)
ff(g el ff[gx‘@ﬂ) - a—y(xy+y2)]dxdy
R R
i x
= f (x—2y)dxdy = f f (x—2y) dydx
R x=0 y=x2

] x i x
f [f w—2ydyldx = f wy =y, dx
0 %2 x

0
i
f x*—x%dx = — 5%

0

so that the theorem is verified.

3. Extend the proof of Green’s theorem in the plane y
given in Problem 1 to the curves € for which lines
parallel to the coordinate axes may cut C in more
than two points. -

Consider a closed curve C such as shown in the ad-
joining figure, in which lines parallel to the axes may
meet C in more than two points. By constructing line ST
the region is divided into two regions R, and R, which are
of the type considered in Problem 1 and for which Green’s
theorem applies, i.e.,

(I fde+Ndy - ff(—a—N—-—-M)dxdy
1) G Ty
1

STUS
ON _ oM
=L — ydxd
f f o 75 Y
£
Adding the left hand sides of (I)and (2), we have, omitting the integrand Mdx + Ndy in each case,

I N R I R A |

STUS SvIs ST s STT rs rys SVT Tusvre

using the fact that f= - f
ST rs

Adding the right hand sides of (I) and (2), omitting the integrand,

@) f Mdx + Ndy
SIS
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Il I

R R R

where R consists of regions R4 and R,.

Then f Mdx + Ndy ﬂ(— - ) dxdy and the theorem is proved.
dy
rusvr

A region R such as considered here and in Problem 1, for which any closed curve lying in R can be
continuously shrunk to a point without leaving R, is called a simply-connected region. A region which is
not simply-connected is called multiply-connected. We have shown here that Green’s theorem in the plane
applies to simply-connected regions bounded by closed curves. In Problem 10 the theorem is extended tc
multiply-connected regions.

For more complicated simply-connected regions it may be necessary to construct more lines, such as
ST, to establish the theorem.

. Express Green’s theorem in the plane in vector notation.

We have Mdx + Ndy = (Mi+Nj)-(dxi+dyj) = A-dr, where A= Mi+Nj and r=xi+yj so
that dr = dxi+dyj.

Also, if A = Mi+ Nj then

i J k
Vxa = |2 2 2 . _on oM., ON _ oM
x % 3 TG T
M N o
so that (Vx A)+k giv g;’

Then Green’s theorem in the plane can be written

§A'dr = f (Vx A)-k dR
J:

c
where dR = dxdy.

A generalization of this to surfaces S in space having a curve C as boundary leads quite naturally to
Stokes’ theorem which is proved in Problem 31.

Another Method.
As above, Mdx + Ndy = A-dr = A-Zr ds = AT ds, y
S

where :—; = T = unit tangent vector to C (see adjacent fig-

ure). If nis the outward drawn unit normal to C,then T = kxn
so that

Mdx + Ndy = A«Tds = A-(kxn)ds = (Axk)'nds
Since A = Mi+Nj, B = Axk = (Mi+Nj)xk = Ni—Mj and

BN BM = V. B. Then Green’s theorem in the plane becomes

x oy
fB-nds = f V.B dR P’
c 1e 0

where dR =dxdy.
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Generalization of this to the case where the differential arc length ds of a closed curve C is replaced by
the differential of surface area dS of a closed surface S, and the corresponding plane region R enclosed by
C is replaced by the volume ¥V enclosed by S, leads to Gauss’ divergence theorem or Green’s theorem in

space,
ff B:ndS = ff V.8 dv
v

S

5. Interpret physically the first result of Problem 4.
If A denotes the force field acting on a particle, then f A-dr is the work done in moving the particle
C

around a closed path C and is determined by the value of VxA. It follows in particular that if VXxA=0 or
equivalently if A =V, then the integral around a closed path is zero. This amounts to saying that the work
done in moving the particle from one point in the plane to another is independent of the path in the plane
joining the points or that the force field is conservative. These results have already been demonstrated for
force fields and curves in space (see Chapter 5).

Conversely, if the integral is independent of the path joining any two points of a region, i.e. if the
integral around any closed path is zero, then VxA=0. In the plane, the condition VxA =g is equivalent to

the condition ¥ = 9 yhere A = Mi+ Nj.
Sy o

(2,1)
6. Evaluate (10x* —2vy®) dx — 3x%? dy along the path x* —6xy® = 442,
0,0)
A direct evaluation is difficult. However, noting that M = 10x*—2xy%, N = —3x%? and S—M = —6xy?
Y
= %L;l ,» it follows that the integral is independent of the path. Then we can use any path, for example the
path consisting of straight line segments from (0,0) to (2,0} and then from (2,0) to (2,1).
2
Along the straight line path from (0,0) to (2,0), y=0, dy =0 and the integral equals 10x*dx = 64.
x=0
1
Along the straight line path from (2,0) to (2,1), x=2, dx=0 and the integral equals — 12y2 dy = —4,
¥=0
Then the required value of the line integral = 64 —4 = 0.
Another Method.
: oM _ ON 4 3 2 ; ; ; 5 __ 2.5
Since S =5 (10x* — 2xy°%y dx — 3x%2 dy is an exact differential (of 25 —x ¥“}. Then
X
(2,1) (C2Y (2, 1)
f (10x* ~2y%) dx — 3x%2dy = f d(2x° —x2y%) = x5 _ %8 | = 60
(©,0) (©,0) ©,0)

7. Show that the area bounded by a simple closed curve C is given by 3 {x dy — ydx.
«C

In Green’s theorem, put M = —y, N = x. Then

f;xdy_ydx - {f(%(x)—%(—y))dxdy - 2ffdxdy = 24

where A is the required area. Thus 4 = %f xdy — ydx.
¢
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8. Find the area of the ellipse x = acosf, y = b sind.

2m
Area = %fé xdy — ydx = %f (a cos B)(b cos B) d6 — (b sinO)(—a sin&) d&
0
2m 2
= %f ab (cos20 + sin?6)ydf = %f abdf = 7Tab
0 0

9. Evaluate f(y—sinx)dx + cosx dy, where C is the ¥

4

triangle of the adjoining figure:
(a) directly,

(b) by using Green’s theorem in the plane.

(a) Along O4, y=0, dy=0 and the integral equals

/2
f — sinx dx
0

/2
= cosx)o = =1

1

/2
f (0 — sinx)dx + (cosx)(0)
0

it

Along AB, x %T, dx =0 and the integral equals

1
f (y—1)0 + 0dy = 0
0

Along BO, y = % , dy = %dx and the integral equals

I

0 0
% . 2 _ 52 2 _ T o_ 2
LZ (—7? — sinx)dx + - cosx dx = (7_1, +cosx t s1r1x)l7_r/2 = 1 4 s
- - T_ 2 . _T7 _ 2. 7
Then the integral alongC = —1 + 0 + 1 — = — = = — & = 7
- ; - oN . oM _
(Y M = y — sinx, N = cosx, 3 - sinx, dy - 1 and
i Mdx + Ndy = f (%—%M)dxdy = f (—sinx — 1) dy dx
R R
/2 ox/m /2 2/
= f [ f (— sinx — 1) dy] dx = f (~y sinx —y) ‘0 dx
x=0 y:() xio
/2 /2
- 2% 2x . 2 ; %2 _ 2 _ 7
= ‘/0‘ (—-? sinx — ?)dx = "‘7?(—" cosx +sinx) — = ‘0 -7

in agreement with part (a).

Note that although there exist lines parallel to the coordinate axes (coincident with the coordi-
nate axes in this case) which meet C in an infinize number of points, Green’s theorem in the plane still
holds. In general the theorem is valid when C is composed of a finite number of straight line segments.

10. Show that Green’s theorem in the plane is also vali

d for a multiply-connected region R such as
shown in the figure below.

The shaded region R, shown in the figure below, is multiply-connected since not every closed curve
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lying in R can be shrunk to a point without leaving
R, as is observed by considering a curve surrounding y
DEFGD for example. The boundary of R, which con-
sists of the exterior boundary AHJKLA and the inte-
rior boundary DEFGD, is to be traversed in the pos-
itive direction, so that a person traveling in this di-
rection always has the region on his left. It is seen
that the positive directions are those indicated in the
adjoining figure.

In order to establish the theorem, construct a
line, such as 4D, called a cross-cut, connecting the ) *
exterior and interior boundaries. The region bounded
by ADEFGDALKJHA is simply-connected, and so

Green’s theorem is valid. Then
Mdx + Ndy = ff (N _ My gy
x  dy
R

But the integral on the left, leaving out the integrand, is equal to

R N R AR |

DEFGD ALKJHA DEFGD ALKJTHA

ADEFGDALKJHA

since jA‘D = _-éA - Thus if C; is the curve ALKJHA, C, is the curve DEFGD and C is the boundary of R
consisting of C4 and C, (traversed in the positive directions), then _/; + j; = jC. and so
1 2

i);de+Ndy = ff(aN aM)d xdy

11. Show that Green’s theorem in the plane holds for the region R, of the figure below, bounded by
the simple closed curves C,(ABDEFGA), Co(HKLPH), C5(QSTUQ) and C.(VWXYV).

Construct the cross-cuts AH, LQ and TV. Then the region bounded by AHKLQSTVWXYVTUQLPHA-
BDEFGA is simply-connected and Green’s theorem applies. The integral over this boundary is equal to

E R N R R R R

HKL Lg ST VXYV 144 Iog LPH ABDEFGA

Since the integrals along AH and HA, LQ and QL, TV and VT cancel out in pairs, this becomes
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[« [ ] ]+ ]

HKL osr VWYYV rog LPH ABDEFGA
] (f+f) +<f+f) -
HEKL LPH osT  rig VWYYV ABDEFGA
= f + f + f +
HKLPH 0sryQ VWYYV ABDEFGA

;
—
_
.
—

where C is the boundary consisting of C4, Cy, Czand C,. Then

fde+Ndy = ff(%—%;M—)dxdy
¢ R

as required.

12. Prove that f Mdx + Ndy = 0 around every closed curve C in a simply-connected region if and
(4

only if oM _ oN everywhere in the region.
Oy Ox

Assume that M and N are continuous and have continuous partial derivatives everywhere in the region
R bounded by C, so that Green’s theorem is applicable. Then

fde-kNdy = ff(_g—Nug—M)dxdy
¢ P x Y

1t OM . ON in R, then clearly fde+Ndy = 0.
C

dy  on

Conversely, suppose f Mdx + Ndy = 0 for all curves C. If %1! - %M > 0 at a point P, then
) * Y
ON _ oM

from the continuity of the derivatives it follows that 3 3 > 0 in some region A surrounding P. If
x Yy

I"is the boundary of 4 then

fde+Ndy = ff(a—N—a—M)dxdy>O
T f Ox Jy

which contradicts the assumption that the line integral is zero around every closed curve. Similarly the

assumption S—N — B—M < 0 leads to a contradiction. Thus B—N - —BM
x

= 0 at all points.

Note that the condition %M— = S—N is equivalent to the condition VxA =0 where A = Mi+ Nj
y X

(see Problems 10 and 11, Chapter 5). For a generalization to space curves, see Problem 31.



DIVERGENCE THEOREM, STOKES’ THEOREM, RELATED INTEGRAL THEOREMS 115

—yi+xj
x2 +y2
explain the results.

13. Let F = (a) Calculate VxF. (b) Evaluate fF-dr around any closed path and

i i k
@) VxF = 9 X i 0 in any region excluding (0,0).
Ox Oy Oz
=y _ ad

Pty?  xPiy? 0

®) ﬁ F.dr = fw - Let x=pcosd, y= 0sine, where (0,¢) are polar coordinates.

x2+y2
Then
dx = —psingd dp + dp cos P, dy = pcosd dp + dosin
—ydx +xdy
and so —xx;:.*yzxj = dp = d(arc tan%)

For a closed curve ABCDA (see Figure (a) below) surrounding the origin, ¢ = 0 at 4 and b =27
27

after a complete circuit back to 4. In this case the line integral equals f qu = 277.
0

Y Y
B g p
C
0 E A @
\\/ % R ’
1 x
b 0
Fig.(a) Fig. (b)

For a closed curve PQRSP (see Figure (b) above) not surrounding the origin, ¢ =g at P and

(o]
b= Do after a complete circuit back to P. In this case the line integral equals f dp = 0.
®,

o

Since F = Mi+ Nj, VxF = 0 is equivalent to B_M = _S—N and the results would seem to contra-
Y X

dict those of Problem 12. However, no contradiction exists since M = -P%;—Q and N = —

%2 +y2 do
not have continuous derivatives throughout any region including (0,0), and this was assumed in Prob.12.

THE DIVERGENCE THEOREM

14. (a) Express the divergence theorem in words and (b) write it in rectangular form.

(a) The surface integral of the normal component of a vector A taken over a closed surface is equal to the
integral of the divergence of A taken over the volume enclosed by the surface.
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' 4 34 A
(b) Let A = A+ Asi +4gk. Then divA = VoA = =% + =2 + =2,
3 | Oy | oz

The unit normal to S is n = ngi+npi+ngk. Then nq = i = cosd, np = n-j = cos 3 and
ng = n-k = cos 7y, where o, 3,y are the angles which n makes with the positive x,y,z axes or i,k
directions respectively. The quantities cos o, cos 5, cos y are the direction cosines of n. Then

A-n (A1i+A2j+A3k)-(cosOLi + cosi + cosy k)

"

Aqcos @ + ApcosB + Agzcosy
and the divergence theorem can be written

ff (241— + -d—A—2+ _Bﬁ) dodydz = f (A, cos @ + Apcos3 + Agcos?y) dS
y Ox Oy Oz 5

15. Demonstrate the divergence theorem physically.
Let A = velocity v at any point of 2 moving fluid. From Figure (@) below:

Volume of fluid crossing dS in At seconds
= volume contained in cylinder of base dS and slant height v/

= (vAe)+ndS = vendS At

Then, volume pet second of fluid crossing dS = vendS

Fig. (a) Fig. (b)

From Figure (b) above:

Total volume per second of fluid emerging from closed surface S

From Problem 21 of Chapter 4, V.vdV is the volume per second of fluid emerging from a volume ele-
ment dV. Then

Total volume per second of fluid emerging from all volume elements in S

= ff Vevdv
14
Thus ff vendS = ff V.vav
’ v

S
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16. Prove the divergence theorem.

52 a4 :é(x:y)

B 2=ftey)

Let S be a closed surface which is such that any line paraliel to the coordinate axes cuts S in at
most two points. Assume the equations of the lower and upper portions, $; and S,, to be z=f(x,y) and
z=f,(x,y) respectively. Denote the projection of the surface on the xy plane by R. Consider

4 24 L) 4
L [ )l I A
4 14 R

z=f,(x,y)
= ffA z [f2 dyds = (4 4 ] dyd
= 3(95::},7 ) Z=f1 ¥y ax = S(X,}’:fg) - s(xsy!fi) yax
R R

For the upper portion S,, dydx = cos Yo dSy = kems dS, since the normal ny to S, makes an acute
angle ¥, with k.

For the lower portion Sy, dydx = —cos Y1 dSy = —k-ny dS; since the normal n4 to S; makes an ob-

tuse angle 7y; with k.
ffA3 k'n2 dSQ

Then ff A3(x:y:f2) dydx
R

So
fan(x,y,fl)dydx = - ffAs keng dS,
R Sy
and
f f Ag(x,y.f,) dydx — f f Agw,y.f) dydx = f f Asken, dS, + f f A3 Keny dS,
R R So Sy
= ‘/:/‘Ag ken dS
N
so that
04
(1) fff asdv = fank-ndS
Z
14 S

Similarly, by projecting S on the other coordinate planes,
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fffaAidV ffAii-ndS
s
fffaAQdV ffAQj-ndS
s
Adding (1), (2) and (3},

ff aAl A AQ ¢ ff‘Aii+AQj+Ask)-ndS
y a
S
o ff V.adv ffA-ndS
7 S

The theorem can be extended to surfaces which are such that lines parallel to the coordinate axes
meet them in more than two points. To establish this extension, subdivide the region bounded by S into
subregions whose surfaces do satisfy this condition. The procedure is analogous to that used in Green’s
theorem for the plane.

W

1

17. Evaluate ff F.ndS, where F = 4xzi—y2j+yzk and S is the surface of the cube bounded
N
by x=0,x=1,y=0,y=1, z=0, z=1.

By the divergence theorem, the required integral is equal to

2 ) I
ff V.rdv fff ["a';(tlxz) + 3;(-——)'2) + g;(yz)] dv
y 14
ff (4z —y)dV = f f f (4z —y) dzdydx
14

x=0 y=0 z=0

1 1
f f —yz gm0 W% = f f (2—y)dydx =

x=0 y=0 x=0 ¥=0

i H

]

nafeo

The surface integral may also be evaluated directly as in Problem 23, Chapter 5.

18. Verify the divergence theorem for A = 4xi — 2y j + z° k taken over the region bounded by
x2+y2 =4, z=0 and z=3.

- 9 o 9
ff V.adv = fff [ax(‘*") + -ay(—2y2) + 62(22)] dv
14 v
Sh—x2
fff (4—4y +22)dV = f f f (4—4y+2z)dzdydx = 847
v

x=e2 y=—y - Ji=x2 z=0

"

Volume integral

The surface S of the cylinder consists of a base S; (z=0), the top S, (z=3) and the convex portion
Sq (x2+y? =4). Then
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Surface integral = ffA-n dS = ffA-n dS, + ffA-n ds, + ffA-n dSq
3 5 ] S
On Sy (z=0), n=—K, A =4xi—2y2?j and A+n =0, so that ffA-n dS, =0.
5y
On S, (z=3), n=k, A = dxi— 2y2j +9k and A-n =9, so that
ffA-n dS, = gfdeQ = 3677,  since area of S, = 477
So So
On Sg (x®+y? = 4). A perpendicular to x2+y2=4 has the direction V(x2+ ¥y2) = 2xi+ 2.
. . ityi
Then a unit normal is n = 22t 2d _ xi > 2 since x2+y2=4.
1/4x2+4y2
{ i
A-n = (4xi-— 22§ + 2%k) . <_x_12_y_,]_) = 2% —y°
2z
f?.‘f’."!f.-.?(»b’?: z=3
dV=dxdydz
From the figure above, x = 2cos &, ¥y = 2sin &, dS5 =2 dBdz and so
27 3
ffA-ndSs = f f [2(2 cos 02 — (2sin O] 2dz dO
S3 =0 z=0
271 277
= (48 cos?6 — 48 sin®6YdO = f 48 c0s26d0 = 487
f=0 6=0
Then the surface integral = 0 + 3677 + 4877 = 84 77, agreeing with the volume integral and verify-

ing the divergence theorem.

Note that evaluation of the surface integral over S3 could also have been done by projection of Sa on

the xz or yz coordinate planes.

19. If div A denotes the divergence of a vector field A at a point P, show that

A'n dS
divA = lim &S
A7=0 AV

where AV is the volume enclosed by the surface AS and the limit is obtained by shrinking AV

to the point P.
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By the divergence theorem, fff divAdV = ffA-n dS
AS

AV

By the mean-value theorem for integrals, the left side can be written
divAffde = divA AV
AV

where div A is some value intermediate between the maximum and minimum of divA throughout AV. Then

[f anas

div A = AS__——
Av
Taking the limit as AV—0 such that P is always interior to AV, TivA approaches the value divA at

point P; hence
f A-ndS
diva = lm &
AT-0 AV
This result can be taken as a starting point for defining the divergence of A, and from it all the prop-
erties may be derived including proof of the divergence theorem. In Chapter 7" we use this definition to
extend the concept of divergence of a vector to coordinate systems other than rectangular. Physically,

f A-n dS

AS
Av ,
represents the flux or net outflow per unit volume of the vector A from the surface AS. If divA is positive
in the neighborhood of a point P it means that the outflow from P is positive and we call P a source. Sim-
ilarly, if divA is negative in the neighborhood of P the outflow is really an inflow and P is called a sink.
If in a region there are no sources or sinks, then divA =0 and we call A a solenoidal vector field.

20. Evaluate ffr-n dS, where S is a closed surface.

S

By the divergence theorem,

ff ren dS ff Verdv
S v
ff (T’}%l_}_%;‘ +,aj;—k).(xi+yj+zk)dV

v
o, o 2y o ([ -
fff('ax+8y+8z)dv = 3 . av = 3V
4

1]

where V is the volume enclosed by S.

21. Prove ff @V — VY dV = ff@w — YVy.ds.
14 S

Let A = ¢V in the divergence theorem. Then
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fffv.(ebvsb)dV = f(qﬁVup)-nds = f @V ds
v

N S
But V-@dViy = V-V + (V) (Vdy = oV + (Vaby-(Viy
Thus JIfv-evmar - [[[ e var @
v vV

or

o J[[ 6V o vmiar - [ @vir-as
4 N

which proves Green’s first identity. Interchanging ¢ and l// in (),

(2) fff [V + (V- (Vpylav = f WVy-ds
14 S

Subtracting (2) from (1), we have

3) f f f @V~ YV yay = f f @V — YVeyeds
v S

which is Green’s second identity or symmetrical theorem. 1In the proof we have assumed that ¢ and  are
scalar functions of position with continuous derivatives of the second order at least.

22. Prove ffquSdV = ff¢nd5.
v S

In the divergence theorem, let A = ¢>C where C is a constant vector. Then

fffv.@m v = f @C+n ds
4

S
since V.@c) = (V¢y-c = ¢V and PCn = C-(¢n),

fvffc'vqb v = {fC-(qbn)ds

Taking C outside the integrals,

c.fffV¢dV = C-ffqbnds
4 S
and since C is an arbitrary constant vector,

[[fsesr - [fons
e [ffounn - [forns

S
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In the divergence theorem, let A =Bx C where C is a constant vector. Then

ff V. (Bxc)dV f (BXC)+n dS
14

S
Since V- (BxC) = C-(VxB) and (BxC)+n = B+(Cxn) = (Cxn)*B = C+(nxB),

fffc-(VxB)dV = ffc-(an)dS
|4 S
Taking C outside the integrals,

Cff VxBdV
¥

and since C is an arbitrary constant vector,

ff VxBdy = ffandS
1 S

1]

C-ffandS

S

24. Show that at any point P

ffqbn ds ﬂn x A dS
. AS . AS
\v/ = D N— v = As
(@) Vo Al}rilo N and )] x A A%’To 7

where AV is the volume enclosed by the surface AS, and the limit is obtained by shrinking AV
to the point P.

(a) From Problem 22, ff Vo av = ffd)nds. Then ff Vo idv = f ¢n-i ds.
AV AS AV AS

Using the same principle employed in Problem 19, we have

ff¢n-i ds
AS

AV

where Vob.i is some value intermediate between the maximum and minimum of V¢ - i throughout AV.
Taking the limit as AV—0 in such a way that P is always interior to AV, V-1 approaches the value

ff bn-ids
5

Vo.i =

(hH Véei = lim
¢ Ay AV
Similarly we find
f nejds
S
) Vp-§ = lim —e
P AV=p AV
f bn-k dS
S

Vb.k = i
3) ¢ A
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Multiplying (1), (2, (3) by 1,3,k respectively, and adding, using
Vo = (Voi + (Vp-ii + (Vo-K)k, n o= @i + (n-)j + MKk

(see Problem 20, Chapter 2) the result follows.

(b) From Problem 23, replacing B by A, ff VxAdv = ff nxAdS.
Av AS

Then as in part (a), we can show that
ff (mxA).i dS
(Vxay-i = lim 28

Av-o AV

and similar results with j and k replacing i. Multiplying by 1i,3j,k and adding, the result follows.

The results obtained can be taken as starting points for definition of gradient and curl.
these definitions, extensions can be made to coordinate systems other than rectangular.

25. Establish the operator equivalence
Vo = 1im -L # s o
Av-0 AV
As

where o indicates a dot product, cross product or ordinary product.

123

Using

To establish the equivalence, the results of the operation on a vector or scalar field must be consist-

ent with already established results.

If o is the dot product, then for a vector A,

VoA = lim LffdsoA
A0 AV
AS
[0} ¢
divA = lim Lffds-A
A0 AV
AS

lim -L f f A-n dS
A0 AV
AS

]

established in Problem 19.

Similarly if o is the cross product,

caulA = Vxa = lim 1 fdeXA
Ay-0 AV

AS
= lim L ffn X A dS
Ap-0 Ay
A

established in Problem 24 (b).

Also if o is ordinary multiplication, then for a scalar o

Vo = i 1 ffd o V = i 1 ff d
¢ &1}—% Ay S o ¢ Alw}ino AV P d
AS Ag

established in Problem 24(a).
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26. Let S be a closed surface and let r denote the position vector of any point (x,y,z) measured from

an otigin 0. Prove that
n-r
dS
e
S

is equal to (a) zero if O lies outside S; (b) 47 if O lies inside S. This result is known as Gauss’
theorem.

