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PEEFAOE TO THE FOURTH IMPRESSION

THE
present impression is substantially a reprint of the original

work. Since the book was first published a few errors have

been corrected, and one or two paragraphs rewritten. Among the

friends and correspondents who kindly drew my attention to

desirable changes were Mr A S. Ramsey of Magdaler-e College,

Cambridge, who suggested the revision of 5, and the late R J. A
Barnard of Melbourne University, whose mfluence was partly

responsible for my initial interest in the subject.

The demand for the book, since its first appearance twenty years

ago, has justified the writer's belief in the need for such a vectonal

treatment. By the use of vector methods the presentation of the

subject is both simplified and condensed, and students are

encouraged to reason geometrically rather than analytically. At a

later stage some of these students will proceed to the study of

multidimensional differential geometry and the tensor calculus.

It is highly desirable that the study of the geometry of Euclidean

3-space should thus come first, and this can be undertaken with

most students at an earlier stage by vector methods than by the

Ricci calculus. A student's appreciation of the more general case

will undoubtedly be enhanced by an earlier acquaintance with

differential geometry of three dimensions

The more elementary parts of the subject are discussed in

Chapters I-XI. The remainder of the book is devoted to differ-

ential invariants for a surface and their applications. It will be

apparent to the reader that these constitute a powerful weapon for

analysing the geometrical properties of surfaces, and of systems of

curves on a surface. The unit vector, n, normal to a surface at the

current point, plays a prominent part m this discussion The first

curvature of the surface :s the negative of the divergence of n;

while the second curvature is expressible simply in terms of the

divergence and the Laplacian of n with respect to the surface.

CARNEGIE INSTITUTE
TECHNni nr>v , ,,



VI PEEFACB

Extensive applications of these invariants to the geometry of

surfaces are given in the second volume of this book. Applications

to physical problems connected with curved surfaces have been

given elsewhere* by the author.

*
1. On differential invariants in geometry of surfaces, with some applications to

mathematical physios Quarterly Journal of Mathematics, Yol 60, pp. 280-69

(Cambridge, 1925).

2 On small deformation of surfaces and of thin elastic shells. Ibid., Yol. 50,

pp. 272-96 (1925).

8. On the motion of an extensible membrane in a given curved surface. Phil

Mag ,
Yol 23, pp 578-80 (1037).

4 On transverse vibrations of cur\ed membranes. Phil Mag , Yol 28, pp 632-

84 (1989).

C E. W.
UNIVERSITY ov W A

,

PERTH,

AUSTRALIA,
22 January, 1947.
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INTRODUCTION

VECTOR NOTATION AND FORMULAE

SlNOE elementary vector methods are freely employed throughout
this book, some space may be given at the outset to an explana-

tion of the notation used and the formulae required*. Vectors are

denoted by Clarendon symbols f. The position vector r, of a point
P relative to the origin 0, is the vector whose magnitude is the

length OP, and whose direction is from to P. If as, y, z are the

coordinates of P relative to rectangular axes through 0, it is

frequently convenient to write

r = (K, y, z\

to, y, z being the resolved parts of r in the directions of the co-

ordinate axes. The point, whose position vector is r, is referred to

as
" the point r." If n is a unit vector, that is to say a vector of

unit length, and if

n = (I, m, n),

then I, m, n are the direction cosines of n. The module or modulus

of a vector is the positive number which is the measure of its

length.

The law of vector addition is a matter of common knowledge.
If three points 0, P, Q are such that the vectors OP and PQ are

equal respectively to a and b, the vector OQ is called the sum of a

and b, and is denoted by a + b. The negative of the vector b is a

vector with the same modulus but the opposite direction. It is

denoted by b. The difference of two vectors a and b is the sum
of a and b. We write it

a-b = a+(-b).

* For proofs of the various formulae the reader is referred to the author's

Elementary Vector Analysts (G. Bell & Sons), of whioh Arts 1 8, 12, 15 17,

28 20, 42 46, 49 51, 55 57 would constitute a helpful companion course of

reading (References are to the old edition )

t In MS. work Greek letters and script capitals will be found convenient.

w. 1



INTRODUCTION

The commutative and associative laws hold for the addition of any
number of vectors. Also the general laws of association and dis-

tribution for scalar multipliers hold as in ordinary algebra. Thus

ifp and q are scalar multipliers,

If r is the position vector of any point on the straight line

through the point a parallel to the vector b, then

r= a + fb,

where t is a number, positive or negative. This equation is called

the vector equation of the straight line.

PRODUCTS OF VECTOES

If a, b are two vectors whose moduli are a, 1> and whose direc-

tions are inclined at an angle 0, the scalar product of the vectors

is the number db cos 6. It is written a b Thus

a b = db cos 6 = b a.

Hence the necessary and sufficient condition that two vectors be

perpendicular is that their scalar product vanish

If'the two factors of a scalar product are equal, the product is

called the square of either factor. Thus a a is the square of a,

and is written as
. Hence

aa = a a = a2
,

so that the square of a vector is equal to the square of its modulus.

If a and b are unit vectors, then ab = cos Also the resolved

part of any vector r, in the direction of the unit vector a, is equal

to ra.
The distributive law holds* for scalar products. Thus

a(b + c + ...)
= ab + ac+ ...,

and so on. Hence, in particular,

(a + b).(a-b) = as -b !l

.

* JElem. Vect. Anal., Art. 28.
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Also, if we write a = (o^ Og, as),

b = (k, ba ,
&8),

the coordinate axes being rectangular, we have

and aa =
The last two formulae are of constant application.

The unit vector n perpendicular to a given plane is called its

v/nit normal If r us any point on the plane, rn is the projection

of r on the normal, and is therefore equal to the perpendicular p
from the origin to the plane The equation

rn=p
is therefore one form of the equation of the plane. If a is any other

point on the plane, then an =p, and therefore

(r a)n=0.
This is another form of the equation of the plane, putting in

evidence the fact that the line joining two points r and a in the

plane is perpendicular to the normal.

The positive sense for a rotation about a vector is that which

bears to the direction of the vector the same relation that the

sense of the rotation of a right-handed screw bears to the direction

of its translation. This convention of the right-handed screw plays
an important part m the following pages

Let OA, OB be two intersecting straight lines whose directions

axb

are those of the two vectors a, b, and let ON be normal to the

plane OAS By choosing one direction along this normal as posi-

12



4 INTRODUCTION

tive we fix the sense of the rotation about ON which must be

regarded as positive. Let 9 be the angle of rotation from OA to

OB in this positive sense Then if a, b are the moduli of a, b the

vector product of a and b is the vector db sin 0n, where n is the

unit vector in the positive direction along the normal. This is

denoted by a x b, and is often called the cross product of a and b

Thus

a x b = db sin 0n.

It should be noticed that the result is independent of the choice

of positive direction along the normal For, if the opposite direc-

tion is taken as positive, the direction of n is reversed, and at the

same time 6 is replaced by 6 or 2-n- 6, so that ab sin 0n remains

unaltered. Hence the vector product a x b is a definite vector.

It is important, however, to notice that b x a is the negative of

a x b For, -with the above notation, the angle of rotation from

OB to OA in the positive sense is 2?r 0, so that

b x a= ab sin (2-rr 0) n = a x b.

Thus the order of the factors in a cross product cannot be changed
without altering the sign of the product.

If a and b are parallel, sin 6 = 0, and the cross product vanishes.

flence the necessary and sufficient condition for parallelism of two

vectors is that their cross product vanish.

A right-handed system of mutually perpendicular unit vectors t,

n, b (Fig. 8, Art. 3) is such that

t = nxb, n = b x t, b = txn,
the cyclic order of the factors being preserved throughout. We
shall always choose a right-handed system of rectangular coordinate

axes, so that unit vectors in the directions OX, OF, OZ satisfy the

above relations.

The distributive law holds* also for vector products; but the

order of the factors in any term must not be altered. Thus

and

And if we vmte a = (o^, a*, a,),

b = (61) fig, 6S),

* Slem. Vect. Anal
, Ait. 28.
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then, in virtue of the distributive law, and the fact that the co-

ordinate axes form a right-handed system, we have

This formula should be careful!y remembered.

If a vector d is localised in a line through the point whose

position vector is r relative to 0, the moment of d about is the

vector r x d. Thus the moment of a vector about a point is a

vector, sometimes called its "vector moment." It will, however, be

seen shortly that the moment of d about an axis is a scalar

quantity.

The scalar triple product ab x c is the scalar product of a

and b x c Except as to sign it is numerically equal to the volume of

the parallelepipedwhose edges are determined by the three vectors*.

Its value is unaltered by interchanging the dot and the cross, or by

altering the order of the factors, provided the same cyclic order is

maintained Thus

and so on. The product is generally denoted by

[a, b, c],

a notation which indicates the three vectors involved as well as

their cyclic order If the cyclic order of the factors is altered, the

sign of the product is changed Thus

[a, c, b] = - [a, b, c]

In terms of the resolved parts of the three vectors, the scalar triple

product is given by the determinant

[a, b c]
= 01 OB 03 .

GI CB C3

It is also clear that, if the three vectors a, b, c are coplanar,

[a, b, c]
= 0, and conversely. Thus the necessary and sufficient

condition that three vectors be coplanar is that their scalar triple

product vanish.

If one of the factors consists of a sum of vectors, the product

may be expanded according to the distributive law. Thus

[a, b, c + d]
=

[a, b, c] + [a, b, d],

and similarly if two or all of the factors consist of vector sums.

* Eton. Vect. Anal , Arl;. 48.
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The vector triple product a x (b x c) is the vector product of

a and b x c. It is a vector parallel to the plane of b and c, and

its value is given by*

ax(bxc) =acb ab c.

Similarly (bxc)xa=bac-cab.
Both of these expansions are written down by the same rule Each

scalar product in the expansion contains the factor outside the

brackets, and the first is the scalar product of the extremes.

The scalar product of four vectors, (a x b) (c x d), is the

scalar product of a x b and c x d. It may be expanded f as

(a x b) (c x d) = a c b d a d b c.

The vector product of four vectors, (a x b) x (c x d), may be

expanded in terms either of a and b or of c and d ThusJ

(a x b) x (c x d) = [a, c, d] b [b, c, d] a

=
[a, b, d] c

-
[a, b, c] d.

On equating these two expressions for the product we see that any
vector d is expressible in terms of any three non-coplanar vectors

a, b, o by the formula

[a, b, c] d= [d, b, c] a + [d, c, a] b + [d, a, b] c.

If a vector d is localised in a line through the point r, its moment

about an oasis through the origin 0, parallel to the unit vector a,

is the resolved part in this direction of its vector moment about 0.

It is therefore equal to

M = a r x d = [a, r, d].

Thus the moment of a vector about an axis is a scalar quantity.

The mutual moment of the two straight lines

r==a +tb,

with the positive senses of the unit vectors b and b' respectively,

is the moment about either line of the unit vector localised in the

other. Thus, being the moment about the second line of the unit

vector b localised m the first, it is given by
J/= b'.(a-a')xb
= [a-a',b,b'].

The condition of intersection of two straight lines is therefore

[a-a'l b,b'] =
* Elem. Vent. Anal., Art. 44. t Ibid; Art 45. J Ibid., Art. 46.
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This is also obvious from the fact that the two given lines are then

coplanar with the line joining the points a, a', so that the vectors

b, b', a a' are coplanar

DIFFERENTIATION OF VECTORS

Let the vector r be a function of the scalar variable 8, and let 8r

be the increment in the vector corresponding to the increment 8s

m the scalar. In general the direction of Sr is different from that

of r. The limiting value of the vector 8r/88, as 8s tends to zero, is

called the derivative of r with respect to s and is written

dr r ,8r-- = J-j u --
.

When the scalar variable s is the arc-length of the curve traced out

by the point whose position vector is r, the derivative is frequently

denoted by r'. Its direction is that of the tangent to the curve at

the point considered (Fig 1, Art. 1).

The derivative is usually itself a function of the saalar variable

Its derivative is called the second derivative of r with respect to
,

and is written

_d
fdr\ _d*r_~~ r

and so on for derivatives of higher order. If

r = (as, y, z\

then clearly r' =
(a?', y', /)

and r" = (/', 2,",*")

If s is a function of another scalar variable t, then, as usual,

dr _ dr ds

dt ds dt
'

The ordinary rules of differentiation hold for sums and products oi

vectors*. Thus

d dr ds

d . . dr da
-r-(rs)=-T:fl + r.-j-,dt ^ '

dt dt

d , . dT

* Elan. Vect. Anal., Art. 66.
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If r is the modulus of r, then r*= ra
. Hence on differentiating

this formula we have

dr_ dr
T
*di~

r
dt'

which is an important result In particular if n is a vector of

constant length, but variable direction, we have

Thus a vector of constant length is perpendicular to its derivative

This property is one of frequent application.

To differentiate a product of several vectors, differentiate each

m turn, and take the sum of the products so obtained For instance

dp . ., [dot _ n r db n r _ <zci

Suppose next that r is a function of several independent variables

u, v, uJ, ... . Let the first variable increase from u to u + Su, while

the others remain unaltered, and let Sr be the corresponding incre-

ment in the vector. Then the limiting value of Sr/Sw, as &u tends

to zero, is called the partial derivative of r with respect to u, and

3r
is wntten

^-
. Similarly for partial denvatives with respect to the

other variables

These derivatives, being themselves functions of the same Bet of

variables, may be again differentiated partially, yielding second

order partial derivatives. We denote the derivatives of ^- withr ou

respect to u and v respectively by

and -

3wa duov

and, as in the scalar calculus,

3*r _ 9!r

dudv
~

dvdu
'

Also, in the notation of differentials, the total differential of r is

given by the formula

, 9r , 9r
rfr = s- du + ^ i

9 it dv

And, if n is a vector of constant length, n
2 = const., and therefore

n da. = 0.

Thus a vector of constant length is perpendicular to its differential
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In the geometry of surfaces, the various quantities are usually

Unctions of two independent variables (or parameters) u, v. Partial

lerivatives with respect to these are frequently indicated by the

of suffixes 1 and 2 respectively. Thus

dr 3r

\,nd so on. The total differential of r is thus

SHORT COURSE

In the following pages the Articles marked with an asterisk

nay be omitted at the first reading

The student who wishes to take first a short course of what is

aost essential in the development of the subject should read the

ollowmg Articles

16, 8, 1317, 2243, 4653, 54 (first part),

5657, 6775, 8486, 91101.

The reader who is anxious to begin the study of Differential

nvanants (Chap, xn) may do so at any stage after Chap. VL



CHAPTER I

CURVES WITH TORSION

1. Tangent. A curve is the locus of a point whose position
vector r relative to a fixed origin may be expressed as a function

of a single variable parameter. Then its Cartesian coordinates

as
t y, z are also functions of the same parameter When the curve

is not a plane curve it is said to be skew, tortuous or twisted We
shall confine our attention to those portions of the curve which are

free from singularities of all kinds.

It is usually convenient to choose as the scalar parameter the

length s of the arc of the curve measured from a fixed point A on
it. Then for points on one side of A the value of s will be positive,
for points on the other side, negative. The positive direction along
the curve at any point is taken as that corresponding to algebraical
increase of s. Thus the position vector r of a point on the curve is

a function of s, regular within the range considered. Its successive

derivatives with respect to s will be denoted by r', r", r"', and so on.

Let Pt Q be the points on the curve whose position vectors are r,

r + 8r corresponding to the values 8, s + 8s of the parameter, then
Sr is the vector PQ. The quotient Sr/8s is a vector in the same
direction as 8r; and in the limit, as 8$ tends to zero, this direction

becomes that of the tangent at P. Moreover the ratio of the lengths
of the chord PQ and the arc PQ tends to unity as Q moves up to
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coincidence with P. Therefore the limiting value of Sr/Ss is a unit

vector parallel to the tangent to the curve at P, and in the positive
direction We shall denote this by t and call it the unit tangent
at P. Thus

. T , Sr drt= Lt 3-
= =r' ................ (1).^ 'as

The vector equation of the tangent at P may be written down at

once. For the position vector R of a current point on the tangent
is given by

R = r + ict,

where u is a variable number, positive or negative. This is the

equation of the tangent. If as, y, z are the Cartesian coordinates of

P referred to fixed rectangular axes through the same origin, and

i, J, k are unit vectors in the positive directions of these axes,

r = oA. + yj + zTs.

and t = r
/ = fl5'i + 2/'J + ^'k.

The direction cosines of the tangent are therefore a?', y
7

, /. The
normal plane at P is the plane through P perpendicular to the

tangent. Hence its equation is

(R-r)-t = 0.

Every line through P in this plane is a normal to the curve.

2. Principal normal. Curvature. The curvature of the

curve at any point is the arc-rate of rotation of the tangent. Thus

if W is the angle between the tangents at P and Q (Fig. 1), Bd/Bs

is the average curvature of the arc PQ; and its limiting value as

Ss tends to zero is the curvature at the point P. This is sometimes

called the first curvature or the circular curvature. We shall

denote it by . Thus

T &0 dd
K Lt -K- = -j-

= o.
os as

The unit tangent is not a constant vector, for its direction changes

from point to point of the curve. Let t be its value at P and t + 5t

at Q. If the vectors BE and BF are respectively equal to these,

then St is the vector EFanA. o9 the angle EBF. The quotient St/Ss

is a vector parallel to St, and therefore in the limit as Ss tends to

zero its direction is perpendicular to the tangent at P. Moreover
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'

[l

since BE and BF are of unit length, the modulus of the limiting

value of St/8s is the limiting value of SO/Ss, which is K. Hence

the relation

dt r St /ox-r = Lt T- = n (2),ds 8s
x '

where n is a unit vector perpendicular to t, and in the plane of the

tangents at P and a consecutive point This plane, containing two

consecutive tangents and therefore three consecutive points at P,

is called the plane of curvature or the osculating plane at P IfR
is any pomt in this plane the vectors R r, t and n are coplanar.

Hence the relation

[R-r5 t, n] = 0,

which is the equation of the osculating plane. It may also be

expressed

[R-r, r'
l r"]

= 0.

The unit vectors t and n are perpendicular to each other, and

their plane is the plane of curvature The straight line through P
parallel to n is called the principal normal at P. Its equation is

clearly

R = r + un,

R "being a current point on the line The vector n will be called

the wiit (prwwpal) normal. It may be assigned either of the two

opposite directions along the principal normal. If we give it that

from P toward the concave side of the curve it follows from (2)

that K must be regarded as positive, for t' has also this direction.

But it is sometimes convenient to take n as being directed from

the curve toward its convex side. In this case K is negative, for t'
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and n have then opposite directions*. Writing (2) in the form

and observing that n is a unit vector, we see that its direction
// ' //

, , . Also on squaring (2) we find the formulacosines are
fC /C tC

for determining the magnitude of the curvature, though not its

sign.

The circle of curvature at P is the circle passing through three

points on the curve ultimately coincident at P. Its radius p is

called the radius of (circular) curvature, and its centre the centre

of curvature. This circle clearly lies in the osculating plane at P,

and its curvature is the same as that of the curve at P, for it has

two consecutive tangents in common with the curve. Thus

i_de_
p~ds~

K)

so that the radius of curvature is the reciprocal of the curvature,

and must be regarded as having the same sign as the curvature

The centre of curvature lies on the principal normal, and the

vector PO is equal to /on or
n//e. The direction cosines of n as found

above may now be written />#", py", pz", and the equation (2) given
the alternative form

3. Binomial. Torsion. Among the normals at P to the

curve that which is perpendicular to the osculating plane is called

the binormal. Being perpendicular to both t and n it is parallel

to t x n. Denoting this unit vector by b we have the trio t, n, b

forming a right-handed system of mutually perpendicular unit

vectors, and therefore connected by the relations

t*n = n*b = b*t =

and txn = b, nxb =
t, bxt = n,

the cyclic order being preserved in the cross products. We may

* This is a departure from the usual practice of regarding K as essentially

positive.
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The direction cosines of the bmonnal, being the resolved parts of

b, are the resolved parts of pi/ x r", and are therefore

Since b is a vector of constant length it follows that b' is per-

pendicular to b. Moreover by differentiating the relation tb =
with respect to s we fiad

The first term vanishes because n is perpendicular to b, and the

equation then shows that b' is perpendicular to t But it is also

perpendicular to b, and must therefore be parallel to n We may
then write

db
-5-
=- TO ........................... (3).08 ^ '

Just as in equation (2) the scalar K measures the arc-rate of turning
of the unit vector t, so here T measures the arc-rate of turning of

the unit vector b. This rate of turning of the binormal is called

the torsion of the curve at the point P. It is of course the rate of

rotation of the osculating plane. The negative sign in (3) indicates

14 CURVES WITH TOBSION [l

call b the unit "binormal. The positive direction along the binormal
\

is taken as that ofb , j list as the positive direction along the principal
'

normal is that of n. The equation of the binormal is

R = r + Mb,
'

or, since b = t x n = pr' x r", we may write it in the form
|

R = r f VT' x r". i

n L
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that the torsion is regarded as positive when the rotation of the
binormal as s increases is in the same sense as that of a right-
handed screw travelling in the direction of t. It is clear from Fig. 3
that in this case b' has the opposite direction to n.

The derivative of n may now be deduced from those of t and b
For

dn d

= rb-t ........................ (4).

The equations (2), (3) and (4) are the vector equivalents of the
Serret-Frenet formulae. They will be much used in the following

pages, and the reader should commit them to memory. We may
gather them together in the form

f = *n \

n' = Tb-/et ..................... (5).

b' = TO y

As given by Serret (1851) and Frenet (1852) these were formulae

for the derivatives of the direction cosines of the tangent, the

principal normal and the binormal.

A formula for the torsion in terms of the derivatives of r may
now be found. For

r' = t, r"=.A;n,

and therefore r"* = /c'n + K (rb
-

t).

Forming then the scalar triple product of these three derivatives

and neglecting those triple products in the expansion which contain

a repeated factor, we have

[V, r", r"'J
=

[t, *n, 'n + K (rb
-

Hence the value of the torsion is given by

An alternative formula, giving the square of the torsion, may be

deduced from the expression for r"' found above. On squaring this
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and dividing throughout by A? -we obtain the result

By analogy with the relation that the radius of curvature

equal to the reciprocal of the curvature, it is customary to spes

of the reciprocal of the torsion as the radius of torsion, and

denote it by <r. Thus a- = I/T But there is no circle of torsion i

centre of torsion associated with the curve in the same way as tl

circle and centre of curvature.

Ex. 1. The circular helix. This is a curve drawn on the surface of

circular cylinder, cutting the generators at a constant angle j3 Let a be t

radius of the cylinder, and let its axis be taken as the axis of z The pla

through the axis and the point (a, yt s) on the helix is inclined to the ex pla

at an angle 6 such that x=acoa 6 andy =>a sin 6, whiles=a0 cot. Thepositi
vector r of a point on the curve may then be expressed

r=o (cos 6, sin 0, 6 cot 0).

Differentiating with respect to a we have

t= r'=a ( sin 6, cos 0, cot
/3) ff.

But this is a unit vector, so that its square is unity, and therefore

Thus ff is constant. To find the curvature we have, on differentiating t,

n=r"= - a(cos 0, sin 6, 0) &\

Thus the principal normal is the unit vector

n=-(cos0, sinfl, 0),

and K=affz
=-B\-Q*p.a ^

To find the torsion we have

r"'=a (sin d,
- cos d, 0) 0*,

and therefore r" x r"'= a2
(0, 0, 1) ff6

Hence r-[r') r", r*]=aP cot ftff*.

On substituting the values of K and ff we find

r=-BiD|3cos.a

Thus the curvature and the torsion are both constant, and therefore their i

is constant The principal normal intersects the axis of the cylinder or

gonally ; and the tangent and bmormal are inclined at constant angles to

fixed direction of the generators.



Ex. 2. For the curve

tf=a(3

show that

4. Locus of centre of curvature. Just as the arc-rate of

turning of the tangent is called the curvature, and the arc-rate of

turning of the binormal the torsion, so the arc-rate of turning of

the principal normal is called the screw curoatwe. Its magnitude
is the modulus of n'. But we have seen that

Hence the magnitude of the screw curvature is JK* + ra
. This

quantity, however, does not play such an important part in the

theory of curves as the curvature and torsion.

The centre of curvature at P is the point of intersection of the

principal normal at P with that normal at the consecutive point
P' which lies in the osculating plane at P. Consecutive principal

normals do not in general intersect (cf. Ex. 8 below). It is worth

noticing that the tangent to the locus of the centre of curvature

lies in the normal plane of the original curve For the centre of

curvature is the point whose position vector c is given by

c = r + pn
dc

The tangent to its locus, being parallel to -5- ,
is therefore parallel

to t+p'n + p (rb -t)i

that is, to p'n + prb.

It therefore lies in the normal plane of the original curve, and

is inclined to the principal normal n at an angle /S such that

P P*

If the original curve is one of constant curvature, p = 0, and the

tangent to the locus of G is then parallel to b. It will be proved in

Art 6 that the locus of C has then the same constant curvature as

the original curve, and that its torsion varies inversely as the

torsion of the given curve. (Cf also Ex. 19 below.)

vr.
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EXAMPLES I

1. Prove that

r^ic'n-Ac't+Krb,

and hence that ?'"=(<"-*?- KT2)n-3KK
;

t+(2K'r+r'ic)b.

2. Prove the relations

r'.r"=0
J r'.r"'--ic, r'.r""=-3KK/

,

I"', r""= K'K"+2*Y+

3 . If the nth derivative of r with respect to s is given by

r<n>-ant+&nii+cllb,

prove the reduction formulae

4. If K is zero at all points, the curve is a straight line If r is zero at all

poiuts, the curve is plane. The necessary and sufficient condition that the

curve be plane IB

DC, r", r^sO.

6 . Prove that for any curve t' b'= - KT

6. If the tangent and the binomial at a point of a curve make angles 6, <f>

respectively with a fixed direction, show that

sing dQ_ _K
sin

(j) dip T
'

7 . Coordinates in terms Of If is the arc-length measured from
a fixed point A on the curve to the current point P, the position vector r of
P is a function of s ; and therefore, by Taylor's Theorem,

r=r
+ro'+^-ro"+ ^

r '"+ .....

where the suffix zero indicates that the value of the quantity is to be taken for

the point A. If t, n, b are the unit tangent, principal normal and bmormal
at A, and K, T the curvature and torsion at that point, we have

r '=t, r "=Kn,

while the values of r '" and r "" are as given in Ex. 1. Hence the above

formula gives
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Lf then A is taken as ongm, and the tangent, principal normal and bmormal
\b A as coordinate axes, the coordinates of P are the coefficients of t, n, b in
the above expansion. Thus since r is now zero, we have

From the last equation it follows that, for sufficiently small values of *,

e changes sign with s (unless K or T is zero). Hence, at an ordinary point of the

curve, the curve crosses the osculating plane On the other hand, for sufficiently
small values of *, y does not change sign with * (/e=t=0). Thus, in the

neighbourhood of an ordinary point, the curve lies on one side of the plane
determined by the tangent and binormaL This plane is called the rectifying

plu.no.

8 . Show that the principal normals at consecutive points do not intersect

unless r=0.
Let the consecutive points be r, r+rfr and the unit principal normals

n, n +dn For intersection of the principal normals the necessary condition

is that the three vectors dr, n, n+dn be coplanar that is, that x^ n, n' be

coplanar. This requires

[t, n,Tb-ict]=0,

that is r[t,n, b]=0,

whioh holds only when T vanishes

9. Prove that the shortest distance between the principal normals at

consecutive points, distant a apart, is spfJp
2+ a-

3
,
and that it divides the radius

of curvature in the ratio p
2 a3.

1 0. Prove that

and find similar expressions for b"' and n'".

1 1 . Parameter otherthan a. If the position vector r of the current

point is a function of any parameter u, and dashes denote differentiations with

respect to u, we have
f dr ds ,.r=T^= * t'

r"="t+ic's
n,

cV)n+w*n>
22
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Hence prove that

b-r'xr'V",
n-(T'-aV

r=[r',r",r"';

13. For the curve

prove that n= (sin u, cos u, 0),

and
a

14. Find the curvature, the centre of curvature, and the torsion of the

curve
e=acos2,u

15. If the plane of curvature at every point of a curve passes through &

fixed point, show that the curve is plane (r=0).

16. If mj, ma, ma are the moments about the origin of unit vectors

t, n, b localised in the tangent, principal normal and binormal, and dashes

denote differentiations with respect to s, show that

If r is the current point, we have

mi=rxt, m2=rxn, m9=rxb.

Therefore mi'=txt+rx (jcn)=/em2,

and similarly for the others

1 7 . Prove that the position vector of the current point on a curve satisfies

the differential equation

d ( d ( ePrM .
d /<rdr\

1 3. Find the curvature and torsion of the curve 1
f |

(Use the Serret-Frenet formulae )

18. If i is the arc-length of the locus of the centre of curvature, show
||'

19. In the oase of a curve of constant curvature find the curvature aud

torsion of the locus of its centre of curvature 0.

The position vector of C is equal to

c=r+pn
Hence, since p is constant,

dc
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Let the suffix unity distinguish quantities belonging to the locus of 0, Then

fc= ti dsi. We may take the positive direction along this loous so that tj = b
Fhen it follows that

dsi T

ds
=

K
'

^axt differentiating the relation ti=b we obtain

ds
K1n1=-rn^-=-Kn.

"Tierefore the two principal normals are parallel. We may choose

11!= -n,
nd therefore KI=K

'hus the loous of Q has the same constant curvature as the given curve. The
nit binomial bi is now fixed : for

bi=t1 xni=bx(-n)=t.
'ifferentiatmg this result we obtain

da *a

id therefore n=K2
/r.

2O. Prove that, for any curve,

[f, t", f"]-[r", r"', r""]=<
3(^-V

idalso that [b', b",b'"]=T
3
(-V- KT')=T

J5

*5. Spherical curvature. The sphere of closest contact with

e curve at P is that which passes through four points on the

Fig. 4.

ve ultimately coincident with P. This is called the osculating
iere or the sphere of curvature at P. Its centre 8 and radius E
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are called the centre and radius of spherical curvature. The cen

of a sphere through P and an adjacent point Q on the curve (Fig

lies on the plane which is the perpendicular bisector of PQ ;
a

the limiting position of this plane is the normal plane at P. Tt

the centre of spherical curvature is the limiting position of i

intersection of three normal planes at adjacent points. Now 1

normal plane at the point r is

(s-r)-t = ........................ (i)

s being the current point on the plane The limiting position

the line of intersection of this plane and an adjacent normal pis

is determined by (i) and the equation obtained by differentiati

it with respect to the arc-length s, viz. (cf Arts. 15, 19)

K (a r)n -1 =
or its equivalent

(s-r>n = />
............... (ii)

The limiting position of the point of intersection of three adjace

normal planes is then found from (i), (ii) and the equation obtair

by differentiating (ii), viz.

(s-r).(Tb- **)=/>'

which, in virtue of (i), is equivalent to

(a r)b = crp' ...................... (lii)

The vector a r satisfying (i), (ii) and (iii) is clearly

a-r = pn + (r/>'b ................ (8)

and this equation determines the position vector a of the centre

spherical curvature Now pn is the vector PO, and therefore oj

IB the vector CS Thus the centre of spherical curvature is on 1

axis of the circle of curvature, at a distance trp' from the centre

curvature. On squaring both sides of the last equation we ht

for determining the radius of spherical curvature

fts =pa + <7V
a ................ (9)

Another formula for Ra

may be deduced as follows. On squar
the expansion for r'" we find

, by (9).



5, 6] CENTRE OF SPHERICAL CURVATURE 23

Hence the formula

which is, however, not so important as (9).

For a curve of constant curvature, p*
=

Q, and the centre of

spherical curvature coincides with the centre of circular curvature

(cf. Art 4).

6. Locus of centre of spherical curvature. The position
vector 8 of the centre of spherical curvature has been shown to he

Hence, for a small displacement ds of the current point P along the

original curve, the displacement of S is

da = {t + pu + p (rb
-

*t) + o-'pl) + <rp'"b
-

p'u] ds

Thus the tangent to the locus of S is parallel to b (Fig. 4). We
may measure the arc-length st of the locus of S in that direction

which makes its unit tangent 1^ have the same direction as b.

Thus tj
= b,

and, since ds = tjdsi, it follows that

To find the curvature ^ of the locus of S differentiate the equation
tj
= b, thus obtaining

db ds ds
K1 n1

= -j- -r-= -- rn-r-.
ds dsj, da-L

Thus the principal normal to the locus of 8 is parallel to the

principal normal of the original curve. We may choose the direction

of H! as opposite to that of n Thus

H! = n.

The unit binormal bx of the locus of S is then

^ = ti x n! = b x (- n) = t,

and is thus equal to the unit tangent of the original curve.
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The curvature KI as found above is thus equal to

ds
Ki = T-=f-.

dsl

The torsion TJ is obtained by differentiating bx
= t Thus

<Zt ds ds

,, , ds
so that n<=K-r-.

ds!

From the last two results it follows that

KKi= TTj,

so that the product of the curvatures of the two curves is equal to

the product of their torsions The binormal of each curve is parallel

to the tangent to the other, and their principal normals are parallel

but in opposite directions (Fig. 4).

If the original curve is one of constant cwvatwe, p = 0, and

coincides with the centre of circular curvature. Then

dsl _ p _ T

ds a-

~~
K

'

and KI = K

Thus the locus of the two centres of curvature has the same

(constant) curvature as the original curve Also

so that the product of the torsions of the two curves is equal to the

square of their common curvature The circular helix is a curve of

constant curvature.

Ex. 1 . If
iff

is such that &//= r<fe, show that

Ex. 22. Prove that



6, 7] INTRINSIC EQUATIONS OP A CURVE 25

Ex. 3. Prove that, for curves drawn on the surface of a sphere,

that is

where d-fy^rds.

Ex. 4 . If the radius of spherical curvature is constant, prove that the curve

either lies on the surface of a sphere or else has constant curvature.

Ex. 5. The shortest distance between consecutive radii of spherical

curvature divides the radius in the ratio

-3-df>J

EXi 6 . Show that the radius of spherical curvature of a circular helix is

equal to the radius of circular curvature

7. Theorem. A curve is uniquely determined, except as to

position in space, when its curvature and torsion are given functions

of its arc-length s.

Consider two curves having equal curvatures K and equal torsions

r for the same value of s. Let t, n, b refer to one curve and 1^, n^ bj

to the other. Then at points on the curve determined by the same

value of s we have

_
(t ti)

= t (/cnj) + KB. t,,
CLS

(

-^-(n-n!) = n(rb1
-

/ct^ + (rb - /et)nlf

CtS

Now the sum of the second members of these equations is zero.

Hence ^-(t.t1 + n.n1 + b.ba )
= 0,

and therefore t tj + n ^ + b bx
= const.

Suppose now that the two curves are placed so that their initial

points, from which s is measured, coincide, and are then turned

(without deformation) till their principal planes at the initial point

also coincide Then, at that point, 1 = 1^, n = n!, b = bj., and the

value of the constant in the last equation is 3. Thus
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But the sura of the cosines of three angles can be equal to 3 only

when each of the angles vanishes, or is an integral multiple of 2?r.

This requires that, at all pairs of corresponding points,

t = ti, n = nx ,
b = b!,

so that the principal planes of the two curves are parallel. Moreover,

the relation t =tj may be written

l(r-rO= 0,

so that r ra
= a const, vector.

But this difference vanishes at the initial point; and therefore it

vanishes throughout Thus r= ra at all corresponding points, and

the two curves coincide.

In making the initial points and the principal planes there

coincident, we altered only the position and orientation of the

curves in space; and the theorem has thus been proved. When a

curve is specified by equations giving the curvature and torsion as

functions of 8

these are called the intrinsic equations of the curve.

8. Helices. A curve traced on the surface of a cylinder, and

cutting the generators at a constant angle, is called a helias. Thus

the tangent to a helix is inclined at a constant angle to a fixed

direction If then t is the unit tangent to the helix, and a a constant

vector parallel to the generators of the cylinder, we have

ta = const.

and therefore, on differentiation with respect to s,

na = 0.

Thus, since the curvature of the helix does not vanish, the principal

normal is everywhere perpendicular to the generators. Hence the

fixed direction of the generators is parallel to the plane of t and b;
and since it makes a constant angle with t, it also makes a constant

angle with b.

An important property of all helices is that the curvature and

torsion are in a constant i atio. To prove this we differentiate the

relation n a = 0, obtaining
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Thus a is perpendicular to the vector rb t. But a is parallel to

the plane of t and b, and must therefore be parallel to the vector

rt + rb, which is inclined to t at an angle tan"1

K/T. But this angle
is constant. Therefore the curvature and torsion are in a constant

ratio.

Conversely we may prove that a curve whose awroatwe and

torsion cure in a constant ratio is a hehas. Let r = c/c where c is

constant. Then since

t' = /en,

and b' = rn = - cn,

it follows that ^ (b + ct)
= 0,

and therefore b + ct = a,

where a is a constant vector. Forming the scalar product of each

side with t we have
ta = c

Thus t is inclined at a constant angle to the fixed direction of a,

and the curve is therefore a helix.

Finally we may show that the curvature and the torsion of a

helix are in a constant ratio to the curvature /c of the plane section

of the cylinder perpendicular to the generators. Take the

parallel to the generators, and let s be measured from the inter-

section A of the curve with the toy plane. Let u be the arc-length

of the normal section of the cylinder by the eey plane, measured

from the same point A up to the generator through the current

point (<n, y, *). Then, if j3 is the constant angle at which the curve

cuts the generators, we have

u s sm /S,

and therefore
' = sin ft.



28 CURVES WITH TORSION
[l

The coordinates so, y are functions of u, while z = s cos /3. Hence for

the current point on the helix we have

r=(<c, yt ficos/9),

so that if = f-=- sin ft
-- sin ft, cos $

J
,

Hence the curvature of the helix is given by

so that = /c sin"#
For the torsion, we have already proved that

/S
= tan"1

*/T,

so that T= tfcot/9 = A: sin/9cosj8.

From these results it is clear that the only curve whose owrvature

and torsion are both constant is the circular helix. For such a curve

must be a helix, since the ratio of its curvature to its torsion is also

constant. And since K is constant it then follows that is constant,

so that the cylinder on which the helix is drawn is a circular

cylinder.

Ex. Show that, for any curve,

This expression therefore vanishes for a helix and conversely, if it vanishes,
the curve is a helix.

9. Spherical indicatrix. The locus of a point, whose position
vector is equal to the unit tangent t of a given curve, is called the

spherical indicatrix of ike tangent to the curve Such a locus lies

on the surface of a unit sphere, hence the name. Let the suffix

unity be used to distinguish quantities belonging to this locus.

Then r1
= t,

j J.-L ^ dfi dt ds dsand therefore t = -^

showing that the tangent to the spherical indicatrix is parallel to
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the principal normal of the given curve. We may measure $1 so

that

t!
= n,

and therefore -j-
1 = K.

ds

For the curvature KI of the indicatrix, on differentiating the relation

tj = n, we find the formula

da ds 1

Squaring both sides we obtain the result

so that the curvature of the indicatrix is the ratio of the screw

curvature to the circular curvature of the curve. The unit binormal

of the indicatrix is

The torsion could be obtained by differentiating this equation; but

the result follows more easily from the equation [of. Examples I

; .ffjo \6

if a T f

]
1 |"r

' r " r '"1 !>' *" *"1
\ds)

~
* ' ' * * ' ' J

= /C
8 (T

/
-/C

/

T),

1 L J J. (KT/
~ K/T)

which reduces to TX
=

,
'-.

K (K? + T3
)

Similarly the spherical indicatnos of the linormal of the given
curve is the locus of a point whose position vector is b. Using the

suffix unity to distinguish quantities belonging to this locus,we have

, ,.,
- . dbds ds

and therefore ti
= j-j = ~ Tn jas aSi O&!

We may measure s^ so that

li n,

ds
and therefore -y^

= T.
as

To find the curvature differentiate the equation ^ = n. Then

d . ds 1 / . .
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giving the direction of the principal normal. On squaring this result

we have

Thus the curvature of the indicatrix is the ratio of the screw

curvature to the torsion of the given curve. The unit hinormal is

. rt + /cb

b^t.xn^ ,

TKi

and the torsion, found as in the previous case, is equal to

TK K.T'

Ex. 1 P Find the torsions of the spherical indioatnoes from the formula

5s
=Pi

a +(T1Vi'
s
,

where jR=l and p^lfm is known.

Ex. 22. Examine the sphenoal indicatnx of the principal normal of a given

curve

1O. Involutes. When the tangents to a curve G are normals

to another curve Glf the latter is called an involute of the former,

and is called an evolute of 0^ An involute may be generated

Pig. 8.

mechanically in the following manner Let one end of an inex-

tensible string be fixed to a point of the curve G, and let the string

be kept taut while it is wrapped round the curve on its convex

side. Then any particle of the string describes an involute of G,

since at each instant the free part of the string is a tangent to

the curve G, while the direction of motion of the particle is at

right angles to this tangent.

From the above definition it follows that the point TI of the
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involute which hea on the tangent at the point r of the curve is

given by

where u is to be determined. Let ds^ be the arc-length of the

involute corresponding to the element ds of the curve G. Then the

unit tangent to C^ is

dTt ds (/-, .

To satisfy the condition for an involute, this vector must be per-

pendicular to t. Hence
l + w'-O,

so that u = c s,

where c is an arbitrary constant Thus the current point on the

involute is

r! = r + (c-s)t,

and the unit tangent there is

Hence the tangent to the involute is parallel to the principal

normal to the given curve. We may take the positive direction

along the involute so that

ti=n,

and therefore -j-
1 =

(c s) K.

To find the curvature /ca of the involute we differentiate the

relation 1^ = n, thus obtaining
rb-Kt

tfini
=

/ \-1

K(C-S)

Therefore, on squaring both sides, we have

The unit principal normal to the involute is

rb /ct

1

and the unit binomial
tcb+rt

x n, =
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Since the constant c is arbitrary, there is a single infinitude of

involutes to a given curve; and the tangents at corresponding

points of two different involutes are parallel and at a constant

distance apart.

Ex. 1 . Show that the torsion of an involute has the value

KT'-K'T

Ex. 3 . Prove that the involutes of a circular helix are plane curves, -whose

planes are normal to the axis of the cylinder, and that they are also involutes

of the circular sections of the cylinder.

*1 1. Evolutes. The converse problem to that just solved is

the problem of finding the evolutes of a given curve 0. Let rx be

the point on the evolute Cj, corresponding to the point r on 0.

Then, since the tangents to Oi are normals to 0, the point rx lies

in the normal plane to the given curve at r. Hence

where u, v are to be determined. The tangent to the evolute at r,

is parallel to drjds, that is, to

(1 uic)t + (u wr)n + (ur + u')b

Hence, in order that it may be parallel to UD. + vb we must have

1 - UK = 0,

u' vr UT + v'
and =

u v

The first of these gives u= - =
p, and from the second it follows

that

vp' pv'
T =

V + p

Integrating with respect to * and writing ^ =
I rds, we have
Jo

i/r+c = tan"1
( V

so that v = p tan (^ + c).

The point ra on the evolute is therefore given by

F! = r + p {n tan (ty + c) b}.

It therefore lies on the axis of the circle of curvature of the given

curve, at a distance p tan (^ + c) from the centre of curvature.
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The tangent to the evolute, "being the line joining the points r

and i*!, is in the normal plane of the given curve G, and is inclined

to the principal normal n at an angle (ty + c).

Let the suffix unity distinguish quantities referring to the

evolute Then on differentiating the last equation, remembering
that d-^r/ds

=
T, we find

-^ (+ + ) b).

Thus the unit tangent to the evolute is

1^
= cos (^ + c) n sin (^ + c) b

d therefore * = OTem (V '\~f
=^ + >

.

as K* cos3

(T/T + c)

The curvature of the evolute is obtained by differentiating the

vector tj. Thus

The principal normal to the evolute is thus parallel to the tangent to

the curve G. We may take

n1
= -t,

and therefore K,=> K cos (> + c) -7-

_ K 3 cos1

(i/r + c)"~
KT Sin (l/r + C)

'

COS (>|r + c)

"

The unit binomial to the evolute is

bx
=

ti x HI = cos
(i/r + c) b + sin (ty + c) n.

The torsion is found by differentiating this. Thus

ds
T^D! T-

1 = K Sin
(A/T + c) t

and therefore
ds

T^-KBinty +
C)^-

/c
3 Sin

(T/T + C) COS'
J

(\jr + d)

KT Sin
(i/r + c)

'

COS
(-V/T -)- c)

'

Thus the ratio of the torsion of the evolute to its curvature is

- tan
(i/r + c). i

Since the constant c is arbitrary there IB a single infinitude of

W. 3
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evolutes The tangents to two different evolutes, corresponding to

the values (^ and ca , drawn from the same point of the given curve,

are inclined to each other at a constant angle Ci <%.

Ex. 1 . The locus of the centre of curvature is an evolute only when the

curve is plane.

