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PREFACE TO THE FOURTH IMPRESSION

THE present 1mpression 1s substantially a reprint of the original
work, Smece the book was first published a few errors have
been corrected, and one or two paragraphs rewritten. Among the
friends and correspondents who kindly drew my attention to
desirable changes were Mr A S. Ramsey of Magdalere College,
Cambridge, who suggested the revision of § 5, and thelate R J. A
Barnard of Melbourne University, whose influence was partly
responsible for my initial interest 1n the subject.

The demand for the book, since 1ts first appearance twenty years
ago, has justified the writer’s belief 1n the need for such a vectonal
treatment. By the use of vector methods the presentation of the
subject 18 both simplified and condensed, and students are
encouraged to reason geometrically rather than analytically. At a
later stage some of these students will proceed to the study of
multidimensional differential geometry and the tensor caleulus,
It 1s highly desirable that the study of the geometry of Euclidcan
8-space should thus come first, and this can be undertaken with
most students at an earher stage by vector methods than by the
Ricer calenlus. A student’s appreciation of the more general case
will undoubtedly be enhanced by an earlier acquaintance with
differential geometry of three dimensions

The more elementary parts of the subject are discussed in
Chapters I-XI. The remainder of the book 18 devoted to differ-
ential nvariants for a surface and their applications. It will be
apparent to the reader that these constitute a powerful weapon for
analysing the geometrical properties of surfaces, and of systems of
curves on a surface. The unit vector, n, normal to a surface at the
current point, plays a prominent part 1 this discussion The first
curvature of the surface 18 the negative of the divergence of m;
while the second curvature is expressible simply in terms of the
duvergence and the Laplucian of n with respect to the surface.
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Vi PREFACE
Extensive applications of these invariants to the geometry of
surfaces are given in the second volume of this book. Applications
to physical problems connected with curved surfaces have been
given elsewhere* by the author.
* L. On differential 1nvariants in geometry of surfaces, with some applications o
meathematical physics Quarterly Journal of Mathematics, Vol 50, pp. 230-68
(Cambridge, 1925).

2 On small deformation of surfaces and of thin elastic shells. Ibd., Vol. 50,
. 272-06 (1925).

8. On the motion of an extensible membrane m & given ourved surface, Phil
Mag , Vol 23, pp 578-80 (1987).

4 On transverse vib: of curved b Phil Mag , Vol 28, pp 632~

84 (1089).
CEW.
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INTRODUCTION

VECTOR NOTATION AND FORMULAE

SINOE elementary vector methods are freely employed throughout
this book, some space may be given at the outset to an explana-
tion of the notation used and the formulae required®. Vectors are
denoted by Clarendon symbolst. The position vector T, of a point
P relative to the origin O, 18 the vector whose magnitude 1s the
length OP, and whose direction 18 from O to P. If , y, z are the
coordinates of P relative to rectangular azes through O, 1t 1s
frequently convenient to write

r= (Er Y Z),
, 3, # being the resolved parts of r in the directions of the co-
ordinate axes. The point, whose position vector 1s r, is referred to
a8 “the point r.” If n 18 a unit vector, that 18 to say a vector of
unit length, and 1f

n=(, m, n),
then I, m, n are the direction cosines of n. The module or modulus
of & vector 18 the positive number which 18 the measure of 1ts
length.

The law of vector addition 18 a matter of common knowledge.
If three points O, P, @ are such that the vectors OP and PQ) are
equal respeclively to a and b, the vector OQ 1s called the sum of a
and b, and 18 denoted by a +b. The negative of the vector b 1s a
vector with the same modulus but the opposite direction. It is
denoted by —b. The dafference of two vectors a and b 1s the sum
ofa and —b. We write 1t

a—b=a+(-b)

* For proofs of the varous formulae the reader is referred to the author’s
Elementary Vector Analysss (G. Bell & Bons), of which Arts 1—8, 12, 15—17,
28—29, 42—46, 4951, 56—57 would a helpful oourse of
reading (References are to the old edition )

+ In M8. work Greek letters and script capitals will be foand convement,

W. 1




2 INTRODUOTION

The commutative and associative laws hold for the addition of any
number of vectors. Also the general laws of association and dis-
tribution for scalar multiphers hold as 1 ordinary algebra. Thus
if p and q are scalar multipliers,
P (qr) =pgr =g (pr),
(p+g)r=pr+gr
p(r+8)=pr+ps
If r is the position vector of any point on the straight lhne
through the pomt & parallel to the vector b, then
r=a+th,

where ¢ is & number, positive or negative. This equation 1s called
the vector equation of the straight line.

Propuots oF VECTORS
Ifa, b are two vectors whose modul: are a, b and whose direc-
tions are inchined at an angle 6, the scalar product of the vectors
18 the number abcos 6. It is wntten a«b Thus
asb=abcosf=bea.
Hence the mecessary and sufficient condition that two vectors be
perpendioular 18 that thevwr scalar product vanish
If'the two factors of a scalar product are equal, the product is
called the square of erther factor. Thus a«a is the square of a,
and is written a% Hence
at=ae.a=a’
so that the square of a vector 1s equal to the square of 1ts modulus.
If a and b are unit vectors, then asb =cos# Also the resolved
part of any vector r, in the direction of the umt vector a, 1s equal
to rea.
The distributive law holds* for scalar products. Thus
as(b+c+..)=asb+asc+...,
and so on. Hence, 1n particular,
(a+by=a'+2a«b+ b,
(a+b)e(a—b)=2a1—br,
* Elem. Vect. Anal., Art. 28,

=

A — T e



PRODUOTS OF VECTORS 8

Also, 1f we write a = (a1, Gy, Qy),
b =(by, bg, by),
the coordinate axzes being rectangular, we have
asb=ab; +ab; + abs
and a'=a+ay + ay’
The last two formulae are of constant application.

The unit vector n perpendicular to a given plane 15 called its
unit normal If r 18 any pont on the plane, ren 1s the projection
of r on the normal, and 1s therefore equal to the perpendicular p
from the origm to the plane The equation

ren=p
is therefore one form of the equation of the plane. If a1s any other
point on the plane, then a«n=p, and therefore
(r—a)en=0.
This is another form of the equation of the plane, putting m
evidence the fact that the hine jomning two points r and a m the
plane 18 perpendicular to the normal.

The positive sense for a rotation about a vector is that which
bears to the direction of the vector the same relation that the
sense of the rotation of a right-handed screw bears to the direction
of its translation. This convention of the right-handed screw plays
an 1mportant part n the following pages

Let 04, OB be two mntersecting straight lines whose directions

N
axb
b .
0 70 B
a
A
Fag. A,

are those of the two vectors &, b, and let ON be normal to the
plane OAB By choosing one direction along this normal as pos:-
1—2



4 INTRODUOTION

tive we fix the sense of the rotation about ON which must be
regarded as positive. Let 6 be the angle of rotation from 0A to
OB m this positive sense Then if a, b are the moduli of a, b the
vector product of a and b 15 the vector absin 6n, where n 18 the
umit vector in the positive direction along the normal. This 1
denoted by & x b, and 15 often called the cross product of a and b
Thus
axb=qgbsmnbn.

It should be noticed that the result 18 independent of the choice
of positive direction along the normal For, 1f the opposite direc-
tion is taken as positive, the direction of m is reversed, and at the
same time @ is replaced by — @ or 27 — 6, so that absin fn remains
unaltered. Hence the vector product & X b is a defimte vector.

It 18 moportant, however, to notice that b x & 15 the negative of
axb For, with the above notation, the angle of rotation from
OB to 04 in the positive sense is 27 — 6, so that

bxa=gbsin (2r—6f)n=—axh,
Thus the order of the factors 1n a cross product cannot be changed
without altering the sign of the product.

If a and b are parallel, sin =0, and the cross product vanishes.
Hence the necessary and sufficient condition for parallelism of two
vectors 18 that their cross product vanish.