(a) By the divergence theorem, ff “_3[ dS = ff V. is dv.
r T
S 14

But V-% = 0 (Problem 19, Chapter 4) everywhere within V provided r # 0 in ¥, i.e. provided O
r

is outside of ¥ and thus outside of S. Then ff nTé! dS = 0.
S

(by If O is inside S, surround O by a small sphere s of radius a. Let 7 denote the region bounded by S and
s. Then by the divergence theorem

[[ura - [[ra (s - [[foze -

S+s S s

since r # 0 in 7. Thus

[ - ffse
S s
2
Now ons,r=a, n=—~ so that “'ST:L—L/;&M —r'4r=—a—4=—l2 and
a r a a a a
n.r n-r 1 1 4770°
== dS = - = d5 = = d5 = —= ds = 5 =
I [Jrwa - [Jro - Fffs - -«
S s s s

27. Interpret Gauss’ theorem (Problem 26) geometrically.

Let dS denote an element of surface area and
connect all points on the boundary of dS to O (see
adjoining figure), thereby forming a cone. Let dO) be
the area of that portion of a sphere with O as center
and radius r which is cut out by this cone; then the
solid angle subtended by S at O is defined as dw =
dr-z— and is numerically equal to the area of that por-
tion of a sphere with center O and unit radius cut out
by the cone. Let n be the positive unit normal to dS
and call @ the angle between n and r; then cos g =

e Also, df) = *dScos® = %7 dS so that

dw = % % dS, the + or — being chosen according

as n and r form an acute or an obtuse angle 6 with
each other.

Let S be a surface, as in Figure (a) below, such that any line meets S in not more than two points.

If O lies outside S, then at a position such as 1, % dS = dew; whereas at the corresponding position 2,
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"r;r dS = —dw. An integration over these two regions gives zero, since the contributions to the solid
angle cancel out. When the integration is performed over S it thus follows that f % dS = 0, since for

crs o R R S
every positive contribution there is a negative one.

In case O is inside S, however, then at a position such as 3, %—E dS = dw and at 4, % dS = dw
‘80 that the contributions add instead of cancel. The total solid angle in this case is equal to the area of a

unit sphere which is 477, so that ffnr__sr dS = 477.
N

Pig. (a) Fig. (b)

For surfaces S, such that a line may meet S in more than two points, an exactly similar situation
holds as is seen by reference to Figure (b) above. If O is outside S, for example, then a cone with vertex
at O intersects S at an even number of places and the contribution to the surface integral is zero since the
solid angles subtended at O cancel out in pairs. If O is inside S, however, a cone having vertex at O in-
tersects S at an odd number of places and since cancellation occurs only for an even number of these,
there will always be a contribution of 477 for the entire surface S.

28. A fluid of density P(x,y,2,t) moves with velocity v(x,v,z,t). If there are no sources or sinks,
prove that

V-J+g—’t0=0 where J = pv

Consider an arbitrary surface enclosing a volume ¥V of the fluid. At any time the mass of fluid within

Vis
M = ff pav
4

The time rate of increase of this mass is
-2 K
- = = v = =— dV
ot Ot P ot
4 v
The mass of fluid per unit time leaving V is

f pPven dS

S
(see Problem 15) and the time rate of increase in mass is therefore
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—ffpv-n s = —ff V. (povydv
S 14

by the divergence theorem. Then

fff%dv = —ff V. (ov) dV
Ot

4 7
fff(v-(pv) +a—'o)dV = 0

. Ot

Since V is arbitrary, the integrand, assumed continuous, must be identically zero, by reasoning simi-
lar to that used in Problem 12. Then

or

Ve + % . 0 where J = oV
ot

The equation is called the continuity equation. X O is a constant, the fluid is incompressible and V.vs=
0, i.e. v is solenoidal.

The continuity equation also arises in electromagnetic theory, where p is the charge density and
J = pv is the current density.

If the temperature at any point (x,y,2) of a solid at time ¢ is U(x,y,2,¢) and if x, p and ¢ are re-
spectively the thermal conductivity, density and specific heat of the solid, assumed constant,
show that
]
%% - VU where k= «x/pc

Let ¥V be an arbitrary volume lying within the solid, and let S denote its surface. The total flux of
heat across S, or the quantity of heat leaving S per unit time, is

ff(-—KVU)'n ds
S

Thus the quantity of heat entering S per unit time is

() ff(KVU)-ndS = ff V.« Vuy dv
S 7

by the divergence theorem. The heat contained in a volume V is given by

[[f cover
v
Then the time rate of increase of heat is

2 fffeovar - Jff%
@) 5. cp U dV V ep 5, 4V

Equating the right hand sides of (1) and (2),

ff [cpg—g—v-(KVU)]dV = 0
v ot

and since V is arbitrary, the integrand, assumed continuous, must be identically zero so that
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cp E = V.w V)

or if x,¢, 0 are constants,

U _ K9V - %
at_chVU—kU

The quantity & is called the diffusivity. For steady-state heat flow (i.e. %(z—/ =0 or U is independent of

time) the equation reduces to Laplace’s equation VQU =0.

STOKES’ THEOREM
30. (a) Express Stokes’ theorem in words and (b) write it in rectangular form.

(a) The line integral of the tangential component of a vector A taken around a simple closed curve C is
equal to the surface integral of the normal component of the curl of A taken over any surface S having
C as its boundary.

(b) As in Problem 14 (b),
A = A;i+4,i+ A3k, n = cos®i+cosfBj +cosyk

Then
i § k
Usxa = |2 2 2| . (s 345, 04 3 2y _ Mgy
A % Y 2 S T T E TR EE D
41 Ay Ag
04 4, 04,  OAs OAy,  OAq

(VxAy.n = (ay - eesd + (5t - e cos B + (52 ——a——)cosy

Acdr = (Ayi+A,j +Agk)-dxi+dyj+dzk) = Aydx + Aody + Agdz

and Stokes’ theorem becomes

ff [(BAS_%) a+(%’4—1~% s,8+(—%——a—)cosyjds = iAidx+A2dy+A3dz

31. Prove Stokes’ theorem.

Let S be a surface which is such that its projections
on the xy, yz and xz planes are regions bounded by simple
closed curves, as indicated in the adjoining figure. As-
sume S to have representation =z =f(x,y) or x=g(y,z) or
y=h(x,z), where f,g,h are single-valued, continuous and
differentiable functions. We must show that

f (VxAy.nds
S

f [Vx(4,i + 4,5 + Agk)]-n dS
s

fA-dr

C
where C is the boundary of S.

H
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Consider first f [Vx(Aii)]-n as.

S
i ] k
. . 3 03 09 04; . o4
= = = _ = — — ————k,
since V x (441) % By Ss 3, i _ay
Ay, 0O 0
04 04
() [Vx(4.0)]-ndS = (==n.j — =-n-k)dS
dz Sy
If z =f(x,y) is taken as the equation of S, then the position vector to any point of S is r = xi+yj+zk =
xi+yj+f(y)k sothat —g—r =j+ % k =3+ %—k. But —gl is a vector tangent to S (see Problem 25,
Y
Chapter 3) and thus perpendigular to n,yso that ¥
Or . Oz . Oz
e = j+ =nk =0 or n-j = —=n-k
n 3y nej ayn i S
Substitute in (I) to obtain
4, 4, 4, 9z 4,
e — Z1pnkydS = (——===—n-k — =—=n-k)dS
L R T 3 "0
or
d4, 044 Oz
2 Vx(4yi)]+ndS = —(==+=2=)n'kdS
) [Vx(4:1)]+n S " 2 3"
[ 04, 0 3
Now on S, Ai(x,y,2) = Al(x,y,f(x,y)) = F(x,y); hence 941 + 4y Oz = oF and (2) becomes
dy | 0z o O
[Vx(4,i)]ndS = _9F pkas = _ OF dxdy
dy Oy

Then
ff [Vx@plends = ff_ oF dx dy
dy
s 4

where R is the projection of S on the xy plane. By Green’s theorem for the plane the last integral equals

F dx where | is the boundary of R. Since at each point (x,y) of T" the value of F is the same as the

value of 44 at each point (x,y,z) of €, and since dx is the same for both curves, we must have

h{Fdx = fAldx
r o

f [Vx (4,1)]+n dS

S

or

Similarly, by projections on the other coordinate planes,

f [Vx (425)] +n dS

S

ff [Vx (4gky] -n dS
s

1}

i
Qk'e—; S~
by
Ry
.
R]

0
o~
b
»
e
N
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Thus by addition,
ff(VxA)-n ds = f A-dr
g C

The theorem is also valid for surfaces S which may not satisfy the restrictions imposed above. For
assume that S can be subdivided into surfaces 51,8, "'Sk with boundaries C4,C,,... Ck which do satisfy
the restrictions. Then Stokes’ theorem holds for each such surface. Adding these surface integrals, the
total surface integral over S is obtained. Adding the corresponding line integrals over Cq,Co, "'Ck , the
line integral over C is obtained.

32. Verify Stokes’ theorem for A = (Zx—y)i—y2j—y?zk, where S is the upper half surface of
the sphere %2 +y2 +22 = 1 and C is its boundary.

The boundary C of S is a circle in the xy plane of radius one and center at the origin. Let x= cost,
y=sin¢, z=0, 0 <t < 277 be parametric equations of C. Then

f A-dr = f (22 —y)dx — y22dy — y%2 dz
C

C
27
= f (2 cost — sint) (—sintyd: = 77
0
i j k
9 Poi 9
Also, = < 9 e -
5 Vxa % 3 9 K

2 —y  —yz? g2y

Then f(VxA)-ndS = ffkondS = ffdxdy

S S R

since n+k dS =dxdy and R is the projection of S on the xy plane. This last integral equals

! 1=x2 U pV1=-x2 1
f f dy dx = 4ff dy dx = 4f V1—x?dx = g7
5 0 0 (o}

r== y=-vi-x

and Stokes’ theorem is verified.

33. Prove that a necessary and sufficient condition that f A-dr =0 for every closed curve C is

that Vx A = ¢ identically. ¢

Sufficiency. Suppose Vx A =0. Then by Stokes’ theorem

fA-dr = f (VxA)sn dS = ¢

¢ S

Necessity. Suppose f A«dr =0 around every closed path C, and assume Vx A # 0 at some point
C
P. Then assuming VxA is continuous there will be a region with P as an interior point, where VxA £0.
Let S be a surface contained in this region whose normal n at each point has the same direction as VxA,
ie. VxA = an where O is a positive constant. Let C be the boundary of S. Then by Stokes’ theorem
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fA-dr = f(VxA)-ndS = ocffn-nds > 0
S

4 s

which contradicts the hypothesis that f A+dr = 0 and shows that VxAa=o.
C

PQ
It follows that VxA = 0 is also a necessary and sufficient condition for a line integral f A.dr

P,
to be independent of the path joining points P, and PQ . (See Problems 10 and 11, Chapter 5.) '

34. Prove fdpr = //(nxV)deS.
S

In Stokes’ theorem, let A = BxC where C is a constant vector, Then

fdro(BxC) = f [Vx@®xc)]-n dS

S
fC-(dpr)
C-f drx B

f [c-VyB — ¢(V-B)]-n dS
s

f [€VyB]-nds - ff [c (V:B)]-n dS

S s

ffc- [V®B-m] ds - ffc [n(V-B)] ds

s S

cff [V@®Bn) — n(V-B)] dS = C-ff(nxV)deS
S S

Since € is an arbitrary constant vector f drxB = ff (nxV) x B dS
S

W

35. If AS is a surface bounded by a simple closed curve C, P is any point of AS not on C and n is
a unit normal to AS at P, show that at P
f A-dr

(curlA).n = lim <
AS~0 AS

where the limit is taken in such a way that AS shrinks to P.

By Stokes?’ theorem, f (curl A)en dS = f A.dr.
AS C

Using the mean value theorem for integrals as in Problems 19 and 24, this can be written

‘f A-dr

AS

(curl Ay*n =
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and the required result follows upon taking the limit as AS—0
This can be used as a starting point for defining curl A (see Problem 36) and is useful in obtaining

curlA in coordinate systems other than rectangular. Since f A-dr is called the circulation of A about
C

C, the normal component of the curl can be interpreted physically as the limit of the circulation per unit
area, thus accounting for the synonym rotation of A (rot A) instead of curl of A,

36. If curl A is defined according to the limiting process of Problem 35, find the z component of
curl A.

Pix,y,2)

Let EFGH be a rectangle parallel to the xy plane with interior point P(x,y,z) taken as midpoint, as

shown in the figure above. Let 43 and 4, be the components of A at P in the positive x and y directions
respectively.

If C is the boundary of the rectangle, then

fA-dr = fA-dr + fA-dr + fA-dr + fA-dr

¢ EF G GH HE

94
But fA-dr = <A1—1 1AyAx fA-dr = —(A1+%%3Ay)Ax
EF GH r
04, 1 94,
fA-dr = (A2+—1—-——Ax)Ay Avdr = -(AQ—— 2 Axy Ny
2 O« 2 Ox
FG HE
except for infinitesimals of higher order than Ax Ay,
9 3
Adding, we have approximately f A«dr = (—A—2 - ——A—l—) Dx Dy
Ox Oy
C
Then, since AS = Axy,
Aedr
z component of curltA = (curlA)+k = lim
AS-0 AS
Od, 04,
— — =Nz Ny
% Ty
= lim
Ax—0 Nx Ay
Ay—0
04, 04,
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37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.
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SUPPLEMENTARY PROBLEMS

Verify Green’s theorem in the plane for f (3x2-—8y2) dx + (4y —6xy)dy, where C is the boundary of the
C

region defined by: (a) y = Vx, y=x2; (b x=0,y=0, x+y = 1.

Ans. (a) common value = 3/2 (b) common value = 5/3

Evaluate f (3x +4y)dx + (2x —3y)dy where C, a circle of radius two with center at the origin of the xy

C
plane, is traversed in the positive sense. Ans. — 877

Work the previous problem for the line integral f (x?+y?)dx + 3xy? dy. Ans. 1277
4

Evaluate f (x2—2xy)dx + (x2y +3)dy around the boundary of the region defined by y?=8x and x = 2
(a) directly, (b) by using Green’s theorem. Ans. 128/5

(m2)
Evaluate [ ) (6xy —y)dx + (3x° — 2xy)dy along the cycloid x = §—sin&, y = 1 —cos &,
0,0

Ans. 6TP—417

Evaluate f (3x2+2y)dx — (x +3cosy)dy around the parallelogram having vertices at (0,0), (2,0), (3,1)
and (1,1). Ans. —6

Find the area bounded by one arch of the cycloid x = a(f— sin6), y =a(l - cos &y, a>0, and the x axis.
Ans. 37702

Find the area bounded by the hypocycloid x2/3 + yQ/:3 = aQ/s, a>0.

Hint: Parametric equations are x =acos®8, y = a sin®4. Ans. 37a%8
Show that in polar coordinates (0,9) the expression xdy —ydx = 0°dp. Interpret 3 f xdy — ydx.
Find the area of a loop of the four-leafed rose © = 3 sin 2¢. Ans. 977/8

Find the area of both loops of the lemniscate 0° = a?cos 2.  Ans. o

Find the area of the loop of the folium of Descartes y
x2+y% = 3axy, a >0 (see adjoining figure). s 3
Hint: Let y = ¢tx and obtain the parametric equa- (2 32

i

N~

tions of the curve. Then use the fact that
Area f xdy — ydx

= 3z f Z*d&) o

A
f x2 dr e

f
Ni—-

/

Ans. 3a%2

Verify Green’s theorem in the plane for f (2x —y*)dx — xydy, where C is the boundary of the region en-
c

closed by the circles x2+y% =1 and x%+y%2=9. Ans. common value = 6077

(=1,0) _ ydx +xd:
Evaluate >/(<I,0) —Lx;—ﬂlgx—-y along the following paths:
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51.

52.

53.

54.

55.

56.
57.
58.
59.

60.
61.

62.
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(a) straight line segments from (1,0) to (1,1), then to (—1,1), then to (~1,0).
(b) straight line segments from (1,0) to (1,~1), then to (~1,—1), then to (—1,0).

Show that although M = ON
dy x

Ans. (@) 7T (by — T

, the line integral is dependent on the path joining (1,0) to (—1,0) and explain.

By changing variables from (x,y) to (u,v) according to the transformation x = x(u,v), y = y(u,v), show that
the area 4 of a region R bounded by a simple closed curve C is given by
= Y
_ X,y %y, _ | % Ou
A = ff [J(u,—v)ld”d” where ](u_,?) = a—x ﬁ
r %

is the Jacobian of x and y with respect to « and v. What restrictions should you make ? Ilustrate the re-
sult where z and v are polar coordinates.
Hint: Use the result 4 = %fxdy= ydx, transform to z,v coordinates and then use Green’s theorem.
Evaluate ff F-n dS, where F = 2xy i +yz2j +xz k and S is:
S
(2) the surface of the parallelepiped bounded by x=0,y=0, z=0, x=2, y=1and z=3,
(b) the surface of the region bounded by x=0,y=0, y=3, z=0and x+22=6.
Ans. (a) 30 (b) 351/2

Verify the divergence theorem for A = 2x% i — y2j + 4xz° k taken over the region in the first octant
bounded by y2+z2=9 and x=2. Ans. 180

Evaluate ff r-n dS where (a) S is the sphere of radius 2 with center at (0,0,0), (b) S is the surface of
N

the cube bounded by x=~—1,y=—1, z=—1, x=1,y=1, z=1, (c) S is the surface bounded by the paraboloid
z = 4—(2 +y2) and the xy plane. Ans. (a) 3277 (B) 24 (c) 2477

If S is any closed surface enclosing a volume ¥ and A = axi +byj +czk, prove that ff A-n dS =
(@a+b+c) V. S

If H=curl A, prove that ff H-+n dS = 0 for any closed surface S.
N
If n is the unit outward drawn normal to any closed surface of area S, show that f ff divn dV = §.
14

Prove ff ‘fQ—V = ff’;“ ds.

y s 7
Prove ffrsn ds = ff 5:°r 4V,

S V

Prove ffn dS = 0 for any closed surface S.
S

Show that Green’s second identity can be written fff((ﬁvzk,l! - L[/V2¢)dV = ff (P j—;—b - L/l%—?) ds
14 S

Prove ffr xdS = 0 for any closed surface S.
S
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63.

64.

65.

66.

67.

68.

69.

70.

1.

2.

3.

4.

DIVERGENCE THEOREM, STOKES’ THEOREM, RELATED INTEGRAL THEOREMS

Verify Stokes’ theorem for A = (y—z +2)i + (yz+4)j —xzk, where S is the surface of the cube x=0,
y=0,2=0,x=2,y=2, z=2 above the xy plane. Ans. common value = —4

Verify Stokes’ theorem for F = xzi— yj +x%yk, where § is the surface of the region bounded by x=0,
y=0,2=0, 2x+y +2z = 8 which is not included in the xz plane. Ans. common value = 32/3

Evaluate ff(VxA)-n dS, where A = (x?+y—4)i +3xyj +(2z+22)k and S is the surface of (a) the
N

hemisphere x2-+y2+z2 = 16 above the xy plane, (b) the paraboloid z = 4 — (x2+y?) above the xy plane.

Ans. (a) —1677, (b) —477

If A= 2yzi—(x+3y—2)j+ (x%+z)k, evaluate ff(VxA)-n dS over the surface of intersection of the

S

2
2 which is included in the first octant.  dns. — T5(37 +8a)

cylinders x2+y2 = a?, x2+z2=a?
A vector B is always normal to a given closed surface S. Show that fffcurlB dV = 0, where V is the

region bounded by S.

It f E*dr = -1 i ffﬂ-ds, where S is any surface bounded by the curve C, show that VxE-=
o ¢ al S

_lom
¢ 3t

Prove £¢ dr = fdengb.
‘ S

Use the operator equivalence of Solved Problem 25 to arrive at (a) Vb, (b) V-A, (¢) Vx A in rectangular
coordinates.

Prove fofVcﬁ-AdV = {:fqu-nds - fvffqbV-A dv.

Let r be the position vector of any point relative to an origin O. Suppose ¢ has continuous derivatives of
order two, at least, and let S be a closed surface bounding a volume V. Denote ¢ at O by ¢,. Show that

2
[fhve-ovbias = [[[T2ar +a
S 4

where =0 or 47T¢o according as O is outside or inside S.

The potential ¢>(P) at a point P(x,y,z) due to a system of charges (or masses) GyrGor eoer Oy having position

vectors r,,r,, S with respect to P is given by

o 4
= m
# = L
m=1
Prove Gauss’® law
f f E«dS = 47Q

where E = — Vb is the electric field 1ntens1ty, S is a surface enclosing all the charges and Q= Z I
is the total charge within S. m=1

If a region ¥V bounded by a surface S has a continuous charge (or mass) distribution of densn:y P, the po-

tential ¢>(P) at a point P is defined by ¢ = fff,o

(@) ffE-dS = 477 fffpdV, where E:—Vd).
N 4

2
(6) \Y ¢ = — 470 (Poisson’s equation) at all points P where charges exist, and V2¢ = 0 (Laplace’s equa-
tion) where no charges exist.

. Deduce the following under suitable assumptions:



Chapter 7

TRANSFORMATION OF COORDINATES. Let the rectangular coordinates (x,y,z) of any point be
expressed as functions of (u,,u,, u3) so that

09 X = 5l UpUg), Y = YUy Upllg), 2= Z(Uy, Uy, Ug)
Suppose that (1) can be solved for u4, u,, us in terms of x,y, z, L.e.,
2) Uy = uy(%,y,2), By, = Uy %,¥,2z), Uy = Uy%x,Y,Zz)

The functions in (1) and (2) are assumed to be single-valued and to have continuous derivatives so
that the correspondence between (x,y, z) and (u,,u,, uz) is unique. In practice this assumption may
not apply at certain points and special consideration is required.

Given a point P with rectangular coordinates (x,y,z) we can, from (2) associate a unique set

of coordinates (u,,u,,u3) called the curvilinear coordinates of P. The sets of equations (I) or (2)
define a transformation of coordinates.

ORTHOGONAL CURVILINEAR COORDINATES. ug curve

The surfaces u;=e¢,, uo=c,, u3=cg, Where
c1,¢,ce are constants, are called coordinate sur-
faces and each pair of these surfaces intersect in
curves called coordindate curves or lines (see Fig.1).
If the coordinate surfaces intersect at right angles
the curvilinear coordinate system is called orthogo-
nal. The u4,u, and uy coordinate curves of a curvi-
linear system are analogous to the x,y and z coor-
dinate axes of a rectangular system,

Fig. 1

UNIT VECTORS IN CURVILINEAR SYSTEMS. Let r = xi + yj + zk be the position vector of & point
P. Then (I) can be written T = r(uq, uo, 4g), A tan-

gent vector to the u, curve at P (for which u, and u, are constants) is —SL . Then a unit tangent
Ui

vector in this direction is e, = o \—al ‘ so that o hie, where h, = |_B_r_ ‘ . Similarly, if
. Ouy/ 'Ou, Quy Ou, 3
e, and e; are unit tangent vectors to the u, and ug curves at P respectively, then 2L = hoe, and

Oy

o . The quantities Ay, Ay, hy are called scale factors.

= hyes where h, = [ﬁr_l and h, =
‘aUQ au2

| or
Oug
The unit vectors ey, e,, e; are in the directions of increasing ug, u,, 5 , respectively.

Since Vu, is a vector at P normal to the surface u,=c,, 2 unit vector in this direction is giv-

135



136 CURVILINEAR COORDINATES

en by E,= Vul/t Vu,|. similarly, the unit vectors E,= Vu2/| Vu,| and Es= Vus/l Vug| at P
are normal to the surfaces u,=c, and ug=cg respectively.

Thus at each point P of a curvilinear system there
exist, in general, two sets of unit vectors, e,, e, e; tan-
gent to the coordinate curves and E,., E, Ez normal to
the coordinate surfaces (see Fig.2). The sets become
identical if and only if the curvilinear coordinate system
is orthogonal (see Problem 19). Both sets are analogous
to the i,j,k unit vectors in rectangular coordinates but
are unlike them in that they may change directions from

point to point. It can be shown (see Problem 15) that the

sets Jr  Or O and Va4, Vuy, Vug constitute recip-

Qu, ' Qu, ' dug Fig. 2
rocal systems of vectors.

A vector A can be represented in terms of the unit base vectors e;, e, e; or E;, Ey, Eg in the
form
A = Adje, + Aye, + 4ye; = a,E, + o,E, + a;E,

where A, A, A and a4, a,, a5 are the respective components of A in each system.

We can also represent A in terms of the base vectors ) S S S Vus, Vu,, Vug which

aui ’ ‘aUQ ’ BUQ

are called unitary base vectors but are not unit vectors in general. In this case

A = Cl%‘*‘CQ

or

u,

+Csa_r

Oug

I

C,a; + Cr@, + Caa,

and A

Vg + e;Vu, + csVug = cifs + c2Be + cafBs

where C;, C,, C; are called the contravariant components of A and ey, ¢y, cg are called the covariant
components of A (see Problems 33 and 34). Note that @, = or pp=Vup ,p=12,3.

—B_u;’

ARC LENGTH AND VOLUME ELEMENTS. From r = r(u4, Us, ) we have

dr = %;dul + aa—;;dug + —,a’auLsdll@ = hl Ju1e1 + hQ du2 e, + h3 du3 e,

Ug

Then the differential of arc length ds is determined from
ds® = dr-dr, For orthogonal systems, e;-e, = e,-€3=
es;+e, = 0 and

ds? = hi dui + hi duz + hg du:

For non-orthogonal or general curvilinear systems see .
Problem 17.