Ex. 2. A plane curve has only a single evolute in its own plane, the locus

of the centre of curvature All other evolutes are helices traced on the nght

cylinder whose base is the plane evolute.

* 1 2. Bertrand curves. Saint-Venant proposed and Bertrand

solved the problem of finding the curves whose principal normals

are also the principal normals of another curve. A pair of curves,

and Cd, having their principal normals in common, are said to be

conjugate or associate Sertrand curves. We may take their prin-

cipal normals in the same sense, so that

n1= n.

The point ij on C^ corresponding to the point r on C is then given

*>y
rx
= r + OD. .................. (i),

where it is easily seen that a is constant. For the tangent to <7j i

parallel to dr^/ds, and therefore to

This must be perpendicular to n, so that a' is zero and therefor*

a constant. Further, if symbols with the suffix unity refer to th<

curve Clt we have

showing that t t^ = const.

> b

Fig.T.
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Thus the tangents to the two curves are inclined at a constant angle
But the principal normals coincide, and therefore the bmormals of

the two curves are inclined at the same constant angle. Let a he

the inclination of bj to b measured from b toward t. Then a is

constant

On differentiating the above expression for i^ we have

(ii).

Then, forming the scalar product of each side with bn we obtain

=
( 1 a/c) sin a + ar cos a.

Thus there is a linear relation with constant coefficients between the

curvature and torsion of 0;
/ l\

tan a.

Moreover it is obvious from the diagram that

ti
= t cos a b sin a

On comparing this with (11) we see that

cos a = (1 a/c) -j-
c

ds
sin a = ar -r-

05}

Now the relation between the curves G and Gl is clearly a recip-

rocal one The point r is at a distance a along the normal at

r,, and t is inclined at an angle
- a to t: Hence, corresponding to

(iii),
we have

/-i , \^i\cosa = (l + a 1)-;-

On multiplying together corresponding formulae of (iii) and (iv)

we obtain the relations

(v).

(1
-

a/c) (1 + a0 = cos4 a

The first of these shows that the torsions of the two curves have

Hie same sign, and their product is constant. This theorem is due to

32
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Schell. The result contained in the second formula may be ex-

pressed as follows : // P, P-^ are corresponding points on two con-

jugate Bertrand cu/roes, and 0, their centres of curvature, the

cross ratio of the range (POPjOj) is constant and equal to sec8 a.

This theorem is due to Mannheim.

Ex. 1 . By differentiating the equation

(1 aic)sina+ar cos a=0,
deduce the following results:

For a curve of constant curvature the conjugate is the locus of its centre of

curvature.

A curve of constant torsion coincides with its conjugate.

Ex. 2. Show that a plane curve admits an infinity of conjugates, all

parallel to the given curve

Prove also that the only other curve which has more than one conjugate is

the circular helix, the conjugates being also circular helices on coaxial

cylinders

EXAMPLES II

1 . The principal normal to a curve is normal to the locus of the centre of

curvature at points for which the value of K is stationary

2. The normal plane to the locus of the centre of circular curvature of a
curve C bisects the radius of spherical curvature at the corresponding point
otO

3. The bmormal at a point P of a given curve is the limiting position of

the common perpendicular to the tangents at P and a consecutive point of

the curve.

4. For a curve drawn on a sphere the centre of curvature at any point is

the foot of the perpendicular from the centre of the sphere upon the osculating

plane at the point

5. Prove that, in order that the principal normals of a curve be binomials

of another, the relation

must hold, where a is constant

6. If there is a one-to-one correspondence between the points of two

curves, and the tangents at corresponding points are parallel, show that the

principal normals are parallel, and therefore also the bmormals. Prove also

that

i ? II
K f/9, T

'

Two curves so related are said to be deducible from each other by a Combea-

cure transformation.
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7 . A curve is traced on a right circular cone so as to out all the generating
linos at a constant angle. Show that its projection on the plane of the base is
an equiangular spiral

8 . Find the curvature and torsion of the curve in the preceding example.

9 . A curve is drawn on a right circular cone, everywhere inclined at the
same angle o to the axis. Prove that K =>r tan a.

1 0. Determine the curves which have a given curve G as the locus of the
centre of spherical curvature

If 0-i is a curve with this pioperty then, by Art 5, TI lies in the osculating
plane of G at r. Thus

JJhirther, the tangent to Ot is paiallel to b Hence show that

Integrate the equations, and show that there is a double infinitude of curves

with the required property.

1 1 . On the binormal of a curve of constant torsion T a point Q is taken at

a oonatunt distance c from the cur\ o Show that the binormal to the locus

of Q is inclined to the binormal of the given curve at an angle

* -i
*

tan *
. _

KS/CV + I

12. On the tangent to a given curve a point Q is taken at a constant

distance c from the point of contact Prove that the curvature fq of the locus

of Q is given by

1 3 . On the binormal to a given curve a point Q is taken at a constant

distance o from the curve. Prove that the curvature KJ of the locus of Q is

givon by
Kl

a
(1 +eM)8=cV (1 + o8 r3)+ (K

- c/+ o3 cr3
)
8

14. Prove that the curvature KI of the locus of the centre of (circular)

curvature of a given curve is given by

a

where the symbols have their usual meanings.



CHAPTER II

ENVELOPES. DEVELOPABLE SURFACES

13. Surfaces. We have seen that a curve is the locus of a

point whose coordinates as, y, z are functions of a single parameter.
We now define a surface as the locus of a point whose coordinates

are functions of two independent parameters u, v. Thus

a =/i (u, v\ y =/B (u, v), z =/8 (u, v) ......(1)

are parametric equations of a surface In particular cases one, or

even two, of the functions may involve only a single parameter.
If now u, v are eliminated from the equations (1) we obtain a

relation between the coordinates which may be written

F(x} y t z) = V ........... (2).

This is the oldest form, of the equation of a surface. The two-

parametric representation of a surface as given in (1) is due to

Gauss. In subsequent chapters it will form the basis of our in-

vestigation. But for the discussion in the present chapter the

form (2) of the equation of a surface will prove more convenient.

14. Tangent plane. Normal. Consider any curve drawn

on the surface

F(x,y,z} = Q

Let s be the arc-length measured from a fixed point up to the

current point (a;, y, z). Then, since the function F has the same

value at all points of the surface, it remains constant along the

curve as s varies. Thus

dFdx dFdy <Wdz = Q
dec ds dy ds dz ds~ '

which we may write more briefly

F9af + Fy y' + F,i = 0.

Now the vector (of, y', z
1

} is the unit tangent to the curve at th

point (on, y, z}\ and the last equation shows that it is perpendicula

to the vector (Fm , Fv , F,). The tangent to any curve drawn on

surface is called a tangent line to the surface Thus all tanger
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lines to the surface at the point (cc, y, z) are perpendicular to the

vector (Fa >
Fy , -#*)> and therefore lie in the plane through (ID, y, z)

perpendicular to this vector. This plane is called the tangent plane
to the surface at that point, and the normal to the plane at the

point of contact is called the normal to the surface at that pomt.
Since the line joining any point (X, 7, Z) on the tangent plane to

the point of contact is perpendicular to the normal, it follows that

<*-> +
<r->f+(*-.)-0 ......(3).

This ia the equation of the tangent plane. Similarly if (X, Y, Z)
is a current point on the normal, we have

dy dz

These are the equations of the normal at the point (OB, y, z).

Ex. 1. Prove that the tangent plane to the surface an/8*=a
a
, and the

coordinate planoa, bound a tetrahedron of constant volume.

Ex. 2. Show that the sum of the squares of the intercepts on the co-

ordinate axes made by the tangent plane to the surface

is constant.

Ex. 3. At points common to the surface

and a sphere whose centre is the origin, the tangent plane to the surface

makes intercepts on the axes whose sum is constant.

Ex. 4. The normal at a point P of the ellipsoid

meets the coordinate planes in Cflt (7a ,
(73 Prove that the ratios

PC1

! . P02 PQ*
are constant.

Ex. 5. Any tangent plane to the surface

meets it again in a conic whose projection on the plane of xy is a rectangular

hyperbola.
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ONE-PARAMETER FAMILY OF SURFACES

15. Envelope. Characteristics. An equation of the form

F(x,ys z,a) = Q......... (5),

in -which a is constant, represents a surface. If the value of the

constant is altered, so in general is the surface. The infinitude of

surfaces, which correspond to the infinitude of values that may be

assigned to a, is called a family of surfaces with parameter a. On

any one surface the value of a is constant
; it changes, however,

from one surface to another. This parameter has then a different

significance from that of the parameters u, v in Art. 13 These

relate to a single surface, and vary from point to point of that

surface They are curvilinear coordinates of a point on a single

surface. The parameter a, however, determines a particular mem-
ber of a family of surfaces, and has the same value at all points of

that member.

The curve of intersection of two surfaces of the family corre-

sponding to the parameter values a and a + Sa is determined by
the equations

F(n, y, e, a) = 0, F (as, y,z,a+ Sa) = 0,

and therefore by the equations

in which, for the sake of brevity, we have written F (a) instead of

F(ast y, z, a), and so on. If now we make Ba tend to zero, the

curve becomes the curve of intersection of consecutive members of

the family, and its denning equations become

(6).

This curve is called the characteristic of the surface for the para-

meter value a. As the parameter varies we obtain a family of such

characteristics, and their locus is called the envelope of the family

of surfaces. It is the surface whose equation is obtained by elimi-

nating a from the two equations (6),

Two surfaces are said to touch each other at a common point

when they have the same tangent plane, and therefore the same

normal, at that point. We shall now prove that the envelope touches
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eaok member of the family ofswfaces at all points of its character-
istic

The characteristic corresponding to the parameter value a lies

both on the surface with the same parameter value and on the

envelope Thus all points of the characteristic are common to the
surface and the envelope. The normal to the surface

^(0, y,, a) =
is parallel to the vector

(W BF
d_F\

UB' By' da)
............. (*)

The equation of the envelope is obtained by eliminating a from
the equations (6). The envelope is therefore represented byF (K, y t z, a) = 0, provided a is regarded as a function of CD, yt z

given by

The normal to the envelope is then parallel to the vector

fdF ,dFda dF dFda
d_F dFda\

(fa
+

da dot' dy
+
dady' dz

+
tiafa)'

which, in virtue of the preceding equation, is the same as the
vector (i) Thus, at all common points, the surface and the en-

velope have the same normal, and therefore the same tangent
plane ;

so that they touch each other at all points of the charac-

teristic.

Ex. 1 . The envelope of the family of paraboloids

is the circular cone

Ex. 2. Spheres of constant radius 6 have their centres on the fixed circle

a2
, 0=0. Prove that their envelope is the surface

Ex. 3. The envelope of the family of surfaces

F(a,y, g, a,6)=0,

in which the parameters a, 6 are connected by the equation

/(a, 6)=0,

is found by eliminating a and 6 from the equations
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16. Edge of regression. The locus of the ultimate intersec-

tions of consecutive characteriatics of a one-parameter family of

surfaces is called the edge of regression. It is easy to show that

each characteristic touches the edge of regression, that is to say, the

two curves have the same tangent at their common point. For if

A, B, G are three consecutive characteristics, A and B intersecting

at P, and B and at Q, these two points are consecutive points

on the characteristic B and also on the edge of regression. Hence

ultimately, as A and tend to coincidence with B, the chord PQ
becomes a common tangent to the characteristic and to the edge

of regression.

Fig. 8.

The same may be pr.oved analytically as follows. The character-

istic with parameter value a IB the curve of intersection of the

surfaces

(6).

The tangent to the characteristic at any point is therefore per-

pendicular to the normals to both surfaces at this point. It is

therefore perpendicular to each of the vectors

_F d_F
dF\ ,

* '
_

ty' de \dada' fyda' dzda
...... '

The equations of the consecutive characteristic, with the parameter
value a + da, are

dF &F ,

Hence, for its point of intersection with (6), since all four equations

must be satisfied, we have

F(a) = Q, j-F(a) = Q, j^F(a) = Q (8).oa ou? \

The equations of the edge of regression are obtained by eliminating
'

a from these three equations. We may then regard the edge of !
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egression as the curve of intersection of the surfaces (6), in which
' is now a function of as, y, z given by

*(>- a

?hu3 the tangent to the edge of regression, being perpendicular
o the normals to both surfaces, is perpendicular to each of the
pectors

flF dFda BF dFda dF dFda\

\da da to' dy daty' ~dz
+
dafa)

/&F d*Fda &F_ d^Ffa \

\dxoa
+

da* dx* dyda
+

da*dy
f ......

)'

vHich, in virtue of the equations (8), are the same as the vectors

*7 ). Thus the tangent to the edge of regression is parallel to the

angent to the characteristic, and the two curves therefore touch

ub their common point.

Ex. 1 . Find the envelope of the family of planes

.nd show that its edge of regression is the ourve of intersection of the surfaces

ts=y\xy=z
Ex. 22 . Find the edge of regression of the envelope of the family of planes

x sin Q y cos 9+= ad,

I "being the parameter.

I3x. 3 . Find the envelope of the family of oones

(ax+x+y+s- 1) (ay +a) =cun (x+y+a-l),
i being the parameter.

Eat. 4. Prove that the characteristics of the family of osculating spheres
>f a twisted ourve are its circles of curvature, and the edge of regression is the

tvirve itself.

Ex. 5 . Find the envelope and the edge of regression of the spheres which

>aaa through a fixed point and whose centres lie on a given curve.

Ex. 6. Find the envelope and the edge of regression of the family of

Qlipsoids

vtiere c is the parameter.

17. Developable surfaces. An important example of the

preceding theory is furnished by a one-parameter family of planes
Cn this case the characteristics, being the intersections of consecu-
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tive planes, are straight lines. These straight lines are called the

generators of the envelope, and the envelope is called a developable

surface, or briefly a developable. The reason for the name lies in

the fact that the surface may be unrolled or developed into a

plane without stretching or tearing. For, since consecutive gene-
rators are coplanar, the plane containing the first and second of

the family of generators may be turned about the second till it

coincides with the plane containing the second and third, then

this common plane may be turned about the third till it coincides

with the plane containing the third and the fourth; and so on.

In this way the whole surface may be developed into a plane
1

.

Since each plane of the family touches the envelope along its

characteristic, it follows that the tangent plane to a developable

swface is the same at all points of a generator. The edge of re-

gression of the developable is the locus of the intersections of

consecutive generators, and is touched by each of the generators.

Moreover, since consecutive generators are consecutive tangents to

the edge of regression, the osculating plane of this curve is that

plane of the family which contains these generators But this

plane touches the developable. Hence the osculating plane of the
[

edge of regression at any point is the tangent plane to the developable
i

at that point.

Suppose the equation of a surface is given in Monge's form,

*=/(a,3/) ........... (9),

and we require the condition that the surface may be a develop-
able The equation of the tangent plane at the point (x, y, z) is {

* (* )| + (F-,,)|.
f

and, in order that this may be expressible m terms of a single

parameter, there must be some relation betweenfa and fy , which "^
we may write ^f

T

r
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and from these it follows that

3^32/
3

\dasdy

This is the required condition that (9) may represent a develop-
able surface.

"Ex. Prove that the surface xy<=(z-op is a developable.

DEVELOPABLES ASSOCIATED WITH A CURVE

18. Osculating developable. The principal planes of a

twisted curve at a current point P are the osculating plane, which

is parallel to t and n, the normal plane, which is parallel to n and

b, and the rectifying plane, which is parallel to b and t The

equations of these planes contain only a single parameter, which is

usually the arc-length s; and the envelopes of the planes are

therefore developable surfaces.

The envelope of the osculating plane is called the osculating

developable. Since the intersections of consecutive osculating planes
are the tangents to the curve, it follows that the tangents are the

generators of the developable. And consecutive tangents intersect

at a point on the curve, so that the curve itself is the edge of

regression of the osculating developable.
The same may be proved analytically as follows. At a point r

on the curve the equation of the osculating plane is

(R-r).b = ............... (11),

where r and b are functions of s. On differentiating with rospect
to s we have -t-b-r (R -r>n = 0,

thatis (R-r)n = ....................... (12),

which is the equation of the rectifying plane. Thus the character-

istic, being given by (11) and (12), is the intersection of the oscu-

lating and rectifying planes, and is therefore the tangent to the

curve at r. To find the edge of regression we differentiate (12)

andobtain (R-r)-(rb -/ct) = ............... (13).

For a pomt on the edge of regression all three equations (11), (12)

and (13) are satisfied. Hence (R r) vanishes identically, and the

curve itself is the edge of regression

"Ex. Find the osculating developable of the circular helix.
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19. Polar developable. The envelope of the normal plane
of a twisted curve is called the polar developable, and its generators

are called the polar lines. Thus the polar line for the point P is

the intersection of consecutive normal planes at P. The equation
of the normal plane is

(R _ r) .t=0 (14)>
,,

where r and t are functions of s. Differentiating with respect to s 1

W6find
*(R-r).n-t.t = 0,

which may be written (R r pn)n = (15).

This equation represents a plane through the centre of curvature

perpendicular to the principal normal It intersects the normal

plane in a straight line through the centre of curvature parallel to

the binormal (Fig 4). Thus the polar line is the axis of the circle

of curvature. On differentiating (15) we obtain the third equation
for the edge of regression,

which, m virtue of (14), may be written I

(R-r).b=o-// (16).

From the three equations (14), (15) and (16) it follows that

so that the point R coincides with the centre of spherical curva-

ture. Thus the edge of regression of the polar developable ^s the

locus of ike centre of spherical curvature. The tangents to this locus

are the polar lines, which are the generators of the developable.

2O. Rectifying developable. The envelope of the rectifying

plane of a curve is called the rectofyvng developable, and its gene-
rators are the rectifying lines. Thus the rectifying line at a point
P of the curve is the intersection of consecutive rectifying planea
The equation of the rectifying plane at the point r is

(R-r).n = (17),

where r and n are functions of s. The other equation of the recti-

fying line is got by differentiating with respect to s, thus obtaining

(R-r).(Tb-t)=0 (18).

From these equations it follows that the rectifying line passes

through the point r on the curve, and is perpendicular to both n
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and (rb t). Hence it is parallel to the vector (rl + b), and is

therefore inclined to the tangent at an angle < such that

tan< = -
(19).

Fig 9.

To find the edge of regression we differentiate (18) and, in

virtue of (17), we obtain

(R-r).(r'b-'t) + = ........(20).

Further, smce the rectifying bne is parallel to rt + b, the point
R on the edge of regression is such that

where I is some number. On substitution of this in (20) we find

1=
K

K'I-- ACT
7

"

Thus the point on the edge of regression corresponding to the

point r on the curve is

....................
K T KT X '

The reason for the term "
rectifying

"
applied to this developable

lies in the fact that, when the surface is developed into a plane by
unfolding about consecutive generators, the original curve becomes

a straight line. The truth of this statement will appear later when
we consider the properties of "

geodesies
"
on a surface.

We may notice in passing that, if the given curve is a helix,

/T is constant, and the angle <f>
of (19) is equal to the angle @ of

Art 8. Thus the rectifying lines are the generators of the cylinder
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on which the helix is drawn, and the rectifying developable ]s the

cylinder itself

Ex. Prove that the rectifying developable of a curpe 13 the polar develop-

able of its involutes, and conversely.

TWO-PARAMETER FAMILY OF SURFACES

21. Envelope. Characteristic points. An equation of the

form

F(a:) y)
z

)
a

> b)=Q .............. (22),

m which a and 6 are independent parameters, represents a doubly
infinite family of surfaces, corresponding to the infinitude of values

of a and the infinitude of values of 6 On any one surface both a

and 6 are constant. The curve of intersection of the surface whose

parameter values are a, I with the consecutive surface whose para-

meter values are a + da, b + dbia given by the equations

F(a, 6)
=

0, F(a + dat b + db) = 0,

or by the equations

F(a, 6)
=

0, F(a, b} + F(

This curve depends on the ratio da db ; but for all values of this

ratio it passes through the point or points given by

F(a,b) = Q,
9̂ (a,&)

=
0, ^(a,6)

=
..(23).

These are called characteristic points, and the locus of the charac-

teristic points is called the envelope of the family of surfaces. The

equation of the envelope is obtained by eliminating a and b from

the equations (23)

Each characteristic point is common to the envelope and one

surface of the family ; and we can prove that the envelope touches

each surface at the characteristic point (or points). The normal to

a surface of the family at the point (as, y, z) is parallel to the vector

dF dF

The equation of the envelope is got by eliminating a and b from

the equations (23). We may therefore take F (xt yt z, a, b)
= as
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the equation of the envelope, provided we regard a, b as functions

of as, y, z given by

Then the normal to the envelope is parallel to the vector

,aF?a Wdb dF dFda dFdb
da
+
dada

+
db fa' dy

+
dady

+
36 fy'

'

which, in virtue of (25), is the same as the vector (24). Thus the

envelope has the same normal, and therefore the same tangent

plane, as a surface of the family at the characteristic point. The

contact property is thus established.

Ex. 1 . Show that the envelope of the plane

-cos0sm0 + T8in 0sm<H oos0=l,

where 6, are independent parameters, is the ellipsoid

Ex. 2. Prove that the envelope of a plane which forms with the co-

ordinate planes a tetrahedron of constant volume' is a surface xyz=* const

Ex. 3. The envelope of a plane, the sum of the squares of whose inter-

cepts on the axes is constant, is a surface

-pi+y$+ zl= const.

Ex. 4. The envelope of the plane

(u
-

v) boa;+ (1 +uv) cay+ (1 uv) abz= abc (u+v),

where u, v are paiameters, is the hyperboloid

Ex. 5. Prove that the envelope of the surface F(x, y, t, a, 6, c)=0,
where a, 6, o are parameters connected by the relation f(at 6, 0)0=0, is obtained

by eliminating a,b,o from the equations

i Ex. 6. The envelope of the plane lx+my+nz=p, where

is an ellipsoid.

w.
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EXAMPLES III

1 . Find the envelope of the planes through the centre of an ellipsoid ant

cutting it in sections of constant area.

2. Through a fixed point on a given circle chords are drawn Find th

envelope of the spheres on these chords as diameters.

3. A plane makes intercepts a, 6, c on the coordinate axes such that

1+ l +i=I

Prove that its envelope is a comcoid with equi-conjugate diameters along th

axes.

4. A fixed point on the #-axis is joined to a variable point P on tb

ya-plane Find the envelope of the plane through P at right angles to OP.

5 . Find the envelope of the plane

a+u b+u o+u
=

'

where it is the parameter, and determine the edge of regression.

6. The envelope of a plane, such that the sum of the squares of i

distances from n given points is constant, is a comcoid with centre at tl

centroid of the given points

7. A fixed point is joined to a variable point P on a given spheric
surface. Find the envelope of the plane through P at right angles to OP.

8. A sphere of constant radius a moves with its centre on a given twist'

curve. Prove that the characteristic for any position of the sphere is its gre
circle by the normal plane to the curve. Show also that, if the radius
curvature p of the curve is less than a, the edge of regression consists of to

branches, on which the current point is

The envelope is called a canal surface

9. Show that the radius of curvature of the edge of regression of t

rectifying developable (Art. 20) is equal to coseo < i
(sin

2
<J> ) ,

whi

tan <=- , and that the radius of torsion is equal to

d



CHAPTER III

CURVILINEAR COORDINATES ON A SURFACE,
FUNDAMENTAL MAGNITUDES

22. Curvilinear coordinates. We have seen that a surface

may be regarded as the locus of a point whose position vector r is

a function of two independent parameters u, v. The Cartesian

coordinates so, y, z of the point are then known functions of u, v
,

and the elimination of the two parameters leads to a single rela-

tion between CD, y, z which is usually called the equation of the

surface. We shall confine our attention to surfaces, or portions of

surfaces, which present no singularities of any kind

Any relation between the parameters, say/(w, v)
= 0, represents

a curve on the surface. For r then becomes a function of only one

independent parameter, so that the locus of the point is a curve

In particular the curves on the surface, along which one of the

u-a

parameters remains constant, are called the parametric cwrves

The surface can be mapped out by a doubly infinite set of para-

metric curves, corresponding to the infinitude of values that can

be assigned to each of the parameters. The parameters u, v thus

constitute a system of curvilinear coordinates for points on the

surface, the position of the point being determined by the values

of u and v.

42
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Suppose, for example, that -we are dealing with the surface of a

sphere of radius a, and that three mutually perpendicular diameters

are chosen as coordinate axes The latitude \ of a point P on the

surface may be defined as the inclination of the radius through P
to the acy plane, and the longitude tj>

as the inclination of the plane

cnnt.fl.m-mgP and the -axis to the ZSK plane. Then the coordinates

ofP are given by

x = a, cos \ cos <, y = a cos X sin <, z= a smX

Thus \ and $ may be taken as parameters for the surface. The

parametric curves X= const, are the small circles called parallels

of latitude; the curves = const, are the great circles called

meridians of longitude. As these two systems of curves cut each

other at right angles, we say the parametric curves are orthogonal.

As another example consider the osculating developable of a

twisted curve. The generators of this surface are the tangents to

the curve. Hence the position vector of a point on the surface is

given by
R = r + ut,

where u is the distance of the pomt from the curve measured

along the tangent at the point r. But r, t are functions of the

arc-length 5 of the given curve Hence 5, u may be taken as para-

meters for the osculating developable. The parametric curves

s = const, are the generators; and the curves u = const cut the

tangents at a constant distance from the given curve.

If the equation of the surface is given in Monge's form

*=/(*.?)>

the coordinates as, y may be taken as parameters In this case the

parametric curves are the intersections of the surface with the

planes = const, and y = const

Ex.. 1 . On the surface of revolution

x<=ucoscj), y=usm<j)) =/(),

what are the parametric curves =const
,
and what are the curves <= const 9

Ex. 2. On the right helicoid given by

x=ucQS(f), y=UBin<f>, e=o(f),

show that the parametric curves are circular helices and straight lines.
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Ex. 3 . On the hyperboloid of one sheet

x _ \+n y _ 1-X/i
z_

\-fjL

the parametric curves are the generators. What curves are represented by
X=>jbt, and by X/i= const ?

23. First order magnitudes. The suffix 1 will be used to

indicate partial differentiation with respect to u, and the suffix 2

partial differentiation with respect to v. Thus

9r _dr*a ~dv

3ar

_
Tl ~du'

and so on. The vector r, is tangential to the curve v = const at

the point r, for its direction is that of the displacement dr due to

a variation du in the first parameter only. We take the positive

direction along the parametnc curve v = const, as that for which u

increases This is the direction of the vector rT (Fig 10) Similarly

r, is tangential to the curve u = const in the positive sense, which

corresponds to mcrease of v.

Consider two neighbouring points on the surface, with position

vectors r and r + dr, corresponding to the parameter values u, v

and u + du, v + dv respectively Then

, dr , 3r
ar = =- du + =- dv

du ov

Since the two points are adjacent points on a curve passing through

them, the length ds of the element of arc joining them is equal to

their actual distance
|

dr
| apart. Thus

! radu dv + r2
s
diP.

If then we write E = rf, JP=r1T2 , G=>rf ............. (1),

we have the formula

d& = Edu*+2Fdudv+Gdtf ............... (2).

The quantities denoted by E, F, are called the fundamental
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magnitudes of the first order. They are of the greatest imporfc^11

and -will occur throughout the remainder of this book. The c&-B

tity EG- F* is positive on a real surface when u and v are *"e

For */E and V# are the modules of ^ and ra , and, if o> denote "t

angle between these vectors, F= *JEG cos to, and thereforeE&
is positive. We shall use the notation

H* = EG-F* ......................(3)
and let H denote the positive square root of this quantity.

The length of an element of the parametric curve v

found from (2) by putting dv Q. Its value is therefore

The unit vector tangential to the curve v = const, is thus

Similarly the length of an element of the curve u= const;.

,
and the unit tangent to this curve is

The two parametric curves through any point of the surfacse

at an angle eo such that

cos Q)

. rj.ra F
b = . ! =

Therefore*

A + H
and tan to = -=

Also since smw*
|axb|-^| ri x r,|,

it follows that Ir, xr,\ =H
The parametric curves will cut at right angles at any poir

F = at that point, and they will do so at all points ifF= O <

the surface. In this case they are said to be orthogonal. T
^=0 is the necessary and sufficient condition that the parct,me
cwrues mayform an orthogonal system.

* See also Note I, p. 263.
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X. 1 . For a surface of revolution (of. Ex. 1, Art. 22)

r= (it cos v, u sin v, f(u}\

Tz=(-uamvt
ucoa v, 0);

a the parametric curves are orthogonal, and

!z. 2. Calculate the same quantities for the surface in Ex. 2 of the

eding Art.

14. Directions on a surfkce. Any direction on the surface

n a given point (u, v) is determined by the increments du, dv

the parameters for a small displacement in that direction.

, ds be the length of the displacement dr corresponding to

increments du, dv , and let Bs be the length of another dis-

3ement Sr due to increments Su, Sv. Then
dr = ^du + radv,

3 inclination ty of these directions is then given by
dsBs cos ty

= drSr
= EduSu +F (du Sv + dv Sw) + Gdv Sv,

[* dsSssim/r = |cZrx Br\
=

|

du$v dv&u
| |

T! x ra |

= H \duBv -dv8u\.
e two directions are perpendicular if cos

>/r
= 0, that is if

8u

is an important particular case, the angle 6 between the direo-

Pig 11.

* See also Note I, p. 268.
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tion du, dv and that of the curve t> = const, may be deduced

COS

and

d_
ds

Thusfrom the above results by putting 8v = '

1
(E
\ ds

dv

ds

Similarly its inclination ^ to the parametric curve u = const, is

obtained by putting Bu and 8s *fGSv. Thus

1

and

and
du

ds

.(8).

The formula (6) leads immediately to the differential equation

of the orthogonal trajectoiies of the family of curves given by

PSu+QSv=0,
where P, Q are functions of u, v. For the given family of curves

we have

$u__Q
Bv~ P'

and therefore from (6), if du/dv refers to the orthogonal trajectories,

it follows that

(EQ-FP)du + (FQ-GP)dv = ...(9).

This is the required differential equation. If, instead of the differ-

ential equation of the original family of curves, we are given their

equation in the form

<j>(u, u)
=

c,

where c is an arbitrary constant, it follows that

the suffixes as usual denoting partial derivatives with respect to u
and v. The differential equation of the orthogonal trajectories is

then obtained from the preceding result by putting P =
<f>i

and

Q = ^s. which gives

(Efa-F<f>1)du,+ (Fc[>a -G<j>1')dv = Q ......... (10).

An equation of the form

Pdu* + Qdudv + Rdv* =

r
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etenmnes two directions on the surface, for it is a quadratic in

ufdv. Let the roots of the quadratic be denoted by du/dv and

u/Sv. Then

du &f__Q
dv
+ Sv~~P'

'

duSu_Rld dvSv'P"

'n substituting these values in (6) we see that the two directions

ill be at right angles if

Q ..........(11).

Ex. 1 . If -^ is the angle between the two directions given by

Pdu*+ Qdudv+Rdv*=Q,

. *LOW that

Ex. 2 . If the parametric curves are orthogonal, show that the differential

[nation of lines on the surface cutting the curves u= const, at a constant

igle ]3 is

<&*

35

Ex. 3 . Prove that the differential equations of the curves which bisect

ie angles between the parametric curves are

Q and

25. The normal. The normal to the surface at any point is

srpendicular to every tangent line through that point, and is
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therefore perpendicular to each of the vectors ^ and ra . Hence it

is parallel to the vector fi x ra ;
and we take the direction of this

vector as the positive direction of the normal. The unit vector n

parallel to the normal is therefore

_ T! x ra TJ x ra . .

n =
i

,
= f? .............. (12).f V f ff ^ '

|
ii x ra

|

a.

This may be called the unit normal to the surface. Since it is

perpendicular to each of the vectors ^ and ra we have

mr^O, n.ra=0 ................ (13).

The scalar triple product of these three vectors has the value

[n, r1} ra]=n.r1 xra
= jffna = Jff ............(14).

For the cross products of n with i^ and ra we have

ra x n =
-g

F! x (TJ_
x ra) = _ (J7VX

-
ET*},

and similarly

r, x n =
-g:r

a x (rx x ra) = g(Gri
- FTZ).

26. Second order magnitudes. The second denvatives of r

with respect to u and v are denoted hy

3
ar 98r

Thefundamental magnitudes of the second order are the resolved

parts of these vectors in the direction of the normal to the surface.

They will be denoted by L, M, N. Thus

It will be convenient to have a symbol for the quantity LN
We therefore write

though this quantity is not necessarily positive.

We may express Z, M, N in terms of scalar triple products of

vectors. For

On ra ,
ru] = T! x ra.ru= Hnru = EL.

Similarly [rlf ra ,
ru] = rt x ra ria

= Hn r]a
= HM,

and [rj, ra , r^]
= TJ x ra ra = Hn rja = HN.
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It will be shown later that the second order magnitudes are

intimately connected with the curvature of the surface. We may
here observe in passing that they occur in the expression for the

length of the perpendicular to the tangent plane from a point on

the surface in the neighbourhood of the point of contact Let r be

the point of contact, P, with parameter values u, v, and n the unit

normal there The position vector of a neighbouring point Q
(u + du, v + dv) on the surface has the value

The length of the perpendicular from Q on the tangent plane at

P is the projection of the vector PQ on the normal at P, and is

therefore equal to

In this expression the terms of the first order vanish since n is at

right angles to TJ and ra . Hence the length of the perpendicular
as far as terms of the second order is

(Ldu>+ ZMdudv + Ndif).

Ex. 1 . Calculate the fundamental magnitudes for the right helicoid given

by

x=uQOB(f>, t/=ttsra<, s=c<j>.

With M, <f>
as parameters we have

ri=(cos<, sm0, 0),

Ta= (
- u sm 0, ^ cos

(f>, o).

Therefore

Since F=Q the parametric curves are orthogonal. The unit normal to the

surface is

n=--=(osm<, COOS0, u)/S.

Further ru =(0, 0, 0),

, oos</>, 0),

,
-u sin 0,0),

so that the second order magnitudes are
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Ex. 2. On the surface given by

x=a (u+v), y= b (uv\ e=uv,

the parametric curves aro straight lines Further

ri-te &, ),

ra=(a, -b,u),
and therefore

The unit normal is n= (bu+bv, av-au, -

Again ru= (0, 0, 0),

ru= (0,0,1),

ra- (0,0,0),

and therefore L<=Q, M^ -2ab/ff, JV=0,

27. Derivatives of n. Moreover, by means of the funda-

mental magnitudes we may express the derivatives of n in terms

of r, and ra . Such an expression is clearly possible. For, since n

is a vector of constant length, its first derivatives are perpendicular

to n and therefore tangential to the surface They are thus

parallel to the plane of r^ and ra ,
and may be expressed in terms

of these

We may proceed as follows. Differentiating the relation nr,=0
with respect to u we obtain

and therefore nj i^ = n ru = L.

In the same manner we find

(15).nir, = nr12
= M

na T!
= n TB!

= M
ns ra

= nrsa
= N

j

Now since DJ is perpendicular to n and therefore tangential to the

surface we may write

nj = arj + 6r
fl ,

where a and 6 are to be determined. Forming the scalar products

of each side with rt and r, successively we have
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On solving these equations for a and &, and substituting the values

so obtained m the formula for u1} we find

H*UL = (FM - GL) ra + (FL - EM) ra (16)

Similarly it may be shown that

H*na
= (FN'-GM)r1 + (FM-EN)ra .. (16').

If ra and TJ be eliminated in succession from these two equations
we obtain expressions for ^ and ra in terms of na and na . The
reader will easily verify that

T*r^ = (FM - EN) H! + (EM - FL) n,]

These relations could also be proved independently by the same

method as that employed in establishing (16)

From the equations (16) and (16') it follows immediately that

sothat fta, x n, - T'n ................ (18)

Thus the scalar triple product
rpa ^a

[n, n1 ,na]
=
-grn.n=-^=.

And as a further exercise the reader may easily verify the follow-

ing relations which will be used later :

(Of. Ex. 13 at the end of this chapter.)

28. Curvature of normal section. It has already been

remarked that the quantities L, M, N are connected with the

curvature properties of the surface. Consider a normal section of

the surface at a given point, that is to say, the section by a plane

containing the normal at that point. Such a section is a plane
curve whose principal normal is parallel to the normal to the

surface. We adopt the convention that the principal normal to the

curve has also the same sense as the unit normal n to the surface
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Then the curvature Kn of the section is positive when the curve is

concave on the side toward which n is directed. Let dashes denote

differentiation with respect to the arc-length a of the curve. Then

r" = Knu,

and therefore /en = nr" (20).

But r
/ = r1 w' + ra u'

and r" = Tjw" + raw" + ru w's + ZT^U'V' + T&v'
a
.

Consequently, on substituting this value in (20), remembering
that n is perpendicular to ra and ra we obtain

This formula may also be expressed

_ Ldu* + ZMdudv + Ndv*
Kn ~ Edu* + ZFdudv + Gdv*

'

It gives the curvature of the normal section parallel to the direc-

tion duldv. We may call this briefly the normal curvature in that

direction. Tts reciprocal may be called the radius of normal

curvature.

Suppose next that the section considered is not a normal section.

Then the principal normal to the curve is not parallel to n. It is

parallel to r", and the unit principal normal is r"//c, where is the

curvature of the section. Let 6 be the inclination of the plane of

the section to the normal plane which touches the curve at the

point considered. Then 6 is the angle between n and the principal
normal to the curve Hence

Now uf
has the same value for both sections at the given point,

since the two curves touch at that point Similarly i/ is the same
for both. Hence the last equation may be written

cos = Knftc

or Kn =KCtoad (22)

This is Meunier'a theorem connecting the normal curvature in any
direction with the curvature of any other section through the same

tangent line.
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Ex. 1 . If L> M, N vanish at all points the surface is a plane.

Ex. 2. A real surface for which the equations

E= F_ = G

hold is either spherical or plane.

Ex. 3. The centre of curvature at any point of a curve drawn on a

surface is the projection upon its osculating plane of the centre of curvature

of the normal section of the surface which touches the curve at the given

point.

EXAMPLES IT

1 . Taking x, y as parameters, calculate the fundamental magnitudes and

the normal to the surface

2. For the surface of re\ olution

X= UQOB(f>) ^

with u, $ as parameters, show that

E^l+f'*, F=Q,

n=u( /'cos0, /'sin<j(>, 1)1ff,

3. Calculate the fundamental magnitudes and the unit normal for the

conoid

with V,, tj)
as parameters.

4. On the surface generated by the bmormals of a twisted curve, the

position vector of the current point may be expressed r+b where r and b
are functions of * Taking u, s as parameters, show that

where fi is the pnncipal normal to the curve
j
also that

5. When the equation of the surface is given in Mange's form f(x, y),

the coordinates #, y may be taken as parameters If, as usual, p, q are the

derivatives of e of the first order, and r, a, t those of the second order, show

that

*, F=pq, G

7-
r U S

XT
*

-_, JT-g., ff^-g,
2

Deduce that T* is zero for a developable surfeoe.
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7. By means of the formulae of Art. 27 show that

where H*e=EM*- 2FLM+OL2
,

H /= EMN-F(LN+M*)+ OLM,
*- ZFMN+ QM*

8. From a given point P on a surface a length PQ is laid off along the

normal equal to twice the radius of normal curvature for a given direction

through P, and a sphere is described on PQ as diameter. Any curve is drawn

ou the surface, passing through P m the given direction Prove that its circle

of curvature at P is the circle in which its osculating plane at P outs the

sphere

9. Show that the curves du?- (M
a+c2

)c?0
8=0 form an orthogonal system

on the hehcoid of Ex. 1, Art. 26

1 0. On the surface generated by the tangents to a twisted curve, find the

differential equation of the curves which cut the generators at a constant

angle /3

1 1 . Find the equations of the surface of revolution for which

1 22. Show that the curvature K at any point P of the curve of intersection

of two surfaces is given by

K2 sin2 6= KI*+ K2
a - 2*i KB oos ^)

where KI, KS are the normal curvatures of the surfaces m the direction of the

curve at P, and 8 is the angle between their normals at that point.

1 3. Prove the formulae (19) of Art. 27.

From (17) of that Art. it follows that

= (EM- FL) ni x ns ,
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6 . Find the tangent of the angle between the two directions on the surface

determined by the quadratic
[

Pdv?+Qdudv+Rdv*=0 }

Let duldv and 8u/&o be the roots of this quadratic in du/dv. Then, by the (

first two results of Art. 24, 7

E -
3in -<\r do }
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andtherefore

Thus H [n, ni ,
rJ-EM- FLt

and similarly for the others.

1 4 . Prove the formulae

Hn x H!= Mrj.
-Zra \

Hu x na
= ffTi

-MrzJ

"

On differentiating the formula j&h=r1xr2 with respect to M we have

Form the cross product of each side with n Then
- n

1s ,

and similarly for the other.

By substituting in these the values of TI and Fa given in (17) we could

deduce the formulae of Ex. 7

1 5 . Helicoids. A Jiehcoid is the surface generated by a curve which

is simultaneously rotated about a fixed axis and translated in the direction of

the axis with a velocity proportional to the angular velocity of rotation. The

plane sections through the axis are called meridians. No generality is lost by

assuming the curve to be plane, and the surface can be generated by the

heliooidal motion of a meridian.

Take the axis of rotation as z-axis. Let u be the perpendicular distance of

a point from the axis, and v the inclination of the meridian plane through the

point to the gar-plane. Then, if the meridian v=Q is given by *=/(), the

coordinates of a current point on the surface are

#=MCOS, y=u&mv} z=f(it)+ovt

where o is constant, and 2n-c is called the pitch of the heliooidal motion From

these it follows that

JS-I+tf, F-efi t
<y=M8+os

,
5-J=oa+M8

(H-/1s).
The parametric curves are orthogonal only when o is zero or/(w) constant.

The former case is that of a surface of revolution. The latter is the case of a

right Jieliooid which is generated by the heliooidal motion of a straight line

cutting the axis at right angles (Art. 26, Ex. 1). The unit normal to the

general hehcoid is

-n-, -coosv tt/isinv, M),M
and the second order magnitudes are

The parametric curves u= const, are obviously helices.

16. Find the curvature of a normal section of a helicoid.

1 7 . The locus of the mid-points of the chords of a circular helix is a right

hehcoid.

w. 5



CHAPTER IV

CURVES ON A SURFACE

LINES OF CURVATURE

29. Principal directions. The normals at consecutive points

of a surface do not in general intersect; but at any point P there

are two directions on the surface, at right angles to each other, such

that the normal at a consecutive point in either of these directions

meets the normal at P. These are called the principal directions

at P. To prove this property, let r be the position vector of P and

n the unit normal there. Let r+ dr be a consecutive point m the

direction du, dv, and n + do. the unit normal at this point. The

normals will intersect if n, n + do. and dr are coplanar, that is to

say, if n, dn, dr are coplanar. This will be so if their scalar triple

product vanishes, so that

[n, dn, dr] = (1).

This condition may be expanded in terms of du, dv. For

do. = u1du + nzdv,

dr = r^du + radv,

and the substitution of these values in (1) gives

[n, na ,
rx] du* + {[n, n1} rj + [n, n,,, rj} dudv + [n, iia, rj dv9 = 0,

which, by (19) of Art 27, is equivalent to

(EM- FL) du*+ (EN- Gl) dudv + (FN- GM) dv*= . . .(2).

This equation gives two values of the ratio du : dv, and therefore

two directions on the surface for which the required property holds.

And these two directions are at right angles, for they satisfy the
condition of orthogonality (11) of Art 24.

It follows from the above that, for displacement in a principal

direction, dn is parallel to dr. For dr is perpendicular to n, and
da is also perpendicular to n since n is a unit vector. But these

three vectors are coplanar, and therefore dn is parallel to dr. Thus,
for a principal direction, n' is parallel to r', the dash denoting arc-

rate of change.
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A curve drawn on the surface, and possessing the property that

the normals to the surface at consecutive points intersect, is called

a line of curvature. It follows from the above that the direction of

a line of curvature at any point is a principal direction at that point.

Through each point on the surface pass two ones of curvature

cutting each other at right angles, and on the surface there are

two systems of lines of curvature whose differential equation is (2).

The point of intersection of consecutive normals along a line of

curvature at P is called a centre of curvature of the surface, and

its distance from P, measured in the direction of the unit normal

n, is called a (principal) radius of curvature of the surface. The

reciprocal of a principal radius of curvature is called a principal

curvature. Thus at each point of the surface there are two principal

curvatures, Ka and KJ,, and these aie the normal curvatures of the

surface in the directions of the lines of curvature. They must not

"be confused with the curvatures of the lines of curvature. For the

principal normal of a line of curvature is not in general the normal

to the surface. In other words, the osculating plane of a line of

curvature does not, as a rule, give a normal section of the surface,

but the curvature of a line of curvature is connected with the

corresponding principal curvature as in Meunier's Theorem.

The principal radii of curvature will be denoted by a, J3. As these

are the reciprocals of the principal curvatures, we have

UKa = 1, fify
= 1.