A right-handed system of mutually perpendicular unit vectors t,
n, b (Fig. 8, Art. 8) 18 such that

t=nxb, n=bxt, b=txn,
the eychic order of the factors bemng preserved throughout. We
shall always choose a right-handed system of rectangular coordinate
axes, 80 that unit vectors in the durections 0X, 0Y, 0Z satisfy the
above relations.

The distributive luw holds* also for vector products; but the
order of the factors in any term must not be altered. Thus

ax(b+c+..)=axb+axc+...

and (b+c+..)xa=bxa+cXa+t...
And if we write a=(m, a, a),
b= (b, b, by),

* Elem. Vect. Anal , Axt, 28,
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then, in virtue of the distributive law, and the fact that the co-
ordinate axes form & right-handed system, we have

a X b= (0bs — ayds, 030, — ayby, @by — a'ibl)
This formula should be carefully remembered.

If a vector d 18 localised 1n a line through the point whose
posttion vector 18 T relative to O, the moment of d about O is the
vector rxd. Thus the moment of a vector about a point 18 a
vector, sometimes called 1ts “vector moment.” It will, however, be
seen shortly that the moment of d about an axis 1s a scalar
quantity.

The scalar triple product a«b x ¢ 18 the scalar product of a
andbxc Except as to sign 1t 18 numerically equal to the volume of
the parallelepiped whose edges are determined by the three vectors*.
Its value 18 unaltered by mterchanging the dot and the cross, or by
altering the order of the factors, provided the same cyclic order 1s
maintamned Thus

asbxc=axbsc=cxasb,
and so on. The product 18 generally denoted by
[a, b, c],
a notation which indicates the three vectors involved as well as
therr eychic order If the cyclio order of the factors 1s altered, the
sign of the product 1s changed Thus
[a, ¢, b]=—[a, b, c]
In terms of the resolved parts of the three vectors, the scalar triple
product 18 given by the determinant
[a,bel=la & a .
b by by
G G G
It is also clear that, if the three vectors &, b, ¢ are coplanar,
[a, b, ¢]=0, and conversely. Thus the necessary and sufficient
condstion that three vectors be coplanar s that their scalar tripls
product vanish.

If one of the factors consists of a sum of vectors, the product

may be expanded according to the distributive law. Thus
[a b, c +d]=[a, b, o] +[a, b, d],
and similarly 1f two or all of the factors consist of veotor sums.
* Elem. Vect. Anal , Art. 48,
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The vector triple product a x (b x ¢) 18 the vector product of
a and bxo. It 1sa vector parallel to the plane of b and ¢, and
1ts value 18 given by*
ax(bxc)=aecb—as+bo.
Similarly (bxc)xa=beac-csab,
Both of these expansions are written down by the same rule Each
scalar product in the expansion contains the factor outside the
brackets, and the first 18 the scalar product of the extremes.
The scalar product of four vectors, (a X b)«(c xd), 18 the
scalar product of & x b and ¢ xd. It may be expandedt as
(axb)e(exd)=ae.cbed—aedbeoc.
The wector product of four vectors, (a x b)x (¢ x d), may be
expanded in terms either of a and b or of c and d Thus]
(axb)x(cxd)=[a,c,d]b-[b,c d]a
=[a,b,d]c—[a,b,c]d
On equating these two expressions for the product we see that any
vector d is ewpressible wn terms of any three non-coplanar vectors
a, b, ¢ by the formula
[a,b,c]d=[d, b,c]a+[d ca]lb+[da, b]c
If a vector d 18 localised in a line through the point r, 1ts moment
about an awis through the origin O, parallel to the unit vector a,
is the resolved part in this direction of 1ts vector moment about O.
It 18 therefore equal to
M=aerxd=[a,r,d].
Thus the moment of a vector about an axis 18 a scalar quantaty.
The mutual moment of the two straight lines
r=a +1b,
r=a’ +1ib’,
with the positive senses of the unit vectors b and b’ respectively,
is the moment about either line of the unit vector localised 1n the
other. Thus, bemg the moment about the second line of the unit
vector b localised 1n the first, 1t is given by
M=b'+(a—a)xb
=[a—a/,b, b
The condition of tntersection of two straight lines 1s therefore
[a—a’, b, b]=0
* Elem. Vent, Anal., Art. 44, + Ibid., Art 45. 1 Ibud., Art. 46.
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This 18 algo obvious from the fact that the two given lines are then
coplanar with the line joining the points a, &/, so that the vectors
b, b’, a —a’ are coplanar

DIFFERENTIATION OF VECTORS

Let the vector r be a function of the scalar variable s, and let &r
be the merement in the vector corresponding to the increment 8s
m the scalar. In general the direction of 8r is different from that
of r. The hmiting value of the vector &r/8s, as 8s tends to zero, 18
called the derivatwe of r with respect to s and is written

‘When the scalar variable s1s the arc-length of the curve traced out
by the pomnt whose position vector 1s r, the derivative is frequently
denoted by r'. Its direction 18 that of the tangent to the curve at
the pomnt consmdered (Fig 1, Art. 1).

The derivative 1s usually 1tself a function of the saalar variable
Tts derivative 18 called the second derivatwe of r with respect to s,
and 18 written

d(de\ dr
ds (EE) &t
and go on for dertvatives of higher order. If
r=(,y,2),
then clearly r=(,y,?)
md r” = mll, yll, Z”)

If 5 18 a function of another scalar variable ¢, then, as usual,

dr _drds

dt " dsdt’
The ordinary rules of differentiation hold for sums and products of
vectors*. Thus

»

dr ds

a;ﬁ- & + .
d dr ds
H—t(r's)=cTt's+r'ﬁ'
ds
dt’
* Elem. Vect. Anal., Art. 56.

d
tﬁ(r+s+...)=

d dr
Et(rx-)=37: XB8+T X
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If ~ is the modulus of r, then r*=7% Hence on differentiating

this formula we have
dr _ dr

Friakl /8
which 1s an important result In particular if m is a vector of
constant length, but variable dJ.rection, we have

Tre

n-a—_o

Thus a vector of constant length s perpendicular to its derivative
This property 18 one of frequent application.

To differentiate a product of several vectors, differentiate each
m turn, and take the sum of the products so obtaned. For instance

i bol=[5 bo]+ [0 B o]+ [a0. 5.

Suppose next that r1s a function of several independent variables
u, v, W, .... Let the first vamable increase from u to u + 8u, while
the others remain unaltered, and let 8r be the corresponding incre-
ment in the vector. Then the limiting value of 8r/8u, as du tends
to zero, 18 ca.lled the partial demvative of r with respect to «, and

is written b . Sumilarly for partial derivatives with respect to the
other va.rmbles

These derivatives, being themselves functions of the same set of
vanables, may be agan differentiated partially, yielding second
order partial derivatives. We denote the derivatives of o it

ou
respect to u and v respectively by

P g PT
ou? ouodv’
and, as 1n the scalar calculus,
or _ o
Judv ~ wdu”

Also, 1n the notation of differentials, the total differential of r is
given by the formula

dr=a—r du+a—rdv+....
ov

ou
And, 1f n 18 a vector of constant length, n?= const., and therefore
nedn=0.

Thus a vector of constant length 18 perpendicular to 1ts differential
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In the geometry of surfuces, the various quantities are usually
‘anctions of two independent variables (or parameters) u, v. Partial
ferivatives with respect to these are frequently indicated by the
18e of suffixes 1 and 2 respectively. Thus

or

n=5, h=3.,
ool or O
N BT fudw’ P

,nd so on. The total differential of r is thus

dr =rx, du +r;dv.

SHORT COURSE

In the following pages the Articles marked with an asterisk
nay be omitted at the first reading

The student who wishes to take first a short course of what 18
nost essential m the development of the subject should read the
ollowing Articles-

1—5, 8, 18—17, 22—43, 46—53, 54 (first part),
56—57, 67—175, 84—86, 91—101.