Along a uy curve, u, and ug are constants so that
dr = hyduse,. Then the differential of arc length ds,
along u, at P is h,du,. Similarly the differential arc
lengths along u, and ug at P are ds, = hodu,, dss = hzdus.

Referring to Fig.3 the volume element for an or-
thogonal curvilinear coordinate system is given by Fig. 3
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AV = |(haduser) (hodusey) x (hsduges)| =  hyhohg dusdusdusg
since el-egxegl =1,
THE GRADIENT, DIVERGENCE AND CURL can be expressed in terms of curvilinear coordinates.

If ® is a scalar function and A = 4,e, + A,e, + Ageq
a vector function of orthogonal curvilinear coordinates u,, u,, us, then the following results are valid.

_ _ 1 2% 1 2% 1 9%
1. V® = grad & = he ou, e, + i e, + i on e
- _ 1 9 3 9
22 V.A = divAa = T [au1.(h2h3,41) + auQ(thiAQ) + aus(hthAa)]

hie; hoe, hgeg

1 9 9 90
hibohg du, Ju, Oug

hAs hods  hads

3. VxA = cwlA =

Yo . enotd - 1 [_zhzhs@+9_hah13@+ihihfz@%]
4 Laplacian of & b o Bui( hy aul) Quy ks auQ) Qug by Bug)

If hy=hy=hz=1 and e;, e, e; are replaced by i,i,k, these reduce to the usual expressions in
rectangular coordinates where (uq, uo, ut3) is replaced by (%,7,2).

Extensions of the above results are achieved by a more general theory of curvilinear systems
using the methods of tensor analysis which is considered in Chapter §.

SPECIAL ORTHOGONAL COORDINATE SYSTEMS.

1. Cylindrical Coordinates (0, , z). See Fig.4 below.

x =pcosp, y =psined, z=2

where 020, 05 < 27, —0<2z2<®

hp=1, b¢=p, hz=1

2. Spherical Coordinates (r, 8,¢). See Fig.5 below.
x = rsinf cos¢p, y = rsin6 sino, z = rcos @

where r2>20, 0

A

p<2m, 0<0LT

>~
N
]
[
_
I

=r, h¢=rsin6’
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Fig. 4

3. Parabolic Cylindrical Coordinates (u, v, z). See Fig.6 below.

x = 3(u2=-9%), y=uw, z=z
where —w<u<w, v20, —w<z<®
by =hy=vVu?+v2, hy=1
}
In cylindrical coordinates, u = v'20 cos % v=1v20 sin%, z =z

The traces of the coordinate surfaces on the xy plane are shown in Fig.6 below.

confocal parabolas with a common axis.

1‘\\5/9 T 046‘7‘
a§2 v”?‘
h=3/2 v=3/2
w=1/2 .‘.‘;“ eu v=1/2
XS o
®9,
u=—1 ” v=q
“’,3/‘2‘ v°3/2
u’/‘z ¥z
“/,‘aﬂ‘ "\5/3

Fig. 6

They are
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4. Paraboloidal Coordinates (u, v, ¢).
x = wwcosdp, y =uwsingd, z = F@?—1?
where u>0, v>0, 0 ¢P<2m
hy = hy = VuZ+0%, hy = w

Two sets of coordinate surfaces are obtained by revolving the parabolas of Fig.6 above
about the x axis which is relabeled the z axis. The third set of coordinate surfaces are planes
passing through this axis.

5. Elliptic Cylindrical Coordinates (u,v,z). See Fig.7 below.

Il
™

x = a coshucosv, y = a sinhusinv, z
where 20, 0S5 v<2r, —w<z<©
=} = avVsinh? in2 -
h, = h, =aVsinh®u +sin"v, h, =1

The traces of the coordinate surfaces on the xy plane are shown in Fig.7 below. They are
confocal ellipses and hyperbolas.

o~
e B

6. Prolate Spheroidal Coordinates (£,7,®).
x = asinh £ sinm cos¢p, ¥y = asinh & sinm singp, 2z = acosh & cosm
where £20, 0S7ns7, 05¢<2r
he = h, = avsinh?£ + sin®7n, hy = asinh & sinm

Two sets of coordinate surfaces are obtained by revolving the curves of Fig.7 above about
the x axis which is relabeled the z axis. The third set of coordinate surfaces are planes passing
through this axis.
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7. Oblate Spheroidal Coordinates (£,7), ®).

x = acosh& cos7 cos¢p, y = acoshé cosm sing, =z = asinh & sinm
where £ 20, —g§n§127—, 0Ld< 2

hg =h, = avsinh?£ + sin7), hy = a cosh & cosm

Two sets of coordinate‘surfaces are obtained by revolving the curves of Fig.7 above about
the y axis which is relabeled the z axis. The third set of coordinate surfaces are planes passing
through this axis.

8. Ellipsoidal Coordinates (A, u, V).

2x2>\ + beQ}\ + 222>\ = 1, A< c?2<bZ< P
a” - - co -

2’”2 + b2y2 + QZQ = 1, ?< < b?<a?

a—p —n = pu

2 2 2

a2x_7/+b2}:—7/ +c2z—v - b Cebved
A =1‘/ (L=N (¥ =N A =l‘/ (V=) A —p)
A2 ¥ @ ner-neE-n] o2V @—wmP-w (@ -

P =3/ A=v)(u~7)
Y9 (@ =) (b2 =) (c2— 1)

9. Bipolar Coordinates (u,v,z). See Fig.8 below.

2 2
x2+ (y—a cotu) = a?csc?u, (x— a coth») + 42 = a?2c¢sch?v, z =z

Fig. 8
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a sinh v a sinu _
or X = e ————— |y = z =z
coshv — cosu coshv — cosu
where 0Su< 27, —w<v<®, —©0<z<®
- - a _
hy=h,= —————, h, =1

’
coshv — cosu

The traces of the coordinate surfaces on the xy plane are shown in Fig.8 above. By re-
volving the curves of Fig.8 about the y axis and relabeling this the z axis a toroidal coordinate
system is obtained.

SOLVED PROBLEMS

1. Describe the cocrdinate surfaces and coordinate curves for (a) cylindrical and (b) spherical co-
ordinates.

(a) The coordinate surfaces (or level surfaces) are:

P = ¢y cylinders coaxial with the z axis (or z axis if ¢, = 0).
¢, planes through the z axis.
z = ¢3 planes perpendicular to the z axis.

The coordinate curves are:
Intersection of £ = ¢4 and @ = e, (z curve) is a straight line.
Intersection of 0 = ¢4 and z = ¢ (¢ curve) is a circle (or point).
Intersection of ¢ = ¢, and z = cg ( £ curve) is a straight line.

(b) The coordinate surfaces are:
r = c¢q; spheres having center at the origin (or origin if ¢,= 0).
6 = ¢, cones having vertex at the origin (lines if ¢y =0 or 7, and the xy plane if c,= 7/2).
¢ = c¢; planes through the z axis.
The coordinate curves are:
Intersection of r = ¢4 and & = ¢, (¢ curve) is a circle (or point).

Intersection of r = ¢; and @ = ¢4 (f curve) is a semi-circle (cq # 0).
Intersection of & = ¢, and b = cg (r curve) is a line.

2. Determine the transformation from cylindrical to rectangular coordinates.

The equations defining the transformation from rectangular to cylindrical coordinates are

Iy x=pcosp, (2 y=psind, (3 z=z
Squaring (I) and (2) and adding, ©0%(cos?® +sin’) = x2+42 or
P =Vx2+y2, since cos2¢ +sin2¢ =1 and p-is positive.

Dividing equation (2) by (1), % = Hg——z = tan or ¢ = arc tan%.
£ cos

Then the required transformation is (4) p = Vx2+y2, (5) ¢ = arc tan % , (6)z=1z.

For points on the z axis (x=0, y=0), note that ¢ is indeterminate. Such points are called singular
points of the transformation.
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3. Prove that a cylindrical coordinate system is orthogonal.

The position vector of any point in cylindrical coordinates is

r = xi +yj +zk = pcospi + psingdi + zk
The tangent vectors to the O, (,b and z curves are given respectively by ﬁ , i and —al where
op o oz
o cosp i + singd j, o —psingi + pecos i, §L=k
dp 0 Oz

The unit vectors in these directions are

e. = o = 9/9p . cosPi+ sindi _ cosP i + sing j
* P | 3r/3p | Veos2@ + sin?¢

eQ = e¢ = al/aqs = —/&:i?fi +I[Zcosz¢j = —Sin(,‘bi + Cos¢j
| or/3 | p?sin’p + pcos’P
or/ 0z

R P

Then e,-e, (cosp i +sind e(—sinpi+tcosdj) = 0

(cospi+singd jlek) = 0

o
]

o
1§

gce; = (—sin@ i +cosP (k) = 0

and so eq, e, and e; are mutually perpendicular and the coordinate system is orthogonal.

4. Represent the vector A = zi — 2xj + yk in cylindrical coordinates. Thus determine Ap,A¢ and 4,.

From Problem 3,

(Iye, = cospi +singdj (2) ey = —sinp i + cos @ j (3) ey =k

Solving (1) and (2) simultaneously,

i = cos¢ e — sin ¢ s j = sing e + cos ¢ €4
Then A = zi — 2} + yk
= z(cos P e, —singp ey — 20cos P(sin e, + cos P ey + psing e,
= (z cos ¢ — 20 cos ¢ sin db)ep — (zsind + 20 cos’Prey, + O sind e,
and A, = zcosp —20cosPsing, Ay = —zsing — 20 cos?P, 4, = psinc.
5. Prove 4 e, = qb €, a%% = - d) e, where dots denote differentiation with respect to time ¢.
From Problem 3,
e, = cospi + singdj, - ey = —singi + cosd j
Then %ep = —(sin¢)$i + (coscb)q;)j = (—sin¢i+cos¢j)<§5 = c}Seqs
E‘i—qu = —(cos(,‘b)q.bi —-(sin¢)q.bj = —(cos¢i+sind>j)§;5 = ——c;ZSep
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Express the velocity v and acceleration a of a particle in cylindrical coordinates.

In rectangular coordinates the position vector is r = xi +yj + zk and the velocity and acceleration
vectors are
&2 cor ees | we
v = 2L = ii+yj+:k and a = &I = Fi+¥j+%k
¢

a,

In cylindrical coordinates, using Problem 4,

r = xi+tyi+zk = (0 cos P)(cos P ep—singb es)
+ (0 sin P)(sin ¢ e, + cos ¢ ep) + z e,
= ,Oep+ ze,
dp de ,
~ ﬂ _ _E dﬁ _ . .
Then Vo= o= dtep+pdt +dzez ,Oep+p¢e¢+zez

using Problem 5. Differentiating again,

2
d
a = &I
2

= dit(/éep+pq5e¢+z'ez)
dt

,dep . 'deqﬁ . .. .
=pﬁ+pep+lo¢a—+p¢e¢+/o¢e¢+zez
= ppeytpe, + pP(—de,) + ppey+ ppey + e,
= O —pPre, + PP +wWPrey + i,

using Problem 5.

. Find the square of the element of arc length in cylindrical coordinates and determine the corre-
sponding scale factors.
First Method.
x = pcosP, y = psing, 2=z
dx = —psingddp + cospdo, dy = pcospdd + singd do, dz =dz

It

Then ds? = dx2+dy2+dz2 = (—psing dp + cos P doY + (0 cos P dp + sin doy + (dzY

@py + PPy + (dz) = ho(dp) + ho(ddy + ho(dz)

W
It

and h, = hp =1, h2 = h¢= £, h:3 = hg = 1 are the scale factors.

Second Method. The position vectoris r = pcosd i + ,O sin¢ j + zk. Then

. o o or
dr = de’o+8¢d¢+8zd2

= (cosdi+sindHdo + (—psindi+ pcosdiydp + kdz
= (cospdo — psind dpyi + (sinp dpo + pcosd ddyi + kdz

Thus ds? = dr-dr = (cos® do — P sing dpY + (sind do + p cos P dp) + (dz)
= WPy + PUED + @z
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8. Work Problem 7 for (a) spherical and (b) parabolic eylindrical coordinates.

(a) x = rsinf cosp, y = rsinf singp, 2z = rcos8
Then dx = —rsin8 sing dp + rcos & cos p df + sin 8 cos P dr
dy = rsin& cosg dpp + rcos & sing d0 + sin @ sin dr
dz = —rsin@ df + cos O dr
and (ds)Q = (dx)2 + (dy)2 + (dz)2 = (dr)2 + rQ(dc9)2 + r2sin?f (d¢>)2
The scale factors are h =k =1, hy=hg=r, hy=hy=rsin 6.
(b) x = 32 —v%, ¥y = wv, z =z
Then dx = wdu — vdv, dy = udv + vdu, dz = dz
and dsyY = @x¥ + @dyY + @z = @2+0?)du) + @2+0vd)(@dvY + dz)
The scale factors are h, = hy = Vu2+0%, h,= hy = Vu2+0?, hy=hy=1. y
e

v

9. Sketch a volume element in (a@) cylindrical and (b) spherical coordinates giving the magnitudes

of its edges.
(a) The edges of the volume element in cylindrical coordinates (Fig.(e) below) have magnitudes o do, ap
This could also be seen from the fact that the edges are given by

dsy = (1)(d7) = dz

and dz.
ds, = hydu, = (1)([dp) = dp, ds, = hydu,= p do,

using the scale factors obtained from Problem 7.

4V = (r'sin 6 dd) (r 4Oy (dr)
=7 sinl dr d0 dgp

4V = (p d) (dp) (dz)
= pdpddd.

Fig.(a) Volume element in cylindrical coordinates. Fig.(b) Volume element in spherical coordinates.

(b) The edges of the volume element in spherical coordinates (Fig.(b) above) have magnitudes dr, rd& and
rsin @ d¢. This could also be seen from the fact that the edges are given by

ds, = h,du, = (1)(dr) = dr, ds, = thuQ =rdf, dsg = hodug = 1 sin 8 ddb

using the scale factors obtained from Problem 8(a).
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Find the volume element dV in (a) cylindrical, (b) spherical and (c) parabolic cylindrical coor-
dinates.

The volume element in orthogonal curvilinear coordinates u is

dV = hihohs dujdusdug

1+ U0 g

(@) In cylindrical coordinates ui=p, wo=®, ug=z, hy=1, hy=p, hg= 1 (see Problem 7). Then
dv. = (1)(p)(1)dpdp dz = pdpdp dz
This can also be observed directly from Fig. (a) of Problem 9.

(b) In spherical coordinates wuy=r, up= 0, ug=, hy=1, hp=r, hy=r sin 0 (see Problem 8(a)). Then
dV = (1)()( sin &) dr 40 dp = r2sin 8 dr d6 dp

This can also be observed directly from Fig. (b) of Problem 9.

{c) In parabolic cylindrical coordinates u;=u, uo=v, ug=2z, hy=vVi2+ 12, ho=Vu2+ 12, hg=1 (see Prob-
lem 8(b)). Then

dV = (u?+ v u?+ YWY dudvdz = @+ v?) du dv dz

Find (a)the scale factors and () the volume element dV in oblate spheroidal coordinates.

@ x = acosh&cosncos®, y = acosh&cosmsing, z = asinh & sinm
dx = —acosh & cos? sing dp — a cosh £ sin7 cos P d7) + a sinh € cos 7 cos @ d€

dy = acosh & cos? cosd dp — acosh & sin7 sind d7) + a sinh & cos” sin ¢ d&
dz = asinh £ cosm d7) + a cosh & sin7m d€

Then (dsY’ = @xy + @) + @2)° = a®(sinh®& + sin? 7))@y
+ a2(sinh® £ + sin?7) @)
+ a2 cosh®& cos2” (dpy

and kg = by = aVsinh’& + sin?7, ko= h, = avsinh2§+sin277, h3 = hy = a cosh £ cosT.

(¥) dV = (@Vsinh®¢& +sin?7) (aVsinh> & +sin?n) (e cosh £ cos ) d€ dm dop
= a(sinh®£ + sin?7) cosh & cos 7 d€ dn dp

Find expressions for the elements of area in orthogonal curvilinear coordinates.
Referring to Figure 3, p.136, the area elements are given by

dd, = ] (hg dus €9) X (hg dug es) | = hohg | ey X eg| dugdug = hohs duy dug

since | e, X eg | = [ e, | 1. Similarly

d4, | (hydug e) x (hgduges)| = hyhy dug dug

dAs l (hl dul eq) X (hQ dllQ e5) I

it
I

hl h2 du1 dU,Q
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13. If uy, u., ug are orthogonal cwvilinear coordinates, show that the Jacobian of x,y, z with respect

to uq, o, g iS
1, Ug, Ug B_x 3y ~
Ou, OJu; Ouq
%y,z . _ o@yz | 9% 9y 9z _
I Uq, Ug, Ug B O (uy, Ug, Ug) - a"'2 au? auz ha ko b
Ox 9y 9z
Quy Oug Oug

By Problem 38 of Chapter 2, the given determinant equals

i+ ——j+ —k)-. i+ —j+—k i+ =—j+—k
Gl s EL G T T a Y S T B TS
or  Oor Or
= 2 == x —=— = h,e,*h,e, X h,e
'aui au2 auS 1%1 2%2 3%3
= hthhS eq . EQX €3 = hithS

9
or o Or are coplanar vectors and the curvi-

If the Jacobian equals zero identically then ) s
aul aug BUQ

linear coordinate transformation breaks down, i.e. there is a relation between x,y,z having the form
F(x,y,z) = 0. We shall therefore require the Jacobian to be different from zero.

14. Evaluate ﬁf(xﬂ y2+ z2) dx dy dz where V is a sphere having center at the origin and ra-

7
dius equal to a.

Fig. (b)

Fig. (a)

The required integral is equal to eight times the integral evaluated over that part of the sphere con-
tained in the first octant (see Fig. (a) above).

Then in rectangular coordinates the integral equals

a Va2=x2 Va2=~x2—y2
f (x2+y2+ 2%) dz dy dx

x=0 y=0 z=0

but the evaluation, although possible, is tedious. It is easier to use spherical coordinates for the eval-
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uation. In changing to spherical coordinates, the integrand x2+y2+ 22 is replaced by its equivalent r2
while the volume element dxdydz is replaced by the volume element r2sin & drdBdc (see Problem
10(b)). To cover the required region in the first octant, fix & and ¢ (see Fig.(b) above) and integrate from
r=0 to r=a; then keep @ constant and integrate from &=0 to 7/2; finally integrate with respect to @
from =0 to ¢ =7/2. Here we have performed the integration in the order r, &, although any order can
be used. The result is

T/2 ATz pa T2 T2 o
3f f f () (2 sin G drdfdep) = sf f fr"‘sin@ drdGdep

¢=0 8=0 r=0 ¢=O 8=0 r=0
T2 /2 a /2 /2

= 38 f § sin 0| _ d0dp = 595_5_ f f sin & d0do

$=0 f=0 ¢=0 f=0

TE/Z 7.[/2 71:/2

= &5_ — cos B ] d¢ = E dqb = M

5 =0 5 5

qS:O - ¢>=O

Physically the integral represents the moment of inertia of the sphere with respect to the origin, i.e. the
polar moment of inertia, if the sphere has unit density.

In general, when transforming multiple integrals from rectangular to orthogonal curvilinear coordi-

nates the volume element dxdydz is replaced by hyhoh, du,du,du, or the equivalent ]( ,y, )zz’uiduzdu:3
where J is the Jacobian of the transformation from «x, ¥,z 10 uq,u,,U, (See Problem 13)
If uy,u,ug are general coordinates, show that Br % aa_r and Vu,, Vu,, Vuy are recipro-
Ug
cal systems of vectors.
We must show that Vu = LI P=9 Ghere p and ¢ can have any of the values 1,2,3.
3% 0 if p#yg
We have
Or or or
dr = = du, + X du, + X gy
Qu, T Ty 2T 3y, e
Multiply by Vi, * . Then
Vu, cdr = duy = (Vi o Yduy + (Vg » Ydug + (Vi » y dug
uy 1y ) 3
Or or or
or Vi, ==~ =1, Vi - =0, Vu- =
SR Ouy 1 Ouyp “ Cug 0

Similarly, upon multiplying by Vu2 * and Vus * the remaining relations are proved.

Prove {a—r-a—rxi}{Vul'VuQXVug} = 1.

Ou;  Oup  Oug
From Problem 15, o . o , 2 and Vus,Vug, Vi, are reciprocal systems of vectors. Then the
Ouy " Oup  Oug

required result follows from Problem 53 (c) of Chapter 2.

The result is equivalent to a theorem on Jacobians for
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Qui Quy Jug
9 Oy Oz
auz au2 au2 - U, Uy Ug
YV x Ve = 1503 %] T Gae)
Ous Jus Oug
Oox Jdy oz
and so ](ux 32’ us) ](u;";f'gs) = 1 using Problem 13.

17. Show that the square of the element of arc length in general curvilinear coordinates can be ex-

pressed by a a
ds?2 = Z Z 8pq duﬁduq
p=1 g=1
We have
= a—'azu1 + duy + dug = Oydu; + @pduy + @sdug
aui BUQ aus
Then ds2 = dredr =

a, -y du12 + @ Qs duiduQ + @40y duidug
+ Oy dupduy + Gpe@y du + Oy -G duy dug
2
+ 0@y dugduy + 0y @y dugduy, + Qg * Qg dug
3 3 ’
= duy du, where = @y a
Z_ Z_“ Epg TP ™ g = TP
p=1 g=1 :
This is called the fundamental quadratic form or metric form. The quantities g, are called metric
coefficients and are symmetrlc i.e. Bpg = =0, p # q, then the coordinate system is orthogonal.
In this case gn—h ZQ

10 Bop = 2, 8 ™ The metrlc form extended to higher dimensional space is of
fundamental importance in the theory of relat1v1ty (see Chapter 8).

GRADIENT, DIVERGENCE AND CURL IN ORTHOGONAL. COORDINATES.

18. Derive an expresssion for V& in orthogonal curvilinear coordinates.

Let V® = f e, + f,e,+ f, e, where f,,f,,f, are to be determined.

. or or or

Since dr = dug + duy, + du

aui “ BHQ te BU3 N
= hieqduy + hoeyduy + hgegdug
we have
1y 4P = VOedr = hyfidug + hyfoduy + ha fadug
But @ dP = a—@dul + —a@ du, +. aq; dug
aui au2 aus



CURVILINEAR COORDINATES 149

Equating () and (2),  f, = fg—f I, = hy g? O ig—u@
1 Oug 2 Clg 3

& 0P e 0P e 9P
Then Ve - hy Oug * ks Ouy * hg Oug

This indicates the operator equivalence

V el_a_ e_Q 8 eg a

e 9 ., & 9
he Ous  hy Oup | hy Oug

which reduces to the usual expression for the operator Vin rectangular coordinates.

19. Let us,uz s be orthogonal coordinates. (a) Prove that |Vuy| = &y, p=1,2,3.
(b) Show that e,=Ey.

e -
(@) Let ® =u, in Problem 18. Then Vu, = h—l and so qull = ]el ’/h1 = hil , since fell =1. Simi-
1 .

-1 -1
larly by letting & = u, and ug, quQI = hy and [Vual = hg .

Vi
(b) By definition E, = —ﬁ— From part (a), this can be written E, = %, Vu, = and the result is proved.
»7 TV l. p=hpVup= ey

20. Prove ey = hy hgVu,x Vg with similar equations for e, and ez, where u,,u,, uy are orthogonal

coordinates.
€
From Problem 19, Vu1 =5, Vu2 Vu3
. 1 hg
' esX e e
Then VUQ X Vus = =2 " 2 = — and e = thg VZLQ X Vus .
ho kg hs by

Similarly e, = hghq Vugx Vuy ~and eg = hqho Vigx Vu,.

21. Show that in orthogonal coordinates

V. - 1 Ay hok
(a) (A1 ey) }bthhg aui( 1 fo hig)
e e 0
) Vx (diey) = = au (Ashy) ~ = 5 (Aaky)
with similar results for vectors A,e, and A3 es.
(a) From Problem 20,
V ¢ (Alel) = V ¢ (A1h2h3 VEQXVUG)
= V(A1h2h3) * VMQXVES + A1h2h3V' (VuQXVuS)
- .8 & -
= V4 h,hy) Rt 0 - Vg hohg) thS
e o e 9 e O . e
= [hl Sus (A1 hohg) + by Sug (A1h2hs} + b Oug (A:Lths)] froha
1 9
= (Arhohg)

hl hQ h3 au
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®) Vx (dye) = Vx (43hy Vuy)
= Vdihy) xVuy + Aghy VxVuy

= Vdihy) x bic

by
e o e O eg O ey
= [h1 aul (A1 hy) + B a (A1hy) + hs Ou (A1h1)] hy

e O _eaa

= Ak
(A1 k) hohy Suy

Ash
hshl aug ( 1 1)

22, Express div A = V. A in orthogonal coordinates.