Those portions of the surface on -which the two principal curvatures

have the same sign are said to be synclastio. The surface of a sphere

or of an ellipsoid is synclastic at all points. On the other hand if

the principal curvatures have opposite signs on any part of the

surface, this part is said to be anhclastic. The surface of a

hyperbolic paraboloid is anticlastic at all points.

At any point of a surface there are two centres of curvature, one

for each principal direction. Both he on the normal to the surface,

for they are the centres of curvature of normal sections tangential

to the lines of curvature. The locus of the centres of curvature is

a surface called the surface of centres, or the centra-surface. It

consists of two branches, one corresponding to each system of lines

of curvature. The properties of the centro-surface will be examined

in a later chapter.
62
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Ex. JoachlmsthaPs Theorem. If the curve of intersection of two

surfaces w a line of curvature on both, the surfaces cut at a constant angle.

Conversely, if two surfaces cut at a constant angle, and the curve of intersection

is a line of curvature on one of them, it is a line of curvature on the other also.

Let t be the unit tangent to the curve of intersection, and n, H the unit

normals at the same point to the two surfaces. Then t is perpendicular to n
and D, and therefore parallel to n x n Further, if the curve is a line of

curvature on both surfaces, t is parallel to n' and H', the dash as usual

denoting arc-rate of change. Let 6 be the inclination of the two normals.

Then cos 0=nE5
and

d

Put each of these terms vanishes because n' and n* are both parallel to t
Thus oos 6 is constant, and the surfaces cut at a constant angle.

Similarly if d is constant, and the curve is a line of curvature on the first

surface, all the terms of the above equation disappear except the last. Hence

this must vanish also, showing that n' is perpendicular to n. But it is alsc

perpendicular to B, because H is a unit vector Thus fl* is parallel to nxfi
and therefore also to t. The curve of intersection is thus a line of curvature

on the second surface also

3O. First and second curvatures. To determine the prin

cipal curvatures at any point we may proceed as follows. Let r b<

the position vector of the point, n the unit normal and p a pnncipa
radius of curvature. Then the corresponding centre of curvature i

is r + pn. For an infinitesimal displacement of the point along th(

line of curvature we have therefore

ds = (dr + pdn) + ndp.
The vector in brackets is tangential to the surface; and consequentlj
since da has the direction of n (cf. Art. 74),

Q = dr + pdn ................... (3),

or, if AC is the corresponding principal curvature,

Q = fcdr + dn ......................(3').

This is the vector equivalent of Rodrigues' formula. It is of ver

great importance Inserting the values of the differentials in term

of du and dv we may write it

(*Ta + nx) du + (ra + UE) dv= 0.

Forming the scalar products of this with ^ and ra successively w

have, by (16) of Art. 27,
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These two equations determine the principal curvatures and the

directions of the lines of curvature. On eliminating du/dv we have

for the principal curvatures

(icE-L) (K& -N) = (KF- Mf,

or HW-(EN-ZFM + GL)K+T*=Q ......... (5),

a quadratic, giving two values of K as required.

The first curvature of the surface at any point may be defined

as the sum of the principal curvatures*. We will denote it by J.

Thus
J= Ka + KJ,.

Being the sum of the roots of the quadratic (5) it is given by

.............(6)

The second curvature, or specific curvature, of the surface at any

point is the product of the principal curvatures. It is also called

the Gauss curvature, and is denoted by K. It is equal to the

product of the roots of (5), so that

rp
.................. (7).

When the principal curvatures have been determined from (5),

the directions of the lines of curvature are given by either of the

equations (4). Thus corresponding to the principal curvature Ka

the principal direction is given by

du _ /KaF- M\ _ /KaG - N~~ r

and similarly for the other principal direction.

The directions of the lines of curvature may, of course, be found

independently by eliminating K from the equations (4). This leads

to

(FN-

the same equation as (2) found by a different method It may be

remarked that this is also the equation giving the directions of

* Some writers call J the mean curvature and K the total curvature. On this

question see remarks in the Preface and also on p. 264, Note n.
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maximum and minimum normal curvature at the point. For, the

value 'of the normal curvature, being

Ldu* + 2M du dv+ Ndtf ,.

as found in Art. 28, is a function of the ratio du : dv', and if its

derivative with respect to this ratio is equated to zero, we obtain

the same equation (8) as before. Thus the principal directions at a

point are the directions of greatest and least normal curvature.

The equation (8), however, fails to determine these directions

when the coefficients vanish identically, that is to say when

E:F:G= l-M:N................(10).

In this case the normal curvature, as determined by (9), is

independent of the ratio du . dv, and therefore has the same value

for all directions through the point. Such a point is called an

umbilic on the surface

If the amplitude of normal curvature, A, and the mean normal

curvature, B, are denned by
4 = i(* -*), 5 = 6 + /ca) ...........(11),

it follows that

Ka= B-A, Kb=B + A .................(12).

Hence the second curvature may be expressed

E= B*-A>.

We may also mention in passing that, when the first curvature

vanishes at all points, the surface is called a minimal surface.
The properties of such surfaces will be examined in a later

chapter.

Ex. 1 . Find the principal curvatures and the hues of curvature on the

right hehcoid

The fundamental magnitudes for this surface were found in Ex. 1, Art. 26.
Their values are

Z-0, &=-%, JT-Q, *--.
The formula (5) for the principal curvatures then, becomes

whence



80] EXAMPLES 71

The first curvature is therefore zero, so that the surface is a minimal surface.

The second curvature is

The differential equation (2) for the lines of curvature becomes

- odu*+ (v?+ o3) od$*= 0,

that is cd>=+ ,__ .r
-Vtt+<*

Ex. 2. Find the principal directions and the principal curvatures on the

surface

x=a(u+v), y=b(u v\ e=uv.

It was shown in Ex. 2, Art 26, that

H a= 4a2 6a+ a8 (u w)
2+ 62

(M+ )
s
,

and also li-Q, JT--^f, JIT-0, S 1*-

The diflferential equation (2) for the luies of curvature therefore gives

r

The equation (6) for the principal curvatures becomes

so that the specific curvature is A=

and the first curvature is

^-4o6(aa -

Ex. 3. Find the principal curvatures etc. on the surface generated by the

binormals of a twisted curve.

The position vector of the current point on the surface may be expressed

R=r+b,
where r and b are functions of the arc-length a. Taking w, s as parameters,

and using dashes as usual to denote ^-derivatives of quantities belonging to

the curve, we have

Ri=b, Rs-t-urH,

where B is the unit principal normal to the curve. Hence

#-l, ^-0, 6'=

and the unit normal to the surface is

5+rutn= H = ~r~-
Further Rn^O, Ri2=-TH,

Ra, m, (K
-

irf)H+ r (t- rb),
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and therefore Z=0 M=
,

N= (K+ icr
2W2-

The equation (6) for the principal radu of curvature then becomes

The Gauss curvature is therefore

7TA

and the first curvature

For points on the given curve, =0. At such points the Gauss curvature is

r2
,
and the first curvature is K.

The differential equation of the lines of curvature reduces to

-
(

31. Euler's theorem. It is sometimes convenient to refer

the surface to its lines of curvature as parametric curves. If this

is done the differential equation (2) for the lines of curvature

becomes identical with the differential equation of the parametric

curves, that is

dudv = 0.

Hence "we must have

and

From the first two relations it follows that

(EN-GL)M=Q

therefore, since the coefficient ofF and M does not vanish,

JF=0, M = ......................(13).

These are the necessary and sufficient conditions that the parametric

turves be lines of curvature. The condition F = is that of ortho-

gonality satisfied by all lines of curvature. The significance of the

condition M=0 will appear shortly (Art. 36).

We may now prove Euler's theorem, expressing the normal

curvature in any direction in terms of the pnncipal curvatures at

the point. Let the lines of curvature be taken as parametric curves,
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hat F=M= 0. The principal curvature a , being the normal

ature for the direction dv = 0, is by (9)

similarly the principal curvature for the direction du = is

aider a normal section of the surface in the direction du, dv,

ing an angle ^r with the principal direction dv 0. Then by
)f Art. 24 and Note I, since F = 0, we have

dv

s .

curvature Kn of this normal section is by (9)

,r^

mt Kn = Ka cos8 i/r + s sin
a

ty ................ (14).

j is Euler's theorem on normal curvature. An immediate and

ortant consequence is the theorem, associated with the name

)upm, that the sum of the normal curvatures in two directions

ight angles is con&ta/nt, and equal to the sum of the principal

matures.

Then the surface is anticlastic m the neighbourhood of the point

lidered, the principal curvatures have opposite signs, and the

nal curvature therefore vanishes for the directions given by

tan
-\Jr
= J Ka/tcb

- /~?y '

re a, ^9 are the principal radii of curvature. But where the

ace is synclastic, the curvature of any normal section has the

e sign as the principal curvatures, that is to say, all normal

ions are concave in the same direction. The surface in the

fhbourhood of the point then lies entirely on one side of the

Tent plane at the point. The same result may also be deduced

a the expression

4 (Ldu* + ZMdu dv + Ndv*\

'
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found in Art. 26 for the length p of the perpendicular on the

tangent plane from a point near the point of contact. For ifK is

positive, LNM* is positive by (7), and therefore the above

expression for p never changes sign with variation of dujdv.

Ex. If S is the mean normal curvature and A the amplitude, deduce

from Eider's theorem that

K*=B-A cos 2^,

Kn -Ka=24 sm2
^,

KJ an=ZA cos2 -^

32. Dupin'B Indicatrix. Consider the section of the surface

by a plane parallel and indefinitely close to the tangent plane at

the point P. Suppose first that the surface is synclastic in the

neighbourhood of P. Then near P it lies entirely on one side of

the tangent plane. Let the plane be taken on this (concave) side

of the surface, parallel to the tangent plane at P, and at an

--C

Fig. 18

infinitesimal distance from it, whose measure is h in the direction

of the unit normal n. Thus h has the same sign as the principal

radii of curvature, a and /Q. Consider also any normal plane QPQf
through P, cutting the former plane in QQ'. Then if p is the radius

of curvature of this normal section, and 2r the length of QQ
1

,
we

have
i*= 2hp

to the first order. If -^ is the inclination of this normal section to

the principal direction dv = 0, Euler's theorem gives

1
, ,

1 2A
sin" i^ = - =

.

& r
p r9
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If then we write = r cos ir and y r sin we have

Thus the section of the surface by the plane parallel to the tan-

gent plane at P, and indefinitely close to it, is similar and similarly

situated to the ellipse

whose axes are tangents to the hues of curvature at P This

ellipse is called the indicatrias at the point Pt and P is said to be

an elliptic point It is sometimes descnbed as a point of positive

curvature, because the second curvature K is positive.

Next suppose that the Gauss curvature K is negative at P, so

that the surface is anticlastic in the neighbourhood. The principal

radii, a and $, have opposite signs, and the surface lies partly on

one side and partly on the other side of the tangent plane at P.

Two planes parallel to this tangent plane, one on either side, and

equidistant from it, cut the surface in the conjugate hyperbolas

These are similar and similarly situated to the conjugate hyper-
bolas

which constitute the mdicatnx at P. The point P is then called

a hyperbolic point, or a point of negative curvature. The normal

curvature is zero in the directions of the asymptotes.
When K is zero at the point P it is called a parabolic point.

One of the principal curvatures is zero, and the indicators is a

pair of parallel straight lines.

33. The surface z=f(ao} y). It frequently happens that the

equation of the surface is given in Monge's form

=/(. y).

Let as, y be taken as parameters and, with the usual notation for

partial derivatives of z, let
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Then, if r is the position vector of a current point on the surface

Ti-Cl.O.p),

ra
= (0,l, g),

and therefore

The inclination o> of the parametric curves is given by

pq
cos a= -

The unit normal to the surface is

Further ru = (0, 0, r),

ru = (0, 0, 5),

r =
(0, 0,*),

so that the second order magnitudes are

L-L M-- N--' T'-
rL-H ,

M-
fft

A- H ,
J. -

H ,

The specific curvature is therefore

Ta rt - s3

and the first curvature is

The equation (5) for the pimcipal curvatures hecomes

HW -H [r (1 + ff

a

)
-

2pgrs + 1 (1 + jo
2

)} + (rt
- #) = 0,

and the differential equation of the lines of curvature is

[s (1 +#a

)
-
rpq] da? + {t (1 + p

2

)
- r

Since for a developable surface rt s
3 is identically zero (Art. 17),

it follows from the above value of K that the second curvature

vanishes at all points of a developable surface; and conversely, if

the specific curvature is identically zero, the surface is a developable.

Ex. 1 . Find the equation for the principal curvatures, and the differen-

tial equation of the lines of curvature, for the surfaces

(i)
2s= + , (11) Ss-flw^+fy

8
, (m)
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Ex. 2 The indioatnx at every point of the helicoid

x
is a rectangular hyperbola.

Ex. 3. The mdicatnx at a point of the surface z =/(#, y) is a rectangular

hyperbola if

(1 +p2
) t- Zpqs+ (1 + 5

2
) r=0.

Ex. 4. At a point of intersection of the paraboloid xy=cs with the

hypei'boloid aP+y*iP+<p=0 the principal radii of the paraboloid are

34. Surfkce of revolution. A surface of revolution may be

generated by the rotation of a plane curve about an axis in its

plane. If this is taken as the axis of z
t
and u denotes perpendicular

diatance from it, the coordinates of a point on the surface may be

expressed
a? = wcos(/>, 7/

=
wsin^>, z=f(u\

the longitude < being the inclination of the axial plane through
the given point to the #-plane. The parametric curves v = con-

stant are the " meridian lines," or intersections of the surface by
the axial planes ;

the curves u = constant are the "
parallels," or

intersections of the surface by planes perpendicular to the axis

With u, <p as parameters, and r the position vector of a current

point on the surface, we have

rx
=

(cos <, sm
</>, /j),

ra = ( wsinc, MC08<, 0).

The first order magnitudes are therefore

Since F = it follows that the parallels cut the meridians ortho-

gonally. The unit normal to the surface is

* * f J \ / TT

Further ru = (0, 0, /u ),

Fa = ( U COS
<f>,

U 8U1
<J3, 0),

so that the second order magnitudes are

L = ufu/H, M=0, N=uif1/H )
T* = *//&.

Since F and M both vanish identically, the parametric curves are

the lines of curvature. i

/
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The equation for the principal curvatures reduces to

the roots of which are

a

and

\,duj

The first of these is the curvature of the generating curve. The

second is the reciprocal of the length of the normal intercepted

between the curve and the axis of rotation. The Gauss curvature

is given by

and the first curvature by

Ex. 1 . If the surface of revolution is a minimal surface,

Hence show that the only real minimal surface of revolution is that formed

by the revolution of a catenary about its directrix.

Ez. 2. On the surface formed by the revolution of a parabola about its

directrix, one principal curvature is double the other.

EXAMPLES V
1 . The moment about the origin of the unit normal n at a point r of the

surface is m=rxn. Prove that the differential equation of the lines of

curvature is

2. Find equations for the principal radii, the lines of curvature, and the

first and second curvatures of the following surfaces :

(i) the conoid #=ttcos0, y

(ii)
the catenoid

tf=

(m) the cylindroid
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(iv) the surface 2z

(v) the surface

x*=3u(l+v*)-u*, y=
(vi) the surface

x l+uv y _uv z 1-uv
a"* u+v ' l>~u+v' o

"*

+; '

(via) the surface xyz=<$.

3. The lines of curvature of the paraboloid xy=aa he on the surfaces

smh" 1 - + sinh~ 1 -:= const.
a a

4. Show that the surface

4a2
:

a=
(x*

- 2a2
) (y

2- Sa2
)

has a line of umbilios lying on the sphere

5 . On the surface generated by the tangents to a twisted curve the current

point is R=r +itt Taking u, a as parameters, prove that

n=b,

^=0, ^n^
, K =0, ltb

- .
' UK ' UK

The lines of curvature are

3=const.
,

u+s= const.

6 . Examine, as in. Ex. 5, the curvature of the surface generated by the

principal normals of a twisted curve

7 . Examine the curvature of the surface generated by the radii of spherical

curvature of a twisted curve.

8. Show that the equation of the mdicatnx, referred to the tangents to the

parametric curves as (oblique) axes, is

L Z

9 . Calculate the first and second curvatures of the hehooid [Examples

iv, (15)]
x=uooav, y=u&mvt z=f(u)+cv,

and show that the latter is constant along a hehx (u= const
).

1 0. Show that the lines of curvature of the hehcoid in Ex. 9 are given by
M2/a] ditch

The meridians will be Unes of curvature if

1 1 . Find the equations of the helicoid generated by a circle of radius a,

whose plane passes through the axisj and determine the hues of curvature

on the surface.
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CONJUGATE SYSTEMS

35. Conjugate directions. Conjugate directions at a given

point P on the surface may be defined as follows. Let Q be a point
on the surface adjacent to P, and let PR be the line of intersection

of the tangent planes at P and Q. Then, as Q tends to coincidence

with P, the limiting directions of PQ andPR are said to be conju-

gate directions at P. Thus the characteristic of the tangent plane,

as the point of contact moves along a given curve, is the tangent
line in the direction conjugate to that of the curve at the point of

contact. In other words the tangent planes to the surface along a

curve G envelop a developable surface each of whose generators has

the direction conjugate to that of C at their point of intersection.

To find an analytical expression of the condition that two direc-

tions may be conjugate, let n be the unit normal at P where the

parameter values are u, v, and n + da that at Q where the values

are u + du, v + do. If R is the adjacent point to P, in the direction

of the intersection of the tangent planes at P and Q, we may denote

the vector PR by Sr and the parameter values at R by u + SM,

v + Bv. Then since PR is parallel to the tangent planes at P and

Q, Sr is perpendicular both to n and to n + da. Hence Sr is per-

pendicular to da, so that

<Zn-Sr = 0,

and consequently

(H!du + n^dv) (^ 8u + r9 &;) = 0.

Expanding this product and remembering that (Art. 27)

n1 .r1
= - J&, Hi-Fa = na r1

= - M, ns ra = -.#',

we obtain the relation

LduSu + M(du8v+Sudv) + NdvSv = Q (17).

This is the necessary and sufficient condition that the direction

SuJBv be conjugate to the direction du/dv, and the symmetry of the
relation shows that the property is a reciprocal one. Moreover the

equation is linear in each of the ratios du : dv and Su : Bv, so that to

a given direction there is one and only one conjugate direction.

The condition (17) that two directions be conjugate may be

expressed
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Hence the two directions given by the equation

Pdu* + Qdudv + Rdtf=

will be conjugate provided

that is

LR-MQ+NP = .................(18).

Now the parametric curves are given by

dudv = 0,

which corresponds to the values P = R = and Q = 1. Hence the

directions of the parametric curves will be conjugate provided
M= We have seen that this condition is satisfied when the lines

of curvature are taken as parametric curves. Hence the principal

directions at a point of the surface are conjugate directions.

Let the lines of curvature be taken as parametric curves, so that

^=0 and M =0. The directions du/dv and Su/Sv are inclined to

the curve v = const, at angles 6, &' such that (Art. 24)

Substituting from these equations in (17), and remembering that

M= 0, we see that the two directions will be conjugate provided

tanfltanfl' ^ = -
,

/ J\ OL

that is to say, provided they are parallel to conjugate diameters of

tJie indicatnoe.

36. Conjugate systems. Consider the family of curves

<j> (u, v)
= const.

The direction Bu/Bv of a curve at any point is given by

The conjugate direction du/dv, in virtue of (IT), is then determined

by
Q .........(19).

This is a differential equation of the first order and first degree,

and therefore defines a one-parameter family ofcurves -f (u,v)
= const.

This and tlie family < (u, v)
= const, are said to form a conjugate

w.



82 CURVES ON A SURFACE [IV

system.^ At a point of intersection of two curves, one from each

family, their directions are conjugate.

Further, given two families of curves

cf> (u, -y)
= const.,

/r (M, v)
= const.,

we may determine the condition that they form a conjugate system.

For, the directions of the two curves through a point u, v are given

by

It then follows from (17') that these directions will be conjugate

if

L$^ -M (&ta + &fi) + tffrti = ..... (20>-

This is the necessary and sufficient condition that the two families

of curves form a conjugate system. In particular the parametri<

curves v = const., u = const, will form a conjugate system if M=
This agrees with the result found in the previous Art. Thus M= (

is the necessary and sufficient condition that the parametric curve,

form a conjugate system
We have seen that when the lines of curvature are taken a

parametric curves, both F=0 and M = are satisfied. Thus th

lines of curvature form an orthogonal conjugate system. And the;

are the only orthogonal conjugate system. For, if such a system o

curves exists, and we take them for parametric curves, then F= I

and M=Q. But thug shows that the parametric curves are the]

lines of curvature. Hence the theorem.

i Ex. 1 . The parametric curves are conjugate on the following surfaces .

\ (i) a surface of. revolution

z=f(u);

(li) the surface generated by the tangents to a curve, on which

i R= r+ -zft, (u, s parameters) ;

'

(oil) the surface a?=^>(w), y=^(v), e**f(u)+F(v);

(iv) the surface e=f(of)+F(y), where x, y are parameters;

(v) x=A(u-a)m (v-a), y=(u-b}m (v~b)
n
t t=0(u-c')'*(v-c)*,

where A, B, 0, a, 6, o are constants.

I

Ex. 2. Prove that, at any point of the surface, the sum of the radii

t

normal curvature in conjugate directions is constant.



36, 37] ASYMPTOTIC DIRECTIONS 83

ASYMPTOTIC LINES

37. Asymptotic lines. The asymptotic directions at a point
on the surface are the self-conjugate directions; and an asymptotic
line is a curve whose direction at every point is self-conjugate.

Consequently, if in equation (17) connecting conjugate directions

we put &u/8v equal to dujdv, we obtain the differential equation of

the asymptotic lines on the surface

Ldu* + 2Mdudv + Ndtf=Q ...............(21).

Thus there are two asymptotic directions at a point. They are real

and different when M* -LN is positive, that is to say when the

specific curvature is negative They are imaginary when K is

positive. They are identical when K is zero In the last case the

surface is a developable, and the single asymptotic line through a

point is the generator.

Since the normal curvature in any direction is equal to

it vanishes for the asymptotic directions. These directions are

therefore the directions of the asymptotes of the mdicatrix, hence

the name. They are at right angles when the mdicatrix is a rect-

angular hyperbola, that is when the principal curvatures are equal

and opposite. Thus the asymptotic lines are orthogonal when the

surface is a minimal surface.

The osculating plane at any point of an asymptotic line is the

tangent plane to the surface. This may be proved as follows. Since

the tangent t to the asymptotic line is perpendicular to the normal

n to the surface, nt = 0. On differentiating this with respect to

the arc-length of the line, we have

where n is the principal normal to the curve. Now the first term

in this equation vanishes, because, by Art 35, t is perpendicular

to the rate of change of the unit normal in the conjugate direction,

and an asymptotic direction is self-conjugate. Thus n't = and

the last equation becomes

nn = 0.

Then since both t and n are perpendicular to the normal, the

osculating plane of the curve is tangential to the surface. The

62
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binomial is therefore normal to the surface, and we may take its

direction so that

b=n ................ (22).

Then the principal normal fi is given by
n = n x t

If the parametric curves be asymptotic lines, the differential

equation (21) is identical with the differential equation of the para-
metric curves

dudv = 0.

Hence the necessary and sufficient conditions that the parametric
curves be asymptotic lines are

= 0, #= 0, Jf+0.
In this case the differential equation of the lines of curvature

becomes

and the equation for the princip il curvatures is

* - M* = 0,

eo that * J ..............(23).

38. Curvature and torsion. We have seen that the unil

binormal to an asymptotic line is the unit normal to the surface

or b = n. The torsion T is found by differentiating this relatior

with respect to the arc-length 5, thus obtaining

Tfi = n',

where n = n x r
7

is the principal normal to the curve. Forming
the scalar product of each side with 5, we have

r = n x r'n',

sothat T=[n,n',r'] ............ (24),
which is one formula for the torsion.

The scalar triple product in this formula is of the same form ai

that occurring in (1) Art. 29, the vanishing of which gave th<
differential equation of the lines of curvature. The expression (24
may then be expanded exactly as in Art 29, giving forthe torsioi
of an asymptotic line

T = ^ {(EM - FL) <*' + (EN - QL) u'v' + (FN- GM) v*} .
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Suppose now that the asymptotic lines are taken as parametric
curves. Then L = N=>0, and this formula becomes

Hence for the asymptotic Ime dv= we have

\* M

in virtue of (23) Similarly for the asymptotic line du the

torsion is

Thus the torsions of the two asymptotic lines through a point are

equal in magnitude and opposite in sign; and the square of either is

the negative of the specific curvature. This theorem is due to

Beltrann and Enneper.

To find the curvature K of an asymptotic line, differentiate the

unit tangent t = r' with respect to the arc-length s. Then

KU = r".

Forming the scalar product of each side with the unit vector

n =a n x r', we have the result

=
[n,r',r"J .....................(26).

Ex. 1 . On the surfaces in Ex 1 and Ex. 2 of Art 26 the parametric

curves are asymptotic bnes

Ex. 2. On the surface =/(#, y) the asymptotic lines are

rdap+ 2a da;dy+ 1dy
a=

0,

and their torsions are 'JtP-rtKl +p*+ g
a
).

Ex. 3. On the surface of revolution (Art. 34) the asymptotic lines are

Write down the value of their torsions.

Ex. 4. Find the asymptotic lines, and their torsions, on the surface

generated by the binormals to a twisted curve (Ex. 3, Art 30).

Ex. 5. Find the asymptotic lines on the surface e**y sin a;.

ISOMETRIC LINES

39. Isometric parameters. Suppose that, in terms of the

parameters u, v, the square of the linear element of the surface has

the form dsa = \(du
t + dv>

) ....................(27),
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where \ is a function of u, v or a constant. Then the parametric

curves are- orthogonal because ^=0 Fuither, the lengths of

elements of the parametric curves are V\ du and <J\ dv, and these

are equal if du= dv. Thus the parametric curves corresponding to

the values u, u + du, v, v + dv bound a small square provided
du = dv. In this -way the surface may bo mapped out into small

squares by means of the parametric curves, the sides of any one

square corresponding to equal increments m u and v.

More generally, if the square of the linear element has the form

d& = \(Udu*+Vdv*) (28),

where U is a function of u only and V a function of v only, we may
change the parameters to <, ty by the transformation

dc})
= Jlj du, dty = J~Y dv.

This does not alter the parametric curves; for the curves u const,

are identical with the curves <= const., and similarly the curves

v- const, are also the curves 1^
= const. The equation (28) then

becomes ds* = \(dp+dW (20),

which is of the same form as (27). Whenever the square of the

linear element has the form (28) so that, without alteration of the

parametric curves, it may be reduced to the form (27), the

parametric curves are called isometoic lines, and the parameters
isometric parameters. Sometimes the term isothermal or isvthermio

is used.

In the form (27) the fundamental magnitudes E and G are equal;
but in the more general form (28) they are such that

E U= 7 (30),

and therefore 3^ lo& =
(31).

Either of these equations, m conjunction with F=Q, expresses the

condition that the parametric variables may be isometric. For, if it

is satisfied, d& has the form (28) and may therefore be reduced to

the form (27).

A simple example of isometric curves is afforded by the meridians
and parallels on a surface of revolution. With the usual notation

(Art. 34)
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%= !+#, ^=0, 0-tf,

ave ds3 =
(1 +/,

1

) du* + u* d<p

(32),

h is of the form (28). The parametric curves are the meridians

3onst. and the parallels u const. Ifwe make the transformation

surves T/T
= const, are the same as the parallels, and the square

le linear element becomes

;h is of the form (27). Thus the meridians and the parallels oj

rface of revolution are isometric lines.

X. 1 . Show that a system of oonfooal ellipses and hyperbolas are iso

10 lines in the plane.

X. 2. Determine /(v) so that on the right conoid

aarametrio curves may be isometric lines.

X. 3^ Find the surface of revolution for which

NULL LITSTES

LO. Null lines. The null lines (or minimal curves') on a surface

defined as the curves of zero length. They are therefore

iginary on a real surface, and their importance is chiefly analytic.

3 differential equation of the null lines is obtained by equating

sero the square of the linear element. It is therefore

Edu? + 2Fdudv + Gdv*=0 ..............(33).

f the parametric'
curves are null lines, this equation must be

nvalentto<Wv = 0. Hence # = 0, G = and J^O. These are

necessary and sufficient conditions that the parametric curves be

B lines In this case the square of the linear element has the

m
cZs

2 = \ dudv,

Lere \ is a function of ut
v or a constant; and the parameters u,

ire then said to be symmetric.
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When the parametric curves are null lines, so that

#=0, = 0, H' = -F*,

the differential equation of the lines of curvature is

the Gauss curvature is

K==
LN-M*

and the first curvature

In the following pages our concern will be mainly with real

curves and real surfaces. Only occasional reference will be made

to null lines.

EXAMPLES VI

1 . Find the asymptotic lines of the conoid

0!=u

and those of the oylmdroid

37

2. On the surface

)
1J
8
,

2= 3 (ifl
V2

'),

the asymptotic lines are uv= const.

3. On the paraboloid 2z=-^-f?r.o o

the asymptotic lines are -
|= const.

4. Find the lines of curvature and the principal curvatures on the

cylmdroid

5 . If a plane cuts a surface everywhere at the same angle, the section is a

line of curvature on the surface.

6 . Along a line of curvature of a comcoid, one principal radius vanes as

the cube of the other.

7 Find the principal curvatures and the lines of curvature on the surface

8. Find the asymptotic lines and the lines of curvature on the oatenoid

of revolution

-accost-.
o
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p y2 Z1

i. If a> 6> c, the ellipsoid
-
2 + & + -5= 1 has umbilici at the points

0. The only developable surfaces which have isometric lines of curva-

> ore either conical or cylindrical.

1. Taking the asymptotic lines as parametric curves, and evaluating

n', I"*] along the directions w=conHt and Tissconst., vonfy the values
1 K for the torsions of the asymptotic linos

2. Show that the meridians and parallels on a sphere form an isometric

,em, and determine tho isometric p inunetoru.

,3. Find tho asymptotic linos on the surface

sin v

4. Prove that tho product of tho rudu of normal curvature m conjugate

ctions is a minimum for lines of curvature.

5 . A curve, which touches an asymptotic lino at P, and whoso osculating

ic is not tangential to tho surface at 1\ has P for a point of inflection.

6. The normal curvature in a direction perpendicular to an asymptotic
is twice the mean normal curvature

.7. Show that the umbilici of tho surface

m a sphere.

8. Examine tho curvature, and ilnd the lines of curvature, on the

ace xye**abc.

9. Show that tho curvature of an asymptotic line, as given in (26) of

. 38, may bo oxprosnud

(riT
/ ra*r"-ra .r'rI .r")//?'.

SO. Tho asymptotic linos on tho huhcoid of Examples IV (15) are given



CHAPTER V

THE EQUATIONS OF GAUSS AND OF CODAZZI

4 1 . Gauss's formulae for ru ,
ria ,

r
ffl

. The second derivatives

of r with respect to the parameters may be expressed in terms of

n, T! and ra . Kemembermg that L, M, N are the resolved parts of

rm rui r
ffl
normal to the surface, we may wnte

(1),

and the values of the coefficients I, m, n, A,, jj,,
v may be found as

follows. Since

and
1 9

we find from the first of (1), on forming the scalar product of each

side with T! and ra successively,

Solving these for I and X we have

i.
1

.(2).

Again since ra r^,
= %EZ and ra rls

= Qlt we find from the second
of (1), on forming the scalar product of each side with rx and r

fl

successively,

Solving these for m and
JJL
we have

1

,(3).
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,rly, using tho relations r, rM = Ft GI and ra r^ = \ Gtt

i from the third of (1)

n-^^GFt-GGi-FG^

rmulae (1), with tho values of the coefficients* given by (2),

i (4), aro the equivalent of Gauss's formulae for rn> ria ,
rM)

ay bo referred to under this name.

en the parametric curves are orthogonal, the values of tho

coefficients are greatly mmpliiied. For, in this case, F=

=#(?, so that

+ (A).

aro unit vcclorH iiralljl to TI and ra ,
wo have

a, b, n f(>nn a rigliti-hiindf
kd Hyntom of unit voctorw, mutually

idicular. From t,ln'.sc fonnulat; wo deduce1

immudiatuly that

?a /, _ A',
"

^.,
t= "

/ v ^ o rr

privativea of a are porpi'iidicular to a, and tho derivatives of

perpendicular to b, aincc a and b are vectors of constant (unit)

u

i refrain from introducing the OhriHtnlTol three-index syraboln, having little

a in the following pages to UHO the function!) they represent.
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Ex. 1. Show that for the surface s=f(x, #), with #, y as parameters

(Art. 33),
. pr pa pt4=

1
mt=3

*>
n=~*

Ex. 2. For the sxtrfaoe of revolution (Art. 34) show that

J-K'A/uAff", -Qi n=-v?IH\

X-0,
I

Ex. 3. For the right heliooid (Ex 1, Art 26) prove that '

X=0, /*=u/(M
2+ca

), v=Q

Ex. 4. For a surface whose linear element is given by

show that =0, m-=0,

X=0, /i

Ex. 5 . Inouville surfaces are such that

where J7, P are functions of u alone, and V, Q are functions of v alone Prove

that, for these surfaces,

if v g\+ '

Ex. 6. For the surface generated by the tangents to a twisted curve

[Examples V (5)J show that

X=0, /*=- V=

Ex. 7 . For the surface generated by the bmormals to a twisted curve

(Ex. 3, Art. 30) show that

Z=0, m=0, 71=-^,

-' r 1+ttV"
"

1+^V-
Ex. 8. If the asymptotic lines are taken as parametric curves, prove that

the curvature of the line v= const is \H/J3%y
and that of the line u= const is
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Using the formula (26) of Art. 38 we have along the line v const.

and therefore r' x r"=

The curvature of the line is then

[n, r', r"]=[n,

and similarly for the asymptotic line u*= const.

Ex. 9 . For a surface given by d <=
(o?u

a+ dip) show that

Ex. 1 0. If the null lines are taken as parametric curves, show that

l=Fi/Ft mO, n=0,

X=0, ^t=0, v

42. Gauss characteristic equation. The six: fundamental

magnitudes J, .F, (?, i, Jf, ^ are not functionally independent,

but are connected by three differential relations One of these, due

to Gauss, is an expression for LN' M1 m terms of E, F, B and

their derivatives of the first two orders. It may be deduced from

the formulae of the preceding Art. For, in virtue of these,

ru -rja
= LN + InE + (lv + \ri) F+\vG,

and r,,
1 = M* + rri?E + Sm^F+ fj? G.

It is also easily verified that

ria
a - ru rB = i (Eu + Qu - 2 1̂2).

Adding the first and third, and subtracting the second, we obtain

the required formula, which may be wntten

..... (5).

This is the Gauss chwracteristiG equation. It is sometimes expressed

in the alternative form

TAT M* IP-LN -M* = IH~- j n-3w EH. dv N du

IMS _F_
T[to EH

The equation shows that ike specific curvature K, which is equal to

(LNM*)/H a
,
is easpressible in terms of the fundamental magni-



94 THE EQUATIONS OS GAUSS AND OP OODAZZI [V

tudes E, F, G and their derivatives of the first two orders. In this

respect it differs from the first curvature.

Cor. Surfaces which have the same first order magnitudes
E, F} Q (irrespective of the second order magnitudes L, M, N)
have the same specific curvature.

Ex. Verify the Gauss equation (5) for the surfaces in Examples 2, 3, 61

7 of Art. 41.

43. Malnardl-Codazzi relations. In addition to the Gause

characteristic equation, there are two other independent relations

hetween the fundamental magnitudes and their derivatives. These

may be established as follows. If in the identity

9 _ 3

^ ru -^ ru

we substitute the values of rn and ru given in (1), we obtain

If in this we substitute again from (1) the values of the second

derivatives of r, and also for xij and n,, from Art. 27, we obtain a

vector identity, expressed in terms of the non-coplanar vectors

n, TU ra . We may then equate coefficients of like vectors on the

two sides, and obtain three scalar equations. By equating coeffi-

cients of n, for example, we have

La + IM + XJV=Ml +mL + pM,
that is La-M1

= mL-~(l-/jl)M-\N.............. (7).

9 3
Similarly from the identity

g-
ru = 5- rn ,

on substituting from

(1) the values of rla and r^ we obtain the relation

Man + mat
1

! + j^r,, + Mnt + mr^ + pr^
- JVin + iHF! + *ir, + Nu^ + nru + vria.

Substituting again for the second derivatives of r and for nl4 na in

terms of n, Tlt ra> and equating coefficients of n on the two sides

of the identity, we obtain

Ma +mM + fjJV=N1 + nL + vM,

that is Mi-Ni
= nL-(m-v)M-fj,N' ............. (8).
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The formulae (7) and (8) are frequently called the Codazzi

equations. But as Mainardi gave similar results twelve years earlier

than Codazzi, they are more justly termed the Mainardi-Oodazzi

relations. Four other formulae are obtained by equating coefficients

of TI and of ra in the two identities : but they are not independent.

They are all deducible from (7) and (8) with the aid of the Gauss

characteristic equation.

44. Alternative expression. The above relations may be

expressed in a different form, which is sometimes more useful

By differentiating the relation H* = EG- F* with respect to the

parameters, it is easy to verify that

and

fN\ Ni N
Therefore

..... 3 (M\ M, M
and similarly

_
(^_J

=_ __

Consequently

M N

(9),

in virtue of (8). Similarly it may be proved that

The equations (9) and (10) are an alternative form of the Mamardi-

Codazzi relations.

We have seen that if six functions E, F, G, L, M, N constitute

the fundamental magnitudes of a surface, they are connected by
the three differential equations called the Gauss characteristic

equation and the Mainardi-Codazzi relations Conversely Bonnet

has proved the theorem : When six fundamental magnitudes are

given, satisfying ike Gauss characteristic equation and the Mainardi-
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Codajssn, relations, they determine a surface uniquely, except as to

position and orientation in space f. The proof of the theorem is

beyond the scope of this book, and we shall not have occasion to

use it.

*45. Derivatives of the angle o>. The coefficients occurring
in Gauss's formulae of Art 41 may be used to express the deriva-

tives of the angle oo between the parametric curves. On differen-

tiating the relation

tana> = -~
Jf

with respect to u, we have
. FH.-HF,

sec8 &>>!= ^ -1
.

Then on substituting the value sec* o> = EG(F\ and multiplying
both sides by 2HF*, we find

= F (EG - F*)
- 2^ (EG -

Hence the formula to, = - H +
Vfi

' G
And in a similar manner it may be shown that

EXAMPLES VII

1 . Show that the other four relations, similar to the Mamardi-Oodazzi
relations, obtainable by equating coefficients of FI and of ra in the proof of
Art. 43, are equivalent to

FK=. TO! Za+m/i
-
nX,

X2
-

jta+ fyi
-mX+ Xv -

QE= 7i
t
-

Tna+ In m?+mv
2. Prove that these formulae may be deduced from the Gauss character-

istic equation and the Mainardi-Codazzi relations.

t Forayth, Differential Geometry, p 60.
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3. Prove the relations

a /s\\ 9

9 Hn\ 8 Em

ling the formulae in Ex. 1

4. If is the angle between the parametric curves, prove that

3
(- a>

*=to(
9 Hn

5. If the asymptotic lines are taken as parametric curves, show that the

Ainardi-Codazzi relations become

enoe deduce that (of. Art 44)

6. When the parametric curves are null lines, show that the Mamardi-

odazzi relations may be expressed

3. M NI

id the Gauss characteristic equation as

T 717 1ft JfLNMa
='J'i

7. When the linear element is of the form

<&a-.<

10 Mainardi-Oodaza relations are

id the Gauss equation

8. When the parametric curves are hues of curvature, deduce from equa-

ons (7) and (8) that
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9 . Prove that, for any direction on a surface,

where

1 0. With the notation of Ex 9, show that the curvature of an asymptotic

line, as given by (26) of Art 3d, may be expressed

Deduce the values H\l$ and -Hnl$ for the curvatures of the parametric

curves when these are asymptotic lines.

11. Prove the relations

F ~

1 2. From the Gauss characteristic equation deduce that, when the para-
metric curves are orthogonal,

This formula is important
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GEODESICS AND GEODESIC PARALLELS

GEODESIOS

46. Geodesic property. A geodesic line, or briefly a geodesic,

on a surface may be defined as a curve whose osculating plane at

each point contains the normal to the surface at that point. It

follows that the principal normal to the geodesic coincides with the

normal to the surface; and we agree to take it also in the same

sense. The curvature of a geodesic is therefore the normal curva-

ture of the surface in the direction of the curve, and has the value

K = Lu'* + 2Mu'v' + Nvfa

(1),

by Art. 28, the dashes denoting derivatives with respect to the

arc-length s of tho curve.

Moreover, of all plane sections through a given tangent line to

the surface, the normal section has the least curvature, by Meunier's

theorem. Therefore of all sections through two consecutive points

P, Q on the surface, the normal section makes the length of the

arc PQ a minimum But this is the arc of the geodesic through

P, Q. Hence a geodesic is sometimes denned as the path of shortest

distance on the surface between two given points on it. Starting

with this definition we may reverse the argument, and deduce the

property that the principal normal to the geodesic coincides with

the normal to the surface. The same may be done by the Calculus

of Variations, or by statical considerations in the following manner.

The path of shortest distance between two given points on the

surface is the curve along which a flexible string would lie, on the

(smooth) convex side of the surface, tightly stretched between the

two points Now the only forces on an element of the string are

the tensions at its extremities and the reaction normal to the

surface. But the tensions are in the osculating plane of the

element, and therefore so also is the reaction by the condition of

equilibrium. Thus the normal to the surface coincides with the

principal normal to the curve.

72
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47. Equations of geodesies. From the defining property of

geodesies, and the Serret-Frenet formulae, it follows that

r"= n ......................... (2),

which may be expanded, as in Art. 28,

rX' + Tav" + Tuu'
a + 2riauY + iv'9 = *n.

Forming the scalar product of each side with TJ and ra successively,
we have

Eu" + Fv" + $ElU'* + Ezu'v' + (Fa -%QJ v'* = 0)

Fu" + Gfv" + (F,
- #a)& + G^u'v' + ff.* = Oj

These are the general differential equations of geodesies on a surface.

They are clearly equivalent to the equations

i (Eu! + Fv'} = $ (E^u
1* + S^ttV+ GX^

, ....... (4).

s (Fu
r + Gh)')

= I (E^u'* + 2Fzu'i/+ Gav'*)

A. third form, which is sometimes more convenient, may be found

by solving (3) for u" and v"t thus obtaining

u" + lu'* + 2mwV + ni/* =

where Z, \ etc. are the coefficients of Art. 41.

A curve on the surface is, however, determined by a single
relation between the parameters. Hence the above pair of differ-

ential equations may be replaced by a single relation between u,

v. If, for example, we take the equations (5), multiply the first by
dv /dsY , , Afo\ 9

du \rfij
'

second by (jjjj
and subtract, we obtain the single

differential equation ofgeodesies in the form

Now from the theory of differential equations it follows that there

exists a unique integral v of this equation which takes a given
value u when w= UQ, and whose denvative dv/du also takes a given
value when u = u^. Thus through each point of the surface there

passes a single geodesic in each direction. Unlike lines of curvature

and asymptotic lines, geodesies are not determined uniquely or in

pairs at a point by the nature of the surface. Through any point
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pass an infinite number of geodesies, each geodesic being deter-

mined by its direction at the point.

The equations of geodesies involve only the magnitudes of the

first order, E, F, (?, and their derivatives. Hence if the surface is

deformed without stretching or tearing, so that the length ds of

each arc element is unaltered, the geodesies remain geodesies on the

deformed surface In particular, when a developable surface is

developed into a plane, the geodesies on the surface become straight

lines on the plane. This agrees with the fact that a straight line

is the path of shortest distance between two given points on the

plane.

From (6) it follows immediately that the parametric curves

v => const will be geodesies if X = 0. Similarly the curves u = const.

will be geodesies if n = 0. Hence, if the parametric cu/ryes are

orthogonal (F= 0), the curves v = const, will be geodesies provided
JE is a function of u only, and the curves u = const, mil be geodesies

if G is a function of v only.

Ex. 1 . On the right hehcoid given by

we have seen (Ex. 1, Art 26) that

.E-l, ^=0, (7=M2 +oa
,
IP-

Therefore the coefficients of Art 41 have the values

X=0, Ai

The equations (5) for the geodesies become

From the second of these it follows that

(M
2+oa

) -r^=const.=A (say).

But for any arc on the surface

d&

Hence, for the arc of a geodesic,

and therefore =

This is a first integral of the differential equation of geodesies. The complete

integral may he found in terms of elliptic functions.
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Ex. 22. When the equation of the surface is given in Mongtfs form

z=f(x, y\ we have seen (Art. 33) that, with x
t y as parameters,

E^I+p*, F=pq, 6

Therefore, by Art 41, Z=-, m

The equation (6) for geodesies then takes the form

48. Surface of revolution. On the surface of revolution

x = ucoa^3 } y = UBiH(j), z=f(u\
we have seen (Art 34) that with u, <f>

as parameters

^-1+/A -^=0, = wa
, JEf = w"(l+/1

J
).