The reader who 1s anxious to begin the study of Differential

nvanants (Chap. X11) may do so at any stage after Chap. VL

T A e

- ———



CHAPTER 1
CURVES WITH TORSION

1. Tangent. A curve 1s the locus of a point whose position
vector r relative to & fixed origin may be expressed as a function
of a single variable parameter. Then 1ts Cartesian coordinates
@, y, £ are also functions of the same parameter When the curve
is not & plane curve it is said to be skew, tortuous or twisted We
shall confine our attention to those portions of the curve which are
free from singularities of all kinds.

It is usually convenient to choose as the scalar parameter the
length s of the arc of the curve measured from & fixed pownt 4 on
1. Then for points on one side of 4 the value of g will be positive,
for points on the other side, negative. The positive direction along
the curve at any point 15 taken as that corresponding to algebraical
increase of s. Thus the position vector r of a pomnt on the curve is
a function of 8, regular within the range considered. Its successive

Fg. 1.

derivatives with respect to s will be denoted by r’, r”, ¥, and s0 on.
Let P, @ be the pomts on the curve whose position vectors are r,
r + 8r corresponding to the values s, s+ 8s of the parameter, then
3r is the vector PQ. The quotient 8r/8s is a vector in the same
direction as &r; and 1n the Limit, as 8s tends to zero, this direction
becomes that; of the tangent at P. Moreover the ratio of the lengths
of the chord PQ and the arc PQ tends to umty as Q moves up to
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comcidence with P. Therefore the limiting value of &r/8s 1s a unit
vector parallel to the tangeut to the curve at P, and in the positive
direction We shall denote this by t and call 1t the unit tangent
at P. Thus
& _dr_
b=t == (D)
The vector equation of the tangent at P may be written down at
once. For the position vector R of a current pomnt on the tangent
is given by
R=r+ut,
where u is a variable number, positive or negative. This 18 the
equation of the tangent. If z, y, 2 are the Cartesian coordinates of
P referred to fized rectangular axes through the same ongm, and
1, §, k are unit vectors in the positive directions of these axes,
r=ol+yj+sk
and t=r'=di+y]+ 2k
The direction cosines of the tangent are therefore o, 3/, 7. The
normal plane at P 13 the plane through P perpendicular to the
tangent. Hence 1ts equation 1s
(R—r)et=0.
Every line through P 1n this plane 1s a normal to the curve.

2. Principal normal. Curvature. The curvature of the
curve at any pomnt 18 the arc-rate of rotation of the tangent. Thus
1f 88 is the angle between the tangents at P and @ (Fig. 1), 86/8s
is the average curvature of the aro PQ; and 1ts himiting value as
s tends to zero 18 the curvature at the pownt P. This 15 sometimes
called the first curvature or the cwrcular curvature. We shall
denote 1t by «. Thus

M=

The unit tangent 1s not a constant vector, for its direction changes
from pont to point of the curve. Let t be 1ts value at P and t+ &t
at Q. If the vectors BE and BF are respectively equal to these,
then 3t is the vector EF and 86 the angle EBF. The quotient 8t/3s
is & vector parallel to &t, and therefore 1n the limit as & tends to
zero its direction is perpendicular to the tangent at P. Moreover
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since BE and BF are of umt length, the modulus of the limiting -

F

Tig. 2.

value of 8t/8s is the limiting value of 86/8s, which is «. Hence
the relation

Fltg=m . . . .0

where n is a unit vector perpendicular to t,and in the plane of the
tangents at P and a consecutive pomnt This plane, containing two
consecutive tangents and therefore three consecutive points at P,
18 called the plans of curvature or the osculating plane at P If R
is any pomt 1n this plane the vectors R —r, t and n are coplanar.
Hence the relation

[R—r,t,n]=0,

which is the equation of the osculating plane. It may also be
expressed
[R-rr, r"]=0.

The unit vectors t and n are perpendicular to each other, and
their plane 1s the plane of curvature The straight line through P
parallel to n 1s called the principal normal at P. Its equation 18
clearly

R=r+un,

R being a current point on the line The vector n will be called
the wmit (pruncypal) normal. It may be assigned exther of the two
opposite directions along the principal normal. If we give 1t that
from P toward the concave side of the curve it follows from (2)
that £ must be regarded as positive, for t' has also this direction.
But it 18 sometimes convenient to take n as being directed from
the curve toward 1ts convex side. In this case x 1s negative, for t’
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and n have then opposite directions®*. Writing (2) in the form
LA PP
n=-;—;(w 1+y"1+2'k),

and observing that m 1s a unit vector, we see that its direction
2 ’
cosines are %, ‘a—, i—. Also on squaring (2) we find the formula

=r"t=g" + y”s + 2"
for determining the magnitude of the curvature, though not its
aign.

The circle of curvature at P 18 the circle passing through three
pomnts on the curve ultimately comncident at P. Its radius p 18
called the radius of (curcular) curvature, and its centre O the centre
of curvature. This circle clearly hes 1n the osculating plane at P,
and 1ts curvature is the same as that of the curve at P, for 1t has
two consecutive tangents 1n common with the curve. Thus

pds "
g0 that the radius of curvature is the reciprocal of the curvature,
and must be regarded as having the same sign as the curvature
The centre of curvature U lies on the principal normal, and the
vector PO is equal to pn or n/x. The direction cosines of n as found
above may now be written pa”, py”, pz”, and the equation (2) given
the alternative form

n=pt' =pr’,

8. Binormal. Torsion. Among the normals at P to the
curve that which 1s perpendicular o the osculating plane is called
the binormal. Being perpendicular to both t and n 1t is parallel
to txn. Denoting this unit vector by b we have the trio t,n, b
forming a mght-handed system of mutually perpendicular umit
vectors, and therefore connected by the relations

ten=neb=>b:t=0
and txn=b, nxb=t, bxt=n,
the cyclic order being preserved n the cross products,. We may

* This is a departure from the usual practice of regarding x as essentially
posttive.

CAry,
0
g TECHNoE s TMure
Gr ¢,

BRA [T
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call b the unit binormal. The positive direction along the binormal
is taken as that of b, just as the positive direction along the principal
normal 1s that of n. The equation of the binormal 18
R=r+ub,
or, since b=t x n=pr’ x r’, we may write 1t 1 the form
R=r +or'x1’,

N,

P

Fig 3.

The direction cosines of the bormal, being the resolved parts of
b, are the resolved parts of pr’ x v, and are therefore
P = 1Y), p(Sa—ds, p(y’~ye)

Since b is a vector of constant length 1t follows that b’ 1s per-
pendicular to b. Moreover by differentiating the relation teb=0
with respect to s we find

kneb+teb’ =0,
The first term vamshes because n is perpendicular to b, and the
equation then shows that b’ is perpendicular to t But it is also

perpendicular to b, and must therefore be parallel tom We may
then write

Just as in equation (2) the scalar x measures the arc-rate of turning
of the unit vector t, so here + measures the arc-rate of turning of
the unit vector b. This rate of turning of the binormal is called
the torsion of the curve at the point P. It is of course the rate of
rotation of the osculating plane, The negative sign in (8) indicates
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that the torsion is regarded as positive when the rotation of the
binormal as s increases is in the same sense as that of & right-
handed screw travelling in the direction of t. It is clear from Fig.8
that 1 this case b’ has the opposite direction to n.

The derivative of n may now be deduced from those of t and b
For

=-d%bxt=—-rn xt+b x (xkn)

e e (4),
The equations (2), (3) and (4) are the vector equivalents of the
Serret-Frenet formulae. They will be much used 1n the following
pages, and the reader should commit them to memory. We may
gather them together in the form

=7b—xt ....... .

t'=«n \
n'=Tb—rt- e (5).
b'=—mmn |

As given by Serret (1851) and Frenet (1852) these were formulae
for the demvatives of the diection cosines of the tangent, the
principal normal and the binormal.
A formula for the torsion m terms of the derivatives of r may

now be found. For

r'=t, v =n,
and therefore ' =k'n+k (b — «t).
Forming then the scalar triple product of these three denvatives
and neglecting those triple products in the expansion which contain
a repeated factor, we have

[, ¢, ¥"]=[t, «n, kD + £ (b — &t)]

=«r[t, n, b]

= K7,
Hence the value of the torsion 18 given by

.,=Kl, L 78 % 2 [T (6).