Vea = Vedie + doey + dgeg) = Ve(diey) + V. (4pe0) + V* (45e9)
1 9 9
= — | = (A4 hohg) + Aohahy) + — (Aghqh
hihohe [aul( 1hoh3) Buz( 2hghq) Bug( gfig 2)]

using Problem 21 (a).

23. Express curl A = V x A in orthogonal coordinates.

VxA = Vx(de; + dge, + Ageg) = Vx(dse)) + Vx(dsen) + Vx (4seq)
. e O s i
= hahs o . (A1hy) — haho (A1h1)
P e, O
&3 _ 1
+ hoho o " (Ao ho) —a (42 ho)
+ e1 a 32

haha auQ( ahs) — haha -3——( ahs)

_ e 9 P ey 9 o)
= ths [ 8 (Aghg) — aua (A2hy) ] + h—s'h_l [B_llg (Ayhg) — a_ui(Ashs)

ey 0 9
hahy [Bul (Adoho) — —aug (Aihi)]

using Problem 21 (b). This can be written

hiey hoep, hgeg

hihohs | Du;  Ou,  Oug

Ayhy  Aphy Aghs

24. Express VQ\/J in orthogonal curvilinear coordinates.

From Problem 18, VY = :1 g:/; :Z gu‘i ZZ g_i )
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1t sz‘,ll, then A1=l%,A2=l-§lﬁ A3=L§-¢— and by Problem 22,
hi aui .
Vea = V-Wy - V3

_ 1 [a h2h38¢1+_5_

hyhohg | Ouy EX

aul hi aul BUQ ( hQ auQ aus h3 aus

hahy ELA) N O hihy @ﬁ]

25. Use the integral definition

divA=V-A= lim 22—
Ao AV

(see Problem 19, Chapter 6) to express V- A
in orthogonal curvilinear coordinates.

Consider the volume element AV (see adja-
cent figure) having edges hyNuy, holuy, hglug.

Let A= Aje;+4ds,e,+ Az e; and let n be
the outward drawn unit normal to the surface AS of
AV. On face JKLP, n=—e;. Then we have ap-
proximately, -

[f renis

JKLP

i

(A°n at point P) (Area of JKLP)

[(A1e; + dgep + Ageg) - (—e1)] (hohg NugDug)

"

— Al thG AILQALL:;
On face EFGH, the surface integral is
[
Ay hohg Nuplug  + ,a— (A4 hohg AuQAus) Nuy
ug

apart from infinitesimals of order higher than Auy AUQ Aus . Then the net contribution to the surface
integral from these two faces is

2 Ay hohy Duslugy M = 2 (A hohoy Muy Dy Aug
aui aul

The contribution from all six faces of AV is

2 (Ag hohg) + 2 (Ao hykg)y + 2 (Ag haho) | Dug Dug Dug
aul au2

BUQ
Dividing this by the volume &qhohg Duy Au, Aug and taking the limit as Duy, Duy, Dug approach zero,
we find
: 1 9 9 3
diva = V.A = =— (A1 hohg) + =— (Ap hihs) + == (A5 hyho)
by hohg [aui 1 nohg Sy 2 Rihg aus(s )

Note that the same result would be obtained had we chosen the volume element AV such that P is

at its center. In this case the calculation would proceed in a manner analogous to that of Problem 21,
Chapter 4.
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Use the integral definition

f A dr
(curlAy - n = (VxA)-n = lim =

AS-o AS

(see Problem 35, Chapter 6) to express Vx A
in orthogonal curvilinear coordinates.

Let us first calculate (curlA)+e;. Todo
this consider the surface S; normal to e, at P, as
shown in the adjoining figure. Denote the boundary
of S, by C;. Let A= Aje; + Azep + Age;. We

have
>?;A-dr = fA-dr + fA-dr + fA-dr + fA-dr
1

Pg oL ¥ MP

The following approximations hold

H fA-a’r

(A at PY + (hoDus ep)

PQ
= (Areq + Aoy + Ageg) * (hplugey) = Agholuy

Then

fA- dr = Aohylu, + 9 (Ao by Dug) Nug

aus

ML
or
) fA-dr = —AohoNuy, — —a—(A2 ho Dug) Nug

BUQ

LM
Similarly,

fA'dl' = (A at P) . (hsAug eS> = Ashs AUS

PM
or
3) fA-dr = — Ag by Dug

MP
and
(4) ' fA-dr = Aghglug + ai(AshsAus)AUQ

uo

0L

Adding (1), (2), (3), (4) we have
. Auay Au 9 A
Avdr = = (AghgDug) Puy — =— (Ap ho Dug) Dug
01 BUQ BU3

[2‘ (Ashs) — 2 (Aohs) | Dug Dug
BEQ au$

apart from infinitesimals of order higher than Au, Auy.
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Dividing by the area of S; equal to hohgAu,Aug and taking the lmit as Auy and Nug approach
zero,

3
(curlA) . e; = h—% [% (Aghg) — $<A2h2)]
213 2 3

Similarly, by choosing areas S, and S5 perpendicular to eo and eg at P respectively, we find (curlA) - e

2
and (curlA) - eg. This leads to the required result

ey 2 5
1A = = = (Aghy) — = (4.}
cur bk [3u2( 3h3) aus( 2 2)]
ey 9 2
—= | = (A1hq)) — —— (A}
bk [3"3( 1h4) aul( 3 3)]

hies ko e; hgeg

e [ 3 3 N
25 19 ok — 2 (4. = -t 9o 9 9
hahs [aui‘ 2t = 5, 4 1)] hihohs| Ous  Ouwy g

The result could also have been derived by choosing P as the center of area S41; the calculation
would then proceed as in Problem 36, Chapter 6.

27. Express in cylindrical coordinates the quantities (@) Ve, )V-A, (¢)VxA, (d) VP,

For cylindrical coordinates (0,¢, z),

U= 0, ug=P, ug=2z; e1=€,, e;=ey, e;=e, ;

and hy=hy=1, hy=hy=p, hy=hy=1 Z

@y V& = h—t%e1+i%e2+h—i%§eg
=%§%+%§%+%§%
=§%+%%%+§%

® Vea = }jjhs [a%i (hohg A7) + a%(hshl@ + a%sdzlhgfis)]

- ___(1)(;)(1) [:a% ((p)(l)Ap) + %((1)(1)%) + ai(m(p)Az)]
9

F4
B N )
o [ap(pAP) " T ‘pAz)]

where A = Ape1+A¢e2+AZe3, le. A1=Ap, A2=A¢, Ag=A,.

hies hoes, hges e pey ey
Vxa = L |92 o 34 _ 13 3 3
@ Vx hihohs | Ou;  Bu;  Buy P 3% % o

hidy hods hodg 4, pAy 4
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04 4 04 94
= 1 z_ 09 P B O oay— lp
3 [Gr-ge)s s (FT) e (B 5)
o Ve - 1|2 (khe2®), 3 (kb 20), 3 (k2@
hthhg aul hl aul ’aILQ hQ auQ ’aUQ h3 aus

1 ®a) ‘aCI> (1)(1) 2% o () 2P
DD (1 % 2\ (1) o2

a i)
%i@@) -y <

28. Express (a) Vx A and (b) V° ¢ in spherical coordinates.

Here uy=r, up=0, ug=Q; e1=ey, ex=eg, eg=ey; h1=hy=1, hp=hg=r, hg=hy=rsin é.

hies hoeo hgeg e re, 7 sin & es
@ ¥ hihha | Sm  Oup Oug Dorcsnd | > B %P
hlAl hQAQ hsAs A;r rAe r sin 6 A¢

1 o -
= < B4, — A
2 sin & [{ 96 ¢ sinG 4g) a¢ 3¢ )}
04, 04
E - —éa—(rs1n9A¢)} + {%UAB) - éé}rsiné’eqs]
®) V2¢] 1 i hohg ﬂ’ + 0 hshi a‘/’ L) hiho _a_\/’ i
hqhohg | Ouq hy Oug auz h2 8u2 au3 hg Oug
1 9 [ (H(sin &y Ef ' (¢ sin8)(1) 311
(1@ sinby | or (1) or 20 r 26
N o [ (W dY
Bd) rsin 8 o¢
2
1 sind 2 [ oy + 2 [ sm0 oy + A oy
r® sin 0 or or 08 o8 sin @ BQZSQ

1 9 [ 20y 13 g oY 1 Py
2 or (’ ar> T Psinb 20 (Sm % | T Psine 94

29. Write Laplace’s equation in parabolic cylindrical coordinates.

From Problem 8(b),

Ug=U, Uo=v, Ug=2; hq= Vig+v2, ho= Vi 407, hg=1
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. 3y 3y 3y
Ten V= [au(au) e (av) 3= (‘““az>]

. (3251! aw) .

u + 1; Bu 81;2 azg

and Laplace’s equation is VQL/J =0 or
2 2

2
oy oy Y
S T e T WrHEm =0

30. Express the heat conduction equation %—U = K V2U in elliptic eylindrical coordinates.
t

Here wy=u, up=v, ug=z; hyi=h,=aVsinh®u + sin®v, hg=1. Then

VQU 1 _8_ _B_Q + 3 @ + 3 a®(sinh® u + sin® v) U
aQ(SinhQu + SinQU) Ou \ Su v \ v Oz
32

2 2
} 1 Ju ., U] ., ovu
aQ(Sinh2 u + SinQU) du? 012 022

and the heat conduction equation is

UL, 1 [32U+32U +32U}
ot a®(sinh®u + sinzv) Ou? 002 922

It

SURFACE CURVILINEAR COORDINATES

31. Show that the square of the element of arc length on the surface r = r(uz,v) can be written

ds? = Edu® + 9oF dudv + G do?
We have dr = g; du + %dv
Then ds? = dr-dr
Or Or or Or Jr Or
= OO ge d o8 4y
w2y, Ml g,

= Edu? + 2Fdudv + G do?

32. Show that the element of surface area of the surface r = r(u,v) is given by

dS = VEG — F? dudv

The element of area is given by

or or or ar ar Or or _ Or
dS = —du) X (=— dv = dud = X — X =) dud
Q1 G, YT bt B TR, B, B
The quantity under the square root sign is equal to (see Problem 48, Chapter 2)
or or.,or Oor dr Or. Or Oor 2
- - - (= — . = = EG - F d th 1t foll .
T T and the result follows
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MISCELLANEOUS PROBLEMS ON GENERAL COORDINATES.

33. Let A be a given vector defined with respect to two general curvilinear coordinate systems

(ug, Ug, ug) and (i, Gy, Gs) .
in the two coordinate systems.

Find the relation between the contravariant components of the vector

Suppose the transformation equations from a rectangular (x,y,z) system to the (us,up,uq) and

(84,5, 03) Systems are given by

t.

%1 (Uq, o, Ug) »

(I

x‘.?(il: EQ' ES) »

Y= yi(”lr Ug, Us) ' z

y = ¥o(ly, Gg, Ug), Z =

1

zi("’l! Uo, u3)

25(iky, Up, Ug)

Then there exists a transformation directly from the (u4, uo, ug) system to the (&, %o, G3) system defined by

@

uy = ug(ity, o, ig),

and. conversely. From (1),

Ug = HQ(E:U 52: ’73) ’

ug = ug(liy, o, ig)

dr = a—rdul - S duy + or dug = @yduy + Qodu, + Ogdug
aul aMQ au:;
dr = B—_':d;zl + or diy + g dig = O.di, + O,di, + 0Ogdig
3u1 BIJ,Q aug
Then
(3) @ du; + CGoduy, + C@gdug = Qydiy + Opdi, + Oydi;
aui Ou Ou
From (2), 4 = g, + ==di, + =—di.
om (2) Uy 3, Iy i, o s i3
Ou Ou. Ou
du, = =2di, + =2di, + =2di
2 om, dou, oy
9 9 9
dug = —Bgm, + —Bdg, + —2di,
aui s Bu3
Substituting into (3) and equating coefficients of diry, dil,, difz on both sides, we find
- Ouy Ju Ou
a a + o, =2+ Ay =
1 1 aul 2 5171 3 aui
—_ Bul au au
@) a = a + 2 4 oy =3
2 15, T %o, ° 58,
— du Ou Ou
a -1 + ~2 + =38
° T i, e Oiig % g
Now A can be expressed in the two coordinate systems as
(5) A = C@ + Coly + Cos and A = Ci8 + Colp + Coly

where C,, Co, C3 and 51, C,, Cy are the contravariant components of A in the two systems. Substituting

(4) into (5),
Cl al + CQ ag + 63 aa =

Ouq
= (Ci'a

+ Gy

Bu,
thhe + GGy

¢ @
_ Ou,

+ Cply + Cgly

au2 — BU3 —_ au$ —_ aus
+ G aﬂs)aQ + (Cq o, + Gy 3%, + C3 B'zis)da
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Then

— Ouq aul
Cc = C,i— + C.
t 1 5171 2%, BUQ
- ‘au? - BMQ
6 C = Ci=— + (o=
6) 2 1 >, 2 >,
- aus aus
C = C;=—2 + C.
8 1 aﬂl 22, BUQ
or in shorter notation
= aup _ Bu
7 c = —r 4 _P
¢ * 8171 2 UQ
and in even shorter notation
3
@ ¢, = L T
p =1 q auq
Similarly, by interchanging the coordinates we see that
3
on
= 2
9 , = L g
( b g=1 q Eu

The above results lead us to adopt the following definition.

@ contravariant vector OI & contravariant tensor of the first rank.

Work Problem 33 for the covariant components of A.

p=1,23
=123
p=1,23

157

If three quantities C,, Cy, C3 of a co-
ordinate system (u1,up u3) are related to three other quantities Ci, G, C5 of another coordinate system
(&1, o, Z3) by the transformation equations (6), (7), (8) or (9), then the quantities are called components of

Write the covariant components of A in the systems (uq, up,ug) and (q,l, 43) as cq, ¢pcqy and

€y, Co, C5 Tespectively. Then

(1) A = aVu + oV o+ sV, = 5, Va + 5, Vi, + 5, Vs

Now since Eﬁ = Eﬁ(ul, uo,ug) Wwith ‘p= 1,2,3,

% : 3% Ouq ' auﬁ Sus
o du; I dup Ox
@ G om0 O
D . O duy Jy
R P
32 duy Oz duy Oz
Also,
(3) 01Vu1+ C2VU2+ CaVll,a = (Cl“a“'u—l“*' CQE"‘_Q+ Cn %)i
Ox Ox Ox

BUQ

Ouy Ouy
+(cla_y+cza +Caa )J+(Cla

and

au15 aus
Sus Om
af% Oug

Buy dy

aﬁ¢ Oug

duy Oz

p=12,3

uy

Oug

+cQ.a +c3a Yk
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o ou
@ #&Va 5,V + Vi, = (5 Bau1+ =2 + Tg a” yi
Offy 05y BU3 Oy o,

+<Ei_é; Qay+ 33 ]+(c18+23+ '—a—us)k

Equating coefficients of i,j,k in (3) and (4),

9 3 3 . o _ o _ ou

cl—,all + 62_,;:2 + ¢3 31:53 = ci-,a—u—xl + cgig + cs-,a—l;g

- ) 3 3 = of _ & _ ou

5) 61§ + CQa_qu + 0331;:—3 = ,al;l + cQ,a—qu + cs—a-z;—s
du | Yy S o Om, o O, o O
T R L L

Ou
Substituting equations (2) with p = 1,2,3 in any of the equations (5) and equating coefficients of == .

auQ 'aus Ju; Oup aus du; Ou, Oug *

—=  on each side, we find

R A R )
aul - u2 8u3
= + T + c
‘1 01 aui 2 aul 2 au1
BU1 - BEQ aus
= + —= + G
® °2 B | %P T
aul - BEQ - BU3
= c + co— + ¢
‘s 1 aus 2 aus 3 aug
which can be written
oz o oL
@ ¢p 513% * 523—"2 + saus p=123
U U u
P P P
or
3 Eq
) c15 = Z qu—— p=12,3
q:i uﬁ
Similarly, we can show that 3
) T N p
&) €y = S =~ p=123
g=1 “p

The above results lead us to adopt the following definition. If three quantities ¢,, ¢, c3 of a co-
ordinate system (u.,uo, uz) are related to three other quantities ¢, ¢, ¢3 of another coordinate system
(%y, B, @5) by the transformation equations (6), (7), (8) or (9), then the quantities are called components of
a covariant vector Or a covariant tensor of the first rank.

In generalizing the concepts in this Problem and in Problem 33 to higher dimensional spaces, and
in generalizing the concept of vector, we are led to tensor analysis which we treat in Chapter 8. In the
process of generalization it is convenient to use a concise notation in order to express fundamental ideas
in compact form. It should be remembered, however, that despite the notation used, the basic ideas treat-
ed in Chapter 8 are intimately connected with those treated in this chapter.
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35. (a) Prove that in general coordinates (i, u,, ug),

811 Bip 8y
= = (j!_ . ﬁr_ ﬁ_Q
g En By B Ju;  Ouy,  Oug
831 Bgp 8s

where g, are the coefficients of duy du, in ds® (Problem 17).

(b) Show that the volume element in general coordinates is \/g_ du, duy dug .

(a) From Problem 17,

I S S V- S
au¢ auq h BUﬁ auq auﬁ auq auﬁ BUq

() = a¢,~aq =

€pq

Then, using the following theorem on multiplication of determinants,

159

p.q=1,2,3

a; ap ag| | 44 By C, ag Ay + ap Ao+ agAs ay By + ayBy+ agBy a; Cy + ay Cy + ag Cy
by by bg| | 45 By Cy = by Ay + by A+ by Az by By + by By+ bgBy by Cy + by Cpt by Cy
¢1 ¢p cg| |4s Bg Cg c1dst epdogtegdg ey B+ caBytcgBg ¢y Ci+ cyCy+ cgCy
we have
Ox 9y oz |?
aul aul aul
LI SV S N R A3
Ou; Ou, Oug Oup Oup Ouy
Ox Jy Oz
Qus Cug Oug
Ox O Oz || % B 3w e o g
Bul aul aul aul BUQ aus i 12 13
Ox % Bz || By
= = < = =~ N 5 = &, 8. 8,
auQ aug —aUQ aui aug Bus 21 2 23
O 9y 9z ||Q 3 2 6 & &
Oug Oug Oug| | Ous Oup, Oug 81 a2 “a3
(b) The volume element is given by
Or or Or or Or or
dV = (—dug) * (== dus) x (= dug) = = + —=— x —| duy du, du.
Quy T duy 2 oug @ Quy Oup Oug| o 0

= VE duy dus dug by part (a).

Note that \/E is the absolute value of the Jacobian of x,y,z with respect to u

1,Us g (See Prob.13).
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SUPPLEMENTARY PROBLEMS

Answers to the Supplementary Problems are given at the end of this Chapter.

36. Describe and sketch the coordinate surfaces and coordinate curves for (a) elliptic cylindrical, () bipolar,
and (c) parabolic cylindrical coordinates.

37. Determine the transformation from (e) spherical to rectangular coordinates, (b) spherical to cylindrical
coordinates.

38. Express each of the following loci in spherical coordinates:
(a) the sphere x2+y2+22 =9 (c) the paraboloid z = %2 +y?

the plane =x.
(b) the cone 2% = 3(x?+y?) (d) the plane z=0 ) P Y

39. If 0,%,z are cylindrical coordinates, describe each of the following loci and write the equation of each
locus in rectangular coordinates: (@) 0=4,z=0; (b) p=4; ()P =T/2; (@A) P =7/3, z=1.

40. If u,v,z are elliptic cylindrical coordinates where a = 4, describe each of the following loci and write the
equation of each locus in rectangular coordinates:
(@) v=71/4; (B)u=0,2z=0; (c)u=In2, z=2; (d)v=0, 2=0.

41. If u,v,z are parabolic cylindrical coordinates, graph the curves or regions described by each of the fol-
lowing: (@yu=2, z=0; B)v=1,2=2; (¢)1Sus2 28083, 2=0; @) 1<u<2, 2<v<3, z=0.

42. () Find the unit vectors e,, eg and es of a spherical coordinate system in terms of i,j and k.
(b) Solve for i,j and k in terms of e,, ey and egy.

43. Represent the vector A = 2yi—zj + 3xk in spherical coordinates and determine 4,, 4g and A¢ .

44. Prove that a spherical coordinate system is orthogonal.

45. Prove that (a) parabolic cylindrical, (b) elliptic cylindrical, and (c) oblate spheroidal coordinate systems
are orthogonal.

46. Prove ér = ée9+sin9q.5e¢, ég = —éer+cos<9q.5e¢, é¢= —sin@d;er—coseq;ee.

47. Express the velocity v and acceleration a of a particle in spherical coordinates.

48. Find the square of the element of arc length and the corresponding scale factors in (a) paraboloidal,
(b) elliptic cylindrical, and (c¢) oblate spheroidal coordinates.

49. Find the volume element dV in (a) paraboloidal, (b) elliptic cylindrical, and (c¢) bipolar coordinates.
50. Find (a) the scale factors and (b) the volume element dV for prolate spheroidal coordinates.
51. Derive expressions for the scale factors in (a) ellipsoidal and (b) bipolar coordinates.

52. Find the elements of area of a volume element in (a) cylindrical, (b) spherical, and (c) paraboloidal co-
ordinates.

53. Prove that a necessary and sufficient condition that a curvilinear coordinate system be orthogonal is that
g¢q=0 for p #q. :
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-
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Find the Jacobian J (u—x—'u—y'%) for (e) cylindrical, (b) spherical, (c) parabolic cylindrical, (d) elliptic
1s B2, Ug

cylindrical, and (e) prolate spheroidal coordinates.

Evaluate fff V%2 +y? dxdydz, where V is the region bounded by z = x2+ 92 and z = 8—(x2 +42).
4

Hint: Use cylindrical coordinates.

Find the volume of the smaller of the two regions bounded by the sphere x2 +y2+ 2% = 16 and the cone

22 = x2+y2.

Use spherical coordinates to find the volume of the smaller of the two regions bounded by a sphere of
radius a and a plane intersecting the sphere at a distance & from its center.

(a) Describe the coordinate surfaces and coordinate curves for the system
%2 —y2 = 2uy coSup, %y = upsinug, z = ug
X,¥, %
Ug, Uo, Ug
u, are related to the cylindrical coordinates 0 and ¢ and determine the relationship.

(b) Show that the system is orthogonal. (c¢) Determine J( ) for the system. (d) Show that us and

Find the moment of inertia of the region bounded by x2—y2 =2, x® —y2 = 4, xy=1, xy=2, z=1 and
z=3 with respect to the z axis if the density is constant and equal to x. Hint: Let * —¢% = 2u, xy=v.

ing O Or Or
0 S e Bus " Jug

ordinates. Show that e;=E,, e;=E,, e3= E; for these systems.

) Vul, Vuz, VusJ in (a) cylindrical, (b) spherical, and (¢) parabolic cylindrical co-

Given the coordinate transformation u,=xy, 2uo=x2+y?, uz=z. (a) Show that the coordinate system is
x, y, z

Uq, Uo, Ug

not orthogonal. (b) Find J( Y. (c) Find dsZ.

Find V‘P, divA and curlA in parabolic eylindrical coordinates.
Express (a)V\,b and (b)V‘ A in spherical coordinates.
Find VQI,ZJ in oblate spheroidal coordinates.

s , Fo
W2 92

Write the equation = & in elliptic cylindrical coordinates.

Express Maxwell’s equation VxE=— cl B—H in prolate spheroidal coordinates.

Ot

87°m
h2

2
Express Schroedinger’s equation of quantum mechanics V l,b + (E — V(x,y,z)) t,ll = 0 in parabolic

cylindrical coordinates where m,% and £ are constants.

Write Laplace’s equation in paraboloidal coordinates.

. oU V2 . . . . ..
Express the heat equation — = « U in spherical coordinates if U is independent of (a) P, (b) & and

Ot
8, (¢cyrande, )P, 6 and¢.

Find the element of arc length on a sphere of radius a.

Prove that in any orthogonal curvilinear coordinate system, div curlA=0 and curl grad P =0.
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8.
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Prove that the surface area of a given region R of the surface r = r(u,v) is ffv EG—F? dudv. Use
R

this to determine the surface area of a sphere.

Prove that a vector of length p which is everywhere normal to the surface r = r(z,v) is given by

A = ip(ix -a—r)/vEG—F2
du  Ov

u

(a) Describe the plane transformation x = x(u,v), ¥y =y(,v).
(b) Under what conditions will the u,v coordinate lines be orthogonal?

Let (x,y) be coordinates of a point P in a rectangular xy plane and (z,v) the coordinates of a point @ in
a rectangular uv plane. If x = x(u,v) and y = y(z,v) we say that there is a correspondence or mapping
between points P and Q.

(@)If x = 2u +v and y = u—2v, show that the lines in the xy plane correspond to lines in the uv plane.
(b) What does the square bounded by x=0,x=5,y=0 and y =5 correspond to in the uv plane?

(¢) Compute the Jacobian ](%’—Z) and show that this is related to the ratios of the areas of the square

and its image in the uv plane,

it

x w? —?), y =u» determine the image (or images) in the uv plane of a square bounded by x=0,
x=1, ¥

G, y=1 in the xy plane.

i NI

Show that under suitable conditions on F and G,

® ® @ t
f f e "S5ty Fx) Glyydxdy = f e~ St {f Fu) G(t—u) du} dt

[¢] [¢] o] 0

Hint; Use the transformation x+y = £, x=v from the xy plane to the v¢ plane. The result is important in
the theory of Laplace transforms.