Therefore, by Art. 41,

X=0, /u
= -, v = 0.

The second of equations (5) for geodesies then takes the form

d*<j> 2dud<f> =
dip

+
uds ds

On multiplication by u* this equation becomes exact, and has for

its integral

where A is a constant. Or, if ty is the angle at which the geodesic
cuts the meridian, we may write this result

a theorem due to Clairaut. This is a first integral of the equation
of geodesies, involving one arbitrary constant h.

To obtain the complete integral we observe that, for any arc on
the surface,

ds? = (1 +/!
s
) du* + u*d<p,

and therefore, by (7), for the arc of a geodesic,

vtdp = h* (1 +#) du*

so that < =
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Thus f.0* v ,fc, ..................(8),

involving the two arbitrary constants G and h, is the complete

integral of the equation of geodesies on a surface of revolution.

Cor. It follows from (?') that h is the minimum distance from

the axis of a point on the geodesic, and is attained where the geo-
desic cuts a meridian at right angles.

Ex. 1 . The geodesies on a circular cylinder ore helices.

For from (7*), since u is constant ^ is constant. Thus the geodesies out the

generators at a constant angle, and are therefore helices.

Ex. 2. In the case of a right circular cone of serai-vertical angle a, show
that the equation (8) for geodesies is equivalent to

where h and j8 are constants.

33x. 3 . The perpendicular from the vertex of a right circular cone, to a

tangent to a given geodesic, is of constant length.

49. Torsion of a geodesic. If r is a point on the geodesic,
r' is the unit tangent and the principal normal is the unit normal

n to the surface. Hence the unit binormal is

b=r'xn.

Differentiation with respect to the arc-length gives for the torsion

of the geodesic
rn = r" x n + r/ x n'.

The first term in the second member is zero because r" is parallel

to n. Hence
Tn = n'xr' ..........................(9),

and therefore r = [n, n', r'] .......................(10).

This expression for the torsion of a geodesic is identical with that

found in Art. 38 for the torsion of an asymptotic line. The geo-
desic which touches a curve at any point is often called its geodesic

tangent at that point. Hence tlie torsion of an asymptotic line %s

equal to the torsion of its geodesic tangent.

Further, the expression [n, n', r
7

] vanishes for a principal direc-

tion (Art. 29). Hence the torsion of a geodesic vanishes where it

touches a line of curvature. It also follows from (10) that if a geo-

desic is a plane curve it is a line of curvature ; and, conversely, if a,

geodesic is a line of curvature it is also a plane curve.
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The triple product [n, n', r
7

] may be expanded, as in Art. 29,

by writing n' = nxw' + nX and r* = rX + rav' The formula for tlie

torsion of a geodesic then becomes

T = i {(EM- FL) w/s + (EN - GL) u'v + (FN - QM) </'} (11).

This may be expressed in terms of the inclination of the geodesic

to the principal directions. Let the lines of curvature be taken as

parametric curves. Then

and the last formula becomes

T =

But (Art. 24 and Note I) if ty is the inclination of the geodesic to

the line of curvature v constant,

*/JS uf = cos ty, V ? if = sin ^.

Also the principal curvatures are

Hence the formula for the torsion of the geodesic becomes

T=COSl/r sini/r(Aj, Ka) ............... (12).

From this it follows that two geodesies at right angles have their

torsions equal in magnitude but opposite in sign. Further, besides

vanishing in the principal directions, the torsion of a geodesic

vanishes at an umbilic. And, of all geodesies through a given point,
those which bisect the angles between the lines of curvature have

the greatest torsion.

The curvature of a geodesic is the normal curvature in its direc-

tion. Its value, as given by Euler's theorem (Art 31), is therefore

K => Ka COS
8^ + Kb 8ina

ty ............. (13).

Ex. 1 . If
*c, T are the curvature and torsion of a geodesic, prove that

Also, if the surface is developable (/ca=0), show that

Ex. 2. Deduce from (12) that the torsions of the two asymptotic lines at

a point are equal in magnitude and opposite in sign.
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Ex. 3. Prove that the torsion of a geodesic is equal to

1 Eu'+ Ftf Fv,'+Gh/

^ Lu'+Mtf Mu'+Nv'

Ex. 4. Prove that, with the notation of Art 49 for a geodesic,

K cos
v/f

T sin ^f
= Ka cos ^rt

'=K& sin
\ls.

CURVES IN EELATION TO GEODESICS

5O. Bonnet's theorem. Let G be any curve drawn on the

surface, r' its unit tangent, n its principal normal, T its torsion,

and W the torsion of the geodesic which touches it at the point

considered. We define the normal angle ta of the curve as the

angle from n to the normal n to the surface, in the positive sense

b
A

^ n

Fig. 14.

for a rotation about r'. Thus or is positive if the rotation from

n to n is in the sense from n to the binormal b; negative if in the

opposite sense. Then at any point of the curve these quantities

are connected by the relation

This may be proved in the following manner. By (9) of the

previous Art we have TPn = n' x r'. The unit binormal to the

curve is b = r
7

x n, and
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Differentiating this last equation, we have

cos is -j- =b'n + bn'
ds

= rnn + r' xfi-n

= T cos w + Wn n
=

( T + TF) cos .

Hence the formula -5- + T = W,

expressing a result due to Bonnet. SincaJflMs the torsion of the

geodesic tangent, it follows that the quantity (-r- + T
]
has the same

value for all curves touching at the point considered The formula

also shows that
'

is the torsion of the geodesic tangent relative

to the curve G
;
or that vr' is that of relative to the geodesic

tangent.

Ex. Prove (14) by differentiating the formula

5 1 . JoachlmsthaPs theorems. We have seen that the tor-

sion W of the geodesic tangent to a kne of curvature vanishes at

the point of contact. If then a curve G on the surface is both a

plane curve and a line of curvature, r = and TF=0; and there-

fore, in virtue of (14), or' = 0. Consequently its plane cuts the

surface at a constant angle. Conversely, if a plane cuts a surface

at a constant angle, the curve of intersection has zero torsion, so

that r=0 and cr' = 0. Therefore, in virtue of (14), W vanishes

identically, showing that the curve is a line of curvature. Similarly
if -or is constant and the curve is a line of curvature, T must vanish,
and the curve is plane. Hence if a curve on a, surface has two of
the following properties it also has the third: (a) it is a line of
curvature, (6) it is a plane curve, (c) its normal angle is constant.

Moreover, if the curve of intersection of two surfaces is a line of
curvature on each, the surfaces cut at a constant angle. Let w and
or be the normal angles of the curve for the two surfaces. Then
since the torsion W of the geodesic tangent vanishes on both

surfaces,
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Hence j- (or -BTO)
= 0,

CLS

so that -or iir = const.

Thus the surfaces cut at a constant angle.

Similarly, if two surfaces cut at a constant angle, and the curve

of intersection is a line of curvature on one, it is a line of curvature

on the other also. For since

w iff = const.

it follows that ^ = dp i

as as

Hence, by (14), if W and TP are the torsions of the geodesic tan-

gents on the two surfaces,

TF-T=TPo-T,
so that TF= F .

If then W vanishes, so does TT , showing that the curve is a line

of curvature on the second surface also. The above theorems are

due to Joachimsthal. The last two were proved in Art. 29 by
another method.

Further, we can prove theorems for spherical lines of curvaturet

similar to those proved above for plane lines of curvature. Geo-

desies on a sphere are great circles, and therefore plane curves.

Their torsion TF therefore vanishes identically. Hence for any
curve on a sphere, if tsr is its normal angle,

Suppose then that a surface is cut by a sphere in a line of curva-

ture. Then since the torsion W of the geodesic tangent to a line

of curvature is zero, we have on this surface also

d
, f\+ T = 0.

as

From these two equations it follows that

5 ( )-<>.

and therefore tar tj = const.

Hence vf the curve of intersection of a sphere and another surface
is a line of GUI vature on the latter, the two surfaces cut at a constant

angle.
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Conversely, if a sphere cuts a surface at a constant angle, the

curve of intersection is a line of curvature on the surface. For

and therefore T = T W.

Thus W vanishes identically, and the curve is a line of curvature.

52. Vector curvature. The curvature of a curve, as defined

in Art. 2, is a scalar quantity equal to the arc-rate of turning of

the tangent. This is the magnitude of the vector curvature, which

may be defined as the arc-rate of change of the unit tangent. It is

therefore equal to t' or /en. Thus the direction of the vector curva-

ture is parallel to the principal normal. The scalar curvature K is

the measure of the vector curvature, the positive direction along

the principal normal being that of the unit vector n.

If two curves, and
, touch each other at P, we may define

their relative curvature at this point as the difference of their

vector curvatures. Let t be their common unit tangent at P, and

Fig 16.

t + dt, t + dtg the unit tangents at consecutive points distant da

along the curves from P If BE, BF, BG represent these unit

vectors, the vector GF is equal to dt dto. The (vector) curvature

of G relative to (7 is then

dt _ dto dt - d^ _ OF
ds ds

~
ds

~
ds

'

If dd is the angle GBF, the magnitude of the relative curvature

is dd/ds, the arc-rate of deviation of their tangents.

53. Geodesic curvature. Consider any curve C drawn on a

surface We define the geodesic curvature of the curve at a point
P as its curvature relative to the geodesic which touches it at P.
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Now the vector curvature of the curve is r", and the resolved part
of this in the direction of the normal to the surface is nr", or ien

by Meumer's theorem. But the vector curvature of the geodesic
is normal to the surface, and its magnitude is also . That is to

say, the curvature of the geodesic is the normal resolved part of

the vector curvature of Hence the curvature of G relative to

bhe geodesic is its resolved part tangential to the surface This

tangential resolute is sometimes called the tangential curvature of

(7, but more frequently its geodesic curvature. As a vector it is

given by
r"-n.r"n or r"- nn ............... (15).

Its magnitude must be regarded as positive when the deviation

of from the geodesic tangent is in the positive sense for a rota-

tion about the normal to the surface Thus we must take the

resolved part of the vector curvature r" in the direction of the

unit vector n x r'. Hence the magnitude of the geodesic curvature

is n x r'r". Denoting it by Kg we have

^-[n.r'.r"] ....................... (16).

A. variation of this formula is obtained by writing n = rx x

Then

[n^r'^l^xr^xr'.r"

'

so that
/fy
=

-zj(r1 r
/

ra r" ra r
/

r1T//

) ............(IT).

It is also clear from the above argument that, if K is the curva-

ture of the curve C, and r its normal angle,

. .......................(18).
while Kn = K cos -or)

Hence a = Kg
* +

and Kg n tanarj

All these expressions for Kg vanish when G is a geodesic. For then

r" is parallel to n, and therefoie perpendicular to TI and ra ,
while

VT is zero. This means simply that the curvature of a geodesic

relative to itself is zero.

It will be noticed that the expression [n, r
7

, r"] for the geodesic

curvature is the same as that found in Art. 38 for the curvature of
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an asymptotic line. This is due to the fact that the osculating

plane for an asymptotic line is the tangent plane to the surface,

while the curvature of the geodesic tangent, being the normal

curvature in the asymptotic direction, is zero. Thus the curvature

of an asymptotic line is equal to its geodesic curvature.

64. Other formulae for rc
g

. From (16) or (17) we may deduce

an expansion for the geodesic curvature in terms of u, u" etc. For

instance, on substitution of the values of r' and r" in terms of these,

(17) becomes

Kg
=^ (Eu' + Fv") {Fu" + Gv" + (F,

- #a) u'
a + G^'v' + }Gav'*\

u" + Fv" + %Eiu'* +Ez u'v' + (F,
-

which may also be written

Kg
= Eu1

(t/
1 + \u'* + 2/iiiV + j*>'

s
)

- Hv' (u" + lu* +2mV + m>"). . (20),

each part of which vanishes for a geodesic, in virtue of (5).

In particular for the parametric curve v = const, we have

v' = v" = 0, and the geodesic curvature K^ of this curve is there-

fore equal to Hu'\u'*, which may be written

Similarly the geodesic curvature K^ of the curve u = const, has
the value

When the parametric curves are orthogonal, these become

From these formulae we may deduce the results, already noticed,

in Art 47, that the curves v = const, will be geodesies provided.
\ = 0, and the curves u = const, provided n = When the para-
metric curves are orthogonal, these conditions are Ea

= and C?i= O ;

so that the curves v = const, will be geodesies if E is a function of
u only ;

and the curves u = const, if G is a function of v only.

Another formula for the geodesic curvature of a curve may bo
found in terms of the arc-rate of increase of its inclination to the

parametric curves Let 6 be the 'inclination of the curve to the
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parametric curve v = const
,
measured in the positive sense. Then

since, by Art. 24 and Note I

Eu' + Fv' = *jE cos 6.

we have on differentiation

as

Now, if the curve is a geodesic, the first member of this equation
is equal to

On substitution of this value we find for a geodesic

J- ri- BTds E E
Thus the rate of increase of the inclination of a geodesic to the

parametric curve v = const, is given by
M H,^ ,- = -._(XW+ ^').

Now the geodesic curvature of a curve is tangential to the

surface, and its magnitude is the arc-rate of deviation of G from

its geodesic tangent. This is equal to the difference of the values

of d&/ds for the curve and for its geodesic tangent But its value

for the geodesic has just been found. Hence, if dd/ds denotes ibs

value for the curve 0, the geodesic curvature of C is given by

(21).

Or, if S- is the inclination of the parametric curve u = const, to the

curve O (Fig. 11, Art. 24), we may write this

In the particular case when the parametric curves are ortho-

gonal, sin S- = cos d. Also the coefficient of sin ^ becomes equal to

the geodesic curvature of the curve v = const., and the coefficient

of sin to that of the curve u= const Denoting these by K^ and

Kg, respectively, we have Liouville'sformula
ja

Ico
=

-Jl + *0 cos + j,
sin ...............(23).
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*55. Examples.

(1) Sonnefs formula for the geodesic curvature of the curve <
(tt, v)

By differentiation we have fau'+fatf^ .......... ........... (<

. .
u> * 1

so that -r- = T- * 5
02 91 w

where 9=V^2
a

Again differentiating (a) we find

which may be written

By means of those relations we find that

9 /Ftyi
- GtyA 9 Afflfr

-
J?0a\

S" e )
+
ft( e J

Henoe Bonnet's formula for the geodesic curvature

1 3 AFfo-GtyA 1 3 (FfoKp=F^V e )
+
%to\ e

From this result we may deduce the geodesic curvature of a curve of

family denned by the differential equation

j Pdu+Qdv=Q
For, on comparing this equation with (a), we see that the lequired value

3 / FQ-GP VIl/ FP-SQ_\

(2) Deduce the geodesic curvatures of the parametric curves from the ret

of the previous exercise.

(3) A curve touches the parametric curve v= const Find its curva

relative to the parametric curve at the point of contact.

The relative curvature is the difference of their geodesic curvatures.

geodesic curvature of C is got from (20) by putting ^->0 and vf<**l/JE.

] value is therefore H(v"+\E- l
)l<JK But the geodesic curvature of =cx

1 is H\E~^ Hence the relative curvature is Hif'lJE.

(4) Find the geodesic curvature of the parametric lines on the surface

#=a(ti+), y=b(u-v), g=vv

(5) Find the geodesic curvature of a parallel on a surface of revolution.

(6) Show that a twisted curve is a geodesic on its rectifying develop*

(The principal normal of the curve is normal to the surface )

(7) Show that the evolutes of a twisted curve are geodesies on its p

developable (Arts. 11 and 19)

(8) The radius of curvature of a geodesic on a cone of revolution varie

the cube of the distance from the vertex.

(9) From the formula (16) deduce the geodesic curvature of the ci

r=const, putting r'
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GEODESIC PARALLELS

66. Geodesic parallels. Let a singly infinite family of geo-
desies on the surface be taken as parametric curves v~ const., and
their orthogonal trajectories as the curves u = const. Then F=Q,
and the square of the linear element has the form

Further, since the curves v = const, are geodesies, E is a function

of u alone (Art. 47). Hence, if we take I *fEdu as a new parameter

u, we have
ds' = du*+Gdv* .................(24),

which is called the geodesic form for d&. Since E is now equal
bo unity, the length of an element of arc of a geodesic is du ;

and

the length of a geodesic intercepted between the two trajectories

u = a and u = b is

fJ a

This is the same for all geodesies of the family, and is called the

geodesic distance between the two curves On account of this

property the orthogonal trajectories u = const, are called geodesic

parallels.

From the geodesic form for dsa we may easily deduce the

property of minimum length characteristic of the arc of a geodesic

joining two points on it. Consider, for example, the two points

P, Q in which a geodesic is cut by the parallels u = a, u= b. The

length of the arc of the geodesic joining the two points is (6 a).

For any other curve joining them the length of arc is

rQ rQ. rb

ds- *Jdu* + Gdtf>\ du,
JP JP Ja

since is positive Thus the distance is least in the case of the

geodesic.

With the above choice of parameters many results take a simpler
form. Since Q- is positive it may be replaced by Z)9

,
so that

ds*= du* + D*dv* ...................(25).

Then since F=0 and E 1 we have H* = G, so that

Z = 0, ra = 0, n = -$G1
=

w.
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The Gauss characteristic equation becomes

and therefore the specific curvature is

LN-M*

_

The first curvature is J= L + -~ .

The general equations (4) of geodesies become

and the single equation (6) gives

Ex. BeltramSt theorem Consider a singly infinite family of geodesies, out

by a curve whose direction at any point P is conjugate to that of the geodesic

through P. The tangents to the geodesies at the points of generate a

developable surface (Art. 35), and are tangents to its edge of regression Bel-

trann's theorem is that the centre of geodesic curvature at P, of that orthogonal

trajectory of the geodesies which posset through this point, is the corresponding
point on the edge of regression.

Let the geodesies be taken as the curves v= const, and their orthogonal
trajectories as the curves u= const Then the square of the linear element has
the geodesic form

The geodesic curvature of the parametric curve = const, is, by Art. 54,

_L?<7
Kffl=

2tf du
'

This is measured in the sense ofthe rotation from FI to ra . Hence the distance

p from P to the centre of geodesic curvature, measured in the direction FI, is

given by

Let r be the position vector of the point P on the curve <7, R that of the
corresponding point Q on the edge of regression, and r the distance PQ, also
measured in the direction FI. Then, since ^=1,

R=r+rr1 .
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Along the quantities are functions of the arc-length a of the curve. Hence,
on differentiation,

But, because the generators are tangents to the edge of regression, R' is

parallel to FI and therefore perpendicular to ra. Forming the scalar product
with ra we have

the other terms vanishing in virtue of the relations F=0 and 2S=I. Hence,
since i/ is not zero,

1 _JU 3#
r** 2O du '

showing that rp. Therefore the point Q on the edge of regression is the

centre of geodesic curvature of the orthogonal trajectory of the geodesies

57. Geodesic polar coordinates. An important particular
case of the preceding is that in which the geodesies v = const are

the singly infinite family of geodesies through a fixed point 0,

called the pole. Their orthogonal trajectories are the geodesic

parallels u = const., and we suppose u chosen so that E= 1. If we
take the infinitesimal trajectory at the pole as the curve u 0, u

is the geodesic distance of a point from the pole. Hence the name

geodesic circles given to the parallels u = const, when the geodesies
are concurrent. We may take v as the inclination of the geodesic
at to a fixed geodesic of reference OA. Then the position of any

point P on the surface is determined by the geodesic through
on which it lies, and its distance u from along that geodesic.
These parameters u, v are called the geodesic polar coordinates of

P. They are analogous to plane polar coordinates.

On a curve C drawn on the surface let P and Q be the consecu-

tive points (u, v) and (u + du,v + dv). Then dv is the angle at

Fig 16.

S 2
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"between the geodesies OP and OQ. Let PN be an element of

geodesic circle through P, cutting OQ at N. Then ON -OP
therefore NQ = du. And since the angle at N is a right angle,

showing that PN= Ddv.

Hence if ty is the angle NQP, at which the geodesic cuts

curve G,

J And we may also notice that the area of the element of the BUT

1 bounded by the geodesies v, v+dv and the geodesic circle

u+ du is

f dS = Ddudv.
*

If the curve is itself a geodesic, we may write the firs

;* equations (27) for geodesies in the form

f j j..

Or ain
"\jrd'*lr + D1 sin "\lr dv = 0.

Hence, for a geodesic, d^= D^dv (2

It is also important to notice that at the pole D^ has the v

unity. To see this we consider a small geodesic circle distai

from the pole. The element of a geodesic from the pole to

circle is practically straight, and the element of the geodesic c.

is therefore udv to the first order. Thus near the origin

D = u + terms of higher order,

and therefore, at the pole, Z^ = 1.

58. Geodesic triangle. If dS is the area of an elemer
the surface at a point where the specific curvature is K, we

MS the second curvature of the element, and l\KdS taken

any portion of the surface is the whole second curvature of

portion. We shall now prove a theorem, due to Gauss, on the w
secondcurvature of a curvilinear triangleABObounded bygeodt
Such a triangle is called a geodesic triangle, and Gauss's thec
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may be stated : The whole second curvatwe of a geodesic triangle is

equal to the excess of the sum of the angles of the triangle over two

right angles.

Let us choose geodesic polar coordinates with the vertex A as

pole. Then the specific curvature is

and the area of an element of the surface is Ddudv. Consequently
the whole second curvature 1 of the geodesic triangle is

Integrate first with respect to u, from the pole A to the side BG.

rG

A

Fig. 17.

Then since at the pole D: is equal to unity, we find on integration

where the integration with respect to v is along the side BO. But

we have seen that, for a geodesic

jDjdu = d-^r.

Hence our formula may be written

O=
j
dv+ I d^r.

Now the first integral, taken from B to (7, is equal to the angle A
of the triangle. Also

=a-( 5).

Hence the whole second curvature of the triangle is given by
fl^A +B + O-ir .................... (29),

as required.
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The specific curvature is positive, zero or negative accoidmg as

the surface is synclastic, developable or anticlastic. Consequently
A + B + is greater than TT for a synclastic surface, equal to IT for

a developable, and less than TT for an anticlastic surface Whea
the surface is a sphere Gauss's theorem is identical with Guard's

theorem on the area of a spherical triangle

59. Theorem on parallels. An arbitrarily chosen family of

curves, <j> (u, v)
= const., does not in general constitute a system of

geodesic parallels In order that they may do so, the function

<j> (u, v) must satisfy a certain condition, which may be found as

follows. If the family of curves <j>(u, v)
= const, are geodesic

parallels to the family of geodesies -v/r (u, v)
= const., the square of

the linear element can be expressed in the geodesic form

where e is a function of < only, and D a function of $ and fa
Equating two expressions for cfo

2 we have the identity

Edu* + ZFdudv + Gdv* = e

and therefore E=
e<f>?

Consequently, eliminating fa and fa, we must have

(S-etfHG-iW-tf-ehWO ........ ().

which is equivalent to

Thus in order that thefamily of curves
<j> (ut v)

= const, may be a
family of geodesic parallels,

must be a function of<f> only, or a constant.

The condition is also sufficient. For

and this, regarded as a function of du and dv, is a perfect square,
in virtue of (a) being satisfied. We can therefore write it as

so that
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proving the sufficiency of the condition. In order that < may be

the length of the geodesies measured from
<j>
= 0, it is necessary

and sufficient that 0=1, that is

QW-Wfah + Etf^H* (30').

6O. G-eodeslc ellipses and hyperbolas. Let two indepen-
dent systems of geodesic parallels be taken as parametric curves,

and let the parametric variables be chosen so that u and v are the

actual geodesic distances of the point (u, v) from the particular

p

Fig 18

curves u = and v = (or from the poles in case the parallels are

geodesic circles). Then by Art. 69, since the curves u = const and

v = const, are geodesic parallels for which e = 1, we have

E=Q = H*.

Hence, if to is the angle between the parametric curves, it follows

that

sma
o)

'
sin* o>

'

so that the square of the linear element is

, , du* + 2 cos todudv + diP ,_- xasr= , ...............(ol).sma
a)

And, conversely, when the linear element is of this form, the para-
metric curves are systems of geodesic parallels.

With this choice of parameters the locus of a point for which

u + v= const, is called a geodesic ellipse. Similarly the locus of a

point for which u v = const, is a geodesic hyperbola. If we put
u = $(u + v), i>=J(M-v) .............(32),

the above expression for ds* becomes
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showing that the curves ft const, and v = const, are orthogonal.

But these are geodesic ellipses and hyperbolas. Hence a system of

geodesic ellipses and the corresponding system of geodesic hyperbolas

cure orthogonal Conversely, whenever efo
a
is of the form (33), the

substitution (32) reduces it to the form (31), showing that the

parametric curves in (33) are geodesic ellipses and hyperbolas.

Further, if 6 is the inclination of the curve v = const, to the

curve v = const., it follows from Art. 24 that

a m n ro

cos 6 = cos
5- , sin 6 = sm 5- ,

u &

and therefore 6 =
^

Thus the geodesic ellipses and hyperbolas bisect the angles between

the corresponding systems of geodesic parallels.

61. Liouville surfaces. Surfaces for which the linear ele-

ment is reducible to the form

ds* = (U+ 7)(PcZM
a
+Qcfo

a
) .............(34),

in which U, P are functions of u alone, and V, Q are functipns of

v alone, were first studied by Liouville, and are called after him.

The parametric curves clearly constitute an isometric system (Art.

39). It is also easy to show that they are a system of geodesic

ellipses and hyperbolas. For if we change the parametric variables

by the substitution

the parametric curves are unaltered, and the linear element takes

the form

*-(?+ 7) +

But this is of the form (33), where

o> U

Hence the parametric curves are geodesic ellipses and hyperbolas.

Liouville also showed that, when ds* has the form (34), a first

integral of the differential equation of geodesies is given by

.............(35),
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where is the inclination of the geodesic to the parametric curve

v = const. To prove this we observe that F = 0, while

so that JF

E*= FaP,

Taking the general equations (4) of geodesies, multiplying the

first by 2u F, the second by 20' U and adding, we may arrange
the result in the form

Now the second member vanishes identically in virtue of the pre-

ceding relations. Hence

UQv'*-VEu'* = const.,

which, by Art. 24, is equivalent to

U sin3 6 Fcos3 6 const.

as required.

EXAMPLES VIII

1 . Prom formula (21) deduce the geodesic curvature of the curves v= const

and u=*const.

2. When the curves of an orthogonal system have constant geodesic cur-

vature, the system is isometric.

3 . If the curves of one family of an isometric system have constant geodesic

curvature, so also have the curves of the other family.

4. Straight hues on a surface are the only asymptotic lines which are

geodesies.

6 . Find the geodesies of an ellipsoid of revolution.

6. If two families of geodesies out at a constant angle, the surface is

developable.

7. A curve is drawn on a cone, semi-vertical angle a, so as to cut the

generators at a constant angle j9. Prove that the torsion of its geodesic tan-

gent is sin0cos)3/(.fltana), where R is the distance from the vertei.

8. Prove that any curve is a geodesic on the surface generated by its

binomials, and an asymptotic line on the surface generated by its principal

normals

9 . Find the geodesies on the catenoid of revolution

u=ocosh-.
o
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1 0. If a geodesic on a surface of revolution outs the meridians at a con-

stant angle, the surface is a right cylinder

11. If the principal normals of a curve intersect a fixed line, the curve is

a geodesic on a surface of revolution, and the fixed line is the axis of the

surface.

12. A curve for which K/T is consbant is a geodesic on a cylinder, and a
j

curve for which -j- (T/K) is constant is a geodesic on a cone.

13. Show that the family of curves given by the differential equation

Q will constitute a system of geodesic parallels provided

HQ \ = <L(
HP

2FPQ+ GP*) 3 WW -2FP

14. If, on the geodesies through apoint 0, points be taken at equal geodesic

distances from, O
t
the locus of the points is an orthogonal trajectory of the

geodesies.

Let the geodesies through the pole be taken as the curves v= const, and

let u denote the geodesic distance measured from the pole. We have to show

that the parametric curves are orthogonal Since the element of arc of a

geodesic is du, it follows that E=l. Also since the curves v= const, are

geodesies, X=0. Hence -Fi=0, so that FIB & function of v alone. Now, at the

pole, r is zero, and therefore 1*1 Fa=Evanishes at the pole. But J^is inde-

pendent of u , and therefore it vanishes along any geodesic. Thus F vanishes

identically, and the parametric curves are orthogonal

15. If)
on the geodesies which, cut a given curve orthogonally, points be

taken at equal geodesic distancesfrom (7, the locus of the points is an orthogonal

trajectory of the geodesies.

16. Necessary and sufficient conditions that a system of geodesic co-

ordinates be polar are that JG vanishes with M, and 3 Vtf/Sw 1 when u=0.

1 7. Two points A, S on the surface are joined by a fixed curve <7 and a

variable curve (7, enclosing between them a portion of the surface of constant

area. Prove that the length of is least when its geodesic curvature is

constant

18. If in the previous example the length of is constant, prove that the

area enclosed is greatest when the geodesic curvature of C is constant

19. If the tangent to a geodesic is inclined at a constant angle to a fixed

direction, the normal to the surface along the geodesic is everywhere perpen-
dicular to the fixed direction.

20. Two surfaces touch each other along a curve. If the curve is a geo-
desic on one surface, it is a geodesic on the other also.

21. The ratio of the curvature to the torsion of a geodesic on a develop-
able surface is equal to the tangent of the inclination of the curve to the

corresponding generating line.
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22. If a geodesic on a developable surface is a plane curve, it is one of the

generators, or else the surface is a cylinder.

23 . If a geodesic on a surface lie on a sphere, the radius of curvature of

the geodesic is equal to the perpendicular from the centre of the sphere on the

tangent plane to the surface.

24. The locus of the centre of geodesic curvature of a line of curvature is

an evolute of the latter

25. The orthogonal trajectories of the helices on a hehooid are geodesies.

26 . The meridians of a ruled helicoid are geodesies.

27. If the curve

as*=if(u) cos M, y=f(u) sin w, = If
3
(M) du

is given ahelicoidal motion of pitch %irc about the s-axis, the various positions

of the curve are orthogonal trajectories of the helices, and also geodesies on

the surface.



CHAPTER VII

QUADRIC SURFACES. RULED SURFACES

QuADRio SURFACES

62. Central quadrics. The equation of a central quadric

surface, referred to its principal axes, is of the form

^++^=i ....................a),a b c

in which we may assume a > b > c. The quadrics confocal with

this are given by

_^_ +_2l + _?L_ = l ......... (2),a+X + 6+X c+X ^ ''

for different values of X. At points common to the two surfaces

(1) and (2) we have

(f> (X)
=

(a + X) (6 + X) (o + X)
- 20" (b 4- X) (c + X) = 0.

We may regard this as an equation for determining the values of

X corresponding to the confocals which pass through a given point

(> y> z) on the surface (1) It is a cubic equation, one root of which

is obviously zero. Let the other two roots be denoted by u, v.

Then, because the coefficient of X8
is unity, $ (X) is identically equal

to the producb X (X u) (X v) ;
that is

X (X
-

u) (X
-

v)= (a + X) (6 + X) (c + X)
- 2 a? (b + X) (o + X).

If in this identity we give X the values a, b, c in succession,

we find

_~
(a - 6) (a c)

(c a) (c b) .

Thus the coordinates of a point on the quadric (1) are expressible
in terms of the parameters ut v of the two confocals passing through
that point. We take these for parametric variables on the surface.

It follows from (3) that, for given values of u and v, there are eight

points on the surface, one in each octant, symmetrically situated

with respect to the coordinate planes.
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In the case of an ellipsoid, a, b, c are all positive. Hence <
( c)

B negative, ^ ( 6) positive, and < ( a) negative. Therefore, if u

s greater than v, we have

c> u > b
t b>v> a.

The values of u and v are thus negative, and are separated by 6.

For an hyperboloid of one sheet c is negative, so that < (en ) is

positive, < ( c) negative, < ( 6) positive and < ( a) negative

Therefore
u>-c, -b>v>-a.

Consequently u is positive and v negative, the root between c

and. b being the zero root

For an hyperboloid of two sheets both 6 and c are negative.

Hence
<j> (oo ) is positive, ( c) negative and < ( 6) positive, so

that the non-zero roots are both positive and such that

u> c, c>v> b.

Thus both parameters are positive, and the values of u and v are

separated by c. In all cases one of the three surfaces through

(CD, y, z) is an ellipsoid, one an hyperboloid of one sheet, and one

an hyperboloid of two sheets.

Any parametric curve v = const, on the quadnc (1) is the curve

of intersection of the surface with the confocal of parameter equal

to this constant v. Similarly any curve u = const is the line of

intersection of the surface with the confocal of parameter equal to

this constant u.

63. Fundamental magnitudes. If r is the distance of the

point (to, y, z) from the centre of the quadnc, and p the length of

the central perpendicular on the tangent plane at (a?, y, z\ we have

r9 = a? + 7/
a + & (a> + b + c) + (u + vj\

1 a? y* z* uv j- (4).j __ | & _|_ ^^ _ _
_

I

Also on calculating the partial derivatives a^, tct , etc., we find

u (u
-

v)

(o + u)

' (5)-F =
fl^ffa + /ifa + Wa

v (v u)
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The normal has the direction of the vector (-, \ ,
-

) ,
and since

\a C/

the square of this vector is equal to l/p
a
,
the unit normal is

(pas py p*\n
-U~' b' c)

/ /be (a + u) (a + t>) /ca(b + u)(b + v)

~VV uv(a-b)(a-cY V w(&-c)(6-a)
f

/ab(c + v)(c + vy\

V i> (c
- a) (c

-
&)/

'

The second order magnitudes are therefore

fabc (u v) \

uv (a + u)(b + u) (c + w)

_ V ..... (6).

fabc (v u)

uv (a + v) (b + v) (o + v) t

Since then ^=0 and M = the parametric cu/rves are lines of

curvature. That is to say, the lines of curvature on a central quad-

nc are the curves in which it is cut by the confocals of different

species. The principal curvatures are then given by

abc

N 1 /abc=
77 = "" A/ -G V V UV .

Thus, along a line of curvature, the principal curvature varies as

the cube of the other principal curvature. The first curvature is

and the specific curvature

Therefore on the ellipsoid or the hyperboloid of two sheets the

specific curvature is positive at all points ;
but on the hyperboloid

of one sheet it is negative everywhere. Moreover

p*= abcK ........................... (9).

Hence at all points of a curve, at which the specific curvature is

constant, the tangent plane is at a constant distancefrom the centre.
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At an umbilic ica is equal to *%, and therefore u = v. If the

surface is an ellipsoid the values of u and v are separated by b.

Hence at an umbilic they must have the common value 6. The
umbilici are therefore

/a (a 6) A /c(6 c)W (.-)
-- * =

V(a-c)-
The four umbilici thus lie on the coordinate plane containing the

greatest and least axes, and are symmetrically situated with respect

to those axes.

On the hyperboloid of two sheets the values of the parameters
are separated by c. Hence at an umbilio u = v = o, and the

umbilici are

a (a c) , /b (b o)

a-b ' f-V <-)
On the hyperboloid of one sheet the umbilici are imaginary, for u
and v have no common value.

The differential equation of the asymptotic lines on a surface is

Ldu* + 2Afdudv + Ndv*= 0.

Hence on the quadric (1) they are given by

du dv

64. Geodesies. On using the values of E, F, G given in (5)

we see that the square of the linear element takes the form

ds*= (u - 1>) ( Udu? - Vdtf\

where U is a function of u alone, and F a function of v alone.

Central quadrics thus belong to the class of surfaces called Liouville

surfaces (Art. 61). Consequently the lines of curvature, being para-
metric curves, are isometric and constitute a system of geodesic

ellipses and hyperbolas. Moreover a first integral of the differential

equation of geodesies on the quadric is given by

u sin8 + v coss 6 = k ..................(10),

where k is constant, and 6 the angle at which the geodesic cuts

the curve v = const. The value of k is constant on any one geodesic,

but changes from one geodesic to another. If the geodesic touches

the parametric curve v = h, then cos 6= 1 at the point of contact,
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and therefore k = h. Similarly if it touches the curve u = h, sin 6 = 1

at the point of contact, and again k = h Thus k has the same value

for all those geodesies which touch the same line of curvature. On

the ellipsoid k is negative for all geodesies because both parameters

are negative. On the hyperboloid of two sheets k is positive be-

cause u and v are both positive.

Further, on writing (10) in the form

(u
-

k) sin8 + (v
-

k) cos8 6 = 0,

we see that, for all geodesies through a given point (u, v), the

constant k is intermediate in value between u and v, and, for a

given value of k within this interval, there are two geodesies, and

these are equally inclined to the lines of curvature

At an umbilic the parametric values u, v are equal ;
and there-

fore, for all geodesies through an umbilic, k has the same value, &

say, which is b for an ellipsoid and c for an hyperboloid of two

sheets. The equation for the umbilical geodesies is then

(u
- k ) sin3 6 + (v

- &) cos8 6= 0.

Thus, through each point P on a central quadrio with real umbilics

there pass two umbilical geodesies, and these are equally inclined to

the lines of curvature through the point If then the point P is

Fig 19.

joined by geodesies to the four umbilics, those drawn to opposite

umbilics A, A' or B, B
1

must be continuations of each other. Thus

two opposite umbilics are joined by an mfimt.fi number of geodesies,

no two of which intersect again.

Moreover, since the geodesies joining P to two consecutive

umbilics A, B are equally inclined to the lines of curvature at P,

it follows that A, B are foci of the geodesic ellipses and hyperbolas
formed by the lines of curvature. Of the two lines of curvature

through P, that one is a geodesic ellipse with respect to A and B
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which bisects externally the angle APB, while the other one,

which bisects the angle internally, is a geodesic hyperbola. If,

however, A' and B are taken as foci, the former is a geodesic

hyperbola and the latter a geodesic ellipse Thus, in the case of

the former,
PA + PB = const.,

PA' -PB = const.,

ao that PA + PA' = const.

But P is any point on the surface Hence all ike geodesies joining
two opposite umbilics are of equal length,.

65. Other properties. On using the values of the principal

curvatures given in (7) we deduce from Euler's theorem that the

curvature of a geodesic, being the normal curvature of the surface

in that direction, is given by

1 /abc ,/, ,

1 A6c ,-- A / cos" + - A / sina 6,u V uv v V uv

so that n =-y-
.................................... (11).

Hence along any one geodesic the normal curvature varies as the

cube of the central perpendicular on the tangent plane. The same is

also true of a line of curvature. For, at any point, Kn and p have

the same values for this curve as for the geodesic tangent, and all

geodesic tangents to a line of curvature have the same k.

Again, consider the semi-diameter D of the quadnc parallel to

the tangent to the geodesic at the point (as, y, e). The unit tangent
rf to the geodesic is

(as

1

, y', /) and therefore

while, for any direction on the surface,

Along a geodesic r" = nn; and therefore, by differentiating the

identity r' n = 0, we have

w.



130 QUADEIO SURFACES [VH

Now =

andtherefore rf-pg. i)
+ P

'

g. f,

Thus on forming the scalar product r'-n' we find, in virtue of (a)

and 09),

On substituting the value of Kn given in (11) we have

kp*D' = -abc ...................(13),

or kD* = uv.

From (13) it follows that pD is constant along a geodesic. The

same is also true of a line of curvature. For p and D are the same

for the line of curvature as for its geodesic tangent ,
while k has

the same value for all geodesic tangents to a line of curvature.

Thus we have Jbachimsthars theorem : Along a geodesic or a line

of cwrvabwe on a central quadno the product of the semi-diameter

of the quadric parallel to the tangent to the curve and the central

perpendicular to the tcmgent plane is constant.

Formula (12) .shows that KnD*= -p. Now p is the same for all

directions at a point, and therefore, if p is the reciprocal of xn ,

D varies as \Jp. Hence, by Art. 32, the mdicatrix at any point of

a central quadric is similar and similarly situated to the parallel

central section

Ex. 1. Show that, along a geodesic or a line of curvature, K* varies

inversely as .D3.

Ex. 2. For all umbilical geodesies on the quadric (1) p*IP=ac.

Ex. 3. The constant pD has the same value for all geodesies that touch

the same line of curvature.

Ex. 4. Two geodesic tangents to a line of curvature are equally inclined

to the lines of curvature through their point of intersection

Ex. 5. The geodesic distance between two opposite umbilios on an

ellipsoid is one half the circumference of the principal section through the

umbilics.

Ex. 6. All geodesies through an umbiho on an ellipsoid pass through the

opposite umbilio.
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*66. Paraboloids. The equation of a paraboloid may be ex-

pressed in the form

in which we may assume that b is positive and greater than a.

The paraboloids confocal with this are given by

for different values of X. The values of X for the confocals through
a given point (as, y, z) on the original surface are given by

< (X) = a? (b -X) + 2/

a
(a-X) - 4 (z -X) (a

-
X) (6- X) = 0.

One root of this cubic is zero : let the other roots be denoted by u,

v of which u is the greater. Then, because the coefficient of Xs in

the last equation is 4, we have the identity

If in this we give X the values a and b successively, we find

_ 4a (a 11) (a vf~
b a

IBS
46 (&

_ tt) (&__,,) j. (15).

CL b

and therefore by (14) z = u + v a b

We may take u, v for parameters on the paraboloid, and for given

values of the parameters there are four points on the surface,

symmetrically situated with respect to the coordinate planes at =

and y =
For the elliptic paraboloid a is positive as well as 6. Hence

since <> (oo ) is positive, < (b) negative and
</> (a) positive, it follows

that u and u are both positive, and are separated by the value 6.

For the hyperbolic paraboloid a is negative. The zero root of
<j> (X)

lies between a and b, so that u > b and v < a.

The derivatives of as, y, z are easily calculated from (15), and the

first order magnitudes found to be

(a u) (b it)

v(v it)

(a-

(16).

92
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The normal to the paraboloid has the direction of the vector

f
_^ U. 2 ] , and the unit vector in this direction, expressed in

V a b /

terms of the parameters, is

/ /b(a-u)(a-v) /a(b-u)(b-v) /ab\
n

V V (b-a)uv
' ~V (a-b)uv

' V uv)'

The second order magnitudes are therefore

u v fab

v u fab

Since then F and M both vanish identically, the parametric curves

are lines of curvature. That is to say, the lines of curvature on a

paraboloid are the curves in which it is cut by the confocals. The

principal curvatures are then given by

N i /aKb~G ~2v V uv)

and the specific curvature is

ab

The length p of the perpendicular from the vertex to the tangent

plane at the point (cc, y, s) is easily found to be

fa

Hence the quotient p/z is constant along a curve on which the specific

curvature of the surface is constant.

The umbihci are given by Ka = /cj,, which requires u = v. This is

possible only on an elliptic paraboloid ,
and the common parameter

value is then equal to 6. The umbilici on an elliptic paraboloid

are therefore given by
cc = 2 Va (b

-
a), y = 0, z = b - a.

At these points the principal curvatures become equal to s ^/ r- .

2 T o
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In virtue of (16) the square of the linear element has Liouville*.

form
<& = (u

-
v) ( Udu* - Vdi?),

so that the lines of curvature are isometric and constitute a, system

of geodesic ellipses and hyperbolas. A first integral of the differ-

ential equation of geodesies is given by

as in the case of the central quadrics ; and the direct consequences
of this equation, which do not depend upon the existence of a

centre, are true of the paraboloids also (Art. 64).

The curvature of a geodesic, being the normal curvature in its

direction, is given by

Kn = #
fl
cosa + Kb sin"

k fab

2V u*tf'

Hence, along a geodesic or a line of curvature on a paraboloid, the

quotient n2^/p
a is constant.

EXAMPLES IX

1 . The points at which two geodesic tangents to a given hue of curvature

on a quadric cut orthogonally lie on the surface of a sphere.

Let k be the parametric constant for the line of curvature. Then for a

geodesic tangent

Where this intersects another geodesic tangent at right angles we have

tt Bin1 ** + v oos2

Hence, by addition, u +v=2,

and therefore by (4) aa+ya+*8=a+ b+o+2k,

which proves the theorem

2. The points at which the geodesic tangents to two different lines of

curvature cut orthogonally he on a sphere.

3. If a geodesic is equally inclined to the lines of curvature at every point

along it, prove that the sum.of the principal curvatures vanes as the cube of

the central perpendicular to the tangent plane along the geodesic.

4. The intersection of a tangent to a given geodesic on a central comcoid

with a tangent plane to which it is perpendicular lies on a sphere.
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5. Prove that the differential equation of geodesies on an elhi>soid may he

expressed

du^ /v(a+u)(b+n}(c+u)(u-k)
dv^-V u(a+v)(b+v)(c+v')(v-ky

6 . The length of an element of an umbilical geodesic on an ellipsoid is

**V (a+ioV)
+ *dvV (+.)(+>

7. For any curve on a quadrio the product of the geodesic curvature and

the torsion of the geodesic tangent is equal to

with the notation of Art 65.