An alternative formula, giving the square of the torsion, may be
deduced from the expression for r”” found above. On squaring this
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and dividing throughout by «* we obtain the result
1 .. «'\?
Py ’-—/c‘—(—) ................. .

K

By analogy with the relation that the radius of curvature
equal to the reciprocal of the curvature, 1t is customary to spes
of the reciprocal of the torsion as the radius of forsion, and
denote it by . Thus ¢=1/r But there is no circle of torsion «
centre of torsion associated with the curve m the same way as tt
circle and centre of curvature.

Ex. 1. The circular helaz, This 18 & ourve drawn on the surface of
arcular cylinder, cutting the generators at a constant angle 8 Let a bet
radius of the cylinder, and let 1ts axis be taken as the axis of z The pla
through the axis and the pomt (7, 7, £) on the helix 18 1nchned to the 2z pla
at an angle 6 such that #=a cos 8 and y =a sin 6, while 2=a# cot. 8. The posits
vector T of & point on the curve may then be expressed

r=a (cos 4, s1n 4, 4 cot: B),
Differentiating with respect to 8 we have
t=r'=a(—sn 6, cos 4, cot §) &.
But this 18 & unmt vector, so that 1ts square is umty, and therefore
a2f=mn?B
Thus & 18 constant. To find the curvature we have, on differentiating t,
n=1"=-a(cos §, s §, 0) &3
Thus the principal normal 18 the umt vector
n= —(cos 4, s 6, 0),
and x=a6"=01—‘sm’,3.
To find the torsion we have
r”=a (sin 6,~ cos §, 0) 63,
and therefore r'xr’=a2(0,0, 1) 4%
Hence xir=[r, v, r""]=ab cot B 6%,
On substituting the values of x and ¢ we find

r=ésm BcosB.

Thus the curvature and the torsion are both constant, and therefore thexr 1
18 t The | ipal normal mnt ts the axis of the cylinder or
gonally ; and the tangent and b 1 are inchined at tant angles to
fixed direction of the generators.




Ex. 2. For the curve
r=0(3u-uf), y=3au? s=a (3u+ud),
show that =T ]_"_ wip*

4. Locus of centre of curvature. Just as the arc-rate of
turning of the tangent is called the curvature, and the arc-rate of
turning of the binormal the torsion, so the arc-rate of turming of
the principal normal 18 called the screw curvature. Its magmtude
is the modulus of n’. But we have seen that

n’'=1b - «t.
Hence the magnitude of the screw curvature is J/«*+ 7% This
quantity, however, does not play such an important part in the
theory of curves as the curvature and torsion.

The centre of curvature at P 18 the pomnt of intersection of the
principal normal at P with that normal at the consecutive point
P’ which lies 1n the osculating plane at P. Consecutive principal
normals do not in general intersect (cf. Ex. 8 below). It 1s worth
noticing that the tangent to the locus of the centre of curvature
lies 1n the normal plane of the original curve For the centre of
curvature is the point whose position vector ¢ 18 given by

c=r+pn
The tangent to its locus, being parallel to %g ,18 therefore parallel
to t+ pm + p (vh —«t),
that is, to ’p’n +prh.

It therefore lies 1n the normal plane of the original curve, and
18 mchined to the principal normal n at an angle 8 such that

tan f=2 = £,
P
If the original curve 1s one of constant curvature, p' =0, and the
tangent to the locus of C'1s then parallel to b. It will be proved 1n
Art. 6 that the locus of C has then the same constant curvature as
the original curve, and that 1ts torsion varies inversely as the
torsion of the given curve. (Cf also Ex. 19 below.)
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EXAMPLES I
1. Prove that
r"=xn-«#+«rb,
and hence that  r"'=(x"—8 - kr?) 01 — Bxk't+ (26T +7'x)b.
Q. Prove the relations
Yer’'=0, Fer"= =i} rer”=—2«x,
rer"=xx, T'er" =x(x" -d—xr?),
T er" =k'x" +2x3¢ + k37 +xxrh
8. If the nth derwvative of r with respect to s is given by
Tl =t + by +-cub,
prove the reduotion formulae
O 1 G ~ KBy
bn 4 1=by + Ky~ TOy
Cng1=0p 47Dy
4. If k is zero at all points, the curve 18 & straight ine If = 15 zero at all

poiuts, the curve 18 plane. The necessary and sufficient condition that the
curve be plane 18
[, r, r]=0.
8. Prove that for any curve t'eb’= —«r
6. If the tangent and the binormal at & pont of a curve make angles 4, ¢
respectively with a fixed direction, show that
anddd_ _«

smepdp

7. Coordinates in terms of s If 518 the arc-length measured from
a fixed pomt 4 on the curve to the current pownt P, the postion vector r of
P is a function of ¢; and therefore, by Taylor’s Theorem,

LI
T=To+erd+ g+ B +oy

where the suffix zero indicates that the value of the quantity 18 to be taken for
the point 4. If t, m, b are the umt tangent, principal normal and binormal
at 4, and &, r the curvature and torsion at that point, we have

ro=t, ry=m,
while the values of ry” and r,” are as given 1n Ex. 1, Hence the abow«
formula gives

r=r.,+¢+§m +5é(x'n—x't+nb',

+ I‘:T{(K"—x‘—x‘r’)n—3xn’t+(2x'r+rr’)b)+...
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Lf then 4 18 teken as ongm, and the tangent, principal normal and binormal
1t 4 as coordinate axes, the coordinates of P are the coefficients of t,n,bm
the above expansion. Thus since Iy 18 now zero, we have

KBk
x=a—§r‘-§s‘+.. .

y=ER S g (- S,

z=%mx 4-2—14 (@K +xr') 4.

From the last equation 1t follows that, for sufficiently small values of s,
s changes sign with  (unless « or 718 zero). Henae, at an ordinary powmt of the
ourve, the ourve crosses the osoulating plane On the other hand, for suffiently
small values of s, y does not ohange sign with & (k+0). Thus, 1 the
neighbourhood of an ordinary point, the ourve lies on one sde of the plane
determined Ly the tangent and binormal. This plane 18 called the rectyfying
plune.

8. Show that the principal normals at consecutive pomts do not intersect
unleas r=0.

Let the consecutive ponts be r, r+dr and the umt prinapal normals
n, n+dn For intersection of the principal normals the necessary condition
18 that the three vectors dr, n, n+dn be coplanar that 1s, that r’, n, n’ be
coplanar. This requres

[t, o, Tb —«t]=0,
that is =[t, n, b]=0,
whioh holds only when 7 vanishes

9. Prove that the shortest distance between the principal normals at
conseoutive points, distant & apart, 18 sp/ »/p*+ 07, and that 1t divides the radius
of curvature in the ratio p? * %

10. Prove that

b"=r(xt-7b)—~7'n,
n"=rb-(d+r9)n -,
and find mmilar expressions for b” and n'.

11. Parameter otherthan s. If the position veotor r of the current
pont is a function of any parameter %, and dashes denote differentiations with
respect to u, we have @

L4 !,
r =%';' Friad t,
r'=¢'t+xs"n,
1" (8 = k%) b+ 83k’ + k'S D+ kT oD
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—
=

Hence prove that
b=rx1"/xs?,

n=(s1"~&'r)/xs",
K= (r"8—35"9) /54,
r=[r, ', r")/x%"
12. For the curve
r=4qcos’y, y=4asm’y, z=3ccosy
prove that n=(en %, cos %,0),
a
and *=g(a?+ct)eman”
13. Find the curvature and torsion of the curve
z=a (u—smu), y=a(l-cosu), s=bu

14. Find the curvature, the centre of curvature, and the torsion of the

ourve
£=0008%, Y=a8Inu, £=acos2u

15. If the plane of curvature at every pomnt of a ourve passes through s
fized point, show that the curve is plane (r=0).