(@YIf x = Buy + upb—ug, ¥y = u1+ 2us + 2ug, 2 = 2uq — uy, — Uy, find the volumes of the cube bounded by
x=0, x=15, y=0, y=10, =0 and z=5, and the image of this cube in the u,u,us rectangular coor-
dinate system.

(b) Relate the ratio of these volumes to the Jacobian of the transformation.

Let (x,y,z) and (u4,us,ug) be respectively the rectangular and curvilinear coordinates of a point.
@)If x = Buq + uo—ug, ¥ = uy + 2o + 2ug, 2= 2y — Uy — ug, is the system u,ugugorthogonal?
(b) Find ds® and g for the system.

(c) What is the relation between this and the preceding problem?

%, ¥, %)

2
. Verify that j =g.
O(uq, ug, ug)

If x=ul+2 y=uitus, z=u. —u; find (a) g and (b) the Jacobian J =

ANSWERS TO SUPPLEMENTARY PROBLEMS.

36.

(@yu=cq, and v=c, are elliptic and hyperbolic cylinders respectively, having z axis as common axis.
z = cg are planes. See Fig.7, page 139.

(byu=1c, and v=c, are circular cylinders whose intersections with the xy plane are circles with centers
on the y and x axes respectively and intersecting at right angles. The cylinders u = c, all pass
through the points (—a,0,0) and (a,0,0). z=rcg are planes. See Fig. 8, page 140.

(c)u=rcq and v=cy, are parabolic cylinders whose traces on the xy plane are intersecting mutually per-
pendicular coaxial parabolas with vertices on the x axis but on opposite sides of the origin. z=cg
are planes. See Fig. 6, page 138.

The coordinate curves are the intersections of the coordinate surfaces.
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Vatty® y

x

R 0,5: arc tan

(b)7‘=1/,02+22! 9=arctaano‘, ¢=¢

(@) r= l/x2+y2+zg, @ = arc tan

(@) r=3, (b) B=7/6, (c) rsin28 =cos 8, @) G=m/2,
(e) the plane y=x is made up of the two half planes ¢ = 7/4 and ¢ = 577/4.

(a) Circle in the xy plane x?+y2 =16, z=0. (b) Cylinder x®+42 =16 whose axis coincides with z axis.
(¢) The yz plane where 2 0. (d) The straight line y=V3x, z=1 where x20, y2 0.

(¢) Hyperbolic cylinder x®~y?=8. (b) The line joining points (~4,0,0) and (4,0,0), i.e. x=¢, y=0, z=0
2 2

Y

where —4§t<= 4, (c) Ellipse %5 +~— =1, z=2. (d) The portion of the x axis defined by xZ‘l, ¥ =0,

9
z=0.

(a) Parabola y2 = —~8(x—2), 2z=0. (b) Parabola yQ = 2¢+1, z=2. (c)Region in xy plane bounded by
parabolas y° = —2(x—1/2), ¥ = —8(x—2), ¥2 = 8(x+2) and ¥y = 18(x +9/2) including the boundary.

(d) Same as (c) but excluding the boundary.

u = Ay
() ds? = a®(sinh®u + sinv) (du?+dv?) + dz?, hy = h, = aVsinh2u + sin?v, &
(¢) ds® = a*(sinh®& + sin®7) (d§2+ d7®) + a? cosh?& cos?7n) dod?,
hg = hyy = a¥Vsinh®¢ + sin®7), hy= acosh& cos 7

(@) e, = sinfcospi + sinPsinpj + cosB k
e, = cosblcosdpi + cosOsingd j ~ sinfk
e, = —sind i + cos¢ j v
(0 i = sinfcosp e, + cos & cos ey — sing e
i = sinOsing e, + cosb sind e; + cos e,
k = cosfe, — sinf e
A = d,ee, + Agee + A¢e¢ where
4, = 2sin?0 sing cosd — rsinb cos b sin + 3rsin @ cos O cos b
Ag = 2rsin0 cos O sing cosp — rcos?d sing — 3rsin2f cos @
A4y = —2rsin @ sin®¢ — rcos 6 cos ¢
Vo= vee + ve, + v, e, where v,r=r°, v8=r@, v¢=rsin<9q§
a = a.e. + ag ey + adJegb where arz.r'—r(92—rsin29 ¢2,
aez;l— ;—t(rQQ)—r sin 8 cos & ¢+,
1 d 2 : 2 g
a, = = (r* sin?6
" ;sin O ds <r 2
(@) ds® = @?+v?) (@du+dv® + u202dd2, h, = h, = Vu2+12, h¢= uv

a?dudvdz

(@) wv @?+v2) dudv dd, (b) a?(sinh?y + sin?v)dudvdz, €y ————
(cosh v — cosu)

(@) hg = hy = a¥sinh®< + sin7), hg=a sinh & sinm
(b) a®(sinh?£ + sin?7) sinh & sin 7 d€dm dop

z

1
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52. (@) pdpdp, pdpdz, dpd:z
(b) rsin O drd¢, r’sin 6 dbdop, rdrdb
(¢) R+v?)dudv, woVuP+v® dud®d, uwvV u2+v? dvdh

54. (@) p, (b) r2sin B, (¢) u®+v?, (d) a?(sinhZu + sin®v), (e) a®(sinh?& + sin®7) sinh € sin 7

55. 2—51%7—7 56. 5477(23 V2) 7 %—T(Zas—-3a2h+h3) 58. (c) 3; (@) uq = 502 up = 2¢
59. 2K
60. (a) gi; = cosPi + sindij, Vo = i::ii—: = cospi + singj
%= —psind i+ peosd i, Vé = _Sin¢i; cos P §
%:— = Kk, Vz = x
(b) %Lr = sinfcospi + sinf singj+ cosOKk
or

O . rcosBOcospi+ reos@singpj — rsinbk

o8
‘ a[ _ in O si ¢ in & ¢
% = —rsinf sin®i + rsint cos P j
i j+zk
V, = AIYItEX . sinBcoscpi + sinOsingj + cosOk
Va2t y2+ 22
b ¥4
Vo - xzi+ yzj— POk _ cos O cos i+cos O singpj—sind k
5 o r
(x2+y2+z2) xQ+y2
Vo - —yi+xj _ —sing i + cosdj
x2 + 2 r sin @
(C)%= ui + vj, %=—vi+uj. :gl=k
u v z
V, - ditel g _-vitul gy
u? + 2’ w2 4?2 -
2,.2 2 2, _ 2 2,
61. (b) 21 . () ds? = (x +y)(du1+dzg) Q4xy duldu2+du32 - uo (duq +dus) 2u1du1du2+du32
y2—x (x?—y%) 2(2—u?)
. V& - L 5@u+ 1%, . 22,
V2 2 Ou ‘/;24.1,2 v z
divA = [——»(V2+vA>+-—<v2+vA)]+%§
2+v 9 9z
curlA =

2+v2 [

V u?+v? Av)} Vul+v? ey,

3 M,
{'a: (/,Tzrvau) - % }/T

v

{2 () - 2 (e}
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or or r

190 . 1 oY
9 ¢ rsinf o @

1 9
G4
rsing 96 (sin& Ag) +

34,

1
rsinf B(fJ

9
> ";(72147')

-~

Vi - 1 9 oY
v o? cosh £ (sinh?€ + sin?7) 8§(COSh £=5e oE )

1 9y

1

RV

Y
a2 cos 7)(sinh% + sin®7)) o7 (cos am )

4+ =

a2(sinh?y + sin®v)P

1 9
aRS? [{B#RE@ a¢(SE } 5o

+ {a¢(SE§) a§<RE¢)} {aé_(SE y —
OH OH OH

_£ _ 1 _ 177
te e cat qu

o ¢ ¢

1
c

and S = Vsinh?£ + sin?7) .
Y
022

oY

v'v—(v—/—) +

Bv v

sinh £ sin 7

7y .24
du? 2

where R =

=1
u?+2

+ 87;:’” (E—W(u,v,z)) l/l =

2
(u2 + v2) .B_L/i - 0

o2

ou
(a) 'at -
e
o

2 OU 1 9.
y 2sin@ o6 (Sngag]

BU

() sm@——(sm@ég) ‘3952

b
() 30

ds? =

a?[d6” + sin?6 dgp2?]

% ™ Jy
by — — —_— L =
® %t w3 0

(a) 1750, 75; (b) Jacobian = 10

(a) No. (b) ds® = 14du + 6du2 + 6du32 + Gduidug

(@) g=16uZuZ, (b)Y ]= du u

9

(SE)}Re]
m 4 (]

9

0,

=0

— 6du du + 8du du ,
18 2 '3

a? cosh2& cos?7m b2

165

where W(u,v,z)= V(x,y,z).

d dUu
4y £ 229y -
()dr(r dr)

g = 100

0



Chapter 8

PHYSICAL LAWS must be independent of any particular coordinate systems used in describing them

mathematically, if they are to be valid. A study of the consequences of this re-
quirement leads to tensor analysis, of great use in _general relativity theory, differential geometry,
mechanics, elasticity, hydrodynamics, electromagnetic theory and numerous other fields of science
and engineering.

SPACES OF N DIMENSIONS. In three dimensional space a point is a set of three numbers, called

coordinates, determined by specifying a particular coordinate system
or frame of reference. For example (x,y,2), (0, ¢,2), (r, 9,?) are coordinates of a point in rectan-
gular, cylindrical and spherical coordinate systems respectively. A point in N dimensional space is,
by analogy, a set of N numbers denoted by (x1,x2, ...,x”) where 1,2,...,N are taken not as expo-
nents but as superscripts, a policy which will prove useful.

The fact that we cannot visualize points in spaces of dimension higher than three has of course
nothing whatsoever to do with their existence.

COORDINATE TRANSFORMATIONS. Let (x%, 2 ...,x%) and (#%,%2, ...,%¥) be coordinates of a point
in two different frames of reference. Suppose there exists N
independent relations between the coordinates of the two systems having the form

= 7@t
EQ = ‘E2(x11 x2i "‘Yxl)
) Lo Do
= Ey(xi, %2, ..., x‘”)
which we can indicate briefly by
2) R CRE N b k=1,2..N

where it is supposed that the functions involved are single-valued, continuous, and have continuous
derivatives., Then conversely to each set of coordinates (551,22,...,5”) there will correspond a
unique set (x% %2 ..., x¥) given by

&) xR = LR, %%, ...,%H0) kE=1,2,..,N

The relations (2) or (3) define g transformation of coordinates\from one frame of reference to another.

166
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THE SUMMATION CONVENTION. In writing an expression such as ayx' +ax® + ... +aya!  we can
¥ ,
use the short notation 2 a].xJ. An even shorter notation is sim-
j=1

ply to write if as ajxj, where we adopt the convention that whenever an index (subscript or super-

script) is repeated in a given term we are to sum over that index from 1 to N unless otherwise spec-
ified. This is called the summation convention. Clearly, instead of using the index j we could have
used another letter, say p, and the sum could be written o xP . Any index which is repeated in a giv-
en term, so that the summation convention applies, is called a dummy index or umbral index.

An index occurring only once in a given term is called a free index and can stand for any of the
numbers 1,2,...,N such as % in equation (2) or (3), each of which represents N equations.

CONTRAVARIANT AND COVARIANT VECTORS. If N quantities 4%, 4%, ...,4" in a coordinate sys-
tem (x%, 22, ..., x¥) are related to N other quantities
2, 7%, ..., 7Y in another coordinate system (®%,%2, ...,%%) by the transformation equations

AV

?

47 = =1,2,...,N

D=
o)’o)
T
w)
P
~Q
i

X

q 1

which by the conventions adopted can simply be written as
—p P 4
A = Sx_ 4

Ox?

they are called components of a contravariant vector or contravariant tensor of the first rank or first
order. To provide motivation for this and later transformations, see Problems 33 and 34 of Chapter?7,

If N quantities Ai,AQ,...,A}, in a coordinate system (a%,42,...,x¥) are related to N other

quantities Zl, ZQ, vers A}l in another coordinate system (%%, %> ...,E”) by the transformation equations
u q
-1 X
= —_ A =
Aﬁ 5Pl p=12..N
g=1
or
+  _  ox9
= et

they are called components of a covariant vector or covariant tensor of the first rank or first order.

Note that a superscript is used to indicate contravariant components whereas a subscript is
used to indicate covariant components; an exception occurs in the notation for coordinates.

Instead of speaking of a tensor whose components are Aﬁ or A¢ we shall often refer simply to
the tensor A% or A¢' No confusion should arise from this.

CONTRAVARIANT, COVARIANT AND MIXED TENSORS. If NV 2 quantities Aqs in a coordinate system
_ (x% %2 ..., x¥) are related to N2 other quan-
tities AM in another coordinate system (x%, %2, ..., a_c)") by the transformation equations

S=1

=7 gs
zSA p,r = 1,2,...,.N

yidd

x

Q)
Q
Q)

X

D=
’0)

<>

‘o)

1
or



168 TENSOR ANALYSIS

Zw’ &P 08" 4

= 3.95.5

x

Q)
Q
Q)

X

by the adopted conventions, they are called contravariant components of a tensor of the second rank
or rank two. '

2 s . .
The N° quantities 4y are called covariant components of a tensor of the second rank if

1. - 0%
Ar = Gepogr’es

similarly the N° quantities 4 are called components of a mixed tensor of the second rank if

P - = S

4 o029 3x” S

THE KRONECKER DELTA, written 8;, is defined by

3j B {0 if jAE
k e s
1 if j=k

As its notation indicates, it is a mixed tensor of the second rank.

st
TENSORS OF RANK GREATER THAN TWO are easily defined. For example, A:l are the compo-

nents of a mixed tensor of rank 5, contravariant of order
3 and covariant of order 2, if they transform according to the relations

yidki ox? 27" 2" 24" 2x! 4%
i 9x9 x5 dxt Ozt dEI Rl

SCALARS OR INVARIANTS. Suppose ¢ is a function of the coordinates x% and let ¢ denote the
functional value under a transformation to a new set of coordinatgi x*

Then ¢ is called a scalar or invariant with respect to the coordinate transformationif ¢ = . A
scalar or invariant is also called a tensor of rank zero.

TENSOR FIELDS. If to each point of a region in N dimensional space there corresponds a definite

tensor, we say that a tensor field has been defined. This is a vector field or
a scalar field according as the tensor is of rank one or zero. It should be noted that a tensor or
tensor field is not just the set of its components in one special coordinate system but all the possi-
ble sets under any transformation of coordinates.

SYMMETRIC AND SKEW-SYMMETRIC TENSORS. A tensor is called symmetric with respect to two

contravariant or two covariant indices if its com-
ponents remain unaltered upon interchange of the indices. Thus if A;’Lfr = Ag;” the tensor is sym-
metric in m and p. If a tensor is symmetric with respect to any two contravariant and any two co-
variant indices, it is called symmetric.

A tensor is called skew-symmetric with respect to two contravariant or two covariant indices
if its components change sign upon interchange of the indices. Thus if Agf@ -Ags’” the tensor is
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skew-symmetric in m and p. If a tensor is skew-symmetric with respect to any two contravariant and
any two covariant indices it is called skew-symmetric.

FUNDAMENTAL OPERATIONS WITH TENSORS.

. Addition. The sum of two or more tensors of the same rank and type (i.e. same number of contra-
variant indices and same number of covariant indices) is also a tensor of the same rank and type.
Thus if AZ,W and ng are tensors, then Cg‘f’ = AZ]”’ +Bg‘ﬁ is also a tensor. Addition of tensors
is commutative and associative,

. Subtraction. The difference of two tensors of the same rank and type is also a tensor of the same
rank and type. Thus if Ag”b and B;M’ are tensors, then D;w = A;w — B;'”b is also a tensor.

. Outer Multiplication. The product of two tensors is a tensor whose rank is the sum of the ranks
of the given tensors. This product which involves ordinary multiplication of the components of
the tensor is called the outer product. For example, Ag’r BY = Cé’sm is the outer product of A?”
and B;" . However, note that not every tensor can be written as a product of two tensors of lower
rank. For this reason division of tensors is not always possible.

. Contraction. If one contravariant and one covariant index of a tensor are set equal, the result in-
dicates that a summation over the equal indices is to be taken according to the summation con-
vention. This resulting sum is a tensor of rank two less than that of the original tensor. The
process is called contraction. For example, in the tensor of rank 5, Ag‘f'r, set r=s to obtain

Aglfr = B;”’ a tensor of rank 3. Further, by setting p=g we obtain B;)”p = C" atensor of rank 1.

. Inner Multiplication. By the process of outer multiplication of two tensors followed by a contrac-
tion, we obtain a new tensor called an inner product of the given tensors. The process is called
inner multiplication. For example, given the tensors A™ and B;t’ the outer product is A™ BS’;.
Letting g=r, we obtain the inner product Azw B;t. Letting ¢=r and p =s, another inner product
A"r"ﬁ Bg; is obtained. Inner and outer multiplication of tensors is commutative and associative.

. Quotient Law. Suppose it is not known whether a quantity X is a tensor or not. If an inner prod-
uct of X with an arbitrary tensor is itself a tensor, then X is also a tensor. This is called the
quotient law.

MATRICES. A matrix of order m by n is an array of quantities By called elements, arranged inm

rows and » columns and generally denoted by

Q11 Q1o ... Qgp Q13 Q1o ... Qg
(o1 QG v Qop Q21 Gg ... Gop
.. . or . .
Gp1 O .. Gpp Ap1 Qpo ... CGpp

of in abbreviated form by (ayg) oF [aﬁq], p=1,...m; g=1,...,n. If m=n the matrix is a square

matrix of order m by m or simply m; if m=1 it is a row matrix or row vector; if n=1 it is a column
matrix or column vector.

The diagonal of a square matrix containing the elements a4, o, ..., a,, is called the princi-

pal or main diagonal. A square matrix whose elements are equal to one in the principal diagonal and
zero elsewhere is called a unit matrix and is denoted by I. A null matrix, denoted by O, is a matrix
all of whose elements are zero.
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MATRIX ALGEBRA. If 4 =(a¢,q) and B = (bﬁq) are matrices having the same order (mby n) then

1. A=B if and only if apg = bf,q.

2. The sum S and difference D are the matrices defined by
S = A+B = (apgtbyy, D = A=B = (apg— bpg)

3. The product P=AB is defined only when the number n of columns in 4 equals the number of rows
in B and is then given by

P = AB = (ai,q)(bi,q) = (aprb‘rq)
L4 3
where ap,bpq = Z appbpg by the summation convention. Matrices whose product is defined
=1

are called conformable.

In general, multiplication of matrices is not commutative, i.e. AB #BA. However the asso-
ciative law for multiplication of matrices holds, i.e._A(BC) = (AB)(_provided the matrices are
conformable. Also the distributive laws hold, i.e. A(B+C) = AB + AC, (A+B)YC = AC+BC.

4. The determinant of a square matrix A= (apq) is denoted by |A l, det 4, ‘aﬁq] or det(am).
It P=AB then |P|=1]4]]B].

5. The inverse of a square matrix 4 is a matrix 4™% such that 44~" =], where [ is the unit matrix.
. i -1 . . i .
A necessary and sufficient condition that 4™ exist is that detA#0. If detd =0, A is called
singular.

6. The product of a scalar A by a matrix 4 = (%

denoted by A4, is the matrix (}\%q) where each
element of 4 is multiplied by A.

q):

7. The transpose of a matrix 4 is a matrix AT which is formed from 4 by interchanging its rows and
columns. Thus if 4= (apq), then A= (agp)- The transpose of 4 is also denoted by 4.

THE LINE ELEMENT AND METRIC TENSOR. In rectangular coordinates (x,y,z) the differential of
arc length ds is obtained from (ds® = dx®+ dy®+ dz2
By trasnsforming to general curvilinear coordinates (see Problem 17, Chapter 7) this becomes ds? =

3
Z Z 8sq duydug. Such spaces are called three dimensional Euclidean spaces.
p=1 g=1

A generalization to NV dimensional space with coordinates (x*, %2, ...,x¥y is immediate. We de-
fine the line element ds in this space to be given by the quadratic form, called the metric form or
metric,

or, using the summation convention,

In the special case where there exists a transformation of coordinates from < to %* such that
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the metric form is transformed into (dz%)2 + (dx?) + ... + (dz)? or dx*dx®, then the space is call-
ed N dimensional Euclidean space. Inthe general case, however, the space is called Riemannian.

The quantities g are the components of a covariant tensor of rank two called the metric

tensor of fundamental tensor. We can and always will choose this tensor to be symmetric (see Prob- .

lem 29).

CONJUGATE OR RECIPROCAL TENSORS.( Let g = | g, ql denote the determinant with elements
gﬁq and suppose g#0. Define gﬁq by

cofactor of 8pq
g

gﬁ q =

Then g?bq is a symmetric contravariant tensor of rank two called the conjugate oI reciprocal tensor

of g, (see Problem 34). It can be shown (Problem 33) that N

pq _ s
& 8&rq = Sr

ASSOCIATED TENSORS. Given a tensor, we can derive other tensors by raising or lowering indices.

For example, given the tensor A,, we obtain by raising the index p, the,
tensor Ai)q , the dot indicating the original position of the moved index. By raising the index ¢ also
we obtain AW Where no confusion can arise we shall often omit the dots; thus qu can be written
qu. These derived tensors can be obtained by forming inner products of the given tensor with the
metric tensor 8pg OF its conjugate gm. Thus, for example

A¢ - grﬁ Arq: Aﬁq - grﬁ gsq A

P9
g 49

s Alps = Erq

gm.tk Dk q.st
Aln = 8 8,8 AL

These become clear if we interpret multiplication by gm as meaning: let r=p (or p=r) in whatever
follows and raise this index. Similarly we interpret multiplication by 8rq @S meaning: let r=gq (or
g=r) in whatever follows and lower this index.

All tensors obtained from a given tensor by forming inner products with the metric tensor and
its conjugate are called associated tensors of the given tensor. For example A™ and An are asso-

ciated tensors, the first are contravariant and the second covariant components. The relation be-
tween them is given by

A =

y = B Al or A = Fl4

q
For rectangular coordinates Epg = 1 if p=q, and 0 if p#¢q, sothat 4 ¥A¢, which explains why

no distinction was made between contravariant and covariant components of a vector in earlier chap-
ters.

LENGTH OF A VECTOR, ANGLE BETWEEN VECTORS. The quantity AﬁBb which is the inner

product of AP and B , is a scalar anal-
ogous to the scalar product in rectangular coordinates. We define the length L of the vector Ab or
Ap as given by
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L = a2, = P4, = g a4

We can define the angle & between A7> and B¢, as given by
P
A B1>

cos § = —
/AP 4
(47 Ap) (B"By)

THE PHYSICAL COMPONENTS of a vector 4% or 4 , denoted by Au,Av, and 4, are the projec-
tions of the vector on the tangents to the coordinate curves and are
given in the case of orthogonal coordinates by

A 2 4, 8 As
Ay = Veg 4' = =, Ay = VA = 2L, Ay = Vg At =
. 81 i £z ° 8o
Similarly the physical components of a tensor Abq or A¢>q are given by
Ay = g, A = Ao Vg g A = Ao Ay = VE g A" = Ao etc
uY T o ! Uy T - ’ uw - ’ .
11 g1 11522 /————511 £ 11533 /'_g11 e

CHRISTOFFEL’S SYMBOLS. The symbols

agﬁr Bg qr agﬁq
+ - =)
a9 P o

1
o

g% [pq,r]

TRANSFORMATION LAWS OF CHRISTOFFEL'’S SYMBOLS. If we denote by a bar a symbol in a co-
) ordinate system %%, then

]

: + ox 9
o%' oz® " 500 3 ol oxt

V}z{wwww+wﬁi
ik Pef 3x° oxd 3z ox9 x'oxk

b ‘ v 2 g
(jk,m] [pq,r] 9% 9x9 02" o

are the laws of transformation of the Christoffel symbols showing that they are not tensors unless
the second terms on the right are zero.

GEODESICS. The distance s between two points ¢; and ¢, on a curve x”==x"() in a Riemannian

space is given by
b da? dx?
* T fti./gm e
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That curve in the space which makes the distance a minimum is called a geodesic of the space. By
use of the calculus of variations (see Problems 50 and 51) the geodesics are found from the differen-
tial equation

AN {}dj_dx_‘? ,
ds? pg} ds ds

where s is the arc length parameter. As examples, the geodesics on a plane are straight lines where-
as the geodesics on a sphere are arcs of great circles.

THE COVARIANT DERIVATIVE of a tensor A¢ with repect to « is denoted by Aﬁ’q and is de-

fined by 7
8A¢5 S

A = L - A

9 3x9 {pq} °
a covariant tensor of rank two.
The covariant derivative of a tensor Aﬁ with respect to xq is denoted by Af’q and is defined by

b _ o4 pl,s

A q = B—xq + {qS}A

a mixed tensor of rank two.

For rectangular systems, the Christoffel symbols are zero.and the covariant derivatives are the
usual partial derivatives. Covariant derivatives of tensors are also tensors (see Problem52).