8 . The asymptotic lines on any quadnc are straight lines.

9. Find the area of an element of a quadno bounded by four lines of

curvature

10. A geodesic is drawn from an umbiho on an ellipsoid to the extremity

of the mean axis Show that its torsion at the latter point is

1 1 . Find the geodesic curvature of the lines of curvature on a central

quadnc.

1 2 . Find the tangent of the angle between the umbilical geodesies through

the point (x} y, a) on the ellipsoid (1).

13. The specific curvature at every point of the elliptic paraboloid

cufl+ 6y
a=2* whoie it is out by the cylinder cPjtP+b'y

3^ is Ja&.

14. The specific curvature at any point of a paraboloid varies as

with the notation of Art. 66.

15. Writing da* for a quadric in the form

prove that the quantities I, \, etc. are given by

7
1/1 ZP\ 1 V

i

-z(^^
+
~u)

t
m
~~2(^7)' ""acu-iozr

>
U 1 1/1

,

^\
2(-u)r **" 2 (-)'

"
2\v-u* V)'

Hence write down the (single) differential equation of geodesies

1 6. Show that the coordinates of the centres of curvature for a central

quadrio are, for one principal direction,

/(o+tt)
3
(o+w) /(6+tt)

3
(6+g) /(o+u)*(c+v)

V a(a-6)(a-o)' V 6(6-o)(6-a)' V c(c-a)(c-6)'

and, for the other, similar expressions obtained by interchanging u and v. Hence

show that the two sheets of the centre-surface are identical.
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17. Show that the equation of a paraboloid, aap+by**=2zt
is satisfied

identically by the substitution

Taking u, v as parameters for the surface, show that

(o-5) (u-9)P*
46s

---
IP" v(l+any

where P3
=a(a-6)M-6, Q2=a(a

Prove also that the unit normal to the surface IB

~-,
and the second order magnitudes

T -L

Jf=0,

^ spsvy
Hence deduce all the results of Art. 66

RULED SURFACES

67. Skew surface or scroll. A ntZed surface is one that

can be generated by the motion of a straight line. The infinitude

of straight lines which thus lie on the surface are called its gene-
rators. "We have already considered a particular class of ruled

surfaces called developable surfaces or torses. These are charac-

terised by the properties that consecutive generators intersect,

that all the generators are tangents to a curve called the edge of

regression, that the tangent plane to the surface is the same at all

points of a given generator, and that the specific curvature of the

surface is identically zero. Ruled surfaces in general, however, do

not possess these properties. Those which are not developable are

called skew surfaces or scrolls. It is skew surfaces particularly

that we shall now consider.

On the given ruled surface let any curve be drawn cutting all

the generators, and let it be taken as a curve of reference called
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the directna:. The position vector r of a current point P on the

directrix is a function of the arc-length 8 of this curve, measured

from a fixed point on it. The position vector r of any point P on

the surface is then given by

r=r + wd (18),

where d is the unit vector parallel to the generator through P,

^.
P

Fig 20.

and u the distance of P from the directrix in the direction of d.

The quantities u, s will be taken as parameters for the surface.

The parametric curves s = const, are the generators. The unib

tangent t to the directrix is equal to r
'

3
and the angle 6 at which

a generator cuts the directrix is given by

cos0 = d.t ............... (19).

The square of the linear element of the surface follows from (18).

For

and therefore on squaring, and writing

aa=d', 6 = t.d' .....................(20),

we have

Edu* + ZFduda + Gds' = dr*

= du* + 2 cos 6duds + (a
a
-u

a + Ibu + 1) ds*. ..(21).

68. Consecutive generators. Consider consecutive genera-
tors through the points r and r + tds on the directrix, and let

their directions be those of the unit vectors d and d + d'ds. If

their mutual moment is positive the ruled surface is said to be

right-handed; if it js negative the surface is left-handed. This

mutual moment is the scalar moment about either generator of a

unit vector localised in the other. If then we take the unit vector

d + d'ds localised in the second generator, its vector moment about
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J'
r

the point r is (tds) x (d + d'cfe). Hence its scalar moment about
1 the first generator is

, (tds)x(d + d'ds).d = [t, d', d]da
a
.

> The surface is therefore right-handed or left-handed according as

the scalar triple product

I> = [t, d', d] ...................(22)

is positive or negative.

[

The common perpendicular to the two generators is parallel to

|

the vector (d + d'cfo) x d, and therefore to the vector d' x d. The

a unit vector in this direction is - d' x d, because d' and d are at
f

a

right angles, and their moduli are a and unity respectively. In

the case of a right-handed surface this vector makes an acute angle
with t. The shortest distance between the consecutive generators
is the projection of the arc-element tds on the common perpen-

dicular, and is therefore equal to

Hence the necessary and sufficient condition that the surface be

developable w [t, d', d]
= 0.

This condition may be expressed differently. For

[t, d', d]
s = ta t-d' t.d

d'.t d' 1 d'.d

d*t d-d' d'

1 6 cos

b a1

cos 9 1

aa sina 0-&2
.

Hence [t, d', d] = Vaa sm9 6 - 6a (23),

the positive or negative sign being taken according as the surface

is nght-handed or left-handed. Thus the condition for a develop-
able surface is

&a = aa sma
0.

The mutual moment of two given generators and their shortest

distance apart are clearly independent of the curve chosen as

directrix. Hence, in the case of two consecutive generators, the

quantities Dds* and -Dds do not change with the directrix. The
a

quotient of the square of the second by the first is then likewise
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invariant. But this quotient, being equal to DjcP, is independent
of ds, and therefore depends only on the particular generator d

chosen. It is called the parameter of distribution for that generator,
and has the same sign as D. Denoting it by ft we have

<24>-

6 . Line of strlction. The foot of the common perpendicular
to a generator and the consecutive generator is called the central

point of the generator , and the locus of the central points of all

the generators is the line of striction of the surface To find the

distance u from the directrix to the central point of the generator
d, we first prove that the tangent to the line of stnction is per-

pendicular to d'. This may be done as follows. Consider three

consecutive generators. Let QQ' be the element of the common
perpendicular to the first and second intercepted between them,
and RR' the intercept of the common perpendicular to the second

and third. Then the vector QR is the sum of the vectors QQ' and

Q'R. But QQ' is parallel to d' x d and is therefore perpendicular
tod'. Further

where
17 is a small quantity of the first order. Forming the scalar

product of this vector with d' we have for its value

t\ (d + d' da) d'= ^ds,
which is of the second order. Hence in the limit, as the three

generators tend to coincidence, QR is perpendicular to d'. But the

limiting direction of QR is that of the tangent to the line of
striction. Hence this tangent is perpendicular to d'.

Now if u is the distance of the central point from the directrix,
the position vector of this point is

............ (25),
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and the tangent to the line of striction is parallel to ?, where

But this is perpendicular to d', so that

Hence u = -~ (26).
a"

This determines the central point of the generator. The para-

metric equation of the line of striction is

a*u + 6 = 0.

Hence if 6 vanishes identically the line of striction is the directrix

This condition is that d' be perpendicular to t.

IDXi Show that the line of stnotion outs the generator at an angle i//-
such

that

7O. Fundamental magnitudes. The position vector of a

current point on the surface is

r = r + wd,

where r and d are functions of the parameter s only. Hence

so that E=l t
F= coa0, Q = a*u* + 26u + 1,

as is also evident from (21) The unit normal to the surface is

d') ............(27).

The second derivatives of r are

iu = 0, ria
=

d', TJB
= t'

so that L =

ff '

* The specific curvature has the value

LN-M*

(28).
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so that, for a, developable surface, K vanishes identically (Art. 33).

Further, since K is negative, there are no elliptic points on a real

ruled surface ; and, since we may write

E B = sms 6 + a* (u
-

ft)
2 - aa&9

,

it follows that, along any generator, H* is least at the central

point Therefore, on any one generator, the second curvature is

greatest in absolute value at the central point; and, at points equi-

distantfrom this, it has equal values.

The first curvature is given by

r EN+GL-ZFM
J

H*

so that J= -li {[d, t + d'
f f + ud"] - 2D cos 6}.

71. Tangent plane. The tangent plane to a developable
surface is the same at all points of a given generator. But this

is not the case with a skew surface. We shall now show that, as

the point of contact moves along a generator from one end to the

other, the tangent plane turns through an angle of 180. To do

this we find the inclination of the tangent plane at any point P to

the tangent plane at the central point P of the same generator.

The tangent plane at the central point is called the central plane
of the generator.

We lose no generality by taking the line of striction as directrioo.

Then 6= 0, and the central point of the generator is given by
u = We thus have

,
D = aam0,

so that, for the central point,

H$ = sin d.

Similarly the unit normal at the central point is

dxt
n =

sF0'

Let < be the angle of rotation (in the' sense which is positive for

the direction d) from the central plane to the tangent plane at the

point u. This is equal to the angle of rotation from the normal nc
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to the normal n, and is given by

noxn=^. (dxt)x(

uD

Therefore m * "
JST

-
2?

............... (3 )'

the positive or negative sign being taken according as the surface

is right-handed or left-handed. Hence, as u varies from oo to

+ oo
,
sin < varies continuously from 1 to + 1, or from + 1 to 1.

Thus, as the point of contact movesfrom one end of the generator to

the other, the tangent plane turns through half a revolution; and the

tangent planes at the ends of the generator are perpendicular to the

central plane.

Consequently cos < is positive, and in virtue of (30)

.........(30'),

, ., , , sin d> oit a?u
and therefore tan rf> = =

-j.
-. = ___^

cos < sin JJ

where 13 is the parameter of distribution (Art. 68). Thus tan < is

proportional to the distance of the point of contact from the

central point. And, in virtue of (31), the tangent planes at two

points u, U on the same generator will be perpendicular provided

Thus any plane through a generator is a tangent plane at some

point of the generator, and a normal plane at some other point of

it. Also the points of contact of perpendicular tangent planes

along a generator form an involution, with the central point as

centre, and imaginary double points.
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Ex. 1. Surface of binomials. Consider the surface generated by the

binomials of a twisted curve. Take the curve itself as directrix, and let t, n,

b be its unit tangent, principal normal and bmormal respectively. Then

0=|, d=b, d'- -m, so that

-D=[t, -rn,b]=-T.
Hence the surface is left-handed or right-handed according as the torsion of

the curve is positive or negative. Further

as=b'a
=r',

and 6=tb'=0,
so that the curve itself is the line of stnction on the surface. The parameter
of distribution is ^ _!__,^

<Z
a T '

where a- is the radius of torsion of the curve. This makes j8 positive when the

torsion is negative.

Further ^-1, ^=0, 0-
and the specific curvature is

At a point on the curve itself the specific curvature has the value -r3.

Ex. 2 . Surface ofprincipal normals Consider the skew surface generated

by the principal normals to a twisted curve. Again #=jr> while dn,2

d'= i-b xt, so that

D^ftrb-ict, n]=-r,
and the surface is therefore left-handed where T is positive. Further,

and Z>=tn'=-K,
so that the distance of the central point from the curve is

- _A *
U=s

a2
=
^H?'

The parameter of distribution is

fl.^L- T
p

a? ;?+?
The first order magnitudes are

E=\, ^=0, (?=(l

and the specific curvature is

r _^?__
H*~ {(l-

At a point on the curve itself the specific curvature is - r\
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72. Bonnet's theorem. The geodesic curvature of any curve

on a surface is equal to [n, tf
t r"], and therefore the geodesic

curvature of the directnx curve on a ruled surface is given by

[n, t, t'] if we put u = 0. Now for points on the directrix

dxtn= ^T'
and H = sm 0.

Hence the geodesic curvature of the directrix is

^
"'"Bin^"""'

But the first term vanishes because tt' is zero. Thus

/=- d-t'
'

a Bind smtflcte

Hence the formula iea = -r--\ 7;v ds sin 9

Now if the first member vanishes the directnx is a geodesic. If

d6jds is zero it cuts the generators at a constant angle. If b is

identically zero the directnx is the line of striction. Hence since

the directrix may be chosen at pleasure, subject to the condition

that it cute all the generators, we have the following theorem, due

to Bonnet:

If a curve is drawn on a ruled surface so as to intersect all the

generators, then, provided it has two of the following properties, it

will also have the third: (a) it is a geodesic, (6) it is the line of

striction, (c) it cuts the generators at a constant angle.

Let an orthogonal trajectory of the generators be chosen as

7T
directnx. Then 6 has the constant value

^
. The geodesic curva-

ture of the directnx is then equal to 6, and this vanishes where

the directnx crosses the line of striction. Thus the line of stnction

is the locus of the points at which the geodesic curvature of the ortho-

gonal trajectories of the generators vanishes.

Ex. Show that a twisted curve is a geodesic on the surface generated by
its bmormala.
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73. Asymptotic lines. Since, for a ruled surface, L = 0, the

differential equation of the asymptotic lines is

Thus the parametric curves *= const, that is to say the genera-

tors, are one system of asymptotic lines. The other system (which

may be referred to as the system of curved asymptotic lines) is

given by

This equation is of the Riccati type

in which P, Q, R are functions of s only. Its primitive is of the

form*

oY+Z
where c is an arbitrary constant, and W, X, Y, Z are known func-

tions of s. This equation then gives the curved asymptotic lines,

c having a different value for each member of the family.

Consider the intersections of four particular asymptotic lines

01,08,08,04 with a given generator s = const. Let ult u^, MJ, u4 be

the points of intersection. Then by (33)
- w4) = to-Ca) (cs -c4)

which is independent of s, and is therefore the same for all gene-
rators. Since then u is the distance measured along the generator
from the directrix, this relation shows that the cross-ratio of the

fou/r points, in which a generator is cut by four given curved asymp-
totic lines, is the samefor all generators.

EXAMPLES X
1 . Show that the product of the specific curvatures of a ruled surface at

two points on the same generator is equal to
^sin*o, where I is the distance

between the points, and a the inclination of the tangent planes thereat.

With the notation of Art. 71, if suffixes 1 and 2 be used to distinguish the

two points, we have

Z=a1
-

an=fl(tand>1 -tan<48)'=
-

. ,
."1 -a M\ VI ^8/

COS 0! COS a

*
Forayth, Differential Equations, Art. 110 (8rd ed.).
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_ , /sma\* /cos01 cos^>2\
4 8

/ D \* / D \
Therefor

(-j-)
=

(
-

fl _*")
- ^ (^-J (_)

7)*

by (Sff) Art 71,

in virtue of (29).

2. Show that the normals to a ruled surface along a given generator con-

stitute a hyperbolic paraboloid with vertex at the central point of the

generator.

3 . Determine the condition that the directrix be a geodesic.

4. The cross-ratio of four tangent planes to a skew surface at points of a

generator is equal to the cross-ratio of the points.

. Prove that, if the specific curvature of a ruled surface is constant, the

surface IB a developable.

6 Determine the condition that the line of striotion may be an asymptotic
line.

7. Deduce formula (32) from the value HnQ~ found in Art 54 for the

geodesic curvature of the parametric curve u= const.

8. Deduce formula (32) of Art 72 from formula (22) of Art. 54

9. The surface generated by the tangents to a twisted curve is a develop-
able surface with first curvature T/(MK) Find the lines of curvature.

10. A straight line cuts a twisted curve at a constant angle and lies in

the rectifying plane. Show that, on the surface which it generates, the given
curve is the line of stnction. Find the parameter of distribution and the specific

curvature.

If t, n, b are the tangent, principal normal and bmormal to the curve, we

may write
. t+ob ,, K-CT

where o is constant. Hence b => d' t= 0,

so that the curve is the line of striction. Also

~ CT - t+ob"

C(K -Or)=
l+ d

'

Hence the parameter of distribution is

S= DP= B =
a3 K

j
The specific curvature is

10
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From Bonnet's theorem (Art 72) it follows that the given curve is a geodesic

on the surface.

1 1 . The right hdicoid or right conoid is the surface generated by a straight
hue which intersects a given straight line (the axis) at right angles, and

rotates about this axis with an angular velocity proportional to the velocity of

the point of intersection along the axis.

If we choose the fixed axis both as directrix and as z-ans, we may write

The axis is the common perpendicular to consecutive generators, and is there-

fore the line of striction. Hence, by Bonnet's theorem, it is also a geodesic on

the surface. Moreover, with the usual notation,

t=(0, 0, 1),

1

I

so that

!

and 6==d'.t=0,

showing that the directrix is the line of striction. Similarly

o

and the parameter of distribution is

The fundamental magnitudes of the first order are

*-* *J A ""
\Jy \f -* Q ^= .*-*

7"lfl
n

The specific curvature is E=* -r-
i
=

.

H* (tt
a+c2

)
a

The second order magnitudes are

x=o, jr-JL.--! ff=o.
J Vtta+ 8

Hence the first curvature is zero and the surface is a minimal swrfaoe. The
principal curvatures are c/(tt

a+ca
). The asymptotic lines are given by

Hence the asymptotic hues are the generators and the curves ?t= const
Find also the lines of curvature.

12. If two skew surfaces have a common generator and touch at three

points along it, they will touch at every point of it, also the central poinl
and the parameter of distribution of the generator are the same for bott
surfaces.
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13. If two skew surfaces have a common generator, and their tangent

planes at three points of it are inclined at the same angle, they will be

inclined at this angle at every point of the common generator.

1 4. The normals to a surface at points of an asymptotic line generate a

skew surface whose line of stnction is the asymptotic line, and the two

surfaces have the same specific curvature at any point of the line.

1 5 . Find the parameter of distribution of a generator of the cyhndroid

1 6 On the skew surface generated by the line

prove that the parameter of distribution of a generator is
jj (1 +2*)

s
, and that

the line of striction is the curve

1 7. The line of stnction on an hyperboloid of revolution of one sheet is

the principal circular section

1 8. The right hehcoid is the only ruled surface whose generators are the

principal normals of their orthogonal trajectories.

19. If two of the curved asymptotic hues of a skew surface are ortho-

gonal trajectories of the generators, they are Bertrand curves ; if all of them

are orthogonal trajectories, the surface is a right hehcoid

SO. The right hehcoid is the only ruled surface each of whose lines of

curvature cuts the generators at a constant angle. On any other skew surface

there are in general four lines of curvature which have this property

21. The line of striction of a skew surface is an orthogonal trajectory of

the generators only if the latter are the bmormals of a curve, or if the surface

is a right conoid.

22. If the lines of curvature of one family on a ruled surface are such

that the segments of the generators between two of them are of the same

length, the parameter of distribution is constant, and the line of stnction is a

line of curvature

Noira. The author has recently shown that a family of curves on any sur-

face possesses a line of stnction. and that the theorem of Art 72 is true for
a family of geodesies on any surface See Art 126 below
The remaining chapters of the book may be read in any order.

102



CHAPTER VIII

EVOLUTE OR SURFACE OF CENTRES.
PARALLEL SURFACES

SURFACE OP CENTEES

74. Centre-surface. We have already seen (Art. 29) that

consecutive normals along a line of curvature intersect, the point

of intersection being the corresponding centre of curvature. The

locus of the centres of curvature for all points of a given surface 8

is called the surface of centres or centra-surface of& In general it

consists of two sheets, corresponding to the two families of lines of

curvature.

Along any one line of curvature, C, the normals to the surface

generate a developable surface whose edge of regression is the locus

of the centres of curvature along 0. All these normals touch the

edge of regression, which is therefore an evolute of G. If now we

consider all members of that family of lines of curvature to which

belongs, the locus of their edges of regression is a surface, which

is one sheet of the surface of centres. Similarly from the other

family of lines of curvature we have another family of edges of

regression which lie on the second sheet of the centro-surface.

Let PQ, RT be consecutive lines of curvature of the first system,
and PR, QT consecutive lines of the second system. The normals
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to the surface at P and Q intersect at a point A on the first sheet

of the centro-surface, and those at R and T intersect at another

point A' on the same sheet. Similarly the normals at P, R inter-

sect at a point B, and those at Q, T intersect at another H, both
on the second sheet. Thus PA

t
PB are equal in magnitude to the

principal radii of curvature at P The normal PA is a tangent to

the edge of regression corresponding to the curve PQ, and is there-

fore a tangent to the first sheet of the centro-surface at A. Simi-

larly RA' is a tangent to the same sheet at A'. And as A, A' are

consecutive points to this sheet, AA' is also a tangent line to the

sheet. But these three tangents are all in the plane PRB. Hence
in the limit, as R tends to coincidence with P, the normal plane
at P in the direction PR is tangential to the first sheet of the

i, centro-surface at A. Thus the normal at A to the first sheet of the

surface of centres is parallel to the tangent at P to the corresponding
line of curvature PQ. Similarly the normal at B to the second

sheet of the centro-surface is parallel to the tangent at P to the

other line of curvature PR. The normals to the two sheets of the

centro-surface at corresponding points A, B are therefore perpen-
"

. dicular to each other.

Because the surface of centres is the envelope of the principal
normal planes, and is composed of evolutes of the lines of curvature

on S, it is often called the evolute of 8. These evolutes of the lines

of curvature on 8, which are the edges of regression of the develop-
ables generated by the normals, are also geodesies on the surface

of centres To prove this consider the edge of regression of the

surface generated by the normals along the line of curvature PQ.
The osculating plane of this curve at A is the plane of consecutive

normals PA, QA to the surface. Hence it contains the tangent at
' P to the curve PQ, and therefore also the normal at A to the first

sheet of the centro-surface. The edge of regression is thus a geo-

desic on the centro-surfaoe. Similarly the edge of regression of the

developable generated by the normals along the line of curvature

I
PR is a geodesic on the second sheet of the evolute.

I It is easy to show that the orthogonal trajectories of these re-

, gressional geodesies are the curves on the first sheet which correspond
to the lines a. const, on S, and the curves on the second sheet

corresponding to the lines fi
= const., where o, ft are the principal
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radii of curvature for the surface S. For, considering the first sheet

of the evolute, let T' be one of these orthogonal trajectories, and

T the corresponding curve on S. Then the normals to S along T

generate a developable surface on which T and Te
are orthogonal

trajectories of the generators, and therefore intercept between them

segments of the generators of constant length (Art. 56). Thus

along the curve T on 8 the radius of curvature a is constant.

Moreover, the curves on either sheet of the evolute which correspond

to the lines of curvature on 8, form a conjugate system. For con-

venience of description let the lines of curvature be referred to as

parametric curves, PQ belonging to the system v = const., and PR
to the system u= const. The normal at P touches both sheets of

the evolute. As a member of the family of normals along PR it is

a tangent to a regressional geodesic u = const, on the second sheet.

As a member of the family of normals along PQ it is a tangent to

a regressional geodesic v= const, on the first sheet, and touches the

second sheet at a point on the corresponding line v = const. Thus

the normals along PQ form a developable surface, whose generators

touch the second sheet along a line v = const., and are tangents
there to the lines u = const. Hence (Art. 35) the parametric curves

are conjugate on the second sheet; and these are the curves corre-

sponding to the lines of curvature on 8. Similarly the theorem

may be proved for the first sheet.

All these properties will be proved analytically in the following
Art. Meanwhile we may observe in passing that it follows from

the last theorem and Beltrami's theorem (Art. 56 Ex.) that the

centres of geodesic curvature of the orthogonal trajectories of the

regressional geodesies on either sheet of the evolute are the corre-

sponding points on the other sheet. For, on the second sheet, the

lines v = const, are conjugate to the geodesies u = const. And the

tangents to these geodesies along a line v = const, form a develop-
able whose edge of regression is a geodesic on the first sheet. But,

by Beltrami's theorem, each point of this edge of regression is the

centre of geodesic curvature of the orthogonal trajectory of the

geodesies w= const, at the corresponding point on the second sheet:

hence the result. It follows that the radius of geodesic curvature

of the orthogonal trajectory is numerically equal to the difference

between the principal radii of curvature of the surface 8.
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75. Fundamental magnitudes. The same results may be

obtained analytically as follows. Let the lines of curvature on *S be

taken as parametric curves If a, $ are the principal radii of

curvature at the point r on S, the corresponding point A on the

first sheet of the centro-surface is

r = r + an ...................... (1).

Now since A is the centre of curvature for v = const, it follows that

? and a are constant for one differentiation with respect to u. Thus

r1 +onl -0} (

0j

................... v ''

Similarly

These are the equivalent of Kodngues' formula already proved in

Art. 30. In virtue of these we obtain from (1)

so that the magnitudes for the first sheet of the evolute are

The square of the linear element for the first sheet is

d& = Edu*

(4),

which is of the geodesic form. Hence the curves t> = const are

geodesies on the first sheet of the centro-surface. These are the

edges of regression of the developables generated by the normals

along the lines of curvature v = const on S. The orthogonal tra-

jectories of these regressional geodesies are the curves a = const.,

which agrees with the result proved in the preceding Art.

The unit normal n to the first sheet is given by

Bn = F! x ra = otj l - n x r,,

and n form a right-handed system of unit vectors.

Consequently the last equation may be written
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agreeing with the result, previously established, that the normal at

A to the first sheet of the evolute is parallel to the tangent at P
to the line of curvature PQ. We may express this

(6),

Ft

where e is + 1 according as ^ f 1
-5]

is negative or positive.
\ pf

The fundamental magnitudes of the second order for the first

sheet of the evolute may now be calculated. For

in virtue of (2). Hence finally

Similarly

in virtue of (2). And

F=H ' f
-=A(

1
-I)

r" r by(3)*

all the other scalar products vanishing Now
*\

r
a
.

ra-^fa
ra) -rla r, = F,- \O l

= - #a ,

because the parametric curves are orthogonal. Also since the

parametric curves are lines of curvature

-^-jjttr [Cf Ex< 2 below-]

On substituting this value in the formula for N we have

Collecting the results thus established we have

Since M= it follows that the parametric curves on the centro-

surface form a conjugate system. Thus the curves on the evolidet

which correspond to lines of curvature on the original surface, are

conjugate, but (in general) are not lines of curvature because F is

not zero.
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The fundamental magnitudes for the second sheet of the centro-

anrface are obtainable from the above by interchanging simul-

taneously u and
ji,
E and G, L and N, a. and /S. Thus for the second

sheet we have the first order quantities

and the second order quantities

/ '

where e' is equal to 1 according as & (l
--

)
is negative or

positive.

The specific curvature for the first sheet of the evolute is

l

and for the second sheet

/o/\.................. ( }'

Ex. 1. Wnte down the expressions for the first curvatures of the two

sheets of the evolute.

Ex. 2. Prove that, if the lines of curvature are parametric curves,

It follows from the data that F=3f=Q and

From the Mainardi-Oodazzi relation (8) of Art 43 it then follows that

3

and therefore

61 Gi (S'fl'! EGl O
a

Then, since Ht=EG)
this reduces to the required formula

The other result follows in like manner from the relation (7) of Art. 43

Ex. 3. Prove the formulae given above for the fundamental magnitudes

of the second sheet of the centro-surface.
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76. Weingarten surfaces. The asymptotic lines on the first

sheet of the centro-aurface are found from the equation

Ldu*+ ZMdudv +Ndv* = 0.

On substitution of the values of the fundamental magnitudes found

above, this reduces to

O............. (10).

Similarly the asymptotic lines on the second sheet are given by

Ea^du1 - G&tfdv*= ......... (10').

The asymptotic lines on the two sheets will therefore correspond if

these two equations are identical This will be the case if
i

i$j = a&,

that is to say, if a, /3 are connected by some functional relation

/(,0)-0.
Surfaces with this property are called Weingarten surfaces. The
above analysis is reversible, so that we have the theorem If there

easists a functional relation between the principal curvatures of a

surfewe, the asymptotic lines on the two sheets ofits evolute correspond.

Weingarten surfaces are exemplified by surfaces of constant

specific curvature K, surfaces of constant first curvature /, or more

generally by surfaces in which there is any functional relation

f(J, .2")
= between these two curvatures. Since, on a Weingarten

surface, either principal radius of curvature may be regarded as a
function of the other, the formulae found above for the specific
curvatures of the two sheets of the centro-surface may be written

and K' = ? ^
Thus, for any Weingarten surface,

(11).

Consider the particular case in which the functional relation
between the principal radii of curvature is

(13),



76] WEINGABTEN SURFACES 155

where c is a constant. From this it follows that

da = d@,

so that the formulae (11) become

Z=K' = - ........................(14).

Surfaces of constant negative specific curvature are called pseudo-

spherical surfaces. Hence the two sheets of the evolute of a surface,

whose principal radii have a constant difference, are pseudo-spherical

surfaces.

For Weingarten surfaces of the class (13), not only do the

asymptotic lines on the two sheets of the centro-surface correspond,

but corresponding portions are of equal length. For, on the first

sheet, the square of the linear element is

and on the second sheet

But, in virtue of (10) and (10'), since at
=& and a

= &> it follows

that along asymptotic lines of the evolute,

Hence d& - ds'8= dof - dp = 0,

showing that ds = d&. Thus corresponding elements of asymptotic
lines on the two sheets of the evolute are equal in length, and the

theorem is proved.

If we consider the possibility of the asymptotic lines of the

surface S corresponding with those of the first sheet of the evolute,

we seek to identify (10) with the equation of the asymptotic lines

of the surface S. Now since the lines of curvature are parametric

curves on 8, its asymptotic lines are given by
Ldu* + Ndv* = 0,
ET Q

that is -dwa +5^a = 0.
a ft

This equation will be identical with (10) provided

ai + a& = 0,

that is *
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This requiresK to be constant along the lines of curvature v = const.

Thus in order that the asymptotic lines on a surface S may correspond

with those on one sheet of its centra-surface, the lines of curvature

on S corresponding to this sheet must be lines of constant specific

curvature. Hence, in order that the asymptotic lines on S may

correspond to those on each sheet of its evolute, the specific curva-

ture of S must be constant.

77. Lines of curvature. We have seen that the lines of

curvature on a surface S do not in general correspond with those

on its centro-surface. We naturally enquire if the lines of curvature

on one sheet of the evolute correspond with those on the other. If

in the general differential equation of the lines of curvature on a

surface,

(EM- FL) du* + (EN- GL) dudv + (FN- GM) dv* = 0,

we substitute the magnitudes belonging to the first sheet of the

centro-surface we obtain, after reduction, the differential equation

of the lines of curvature on this sheet, in the form

EpdiOtdu* + GcPcti&dv*

+ [Epaf + "!& + EG (a
-

/S)
9

}
dudv = 0.

Similarly on using the fundamental magnitudes for the second

sheet we find the differential equation of its lines of curvature to be

EG(a- /9)
8

}
dudv = 0.

The lines of curvature on the two sheets will correspond if these

two equations are identical. The necessary and sufficient conditions

for this are

!
= & and aa

=
/Sa ,

,1 , 8a 3/3 , 9a dB
that is 5- = 5- and ^-

=
-5- ,

du 8w dv dv

whence a =
c,

where o is constant. Hence only in the case of the Weingarten

surfaces, on which the principal radii differ by a constant, do the

lines of curvature on the two sheets of the centro-surface correspond.
This theorem is due to Eibaucour.

78. Degenerate evolute. In particular instances either sheet

of the evolute may degenerate into a curve. In such a case the
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edge of regression of the developable generated by the normals

along a line of curvature becomes a smgle point of that curve. We

proceed to enquire under what conditions the normals to a surface

$ will all intersect a given curve G.

Let r be a point on the surface 8, n the unit normal there, and

r the point in which this normal cuts the curve G. Then we may
write

r = r

or r = f-<n ........................(16)

Let the arc-length u of be chosen as one of the parameters. Then

r is a function of u only, but the other quantities are functions of

u and another parameter v. Now the normal n to the surface S is

perpendicular to both ^ and ra . It follows then from (16) that

n ? n - tn =

and n (t*n + taa)
= 0,

which are equivalent to N

<a
= 0, *1

= n.r1
= cos^, ............(17),

where Q is the inclination of the normal to the tangent to the

curve 0. Since then

3 , /j\ d*i 9*a n
TT- (cos 0) = ^ = ~- = 0,
dv dv du,

it follows that cos 6 is a function of u only Thus the normals to S,

which meet at a point of the curve 0, form a right circular cone

whose semi-vertical angle 6 changes as the point moves along the

curve. These intersecting normals emanate from a line of curvature

on S, which must then be circular. Thus the surface Shasa system

of circular lines of curvature. And, further, the sphere described

with centre at the point of concurrence of the normals, and passing

through the feet of these normals, will touch S along one of the

circular lines of curvature. Thus S is the envelope of a singly

infinite family of spheres with centres on the curve G.

Conversely, if a surface 8 has a system of circular lines of curva-

ture the normals along one of these generate a circular cone, whose

vertex lies on a curve to which the corresponding sheet of the

evolute degenerates.
The surface S is then the envelope of a singly

infinite family of spheres with centres on 0.
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If both systems of lines of curvature of S are circular, each sheet

of the evolute degenerates to a curve. Then, from the preceding

argument, it follows that each of these curves lies on a singly in-

finite family of circular cones whose axes are tangents to the other

curve. Surfaces of this nature are called Dupin's Cydides.

PAEALLEL SDEFACES

79. Parallel surfaces. A surface, which is at a constant

distance along the normal from anether surface S, is said to be

parallel to S. As the constant distance may be chosen arbitrarily,

the number of such parallel surfaces is infinite. If r is the current

point on the surface S, n the unit normal to that surface, and o the

constant distance, the corresponding point on the parallel surface is

r = r + cn (18).

Let the lines of curvature on S be taken as parametric curves, so

that .F=0 and M= Q. Then if a, /3 are the principal radii of

curvature on S we have, in virtue of (2),

n"
(19)-

, _ (c p)
fl,Tlfi I* f I pf!- ^~ m^ f '

13

The magnitudes of the first order for the parallel surface are
therefore

.........(20),

The unit normal to the parallel surface is given by

aft

Thus the normals to the two surfaces at corresponding points are
parallel', and we may write

n = en,

where e is equal to 1 according as
(c~^

c~^ is positive or

negative.
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For the magnitudes of the second order on the parallel surface

we have

T f (c
-

a) 9 fc
-

a\} (c
- a) T (c

-
a)= enH---'ru-r^ - r

= - e L = -e> ^-E
(

a au\ a )} a a3

Similai ly

^ f (c
-

a) 3 fc - a\] (c
-

a)
Jf..|_L_J ril

_
ri_^__i__

and

Thus P=M 0, so that the parametric curves are lines of curva-

ture on the parallel surface also. Hence the lines of curvature on

the parallel surface correspond to those on the original surface, and

their tangents at corresponding points are parallel, since ?x is

parallel to r,, and fa is parallel to ra .

8O. Curvature. The principal radii of curvature for the

parallel surface are __
fi = J&IL

= e (a
-

c)

and /9
= (?/F = e (^-

as we should expect. The first curvature is therefore

I 1 1 \_*(J-*cK)

and the second curvature

1 K

If the specific curvatureK of the original surface is constant and

equal to ,
and we take c = a, we have

a

Thus with every surface of constant second cwrvature there are

associated two surfaces of constant first cwrvature -
, which are

parallel to the former and distant a from it. This theorem is due

bo Bonnet.
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Similarly if / is constant and equal to -
,
and we take c = a,

we find

K = = const.
as

Thus with a surface of constant first curvature - there is associated
a

a parallel surface of constant second curvature at a distance a

from, it.

The asymptotic lines on the parallel surface are given by

Ldu* + Wdtf = 0,

which reduces to

P*(c-a)Edu* + a.*(c-/3)G<lv*
= Q (22).

Hence they do not correspond with the asymptotic lines on the

original surface, which are given by

Ldu* + Ndv* =

or @Edu* + uGdtf = 0.

81. Involutes of a surface. We have seen that the normals

to a surface are tangents to a family of geodesies on each sheet of

the centro-surface. "We now proceed to show that the tangents to a

singly infinite family of geodesies on a given surface are normals to

a family of parallel surfaces.

Let the family of geodesies be taken as the curves v = const and

their orthogonal trajectories as the curves u = const Then we may
choose u so that the square of the linear element has the geodesic
form

ds* = du* + Gdtf.

An involute of a geodesic v = const, is the locus of a point whose

position vector r is given by
f = r + (c-u)rI (23),

where c is constant, and r a point on the geodesic. We shall prove
that, for a given value of c, the locus of these involutes is a surface

S cutting orthogonally all the tangents to the family of geodesies.
From (23) it Mows that

f,
= (o-u)rn ,

f = ra + (c
-

u) ru .
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Using the values of I, m, X, etc. found in Art. 56 when ds* has the

geodesic form, we may write this

f
j
=

(c u) Ln

Hence the unit normal n to the locus of the involutes is given hy

T! x ra
=

(o
-

it) Zn x rs + (c
-

w)
s n x r,,

and is therefore parallel to rT Thus the surface 8 is normal to the

tangents to the family of geodesies on the given surface 8 It is

called an involute of S with respect to this family of geodesies

And, since the value of the constant c may he chosen arbitrarily,

the involutes are infinite in number and constitute a family of

parallel surfaces

With respect to any one of these involutes 5, the original surface

forms one sheet of the evolute The family of geodesies on 8 are

the edges of regression of the developables generated by the normals

along one family of lines of curvatuie on S. The orthogonal tra-

jectories of the geodesies correspond to the lines on S along which

one of the principal radii of curvature is constant. The second

sheet of the evolute of is (Art. 74) the locus of the centres of

geodesic curvature of these orthogonal trajectories of the given

family of geodesies on 8. This second sheet is called the comple-

mentary surface to S with respect to that family of geodesies.
From

the proof of Beltrami's theorem (Art. 56, Ex.) it follows that, with

the above choice of parametric lines on S, the position vector of

Ihe point R on the complementary surface corresponding to the

point r on S is given by

K = r-fr, ..............(25)
1

Ex. 1 . Calculate the fundamental magnitudes for an involute of a given

surface.

Ex. 2. Prove from (25) that the normal to the complementary surface is

parallel to rs .

, *

EX. 3 . Show that surfaces parallel to a surface of revolution are surfaces

of revolution.

EX. 4- Show that null lines on two parallel surfaces do not (in general)

correspond,

w.
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INVERSE SURFACES

82. Inverse surface. Consider next the surface which is

derived from a given surface 8 by inversion. Let the centre of

inversion be taken as origin. Then, if c is the radius of inversion,

the position vector r ofa point on the inverse surface, corresponding
to the point r on S, has the direction of r and the magnitude C*/r.

It is therefore given by

(26)

nHence _ c2 2C3
rx
= - ra

- r,r
1* T1

Also by differentiating the identity

parameters we have

with respect to the

(28).

The first order magnitudes for the inverse surface are obtained

by squaring and multiplying (27) Then, in virtue of (28), we find

(29),

and therefore H = - H.
r*

Since the first order magnitudes for 8 are proportional to those
for 8 it follows that the angle between any two curves is un-
altered by inversion, and also that null lines are inverted into null
hues

The unit normal to the inverse surface is found from the
formula

_
r

fl
= - - (r^ x r-r,ra x r).
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Now by (28) the expression in "brackets is equal to

-(rT.pj-r.rara) x r = -
{r x (r, x ra)} xr

(r x n) x r

-- nrr.
r

If then we put p = n r, and substitute the value just found in the

formula for n, we find

(30)

It is clear that p is the perpendicular distance from the centre of

inversion to the tangent plane to S, measured in the sense of the

unit normal n.

To find the second order magnitudes we need the relations

obtained "by differentiating (28), namely

1

(31).

The second derivatives ru> f, fM are obtained by differentiat-

ing (27). On substituting the values so found and making use

of (31). we find
_

............<>

From (29) and (32) it follows that

with two similar relations. Hence the
differential^quatLon

of the

lines of curvature on 5 is the same as on S, showing that,hnes of

curvature invert into to of curvature. This is one of the most

important properties
of inverse surfaces. ^
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83. Curvature. Let the lines of curvature on S be taken as

parametric curves, so that F= M = 0. It then follows from (29)

and (32) that F =M = Q. Hence the parametric curves are lines of

curvature on the inverse surface also, affording another proof of the

property that lines of curvature invert into lines of curvature. The

principal curvatures on 8 are then given by

L N

and those on the inverse surface by

_ L r* 2pKA ~~~ J ~ " " 1 KIL
~ *

IT"
771 /ia /M
_/^ V I>

- =^=_^ _?

_ rs

Hence S /eb= r
(/ca

-
KJ,\

(33).

so that wmbilicfi invert into umbilici. The specific curvature of the

inverse surface is

and the first curvature is

"?""?'
The normal curvature in any direction follows from (33) by

Euler's Theorem. Thus

Kn = 7Za coss

ty + Tfj sin
9

ty

f& 9r>=-^-f (34),

since the angle T|T
is unaltered by inversion.

The perpendicular from the centre of inversion to the tangent

plane to the inverse surface is

so that p = p.

Ex. Show that the quantity f ncm+-j is merely altered in sign by in-

version of the surface.
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EXAMPLES XI

1 . Show that the centres of curvature for the central quadric are, with

the notation of Art. 62,

/(o+t*)(a+) _
/(&+)> (6+)"V a(a-6)(a-c)'

y V 6(6-c)(6-o)'

Z=V o(o-a)(fl-6)'
and

-, /(o+i>)
8
(e+u)=V fl(a-o)(fl-6)'

Hence prove that the two sheets of the centre-surface are identical. Prove

also that

by*

and
.

(o+uf
'

The elimination of u between these two equations gives the equation of the

centro-surfaoe. (Of. Forsyth, pp 113115)

2. The middle evolute of a surface, as defined by Eihaucour, is the locus

of the point midway between the two centres of curvature. The current

point on the middle evolute is therefore given by

r=r+i(a+j3)n,

where r is a point on the given surface. Find the fundamental magnitudes

and the unit normal for the middle evolute.

3. Give a geometrical proof of the theorem (Art. 81) that there is a family

of surfaces normal to the tangents to a family of geodesies on a given surface.

4. Calculate the fundamental magnitudes for the complementary surface

determined by formula (25), Art. 81.

5 . Verify the values of the second order magnitudes for the inverse surface

as given by formula (32).

6. Show that conjugate lines are not generally inverted into conjugate

lines, nor asymptotic lines into asymptotic lines.

7. Determine the conjugate systems on a surface such that the corre-

sponding curves on a parallel surface form a conjugate system.

8. Determine the character of a surface such that its asymptotic lines

correspond to conjugate lines on a parallel surface.
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9 The centre-surface of a hehcoid is another heliooid with the same axis

and pitch as the given surface.

1 0. A sphere of radius a rolls on the outside 6f a closed oval surface of

volume F and area S , and the parallel surface, which is its outer envelope,

has volume V and area 8'. Show that

11. In the previous exercise, the fundamental magnitudes for the outer

surface are given by

E1 - (1
-
4alff) E+ 4a (aJ- 1) Z,

F'= (1
-

4a"JT)F+ 4a (aJ- 1) M,

G'=(l
and



CHAPTER IX

CONFORMAL AND SPHERICAL REPRESENTATIONS.

MINIMAL SURFACES

CONFORMAL REPRESENTATION

84. Conforxnal representation. When a one-to-one corre-

spondence exists between the points of two surfaces, either surface

may be said to be represented on the other. Thus two concentric

spherical surfaces are represented on each other, the two points on

the same radial line corresponding The surface of a cylinder is

represented on that portion of a plane into which it can be de-

veloped. A conical surface is likewise represented on the portion of

a plane into which it can be unwrapped The surface of a film is

represented on the portion of the screen on which the image is

thrown, a point of the film corresponding to that point of the

screen on which its image appears. Likewise the surface of the

earth is represented on a map, each point of the map correspond-

ing to one and only one point on the earth's surface.

In general, corresponding portions of the two surfaces represented

are not similar to each other But in the examples mentioned

above there is similarity of the corresponding small elements.

When this i elation holds the representation is said to be conformal

The condition necessary for this is clearly that, in the neighbour-

hood of two corresponding points, all corresponding elements of

arc should be proportional. If this relation holds it follows by

elementary geometry that all corresponding infinitesimal figures

on the two surfaces are similar. Let parameters u, v be chosen to

map out the surfaces S, 8 so that corresponding points on the two

surfaces have the same parameter values. Let the squares of their

linear elements be

ds* = Edu? + ZFdudv + Gdtf,

and d& = Edv? + Zffdudv + Gdtf.

Then, if ds/ds has the same value for all directions at a given point,

we must have _ _
E F df
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where 77 is a function of u and v or a constant. Conversely, if these

relations hold, all corresponding elements of arc at a given point

have the same ratio, and the representation is conformal. Then

($8=* yds.

The quantity 17 may be called the linear magnification. When it

has the value unity for all points of the surface, ds = ds. The

conformal representation is then said to be isometric, and the two

surfaces are said to be applicable. In this case corresponding ele-

ments of the two surfaces are congruent. In the examples men-

tioned above the cylindrical and the conical surfaces are applicable

to those portions of the plane into which they can be developed.