16. If m;, my, my are the moments about the orgin of umt vectors
t, n, b localised 1n the tangent, principal normal and binormal, and dashes
denote differentiations with respect to s, show that

my =xm,;, my=b-xm;+rm,; my=-n-rm
If r is the current pomnt, we have
m;=rxt, m;=rxn, ms=rxb.
Therefore my'=txt+rx(xn)=xm,,
and sumlarly for the others

17. Prove that the position vector of the current point on a curve satisfies

the differential equation

d( d( dr d (o pdr
GG T R0
(Use the Serret-Frenet formulae )
18. If & 18 the arc-length of the locus of the centre of curvature, show

dy 1 p\?,
that 'dj—;l»,/u:"r‘+x"=\/<;) +p

19. In the case of a curve of constant curvature find the curvature and
torsion of the locus of 1ts centre of curvature (.
The position vector of C1s equal to
c=r+pn
Hence, since p 18 constant,

dc={t+p(r‘b—:t)}dc=£bda.

T g

T
pas

R e
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Let the suffix umty distingwsh quantities belonging to the ioous of C. Then

lo="1;ds;. We may take the positave direction along this locus so that t;=b
Then 1t follows that
dj T

sk
Vext differentiating the relation t;="b we obtain

ds
K= =D = — .

“herefore the two p pal ls are parallel. We may choose
m=-n,
nd therefore K=K

"hus the locus of C has the same constant curvature as the given curve. The
it binormal b; 18 now fixed : for

b=t xn;=bx(-n)=t.
nfferentiating this result we obtain

ds  «?
=m =« d—a; = ;-n,

1d therefore n=«?r.
20, Prove that, for any curve,
[, &) ][, 1, 2] (e = )= (E) ,

delsothat  [B, b, B")=r (<r =)=t (5).

*5. Spherical curvature, The sphere of closest contact with
e curve at P 18 that which passes through four points on the

Fig. 4,

ve ultimately coincident with P. This is called the osculating
were or the sphere of curvature at P. Its centre S and radius R

cmsl e
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are called the centre and radius of spherioal curvature. The cen
of & sphere through P and an adjacent pomnt @ on the curve (Fig
lies on the plane which is the perpendicular bisector of PQ;a
the limiting position of this plane 1s the normal plane at P. Tt
the centre of spherical curvature 1s the hmiting position of t
intersection of three normal planes at adjacent pomnts. Now t
normal plane at the point r is

(B=r)et=0 .ccooerrnnrn s wrnnnd Q1)
s being the current point on the plane The limiting position
the line of intersection of this plane and an adjacent normal pls
is determined by (1) and the equation obtained by differentiat:
1t with respect to the arc-length s, viz. (cf Arts. 15, 19)

k(8—r)n-1=0

or its equivalent

(B-1)n=p ... .ceer e (i)

The limting position of the point of intersection of three adjace
normal planes 1s then found from (1), (1i) and the equation obtair
by differentiating (ir), viz.

(8 —r)e(7b — xt)=p’
which, 10 virtue of (i), 18 equivalent to

(B—1)b=0p  ..cvririrrrien v snnd (1ii)
The vector 8 —r satisfying (1), (ii) and (ii1) is clearly
8—r=pn+op’b .cciiienn ol 8)

and this equation determines the position vector 8 of the centre
spherical curvature Now pn is the vector PO, and therefore o,
15 the vector C8 Thus the centre of spherical curvature is on 1
axis of the circle of curvature, at a distance ap’ from the centre
curvature. On squaring both sdes of the last equation we he
for determining the radius of spherical curvature
Ri=p'+a%"” ... ceo vt e .. (9)
Another formula for E? may be deduced as follows. On squar

the expansion for r'” we find
= i
=it (1+7°R?), by (9).
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Hence the formula
R =plo¥r — g2,
which 18, however, not so important as (9).
For a curve of constant curvature, p'=0, and the centre of
spherical curvature comncides with the centre of circular curvature
(cf. Art 4).

6. Locus of centre of spherical curvature. The position
veotor 8 of the centre of spherical curvature has been shown to be
8=r+pn+ap’b.

Hence, for asmall displacement ds of the current point P along the
ongnal curve, the displacement of S is
ds={t+pn+p(tb— «t) + ¢’p’b + cp"b — p'n} ds

-=ds( +o'p'+ ap’ )b

Thus the tangent to the locus of S 18 parallel to b (Fig. 4). We
may measure the arc-length s; of the locus of S in that direction
which makes 1ts umt tangent t, have the same direction as b.

Thus t,=b,
and, since ds = t,ds,, 1t follows that
ds; . /s
-d—; =£ +po +op
=£ + ds ("'P )

To find the curvature x, of the locus of § differentiate the equation
t,=Db, thus obtaining

~Td- "
Thus the principal normal to the locus of § 15 parallel to the

principal normal of the original curve. We may choose the direction
of m, as opposite to that of n Thus

n,=-n
The unit binormal b, of the locus of S 1s then
=t;xn,=bx(-n)=t,
and is thus equal to the unit tangent of the original curve,
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The curvature #, as found above is thus equal to

ds
BH=T EI:
The torsion T, 18 obtained by differentiating b, =t Thus
dt ds ds
—m = Ef"“a?'
8o that = Itadé

From the last two results it follows that
KKy =TTy,

so that the product of the curvatures of the two curves is equal to
the product of their torsions The binormal of each curve 1s parallel
to the tangent to the other, and their principal normals are parallel
but 1n opposite directions (Fig. 4).

If the original curve is one of constant curvature, p'=0, and 8
coincides with the centre of circular curvature. Then

and K=K
Thus the locus of the two centres of curvature has the same
(constant) curvature as the original curve Also
= KT,
so that the product of the torsions of the two curves is equal to the

square of their common curvature The circular helix is a curve of
constant curvature.

Ex. 1. If y 18 such that dy,=7ds, show that
1 @
m=—=p+$,
1 a3
it 20,

it

dR
R“=P+d‘4,x=Pl

Ex. 2. Prove that

—n R - !‘;
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Ex. 38, Prove that, for ourves drawn on the surface of a ephere,
L4 & (op)=0;
o+ (or)=0;

that is p+Tono,

4,!
where dyr=rde.

BEx. 4. If theradiusof sphercal curvature 1s constant, prove that the curve
eather Lies on the surface of a sphere or else has constant ourvature.
Ex. 5. The shortest distance bet tive radi of spherical
curvature divides the radius 1n the ratio
dR\?
:p3 (22
a3:p ( dp) .

Ex. 6. Show that the radius of spherical ourvature of & ciroular helix 18
equal to the radius of ciroular curvature

7. Theorem. A curve is uniquely determined, except as to
position 1 space, when tts ourvaturs and torsion are given funotions
of its arc-length s.

Consider two curves having equal curvatures « and equal torsions
r for the same value of s. Let t, n, b refer to one curve and t,, n,, b,
to the other. Then at points on the curve determined by the same
value of 8 we have

%(t-t,) ft.(xnl) +xnety,
%(n‘m) =ne(rb, —kty) + (b — «t)em,,

d

P (beb,)=Dbe(—Tn,)+(—Tn)eb;.
Now the sum of the second members of these equations is zero.
Hence %(t-t.+non,+b-b,)=0,

and therefore tet, + nen, + beb, = const.

Suppose now that the two curves are placed so that their imtial

points, from which s is measured, comcide, and are then turned

(without deformation) tll their principal planes at the nitial pomnt

also comeide Then, at that point, t=t,, n=mn,, b=b,, and the

value of the constant 1n the last equastion 1s 3. Thus
tet,+nen, 4+ beb,=38.
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But the sum of the cosines of three angles can be equal to 3 only
when each of the angles vamshes, or 18 an integral multiple of 2.
This requires that, at all pairs of corresponding points,

t=t, n=n, b=b, i
so that the principal planes of the two curves are parallel. Moreover,
the relation t =t, may be wmntten

:

d
Iq(r—r,)=0,

80 that r —r, =a const. vector.