The above results can be extended to covariant derivatives of higher rank tensors. Thus

P, - Pn aAf1"'rpm
Ar r g = 1t
1 w q
Ox
S P, «..p S P, . P 8 p. «es P
- Al’”—{}Ai"‘—...—{}Ai’”
{rlg} SThueily T2¢]‘ STy Ty ' TyeesTpeyS
. p, AspQ...pm . _pQ}Aplsps...pm . . P, Api...pm_ls
gs Ty eeTn gs Ty eeTn gs Tty

P, -+ Pp
is the covariant derivative of 4,° r, Withrespect to .
e

The rules of covariant differentiation for sums and products of tensors are the same as those
for ordinary differentiation. In performing the differentiations, the tensors g ,g%7 and &9 may be
treated as constants since their covariant derivatives are zero (see Problem 54). Since covariant
derivatives express rates of change of physical quantities independent of any frames of reference,
they are of great importance in expressing physical laws.

PERMUTATION SYMBOLS AND TENSORS. Define epqr bY the relations
. .

€108 = €033 = €g10 =+1, €013 = €430 = €g01 = — 1, epgr =0 ) if twp or more indices are equal

Pq

and define ¢”7' in the same manner. The symbols e, and 7 are called permutation symbols in
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three dimensional space.

Further, let us define

675‘7”‘ - ‘/geﬁqr

R
Cpar T Vg e
It can be shown that € and Eﬁqr are covariant and contravariant tensors respectively, called
bar

permutation tensors in three dimensional space. Generalizations to higher dimensions are possible.

TENSOR FORM OF GRADIENT, DIVERGENCE AND CURL.

1. Gradient. If & is a scalar or invariant the gradient of & is defined by
2%
d - = - 22
\% grad & @, , 5P
where @,ﬁ is the covariant derivative of & with respect to <.

2. Divergence. The divergence of Aﬁ is the contraction of its covariant derivative with respect to

%7, i.e. the contraction of Ab,q. Then

T U S k
divd4d® = 4 p = /S 3 (g A%
BAj, BAq
3. Curl. The curl of A¢ is A¢),q - Af?’i’ ﬁ — g , a tensor of rank two. The curl is also

defined as —e?9” Aﬁ,q
4. Laplacian. The Laplacian of @ is the divergence of grad & or

Ve = divd,, = % 9
P \/_ Bx] 5‘7

In case g<0, Vg must be replaced by v ~g. Both cases g>0 and g<0 can be included by
writing v/ |g| in place of /g

64
THE INTRINSIC OR ABSOLUTE DERIVATIVE of Aﬁ along a curve x7= xq(t) , denoted by S_f , s

defined as the inner product of the covariant deriva-

, dx? . dx? .
tive of A¢ and ?, i.e. Ayb,q e and is given by

SAﬁ dA¢ r dx?

- @ {pq} &
Similarly, we define

sa? a4 P i dat

= = pubialY A ==

St dt qr de

The vectors Aﬁ or AP are said to move parallelly along a curve if their intrinsic derivatives
along the curve are zero, respectively.

Intrinsic derivatives of higher rank tensors are similarly defined.
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bty , ,
RELATIVE AND ABSOLUTE TENSORS. A tensor Ar o s called a relative tensor of weight w
o Ty

if its components transform according to the equation

'—ql' .. q’!ﬂ ax

w fl“'% ox%h . 0&'n 9" . ox'n
R T 0

ox

X
the type of tensor with which we have been dealing above. If w=1 the relative tensor is called a
tensor density. The operations of addition, multiplication, etc., of relative tensors are similar to

those of absolute tensors. See for example Problem 64.

where [ = is the Jacobian of the transformation. If w=0 the tensor is called absolute and is

SOLVED PROBLEMS

SUMMATION CONVENTION.

1. Write each of the following using the summation convention.

3925 o¢ 9 op
(@ dp = == dat + dx? + ..+ —— dx¥ . dp = =L do)
? 32 ad e
(b) dik = ‘aik dx + aik éx_Q + + ézﬁ d_x_” éﬁ = .ai}_e M
dt Bxi dt A2 4t 9 dr dt QM dt
@ @Y + @+ L+ L
@) ds? = g (@ + g (dx? + 8oy (@2 . ds? = gkkdxkdxk, N=3
3 3
b ,9q P, 4q
dx” dx’ . dx” d N
(e) j?-—-J:L q2=)1 gi)q % dx gﬁq %" dx 3

2. Write the terms in each of the following indicated sums.

¥
k kB _ 1 2
(a) ajkx . k§1 ajkx = ajlx + ajzx + ..+ ajﬂx”
By A, A § a4 A7 = o4 A a2 LA
(D] bq . = g = Ay + b + ...+ o
Pk
() g Ox) Ox” , N=3
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_ 32 el B3P
g . = 80—
I je1 k=1 TP zT 3x%S
B - - L YA L
je1 It ORT ORS U wT wS U0 %RT RS
o, ot 22 2t 22 2t
811 357 3zs E21 3z7 xS 8a1 357 3ms
Ox! Ox? 9x2 Ox? ox® 0x?
o w e E 2w e
Ox® ox® 0x2 0x® 0x® 0x°
b1 357 xS B0 35" =S B33 257 3%°
3. If xk, k=1,2,...,N are rectangular coordinates, what locus if any, is represented by each of the

following equations for N=2,3 and N24.

Assume that the functions are single-valued, have con-

tinuous derivatives and are independent, when necessary.

© (a)
For N=2,
For N=3,
For N2 4,

5) xPxk = 1.
For N=2,
For N=3,
For N 24,

() =% = Fw).
For N=2,
For N=3,
For N 24,

@) x* = xRu,v).
For N=2,
For N=3,
For N 24,

xk= 1, where g, are constants.

a,lxl + a2x2 =1, aline in two dimensions, i.e. a line in a plane.
a,xt +a,x? +ayx® =1, aplane in 3 dimensions.

a,xt ta,x? +.. +a «¥ =1 is a hyperplane.

¥

(xl)2 + (962)2 =1, a circle of unit radius in the plane.
2 + (x2? + (x%° = 1, a sphere of unit radius.
=W + (222 + ... + (N2 =1, a hypersphere of unit radius.

xl= xi(u), %2 = x%u), a plane curve with parameter u.
2t = x¥w), %% = x%u), x° = x%(w), a three dimensional space curve.
an N dimensional space curve.

% = xl(u,v), %2 = x%(u,v) is a transformation of coordinates from (z,v) to (x%,x2).

1 2 2 3 3 . - - -
x = x (u,v), ¥~ =x"(u,v), x =x(u,v) is a 3 dimensional surface with parameters z and v.
a hypersurface.

CONTRAVARIANT AND COVARIANT VECTORS AND TENSORS.

4. Write the law of transformation for the tensors (a) A;k, (b) BZ;.Z, (¢) c".

(2)

o7 o) 3P i

i Y}
9 oxt 99 0z7 Uk

As an aid for remembering the transformation, note that the relative positions of indices p,q,r on

the left side of the transformation are the same as those on the right side.

Since these indices are as-

sociated with the x coordinates and since indices 7,7,k are associated respectively with indices p,q,r
the required transformation is easily written.

p

I
I
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by B - OFP 39 3l O e pn
st %™ ™ T %S 'a;t ijk

- P
) &P = g—;‘,ﬁ c"

. A quantity A(j,k,l,m) which is a function of coordinates x* transforms to another coordinate sys-
tem %* according to the rule

_ o oF orr xS

Ap,q,r,s) = 3% 3mF Oal oam AG,k,Lm)

(a) Is the quantity a tensor ? () If so, write the tensor in suitable notation and (c) give the con-
travariant and covariant order and rank.

(a) Yes. (b) A;alm. (¢) Contravariant of order 3, covariant of order 1 and rank 3+1= 4.

. Determine whether each of the following quantities is a tensor, If so, state whether it is contra-

b AP (x4, ..., xN)
variant or covariant and give its rank: (a) dx®, () —ak—— .
X

, , . _j
(2) Assume the transformation of coordinates a'c] = E](xi,...,x”). Then d&’ = @‘—k dx” and so dx® is a
X

contravariant fensor of rank one or a contravariant vector. Note that the location of the index k& is
appropriate.

(5) Under the transformation xF= Rzt ....7#), ¢ is a function of x* and hence 7 such that ¢, ..., M =
b (E?, ...,E”) ., i.e. @& is a scalar or invariant (tensor of rank zero). By the chain rule for partial differ-

k k — k
entiation, % = —82 = ?i ai = ai %)— and aﬁ transforms like A4; = -BL Ak' Then Bi is

oxJ dxJ dxk %/ %I Ok dxk J dxJ Oxk

a covariant tensor of rank one or a covariant vector.

Note that in E(—é the index appears in the denominator and thus acts like a subscript which indi-
x

cates its covariant character. We refer to the tensor ﬁ; or equivalently, the tensor with components

g%, as the gradient of ¢, written grad @ or V.
X

- A covariant tensor has components xy, 2y —z2 xz inrectangular coordinates. Find its covariant
components in spherical coordinates.

Let A]. denote the covariant components in rectangular coordinates xl= %, x*=y, x°= 2z, Then
Ay = xy = 222, A, = 2y—2? = 2x2——(x3)2, Ay = x1x®

where care must be taken to distinguish between superscripts and exponents.

Let Zk denote the covariant components in spherical coordinates x'= r,#2=0,5= &. Then

-
1) Ay = 35k A]
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The transformation equations between coordinate systems are

! = %! sin %% cos %°, x2 = %* sin %2 sin%°, %% = %' cos %2

Then equations (I) yield the required covariant components

- Oxt Ox? Ox®
Al= ’_a;A1+§’—C—1A2+'8;AS
= (sinx? cos ¥ (x*x2) + (sin%? sinx®) (2% — (xs)Q) + (cos x2) (x1x%)
= (sin & cos @) (2 sin26 sin ¢ cos D)
+ (sin @ sin @) (2r sin € sin @ ~ r° cos? )
+ (cos & (2 sin & cos G cos @)
- _ ot Ox? 0
o T et wm
= (r cos B cos @) (r? sin?F sin P cos @)
+ (rcos O sin @) (2r sin & sin @ — 2 cos® )
+ (—r sin &) (2 sin & cos & cos P)
1= Oy o o

= (—r sin 8 sin @) ¢? sin?0 sin P cos @)
+ (rsin & cos @) (2r sin & sind — % cos?H)

+ (0) (2 sin & cos & cos )

04
8. Show that ———; is not a tensor even though Aﬁ‘ is a covariant tensor of rank one.
%
%t . o h
By hypothesis, Aj = B'j A¢. Differentiating with respect to T~.
X
521} 9P 8A75 F P
P s e
% % 0% % Ox/

I B F

: ;x4
% I I=F 2oz P

P T 94y AP

< + —
% ozk 3 %" %

04
Since the second term on the right is present, ——¢) does not transform as a tensor should. Later we
X

04

shall show how the addition of a suitable quantity to =3 causes the result to be a tensor (Problem 52).
X
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9. Show that the velocity of a fluid at any point is a contravariant tensor of rank one.

k
The velocity of a fluid at any point has components st in the coordinate system xk. In the coor-

; 2 ity is OF
dinate system XY the velocity is 2 But

az
dt

a:?j dx®

Ak dt

by the chain rule, and it follows that the velocity is a contravariant tensor of rank one or a contravariant

vector.

THE KRONECKER DELTA.

oo b9
10. Evaluate (a) Bq AS , (B Bq 3

.

5 .
Since 5q=1 if p=q and 0if p#q, we have

o 4T A
11. Show that %;—‘; = 8{;.

If p=q., g—zé’ = 1 since & = o7

If ptq, g—ig = 0 since x7

Then -gz—j = 85.

2 3t p
12. Prove that = 22 = § .
%7 o« r

N P
(b)8q8r=8

and %7 are independent.

Coordinates xﬁ are functions of coordinates T which are in turn functions of coordinates x’. Then

by the chain rule and Problem 11,

ax'b _ Ma%q

%" o% q g;

—p = g g —p
13. 1t 4 = 9% 4 prove that Aq = 9% 17
ox9 dxP
_ P
Multiply equation Ap = E’“-Aq by oa”

o Eﬁ )
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r —p r 3P 4
Bx A - ax Bx A - 8
44 %P 37
indicates that in the transformation equations for the tensor components the quantities with bars and quan-
tities without bars can be interchanged, a result which can be proved in general.

r g
Then q 4 = A by Prob. 12. Placing r=g¢ the result follows. This

14. Prove that 8? is a mixed tensor of the second rank.

. . L
If Sq is a mixed tensor of the second rank it must transform accoraing to the rule e
< % d P
5, = X,
P ok
_j ﬁ - N s .
The right side equals O Ox = 8] by Problem 12. Since 8kj = SJ =1 if j=k,and 0 if j#%&, it fol-
b mk x

4
lows that Sq is a mixed tensor of rank two, justifying the notation used.

Note that we sometimes use 51567: 1 if p=q and 0 if p#q, as the Kronecker delta. This is how-
ever not a covariant tensor of the second rank as the notation would seem to indicate.

FUNDAMENTAL OPERATIONS WITH TENSORS.

tq q
15. 1f AT and Bf are tensors, prove that their sum and difference are tensors.
By hypothesis Aﬁq and qu are tensors, so that
& o wP ol e
4 = 2.4 5.1 A
P I ox
=ik _ ) ok uT Lpa
Bl = SFad T
P 39 o=
_jk  _jk 7wk AT
Adding, (A] + B y = = o5k " (Aﬁq + qu)
! ! AP K oxt
_—‘k _.k "'j -—k 7‘
Subtracting, (A] — Bj y = = = ox” (Af,q'— Biq)
! ! uP NI it

»q

g P Pq pq pq
Then Ar +B, and 4, — B, are tensors of the same rank and type as 4, and B, .

bq pgs P

16. If Ar and B: are tensors, prove that Crt = Arq Bts is also a tensor.

S
We must prove that Cftq is a tensor whose components are formed by taking the products of compo-
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nents of tensors qu and Bts. Since qu and B: are tensors,

PR - L=

l - 177
Ox” Ox' OF

=m OFM Oxt S

7 = I Bt
xS 0"

— B 7 gk 2T g Dt s
Multiplying, AZJ BZ: = _B_x_ ;ax— _Bx_l —ai —ai qu B’t Q

P 39 xS

which shows that quB: is a tensor of rank 5, with contravariant indices p,q,s and covariant indices

¢t , thus warranting the notation Cfgs. We call szs = quBtS the outer product of qu and Bf.

; be a tensor. (a) Choose p=¢ and show that AfZﬁ'

employed, is a tensor. What is its rank ? (b) Choose p=t and g=s and show similarly that Aﬁ;ﬁ
is a tensor. What is its rank ?

17. Let Aﬁz where the summation convention is

i P .
(a) Since 4,4, is a tensor,

T o 3 OER BT e Bt 9
@ fian T 5P oud o7l 2gm 3pn Tt

We must show that Af;) is a tensor. Place the corresponding indices j and n equal to each other
and sum over this index. Then

Pri 7] 3k 3T S Ot M
Inj P N 3l aEm oxd TSP

%7 axﬁ 57 250 3gm TS

and so ArZﬁ is a tensor of rank 3 and can be denoted by BZS. The process of placing a contravariant

index equal to a covariant index in a tensor and summing is called contraction. By such a process a
tensor is formed whose rank is two less than the rank of the original tensor.

#q
(b) We must show that A4 rgp is a tensor. Placing j=n and k=m in equation (I) of part (a) and summing
over j and k£, we have
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Tk o %R o oS ot P
Ik] P I ;! oxk oR/ Arst

It 3 s 3wk % P9

%) P xk T ol Arst

S " ¢>q
. sl o Vi)
P q ax

ox” Abq
ot TP

which shows that Afgﬁ is a tensor of rank one and can be denoted by Cr' Note that by contracting

twice, the rank was reduced by 4.

: P
18. Prove that the contraction of the tensor Aq is a scalar or invariant.

i =7 3,9
We have A }j = _aﬁ. ai A¢>
xuP o 9
—j 7] q
Putting j=% and summing, Aq S il Bx Aﬁ = 815 Ab = Ag
J 3P ogd 9 q
Then ij Aﬁ and it follows that Aﬁ must be an invariant. Since Aﬁ is a tensor of rank two and

contraction with respect to a single index lowers the rank by two, we are led to define an invariant as a
tensor of rank Zero.

19. Show that the contraction of the outer product of the tensors Af7 and Bq is an invariant.

Since Ai) and Bq are tensors, A]— B_ ﬁ Ek = 375— Bq Then
-4 Ixk
- oz’ % Bx P
A Bk = A B
P ok ¢
By contraction (putting j=%& and summing)
i o5/ %l P g ¢ 14
A B. = - A B = A B, = A B
J 75 7 q % 7 p

and so ApBﬁ is an invariant. The process of multiplying tensngs (outer multiplication) and then contract-
ing is called inner multiplication and the result is called an inner product. Since ApB¢, is a scalar, it is

often called the scalar product of the vectors Aﬁ and Bq .

P gs
20. Show that any inner product of the tensors A,r and Bt is a tensor of rank three.

S S
Outer product of Aﬁ and Bq = A¢)Bq .
r t rt
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Let us contract with respect to 1nd1ces p and ¢, i.e. let p=¢ and sum. We must show that the result-
ing inner product, represented by Ab ﬁ ,» 1s a tensor of rank three.

S
By hypothesis, Af and BZ are tensors; then

g -] r — =1 =m t gs
. W wr Bt - E OO g

7‘!
E 3P ozt 37 s Oxm
Multiplying, letting j=n and summing, we have

VN o oa” oEl m™ ot P 0

kT 3P 37% 37 35 o) Tk
575%@’35@_’7_” p s

P gk I WS Tt

¥ axl me b gs
azk ad us TP

0l

4

showing that 4 Bq is a tensor of rank three. By contracting with respect to g and r or s and r in the
product Aﬁ BZ » We can similarly show that any inner product is a tensor of rank three.

Another Method. The outer product of two tensors is a tensor whose rank is the sum of the ranks of
the given tensors. Then A15 qu is a tensor of rank 3+2 =5, Since a contraction results in a tensor
whose rank is two less than that of the given tensor, it follows that any contraction of AﬁBq is a tensor
of rank 5—2=3.

21. If X(p,q,r) is a quantity such that X, q,r)Bq =0 for an arbitrary tensor B , prove that
X(p,q,r) =0 identically.

Since Bqn is an arbitrary tensor, choose one particular component (say the one with ¢=2, r=3) not
equal to zero, while all other components are zero. Then X(p,2, 3)B so that X(p,2,3) =0 since
BM # 0. By similar reasoning with all possible combinations of ¢ and r, we have X(p,q,r) = 0 andthe
result follows.

N
22. A quantity A(p,q,r) 1s such that in the coordinate system x?, Ap, q,r)B Cf) where BZ,S is an

arbitrary tensor and C¢> is a tensor. Prove that A(p,q,r) is a tensor.

In the transformed coordinates Ei, Z—(j, kD Elkm = E]m

— %k W™ 2”05 ®EM P s %" 2’
Then A(j,k, 0y & & 9% p _ OxTdx 5 Xy B
5 5T des 2l T 3es 357 BT e oy AOIDE,
or éy_m[a"ka" A_(kl)—a_"ﬁA(pqr)] A
Bxs axq ax BEJ
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e X . N O™ . o .
Inner multiplication by é’.’m (i.e. multiplying by ﬁ and then contracting with £=m) yields
X X
[ ogk D7 — . AP gs
Sg [L 9" Ak - A(p,q,r)] B, =
39 ol %/
k3.7 — P gn
or [é"_ o Ak, D - ;835w A(p,q,r)] B, = o.
a9 oxl oxJ
gn
Since B,r is an arbitrary tensor, we have by Problem 21,
%k N’ - oo
iq X AG kD — X Ap.qr) =0
3T Azl ozt
g ~N=n
Inner multiplication by @L o yields
DEM Ox”
k. .n — p q Nem
by & A, kD) ;83‘—7 On O Ap,g.r) = 0
0% 0x™ ox7
- axb qu 0%
or f’l(',m,n) = i A(p»qu)
! % %™ %

. r
which shows that A(p,q,r) is a tensor and justifies use of the notation Abq'

In this problem we have established a special case of the quotient law which states that if an inner
product of a quantity X with an arbitrary tensor B is a tensor C, then X is a tensor.

SYMMETRIC AND SKEW-SYMMETRIC TENSORS.

pqr
23. If a tensor Ast is symmetric (skew-symmetric) with respect to indices p and ¢ in one coordinate
system, show that it remains symmetric (skew-symmetric) with respect to p and ¢ in any coordi-
nate system.

pq
Since only indices p and ¢ are involved we shall prove the results for B .

If Blbq is symmetric, Bbq: Bqtb. Then
Ejk - EB_;EBM - B_TC’*"B_?cquﬁ - gH
P a9 xd 3w
and B 9 remains symmetric in the Zicoordinate system.
If BW is skew-symmetric, Bﬁq-—- — Bqﬁ. Then
AR 2 R - A
AP 3 3T 3P

P . - ; .
and B 9 remains skew-symmetric in the X' coordinate system.

The above results are, of course, valid for other symmetric (skew-symmetric) tensors.
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24. show that every tensor can be expressed as the sum of two tensors, one of which is symmetric
and the other skew-symmetric in a pair of covariant or contravariant indices.

Consider, for example, the tensor Bﬁq. We have

b L L et

B = (B +Bq) + 7

B

g

But R = 18”7+ 87

p g L (gP7_ g%y o _s%

+ B ) = R is symmetric, and S" "= } is skew-symmetric,

By similar reasoning the result is seen to be true for any tensor.

i Rk ik
25. If &= ajk 47 4 show that we can always write @ = bjk 47 4° where bjk is symmetric.

_ ik ki ik
P = ajkA A = aij A = ak].A
ik ik i R
Then 2B = ay ATA° 4 aij‘]A = @t 47 4
- ik . jy R
and $ = 3@t e 4147 = bip A7 4

where b, = S(a., +a,) = b, is symmetric.
Jk 2V gk k) kj

MATRICES.

26. Write the sum S = 4 +B, difference D=4~ B, and products P = 4B, Q=BA of the matrices

3 1 -2 2 0 —1
4 = 4 -2 31, B = —4 1 2
—2 1 -1 1 -1 0

S=A4A+B

3+2  1+0 -—2-—1 5 1 -3
4—4 —2+1 3+z) = (o -1 5)

—2+1 1—-1 —1+0 -1 0 -1

3—-2 1-0 -—-2+1 1 1 -1
D=A~-B= ( 4+4 —2-—1 3-—-2) = ( 8 -3 1)
-2-1 1+1 —-1-0 —3 2 -1

BGX2) + (I)=4) +(=2)(1)  (BXO0) + (IX1) +(-2)(-1)  (3)(-1)+ (1X2) + (—2)(0))

]
1
hS
5]
i

(3X2) + (=2)=4) + (BX1)  (4X0) +(=2X1) + (3)(=1)  (4)(-1) +(=2)2) + (3)0)
E2X2) + ()4 +(-1X1) =2)(0) + (1)(1) + (-1)(=1)  (=2)~1) + (1)(2) + (~1)0)

0 3 -1

- (19 s _8)
—9 2 4
8 1 -3

B4 = (—12 —4 9>
-1 3 -5

This shows that AB # B4, i.e. multiplication of matrices is not commutative in general.,

a
[
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27. It A = ( 2 ;) and B = (“1 2), show that (A+B)(A—B) # A>— B>,

A+B=(1 3), A-—B=( 8 “1). Then (4+B)(A—B) =(1 3)( 3 _1) - (“9 14).
2 1 -4 5 2 1J\=4 s 2 3
A2:<21)(21)=(35), Bz:(—l 2)(—1 2)=(7—6)_

-1 3/ \=1 3 5 8 3 —2)\ 3 <2) "\=9 10

Then A°—B2 = (_4 11).
4 =2

Therefore, (A+BY(A—B) # A"—B”. However, (A4+B)(A—B) = A>—AB+BA—B".

28. Express in matrix notation the transformation equations for (a) a covariant vector, (b) a contra-
variant-tensor of rank two, assuming N=3.

_ q
(@) The transformation equations A1b = ai A can be written

a;ﬁ q

i 3 22 a0\ [,
1

ozt oyt ozt
- it W2 S
4, = S8 o2 oz 4z

X x X . .

™~

_ 1 2 3 )
1 Ox~ Ox-  Ox 4q

ox® 9% o%°

in terms of column vectors, or equivalently in terms of row vectors

3 B At
ozt ox® Oz°
- 2 2 2
(A1 As Ag) = (A1 Ao Ag) §x_1 % a—fs
[5:7 54 x

S W B°
ot %? R

(b) The transformation equations 4 = —— —— A4  can be written
%9 S
e w o )\ [, (B oo
Oxt  Ox2 O Oxl  Oxt  Oxl
A—21 A—22 A—23 _ 0%2 % 812 ‘421 AQQ AQS all % is
Ox1  Ox? 53 Ox2  0x2  Ox?
A-31 ESQ Xss h;g_S %3 %3 A31 ASQ Ass P % j‘i
axi axQ axs axs axs axs

Extensions of these results can be made for N>3. For higher rank tensors, however, the matrix nota-
tion fails.
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THE LINE ELEMENT AND METRIC TENSOR.
29. If ds?® = gjk dxjdxk is an invariant, show that gjk is a symmetric covariant tensor of rank two.