We may notice in passing that null lines on a surface correspond

to null lines in the conformal representation. For since d& = rfds*,

if tfo
2 vanishes along a curve on S, d& will vanish along the corre-

sponding curve on S. Conversely, if null lines on 8 correspond to

null lw.es on S, the representation is conformal Let the null lines

be taken as parametric curves. Then

E=Q = Q and E=@ = Q.

m. , dP ZFdudv F
Therefore -r-. ~ , ,

= -5.
ds* ZFdudv F

Since then dsfds has the same value for all arcs through a given

point, the representation is conformal.

It would be out of place here to attempt a systematic discussion

of conformal representation. We shall be content with giving the

important cases of the representation of a sphere and a surface of

revolution on a plane. We may also mention the following general

theorem, whose proof depends upon the theory of functions of a

complex variable :

If $, ty are a pair of isometnc parameters on the surface 8, and

u, v isometric parameters on S, the most general conformal repre-

sentation of one surface on the other is given by

u + iv=f(<j> + ty) (2),

where f is any analytic function of the argument, the point (as, y)

corresponding to the point (0, ^).

85. Surface of revolution. Consider, as an example, a con-

formal representation of a surface of revolution upon a plane If
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the axis of the surface is taken as .er-axis, and u is the distance of

a point on the surface from this axis, the coordinates of the point
'

may be expressed
i // \

cc *s u cos <p, y s= u HI Ti
(pj z == T (U),

where $ is the longitude The square of the linear element is

If then we put dty = - Vl +f1

a
du,

we have ds* = u3

(d^* + d<f>*)

Thus 0, i/r
are isometric parameters on the surface of revolution.

The curves = const, are the meridians, and the curves
*//
= const.

the parallels

On the plane, rectangular coordinates no, y are isometric para-

meters, since dSt = daf + dy*. Consider the representation defined by
co + iy

= k ($ + fty),

thatis as =
k<j>, y lc^r .................(3),

where k is constant. Then the point (as, y) on the plane corresponds

to the point ($, -^) on the surface of revolution. Further

<f? = da? + dy*
= A? (dp +

showing that the representation is conformal, with a linear magni-
fication kju. The lines ao const, correspond to meridians on the

surface of revolution, and the lines y = const, to the parallels.

Any straight line aso + by + c = on the plane cuts the lines

es = const, at a constant angle. Therefore, since the representation

is conformal, the corresponding line k (a<f> + 6i/r) + c = on the

surface of revolution cuts the meridians at a constant angle. Such

a line is called a loxodrome curve, or briefly a loxodrome, on the

surface of revolution. On substituting the value of
T/T

we find, for

the equation of loxodromes on the surface,

ri

a</> + 6 - Vl +fi*du = const (4)
J u

A triangle in the plane corresponds to a curvilinear triangle

bounded by loxodromes on the surface of revolution. And, since



170 OONTOBMAL REPRESENTATION [IX

corresponding angles in the two figures are equal, it follows that

the sum of the angles of a curvilinear triangle, bounded by loxo-

dromes on a surface of revolution, is equal to two rigid angles.

Finally we may show that, when the linear element of a surface

is reducible to theform
d8*=U(du* + dv*) ................(5),

where U is a function ofu only, or a constant, the surface is applic-

able to a surface of revolution. For if we write r = V 7, and solve

this equation for u in terms of r, the equation

du=;-*/I+f*dr
r

determines a function/(r) such that the surface of revolution

has the same linear element

ds*

as the given surface.

The above representation of a surface of revolution on a plane

is only a particular case. The general confonnal representation of

the surface of revolution on a plane is given by
a + y=/(0 + *^) ................. (6),

where /is any analytic function of the argument.

86. Surface of a sphere. The theory of maps, whether

geographical or astronomical, renders the sphere an important

example of a surface of revolution. The surface of the earth, or the

celestial sphere, is to be represented conformally on a plane, so

that there is similarity of detail though not similarity at large If

<f)
is the longitude and X the latitude, then, with the centre as

origin,
z = a sin X, u = a cos\

a being the radius of the sphere Thus the square of the linear

element is

ds* = a*d\? + o? cosa

= a? cosa X (sec
3

If then we write
i/r
=

log tan U + ^ J
.............(7),

so that dty = sec \d\,

wehave ds* = aa cos" X (d<p + cty
9
) .......... (8).
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The particular conforraal representation given in the previous
Art. becomes for the sphere

Meridians on the sphere, with a constant difference of longitude,

are represented by equidistant parallel straight lines ee = const.

Parallels of latitude, with a constant difference of latitude, are

represented by parallel straight lines y = const, whose distance

apart increases toward the poles. The magnification is

^k__k_
u a cos X '

which increases from kfa at the equator to infinity at the poles

This representation of a sphere on a plane is known as Mercator's

projection

Another conformal representation of a sphere on a plane is given

by

where c is a constant. This is equivalent to

tc = ker * cos o<, y= ke~* sin
c<f> ......(9).

That the representation is conformal is easily verified For

d& = da? + dy*=

and therefore, in virtue of (8),

,

aa cos'X

as required. The linear magnification is now

ck e-* ckl-am\ (

/im
.(ID).

a cosX a
(1 + am V>*

(c + 1}

Meridians on the sphere are represented by the straight lines

y = oo tan c<>,

through the origin. Parallels of latitude are represented by the

concentric circles

with centre at the ongm. The particular case for which o = 1 is

known as stereograph/to projection. It is sometimes used for terres-

trial maps. Various other values of o are used for star-maps.
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SPHERICAL REPRESENTATION

87. Spherical image. We shall now consider briefly th<

spherical representation of a surface, in which each point or oon

figuration on the surface has its representation on a unit sphere

whose centre may be taken at the origin. If n is the unit normal

at the point P on the surface, the point Q whose position veoto]

is n is said to correspond to P, or to be the image of P. Clearly ^

lies on the unit sphere, and ifP moves in any curve on the surface

Q moves in the corresponding curve on the sphere.

Since the position vector r of Q is given by

f = n,

it follows from Art. 27 that

rt
= na

= H-> {(FM - GL} ra + (FL - EM) r
fl},

fa
= n, = H-* {(FN- GM) r, + (FM - JEN) r,}.

Consequently, ie,f,g denote the fundamental magnitudes of the

first order for the spherical image,

e = H-* (EM* - 2FLM+

g = R-*(EN1 -

or, in terms of the first and second curvatures,

f=JM-KF ...................(11).

Hence also eg -/" = K*H\
which we may write Aa = K*H*

or h = eKH .................. (12),

where e = 1 according as the surface is synclastic or anticlastic

The areas of corresponding elements of the spherical image and

the given surface are hdudv and Hdudv, and their ratio is there-

fore numerically equal to K. This property is sometimes used tc

define the
"
specific curvature." We may 'also observe in passing

that, since h* must be positive and not zero, K must not vanish

so that the surface to be represented on the sphere cannot be a

developable surface.
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In virtue of (11) we may write the square of the linear element

of the image

d? = J (Ldu* + 2Mdudv + Ndv*)
-K (Edit + ZFdudv + Gdv>),

or, if K is the normal curvature of the given surface in the direo-

tion of this arc-element,

d? = (icJ-K)d& (13).

If then KO, and /c6 are the principal curvatures of the surface, we

may write this, in virtue of Euler's theorem,

S*
i/r + K* SUL9

ijr) a &}
ds*

2

'/r)ds
J

(14).

It is clear from either of these formulae that the value of the

quotient ds/ds depends upon the direction of the arc-element.

Hence in general the spherical image is not a oonformal representa-

tion. It is conformal, however, if tca= j. When xa= KI at all

points, the first curvature vanishes identically, and the surface is

a minimal surface Thus the spherical representation of a minimal

surface is conformal.

Moreover it follows from (14) that the turning values of ds/ds

are given by cos -^
= and sin ty

= 0. Thus the greatest and least

values of the magnification at a point are numerically equal to the

principal curvatures.

88. Other properties. It is easy to show that the lines of
curvature on a surface are orthogonal in their spherical representa-

tion. For if they are taken as parametric curves we have F=M=Q,
hence /=0 which proves the statement. Further if ^=0 and

/= we must also haveM= unless J vanishes identically. Thus,

if the surface is not a minimal surface, the lines of curvature are

the only orthogonal system whose spherical image is orthogonal

Moreover, the tangent to a line of curvature is parallel to the

tangent to its spherical image at the corresponding point; and, con-

versely, if this relation holds for a curve on the surface it must be a

line of curvature. For, by Rodrigues' formula (Art. 30), along a

line of curvature dr is parallel to dn and therefore also to dr.

Hence the first part of the theorem. Conversely if dr is parallel to

df it is also parallel to dn. The three vectors n, n + dn, dr are

therefore coplanar, and the line is a line of curvature.
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Again, if dr and da are two infinitesimal displacements on a

given surface, and dn the change in the unit normal due to the

former, the directions of the displacements will be conjugate

provided
dnds = 0.

And conversely this relation holds if the directions are conjugate.
But dn = df, where df is he spherical image of dr. Con-

sequently
df*dB = Q.

Thus, if two directions are conjugate at a point on a given surface,
each is perpendicular to the spherical image of the other at the

corresponding point. It follows that the inclination of two conju-

gate directions is equal, or supplementary, to that of their spherical

representations.

Further, an asymptotic line is self-conjugate. Hence an asym-

ptotic line on a surface is perpendicular to its spherical image at the

corresponding point.

Ex. 1 . Taking the lines of curvature as parametno curves, deduce the

theorem that a line of curvature is parallel to its spherical image at the

corresponding point, from the formulae for FI and fa in Art 87.

Ex. 2. Prove otherwise that the inclination of conjugate lines is equal or

supplementary to that of their spherical image.
Let the conjugate linos be taken as parametric curves, so that M=Q. Then

equations (11) become

GI? , FLN EN*e=
J3"s

J a J[T' 9= ~]jr'

Hence the angle Q between the parametno curves on the unit sphere is

given by
/ F

0080=-*==+ =-=+COSa>,
Jo

the negative or the positive sign being taken according as the surface is

synclastio or anticlastio.

Ex. 3. If a line of curvature is plane, its plane outs the surface at
a constant angle.

If r is a point on the line of curvature, n is the corresponding point on the

spherical image. But we have seen that the tangents to these at corresponding
points are parallel ;

and therefore

dn .dr
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Let a be the (constant) unit normal to the plane of the curve. Then

^/ ~\ duds
, drda

t

But
-j-

lies in the given plane and is therefore perpendicular to a. Thus the

last expression vanishes, showing that a n is constant, so that the plane
outs the surface at a constant angle.

Moreover, the relation an=const is equivalent to a F^const. Thus
the projection of f on the diameter parallel to a is constant, showing that

the spherical image of a plane line of curvature is a small circle, whose plane
is parallel to that of the line of curvature.

89. Second order magnitudes. We may also calculate the

magnitudes of the second order, L, M, W, for the spherical repre-
sentation. Its unit normal n is given by

hn = ra x fa
= nj x na

= KHu,
in virtue of Art. 27 (18). But h = eKH, and therefore

n = en ...................... (15),

where e = + 1 according as the surface is synclastic or anticlastic.

Consequently

= -
enn

3 = - ee.

Proceeding in like manner for the others we have

(16).

Thus only the first order magnitudes need be considered. Also

the radius of curvature of any normal section of the sphere is given

by
_ edu* + %fdudv + gdv*

P ~
Ldu* + ZMdudv +

and is therefore numerically equal to unity, as we should expect.

*9O. Tangential coordinates. The tangential coordinates of

a point P on a given surface are the direction cosines of the

normal at P, and the perpendicular distance of the origin from

the tangent plane at that point These are equivalent to the unit

normal n at P, and the distance p from the origin to the tangent
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plane, measured in the direction of n If r is the position vector
of P, we have

p =rn
and, on differentiation with respect to u and v, it follows that

The position vector r of the current point on the surface may be
expressed in terms of n, n^ IL,. For, by the usual formula for the

expression of a vector in terms of three non-coplanar vectors,

[n, Dj, nj r = [r, n, , nj n + [r, n,,, n] nx + [r, n, nj na .

Now in Art. 27 it was shown that

DI x n., =HKn,
80 that

[r, na , nj= HKp.

and therefore
[r, na , n] - -

Similarly [r, n, nj =-L (epa
-

On substitution of these values in the above formula we have

'-!+, (to -

Hence, when p and n cure given and their derivatives cam, be calcu-

lated, the surface is completely determined.

MINIMAL SURFACES

9 1 . General properties. A minimal surface may be defined
as one whose first curvature, J, vanishes identically. Thus the

principal curvatures at any point of the surface are equal in mag-
nitude and opposite in sign, and the indicatrix is a rectangular
hyperbola. Hence the asymptotic lines form an orthogonal system,
bisecting the angles between the lines of curvature. The vanishing
of the first curvature is expressed by the equation

which is satisfied by all TniTvmial surfaces.
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Minimal surfaces denve their name from the fact that they are

surfaces of minimum area satisfying given boundary conditions.

They are illustrated by the shapes of thin soap films in equilibrium,

with the air pressure the same on both sides. If this property of

least area be taken as defining minimal surfaces, the use of the

Calculus of Variations leads to the vanishing of the first curva-

ture as an equivalent property.

We have seen that the asymptotic lines on a minimal surface

form an orthogonal system. This follows also from (18). For, if

these lines are taken as parametric curves we have L = N=Q,
while M does not vanish. Hence F = 0, showing that the para-

metric curves are orthogonal. Conversely, if the asymptotic lines

a/re orthogonal, the surface is minimal. For, with the same choice

of parametric curves we have L =N= and F= 0, so that J van-

ishes identically.

Further, the null lines on a minimal surface form a conjugate

system. For, if these are taken as parametric curves we have

E = G = 0, while F does not vanish. It therefore follows from (18)

that M=Q, showing that the parametric curves are conjugate.

Conversely, if the null lines are conjugate the surface is minimal.

For then, with the same choice of parametric curves, EQ =

and M= 0, so that (18) is satisfied identically

Again, the lines of curvature on a minimal surfaceform an iso-

metric system. To prove this let the lines of curvature be taken

as parametric curves. Then F=Q and M=Q, and the equation

(18) becomes

while the Mainardi-Codazzi relations reduce to

l/L N\
L>
=

2(ti
+

and *-I(-B +

Thus L is a function of u only, and N a function of v only. Con-

sequently
3 . E 9

a

showing that the parametric curves are isometric.

w 12
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92. Spherical image. The fundamental magnitudes for the

spherical representation, as given by (11), become in the case of a

frinimal surface

e = -KE, f=-EF, g = -KG ......... (19).

From these relations several interesting general properties maybe
deduced.

We have already seen that the spherical representation of a

minimal surface is conformal. This also follows directly from (19).

For, in virtue of these relations,

Thus ds/ds is independent of the direction of the arc-element

through the point, and the representation is conformaL The mag-

nification has the value V K, the second curvature being essentially

negative for a real minimal surface. The converse of the above

theorem has already been considered in Art. 87, where it was shown

that if the spherical image of a surface is a conformal representa-

tion, either the surface is minimal, or else its principal curvatures

are equal at each point

Further, null tines on a minimal surface become both null lines

and asymptotic lines vn the spherical representation. For, if the

null lines be taken as parametric curves, we have

# = 0, (? = 0,

and therefore, by (19), 6 = 0, g 0.

Thus the parametric curves in the spherical image also are null

lines. Again, considering the second order magnitudes for the

sphere, we have _
L = ee = 0,

N = -eg = Q,

and therefore the parametric curves in the spherical image are

also asymptotic lines.

Conversely, if the nidi lines on a surface become null lines in the

spherical representation, either the surface is minimal, or else its

principal curvatures are equal. To prove this theorem, take the

null lines as parametric curves. Then E=G = Q, and since the

parametric curves are also null lines in the spherical image,
e = g = Q. But for any surface

e = JL-KE
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BO that we must have

JX = and JN = 0.

Consequently either /= and the surface is minimal, or else

= and #= 0.

In the latter case it follows that

and therefore ,7
s - 41T =

which is the condition that the principal curvatures should be

equal.

Lastly, isometric lines on a minimal surface are also isometric

in the spherical representation This is obvious from the fact that

the spherical image is a conformal representation. It may also be

proved as follows. If the isometric lines are taken as parametric
curves we have

F=Q
> 0=7-'

where U is a function of u only and V a function of v only. From

(19) it then follows that

f=Q = :? = .?7 '

g G V
showing that the parametric curves in the spherical image are also

isometric. Hence the theorem. In particular the spherical image
of the lines of curvature on a minimal surface are isometric curves,

for the lines of curvature on a minimal surface have been shown

to be isometric.

93. Cartesian coordinates. If we use the form z=f(as, y}

for the equation of a surface, the differential equation (18) of

minimal surfaces becomes

flz^Y&e Jbz'dz &z L /dz\*}d
>

2_-
" '

i 57. / I 513
~~ *

ifZ 57^ JuTaTi
""

)
'

I 5^ / I a^a
~ \^W

This form of the equation is useful for particular problems.

By way of illustration we may prove that the catenoid is the only

minimal surface of revolution If the axis of revolution is taken as

the j&-axis we may write

122
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where the form of the function / is to be determined so that the

surface may be minimal. By differentiation we have

and on substituting these values in (20) we have

(^+ Sf)/" + 2(^ + 2/V'>+/ = 0.

On putting r*=a?+ y
a we may write this equation

which gives, on integration,
dz

dr

where a is a constant. A second integration leads to

z + c= a cosh"1 -
,a

\.or r = a cosh- .

a

Thus the only minimal surface of revolution is that formed by the

revolution of a catenary about its directrix.

Ex. 1 . The only minimal surface of the type

*-/(*) +^(y)
is the surface at -=log cos cue - log cos ay.

On substituting the above expression for i in (20) we find

F"

The first part is a function of a only, and the second a function of y only.

Hence each must be constant; so that

f A F"

i+/3-
a ftnd r+7*--*

Integration leads to

/(*)"=- log cos ax, J?*(y)=--logcosay.

Hence the theorem.

Ex. 2. Show that the surface

B1H O/S^= RinTi ax mnh ay
is
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EXAMPLES XII

1 . Show that the surfaces

and at*~uoos<f>, yMsin$, a^ccosh- 1 -
c

are applicable.

3. Show that, in a star-map (Art. 88), the magnification is least on the

parallel of latitude sin" 1
c.

3. Show that rhumb lines of the meridians of a sphere become straight
lines in Mercator's projection, and equiangular spirals in a stereographic

projection

4. Find the loxodrome curves on the surfaces in Ex. 1.

5. Find the surface of revolution for which

6. Show that, for the surface generated by the revolution of the evolute

of the catenary about the directrix, the linear element is reducible to the form

7. Any two stereographic projections of a sphere are inverses of each

other, the origin of inversion in either being the origin of projection in the other

8. In any representation of a surface S on another, S', the cross-ratio of

four tangents at a point of S is equal to the cross-ratio of the corresponding

tangents to S'

9. Determine f(v) so that the oonoid

may be applicable to a surface of revolution.

10. If the curve of intersection of a sphere and a surface be a line of

curvature on the latter, the sphere outs the surface at a constant angle.

11. lte,f,ff refer to the spherical image, prove the formulae

1 2 . What are the first and second curvatures for the spherical image?

13. The angles between the asymptotic directions at a point on a surface

and between their spherical representations are equal or supplementary,

according as the second curvature at the point is positive or negative

14. The osculating planes of a line of curvature and of its spherical

image at corresponding points are parallel.

1 5 . Show that the lines of curvature on a surface are given by

and the principal curvatures by
W-0.
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16. The angle 6 between any direction on a surface and its spherical

image is given by
-

, ,,dsdS

Hence an asymptotic direction is perpendicular to its spherical image.

17. The formulae (17) of Art. 27 may be written

f-a^ na .

18. Show that the lines of curvature of a surface of revolution remain

isometric in their spherical representation.

10. Show that the spherical images of the asymptotic lines on a minimal

surface, as well as the asymptotic lines themselves, are an isometric system

2O. If one system of asymptotic lines on a surface are represented on

the sphere by great circles, the surface is ruled.

2 1 . The right hehooid is the only real ruled minimal surface.

22. The parameters of the lines of curvature of a minimal surface may
be so chosen that the linear elements of the surface and of its spherical image
have the respective forms

where K is the absolute value of each principal curvature.

23 . Prove that Ex. 22 is still true if we write "asymptotic lines" in place
of "lines of curvature."

24. Every hehooid is applicable to some surface of revolution, and helices

on the former correspond to parallels on the latter

25. If the fundamental magnitudes of the first order are functions of

a single parameter, the surface is applicable to a surface of revolution.

26. Show that the heliooid _
f /u*+cPdu

a;=uooBV, y=uea.uv} t=ov+o I A/ -5 -j

is a minimal surface

2 7 . Prove that each sheet of the evolute of a pseudo-sphere is applicable
to a oatenoid.

28. Prove that the surface

x=u cos a+ sin u cosh
,

y=0+cos a cos u sinh v,

2= sin a cos u cosh v

is a minimal surface, that the parametric curves are plane lines of curvature,
and that the second curvature is

sin2 a/(cosh + cos a cos u)*.



CHAPTER X

CONGRUENCES OF LINES

RECTILINEAB CONGRUENCES

94. Congruence of straight lines. A rectilinear congruence
is a two-parameter system of straight lines, that is to say, a family
of straight lines whose equation involves two independent para-
meters. The congruence therefore comprises a double infinitude

of straight lines Such a system is constituted by the normals to

a given surface. In dealing with this particular congruence we

may take the two parameters as the current parameters u, v for

the surface. The normals along any one parametric curve u = a

constitute a single infinitude of straight lines, and the whole

system of normals a double infinitude These normals are also

normals to the family of surfaces parallel to the given surface, and

are therefore termed a normal congruence In general, however,
the lines of a rectilinear congruence do not possess this property
of normality to a family of surfaces. As other examples of con-

gruences may be mentioned the family of straight lines which

intersect two given curves, and the family which intersect a given
curve and are tangents to a given surface.

A rectilinear congruence may be represented analytically by an

equation of the form
R = r-Md (1),

where r and d are functions of two independent parameters u, v.

The point r may be taken as a point on a surface of reference, or

director surface, S, which is cut by all the lines of the congruence.
We may take d as a unit vector giving the direction of the line or

ray, and t is then the distance from the director surface to the

current point R on the ray.

We may make a spherical representation of the congruence by

drawing radii of a unit sphere parallel to the rays of the congruence.
Thus the point d on the sphere represents the ray (1). The linear

element d<r of the spherical representation is given by

da*= (ddy
>

=*edu*+2fdudv+ gdv* (2),

where e^d ^dd = a
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these being the fundamental magnitudes of the first order for the

spherical representation. And, since d is the unit normal to the

sphere, we have
xdad = (3),

where, as usual, h* eg /'.

Another quadratic form, whose coefficients play an important

part m the following argument, is that which arises from the

expansion of dr*d<L. We may write this

dr dd = (F! du + rtdv) (dl du + d^dv)

= adu* + (b + V) dudv + cdv* (4),

where a = r
]
d1 , 6=ra d1 , b' = r1 'da) c = ra dg

The rays through any curve on the director surface form a

ruled surface . A relation between the parameters u, v determines

such a curve and therefore also a ruled surface. The infinitude of

such surfaces, corresponding to the infinitude of relations that may
connect u and v, are called the surfaces of the congruence. We say
that each of these surfaces "

passes through
"
each of the rays that

He upon it Any surface of the congruence is represented by a

curve on the unit sphere, which may be called its spherical repre-

sentation in the above sense. This curve is the locus of the points

on the sphere which represent the rays lying upon that surface.

95. Limits. Principal planes. Consider a curve on the

director surface, and the corresponding ruled surface 2. Let r and

Fig 28.

r+ dr be consecutive points on the curve, through which pass the

consecutive rays with directions d and d + dd determined by the

parameter values u, v and u + du, v + dv respectively. Further let

8 be the are-length of the curve up to the point r, ds the element
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of arc between the consecutive rays, and let dashes denote deriva-

tives with respect to s. Then the distance r from the director

surface to the foot of the common perpendicular to the consecutive

rays, as found in Art. 69, is given by

_r ~
d'a

~
dda

= __
/adu* + (b + V)dudo + cdiP\ ...~
V edu* + 2fdudv + gdv> )

.......... '
''

The point of the ray determined by r is the central point of the

ray relative to the surface 2
The distance r from the director surface to the central point is

a function of the ratio du : dv> so that it vanes with the direction

of the curve G through the point r. There are two values of this

ratio for which r is a maximum or minimum These are obtained

by equating to zero the derivatives of r with respect to du/dv.

This leads to the equation

[2/a
- e (b + &')] du

z + 2 (ga - eo) dudv

+ |>(& + &')-2/b]<to' = ....(6),

which gives the two directions for stationary values of r. To

determine these values we have only to eliminate du/dv from the

last two equations, thus obtaining the quadratic

AV + |>c-/(6 + &') +ga~]r + ao- i (6 + 67 = ..(7),

whose roots are the two stationary values required. Denoting these

by T! and ra we have

h* (r, + rO -/(& + &0 - eo - ga}

The points on the ray determined by these values of r are called

its limits. They are the boundaries of the segment of the ray

containing the feet of the common perpendiculars to it and the

consecutive rays of the congruence. The two ruled surfaces of the

congruence which pass through the given ray, and are determined

by (6), are called the principal swrfaoes for that ray. Their tangent

planes at the limits contain the given ray and the common per-

pendiculars to it and the consecutive rays of the surfaces. These

tangent planes are called the principal planes of the ray. They are

the central planes of the ray relative to the principal surfaces

(Art. ri).
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Ex. 1 . Fmd the bnuta and the principal planes for a ray in the con-

gruence of straight lines which intersect a given circle and its axis.

Let the centre of the given circle be taken as origin, its plane as the

director surface and its axis as the e-axis. Let a ray of the congruence meet

Pig 24.

the oiroumference of the circle in P, and the asis in Q Denote OQ by u and

the angle ZOP by 6, and let u, 6 be taken as parameters for the congruence

Then, if R is the radius of the circle, the position vector of P is

r=(R cos d, Rain 6, 0),

and the unit vector d in the direction PQ of the ray is

. ( R cos 0, R sin d, u)
C&^ i ~ . =

From these it is easy to verify that

R*

-R2

while a=0, 6=0, 6'=0, o= .__ .

The equation (7) for the distance of the limits from the point P reduces to

so that n=0,
The limits are therefore the points P and

The differential equation (6) for the principal surface becomes simply

dudS=0

Thus the principal plane through the ray corresponding to d8**Q is the plane

POQ containing the ray and the axis of the circle. The principal plane

corresponding to c&*=0 is the plane containing PQ and a consecutive ray

through Q. These principal planes are clearly perpendicular. The principal
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surfaces are the planes through the axis, and the cones with vertices on the
axis and generators passing through the given circle

Ex. 2 . Examine the congruence of tangents to a given sphere from points
on a given diameter.

Take the centre of the sphere as origin and its surface as director surface.

Let the given diameter be taken as z-axis and polar ana, the oolatitude 6

being measured from OZ and the longitude < from the plane ZOZ. If

a tangent from the point Q on the given diameter touch the sphere at

P (6, $), the position vector of P may be expressed as

r=.fl(8in0cos0, Bind BUI <, oos0),

R being the radius of the sphere The unit vector d in the direction PQ of

the ray is

d=(-cos0cos<jb, -cos 6 sin 0, sinfl).

Taking 6, <f>
as parameters, show that

and a=0, 6=6'=0, o=

Hence show that the distances of the limits from P are

so that P and Q are the limits. The equation (6) becomes

Hence the principal surfaces are the planes through the given diameter and
the tangent cones from points on that diameter

96. Hamilton's formula. Let the parameters be so chosen

that the principal surfaces correspond to the parametric curves.

Then the equation (6) determining the principal surfaces must be

equivalent to dudv = 0. This requires

2/c-fir (& + &')

and therefore, since the coefficients of the two quadratic forms are

not proportional, we must have

/=0, &+6' = ............. (9).

The first of these is equivalent to d
1
da
= Hence the principal

surfaces are represented on the unit sphere by orthogonal curves.

The mutual perpendicular to the consecutive rays d and d + dd

is perpendicular to both d and dd. Hence it is perpendicular to

d and -s- , where da- is the arc element of the unit sphere corre-
atr

spending to dd. But these are two unit vectors, perpendicular to
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each other. Hence the unit vector in the direction of the common

perpendicular is -r- x d. Now, in virtue of (3) we may write this
CvO"

du
t .dv\ dj x da

c + Sc)'' h

or, since dj and da are perpendicular (/= 0),

...........(10).

The consecutive rays corresponding to the limits are determined

by dv = and du = 0, that is by the parametric curves. For these

we have respectively da- = */edu and da- = \fgdv ,
so that (10) be-

comes in the cases corresponding to the limits

(11),

which are perpendicular to each other. Now the tangent plane to

the ruled surface of the congruence through the consecutive rays

is parallel to d and the common perpendicular Therefore, in

virtue of (11), the two principal planes for any ray are perpen-
dicular to each other.

The angle 9, between the common perpendicular (10) in the

general case and that corresponding to the principal surface dv = 0,

is given by
1 , (qd,dv ed.dw) */edu

COBff --r=da
'

a , _
Vg a<r veg <*<r

Thus oo*0- ,!^\ a ,
edu* -\-gdtf

and therefore sin' 6 =

Further, with this choice of parameters, the distance r from the

director surface to the foot of the common perpendicular is given

by
adu*+__~~

and therefore for the limits (dv = and du = 0),

a o
r, -, r,

= _..
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It follows immediately that

r = r1 cos*0 + r,sm*6 (12).

This is Hamilton's formula connecting the position of the central

point of a ray, relative to any surface through it, with the inclina-

tion of the central plane of the ray for this surface to the principal

planes of the ray. The formula is independent of the choice of

parameters. Also, if the director surface is changed, the three

distances r, rlt ra are altered by the same amount, and the formula

still holds.

We may observe in passing that the normal to a surface of the

congruence through the ray d is perpendicular both to this ray and

to the common perpendicular -r- x d to it and a consecutive ray.

It is therefore parallel to

^ /^d ^dxU xd
)'

t?A
which is identical with -*- . Thus the normal to a surface of the

da-
j j

congruence is parallel to the tangent to the spherical representation

of the surface, in the sense of Art. 94

Ex. For any choice of parametric curves the unit vector perpendicular to

consecutive rays is

c?iA
!

5^J

97. Foci. Focal planes. The ruled surface 2 of the con-

gruence will be a developable if consecutive generators intersect.

The locus of the point of intersection of consecutive rays on the

surface is the edge of regression of the developable. It is touched

by each of the generators ,
and the point of contact is called the

focus of the ray.

Let p be the distance of the focus along the ray from the direc-

tor surface. Then the focus is the point

R = r + />d.

But since the ray touches the edge of regression at the focus, the

diffeiential ofR is parallel to d. That is to say
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is parallel to d and therefore perpendicular to dj and dz. Hence,

on forming its scalar product with dj and d a in turn, we have

(adu + bdv) + p (edu +fdv) = 0)

=
(14),

These two equations determine p and du/dv. On eliminating p we

have
adu + bdv b'du+cdv
edu +fdv fdu + gdv

which is a quadratic in du/dv, giving two directions, real or

imaginary, for which 2 is a developable surface. Thus through
each ray of the congruence there pass two developable surfaces,

each with its edge of regression. Each ray of the congruence is

therefore tangent to two curves in space, the points of contact

being the foci or focal points of the ray. The locus of the foci

of the rays is called the focal surface of the congruence. It is

touched by all the rays of the congruence. The focal planes are

the planes through the ray and the consecutive generators of the

developable surfaces through the ray. They are the tangent planes

/at the foci to the two sheets of the focal surface.

On eliminating du/dv from the equations (13) we have

a + ep b+fp
b'+fp c + gp

or h*p* + [aff-(b + b')f+ce]p + (ac-bb') = . (15),

a quadratic in p giving the distances of the two foci from the

director surface. It will be observed that this differs from the

quadratic (7) only in the absolute term. Denoting the roots of

(15) by pi and pa we have

tefa+ pJ^Q + b'W-ec-ga}
topifr^ac-W J

..... { '

Comparing these with the equations (8) for the limits we see that

From the first of these relations it follows that the point midway
between the limits is also midway between the foci It is called

the middle point of the ray ; and the locus of the middle points of
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all the rays is the middle surface of the congruence. From the
second of equations (17) we see that, since the second member ia

positive, the distance between the foci is never greater than the
distance between the limits. The two distances are equal only
when 6 = V. Thus on each ray there are five special points, the

two limits, the two foci and the middle point The foci, when they
are real, lie between the limits.

We have seen that the central plane, P (through a given ray
and the common perpendicular to it and a consecutive ray), is

inclined to one of the principal planes at an angle 6 given by

The angle 9 varies from to ^ as r vanes from r, to ra , the

principal planes being perpendicular to each other. When the

foot of the common perpendicular is one of the foci, the plane P is

a focal plane. At the foci r has the values /^ and pa . Let l and

a be the corresponding values of 6. Then

PX
=

T! cos
a
QI + ra sin

8
dj]

pa
= TI cos

a
a + ra sin

2
0jl

'

Adding these, and lemembenng that Pi + p*
= rl + ra ,

we see

that
cos8

0! + cos* a
=

1,

and therefore, as 6^ and 6Z are both positive and neither is greater

than gT ,
we must have

2t

01 + 0.-J
....................... (18).

Thus the focal planes are not perpendicular, but are symmetrically

placed with respect to the principal planes, so that the planes

bisecting the angles between the focal planes also bisect the angles

between the principal planes.

Further, the angle $ between the focal planes is given by

Hence sm
</>
= cos 2^ = cos8 ^ cos8 a

= 1-^. a
.................... (19).

r,-ra
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*98. Parameter of distribution. Consider again the con-

secutive rays d and d + c?d corresponding to the parameter values

u, v and u + du, v + dv. Then in virtue of the results proved in

Art. 68 we see that, if

D-Df.d'.d],
the mutual moment of the two rays is Dds*, their shortest distance

apart is Dd^Jda, while the parameter of distribution for the ray d

on the ruled surface determined by du/dv is

Now Dds? = [dr, cZd, d]
=

[T1du + re dv, djdu + dadv, d].

Expanding this triple product according to the distributive law we

see that the coefficient of du? is equal to

r . -! . d3
x dg

[r,, dxj d] = r
1 .d1 x

'

Similarly the coefficient of dudv is equal to

r, dj X (dj X da) + rB d
t
X (da X da)

and the coefficient of dtf reduces to

s%-/).
We may write the result in determinantal form as

1
~~
h

adu + bdv, b'du + cdv

edu +fdv, fdu +gdv
so that the parameter of distribution has the value

adu + bdv, b'du + cdv I

edu +fdv, fdu +gdv \

h(edu*+ 2fdudv + gdtf)
^ *



99] MEAN SURFACES OP A CONGRUENCE 193

r the developable surfaces of the congruence ft vanishes identi-

ly. Equating this value of ft to zero we have the same differential

lation (14) for the developable surfaces of the congruence, found

)ve by a different method.

"89. Mean ruled surfaces. The value of as given by (21)

i function of du/dv: and therefore, for any one ray, the parameter
distribution is different for different surfaces through the ray.

ose surfaces for which it has its greatest and least values are

led the mean surfaces of the congruence through that ray The

Ferential equation of the mean ruled surfaces is obtained by

iiating to zero the derivative of ft with respect to du/dv.

The analysis can be simplified by a suitable choice of the surface

reference and the parametric curves Let the middle surface of

3 congruence be taken as director surface. Then, by (8) or (16),

follows that

/(& + 6')
-
ag

- ce = 0.

irther, let the parameters be chosen, as in Art. 96, so that the

incipal surfaces correspond to the parametric curves Then, in

'tue of (9),/= & + &' = 0. Thus our choice of surface and curves

reference gives the simplification

/=0, & + &' = 0, ag + ce = Q ............ (22).

le value of ft as given by (21) then reduces to

_ bedu* -f Zagdudv + bgdv***
_ Iq ( dudv \ /OON+2av ?(+<,<&)

.............. (23)

ae values of du/dv corresponding to the stationary values of ft

e found by equating to zero the derivative of this expression with

spect to du/dv. This leads to the equation

edu*-gdv* ..................... (24),

,
in virtue of (22), to

adu' + odv* = Q .................... (24'),

the differential equation of the mean surfaces. There are thus

70 mean surfaces through each ray. Now on the spherical

presentation the equation (24) is that of the curves bisecting the

igles between the parametric curves, which correspond to the

incipal surfaces. Hence the central planes for the mean surfaces

13
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bisect the angles between the principal planes, and therefore also the

angles between the focal planes. Further, it follows from (5) and

(240 that the distance r to the central point of the ray, relative to

a mean surface, is zero Thus the central point of a ray, relative to

either of the mean surfaces, coincides with its middle point. Both

these results illustrate the appropriateness of the term "mean" as

applied to these surfaces.

The extreme values of the parameter of distribution, corre-

sponding to the mean surfaces, are obtained by substituting in

(23) the values of du/dv given by (24). Denoting these values of

ft by & and ySa we have

(25).

The values of ft for the principal surfaces are found from (28) by

putting dv = and du = in turn. The two values so obtained are

equal. Denoting them by ft we have

For this reason the parameter of distribution for a principal surface

is called the mean parameter of the ray. It is the arithmetic mean
of the extreme values of the parameter of distribution.

Let
<f)

be the inclination of the central plane of a ray for any
ruled surface, to the central plane for the mean surface \fedu = *fgdv,

for which the parameter of distribution is &. We proceed to prove
the formula

= &cosa
< + &sma

< ...............(26),

for the parameter of the ray relative to the first surface. The
formula is analogous to (12), and is proved in a similar manner.
The unit common perpendicular to consecutive rays of the first

surface is given by (10), being

/ , (g&idv e&ydu).
vegda-

For the mean surface t/edu = */gdv this becomes
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Hence the angle <j>
between the central planes for the two surfaces,

being the angle between these two perpendiculars, is given by

equating its cosine to the scalar product of the unit vectors. Thus

Hence

and therefore sina
<j>
= ^

- e9 u
2

Then, in virtue of (25),

-A
as required. If & and a have the same sign, it follows from this

formula that the parameter of distribution has the same sign for

all surfaces through the ray. Such rays are said to be elliptic. If,

however, /3i and /9fl
have opposite signs, the parameter of distribution

is positive for some surfaces, negative for others. Such rays are said

to be hyperbolic. If either & or /8a is zero the ray is said to be

parabolic
For the developable surfaces of the congruence ft vanishes iden-

tically. Hence the inclinations of the focal planes to the central

plane for the mean surface corresponding to & are given by

................ (27).

It follows, as already proved, that the central planes for the mean
surfaces bisect the angles between the focal planes. If & = the

ray is parabolic, and the focal planes coincide with the central

plane for this mean surface The two developables through the ray

then coincide, and the foci coincide with the middle point of the

ray. The two sheets of the focal surface are then identical. When
this property holds for all the rays the congruence is said to be

parabolic,

Ex. 1. Show that, for a principal surface, oos*<=. Deduce that the

central planes for the mean surfaces bisect the angles between the principal

surfaces.

Ex. 2. The foci are imaginary when the ray is elliptic.

132
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1OO. Normal congruence. A congruence of straight lines

is said to be normal when its rays are capable of orthogonal inter-

section by a surface, and therefore in general by a family of surfaces.

Normal congruences were the first to be studied, especially in

connection with the effects of reflection and refraction of rays of

light. If this normal property is possessed by the congruence

R = r + id,

there must be variations of R representing displacements perpen-
dicular to d, so that d dR = 0, that is

d (dr + ddt + td&) = 0,

or d dr = - dt.

It follows that d dr is a perfect differential Also the analysis is

reversible, and therefore we have Hamilton's theorem that the

necessary and sufficient condition that a congruence be normal is that

d dr be a perfect differential. We may write

d dr= d T-idu + d r^dv,

and if this is a perfect differential it follows that

or dfi-r^d^Ta

that is & = &'........................ (28).

Conversely, if this relation holds, the congruence is normal.

Further, if 6 = V it follows from (17) that

pa -/3a
= r1 -ra .

But pi + pa
= r1 + rt ,

and therefore
p^.
= rl and pa

= ra . Hence the foci coincide with the

limits. Also the focal planes coincide with the principal planes, and
are therefore perpendicular to each other.

The assemblage of normals to a surface S has already been cited
as an example of a normal congruence. The foci for any normal
are the centres of curvature, and the focal surface is the centro-
surfece of S. The focal planes coincide with the principal planes,
and are the principal normal planes of the surface & The normals
to 8 are also normals to any surface parallel to S This agrees with
the fact that when we integrate dt** - d dT, the second member
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being a perfect differential, the result involves an additive constant,
which is arbitrary Thus a normal congruence is out orthogonally

by a family of surfaces.

Ex. 1 . For rays of a normal congruence Pi<=---fa and j=0.

Ex. 2. The tangents to a nngly infinite family of geodesux on a surface
constitute a normal congruence (Art. 81)

Ex. 3. The congruences considered in the examples of Art. 95 are
normal

Ex. 4. For the congruence of normals to a given surface, take the surface

itself as director surface and its lines of curvature as parametric curves

(F=1= 0) Show that, since d= n,

a=-L, 6=&'=0, o=-N,
e=JL-EE, f=Q, g=JN-EG,

and deduce that the equation for the focal distances from the surface is the

equation for the principal radu of curvature

1O1. Theorem of Malus and Dupiu. If a system of rays

constituting a normal congruence is subjected to any number of

reflections and refractions at the surfaces of successive homogeneous
media, the congruence remains normal throughout.

Consider the effect of reflection or refraction at the surface

bounding two homogeneous media. Take this as director surface.

Let r be the point of incidence of the ray whose initial direction

is that of the unit vector d, and which emerges parallel to d'

Also let n be the unit normal to the surface at the point of inci-

dence. Then, since the incident and refracted (or reflected) rays
are coplanar with the normal, we may write

d = \n + ^d'.

Hence d x n = //,d' x n.

But, by the laws of reflection and refraction of light, d x n/d' x n
is constant for the same two media, being equal to the index of

lefraction in the case of refraction, or to unity in the case of

reflection. Hence
/j,

is constant for the congruence. Now, for a

displacement dr along the surface, n dr = and therefore

dcZr=/Ltd' dr.

But the first member of this equation is a perfect differential, since

the incident system is a normal congruence. Consequently, p, being
constant, d' dr is also a perfect differential, and the emerging
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system likewise is a normal congruence. Thus the system remains

normal after each reflection or refraction, and the theorem is proved.

*1O2. Isotropic congruence. When the coefficients of the

two quadratic forms

adu* + (b + b') dudv + cdtf and edu* + Zfdudv -f gdv*

are proportional, that is to say when

a b + b':c = e.2f:g (29),

the congruence is said to be isotropic. When these relations hold

it follows from (5) that the central point of a ray is the same for

all surfaces of the congruence which pass through the ray. Thus

the two limits coincide with each other and with the middle point

of the ray and the limit surfaces coincide with each other and

with the middle surface The line of striction for any ruled surface

of the congruence is the locus of the central points of its generators,

and therefore the locus of the middle points of the rays. Thus the

lines of striction of all surfaces of the congruence lie on the middle

surface.

Let the middle surface be taken as director surface. Then the

value of T as given by (5) must vanish identically, so that

a = 0, b + V = 0, c = .. .. (30)

Hence dr*d& = (30')

for any displacement dr on the middle surface. Thus if we make
a spherical representation of the middle surface, making the point
of that surface which is cut by the ray d correspond to the point
d on the unit sphere, any element of arc on the middle surface is

perpendicular to the corresponding element on the spherical repre-

sentation.

Moreover, in virtue of the relations (29) it follows that the value

of (B as given by (21) is independent of the ratio du : dv Hence
in an isotropic congruence the parameter ofdistributionfor any ray
has the same value for all surfaces through that ray. Now, by (31)
of Art. 71, the tangent plane to a ruled surface at a point of the

generator distant u from the central point, is inclined to the central

plane at an angle cf> given by
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Hence, since the central point of a ray is the same for all surfaces

through it, any two surfaces of the congruence through a given ray
cut each other along this ray at a constant angle
Ex. 1 . Ou a ray of an isotropic congruence two points P, Q are taken at

a given constant distance from the middle surface m opposite directions along
the ray Show that the surface generated by P is applicable to that generated
hy Q
The points P and Q have position vectors r+fd and r-*d, where t is

constant. And for the locus of P

m virtue of (30'). The same result is obtained for the locus of Q.

Ex. 2. Deduce from (27) that, for rays of an uotropw congruence, the foot
and focal planes aro imaginary.

Ex. 3. The only normal isotropic congruence is a system of rays through
a point.

CURVILINEAR CONGRUENCES

1O3. Congruence of curves. We shall now consider briefly
the properties of a curvilinear congruence, which is a family of

curves whose equations involve two independent parameters. If

the curves are given as the lines of intersection of two families of

surfaces, their equations are of the form

f(x,y)
n) u t 'u)=-^) g(x,y,z,u,<o)

= Q .......(31),

in which u, v are the parameters. In general only a finite number
of curves will pass through a point (#, yQ ,

s
).