But this difference vanshes at the imtial point; and therefore 1t
vanishes throughout Thus r=r, at all corresponding pomnts, and
the two curves coincide.

In making the inmitial points and the principal planes there
coincident, we altered only the position and omentation of the
curves in space; and the theorem has thus been proved. When a
curve is specified by equations giving the curvature and torsion as
functions of &

k=f(), T=F(s),
* these are called the intrinsic equations of the curve.

8. Hellces. A curve traced on the surface of a cylinder, and
cutting the generators at a constent angle, 1s called a helw. Thus
the tangent to a helx is inclined at a constant angle to a fixed
direction If then t 1s the unit tangent to the helix, and & a constant
vector parallel to the generators of the cylinder, we have

tea =const.
and therefore, on differentiation with respect to s,

xknea =0,

Thus, since the curvature of the helix does not vanish, the principal
normal is everywhere perpendicular to the generators, Hence the
fized direction of the generators 1s parallel to the plane of t and b;
and since 1t makes a constant angle with t, it also makes a constant
angle with b,

An important property of all helices 18 that the ourvature and
torswon are wn a constant 1atio. To prove this we differentiate the
relation nea =0, obtaining

(b — «t).a=0,
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Thus a is perpendicular to the vector b — #t. But a is parallel to
the plane of t and b, and must therefore be parallel to the vector
7t + £b, which is nclined to t at an angle tan™ «/r. But this angle
is constant. Therefore the curvature and torsion are 1n a constant
ratio.

Conversely we may prove that a curve whose curvature and
torsion are in @ constant ratwo 18 @ hehw. Let T=cx where ¢ 18
constant. Then since

t' = xm,
and b’ =—7n=—ckn,
it follows that %(b +ct)=0,
and therefore b+ot=a,

where a is a constant vector. Forming the scalar product of each
side with t we have
tea=c¢

Thus t 18 inclined at a constant angle to the fixed direction of a,
and the curve is therefore a helix.

Finally we may show that the curvature and the torsion of &
helix are m a constant ratio to the curvature «, of the plane section
of the eylinder perpendioular to the generators. Take the s-axis

\

¥ig b.

parallel to the generators, and let & be measured from the inter-
geotion A of the curve with the @y plane. Let u be the arc-length
of the normal section of the cylinder by the zy plane, measured
from the same pomt 4 up to the generator through the current
point (@, y, 2). Then,1f 818 the constant angle at which the curve
cuts the generators, we have
u=gsm B,
and therefore w' =sinf.
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The coordinates @, y are functions of u, while z=scos 8. Hence for
the current pomnt on the helix we have

r=(z, y, scosf),
wihat  =($sing, Lein 8, s ),
and = (— st 8, = d’y 28in? B, )

Hence the curvature of the heh.x is given by

H=1r"= {(du‘) + (33) }sm‘ﬁ:: K2sint B,

so that K = K,810% B,

For the torsion, we have already proved that
B=tan"«/r,

so that T=rcot 8=«,8n 8 cosB.

From these results it is clear that the only curve whose curvature
and, torsion are both constant is the circular helww. For such a curve
must be a helix, since the ratio of its curvature to its torsion 1s also
constant. And since « is constant it then follows that «, 18 constant,
g0 that the cylinder on which the helix is drawn is a circular
cylinder,

Ex. Show that, for any curve,
. d
I, ©, ]=gsm(£)

This exp theref ishes for a helix and conversely, 1f 1t vanishes,
the curve 1s & helix.

9. Spherical indicatrix. The locus of a pomnt, whose position
vector is equal to the umt tangent t of a given curve, 15 called the
spherical inducatriz of the tangent to the curve Such a locus hes
on the surface of a unit sphere, hence the name. Let the suffix
umty be used to distingmish quantities belonging to this locus.

Then r,=t,

and therefore h=7t= Frr el o
1

showing that the tangent to the spherical mdicatrix is parallel to
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the principal normal of the given curve, We may measure s, so
that

t,=n,

ds,

and therefore il

For the curvature «, of the indicatrix, on differentiating the relation
t, =n, we find the formula

Squaring both sides we obtain the result
= (e + 1)k,
so that the curvature of the indicatrix 1s the ratio of the screw
curvature to the circular curvature of the curve. The umt binormal
of the indicatrix is
7t +«b
rry,
The torsion could be obtamned by differentiating this equation; but
the result follows more eesily from the equation [cf. Examples I,

@an]

b=t xn =

L]
& (%) =[r/, 0", 0] =¥, ¢, t"]
=x2 (w1’ — k'T),

_(e7 = K'7)

k(P +7)°

Similarly the spherical indicatriz of the binormal of the given
curve is the locus of a point whose position vector 18 b. Using the
suffix unity to distinguish quantities belonging to this locus, we have

which reduces to 7

r=b,
and therefore t, = % i—: =—n ‘% .
We may measure $, so that
t,=—n,
and therefore da_ T
ds

To find the curvature differentiate the equation t,=—mn. Then

d d
= (- 0) 32 = 2 (et = 7D),
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giving the direction of the principal normal. On squaring this result
we have
K? = (12 + )/
Thus the curvature of the indicatrix is the ratio of the screw
curvature to the torsion of the given curve. The unit bmnormal 18
b =t, xnl='rt+/cb,
THy
and the torsion, found as 1n the previous case, is equal to
7K' — kT
Sr(i+m)
Ex, 1, Find the torsions of the spherical indicatrces from the formula
Bl=pi+oip”
where R=1 and p;=1/x, 18 known.

T1

Ex. 2. Examine the spheroal indicatrix of the principal normal of & given
curve

10. Involutes. When the tangents to a curve C are normals
to another curve C,, the latter is called an involute of the former,
and C 18 called an evolute of 0,. An involute may be generated

/P <
A .
t
Vn

Fig. 6.

mechanically in the following manner Let one end of an inex-
tensible string be fixed to a pomnt of the curve C, and let the string
be kept taut while it is wrapped round the curve on its convex
mde. Then any particle of the string describes an involute of O,
since at each instant the free part of the string is a tangent to
the curve O, while the direction of motion of the particle is at
right angles to this tangent.

From the above definition it follows that the pownt r, of the

.
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mvolute which lies on the tangent at the pownt r of the curve O is
given by
r=r+ut,
where u 18 to be determined. Let ds, be the arc-length of the
mvolute corresponding to the element ds of the curve O, Then the
umt tangent to C, 18
_drids _, . ds
t="; e a +u)t+w¢n}g—al.
To satisfy the condition for an involute, this vector must be per-
pendicular to t. Hence
1+ =0,
so that u=c—s,
where ¢ 15 an arbitrary constant Thus the current point on the
1nvolute 18
ri=r+(-9t,
and the umit tangent there 1s
t,=(c—9)x 2 n.
ds,

Hence the tangent to the involute is parallel to the principal
normal to the given curve. We may take the positive direction
along the mvolute so that

t,=n,
and therefore s (c~8) k.

ds

To find the curvature «, of the involute we differentiate the
relation t, = m, thus obtamning

b —«t
. = k(c—8)"
Therefore, on squaring both sides, we have
i R
K (c—s)
The umt principal normal to the mvolute is
_ b —xt
ke (c—8)’
and the umt binormal
b=t xm = kb4t

xry(c —8)°
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Since the constant ¢ is arbitrary, there is a smgle infinitude of
mvolutes to & given curve; and the tangents at corresponding
pomts of two different involutes are parallel and at a constant
distance apart.

Ex. 1. Show that the torsion of an involute has the value

k' —x't
k (k2+7%) (c—8)"

Ex. 2. Prove that the involutes of a mreular helix are plane ourves, whose
planes are normal to the axs of the cylinder, and that they are also mvolutes
of the circular sections of the oylinder.