By Problem 25, & = ds?, AJ= dx7 and Ak= dxk; it follows that gjk can be chosen symmetric. Also
since ds? is an invariant,

; J
g daax? = g adat - &, 27 awp F g O] 0P ot
pq ik RoxP oxd 7 3P oz
Then & i— ai and g, is a symmetric covariant tensor of rank two, called the mezric tensor.
b9 5 9 39 J*

30. Determine the metric tensor in (a) cylindrical and (&) spherical coordinates.

(a) As in Problem 7, Chapter 7, ds® = do°+ p?dd*+ dz2,

1= 2= = = =02 = = = = = = =
It 4*=p, 2=, &%=z then 81 8yp='s Bga=1s 81785, 0 8,3 8,,=0, B3 =815 0.

81y 81y By 1090
. . : - 2
In matrix form the metric tensor can be written 8oy 8 B = 0 o0
831 83 8y 001
(b) As in Problem 8(a), Chapter 7, ds? = dr2+r240%+ r25in28 aq’.
10 0
It xl=r,x%= 6 5= the metric tensor can be written 0 r2 0
0 0 r2sin20
In general for orthogonal coordinates, g.. =0 for j#k.
Jk 6_
811 81p 81
31. (a) Express the determinant g = 8,1 8,5, &| interms of the elements in the second row and
a1 83p 833

their corresponding cofactors. (b) Show that g, % G(jky=g where G(j,k) is the cofactor of
ng in g and where summation is over % only.

(@) The cofactor of g]k is the determinant obtamed from g by (I) deleting the row and column in which
g'k appears and (2) associating the sign (— 1)J to this determinant. Thus,
J

Cofactor of g, = (—1)""" | 612 813, Cofactor of g, = (=1y"~ | 811 €1,
21 o & - o g
32 ©33 31 3
Cofactor of g, = (=1y°*° | 811 Bie
gsl g32

Denote these cofactors by G(2,1), G(2,2) and G(2,3) respectively. Then by an elementary principle
of determinants

By C(21) + g, 6(2,2) + g, 623 = g
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32.

33.

34.
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(b) By applying the result of (a) to any row or column, we have g s G(j,k) = g where the summation is

over k only. These results hold where g = l gjk is an Nth order determinant.

(a) Prove that g G(3,1) + g_G(3.2) + g, C(3,3) = 0.
(b) Prove that gjkG(p,k) =0 if j#p.

8 81p 848
(3) Consider the determinant 8, 8.5 Bog which is zero since its last two rows are identical. Ex-
81 8o B2
panding according to elements of the last row we have

g, 63,1) +g,6(3,2) +g,6(383) = 0

(b) By setting the corresponding elements of any two rows (or columns) equal we can show, as in part (a),
that gjk G(p,ky=0 if j# p. This result holds for Nth order determinants as well.

j GGk
Define g]k = —(z—]g——)

where G(j,k) is the cofactor of 8in in the determinant g = 1 gjk‘ #0.

Prove that &, gk = S.ﬁ.

J
G(jk ik
By Problem 31, % (k) =1 or gjk g] = 1, where summation is over k only.
g
G(p,k) Pk : .
By Problem 32, . =0 or g, =0 if p#j.
gjk z gjk g pP7J

P
Then g gPk(=11if p=j, and 0 if p#;) = .
]

We have used the notation gjk although we have not yet shown that the notation is warranted, i.e.
that gjk is a contravariant tensor of rank two. This is established in Problem 34. Note that the cofactor
has been written G(j, k) and not ij since we can show that it is not a tensor in the usual sense. How-
ever, it can be shown to be a relativfz tensor of weight two which is contravariant, and with this extension
of the tensor concept the notation G]k can be justified (see Supplementary Problem 152).

Prove that gjk is a symmetric contravariant tensor of rank two.

Since é']-k is symmetric, G(j, k) is symmetric and so gjk = G(j,k)/g is symmetric.

I Bﬁ is an arbitrary contravariant vector, Bq =g Bﬁ is an arbitrary covariant vector. Multiplying
by g/, pq
iq 9, gb - ) gP - pi iq j
Z9B = g% B? = § B = B/ o 7B =8B
q q # q

Since Bq is an arb_itrary vector, gJ q is a contravariant tensor of rank two, by application of the quotient
law. The tensor g]k is called the conjugate metric tensor.
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35. Determine the conjugate metric tensor in («@}ylindrical and (b) spherical coordinates.

1 0 o
(a) From Problem30(a), g = [0 p? 0] = p?
0 0 1
g - cofactor of g,, _ 1 o020 -y
g /02 0 1
cofactor of g 111 o 1
g22 = ———g———Qg = E 0 1 = —p—Q
cofactor of 1 ]1
g33 - —hﬁ = —2 2 = 1
4 ol RUNY)
g2 - cofactor ofg12 =_i 0 0 = 0
g pZ10

Similarly g] ko 0 if j#k. In matrix form the conjugate metric tensor can be represented by

1 o o
0 102 o
0 0 1
1 o 0
(b) From Problem 30¢b), g = |0 -2 0 = r*sin?2 @

0 0 r?sin?26f

1

189

As in part (a), we find gl =1, g2 = LQ, g® = ey and gjk: 0 for j#%, and in matrix form
r

sin?2@

this can be written

0 0 1/r? sin26

36. Find (a) g and (b) g]k corresponding to ds? = 5(dxl)® + 3(dx2Y + 4(dx®)° — 6 dxtdx® + 4 dx?dx3.

5 =30
(a) g11=5, g2=3, g33=4, g12=g21=-—3, g23=g32=2, g18=g31=0. Then g = |—3 3 2] = 4.
0. 24

(b) The cofactors G(j,k) of gjk are

G(1,1)=8, ((2,2)=20, G(3,3)=86, G(1,2)=6(2,1)=12, G(2,3)=6G(3,2)=—10, G(1,3)=6G(3,1)=—86

Then gil=2, g2=5, g2=3/2, gl2=g21=3, 8B =g%2=_5/2, gi8=g81=3/2

Note that the product of the matrices (gjk) and (g]k) is the unit matrix I, i.e.

5 -3 0 2 3 -3/2 1 0 0
-3 3 2 3 5 -5/2 = 01 0
0 2 4 —3/2 —-5/2  3/2 0 01
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ASSOCIATED TENSORS.

k 3 B
= R
37. 1f Aj & A", showthat 4 =g Aj'

% ,
Multiply 4, = A% by 9.
ultiply ' %k Yy g

j k

i q q
Then g]qu = gqujkA = Sk Ak=

A

ie. Aq= gquj or Ak= ngAj.

The tensors of rank one, Aj and Ak, are called associated. They represent the covariant and contra-

variant components of a vector.

38. (@) Show that I’ = gﬁq A¢7 Aq is an invariant., (&) Show that L7 = gw A¢’ Aq.

(a) Let A; and Ak be the covariant and contravariant components of a vector. Then

J
— 7 —q -4
Aﬁ - o A]-, A = OF 4k
=P Oxk
- J 3P i j
and AﬁA;b: Ow OF 4 4% SiAjAkz AjAJ
9?75 axk
so that Aj A] is an invariant which we call L?. Then we can write
2= oad = AA =g A4
J ik pq

2. g = A R A = IR A A = P
(by From (a), L—A]A~A]g Ak—g A]Ak—g AﬁAQ'

The scalar or invariant quantity L = A¢, Aﬁ is called the magnitude or length of the vector with
covariant components Ap and contravariant components Aﬁ.

4 2

39. (a) If A" and Bq are vectors, show that gﬁq A Bq is an invariant.

P 9
A B
(b) Show that 81

Y/ (Af’Aﬁ) (B? By)

is an invariant.

() By Problem 38, AﬁBb = Aﬁ g15q Bq = gﬁq AﬁBq is an invariant.
b Tz g5 4 7'
(b) Since 4 Aﬁ and Bqu are invariants (AﬁAﬁ) (Bqu) is an invariant and so N S T
invariant. 14 (A¢A75) (Bqu)
We define &g Vs
cos 8 =

V(445 BBy

as the cosine of the angle between vectors A and BY. I 8hq APBY = A¢>B¢> = 0, the vectors are
called orthogonal.



TENSOR ANALYSIS 191

40. Express the relationship between the associated tensors:

(ay A7 and Apgrs (b 4 z and A% (C)Aﬁ rst and A...sl'

el _ b kg . gl
(a) 4 = 8 g 4 Ai)qq' or A¢q7~ - g]ﬁ gkq gl'f A

.k kT kr ; iy
) Aj.l = gjq gl‘r Aq or Aq = gquerj.l

Ders. s Y eessl Ders,
© 4,4t = e gy Aoy o A = 8j8rk 8" A.q..,

41. Prove that the angles & 6,, and G, between the coordinate curves in a three dimensional co-

197
ordinate system are given by -
g12 g23 gSl
cos 612 = ==, cos 623 N cos (931 = ———
gll g22 g22 g33 gSS gil

Along the x! coordinate curve, x°= constant and »°= constant.

Then from the metric form, ds2? = g _(dx')° or o . 1 .
11 ds /g
11
Thus a unit tangent vector along the x* curve is A"; = ‘/—1g; 3:. Similarly, unit tangent vectors along
11 -
r r 7 r
the x? and x® coordinate curves are 4, = 1/1_ and 4, = 1 83.
830 Ex
The cosine of the angle 612 between AI and A; is given by
P q 1 1 P g 20
cos@:gAA-_-g_____gg:
e g ? P9 V&, VEsy V&1 8o

Similarly we obtain the other results.

42. Prove that for an orthogonal coordinate system, 810~ Bpg = 85 = 0

: . - - - (o] -
This follows at once from Problem 41 by placing 912—923—981—90 . From the fact that giyq— gq;b

it also follows that 81 = o= 815~ 0

i =1 _ 1 -1
43. Prove that for an orthogonal coordinate system, g = 1 8o ™ o3 Bas = a3 -
g 3 g®
From Problem 33 pr = aﬁ
v 8 g?‘q g-
=g= 1 = 11 12 13 -
If p=g=1, g 8y 10rgg11+g g21+gg31 1
Then using Problem 42, 8, = g%i .
Similarly if p=¢=2, g =1 and if p=q=3 -1
R P s 22 g22 td 8 g33 .
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CHRISTOFFEL’S SYMBOLS.

44. Prove (a) [pq,r] = [gp.r], (b) { s} = {s} . () [pg.r] =g, {psq} )

Pq qp
@ [par] = H—2L 4 0 BOy o g, BT By o (g,

A Y . e - A Y - i

®) {psq} = g% [pg.r] = &% [ap.r] = {q;}

(¢) gks{:q} = gksgsr [pg.r] = 5,: (pg.r] = [pg.k]

ks{psq} ie.  [pg.r] = g, {:q}.

or [pg,k] = g

Note that multiplying [pg,r] by g°" has the effect of replacing r by s, raising this index and re-

. R s - - s
placing square brackets by braces to yield pq} . Similarly, multiplying {pq} by B, OT 8, has the

effect of replacing s by r, lowering this index and replacing braces by square brackets to yield [pq,r] .

9

g
45. Prove (a) -——?mi = [pm,q] + [gm,p]
x
9
(¢) { p} = 2 Invg
®) agﬁq - _ pmyatl _ g} P pq 97
Ax™ g mn g mn
9 9 9 9 9 9 9
@ [oma] + [amp] =SB0 0 pm o e B ey e
L= - - M A ud P A"
®) = (¢ ) = = (8) = 0. Thén
an & B T omd ‘
J %8ij o o o 3 7 %ij
™ m g"'] g’”j %™ & D™
) . PINL e g, ;
Multiplying by g°7, §'7g, . B = —giTgl" —4
ultiplying by g*7, &7 ;' <" £ I
3 o
i.e. Bj %i—m— = —g”gjk ([im,j] + [jm.,i])

Bg’fk __ ir) k jRyr
or P —& imf — & jm

and the result follows on replacing r,k,i,j by p,q,n,n respectively.

(c) From Problem 31, g = gjk G(j, k) (sum over k only).
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Since G(j,k) does not contain gjk explicitly, a_ag_ = G(j,r). Thlen, summing over j and r,

ir
e . 8 % = c(ir)a_gj_”
™ dg. K" T o
Jr
ir S8 o .
=88 S < &s ([jm,r] + [rm,j])

"

[+
N
p—
E' ~.
o
+

Thus

1 % _ i i = 9 vz
2g ox™ {jm} ” {jm} O™ nve

The result follows on replacing j by p and m by ¢.

46. Derive transformation laws for the Christoffel symbols of (a) the first kind, (b) the second kind.

R ¥ -l
(a) Since & = o 35 €
I ?jgj_k . P gﬁq AT R , O 3
o™ 2 axk ox” xm axj %™ '\'k ﬁq axJ axk ﬁq

By cyclic permutation of indices j,k,m and p,q,r,

@ - agk'm - axq ax’r agq'r P + axq > x + Bqu %c: g
o=t 3 " P md ok omd =t A 7/ oxk %™ 9T

o a{aaf%aﬁ A v -
L oxk 2 95 20 9xF oz oxf o] 7P %F ™ ol TP

Subtracting (I) from the sum of (2) and (3) and multiplying by %, we obtain on using the definition
of the Christoffel symbols of the first kind,

S P 3.0 p
@ Gem] = ZZ &g,y P2 o

227 zk ozm ozl oxk ozm e

gn . OE" 357
% b

gnm[]-_k'—,,:j = é_ﬁa_xqé‘_tai_al St [pq,r] + —S%— a p qua-n‘axm st

(b) Multiply (4) by g5t to obtain

o=/ oxk OX™ xS Ox? & gbq
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P 3 omn T 2L o 9
Th g = 9% Ox x5 ,St[pg, . Ox_ 57 oSt
o {lk} 7 e 3o 28T el e S G By
- zfziL{} . O
az) ok s P oxd o=k P
since SzgSt (pg,r] = &7 [pg.r] = {;q} and Stngtgbq = gsngq = SZ.
o ! 2 m m b q
47. Prove a.x = {n}iﬁ—?-x—gx—{m}
oxJ dxk ity dzn 9z ok pg
P N0 2 p o~
From Problem 46 (b), {n} = %— BLM {S} + a,x @x-n
ik %7 9%k nS \pe oxd ox% P
. i - U P I
a5, GH 25 - S5O} et
7 ag® \pa o/ azF
2
Solving for , the result follows.
) ox

o 48. Evaluate the Christoffel symbols of (e) the first kind, (b) the second kind, for spaces where
: g =01if p#g.
b P

oz dg g g '
@ tp=g=r, [par] = [pppl = S22+ 22 _22) - 2 22
prazr. iP PPIPL T \% b P 2 3
dg, g g Jg
pr:q#r! [pq'r:l = ]:pp,r] = l ﬁ’f+ ﬁ’l’_ ¢¢> = _l_ﬂ._
2\3? nP %’ 2 %"
dg,, Og og og
» 1 PP qp $q 1 "°pp
If p= R , £ , = = — = - L,
p=r¢q, [pa.r] (pq.p) Z(Bx‘? + o Bx¢> 2 50

If p,q,r are distinct, [pq,r] =0.

We have not used the summation convention here.

(b) By Problem 43, gjj = gl— (not summed). Then
i

v p
{ s} = ¢5"[pg,r] = 0 if r#¢s, and = g% [pg,s] = g ](not summed) if r=s.
pq €ss

By (a):
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: %
R PRI R e v G £ N

o
s s [pp,s] 1 &y
If = s = = —_— = e ——— .
pars {Pq} {PP Bss %8s Ox°
s 1 9
If p= . = = = - —1 .
p=s#q {pq} pq g g, 2 3.0 Epp

I p.q,s are distinct,

P}_ [pe:p] 1 %%p
f

49. Determine the Christoffel symbols of the second kind in (a) rectangular, (b) cylindrical, and
(c) spherical coordinates.

We can use the results of Problem 48, since for orthogonal coordinates gﬁq =0 if p#gq.

(a) Inrectangular coordinates, g, , =1 so that { : } = 0.
pp pq

(b) In cylindrical coordinates, x* =, x2 = ¢, x3 = z, we have by Problem 30 (a), g,= 1L 8™ 03 g33=1.

The only non-zero Christoffel symbols of the second kind can occur where p=2. These are

)
1} 1 9%, 19 o,
= o T s o =@ = —p,
{22 2, ot 2 Jp

HEHE % 13 a1
21 12f T2, o 2o’ T o

(¢) In spherical coordinates, x'=r, x2=6, 3=, we have by Prob. 30 (), 8,=1.8,,= r2, 8oy™ r2 sin26,

The only non-zero Christoffel symbols of the second kind can occur where p=2 or 3. These are

{ 1 } 1 %, 19
= e — = - — —(]2) = _—_r
22 2g11 Ot 2 or
2 } = { 2 } = ._1_ agi = _l'_. ﬁ(rQ) = l‘_
21 12 28,, Ox' 2r? or r
1 _ 1 agss _ 10 5, ., - L2
{33}_ T e B —Ea—r(r sin®0y = —rsin®@
3
{ 2 } - -1 T&s _Li(ﬁsin?@) = —sinf cos @
33 28,, A” 2r? 36
&
{ 3 } - {3 } I ! ?_(rzsinQQ) -1
31 13 284, Oxl 22 sin?6 Or T
3
{ 3 } = {3 } - 1 P8 1 i(r2 sin?6) = cot &
32 23 28,5 Ox? 2r? sin?6 96
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GEODESICS.
ts .
50. Prove that a necessary condition that | = f F(t,x,%)dt be an extremum (maximum or min-
21
imum) is that oF _ i(@?—) = 0.
Ox dt  ox
Let the curve which makes I an extremum be x = X(2), 1S t< 6. Then x = X(£)+ €7)(t), where € is
independent of ¢, is a neighboring curve through ¢, and & so that 7)(¢,) = 7)(¢2) = 0. The value of I for the
neighboring curve is
tQ . .
Ie) = / F(t, X+em, X+en)de
21
This is an extremum for €=0. A necessary condition that this be so is that gL = 0. But by differ-
entiation under the integral sign, assuming this valid, €=0
4ar = ftz(gin+aFﬁ)‘dt = 0
d€ |e=0 s Ox O
which can be written as
12 23 2 2
f OF par + OF | _ ne %y - f (2 22\ a - o
e x Ox 21 t dt Ox ts Ox dt O%
Since 7} is arbitrary, the integrand a—F — 4 (a{“) = 0.
Ox dt  Ox
to . . .
The result is easily extended to the integral f F(t,xt 21, %2, %2, ..., a¥y de
ty
and yields OF _ 4 9F, _
Wk de iR
called Euler’s or Lagrange’s equations. (See also Problem 73.)
2 7 1.9
51. Show that the geodesics in a Riemannian space are given by d—’% s 37 L del dxl _
ds pgf ds ds

ty  /
We must determine the extremum of f gﬁqib 27 s using Euler’s equations (Problem 50) with
ty

F = Vgﬁq 29, we have

Og
OF 1 @ ;Cb iq)—l/Q »q if’ 29
Ak 27 Ak
oOF  _ 1 b +q. /2 b
Eg}k = 2(gpq:c x) / 2g?>kx

Using Z—: = Vgﬁq 9275 Al , Euler’s equations can be written
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P 3
i (M) — i _fﬁq 3‘67> qu = 0
dt $ 25 axk
s e L, . g,%%
or g, % + PR L hape L PR
pr Y 2 3k $
Og Og,, Og
Writing B L l(—ﬁki + —qk) 29 this equation becomes
T 2 %T P
8., % s
g ¥ o+ [pgk]P s = PR
pk H

If we use arc length as parameter, §= 1, =0 and the equation becomes

2 p 4.9
d x dx” dx -
Eor ds2 (pa.k] s 0
Multiplying by g”%, we obtain
d2x’r + r d_xﬁ ixj = 0
ds? prq ds ds
THE COVARIANT DERIVATIVE .
52. If A, and A¢5 are tensors show that (a) 4, = ?ﬁb - Sy
' p P9 g pgf s
p
and (b) Ab = o4 + { P }A are tensors.
4 %7 qs
. - Ox”
a) Since A, = —— 4,,
(@) Sinee 45 = 57 4
aAj Ox” aAT oxt anT
&) = Tt ——— 4,
EE ix wt wr oxd gk
From Problem 47,
L (rharadaln
%/ ok TEf aar o oxk il
Substituting in (1),
ML w M fahod, a_m_xl{r}A
3zt ol 3k et LA R U A
I T %wf}
i oxk %I jkfom 2/ oxF \pef 7S

or

197
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04
and 5_‘7 - { g } As is a covariant tensor of second rank, called the covariant derivative of A¢) with
x Paq

respect to 7 and written Aybq .

(b) Since 1= 9=

- +
7" 3w’ b % T ut %R

" o el adl wt , 3F et

From Problem 47, interchanging x and ¥ coordinates,

G R - 1
T Dt Tt ) O 2 b il
Substituting in (2),
or! | e n}a»zi@x_ur_a_ﬂ@zl@i{f}g
ok o« OoxF Oxt ey n dEk " b 3wk L
ol atad el at r o i
3 3% it ref 3" 2k a2 Ll
_ W adad p}igﬁAs_{T};i
WP &k nd sq) b Ok ik

or . - '
ar’ | {f_}A—i N - a_/f’+{p}As>
Pr ki P =P\l gs

s
and g—’% + { ps } A~ is a mixed tensor of second rank, called the covariant derivative of A¢> with
q
X
q

respect to x' and written A’q .

53. Write the covariant derivative with respect to %7 of each of the following tensors:
5 . . 1
@ Ay, &) A7, @ &), @D AL (@) 4y

mn *

A . M R Y Sy
e B i (2
ik 347 i s
@y 47 ;= 4_ {’ }ASk + { }AJ
' o as as
. aAj ; .
© Ai - LI B O {] 4
»q D’ kq gs
. aAj . .
] % s s i\ s
@ 4 _ { }A { }Aks R {qS}AkZ
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k1

e oAy, s ) gkl s ) gkl i skl kY sl 1) ks
) Amn,q = 39T mg Asn — ng Aps * gs App + gs Aon  + gs Ann,
54. Prove that the covariant derivatives of (a) gjk’ b) gjk, (¢) 8; are zero.
(@) = ngk § °
8. 7 jq f Esk kq § &is
Bg.k
= L - [jg.k] — [kq,i] = 0 by Problem 45(a).
A7
it 9glk i kY s
by g = + sk 4 = by Probl b).
b g .9 37 gs g gs g Y y Problem 45(b)

X[ .

|

; 35 o) i es j i
© 8, = = -{kq}ss +{qs}sk - °‘{kq}+{qk} = 0

-~

55. Find the covariant derivative of AZ B,sz with respect to 7.

J im
(Aj Blm) _ a(Ak, By ) s AjBZm _ S Aj Blm
[ IO E A kgy s ngf kS
i s In i J _sm m J ls
- i oy

1]
AN
QJ, Q)
Rr R
X
I
—a,
S
Q
-
"PL..
+
o -
’*a ~.
-
'S
P}
\—/
§CU§‘

I
P

This illustrates the fact that the covariant derivatives of a product of tensors obey rules like those
of ordinary derivatives of products in elementary calculus.

km km
56. Prove (gjk 4, Vg = gjk 4, g
km km km km
A . = + A = A
(gjk n ),q gjk,q Aﬂ gjk 7 ,q gjk 7 ,q

since g, =0 by Prob. 54(a). In covariant differentiation, g, , gjk and SJ can be treated as constants.
ik, q S Ik k
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GRADIENT, DIVERGENCE AND CURL IN TENSOR FORM.

P

k
57. Prove that divAd = i(/g A,

1
/g dF

The divergence of A75 is the contraction of the covariant derivative of Aﬁ, i.e. the contraction of

Aﬁ‘q or Aﬁ’,p . Then, using Problem45(c),

k
k
avd = A, - oA, {pk}A
’ C A U
4% 9 k 24F 1 Vg, k 1 0 )
= ——+ (5 WvgHra = (=4 = — — (Ve )
WP WP uF Vg iP Vg
9 9
58. Prove that V°® = L ——E(/Egk’f ——CE)
Vg Ox A"
The gradient of @ is grad $ = Ve = Ba—%’ a covariant tensor of rank one (see Problem 6(b)) de-
X
 fined as the covariant derivative of P, written $,. The contravariant tensor of rank one associated with
P, is Ak = ghr —B—CI: Then from Problem 57,
3 3 ol
Ve - ane” D - L g
ox" Vg ox° T
BAb 94 q
59. Prove that Aj;q - Aq¢ = — - —.
’ ’ Ox7 4

homa, - (2 {2} i {2} S
pg = fap T - s) ~ - s ¢ T 7
L3l Pg P 9p I WP

This tensor of rank two is defined to be the curl of Ap.