These are deter-

mined by the values of u, v which satisfy the equations

/(TO, 2/o,
*B , u, v)

=
0, g (0 , y0> *0f u, v)

=

The curve which corresponds to the values u, v of the parameters
is given by

/(u,i;)-0, flf(t*,w)0 ..............(32).

A consecutive curve is given by

f(u + da, v+ dv) = 0, g (u + du, v + dv) = 0,

or by

each value of the ratio du/dv determining a different consecutive

curve. The curves (32) and (33) will intersect if the equations

fidu +ftdv = 0, gdu + gzdv=
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hold simultaneously, that is if

(34).
ffi ffa

The points of intersection of the curve u, v with consecutive curves

are given by (32) and (34). These points are called the foci or

focal points of the curve. The locus of the foci of all the curves is

the focal surface of the congruence. Its equation is obtained by

eliminating u, v from the equations (32) and (34). The focal

surface consists of as many sheets as there are foci on each curve.

The number of foci on any curve depends upon the nature of

the congiuence. The foci are found from the equations

/=0, g = 0, /.^-/.^-O ......... (35)

In the case of a rectilinear congruence,/=0 and g = Q are planes.

Hence the above equations are of order 1, 1, 2 respectively in the

coordinates, showing that there are two foci (real or imaginary) on

any ray. The two may of course coincide as in a parabolic con-

gruence. In the case of a congruence of conies we may suppose

that f= is a comcoid and g = a plane. The equations deter-

mining the foci are then of order 2, 1, 3 respectively in the

coordinates, and there are six foci on each conic.

1O4. Surfaces of the congruence. As in the case of

a rectilinear congruence, the various curves may be grouped so

as to constitute surfaces. Any assumed relation between the

parameters determines such a surface. Takmg the relation

v =
(j> (M)

and eliminating u, v between this equation and the equations of

the congruence, we obtain a relation between as, y, z, representing
one of the surfaces of the congruence Each relation between the

parameters gives such a surface. There is thus an infinitude of

surfaces corresponding to the infinitude of forms for the relation

between the parameters.
We shall now prove the theorem that all the surfaces of the

congruence, which pass through a given curve, touch one another as

well as the focal surface at the foci of that curve. Consider the

surface through the curve u, v determined by the equations

/-O, = 0, v = <l>(u) ..........(36).
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Then any displacement (dx, dy, dz) on that surface is such that

But at the foci

and therefore for any direction in the tangent plane at a focus -we

must have

Thus the normal to the surface at the focus is parallel to the vector

/ .fy V.dg 3/ X 97\ ,

te' T' aT X .........(37)'

which is independent of the assumed relation between the para-

meters, and is therefore the same for all surfaces of the congruence

through the given curve. Hence all these surfaces touch one

another at the foci of the curve.

Again, the equation of the focal surface is the elimmant of u, v

from the equations (32) and (34). At any point of the focal surface

we have from the first of these

and therefore, in virtue of (34),

a/ ,
, df, a/

f-dao+ f-
-

dx dy

Thus (doo, dy, dz) is perpendicular to the vector (3*7), which is

therefore normal to the focal surface. Hence at a focus of the curve

the focal surface has the same tangent plane as any surface of the

congruence which passes through the curve. The theorem is thus

established. It follows that any surface of the congruence touches
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the focal surface at the foci of all its curves The tangent plane

the focal surface at the foci of a curve are called the focal plant

the curve.

1O5. Normal congruence. A curvilinear congruence is

to be normal when it is capable of orthogonal intersection b

family of surfaces Let the congruence be given by the equati

(31). Along a particular curve the parameters u, v are consfa

and therefore, for a displacement along the curve, we have

differentiation

doc rty dz

JI-U-Z
\y> zJ \*t (K) v, yj

If in this equation we substitute the values of u, v m termE

a, y, z as given by (31), we obtain the differential equation of

curves of the congruence in the form

das _ dy _ dz

where X, Y, Z are independent of u, v. If then the congruenci

normal to a surface, the differential equation of the surface must

Xdx + Ydy + Zdz = ......... (39)

In general this equation is not mtegrable. It is well known fr

the theory of differential equations that the condition of integ

bility is

If this condition is satisfied there is a family of surfaces satisfy

the equation (39), and therefore cutting the congruence ort

gonally.

Ex. 1 . The congruence of circles

has for its differential equation

dx dy dz

ny me Iz nx mxly'
Hence they are normal to the surfaces given by

(ny mi) dsc + (lz nx) dy+(mar

The condition of mtegrabihty is satisfied, and the integral may be ezprea

ny mz='o(njB lz)t
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where o is an arbitrary constant. This represents a family of planes with

common line of intersection #/Z=y/m=/7i.

Ex. 2 . The congruence of conies

y-*=w, (y+jz)
3 4#=

has a differential equation
dx , ,

=dy=dz.
y+g

*

It is normal to the surfaces given by

(y +e) dx+dy+dz^O.
The condition of integrability is satisfied, and the integral is

Ex. 3. Show that the congruence of circles

tf
8+#8+ *s= wy= va

has the differential equation
dx dy _ dz= =

and is out orthogonally by the family of spheres

EXAMPLES XIII

Rectilinear Congruences

1 . The current point on the middle surface is

R=r+d,

where t=^ [/(&+ 6')
- eo - ^a].

The condition that the surface of reference may be the middle surface is

ec+ga=>f(b+V)

Q. Prove that, on each sheet of the focal surface, the curves corresponding

to the two families of developable surfaces of the congruence are conjugate.

3. The tangent planes to two confocal quadncs at the points of contact

of a common tangent are perpendicular. Hence show that the common tan

gents to two confocal quadncs form a normal congruence.

4. If two surfaces of a congruence through a given ray are represented on

the unit sphere by curves which out orthogonally, their lines of striotion meel

the ray at points equidistant from the middle point.

5 . Through each point of the plane =0 a ray (I, m, n) is drawn, such, that

Show that the congruence so formed is IBOtropic, with the plane ==0 aa

middle surface.
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6. In Ex. 1, Art 102, prove conversely that, if the surfaces are applicable,

the congruence is isotropic. |

7. If (I, m, ri) is the unit normal to a minimal surface at the current point I

(as, y, ), the line parallel to (m, I, n) through the point (#, y, 0) generates J

a normal congruence.

8. The lines of stnotion of the mean ruled surfaces he on the middle

surface.

9. For any choice of parameters the differential equation of the mean

surfaces of a congruence is

ag - (b+ b')f+ ce a dii2+(b+ b') dudv+o dv*

1 0. The mean parameter of distribution (A#. 99) of a congruence is the

square root of the difference of the squares of the distances between the limits

and between the fooi.

1 1 . If the two sheets of the focal surface intersect, the curve of inter-

section is the envelope of the edges of regression of the two families of

developable surfaces of the congruence.

12. In the congruence of straight lines which intersect two twisted

curves, whose arc-lengths are s, s\ the differential equation of the developable

surfaces of the congruence is dsdJ=Q The focal planes for a ray are the

planes through the ray and the tangents to the curves at the points where it

cuts them.

1 3. One end of an inertensible thread is attached to a fixed point on

a smooth surface, and the thread is pulled tightly over the surface. Show
that the possible positions of its straight portions form a normal congruence,

and that a particle of the thread describes a normal surface.

14. In the congruence of tangents to one system of asymptotic lines on

a given surface, St
show that the two sheets of the focal surface coincide with

each other and with the surface 3, and that the distance between the limit

points of a ray is equal to 1/\A S
t K being the specific curvature of the

surface S at the point of contact of the ray

Take the surface S as director surface, the given system of asymptotic

lines as the parametric curves v= const., and their orthogonal trajectories as

the curves u= const. Then, for the surface S,

X=0, ^=0,
M*

so that
=*-j=rfi.

Also, with the usual notation, d=r1/vC&and therefore

by^ 41 .

Ta.* 3 ( 1 \ M nr wirvi
n
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<om these it is easily verified that

ae equation (15), for the distances of the foci from the director surface,

duces to p
2=0 -Thus the foci coincide; and the two sheets of the focal

rface coincide with the surface S The congruence is therefore parabolic

irk 99). Similarly the equation (7), for the distances of the limits, reduces to

EQ 1

hus the distance between the hmits is I/N/ K.

15. When the two sheets of the fooal surface of a rectilinear congruence

unoide, the specific curvature of the fooal surface at the point of contact of

ray is 1/Z
3
,
where I is the distance between the limits of the ray.

16. If, in a normal congruence, the distance between the foci of a ray is

ie same for all rays, show that the two sheets of the fooal surface have their

>ecifio curvature constant and negative.

1 7. Bays are incident upon a reflecting surface, and the developables of

ie incident congruence are reflected into the developables of the reflected

mgruence Show that they cut the reflecting surface in conjugate lines

1 8. When a congruence consists of the tangents to one system of lines

'

curvature on a surface, the focal distances are equal to the radii of geodesic

irvature of the other system of lines of curvature.

19. A necessary and sufficient condition that the tangents to a family of

irves on a surface may form a normal congruence is that the curves be

sodesica.

20. The extremities of a straight line, whose length is constant and

hose direction depends upon two parameters, are made to describe two

irfaces applicable to each other Show that the positions of the line form

a isotropic congruence.

2 1 . The spherical representations (Art 94) of the developable surfaces

F an isotropic congruence are null lines.

22. In an isotropio congruence the envelope of the plane which cuts

ray orthogonally at its middle point is a minimal surface.
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J

Cwmhnear Congruences |

23. Prove that the congruence .

*

is normal to a family of surfaces, and determine the family.

29. Find the parallel plane sections of the surfaces

which constitute a normal congruence, and determine the family of surfaces
which out them orthogonally

3O. If a congruence of circles is out orthogonally by more than two
surfaces, it is cut orthogonally by a femily of surfaces Such a congruence is
called a cyclic system

Nora. The author has recently shown that curvilinear congruences may bo
more effectively treated along the same lines as rectilinear congruences. The
existence of a limit surface and a surface of stnction is thus easily established,
and the equations of these surfiices are readily found. See Art. 129 below.

is normal, being out orthogonally by the family of surfaces

24. Show that

22

represents a normal congruence, cut orthogonally by the surfaces

25. Four surfaces of the congruence pass through a given curve of the

congruence Show that the cross-ratio of their four tangent planes at a point
of the curve is independent of the point chosen f
26. If the curves of a congruence cut a fixed curve, C, each point of '.

intersection is a focal point, unless the tangents at this point to all curves /

of the congruence which pass through it, are ooplanar with the tangent to J

the curve C at the same point.

27. If all the curves of a congruence meet a fixed curve, this fixed curve
lies on the focal surface.

28. Show that the congruence



CHAPTER XI

TRIPLY ORTHOGONAL SYSTEMS OF SURFACES

1O6. A triply orthogonal system consists of three families

Df surfaces

u (as, y, z)
= const. 1

v (x, y, z)
= const. L .................. (1)

w (as, y, z)
= const

j

which are such that, through each point of space passes one and

Dnly one member of each family, each of the three surfaces cutting
the other two orthogonally. The simplest example of such a system
is afforded by the three families of planes

as= const , y = const., z = const.,

parallel to the rectangular coordinate planes. Or again, if space is

mapped out in terms of spherical polar coordinates r, 6, <, the

surfaces r = const, are concentric spheres, the surfaces = const

ire coaxial circular cones, and the surfaces
<f>
= const, are the

neridian planes. These three families form a triply orthogonal

jystem. Another example is afforded by a family of parallel sur-

aces and the two families of developables in the congruence of

lormals (Arts. 74, 100). The developables are formed by the

lormals along the lines of curvature on any one of the parallel

mrfaces. As a last example may be mentioned the three families

)f quadrics confocal with the central quadno

t is well known that one of these is a family of ellipsoids, one

i family of hyperboloids of one sheet, and the third a family of

lyperboloids of two sheets This example will soon be considered

n further detail

1O7. Normals. The values of u, v, w for the three surfaces

hrough a point are called the curvilinear coordinates of the point.

iy means of the equations (1) the rectangular coordinates as, yt z,

nd therefore the position vector r, of any point in space may be

xpressed in terms of the curvilinear coordinates. We assume that
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this has been done, and we denote partial derivatives with res]

to u, v, w by the suffixes 1, 2, 3 respectively.
Thus

and so on.

The normal to the surface u = const, at the point (x, y> z

parallel to the vector

/du du
d_u\

\9ic
'

dy
'

fa)
'

Let a denote the unit normal in the direction of u increase

Similarly let b and c denote unit normals to the surfaces v = co

o
>N

Fig 25.

and w= const, respectively, in the directions of v increasing a

w increasing. Further we may take the three families in tl

cyclic order for which a, b, c are a right-handed system of uj

vectors. Then since they are mutually perpendicular we have

And, because they are unit vectors,

as = bs = c' = l (3).

Since the normal to the surface u = const, is tangential to t

surfaces v = const, and w= const through the point considere

for a displacement ds in the direction of a both v and w a

constant. In terms of the change du in the other parameter let
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Thus pdu is the length of an element of arc normal to the surface

u= const. The unit normal in this direction is therefore given by

= dr = 13r = l

ds pdu~ p
lf

so that r1 =pa, ....................... (4),

and therefore rf=p*.

Similarly if the elements' of arc normal to the other two surfaces,

in the directions of b and c, are qdv and rdtu respectively, we have

ra
= 3b, rs

= rc .................. (5),

and consequently r
fl

a =
<f,

rs
a= r3.

Thus rlt ra> r8 are a nght-handed set of mutually perpendicular

vectors, so that

r^ri-r^r.Bivr^O ............... (6)

Further, in virtue of (2), (4) and (5),

qr
'

ra xrs
= i-r

1

P

r.xr^r, > ............ (7),

and [rt , ra ,
r8]=pqr[a,, b, c]=pqr ........... (8).

1O8. Fundamental magnitudes. A surface u = const, is

cut by those of the other two families in two families of curves,

v = const. and w= const Thus for points on a surface u = const

we may take v, w as parametric variables Similarly on a surface

v = const, the parameters are w, u and so on Thus the parametric
curves on any surface are its curves of intersection with members

of the other families On a surface u = const the fundamental

magnitudes of the first order are therefore

(9),

so that H* = q*i
a
,

and similarly for the other surfaces Since ^=0 the parametric
curves on any surface constitute an orthogonal system.

w. 14
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To find the fundamental magnitudes of the second order we

examme the second derivatives of r. By differentiating the equa-
tions (6) with respect to w, u, v respectively, we have

Subtracting the second and third of these, and comparing the

result with the first, we see immediately that

r.-r.-r.-^-Oj ...............

Similarly rs r1B = j

Again, by differentiating rf = p* with respect to u, v, w, we have

ri-ru =j#M
T1 T13

= ppa l ............. (11),

r^rw =ppj
and therefore r2 rn = rx ru =

with two similar sets of equations. Now the unit normal to the

surface u = const, is rjp, and the parameters are v, w. Hence the

second order magnitudes for that surface have the values

r 1 1
}L--Ti*rm -qqJ

^=1^-^ =
).
.........(13).

AT 1 1N = -r1 rss=
P P

Similar results may be written down for the surfaces v = const, and

w = const. They are collected for reference in the table*

Surface Parameters E F G H L
\
M N

M=const v, w g-
2 r2

qr ~??i ~n rr'

1

=const 10, u r3 p
2

rp "-""a ppa

w=oonst. v, v p
a

g
2

pq ~~PPa ~-??8

*
Forsyth gives a similar table on p. 418 of bis "Lectures."
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Ex. Elliptic coordinates. Consider the quadrics confocal with the

ellipsoid

La which we may assume aa> 6s> c8. The confocala are given by

for different values of X Hence the values of X for the confooals through

a given point (as, y, e) are given by the cubic equation

4 (X)a (a
8
+X) (&

8
+X) (o

a+X)- Stf*
(Z>

8 +X) (<J+X)=0

Let
, v, 10 denote the roots of this equation. Then, since the coefficient of

X8 is equal to unity, we have

(X
-

) (X
-

) (X
-
w)3 (a

2+ X) (6
s
+X) (c

8+ X)
-S08

(&
a +X) (o

8* X)

If in this identity we give X the values - aa
,

- &2
,
- e8 in succession, we find

Tliese equations give the Cartesian coordinates in terms of the parameters

w, w, 10, which are called the elliptic coordinates of the point (or, y> e).

By logarithmic differentiation of (14) we find

with, similar expressions for r and TS. From these the relations (6) are easily

verified, and further

These are the first order magnitudes E, Q for the oonfocal surfaces, F being

equal to zero ,
and by partial differentiation we may calculate L

t
N according

to the above table

1O9. Dupin'a theorem. "We have seen that, for each surface

of a triply orthogonal system, ^=0 and M =0. Thus the para-

metric curves are lines of curvature, and we have Dupin'a theorem :

The curves of intersection of the surfaces of a triply orthogonal

system are lines of curvature on each.

142
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The principal curvatures on each of the surfaces are then easily

calculated On a surface u= const, let KUV denote the principal

curvature in the direction of the curve of parameter v (the curve

w= const.), and #, the principal curvature in the direction of the

curve of parameter w (the curve v = const.). Then

/-.

6?

(15).

Similarly on a surface v = const the principal curvatures in the

directions of the curves of parameters w and u are respectively

L *

.(16),N pa

"*w = "7?
= ^~ T ~ ~

Cr 0*7?

and on a surface ; = const, m the directions of the curves of

parameters u, v they are respectively

= X == _j
E rp

Let

(17).

& 4,
,
be the curvature of the curve of parameter u. Then

since KM and KW are the resolved parts of the vector curvature of

this curve in the directions of the normals c and b respectively,
we have (Art. 53)

KU cos -or = Kwu ,
Aru sm*r = /ew .... (18),

where w is the normal angle of the curve relative to the surface
w = const Hence

and

with similar results for the curves of parameters v and w. Further,
since the curve of parameter it is a line of curvature on the surface
w= const., the torsion W of its geodesic tangent is zero. Hence,
by Art. 50, its own torsion r is given by

dts 1 9-sr

-*
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HO. Second derivatives of r. Explicit expressions for the

second derivatives of r in terms of r,, ra ,
rs are easily calculated.

The resolved parts of ru in the directions of the normals a, b, o
are respectively

ru a, rn b, ru . c,111
or n Tl ' Tu>

a
1

"

3
" 1"'

r
r'" ru '

which, in virtue of (11) and (12), are equal to

1 1
P*> -~PP*> -~

Hence we may write

1 p

and similarly rM = -gara-^ g.r.-^^r^ ..............(20).

r.-J'.r.-^rir,--

In the same way we find that the resolved parts of r
ffl

in the

directions of a, b, c are respectively

0, q,, ra .

Hence the result

1
,

! 1

ra = ~
ffs^B + - rart

and similarly r31
= -r1r3 + -^8r1 V ..................(21)

rla
= -par1 + - ?ara

We may also calculate the denvatives of the unit normals

a, b, c. For

8a__a_/ry\_l __!
du~du\p)~p

Tu
p*

by (20)



214 TBIPLY OBTHOGONAL SYSTEMS OP SURFACES

9a 8 /rA 1 1
l

ly

=r. ^ (21)

, 9a 1 1
and 5 = ^ir3

= -r1 o,3w pr P
with corresponding results for the derivatives of b and c.

Ex. Prove the relations

n
T23= - - f2^3-

J

with similar results derivable from these by oyoho interchange of variables

and suffixes.

111. Lam's relations. The three parameters u, v, w are

curvilinear coordinates of a point r in space. The length ds of an
element of arc through the point is given by

ds* = dr8=
(ri du + radv + r3dw?

=p*du* + q*dv* + r*duP,

since rlt ra , rs are mutually perpendicular. The three functions

p, q,
r are not independent, but are connected by six differential

equations, consisting of two groups of three. These were first

deduced by Lam6*, and are called after him. We may wnte them

^-o
>

p*

~ U

Legons aur la eoordintoi ewrvilignet et lewt diverses applications. DD 78-79
(1869).

**'
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and psa==
^3l + P^\
q r

*-*? + *)- (23)

r = r^5 + !Wl
:a

P q >

They may be proved by the method employed in establishing the

Mainardi-Codazzi relations. Thus if in the identity

9 9

fcJ
ril =

9^
rifl '

we substitute the values of ru and ru given by (20) and (21), and

after differentiation substitute again the values of the second

derivatives of r in terms of the first derivatives, we find an equa-
tion in which the coefficient of rt vanishes identically, while the

vanishing of the coefficients of ra and r, leads to the third equation
of (22) and the first of (23). Similarly from the identity

_9_ 9_

9w
r

'B= 9/ai"

we obtain the first of (22) and the second of (23); and from the

identity
9 _ 9

fa^-fa**1

the second of (22) and the third of (23).

Moreover, just as the six fundamental magnitudes E, F, (?,

L, M, AT, satisfying the Gauss characteristic equation and the

Mamardi-Codazzi relations, determine a surface except as to

position and orientation in space (Art 44), so the three functions

p, q, r, satisfying Lamffs equations, determine a triply orthogonal

system of surfaces accept as to position and orientation in space.

But the proof of this theorem is beyond the scope of this book*.

Ex.t Given that the family w= const, of a tnply orthogonal system are

surfaces of revolution, and that the curves v=const are meridians on these,

examine the nature of the system.

On the surfaces w= const, u and v are the parameters. Since the curves

v= const, are meridians they are also geodesies, and therefore E la a function

of only (Art. 47), the parametric curves being orthogonal Thus J3a

From the first of (23) it then follows that either ra=0 or j58=0.

Bee Foreyth, 248-261. t Of. Eieenliart, 184.
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In the first case, since ^?a=0 and >*a=0, (16) gives =() and Kw=0. Thus

the surfaces 0= const, are planes; and since they are meridian planes, the

axes of the surfaces of revolution must coincide. The surfaces 20= const, and

USBconst are therefore those obtained by taking a family of plane curves

and their orthogonal trajectories, and rotating their plane about a line in it

as axis.

In the second case we have j08=0, and therefore, in virtue of (17), Km=Q.

Consequently the family of surfaces w=oonst. are developables, either circular

cylinders or circular cones. Further, since jJa^Oj Kmt=0 by (16), and therefore

tae surfaces = const, are also developables And we have seen that

2_ r Z_L if SKtt K1PU T Km 1

so that KU also vanishes. Thus the curves of parameter u are straight lines,

and the surfaces u = const parallel surfaces. These parallel surfaces are planes

when the surfaces w = const, are cylinders.

*1 12. Theorems of Darboux. In conclusion we shall con-

sider the questions whether any arbitrary family of surfaces forms

part of a triply orthogonal system, and whether two orthogonal

families of surfaces admit a third family orthogonal to both. As

the answer to the second question supplies an answer to the first,

we shall prove the following theorem due to Darboux

A necessary and sufficient condition that two orthogonalfamilies

of surfaces admit a third family orthogonal to loth is that their

curves of intersection be Ivnes of curvature on both.

Let the two orthogonal families of surfaces be

u(co,y,i) = const.)

f (#, y, *)
= const.)

Their normals are parallel to the vectors Vu and Vw. Denoting
these gradients by a and b respectively, we have the condition of

orthogonality of the surfaces,
- ab = 0.

If there exists a third family of surfaces

w (as, y, z)
= const (25),

orthogonal to each of the above families, then any displacement
dr tangential to (25) must be coplanar with a and b; that is

a xb dr=0
* This Art. is intended only for readers familiar with the formulae of advanced

Vector Analysis. The differential invariants employed are three-parametric, and

should not be confused with those of the following chapter.
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The condition that this differential equation may admit an integral

involving an arbitrary constant is

(axb)-Vx(axb) = 0,

which may be expanded
a x b (b Va - a Vb + aV . b - bV . a) = . . .(26).

The scalar triple products from the last two terms vanish, owing
to the repeated factor. Further, since a b = 0, it follows that

= V (a b) = a Vb + b Va + b x (V x a) + a x (V x b).

Again the last two terms vanish since

Vxa =VxVw =
and Vxb = VxVt>= 0.

Consequently a Vb = b Va.

Substituting this value in (26), we have the condition

(axb).(a-Vb) = .............(27)

for the existence of a family of surfaces orthogonal to both the

families (24).

Now consider a curve cutting the family of surfaces u= const

orthogonally. A displacement dr along this curve is parallel to

the vector a at the point and therefore, in virtue of the con-

dition (27),
dr x b . (dr Vb) = 0,

which may be written

Now the curve considered lies on a member of the family v= const.;

and, as b is normal to this surface, the last equation shows that

the curve is a line of curvature. Thus the curves which cat the

surfaces u = const, orthogonally are lines of curvature on the

surfaces v= const. Hence their orthogonal trajectories on tho

latter are also lines of curvature. But these are the curves of

intersection of the two families (24). Since these are lines of

curvature on v = const., and the two families cut at a constant

angle, it follows from Joachimsthars theorem that they are also

lines of curvature on the surfaces u = const., and Darboux's theorem

is established.

We may now proceed to answer the other question, whether an

arbitrary family of surfaces

u (a, y, z)
= const.....................(28)
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forms part of a triply orthogonal system. If there is a second

family of surfaces orthogonal to the above, their curves of inter-

section must be lines of curvature on u = const Hence, a family

of lines of curvature on (28) must constitute a normal congruence
if there are to be three orthogonal families.

Let t denote the unit tangent to a line of curvature on u const.

Then the necessary and sufficient condition that the lines of curva-

ture of this system should constitute a normal congruence is that

t dr admits an integral involving an arbitrary constant. The

condition for this is

t.Vxt = (29).

As for the direction of t we observe that, if n is the unit normal

to the surface u = const , the tangent t to a line of curvature IE

parallel to the rate of change of n in that direction; that is to say
t is parallel to dn, and therefore to dr Vn. Hence, since dr has

the direction of t,

t.Vn = \t,

where X is a scalar factor. Thus t is expressible in terms of th<

first and second derivatives of u, and the equation (29) is therefore

of the third order in these derivatives. Moreover the above analysii

is reversible, and so we have Darboux's theorem-

In order that a family of surfaces u(as, y, z)
= const, may font

part of a triply orthogonal system, it is necessary and sufficient tha

u should satisfy a certain partial differential equation of the thin

order.

Such a family of surfaces is called a Lame family.

EXAMPLES XIV

1 . Stow that any family of spheres or planes, whose equation contain

one parameter, can form part of a triply orthogonal system.

2. Show that a family of parallel surfaces is a Lame
1

family.

3. Prove the existence of a triply orthogonal system of spheres.

4. A necessary and sufficient condition that the surfaces = const, o

a triply orthogonal system be parallel is that p be a function of u alone.

5. The curves p const, are curves of equidtstance on a surface =cons1
between consecutive members of that family.

6. Examine the existence of a triply orthogonal system of minime

surfaces.
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7. Prove that the equations (21), satisfied by r, are also satisfied by r8
.

8. Determine a tnply orthogonal system of surfaces for which

where A, S, are functions of w alone.

9 . Prove that the surfaces

are a tnply orthogonal system

10. Prove that the surfaces

yz=ax, \/^+p
out one another orthogonally Hence show that, on a hyperbolic paraboloid

whose principal sections are equal parabolas, the sum or the difference of the

distances of any point on a line of curvature from tho two generators through

the vertex is constant.

1 1 . A triply orthogonal system of surfaces remains tnply orthogonal

after inversion (Art 83)

1 2. Puttingp*= a, y
a
=5, ra =c, rewrite the equations (20) to (23) of the

present chapter in terms of a, b, c and their derivatives*.

1 3. Calculate the first and second curvatures of the surfaces of a triply

orthogonal system in terms ofp, q, r
,
also in terms of a, 6, c.

1 4. The reciprocal system of vectors to rl5 ra ,
r8 of the present chapter

is 1, m, n, where [Elem. Vect Anal., Art 47]

l=ri/a, m=rs/&, n=>r8/c.

Calculate the derivatives of these vectors in terms of 1, m, n, a, 6, c.

* For orthogonal systems either of these notations is satisfactory , tut, with triple

systems generally, it is better to treat the squares and scalar products of the deriva-

tives of r as the fundamental quantities Bee Art. 128, or a recent paper by the

author "On Triple Systems of Surfaces, and Non-Orthogonal Curvilinear Ooordi-

natefl," Proo. Royal Soo. Edto. Vol. 46 (1926), pp 194205.



CHAPTER XII

DIFFERENTIAL INVARIANTS FOR A SURFACE

113. Point-functions. In this chapter we propose to give a

brief account of the properties and uses of differential invariants

for a surface. The "differential parameters
"
introduced by Beltrami

and Darboux have long been employed in various parts of the sub-

ject. The author has shown, however, that these are only some of

the scalar members of a family of both vector and scalar differential

invariants*, which play an important part in geometry of surfaces,

and in the discussion of physical problems connected with curved

surfaces.

A quantity, which assumes one or more definite values at each

point of a surface, is called a function of position or a point-function
for the surface. If it has only one value at each pomt it is said to

be uniform or single-valued. We shall be concerned with both

scalar and vector point-functions, but in all cases the functions

treated will be uniform. The value of the function at any point of

the surface is determined by the coordinates u, v of that pomt, it

is therefore a function of these variables.

114. Gradient of a scalar function. Consider first a scalar

function of position, <j> (u, v). We define the gradient or slope of the

function at any point P as a vector quantity whose direction is that

direction on the surface at P which gives the maximum arc-rate

of increase of <, and whose magnitude is this maximum rate of

increase. There is no ambiguity about the direction; for it is the

direction of increase, not decrease.

A curve
<f>
= const, is called a level cwrve of the function Let 0,

0' be two consecutive level curves, corresponding to the values
(f>

and
<f> + d<j> of the function, where d$ is positive. Let PQ be an

element of the orthogonal trajectory of the level curves, intercepted
between 0, 0', and let dn be the length of this element Let PR

. *- "" -* .&** i iu.ii*uwu JJL1 X*WU10U4J UA MUllOlUUB) IT lull

some applications to Mathematical Physios," Quarterly Journal of Mathematiet,
Vol. 60, pp. 280-269 (1025)

* The theory of these invariants has been developed at some length by the author I

in a paper entitled: "On Differential Invariants in Geometry ol Surfaces, with 5

T
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be an element of arc of another curve through P, cutting G' in E,

and let ds be the length of PR. Then clearly PQ is the shortest

distance from P to the curve 0', and its direction IB that which

gives the maximum rate of increase of
<j>

at P. Thus the gradient

of
<f>

at P has the direction PQ and the magnitude d(f>/dn. This

vector will be denoted * by V<f> or grad <j>.
Ifm is the unit vector

in the direction PQ, orthogonal to the curve
<j>
= const., we have

(1)^ '

And from the above definition it is clear that grad $ is independent

of the choice of parameters u, v. It ia itself a point-function for the

surface.

The rate of increase of
</>

in the direction PR is given by

dd> dd> dn dd> A- = j j- = -T- cos
ds dnds dn

where d is the inclination of PR to PQ. Thus the rate of increase

oftf>in any direction along the surface is the resolved part of V0 in

that direction If c is the unit vector in the direction PR, the rate

of increase of <j>
in this direction is therefore c V0. This may be

called the derivative of
<j>
in the direction ofc. Ifdr is the elementary

vector PR we have dr = cds; and therefore the change d<j>
in the

function due to the displacement dr on the surface is given by

or <ty
= <ZrV< .................. (2).

From the definition of V^ it is clear that the curves < = const.

will be parallels, provided the magnitude of V< is the same for

all points on the same curve; that is to say, provided (V^)" is a

* We shall borrow the notation and terminology of three-parametric differential

invariants.
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function of only Hence a necessary and sufficient condition that

the curves
tf>
= const, be parallels is that (V$)

a
is a function of <f> only

The curves ^r = const, will be orthogonal trajectories of the curves

$= const, if the gradients of the two functions are everywhere per-

pendicular. Hence the condition of orthogonality ofthe two systems
of curves is*

V< .
VT/T

= 0.

Although the gradient of < is independent of any choice of

parameters, it will be convenient to have an expression for the

function in terms of the selected coordinates u, v This may be

obtained as follows. If Sit, Sv is an infinitesimal displacement along
the curve < (n, v) = const.,

Hence a displacement du, dv orthogonal to this ia given by
(Art 24)

du _ Gfa - Ffa
dv

~
Hfa-Jrfy

'

The vector

V =
(flfc

- F<M r, +(Eh - Ffa rs

is therefore parallel to V<. But the resolved part of this in the

direction of rt is equal to

* Beltrami's differential parameter of the first order, Aj <f>, ia the square of the

magnitude of V<, that is

His mixed differential parameter of the first order, At (0, $), is the scalar product
of the gradients of

<f>
and ^; or

AI(#I ^) =V0V^.
Darboux's fnnotion 6 (<j>, ^) is the magnitude of the vector product of V0 and V^-j
that is to say

9(0, ^)n=70xV^>
The Inclination 6 of the onrve ^= const to the curve

<j>
= const, is also the inclination

of V^ to Vtf> And, since oosa B+ sin1 6= 1, it follows from the last two equations, on

squaring and adding, that

, fl +6* fa
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Lich is Ha times the derivative of
<f>

in the direction of ra . Hence

id < is V/#", or

_ (Gfc - JRW (Sfr
-

~
^a

ri+
^/

nch is the required expression for the gradient.

We may regard this as the result obtained by operating on the

iction
</>
with the vectorial differential operator

tat this operator is invariant is clear from the definition of V</>

nch is independent of parameters. The operator V playa a funda-

jntal part in the following argument, for all our invariants are

pressible in terms of it. When theparametric curves a/re orthogonal

takes a simpler form. For then ^=0 and H*=EG, so that

- 1 313
V - ri^ + G ra ^'

form which will frequently be employed when it is desired to

nplify the calculations.

Ex. Prove the following relations :

115. Some applications. The gradients of the parameters

v are given by
_ G F

E

that Vu X Vfl = -jj ,n

1
'

d therefore (Vu x Vvf= -
.

}
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Hence (Vw)
a

=-^=G (Va x Vv)
a
,

P
Vu Vv = - =-FVu x

If then it is desired to take as parametric variables any two func-

tions
<f>, i/r,

the corresponding values E, F, $,H of the fundamental

magnitudes are given by

and
TTr \
JSt ^^

Jr.

If the parametnc curves are orthogonal we have simply

/yuy __ (Vv)s =
jO r

In order that curves u = const, may be a system of geodesic
parallels, E must be a function of u only (Art 56). Hence a

necessary and sufficient condition that the curves
<j>
= const, be

geodesic parallels is that (V0) be a function of <f> only. If the

parameter < is to measure the actual geodesic distance from a
fixed parallel, we must have (V<)

a = 1

The following application of the gradient will be required later.
If is a curve on the surface joining two points A, B, the definite

||

integral from A to B of the resolved part of V0 tangential to the
curve is

t being the unit tangent to the curve. Thus, if A is fixed, the
definite integral is a pomt-function determined by the position of

(B. If
<f>

is single-valued, and the definite integral is taken round I

aclosed curve, fa becomes equal to
<j>A and the integral vanishes. r

When the path of integration is closed we denote the fact by ,'

a small circle placed at the foot of the integral sign. Thus
j[

*'* =
(4). If

T
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Conversely, suppose that the vector P is tangential to the surface,

and that I F*dr vanishes for every closed curve drawn on the
J a

fB

surface. Then / P dr must be the same for all paths joining A

and B. If then A is fixed, the value of the integral is a point-

function determined by the position of B. Hence, for any small

displacement dr of B, we have

P dr = d$ = V0 . dr.

This is true for all values of dr tangential to the surface. Hence,

since P and V< are both tangential to the surface they must be

equal, and we have the theorem

Ifa vector point-function P is everywhere tangential to the surface,

and P dr vanishes for every closed curve drawn on the surface,
Jo

then P is the gradient of some scalar point-function.

116. Divergence ofa vector. The operator V may be applied

to a vector function P in different ways One of these leads to a

scalar differential invariant, which we shall call the divergence of

P and shall denote by div F or V P. We define it by the equation

div F = V F

That this is invariant with respect to the choice of parameters

may be shown by actual transformation from one pair to another.

But it is unnecessary to do this, as the invariant property will follow

directly from another expression that will shortly be found for

div P, which is entirely independent of coordinates.

To illustrate the importance of the divergence function, consider

the divergence of the unit normal n to the surface. Thus

div n = rx (0nx
-

and, on substituting the values ofnt and na given in Art. 27, we find

div n = - -L (EN- 2FM+ GL) /4rt 3 *

= -J ................................. (5),

where J as usual denotes the first curvature. Hence:

w. ,

16
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The first curvature of a surface is the negative of the divergence

of the unit normal*.

If R is a scalar point-function we may find the divergence of JBn

in the same manner. Then, remembering that n is perpendicular

to r, and r, we find

&vRn = Rdivn = -JR .............(C).

The first curvature of a minimal surface vanishes identically.

Hence minimal surfaces are characterised by the relations

div n =

or div Rn => 0.

It will be convenient to have an expression for the divergence

of a vector in terms of the components of the vector. Suppose, for

instance, that
r - Pr, + Qra + Rn.

Then clearly, from the dofinition,

divP = div (PrO + div (Qrt) + div (Rn).

The value of the last term has already been found. Consider thu

first term. Wo have

div P* =
p r, . [0 (P.F,

+
,
ra [E (Pn + PrM)

- ^(^r. + I'r,,)]

* The reader who is familiar with the thrro-paramotrio divergence will

that (5) is trae also for this value of div n. Tor the two functions differ only ly tha

lena n -
, where - denotes differentiation along the normal. But n in ptirpffn*

dioular to its derivative, because it is a vector of constant length. Thus the value

of the extra term is zero.

Thin provides a formula for the first curvature of a surface of the family

F(x,y, *) const,

For the unit normal is the vector

where fjf

Hence except for sign, which IB arbitrary without some convention,

Jmdivn
3 /I W\ .

8 /I 8JF\
.
8 /I 9Z''>
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Thus div Pr, = P1 + - (EG - JP)

Similarly we find div Qra
= i

|-

Hence the complete formula

An important particular case is that in which the vector F is

equal to the gradient of a scalar function <. The divergence of the

gradient* of < is V V< and -will be written V3

(/>
The operator V

s

is analogous to the Laplacian of three parameters. Inserting in (7)

the values of P and Q found from (3), we have

vu - JL 1 (Gk
~ F

^} + 1i (
E**

- F
^} (8)V

*~Hdu( H )
+
Hdv( H )

......W
When the parametric curves are orthogonal this takes the simpler

form

117. Isometric parameters. From the last result it follows

that, when the parametric curves are orthogonal,

_ i a

by Art. 115. If then u, v are isometric parameters, so that

the quotient G/E is constant, and therefore Vu = 0. Conversely if

J1= and also Va
ii = it follows from the above equation that G/E

is constant, or a function of v only, so that

We may then take wVdv for a new second parameter, and our

parameters are thus isometric. Hence the theorem:

* The invariant Va is identical with Beltranu's differential parameter of the

second order, A^.
152
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A necessary and sufficient condition that u be the isometric para-
meter of onefamily of an isometno system is that V8^ = 0.

Again, if the square of the linear element is of the form

where U is a function of u only, and V a function of v only, the

parametric curves are isometric Imes (Art. 39). Also

_____
120U'~~ 2ti U

where f(u) is a function of u only. Conversely if V*u/(Vu)* is a

function of u only, the curves u = const, and their orthogonal

trajectories v = const, form an isometric system. For since

it follows, in virtue of the last equation, that

d G 2VM (Vu)*

9s 6?
and therefore -5- log

= 0,

showing that the parametric curves are isometric Thus:

A necessary and sufficient condition that a family of curves

u= const, and their orthogonal trajectoriesform an isometric system
is that VhijtVu)* be afunction ofu.

118. Curl of a vector. The operator V may be applied to a
vector function F in such a way as to give a vector differential

invariant. We shall call this the curl or rotation of P and denote

it by curl P or V x P. It is defined by the equation

curl P = V x P

_ i / ap F ar\ i rv /Vp r d*\rFa r, x I cr ^
-- Jf -5 + -CT; rs x I ^ -=-- Jb TT I .H* \ du dvj H* \ dv duj

The invanant property of this function will appear from another
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expression that will be found for it, entirely independent of co-

ordinates.

Consider first the curl of a vector Rn normal to the surface

Then

curl Rn = rx x [G (^n + RnJ - F(R*n + Rn,)]H

+ i ra x [E(Rau + J?na) -F(R1u

On substituting the values of na and na as given in Art. 27 we find

that the terms involving these derivatives disappear, and the

formula may then be written

curl JRn =VExn ...............(9),

We may notice that this vector is perpendicular to n and there-

fore tangential to the surface. If R is constant, VR vanishes, so

that the curl of any normal vector of constant length vanishes identi-

cally In particular the curl of the unit normal is zero: or

Vxn = curln = ............ (10).

And we may here notice also that the curl of the position vector r

of the current point on the surface vanishes identically or

Vxr=curlr = ..............(11)

As in the case of the divergence we may find an expansion for

curl P in terms of the components of P. For, if

we have curlF = curl Prx + curl Qra + curl Rn

The value of the last term has already been found The first term

is equal to

-r, x [G-(P1 r1 + Prn)-F(P,r1 + Prls)]

+ r, x [E(P^ + Pria)
- ^(Piri + Prn)].

On substituting the values of rn and FJJ, as given by Gauss's formulae

(Art. 41) we find on reduction

curl Pr, =1 i (FP)
- ~ (#P) n +^ (Mr,- Lrj.-

Similarly

curl r,= ^
[jjCffQ)-R (*]

+ !
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Taking the sum of the three results, we have the complete formula

(12).

One important consequence of this may be noticed. If we put
F = V0, and substitute the corresponding values of P and Q as

found from (3), the coefficient of n vanishes identically. Thus:

The curl of the gradient of a scalar point-function is tangential

to the surface.

An equally important converse will soon be proved, viz. If both

P and curl F are tangential to the surface, then P is the gradient
of some scalar function.

119. Vector functions (cont.). We have seen that o V< is

the derivative of $ in the direction of the unit vector c. The same

operator c V may be applied to a vector function, giving the

derivative of the vector in that direction. Thus

is the derivative of P in the direction of c. As a particular case

put c = rj/V^ and we find for the derivative of P in this

direction

1

as required Though this interpretation of c VP as the "rate of

change" of P in the direction of c is applicable only when c is

tangential to the surface, we define the function c VP for all

values of c by the above equation.

Similarly the operator Vs defined by (8) may be applied to a
vector point-function, giving a vector differential invariant of the
second order. As illustrations we shall calculate the values of V9r
and Va

n, where r and n have their usual meanings We lose no

generality by taking orthogonal parametric curves. Then, in virtue
of (8'),
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T -1+ri "

Thus V'r-Jh .....................(13)
is the required relation.

Cor. 1. From this equation and (6) we have

Cor. 2. The current point r on a minimal surface satisfies the

equation
V ar = 0.

Next consider the function Van. For simplicity in calculation

we shall take the lines of curvature as parametric curves. Then

L N
Ul=

~'jB
Tl '

n'
= --

Hence by (8')

Then in virtue of Gauss's formulae for ru and r^, and the Mainardi-

Codazzi relations, this reduces to

(14),

which is the required formula, K as usual denoting the second

curvature

Since VJ is tangential to the surface, by forming the scalar

product of each member of (14) with n we deduce

(15),

which may also be written

(16)
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Thus the second curvature is a differential invariant of n of the

second order.

12O. Formulae of expansion. If $ denotes a scalar point-

function, and U, V vector point-functions, we require expressions
for the divergence and the curl of the functions <U and U x V, in

terms of the differential invariants of the separate functions. The
formulae required may be expressed*

V.U ............ (17),

xU ........... (18),

V.(UxV) = V.VxU-U.VxV ......... (19).

For brevity of expression in the proof of these we may suppose
the parametric curves orthogonal. Then

I ra

U,

which proves (17), and (18) may be established in a similar
manner. In the case of (19) we have

1!1a 2 .

Then since the dot and the cross in a scalar triple product may
be interchanged, provided the cyclic order of the factors is main-
tained, we have

= V.V xU-U.VxV
as required

As examples, apply (17) and (18) to the function En. Then
div En = VE n + E divn.

But VE is perpendicular to n, and div n - - J. Hence
divEn = JR

* For other formulae see 7 of the author's paper "On Differential Invariants
etc

, already referred to, or Examples XV below.
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as previously found Similarly

curl Rn =VR x n + R curl n.

But curl n = 0, and therefore

curlRn =VR x n,

agreeing with (9). Again

div curl Rn div (VE x n)
= n V x VR - VR . V x n.

Now each of these terms vanishes; the first because curlgrad R is

tangential to the surface (Art. 118), and the second because

curl n = Hence
div curl Rn = ...............(20).

Thus if a vector function is everywhere normal to the surface, the

divergence of its curl vanishes identically.

Ex. 1. Show that divr=2.

Ex. 2. Show that divJr=r 7.7+2.7

and ourl Jr=VJx r.