*11. Evolutes. The converse problem to that just solved is
the problem of finding the evolutes of a given curve . Let r, be
the pomnt on the evolute C, corresponding to the pomt r on C.
Then, since the tangents to O, are normals to O, the point r; lies
m the normal plane to the given curve at r. Hence

T; =T+ un+b,
where u, v are to be determined. The tangent to the evolute at r,
is parallel to dr,/ds, that 1s, to
(A —uk)t+ (@ —v7)n +(ur + )b
Hence, in order that 1t may be parallel to un + vb we must have

1—ux=0,

w—vr  ur+v

and —_= .
% v

The first of these gives u=%= p, and from the second it follows
that
vp' — pv'

vt

Integrating with respect to s and writing yr = fo’-rds, we have

v
¥+ c=tan™ (-F>’
so that v=—ptan (Y +o0).
The pomnt r; on the evolute is therefore given by
r=r+p [n—tan (Y +c)b}.
It therefore lies on the axis of the circle of curvature of the given
curve, at a distance — p tan (Y + ¢) from the centre of curvature.

T=
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The tangent to the evolute, bemng the lme jomning the pomts r
and r;, 18 1n the normal plane of the given curve 0, and is mnclined
to the principal normal n at an angle (Y + ¢).

Let the suffix umty dstingwsh quantities refermng to the
evolute Then on differentiating the last equation, remembering
that d\[r/cls =, we find

dr.
y 75 = 25 = P+ p7ten (¥ + o)} {n—ten (Y + ) b).

Thus the unit tangent to the evolute 18

ti=cos(Y+c)n—sm(Yy+c)b
d_{, ersn (Y +¢) — & cos(#r+c)
ds «icos? (Y +¢)
The curvature of the evolute 15 obtained by differentiating the
vector t,. Thus

and therefore

N0, §=%=—x005('\]f+c)t

The principal normal to the evolute 18 thus parallel to the tangent to
the curve C. We may take
n,=-t,

and therefore ;= x cos (Y +c¢) g—;

«2cos’ (Y + ©)
= kram (Y + ¢) — &’ cos (¥+c)”
The unit binormal to the evolute is
b=t xn;=cos (Y +c)b+mm (Y +ec)m
The tormon 1s found by differentiating this. Thus
-7, flj =—xan(y+c)t
and therefore i
8
'r,==—1-751.!1('\11'+l3)d—$1
_  «sm(P+c)cos' (Y +0)
kT8 (Y + ¢) — ' cos (Y +¢)°
Thus the ratio of the torsion of the evolute to 1ts curvature is
—tan (Y +c). |

Since the constant ¢ is arbitrary there 1s a single infinitude of
W 3



34 OURVES WITH TORSION 1

evolutes The tangents to two different evolutes, corresponding to
the values ¢, and c,, drawn from the same pomt of the given curve,
are inclined to each other at a constant angle ¢, — ¢,.

Ex. 1. The loous of the centre of curvature 18 an evolute only when the
curve 18 plane.

Ex. 2. A plane curve has only a single evolute m its own plane, the locus
of the centre of curvature All other evolutes are helices traced on the mght
cylinder whose base is the plane evolute.

*12. Bertrand curves. Saint-Venant proposed and Bertrand
solved the problem of finding the curves whose principal normala
are also the principal normals of another curve. A pair of curves,
0 and 0,, having their principal normals in common, are said to be
conjugate or associate Berirand curves. We may take their prin-
cipal normals in the same sense, so that

n,=n.
The pomnt 1, on G, corresponding to the point r on C is then given
b
J r=r+4an . ... e veee wenee (@)
where it is easily seen that a is constant. For the tangent to 0, it
parallel to dr,/ds, and therefore to
t+an+a(tb—«t)
This must be perpendicular to m, so that a' 18 zero and therefore
o constant, Further, if symbols with the suffix unity refer to the
curve C;, we have

2 (4ot) = noty + te(em) 3 =0,
showing that tot, =const.

v
\/bl
- > b

Fig. 7.
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Thus the tangents to the two ourves are inclined at a constant angle
But the principal normals coincide, and therefore the binormals of
the two curves are inclined at the same constant angle. Let « be

the inclination of b, to b measured from b toward t. Then « 18
constant

On differentiating the above expression for r; we have
ds, .
t.a]'=(1—mc)t+m-b .............. ().

Then, forming the scalar product of each side with b,, we obtain

0=(1—-ax)sma+arcosa
Thus there ts a hinear relation with tant coefficients bet the
curvature and torsion of 0;

T= (/c - };) tan a.
Moreover 1t is obvious from the diagram that
t,=tcosa—bsmna
On comparing this with (1) we see that

cosa:(l——a/c)% .
sma——ar—d—s o
g, |

Now the relation between the curves C and C, 18 clearly a recip-
rocal one The point r 1s at a distance — a along the normal at
r,, and t 18 mclined at an angle —a to t; Hence, corresponding to
(1ii), we have

cosa=(1+ zuc,)%l

. dg, [ e (@iv).
sina=—an
On multiplying together corresponding formulae of (:ii) and (iv)
we obtain the relations X
™= g o "} .............. (v
(1 —ak)(1 + ax,) = cos*a

The first of these shows that the forsions of the two curves have
the same sign, and their product 18 constant. This theorem 13 due to
32
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Schell. The result contamned in the second formula may be ex-
pressed as follows: If P, P, are corresponding pownts on two con-
jugate Bertrand curves, and O, O, thewr centres of curvature, the
oross ratio of the range (POP,0,) s constant and equal to sec®a.
This theorem is due to Mannheim,

Ex. 1. By differentiating the equation

(1—~ax) s1n a+ar cos a=0,

deduce the following results:

For a ourve of constant curvature the conjugate 1s the locus of its centre of
curvature,

A ourve of constant torsion coincides with 1ts conjugate.

Ex. 2. Show that a plane curve admits an nfimity of conjugates, all
parallel to the given ourve

Prove also that the only other curve which has more than one conjugate 18

the oircular helix, the conjugates being also circular hehices on coaxial
cylinders

EXAMPLES II

1. The principal normal to & ourve 18 normal to the locus of the centre of
ourvature at points for which the value of x 1s stationary

2. The normal plane to the locus of the centre of circular ourvature of a
curve C bisects the radius of spherical ourvature at the corresponding point
of 0

3. The binormal at a pomt P of a given curve 1s the himiting position of

the common perpendicular to the tangents at P and a consecutive pomnt of
the curve.

4. For a curve drawn on a sphere the centre of curvature at any pomt is
the foot of the perpendicular from the centre of the sphere upon the osoulating
plane at the pont

8. Prove that, in order that the prinoipal normals of a curve be binormals
of another, the relation

a (x’+ ‘r’) -
must hold, where a 18 constant

6. If there is a 17 d between the pomts of two
ourves, and the tangents at cnrrespoudmg pomnts are parallel, show that the
prnoipal normals are parallel, and therefore also the binormals, Prove also
that

Two ourves so related are said to be deducible from each other by a Combes-
cure transformation.,
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7. A ourveis traced on & right circular cone 50 85 to out all the generating
Lines at a constant angle. Show that 1ts projection on the plane of the base 15
an equangular spiral

8. Find the curvature and tovsion of the ourve in the preceding example.

9. A curve s drawn on a right circular cone, everywhere mnclmed at the
same angle a to the axis. Prove that x=r tan a.

10. Determine the curves which have a given ourve ¢ as the locus of the
centre of spherical curvature

If 0y 18 & curve with this property then, by Art 5, r, lies in the osoulating
plane of C'at r. Thus

r=r+it+mn
Further, the tangent to 0; 16 paallel tob Hence show that
U=xm—1,
m=—«xl
Integrate the equations, and show that there 1s a double finttude of curves
with the required property. .
11. On the binormal of a curve of constant torsion r & pownt @ 1s taken at
a constunt distance ¢ from the curve Show that the binormal to the locus
of @ is 1nchined to the binormal of the given ourve at an angle
or?
ket
12. On the tangent to & given curve a pomnt @ is taken at a constant
distance ¢ from the point of contact Prove that the curvature « of the locus
of @18 given by
k? (1+ 3,2 =c3 372 (1+c3xB) +(k +ox' + 02 k3
13. On the binormal to & given curve a pont @ 1s taken at a constant
distance ¢ from the curve, Prove that the curvature ; of the locus of @ 18
givon by

tan~1

K (14 6*r)P= 0274 (1403 1%) + (k —or/ + oFrd)?
14. Prove that the curvature x; of the loous of the centre of (ciroular)
curvature of a given curve 18 given by

oo d (o) 1), 0k
K1'={T§H—,(p) A +P'R"

where the symbols have their usual meanings.