P
60. Express the divergence of a vector A" in terms of its physical components for (a) cylindrical,
(b) spherical coordinates.
(a), For cylindrical coordinates x*=p0, 2=, 2°=z,

1 00
g = 0 p2 0 = p? and Vg=p (see Problem 30(a))
0 0 1

The physical components, denoted by 4 o A¢, A, are given by

a

1 1 2 2 3
Ap=Vgl1A = A, A¢=Vg22A = p4d°, A2=Vg33A = A
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Then ’
. 1. 0 k
divd = = (/—A)
Vg ok ©
1:9 a
= 2 (o4
p[aprp) <A¢) + 54z ]
(by For spherical coordinates x'=r, x2=0, x®= ¢,
1 0 0
g = 0 2 0 = r*sin?0 and Vg =r2sin@ (see Problem 30(b))

0 0 r?sin®f
The physical components, denoted by A A , A & are given by

=V A =4, 4 = Vg 4 = f, Ay = Vo4 = rsinf 4

8
Then
P 19 3
div A4 = = (Vg 4%
Vg ok ¢
9 . 9 . P
= sine{ (2 sin 8 4, + a—e(r s1nt9A€) + g(rA;b)]
= —-——(r2A + 1 l(sin@Ag) + 1 94y
2 o rsinf 96 rsinfd op

61. Express the Laplacian of P, V2<I>, in (a) cylindrical coordinates, (b) spherical coordinates.

‘(@) In cylindrical coordinates g'*=1, g2=1/0% g% =1 (see Problem 35(s)). Then from Problem 58,

V2(§ = _l__a_(‘/— kr ¢)
Vg ak C o
L 12,3, 2 198 3 3%
P[ap(pap) ¢>(Pa¢ o (,0 )]
.12, 19 J

(b) In spherical coordinates g'*=1, g2=1/r2, g®= 1/r25in26 (see Problem 35(4)). Then

3 2
v - _1_____‘/— kr
@ 7z kB e 5
3 3 @ 3
- 9 5
o 507 sm0 5 + 30 ChO5) * 5g mea¢]

- i;a_ r28®) + 1___ i sin@—ag + 1 a®
TP T Pame MU T e 37
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INTRINSIC DERIVATIVES.

62. Calculate the intrinsic derivatives of each of thg following tensors, assumed to be differentiable

functions of ¢; (a) an invariant®, (b) A7, ) Ai' (d) A{Zn‘

q q
(a)_@ . P W P dx dP

= e = =% £ = == the ordinary derivative.
8¢ 9 de dt

sa a8 o’ iV e\ ad | ol ad il s ddd
@ %4 = a4, = | 24 A e - o4 4x A
St 9 e 7 gs dt T de gs dt

j , J .
(C) iA_k - AJ Liﬁg = .% — s A‘] + ] \ As _dx—q
ot kg dt ) kqf S gsf 'k t

jk &
8Alﬂm - Ajk d_x? - aAl'nm _ ) JE
mn,q 4;

j q
—— =0 —:8] dx

, — = 0 by Problem 54.
A ot B\q gy

RELATIVE TENSORS.

»
64. 1f A, and B are relative tensors of weights w, and w, respectively, show that their inner and
outer products are relative tensors of weight w, +w,.

By hypothesis,

S el P g 22 2 2 e
Rk dxp gk 97 n Dx” S oFh ¢
A wytwp OFJ ’a;q % %" ok P o7
The outer product is 4. B = J* =X AL = = =- 4 B
BT axﬁ sz o S ox™ 9 't

a relative tensor of weight wq +ws. Any inner product, which is a contraction of the outer product, is also
a relative tensor of weight wq +ws.
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65. Prove that \/E is a relative tensor of weight one, i.e. a tensor density.

. p 34
The elements of determinant g given by transform according to g,, = 2 2% .
; 9 %t T oxd ozt e
. : : — Bxi’ qu _ 72 VT = Ve :
Taking determinants of both sides, F = 5—7 S—-_k g =Jg or g = Jvg, which shows
% X

that \/E s a relative tensor of weight one.

66. Prove that dV = Vg dx' dx® ... dx’ is an invariant.

By Problem 65, dV

il

dzt dx2 ... dx¥ = Vg ] 4zt ax2 ... a7t

o

X

N

= Vg dxt dz? ... di¥ = v@detdx? ... di¥ = av

1]

From this it follows that if & is an invariant, then
f...fcf:d? = f...f@dv
7 4

for any coordinate systems where the integration is petformed over a volume in N dimensional space. A
similar statement can be made for surface integrals.

MISCELLANEOUS APPLICATIONS.

67. Express in tensor form (a) the velocity and (b) the acceleration of a particle.

k
(a) X the particle moves along a curve xk= xk(t) where ¢ is the parameter time, then vk = %xt—— is its ve-

locity and is a contravariant tensor of rank one (see Problem 9).

E 2.k
(b) The quantity dst= ddt’; is not in general a tensor and so cannot represent the physical quantity

acceleration in all coordinate systems. We define the acceleration o as the intrinsic derivative of
k
the velocity, i.e. ak = %2 whichisa contravariant tensor of rank one.

ot

68. Write Newton’s law in tensor form.

Assume the mass M of the particle to be an invariant independent of time ¢. Then Mak= Fk a
contravariant tensor of rank one is called the force on the particle. Thus Newton's law can be written

Suk

F =Mak=M__
Y
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k 3 p 4.9
B dv & x k } dx” dx
69. Prove that a* = - = + @ 2
St dt? {P‘I dt de
Since vk is a contravariant tensor, we have by Problem 62 (b)

2
A L k}vsd__" 3 d_ﬁ+{k}v¢>d_£
ot dt qs dt di? ap dt

ik k) o af
de? pgf dt dt

70. Find the physical components of (a) the velocity and (b) the acceleration of a particle in cylin-
drical coordinates.

(a) From Problem 67(a), the contravariant components of the velocity are

dx* _dap dx? _ do and d_x_:3 _ E
de dt’ dt  dt dt ds

Then the physical components of the velocity are

dxt _ dp S idx_z @ dx® dz

81 dr ~ di’ o 2z - P a a8 dt dt

; 2
using g,, =1, 8, =0 855 = 1.

(b) From Problems 69 and 49 (b), the contravariant components of the acceleration are

ad = 4’ + 1| ds? da? dz_'o (d¢)2
T di? 22f dt dt  di? PG
I L f2 et e fa)a® dt d&d , 2dpdo
T e 12§ d& dt o1f d¢t dt = de? o dt dr
2 2
d %° d z
3 = = 4z
and a T2 in

Then the physical components of the acceleration are

&

VELal = p— ppt YV, = pd+2pd and Vg e =¥

where dots denote differentiations with respect to time.

71. If the kinetic energy T of a particle of constant mass M moving with velocity having magnitude v
is givenby T = sMv? = %Mgw %P %9, prove that

43T, _ 3T _ oy,

dt sk Ak k
where a denotes the covariant components of the acceleration.

Since T = 3Mg P %7, we have

pq
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3% %,
ok Y otk q dr %k q %7
3% 3
Then 49Ty _ 9T _ M(g 294 P9 379 1 B9 b 40
dt ok ik kq OxJ 2 ok

= M(gkq‘aéq+ [pq,k]£¢iq)

= Mg

4T Y9 = Mg o = Ma
By pq kr k

using Problem 69. The result can be used to express the acceleration in different coordinate systems.

72. Use Problem 71 to find the physical components of the acceleration of a particle in cylindrical
coordinates.

Since ds? = dp?+ p%p%+ ds?, o2 = (%)2 = PP+ 0°¢7+ 2 and T = M = MO+ P2 + 52y,

From Problem 71 with x'=p, x2= ¢, x®=z we find
. . d .
o = 0= pP%  ay = (D), ey = ¥

Then the physical components are given by

since 8,7 L 8, = 0%, 8,, = 1. Compare with Problem 70.

73. If the covariant force acting on a particle is given by Fk = - é—k where V(xl, ..., xy) is the
X
. d oL oL
potential energy, show that — (=) — 22 = o where L = T— V.
dt ( 35773) dxk
From L =T -V, —a—L— = l since V is independent of ®, Then from Problem 71,
%k dxk
d 9T oT 14 d , oL JL
Z - 5 = Ma, = F, = — =L and Z(2&y _ 9L _
AT R K o i 0B T ok

The function L is called the Lagrangean. The equations involving L, called Lagrange’s equations,
are important in mechanics. By Problem 50 it follows that the results of this problem are equivalent to the

L.
statement that a particle moves in such a way that '/1; 2L dt is an extremum. This is called Hamilton’s
1

principle.
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14.

5.

6.

TENSOR ANALYSIS -

Express the divergence theorem in tensor form.

Let Ak define a tensor field of rank one and let 1/ denote the outward drawn unit normal to any point
of a closed surface S bounding a volume V. Then the divergence theorem states that

e [

For N dimensional space the triple integral is replaced by an N tuple integral, and the double integral by
an N—1 tuple integral. The invariant 4 5 is the divergence of Ak (see Problem 57). The invariant

Ak Y, is the scalar product of Ak and v,, analogous to A.n in the vector notation of Chapter 2.

We have been able to express the theorem in tensor form; hence it is true for all coordinate systems
since it is true for rectangular systems (see Chapter 6). Also see Problem 66.

Express Maxwell’s equations (a) divB =0, (b) divD =47p, (¢) VxE = — cl %_B , (d)VxH = %T—l
in tensor form. t

Define the tensors Bk, Dk, Ek' Hk’ Ik and suppose that 0 and c are invariants. Then the equations
can be written

k
(a) B . 0
k
&y D - 41
(c) —ejqu = -1 ?B—] or Ejqu 1 @B—]-
k,q ¢ at k'q ¢ at
. b . J
Jkg _ 4l Jkq 471l
@dy —€ Hk,q = e . or € Hk,q = ==

These equations form the basis for electromagnetic theory.

_ n . . .
(a) Prove that A¢>,qr - Aﬁﬂ‘q = qur A, where Aﬁ is an arbitrary covariant tensor of rank one.

n N = n :
(b) Prove that R;bqr is a tensor. (c¢) Prove that Rﬁqrs Bps ijqr is a tensor.

94 . ,
= - 2 B s X
@) Ai’:‘?‘r h (Aﬁ-q)ﬂ’ B ox" {pr}Aj.q {gr}Aﬁ.]'
() - ) - B
"\ I paf 7 prf \ 2.9 jaf 7k grf \ 3. pif 1

2 .
. N 1{1'}/4. ~ {f}% -
A" DY %" \pgf 7 paf 3" pr

By interchanging ¢ and r and subtracting, we find
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[{
o
B~
v
< y
o
S~
S
&

I
o
3
]
)_Q\
N -
o

|
—P—
B~
———
S
o
~——

S
x>
+
2o
-
P,
'S\.
Ve 4
'
[

Apgr = Aprg

H
o
T o
——
bl
FQ\.
N -
>

I
?lo
3
]
QT
e
>

!
o
-]

2 =
——
P
Q“\..
N
k.:h

+
P
Q
e,
’.E S,
e
>

J
R, A,
pgr ~j

j B ENE
where qur = {pr}{kg} - e {pq}

Replace j by n and the result follows.

teattet + s ot

(b) Since Aﬁ,qr — Aﬁ,rq is a tensor, Rﬁqr 4, is a tensor; and since 4, is an arbitrary tensor, RM?, is
a tensor by the quotient law. This tensor is called the Riemann-Christoffel tensor, and is sometimes

. 7 vern . n
written R'qur’ Rﬁq'r" or simply R{)qr‘

©) Rﬁqrs = s qur is an associated tensor of R;Lqr and thus is a tensor. It is called the covariant

curvature tensor and is of fundamental importance in Einstein’s general theory of relativity.

SUPPLEMENTARY PROBLEMS

Answers to the Supplementary Problems are given at the end of this Chapter.

77. Write each of the following using the summation convention.

78.

19.

80.

81.

¥ 3 J o1 J no J o3 Jo &
@) agx*x® + a,2%x% + ... + ayx'x . (c) A/B™ + A;B° + AzB® + ... + ANB
21 22 23 2
by A4 B, +4 32 + 4 B3 + ... +t4 By (d) g21g11 + g22g21 + g23g31 + g24‘g41
() B + B2? + B2 + B22?
Write the terms in each of the following indicated sums.
; vJ Ak
@) ik(m/g Ay, N=3 @y 47 B]f C,, N=2 (cy SE Ox°
Ox J P o

What locus is represented by akxkxk =1 where xk, k=1,2,...,N are rectangular coordinates, ak are
positive constants and N=2,3 or 4 ?

If N =2, write the system of equations represented by a xq =}

pq b

" L v
Write the law of transformation for the tensors (a) AZJ , b) B:,LJ » (€)Y Cppyv (Y4, .
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82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

TENSOR ANALYSIS

Determme whether the quantities B(j,k,m) and C(j,k,m,n) which transform from a coordinate system
x" to another X accordmg to the rules

J =P q m
&) oF O g b my ®) Cprarrs) = 2 9n” O 9% (i m,m)
% Y ox9 ox™ ] Oxk T w"
are tensors. If so, write the tensors in suitable notation and give the rank and the covariant and contra- _
variant orders.

@) B(p,g,r) =

How many components does a tensor of rank 5 have in a space of 4 dimensions ?

Prove that if the components of a tensor are zero in one coordinate system they are zero in all coordinate
systems.

Prove that if the components of two tensors are equal in one coordinate system they are equal in all co-
ordinate systems.

L odxF dv®
Show that the velocity e = ¢" of a fluid is a tensor, but that d is not a tensor.

Find the covariant and contravariant components of a tensor in (a) cylindrical coordinates p, ¢,z ,
(b) spherical coordinates r, 0, ¢ if its covariant components in rectangular coordinates are 2x —z, x2y,

yz.

The contravariant components of a tensor in rectangular coordinates are yz, 3, 2x+y. Find its covariant
components in parabolic cylindrical coordinates.

Evaluate (@) 8, B, ) 8 87 A%, (8, 5, 87, (@) 50 55 o7 55.

bq

-
If A r is a tensor, show that Af is a contravariant tensor of rank one.

1 j=k
Show that Sjk = { I is not a covariant tensor as the notation might indicate.

0 j#k
£ A 4 4 = F o
I q q prove that q oW b
—p = q 3zt P
If 4, = 9% x® A prove that Ag - Oxl & Ap.
qu 0x" B# S
2
If @ is an invariant, determine whether ——— is a tensor.
P 3l

If As and B'r are tensors, prove that A? Br and Af Bq are tensors and determine the rank of each.

. Pe. g qp . b qp . .
tShow that if Ars is a tensor, then Ars + Asr is a symmetric tensor and Ars_ Asr is a skew-symmetric
ensor.

pq g _ P9

If A and Br are skew-symmetric tensors, show that C =4 Brs is symmetric.

If a tensor is symmetric (skew-symmetric), are repeated contractions of the tensor also symmetric (skew-
symmetric) ?

Prove a x x =90 1s aS ew-symme ric tensor,.
thtAi,q’bq it Apg 15 a sk tric t
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102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.
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What is the largest number of different components which a symmetric contravariant tensor of rank two
can have if (@) N=4, (b)N=67? What is the number for any value of N ?

How many distinct non-zero components, apart from a difference in sign, does a skew-symmetric covariant
tensor of the third rank have ?

p

If A,,g is a tensor, prove that a double contraction yields an invariant.

Prove that a necessary and sufficient condition that a tensor of rank R become an invariant by repeated
contraction is that R be even and that the number of covariant and contravariant indices be equal to R/2.

rs
If A, and B ~ are tensors, show that the outer product is a tensor of rank four and that two inner prod-
ucts can be formed of rank two and zero respectively.

If A(p.q) Bq = Cﬁ where Bq is an arbitrary covariant tensor of rank one and Cﬁ is a contravariant tensor
of rank one, show that A(p,q) must be a contravariant tensor of rank two.

Let A¢7 and Bq be arbitrary tensors. Show that if A7> Bq C(p,q) is an invariant then C(p,q) is a tensor
which can be written CZ .

Find the sum S=A+B, difference D= A—B, and products P=A4AB and Q= BA, where A and B are the
matrices

@a= (21 5- 4 3
2 4 —2 -1
2 0 1 1 -1 2
4 =[-1 ~2 2}, B = 3 2 —4
-1 3 -1 -1 -2 2

Find (34—2B)(24—B), where A and B are the matrices in the preceding problem.

(a) Verify that det (4B) = {det A} {det B} for the matrices in Problem 107.
(b) Is det (AB) = det (BA) ?

-3 2 -1
3 ~1 2
Let 4 = . B = —
<4 2 3) L3 2
2 1 2
Show that (a) AB is defined and find it, (b) B4 and A+B are not defined.

2 -1 3 x 1
Find x, y and z such that 1 2 -4 y = —3
—1 3 =2 z 6

The inverse of a square matrix A, written 4~! is defined by the equation 44”1 =], where I is the unit
matrix having ones down the main diagonal and zeros elsewhere.

1 -1 1
Find 471 if (@) 4 = (_: —i) , A =12 1 -1
1 -1 2

Is A~*A4 =1 in these cases ?
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118.
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2 1. =2
Prove that A4 = 1 -2 3 has no inverse.
4 -3 4

Prove that (4By*= B~24~!, where 4 and B are non-singular square matrices.

Express in matrix notation the transformation equations for
(a) a contravariant vector (b) a covariant tensor of rank two (c) a mixed tensor of rank two.

2

~2) and X is an arbi-
-3 1

Determine the values of the constant A such that 4X=AX, where A = (

trary matrix. These values of A are called characteristic values or eigenvalues of the matrix 4.

The equation F(A)=0 of the previous problem for determining the characteristic values of a matrix 4 is
called the characteristic equation for A. Show that F(4)=0, where F(4) is the matrix obtained by re-
placing A by 4 in the characteristic equation and where the constant term ¢ is replaced by the matrix ¢/,
and O is a matrix whose elements are zero (called the null matrix). The result is a special case of the
Hamilton-Cayley theorem which states that a matrix satisfies its own characteristic equation.

T 1’
Prove that (AB) =B 4

Determine the metric tensor and conjugate metric tensor in
(a) parabolic cylindrical and () elliptic cylindrical coordinates.

Prove that under the affine transformation %7 = a’fxﬁ + 5", where af and & are constants such that

"= 817, there is no distinction between the covariant and contravariant components of a tensor. In
the special case where the transformations are from one rectangular coordinate system to another, the
tensors are called cartesian tensors.

Find g and gjk corresponding to  ds? = 3(dxl)® + 2(dx®° + 4(dx®Y — 6dxlda®.
k ik k
If A =g A]- , show that Aj = gjk A" and conversely.

Express the relationship between the assoc1ated tensors

@) 47 and 4, ) A¢> and 47, (o) 427 and a7F

¢>q 2

Show that (a) qu B?rs = APqBMs , (&) A?.qr Bf’ = Af;?r Bﬁr = A;)qr Bi . Hence demonstrate the gen-

eral result that a dummy symbol in a term may be lowered from its upper position and raised from its
lower position without changing the value of the term.

p p “qT _ 4G T
=B, C_, then 4 = = .
“qr -qCr en por Bbq C?, and A¢> B¢> c Hence demonstrate the result

that a free index in a tensor equation may be raised or lowered without affecting the validity of the equa-
tion.

Show that if A4

Show that the tensors g, , gbq and 875 are associated tensors.
pq q

ax Ot ik P $q 0% k
= b Pk ~r
S &) g 4

Prove -, .
@ 85 T B0 %k oxJ Y

It Aﬁ is a vector field, find the corresponding unit vector.
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Show that the cosines of the angles which the 3 dimensional unit vector U® make with the coordinate

U U U,
curves are given by L , -2 , £
14 LI 835

Determine the Christoffel symbols of the firsf kind in (@) rectangular, (b) cylindrical, and (c) spherical
coordinates.

Determine the Christoffel symbols of the first and second kinds in (e) parabolic cylindrical, (b) elliptic
cylindrical coordinates.

Find differential equations for the geodesics in (a) cylindrical, (b) spherical coordinates.
Show that the geodesics on a plane are straight lines,
Show that the geodesics on a sphere are arcs of great circles.

Write the Christoffel symbols of the second kind for the metric
ds? = (@x’ + [ — W] (@2

and the corresponding geodesic equations.

Write the covariant derivat.ive with respect to xq of each of the following tensors:

kR ik ikl ik
@4, ® A @4 @4 @)

J
Ak Im imn *

Find the covariant derivative of (a) gjk Ak, ) AJ Bk , (©) SIZ Aj with respect to 9.

Use the relation A] = g] k Ak to obtain the covariant derivative of Aj from the covariant derivative of Ak'

If $ is an invariant, prove that D, bg= <I>,q75, i.e. the order of covariant differentiation of an invariant
is immaterial.

’r
Show that efzqr and eﬁq are covariant and contravariant tensors respectively.

Express the divergence of a vector A¢ in terms of its physical components for (a) parabolic cylindrical,
(b) paraboloidal coordinates.

Find the physical components of grad P in (a) parabolic cylindrical, (b) elliptic cylindrical coordinates.
2
Find V"D in parabolic cylindrical coordinates.
r
Using the tensor notation, show that (a) div curl 4 =0, (b) curl grad D = 0.

Calculate the intrinsic derivatives of each of the following tensor fields, assumed to be differentiable
functions of ¢ :,

@) 4y, (b A]k, (c) Aj Bk, (d) qui where ¢ is an invariant.
Find the intrinsic derivative of A by 8 4 574
e intrinsic derivative of (a) gjk , () y A (¢) gjk ,,.Aﬁ.

o4
a . b9 = $q q
Prove 7 (g Ap Aq) = 2¢g A¢ E .
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Show that if no external force acts, a moving particle of constant mass travels along a geodesic given by

Prove that the sum and difference of two relative tensors of the same weight and type is also a relative
tensor of the same weight and type.

pq

r

be:

If 4,7 is a relative tensor of weight w, prove that g-w/2 A, is an absolute tensor.

S
If A(p.g) B:s =c’ , Where Bg is an arbitrary relative tensor of weight w4 and C‘; is a known relative
tensor of weight w,, prove that A(p,q) is a relative tensor of weight wy—w,. This is an example of
the quotient law for relative tensors.

Show that the quantity G(j,k) of Solved Problem 31 is a relative tensor of weight two.

Find the physical components of (a) the velocity and (b) the acceleration of a particle in spherical co-
ordinates.

Let A" and B” be two vectors in three dimensional space. Show that if A and y are constants, then
C’f = A"+ ;LBr is a vector lying in the plane of A" and B”. What is the interpretation in higher dimen-

sional space ?

Show that a vector normal to the surface ¢ (x!,x2x%) = constant is given by 4P - gﬁq 83% Find the
X

corresponding unit normal.

o
The equation of continuity is given by V. (ov) + —a—t— =0 where o is the density and v is the velocity of
a fluid. Express the equation in tensor form.

Express the continuity equation in (a) cylindrical and (b) spherical coordinates.
Express Stokes’ theorem in tensor form.
Prove that the covariant curvature tensor Rf;q‘rs is skew-symmetric in (a) pandg, (b) rands, (c) gands.

Prove Rygps = Rrsi)q‘

Prove (a) Ri)qrs + Rﬁsqr + Rﬁrsq = 0,
®) Rpgrs + Rygps + Rpspg + Rpspq = 0.

Prove that covariant differentiation in a Euclidean space is commutative. Thus show that the Riemann~
Christoffel tensor and curvature tensor are zero in a Euclidean space.
b &’ S :
Let T™ = Zs be the tangent vector to curve C whose equation is x* = x (s) where s is the arc length.
q q
(a) Show that g, TP T9=1. (b) Prove that g, T? °L = 0 and thus show that A9 = L 77 is & wnit
Pq Pq os K 8s
q
normal to C for suitable k. (c) Prove that SSN is orthogonal to Nq.
&4
With the notation of the previous problem, prove:
b q b sn? P 8NY q
(a) TN =0, (b) T —=—kK or (=—+ Ty =o0.
gﬁq gﬁq Ss gpq Os
r
Hence show that B” = 1 oN’ + K T'f) is a unit vector for suitable 7 orthogonal to both Tﬂb and Nq.

T 8s
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Prove the Frenet-Serret formulas

P p 2
oT" _ KNb, SN" _ TBﬁ_KTﬁ' 6B _ _,n?
Os s Ss
Where Tp, N¢ and Bf) are the unit tangent, unit normal and unit binormal vectors to C, and x and T are
the curvature and torsion of C.

Show that ds2 = c2(dx%’ — dx® dx® (N=3) is invariant under the linear (affine) transformation
o= ytevahy, %2 =42, 3B = %8, %= yx* -z xh

2
where 7,[3,c and v are constants, S =v/c and ¥ = (1—8 )2, This is the Lorentz trans formation
of special relativity. Physically, an observer at the origin of the P system sees an event occurring at
position x1,x2,x3 at time x4 while an observer at the origin of the %% system sees the same event occur-
ring at position £%,%%%° at time %*. It is assumed that (I) the two systems have the x* and %1 axes
comc1dent (2) the pos1t1ve %2 and x2 axes are parallel respect1vely to the positive %2 and %° axes,

(3) the %' system moves with velocity v relative to the x? system, and (4) the veloc<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>