Ex. 3. Prove the formulae

V XV (<>//)
=07 X

121. Geodesic curvature. Take any orthogonal system of

parametric curves, and let a, b be unit vectors in the directions of

FI and r
fl ,

so that

r
i

Then a, b, n form a right-handed system of mutually perpendicular

unit vectors, such that

axb = n, bxn = a, nxa= b.

The vector curvature of the parametric curve v = const, is the arc-

rate of change of a in this direction, which is equal to
-71?jp

_ __
du~du
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by Art. 41. Hence the vector curvature of the curve v = const, is

n- * bE
The normal component of this, L/E, is the curvature of the

geodesic tangent, or the normal curvature of the surface in the

direction of a. The tangential component is the curvature relative

to the geodesic, or the geodesic curvature (Art 53). Since this is

regarded as positive when the relative curvature is in the positive

sense for a rotation about the normal, the geodesic curvature of

v= const, is the coefficient of b in the above expiession, or

Now the divergence of b is, by (7),

\ 19 /S

Hence the geodesic curvature of the parametric curve v = const, is

the negative of the divergence of the unit vector b. But the para-

metric curves v = const, may be chosen arbitrarily. Hence the

theorem :

Given a family ofcurves on the surface, with an assigned positive

direction along the curves, the geodesic curvature of a member of the

family is the negative of the divergence of the umt vector tangential

to the surface and orthogonal to the curve, whose direction is obtained

by a positive rotation of one right angle (about the normal) from the

direction of the curve

The same result could have been obtained by considering the

curve u= const In this case the vector curvature IB

3b# g,

The geodesic curvature of u = const is the resolved part of this in

the direction of a, which is the direction obtained by a positive

rotation of one right angle from b about the normal Hence

But this is equal to div a, and is therefore the negative of div (

as required by the above theorem.
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Bonnets formula for the geodesic curvature of the curve

cf) (u, v) = const. (Art. 55) follows immediately from this theorem.

For the unit vector orthogonal to the curve is V</ j

V<
|

. But

and therefore

__
H du WC&fr" - 2^</>B +

a/
"*"

dv

The sign is indeterminate unless one direction along the curve is

taken as the positive direction.

Another formula for the geodesic curvature of a curve may be

deduced from the above theorem. For if t is the unit tangent to

the curve, the unit vector orthogonal to the curve in the sense

indicated is n x t. Hence the required geodesic curvature is

Kg = div (n x t)

= n V x t t V x n

by (19). But curl n is zero, and the last term vanishes, giving

ff

= n.curlt .................... (22).

Hence the theorem:

Given a family of curves on the surface, with an assigned positive

direction along the curves, the geodesic curvature of a member of the

family is the normal resolute of the curl of the unit tangent.

We may observe in passing that, since the parametric curves are

orthogonal, the curl of the unit tangent a to the line v= const, is,

by (12), M L, Ez

and similarly curl b = a - == b + n.

If now we form the vector product curl a x curl b, the coefficient

of n in the expression is equal to (LN M^/H' or K. Hence the

second curvature is given by
K= n curl a x curl b
=

[n, curia, curlbj ...............(23).



236 DIFFERENTIAL INVARIANTS FOB A SUEFAOB

Ex. Deduce from (22) that

Kg
=n curl (TI u'+ Tii/)

EXAMPLES XV

1. Prove that divr=2 and curlr=0.

2. Verify the values of curl Pti and curl $ra given in Art 118.

3. If 4> is a point-function, and F is a function of $, show that

Hence, by means of (17), prove that

V*F=f"'(

4. If F=F($ t ^r, ...) is a function of several point-functions, show that

5. If -u, v are geodesic polar coordinates, so that JE=l
t
F=0 and Ha

=ff,

show that

and **

Hence, if H is a function of u only, show that
1-^.

satisfies the equation

;
and also that

6. If t is a unit vector tangential to the surface, and b=txn, show that -,

the normal curvature in the direction of t is (t vn) t, and the torsion
'

ofthe geodesic in this direction (t *Vn) b Deduce Eider's theorem on normal

curvature (Art. 31), and the formula (*& Ka)sm Boos 6 for the torsion of the

geodesic.

7. Show that the directions of c and d on a surface are conjugate if

(cVn)d=0; and hence that the asymptotic directions are such that

(dVn)d=0. Deduce the differential equation of the asymptotic lines I

(drvn)*dr=Q.

8 . If t is the unit tangent to a line of curvature, show that (tvn)xt=0
Deduce the differential equation of the lines of curvature

,

j

(dr vn)xdr=0.

9. If a, b are the unit tangents to the orthogonal parametric curves

(Art. 121), show that *

and also that K*= - div (a div a+b div b).
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1 0. As in Art 120, prove the formulae

-Vv U,
7(UV)=VvU+U. W+Vx7xU+UxVxV.

lli If c is a constant vector, show that

7 (c U)= C VU-H C x curl U,
V (c x U)= -c curl U,
v x (c x U)=c divU-c vU.

12. If a is tangential to the surface, show that

avr-a.
And, if c is a constant vector,

v(cr)=cvr, v(cxr)=o,
vx(cxr)=2c-cvr.

13. Prove that U vU=ivU2-UxcurlU.

14. If r is the position vector of the current point on the surface, and

jo=r n, prove that vra is twice the tangential component of r, and that

Also show that 7ara =>2 (2+pJ)

15. If F is a function of < and ^-, deduce from Ex. 4 that

and that

16. If X, y, z are the rectangular coordinates of tbe current point on the

surface, and I, m, n the direction cosines of the normal, show that

and (vZ)
a
+(Vm)

2+(V)2= t7a -22T.

17. If y= | V$ | , prove that the geodesic curvature of the curve <p
= const

is given by

18. Prove that a family of geodesies is characterised by the property

n curl t=0, t being the unit tangent. Deduce that t is the gradient of some

scalar function
// ,

and that the curves ^= const, are the geodesic parallels to

the family of geodesies, ^ measuring the actual geodesic distance from a fixed

parallel

1 9 . Show that the equation of the indicatnx at a point is (r Vn) r= -
1,

tbe point itself being the origin of position vectors.
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20. Prove that the second curvature is given by the formula

2Z"=(V
a
r)

a- S (curlgrada?)
8

.

B.V.*

21. Ifp=rn, show that Vp=rvn
and V*

Hence, in the oase of a minimal surface,

32. Prove the relations

div curl 0V=V V x V<+0V V x V,

TRANSFORMATION OF INTEGRALS

122. Divergence theorem. We shall now prove various

theorems connecting line integrals round a closed curve drawn on

the surface, with surface integrals over the enclosed region. These

are analogous to the three-parametric theorems of Gauss, Stokes

and Green, and others deducible from them. Let G be any closed

curve drawn on the surface
;
and at any point of this curve let m

be the unit vector tangential to the surface and normal to the

curve, drawn outward from the region enclosed by 0. Let t be the

unit tangent to the curve, in that sense for which m, t, n form

a right-handed system of unit vectors, so that .

m = txn, t =nxm, n =m x t

The sense of t is the positive sense for a description of the curve.

If ds is the length of an element of the curve, the corresponding

displacement dr along the curve in the positive sense is given by
dr = tds.

Consider first a transformation of the surface integral of the

divergence of a vector over the region enclosed by 0. The area
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dS of an element of this region is equal to Hdudv. If the vector

P is given by

then by (7)

and the definite integral of div P over the portion of the surface

enclosed by G is
, t

[(
div

=
f[HP]'do +f[HQ]*du

-

N, M being the points in which the curve v = const, meets G, and

B, A those in which u = const, meets it. If now we assign to du at

the points B, A and to dv at the points N, M the values corre-

sponding to the passage round in the positive sense, the above

equation becomes

[[div
FdS = ! HPdv-j HQdu-

Consider now the line integral P m ds taken round G in the
J o

positive sense. Clearly Eu m = 0, and

Hence

F-mds= (Prx + Qr.) (r1 du + rt dv) x
1

.

J o J o **

In the uitegrand the coefficient of du is

^
(Pr, + Qr9) (Jlr,

- Er>) = - HQ

and the coefficient of dv is

^ (Pr, + Qra) (Or,
-

FT,)
= HP,

BO that f F-m&= f
HPdv- \ HQdu.

Jo Jo Jo

Comparing this with the value found for the surface integral of the

divergence, we have the required result, which may be written

(24).
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This is analogous to Gauss's "divergence theorem," and we shall

therefore refer to it as the divergence theorem. The last term in (24)

has no counterpart in Gauss's theorem, but it has some important

consequences in geometry of surfaces, and in physical problems
connected therewith.

From this theorem the invariant property of divF follows

immediately. For, by letting the curve G converge to a point P
inside it, we have for that point

/

(25).

Now the second member of this equation, and also the second term

of the first member, are clearly independent of the choice of

coordinates. Hence div F must also be independent of it, and is

thus an invariant. This equation may also be regarded as giving

an alternative definition of div F.

123. Other theorems. From the divergence theorem other

important transformations are easily deducible. If, for instance, in

(24) we put F = <f>c, where < is a scalar function and c a constant

vector, we find in virtue of (17),

I
\V^cdS= I <}>c*mds- iMfo'iidS.

And, since this is true for all values of the constant vector c, it

follows that

(26).

This theorem has some important applications, both geometrical

and physical. Putting $ equal to a constant we obtain the formula

(27)

If now we let the curve converge to a point inside it, the last

equation gives

(
mds

Jh = Lt
J .................... (28).
dS

Hence we have an alternative definition of the first curvature of

a surface, independent of normal curvature or principal directions.

We may state it:
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The limiting value of the line integral I mds, per unit of enclosed
J a

area, w normal to the surface, and its ratio to the unit normal is equal
to the first curvature.

In the case of a closed surface another important result follows

from (27) For we may then let the curve G converge to a point
outside it. The line integral in (27) then tends to zero, and the

surface integral over the whole surface must vanish Thus, for
a closed surface,

the integral being taken over the whole surface. In virtue of (13)
we may also wnte this

Again, apply the divergence theorem to the vector F x c, where
c is a constant vector. Then by (19) the theorem becomes

c- II curl FdS=c*l m x Fds c/T/n x FdS.

And, since this is true for all values of the confltant vector c, we
have

jjcm\FdS=l
m x Fds -

tfjnxFdS ......(29)

This important result may be used to prove the invariant property
of curl P. For, on letting the curve G converge to a point inside

it, we have at this point

I m x
J

Fds
.........(30).I0do

Now each term of this equation, except curl P, is independent of

the choice of coordinates. Hence curl P must also be independent.
It is therefore an invariant. The equation (30) may be regarded
as giving an alternative definition of curl P.

In the case of a minimal surface, J=Q Thus (26) becomes

16
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and from (27) we see that

f

Jo

for any closed curve drawn on the surface. Similarly (29) becomes

f
[curl

FdS =
J

m x Fds.

In particular if we put for P the position vector r of the current

point, since curl r= we obtain

I

Jo
r x

This equation and the equation I mds = are virtually the equa-
J O

taons of equilibrium of a thin film of constant tension, with equal

pressures on the two sides. The one equation expresses that the

vector sum of the forces on the portion enclosed by G is zero, the

other that the vector sum of their moments about the origin

vanishes *.

Analogues of Green's theorems are easily deducible from the

divergence theorem. For if we apply this theorem to the function

r, which is tangential to the surface, since by (17)

the divergence theorem gives

f <Vi/r . mds =

Transposing terms we may write this

tfa<iVydS=l 0m.Vfcfo-JtavS/rd
JSf .....(31).

On interchanging $ and ^ we have similarly

. .. (32).

These have the same form as the well-known theorems due to

Green. From (31) and (32) we also have the symmetrical relation

..(33).

* For the application of these theorems to the equilibrium of stretched mem-

branes, and the flow of heat in a curved lamina, see the author's paper already
referred to, 15-17.
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If in this formula we put ^ =
const., we obtain the theorem

(34),

which could also be deduced from the divergence theorem by
putting P = V0.

Geodesic polar coordinates and the concept of geodesic distance

may be used to extend this theory in various directions*. But for

fear of overloading the present chapter we shall refrain from doing
this.

124. Circulation theorem. Consider next the definite

integral of n curl P over the portion of the surface enclosed by
the curve G (Fig 27). If, as before, P =PFl + Qr, + Rn, we have
in virtue of (12)

Hence, since dS=* Hdudo, the definite integral referred to is

= f\FP + GQfdv - \\EP + FQ]du.J S J B

If now we assign to dv at N, M and to du at B, A the values corre-

sponding to the passage round G in the positive sense, this becomes

Jjn-VxPdSf-J (FP +
GQ)dv+j(tiP

+ IQ)du.

But the line integral

I
F dr = I (Pr, + Qra + Ru) fadu + Tz dv)

Jo Jo

= l(EP + FQ)du+ t(FP + GQ)dv.
Jo Jo

The two integrals are therefore equal, so that

fin. curl Fdflf-Jp.dr .............. (35).

This may be referred to as the circulation theorem, and the integral

in the second member as the circulation of the vector P round the

curve 0. The theorem is analogous to Stokes's theorem, and is

Loc. cit.
t u.

162
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virtually identical with it, since the normal resolute of our function J

curlP is equal to the normal resolute of the three-parametric
function. ^

If we apply the above theorem to the function <c, where is a

scalar function and c a constant vector, we find in virtue of (18)

/ In V< xcdS=

And, since this is true for all values of the constant vector c, we

have the theorem

ffnxV<f>dS= I <j>dr (36),
J J Jo

which is sometimes useful.

If we apply the circulation theorem to the function V<, we find

J jn
V x V(f>dS=f V< dr = 0.

And since this is true for the region bounded by any closed curve,

it follows that n curl grad < vanishes identically. Thus the curl

of the gradient of a scalar function is tangential to the surface, as

already proved in Art. 118. Conversely, suppose that both P and

curlP are tangential to the surface. Then, by the circulation

theorem,

f P dr = I In curl FdS= 0.

And, since this is true for any closed curve, it follows from Art. >-

115 that P is the gradient of some scalar function. Hence the
|

theorem-
^

If a vector function and its curl are both tangential to the surface,

the vector is the gradient of some scalar function.

EXAMPLES XVI

1 . Show that / r dr=>0 is true for any closed curve.

2 . By applying the divergence theorem to the function curl .fin, prove that
r

div curl JRn vanishes identically
'

3. For a closed surface, prove that the integrals V

f
fn curl TdtS, Ifn xv<f>dS t

vanish identically. w
t

V

V
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4. Prove the relations

and

/7v.vxUd=
J [U. V,

5. If V=V$and Va<=0, show tiiat

6. If F=V0 and 7a$= -27nr, show that

/ F mda = I I
-

7. Show that / $7i//- <&=- /

8. From (18) and the circulation theorem deduce the relation

/70n.vxVdS=f tfV.dr- { jvQxV'UdS.

Putting V=V^ in this result^ prove that

I /v<^xvV'nrf/5= I 0v^c?r= - I tyv$dr.

9. If cp =div (jiV0), and ^) vanishes over the closed curve 0, show that

1O. If ^=r n and $ is the area of the surface bounded by the closed

curve 0, show that

2tf= f

1 1 . Prove the relation

Jmds -

I Jmds
Hence deduce that %Ku = Van+Lt 1' a

...
da

1 2. Show that, for any closed curve,

I m x rd*=* 1 1 Jo. x rdS.

13. Deduce formula (34) from the divergence theorem.

1 4. The pole for geodesic polar coordinates is inside the closed curve 0,

and u is the geodesic distance from the pole. In formula (33) put $=logu,

isolating the pole with a small geodesic circle. Letting this geodesic circle
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converge to the pole, deduce the analogue of Green's formula for the value of A

ifr
at the pole, viz.

>/

Hence show that =/ mVlogweto- I IVa
logudS.

15. Show that the formulae of Ex. 14 are true with log .27 in place of

logo.

16. If, in Ez. 14^ H is a function of u only, the function

satisfies Vs0=0. Using Q in place of logu in that exercise, prove the for-

mulae

2m/r=
I

(i/rVQ
- QV^) mds + I

f !

and 2jr=/ mVQ<&.
I

T
The latter is analogous to Gauss's integral for 4rr.

[

1 7 Prove the following generalisation of (31) :

[

>

18. -4 necessary and sufficient condition that a family of cwrves on a surface
be parallels M that the divergence of the unit tangent vanish identically. (See
Art 130.)

^.

1 9 . The orthogonal trajectories of a family ofparallels constitute afamily \

of geodesies; and conversely. (Ex 18.) ^

20. The surface integral of the geodesic curvature of a family of curves I

over any region is equal to the circulation of the unit tangent round the

boundary of the region. Hence this circulation vanishes for a family of

geodesies.

21. If Bis a vector point-function for a given surface, the vector BI x Ba/S
it independent of the choice ofporometno curves. (Art. 131 )

22. A necessary and sufficient condition that an orthogonal system, of curves

on a surface may be isometno is that, at any point, the sum of the derivatives of
the geodesic curvatures of the curves, each in its own direction, be zero.

23. An orthogonal system of curves cutting an isometric orthogonal system
at a variable angle 8 will itself be isometno provided V

2<9=0.



CONCLUSION

FURTHER RECENT ADVANCES

125. Orthogonal systems of curves on a surface. Since

this book was sent to the press, several important additions have

been made by the author to our knowledge of the properties of

families of curves and surfaces, and of the general small deformation

of a surface. A brief account is here given of the new results es-

tablished 3
and it will be seen that the trwo-parametnc divergence

and curl introduced in Chapter XII play an important part in the

theory.

We are already familiar with the theorem of Dupin, which states

that the sum of the normal curvatures of a surface in any two

perpendicular directions at a point is invariant, and equal to the

first curvature of the surface (Art. 81). The author has shown that

this is only one aspect of a more comprehensive theorem dealing

with the curvature of orthogonal systems of curves drawn on the

surface a theorem specifying both the first and the second curva-

tures*. Let the orthogonal system considered be taken as parametric

curves, and let a, b be the unit vectoi s tangential to these curves.

Then the vector curvature of the curve v = const is (Art. 52)

1 3a Z & L
n "

and that of the curve u = const, is

1 3b N Gl

The sum of these vector curvatures has a component Jo. normal to

the surface, and a component (adiva + bdivb) tangential to

the surface. Now the divergence of the latter component, by (7)

of Art. 116, has the value

1
["j/j.

9 3/1~ ~

w J 3

* "Some New Theorems in Geometry of a Surface," The Mathematical Gazette,

Vol. 18, pp. 16 (January 1926).
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which is equal to the second curvature K, in virtue of the Gauss

characteristic equation. Hence the theorem:

The sum of the vector curvatures of the two curves of an orthogonal

system through any point has a normal component whose magnitude
is equal to the first curvature of the surface, and a tangential com-

ponent whose divergence is equal to the second curvature at that

point.

The normal component of this vector curvature is thus invariant,

being the same for all orthogonal systems This is substantially

Dupin's theorem. The tangential component is not itself invariant,

but it possesses an invariant divergence. The behaviour of this

component is expressed by the following theorem*-

The vector curvature is the same for orthogonal systems that cut

each other at a constant angle. If, however, the inclination 6 of one

system to the other is variable, their curvatures differ by the tangential

vector curl (0n), whose divergence vanishes identically.

Since the divergence of the normal component 7h is equal to

J', we also have the result :

The divergence of the vector curvature of an orthogonal system on

the surface is invariant and equal to K 7B
.

126. Family of curves on a surface. Again the author

has shown
-f-
that many of the properties possessed by the generators

of a ruled surface do not belong exclusively to families of straight

lines on a surface, but that a family of curves on any surface

possesses a line of striction and a focal curve or envelope, though
these are not necessarily real. When the surface is developable,

and the curves are the generators, the focal curve is the edge of

regression. f

Consider then a singly infinite family of curves on a given *

surface, and let these be taken as the parametric curves v = const. I

If a curve v meets a consecutive curve v + dv, a point on the former

corresponding to parameter values (u, v) must be identical with

some point on the latter with parameter values (u + du, v -r dv), or

r (ut v)
= r(u + du,v + dv).

* For the proof of this theorem see 6 of the author's paper just referred to.

f Loo. cit. t 14.
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Hence TJ du + T3dv=*Q.

Now this is possible only where r: is parallel to r
fl ; that is to say

where
r1 xra=5n = 0.

Hence the required locus of points of intersection of consecutive

curves of the family is given by

-BT-0.

This may be called the focal curve or envelope of the family; and

the points in which it is met by any curve are the foci of that

curve. A curve touches the focal curve at each of its foci. Also

this focal curve is clearly the focal curve of the family u = const.,

and of the family < (u, v)
= const.

Consider next the possibility of a normal to a curve of the

family v = const being normal also to a consecutive curve. The

author has shown * that this is possible only where

9 H> A . , . . E d f H* thatlfl

Now H= Q is the equation of the focal curve. Hence the locus of

points possessing the required property is

or div a = 0.

This locus may be called the line ofstriction of the family of curves,

the line of striction of the generators of a ruled surface being a

particular case. Hence the theorem:

Given a one-parameter family of curves on a surface, with t as

the unit tangent, the equation of the line of striction of thefamily

may be expressed
divt = 0.

Or, since divt is the geodesic curvature of the orthogonal

brajectones of the family of curves, we have the result-

The line ofstriction of afamily of curves is the locus ofpoints at

which the geodesic curvature of their orthogonal trajectories is zero.

An important example is that of a family of geodesies; and for

such a family the author has provedf the following extension of

Bonnet's theorem on the generators of a ruled surface (Art. 72):

* Loo eit
,

2. t Loc. ott., 8.
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Ifa curve is drawn on a surface so as to cut afamily of geodesies,

then provided it has two of tJie following properties it will also have

the third: (a) that it is a geodesic, (6) that it is the line of strict/ion

of the family of geodesies, (c) that it outs the family at a constant

angle.

Another theorem is connected with the curl of the unit tangent
to the family of curves. Since

M L E*

it follows that a curl a is equal to the torsion of the geodesic

tangent to the curve v const. (Art. 49), n curl a to the geodesic

curvature of the curve (Art 54), and b curl a to the normal

curvature of the surface in its direction. Hence the theorem

Ift is the unit tangent at any point to the curve of a family, the

geodesic curvature of the curve is n curlt, the torsion of its geodesic

tangent ist curl t, and the normal curvature of the surface in the

direction of the curve is t x n curl t.

Since these three quantities vanish for geodesies, lines ofcurvature

and asymptotic lines respectively, it follows that-

A family of curves with a unit tangent t will be geodesies if

a. curl t vanishes identically they will be lines of curvature if

t curl t is zero, and they will be asymptotic lines if t x n curl t

vanishes identically.

127. Small deformation of a surface. The differential

invariants of Chapter XII have also been employed by the author

in the treatment of the general problem of small deformation of a

surface, involving both extension and shear*. A surface 8 under-

goes a small deformation, so that the point whose original position

vector is r suffers a small displacement a, which is a point-function
for the surface; and the new position vector r

f
of the point is given

by
'

r = r + s.

It is shown that the dilation 6 of the surface, being the increase of

area per unit area, is given by
= divs

* "On small Deformation of Surfaces and of thin elastic Shells," Quarterly
Journal of Mathematics, Yol 50 (1925), pp 272296.
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and that the unit normal n' to the deformed surface Sf
is expres-

sible as
n' = n - n x curl s,

the change being due to a rotation of the element of surface repre-

sented by the vector

curl s -J (n curl B) n.

The first curvature J' of the deformed surface is found to have the

value _

and the second curvature K1

the value

K'= (1
-

2(9) K+ K(V* Va) n,

where V and V* are two new invariant operators with properties

similar to those of V. Inextensional deformation, in which the

length of any element of arc remains unaltered, is considered as a

particular case.

The above relations are proved at the outset; and the paper

then goes on to examine in detail the geometry of the strain. The

eastension in any direction at a point, or the increase of length per

unit length of arc, is shown to be t VB t, t being the unit vector

in that direction
;
and the sum ofthe extensions in two perpendicular

directions on the surface is invariant, and equal to the dilation 6.

The values of the "components" of strain, the existence of principal

lines of strain, and a geometrical representation of strain are also

examined.

The last two divisions of the paper, dealing with the stresses in

a thin shell and the equations of equilibrium, do not belong to the

domain of Differential Geometry.

1228. Oblique curvilinear coordinates in space. Much of

the theory of Chapter XI has been extended by the author to triple

systems of surfaces which do not cut orthogonally f. Let the three

systems of surfaces be

u = const ,
v = const., w = const.,

the position vector r of a point m space being a function of the

oblique curvilinear coordinates u, v, w. A set of fundamental

f "On triple Systems of Surfaces and non-orthogonal Curvilinear Coordinates,"

Proo. Roy. 800. Edinburgh, VoL 46 (1926).
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magnitudes for the system of surfaces may be defined by the

equations
a = rf, b = rf, G = rs ,

/=ra .r8 , ff
= ra r1} h^r^Ta,

the suffixes 1, 2, 3 having the same meanings as in Chapter XI.

In terms of these quantities the unit normals to the parametric

surfaces are

r, x r8 ra x T! TJ x ra

Expressions are then determined for the three-parametric gradient

and LaplawoM. of a scalar function in space, and for the three-

parametric divergence and curl of a vector function.

A formula is also found for the first curvature of any surface

<j> (u, v, w) = const.

and the properties of the coordinate surfaces are examined in some

detail. The intersections of the parametric surfaces constitute

three congruences of curves, which are studied along the lines

explained in the following Art Lastly, a simple proof of Gauss's

Divergence Theorem is given in terms of the oblique curvilinear

coordinates.

129. Congruences of curves. The method of Arts 103-5,

in which a congruence of curves is defined as the intersections of

two two-parametric families of surfaces, is not very effective. The

author has shown* that a curvilinear congruence is most advan-

tageously treated along the same lines as a rectilinear congruence.

Any surface cutting all the curves of the congruence is taken as

director surface^ or surface of reference. Any convenient system of

curvilinear coordinates u, v on this surface will determine the

individual curves of the congruence, and the distance s along a

curve from the director surface determines a particular point r.

Thus r is a function of the three parameters u, v, s, or

r= r(w, v, *)

and the fundamental magnitudes a, &, c,/, g t
h introduced in the

preceding Art. are again employed.
* " On Congruences of Curves." Tdholeu Mathematical Journal, Vol 28(1927),

pp. 114125.
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By this method the existence and properties of the foci and

focal surface are very easily established, the equation of the focal

surface being
fr, rs> r8]

= 0.

Moreover, corresponding to the developable surfaces of a rectilinear

congruence, are here introduced what may be called the envelope

surfaces of the congruence. The number of these to each curve is

equal to the number of foci on the curve.

Hitherto nothing was known of points on a curve corresponding
to the limits of a ray in a rectilinear congruence. The existence

of such points on a curve w here proved by the following method

First it is shown that

Of all the normals at a given point, to the curve of the congruence

through that point, two are also normals to consecutive curves

It ia then an easy step to the theorem :

On each curve of the congruence there are certain points (calkd

"hmits") for which the two common normals to this curve and

consecutive curves are coincident, and the feet of these normals are

stationary at the limit points for variation of the consecutive curve

This theorem then leads directly to the definition of principal

surfaces and principal planes for a curve

The divergence of the congruence is then denned as the three-

parametric divergence of the unit tangent t to the curves of the

congruence. The surface

divt =

may be called the surface of st/riction or orthocentric surface of the

congruence. It is shown to have important properties, being the

locus of the points of striction or orthocentreSy which are the points

at which the tw9 common normals to the curve and consecutive

curves are at right angles The orthocentre of a ray of a rectilinear

congruence is the "middle point" of the ray.

The properties of surfaces of the congruence (Art 104) are

examined in some detail; and an expression is found for the first

curvature of the surface

v=
<j> (u), or -^ (u, v)

= const.

In terms ofthe fundamental magnitudes the necessary and sufficient

condition that the congruence may be normal is
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which for a rectilinear congruence is simply f\ g^ The first

curvature of the surfaces, which are cut orthogonally by the curves

of a normal congruence, is given by

/=-divt,

or, ifp denotes the value of the product [r,, r2 ,
rs],

/a.
p

The common focal surface of the congruences of parametric curves,

for the triple system of the preceding Art., is given by

EXAMPLES XVII

1. If, with the notation of Chap I, the one-parametno operator V for

a 0111*76 in space is defined by

'a-
prove that vr=l, 7t=0, vn=-K, vb=0,

vxr~o, vxt=*b, vxn=-rn, vxb=-rb.
Also calculate the one-parametric divergence and curl of $t, <n and 0b.

22. If, for a given surface, 1 and m are defined by

1
r' xn m nxri

1 g-, m=-^
show that 1, m, U form the reciprocal system of vectors to TI, T% t n, satisfying

the relations

lri=l, mr2=l,
and I*ra=mr1=ln=mn=0
Prove also that

and similarly that

Ti
and show that

V-ff/B*t m*-lff*, l.m--^7F, [1, in,

3. In terms of the vectors 1, m of Ex 2, show that

so that lVu, m=Vv
4. Prove that the focal curve of a family of curves on a surface (Art. 126)

is the envelope of the family, being touched by each member at the foci of

that curve.
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5 . Show that the focal curve of tho families of parametric curves is also

the focal curve of the family < (w, v)=> const.

6. Prove that consecutive parametric curves v=const on a surface can

possess a common normal only where

3

and deduce the equation div a=0 for the line of striction of the family.

7". Show that the foci on a generator of a skew surface are two imaginary
points equidistant from the central point, or point of striotion. Prove that,
as the specific curvature of the surface tends to zero, these points tend to

coincidence
,
and deduce the dual nature of the edge of regression of a de-

velopable surface, as formed by the coalescence of the focal curve with the

line of stnction.

8. The parametric curves are orthogonal, and the curves w= const, are

geodesies (divb=0). If a curve cuts these at a variable angle 6, its unit

tangent is a cos 6+b sm 6, and its geodesic curvature is div (b cos 6 - a sin
ff).

Show that this latter expression is equal to

where d6jd> is the arc-rate of increase of Q along G. Deduce the theorem of

Art. 126 on a family of geodesies

9 . An orthogonal system of curves on a surface is inclined at a variable

angle & to the orthogonal parametric curves. Show that the unit tangents to

the curves are

(a cos 0+b sin 0), (bcostf-asmfl)

Deduce the value of the tangential component of the vector curvature of t.hiB

orthogonal system, and show that it may be expressed in the alternative forms

-
(a div a+b divb)+n x V0,

or - (a diva+b div b)- curl (0n)

1 0. A surface S undergoes a small deformation as described in Art. 127,

the displacement 8 being of the first order, while small quantities of higher

order are negligible. Show that the fundamental magnitudes for the deformed

surface are

Deduce that H' =H (1 + div B),

and hence that the dilation 6 is equal to diva. Also show that the unit

normal can be expressed as

n'=n-nx curie.
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11. If M, v, ta are (oblique) curvilinear coordinates in space, prove that

the normal to the surface (, v, w)= const, is parallel to the vector

and show that this vector is p times the rate of change of in the direction

of the normal, where p-=[rlt Ta, fa]

12. If the position vector r of a point in space is a function of the three
j

parameters u, v, w, while a, i, o,/f gt h are the magnitudes of Art 128, and i

A, S, C, f, 0, H are the co-factors of these elements in the determinant
j

O C t I

h b /
9 / '

prove that pTaXTj

with two similar formulae. Also show that the unit normals to the parametric V

surfaces are Fa x r8/^Z, etc.

1 3. With the notation of Ex. 12, if 1, in, n are the reciprocal system of

vectors to r^ ra ,
rs defined by

P P P
show that Iri=mra=nr8=l,

while 1 r2=m Fi=etc =0.

Prove that ri

and write down the corresponding formulae for 1*3 ,
rg ,m and n. Also show that

14. If, with the same notation, the three-parametric V is defined by

, 9 3 3
v- 1^+m sTi

-n
fc;'

prove that

-

Deduce from the former that the first curvature of the parametric surface

ua const, is given by
ira /A\ *(H\ a (o\-\~~ +

Also prove the identity V V x !*=0, where P is any vector point-function.
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15. If a, 6, o, /, g, h are the magnitudes of Art 128, prove the relations

and write down all the corresponding formulae

1 6. With the notation of Exx 12 16, show that, for a tnply orthogonal

system of surfaces (/=<7=A=0),

2)=p
s
=ofcc, F=G=H=*Q,

A=ba
t B^ca, C=ab,

m=r2/6, n=r3/o,

The first order magnitudes for the surface u= const are 6, 0, c; and the

second order magnitudes are -
b^Z-Jo, 0,

- c
t/2*/a! The first curvature of the

surface is

j___1

Jabc du

The second derivatives of r are given by

rn=i (oil- cam -osn),

and similar formulae, and the derivatives of 1, m, n by

and so on. Lame's relations are equivalent to

with similai' formulae

1 7 . "With the notation of Art. 129, show that consecutive curves of the

congruence can meet only where [ti, Fj, Tsj^O. This is the equation of the

focal surface.

1 8. For any vector point-function in space, the scalar triple product of its

derivatives vn three non-coplanar directions, divided by the scalar triple product

of the unit vectors in those directions, is an invariant.

19. For a family of parallel surfaces, the three-parametric function

ourl n vanishes identically.

20. If a family of curves on a surface outs a family of geodesies at an

ingle which is constant along any one curve, the geodesic curvature of any
neraber of the former vanishes at the line of striotion of the latter. (Ex 8 )

W. 17



258 FURTHER RECENT ADVANCES

ISO. Family of curves (continued) Some further im-

portant properties of families of curves on a surface should here be

mentioned. Consider first the arc-rate of rotation of the tangent

plane to the surface, as the point of contact moves along one of the

curves We have seen that the direction of the axis of rotation is

the direction conjugate to that of the curve at the point of contact

(Art. 85). The author has shown* that

//t is the unit tangent for afamily of curves on a surface, the

tangential component of curl t gives both the direction of the axis of

rotation of the tangent plane, and the magnitude of the arc-rate of

turning, as the point of contact moves along a vmrve of the family.

In the case of a family of geodesies n curl t vanishes identically,

and curl t is therefore tangential to the surface. Thus:

Jftisthe unit tangentfor afamily ofgeodesies, curl t gives both the

direction conjugate to that of t, and also the arc-rate of rotation of the

tangent plane, as the point of contact moves along one of the geodesies.

The moment of a family of curves may he defined as follows.

Consider the tangents to two consecutive curves at two points

distant ds along an orthogonal trajectory ofthe curves. The quotient

of their mutual moment hy ds* is th'e moment of the family at the

point considered. It is a point-function for the surface
;
and the

author has shown thatf the moment of afamily of curves with unit

tangent t has the value t curl t. This is equal to the toision of the

geodesic tangent, and vanishes wherever a curve of the family

is tangent to a line of curvature (Art 49). The locus of such

points may be called the line of zero moment of the family. Its

equation is t curl t = 0. Similarly the line of normal curvature of

the family is the locus of points at which their geodesic curvature

is zero Its equation is n curl t = And the line of tangential

curvature is the locus of points at which the normal curvature

vanishes. It is given by n x t curl t = 0.

In connection with a family of parallels the author has proved
the theorem]:.

A necessary and sufficient condition that a family of curves with

unit tangent t be afamily ofparallels is that dw t vanish identically. V"

* "On Families of Curves and Surfaces." Quarterly Journal of Mathematics,
V..1 50(1927), pp 350361.

t Loc. cit., 6. "V

J Loc cit., 7. I
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The quantity div t may be called the divergence of the family.

Thus the characteristic property of a family of parallels is that its

divergence is everywhere zero. Further, divt is the geodesic

curvature of the orthogonal trajectories of the family, and, if this

is zero, the orthogonal trajectories are geodesies. Thus:

The orthogonal trajectories of a,family ofparallel curves constitute

afamily of geodesies. And conversely, the orthogonal trajectories of

a family of geodesies constitute a family ofparallels

Thus to every family of parallels there is a family of geodesies,

and vice versa. The expression "geodesic parallels" is therefore

tautological, as all parallels are of this nature. And, in connection

with the properties of geodesies, the following theorem may also "be

mentioned*:

If a family of curves on a surface cuts a family of geodesies at

an angle which is constant for each curve, the line of normal cwr-

vature of theformer is the line ofstnction of the latter.

With the notation of Art 1 22 we may define the fluao of a family

of curves across any closed curve drawn on the surface, as the

value of the line integral / t m ds taken round that curve. Simi-
J o

larly the value of the integral I t c?r may be called the circulation

of the family round G. Then from the Divergence Theorem it follows

immediately that :

The surface integral of the divergence of afamily of curves over

any region is equal to the flux of thefamily across the boundary of

the region.

Similarly from the Circulation Theorem we deduce that:

The surface integral of the geodesic curvature of a family of

owrves over any region is equal to the circulation of thefamily round

the boundary of the region.

And since the divergence of a family of parallels, and the geodesic

curvature of a femily of geodesies vanish identically, it follows that-

For any closed curve drawn on the surface, the fluao of afamily

of parallels and the circulation of a family of geodesies vanish

identically.

*
Loc.cit.,$l.

172
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Again, if a, b are unit tangents to the orthogonal parametric

carves, we have seen that

K = div (a div a + b div b).

Hence the total second curvature of any portion of the surface is

given by

JJ
KdS= - I (a div a + b div b) mds

provided the parametric curves present no singularities within the

region. We may take a family of geodesies as the curves v = const.

Then div b = 0. And since the geodesies may be chosen arbitrarily,

subject to possessing no singularity within the region, we have the

theorem :

The integral I t m div t ds round a closed curve has the same
Jo

vaJ,uefor all families of geodesies, being minus the total second cur-

vature of the region enclosed.

If, however, the geodesies of the family are concurrent at a pole

within the region enclosed by 0, we must isolate this pole with

(say) a small geodesic circle 0', and take the line integral round both

curves. Then, letting the circle C' converge to the pole, we find

the limiting value of the line integral round it to be 2-n-, and our

theorem becomes

\KdS= 1^-1 t-mdivt&.\\

This formula expresses ike total second curvature of a portion of
the surface, with reference to the boundary values of the divergence

and the direction of a family of concurrent geodesies, with pole vn,

the region considered.

This theorem is more general than the Gauss-Bonnetformula

\\KdS -2ir-f Kg

for the line integral of the geodesic curvature KO of a closed curve,

which may be deduced from the above theorem as a particular
case*.

131. Family of surfaces. We have shown in Art. 119 that,

if V is the two-parametric operator for a surface, the second cur-

* Loc. eit
, 8.
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ature of the surface is given by the formula

/hen we are dealing with a family of surfaces, n is also a point-
inction in space; and it should be possible to find a similar formula

i which V is three-parametric. The author has shown* that, in

jrms of this operator,

2K= n V an + (V . n)
s + (V x n)

a
,

formula expressing the second curvature of the surface of a family,

i a space differential invariant of n This may be transformed and

ntten
ZK= div (n div n + n x curl n),

hioh earpresses K as the divergence of a certain vector,

By analogy with the line of stnction of a family of curves, we

ay define the hue of parallelism of a family of surfaces as the

cus of points at which the normal to a surface is normal also to

consecutive surface. In terms of three-parametric differential

variants, the equation of this line may be expressed f
n Vn = 0,

curl D = 0,

fcher of which is equivalent to two scalar equations. With the

>tation of Art. 128, if the given family of surfaces is the family
= const., the scalar equations are

lese conditions are satisfied identically for a system of parallel

rfaces. Thus:

A necessary and sufficient condition that a family of surfaces be

/rallels is that curl n vanish identically.

In closing, we may mention certain other differential invariants

point-functions in space, and point-functions on a surface. In

onection with the former the author has proved the theorem^.
For any vector point-function in space, the scalar tnple product
its derivatives in three non-coplanar directions, divided by the

liar tnple product of tJte unit vectors in those directions, is an

variant. ^

j

* Loc. ott., 2. f Loo. at , 8. $ Loo. ctt., 4. f"
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If the vector is of constant length, this invariant vanishes. For

then the three derivatives are perpendicular to the vector, and are

therefore coplanar.

There is a similar differential invariant for a point-function on a

given surface; and, in this connection, the author has proved the

theorem*:

For the vector point-fwnction a on a given surface, the cross-product

of the derivatives of Bin the directions of two unit vectors a, b tan-

gential to the surface, divided by the triple product [a, b, n], is

independent of the directions chosen,

Taking the two directions as those of the parametric curves, we
see that the value of this invariant is BJ x B^/H. This function is

therefore independent of the choice of parameters on the surface.

We have already seen that this differential invariant of the position

vector r of a point on the surface is equal to the unit normal n
And it is easily verified that the same differential invariant of the

unit normal has the value -ZTn. If this invariant of any point-

function B is denoted by A (s), we have the formula

K = n A (n)

for the second curvature of the surface.

Finally, considering the same invariant of <n, where
<f>

is a scalar

point-function, we easily deduce that the value of (0ins < sn1)/.fl'

is independent of the choice of parameters. And, if s is a vector

point-functon, by considering A (<s) we find that s x (^BJ <j>aB,)/H

is a differential invariant of
<f>
and s.

*
Loo. dt., 4. See also the author's paper

" On Isometric Systems of Gurvnp
and Surfaces". Amur. Journ. of Math. ,

Vol. 49 (1927), pp. 627534.
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NOTE I

DIRECTIONS ON A SUEFACE

The explanation of Arts. 23, 24 may be amplified as follows, so

as to attach a definite sign to the inclination of one direction to

another on a surface. We define the positive direction along the

normal as that of the unit vector

n = TJ x Tj/ZT

which we have seen to be a definite vector (p. 4). Then the positive

sense for a rotation about the normal is chosen as that of a right-

handed screw travelling in the direction of n. Consequently the

angle to of rotation from the direction of rx to that of rs in the

positive sense lies between and IT, so that sin to is positive. For

any other two directions on the surface, parallel to the unit vectors

d and e, the angle ^ of rotation from d to e in the positive sense

is then given by
sin -^ n = d x e, cos^ = d e.

In the case of the displacements dr and 8r, of lengths ds and Ss,

corresponding to the parameter variations (du, dv) and (Sut Sv)

respectively, the angle ty of rotationfrom the first to the second is

such that

ds Ss sin i/r
n = dr x Sr

=
(i

1

! du + ra dv) x (rt Sit + ra Sv')

= H(du Sv Bu dv) n.

Consequently

ds Ss sin ^ = H(dfli Sv Su dv).

Similarly

dsSscoB TJr
= EduSu+F(duSv + Sudv) + GdvSv.

In particular the angle 6 from, the direction of rT to that of

(du, dv) is given by
- H dv a 1 fr-dii t ~dv\

sin =
j., -j-, cos 6 -TV (E -J- + F j-).

*JE ds *JE \ ds dsj

Similarly the angle & from the direction of (du, dv) to that of ra

(Fig. 11, p 55) satisfies the relations

H du .. 1 f vdu ~dv\=
-T7= j-, cos ^ = -77? Lr j- + (7 -i- .

tjQ- ds V# \ <** <&/
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NOTE II

ON THE CURVATURES OF A SURFACE

In the preceding pages we have avoided the use of the terms

mean curvature and total curvature forJ andK respectively, because

we consider them both unsuitable and misleading. If any justifica-

tion is needed for the course -we have taken it will be found in the

following considerations, which show that / is the first curvature

of the surface, being exactly analogous to the first curvature K of

a curve.

It was proved in Arts. 116 and 119 that, for a curved surface,

V.n=-/ .................... (1),

V s r = /n ....................... (2),

n Van + (V n)
a = 2# ................... (3),

the symbols having their usual meanings. If now we wish to

introduce a one-parametric V for a twisted curve, it must be

defined by

*-*s-
Then, with the notation of Chapter I for a curve,

(4),

which corresponds to (1). Further

V>0 = V (t00 = t
(

and therefore

Vr = r" = /tn ....................... (5),

corresponding to (2). Similarly

Van = n" = r'b -
and therefore

n Van = -
so that

n.Vn + (V.n)a = -T9 ............. (6),

which corresponds to (3). These formulae show that J is exactly

analogous to K as a first curvature, and that 25" corresponds to

r3
. Thus, as the torsion of a curve is frequently called its second

curvature, so the quantity K IB & second curvature for the surface.
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This terminology is also justified by the order of the invariants

involved. For, on comparison of (1) and (3), it is seen that K is a

differential invariant of n of higher order than J, just as r is of

higher order than K. And these conclusions are also confirmed by
the theorem of Art. 126 on the vector curvature of an orthogonal

system. For this theorem shows that J is determined by the

curvatures of the orthogonal curves; whereas to find K, it is

necessary to take the divergence of the tangential component of

this curvature. Hence K is of higher order than /
The quantity / is not a "mean" at all. The half of J, which ia

the mean of the principal curvatures, does not occur naturally m
geometrical analysis And K is not the "total" curvature of the

surface, any more than r is the total curvature of a curve, The

relation which exists between the areas of an element of a surface

and its spherical representation (Art. 87) is not sufficient to justify

the title; for the theorem expressed by (48) of Art 123 shows that

J has at least an equal right to the same title. Thus the terms

first and second are more appropriate, and the author believes they

will meet with general approval.
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