CHAPTER II
ENVELOPES. DEVELOPABLE SURFACES

18. Surfaces. We have seen that a curve 1s the locus of a
point whose coordinates &, y, z are functions of a single parameter.
‘We now define a surface as the locus of a pomnt whose coordinates
are functions of two wndependent parameters , v. Thus

e=fi(n,v), y=filw,v), 2=L(v) ... ..(1)
are parametric equations of a surface In particular cases one, or
even two, of the functions may involve only a single parameter.
If now u, v are ehmmated from the equations (1) we obtan &
relation between the coordinates which may be wnitten
F(z, 9,2)=0 ... .. e (2).
This is the oldest form of the equation of a surface. The two-
parametric representation of a surface as given 1n (1) 18 due to
Gauss. In subsequent chapters it will form the basis of our in-
vestigation. But for the discussion in the present chapter the
form (2) of the equation of a surface will prove more convenient.

14. Tangent plane. Normal. Consider any curve drawn
on the surface
F(z, y,2)=0
Let s be the arc-length measured from a fixed pomnt up to the
current point (z, y, 2). Then, since the function F' has the same
value at all points of the surface, 1t remains constant along the
curve a8 s varies. Thus
0F dz  0F dy 0Fds _
dwds Tayds TOds
which we may write more briefly
Foo' + Fyy + Fyd =0.
Now the vector («/, ¥/, ) 18 the umt tangent to the curve at th
pont (z, ¥, 2); and the last equation shows that 1t 18 perpendiculs
to the vector (F,, Fy, F;). The tangent to any curve drawn on
surface is called a tangent line to the surface Thus all tanger

0,



——

13, 14] TANGENT PLANE. NORMAL 39

lmes to the surface at the point (z, , z) are perpendicular to the
vector (Fy, Fy, Fy), and therefore lie in the plane through (s, y, 2)
perpendicular to this vector. This plane is called the tangent plane
to the surface at that point, and the normal to the plane at the
pomnt of contact is called the normal to the surface at that pomt.
Since the line joimng any pomt (X, ¥, Z) on the tangent plane to
the point of contact 18 perpendicular to the normal, 1t follows that
or or or
(X—m)$+(Y—y)@+(Z-—z)a—z=0 ...... (8).
This is the equation of the tangent plane. Similarly if (X, ¥, Z)
18 & current pownt on the normal, we have
X—a_ Y-y _Z-¢
—_B_T = T___l"_ S e e (4).
o oy oz
These are the equations of the normal at the point (=, y, 2).

Ex. 1. Prove that the tangent plane to the surface sys=a® and the
coordinate planes, bound a tetrahedron of constant volume.

Ex, 2. Show that the sum of the squares of the intercepts on the co-
ordinate axes made by the tangent plane to the surface

PLERY NW
is constant.
Ex. 3. At ponts common to the surface
a(yst s+ ay)=ays

and a sphere whose centre 1s the origin, the tangent plane to the surface
makes mtercepts on the axes whose sum 1s constant.

Ex. 4. The normal at a point P of the ellipsoid
o
atmta=l
meets the coordinate planes 1n Gy, G4, @3 Prove that the ratios

PGy . PGy PGy
are constant.

Ex. 5. Any tangent plane to the surface
a (@90 +ays=0

meets 1t agan 1n a conio whose projection on the plane of zy 18 a rectangular
hyperbola.
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ONE-PARAMETER FAMILY OF SURFACES
15. Envelope. Characteristics. An equation of the form
F (@, y,2 0)=0..... R (5),
m which o is constant, represents a surface. If the value of the
constant 18 altered, so 1n general 18 the surface. The infinitude of
surfaces, which correspond to the infinitude of values that may be
assigned to a, 18 called a family of surfaces with parameter a. On
any one surface the value of @ is constant; 1t changes, however,
from one surface to another. This parameter has then a different
sigmificance from that of the parameters w, v in Art. 13 These
relate to a single surface, and vary from pomnt to point of that
surface They are curvilinear coordinates of a pomnt on a single
surface. The parameter @, however, determines a particular mem-
ber of a family of surfaces, and has the same value at all points of
that member.

The curve of intersection of two surfaces of the family corre-
sponding to the parameter values @ and o + 8o 18 determined by
the equations

F(z,vy,20)=0, F(z,y,2a+8z)=0,
and therefore by the equations
F@y=o, TerI-F@_,
[

m whch, for the sake of brevity, we have written F (@) mnstead of
F(m, y, 2 a), and so on. If now we make dz tend to zero, the
curve becomes the curve of mtersection of consecutive members of
the family, and its defining equations become

F@=0 ZF@=0 oo oo (©).

This curve is called the characteristic of the surface for the para-
meter value a. As the parameter varies we obtain a famly of such
characteristics, and their locus is called the envelope of the family
of surfaces. It is the surface whose equation is obtained by elimi-
nating o from the two equations (6).

Two surfaces are said to touch each other at a common point
when they have the same tangent plane, and therefore the same
normal, at that pomt. We shall now prove that the envelope touches
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each member of the famaly of surfuces at all points of 1ts character-
wshc

The characteristic correspondmg to the parameter value g lies
both on the surface with the same parameter value and on the
envelope Thus all points of the characteristic are common to the
surface and the envelope. The normal to the surface

F(z,y,2a)=0
is parallel to the vector
F oF oF .
el bR Z) R @)

The equation of the envelope is obtaied by elimmating o from
the equations (6). The envelope 1s therefore represented by
F (=, y,2 a)=0, provided @ 18 regarded as a function of z, Y 2z
given by

9
%F(m, Y, 2, a)=0.

The normal to the envelope 1s then parallel to the vector

(L O o o or)

oz ' O0udx’ dy ' Oady’ dz ' Oa dz)’
which, 1 virtue of the preceding equation, is the same as the
vector (1) Thus, at all common pomts, the surface and the en-
velope have the same normal, and therefore the same tangent
plane; so that they touch each other at all pomts of the charac-
teristic,

Ex. 1. Tho envelopo of the family of paraboloids
2+yi=4a (s—a)

18 the circular cone 224 8=2

Eix. 2. Sphores of constant radius b have their centres on the fixed owrcle
234 y8=af, e==0. Prove that their envelope is the surface

(23493481 a3 — B = da? (23-+4/0),
Ex. 3. The envelope of the family of surfaces
F(z, 9,2 a, b)=0,

1n whioh the ters a, b are ted by the equation
S (@, )=0,
18 found by eliminating @ and b from the equations
Fo_Fy

F=o, f=0, Jt=2.
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16. Edge of regression. The locus of the ultimate intersec-
tions of consecutive characteristics of a one-parameter famly of
surfaces 18 called the edge of regression. It is easy to show that
each characteristic touches the edge of regression, that is to say, the
two curves have the same tangent at their common pomt. For if
A, B, C are three consecutive characteristics, 4 and B intersecting
at P,and B and Oat @, these two pomts are consecutive points
on the characterstic B and also on the edge of regression. Hence
ultimately, as 4 and O tend to cowncidence with B, the chord PQ
becomes a common tangent to the characterstic and to the edge
of regression.

0/ P Q\A
B c B
A

Fig. 8.

The same may be proved analytically as follows. The character-
1stic with parameter value o 18 the curve of intersection of the
surfaces

F@=0, ZF@=0 e ®).

The tangent to the characteristic at any pomnt is therefore per-
pendicular to the normals to both surfaces at this point. It 18
therefore perpendicular to each of the vectors
(8,38 ) oy (B2 0T OT)
3z’ By’ 0z dwda’ Jyda’ 200
The equations of the consecutive characteristic, with the parameter
value a +da, are
oF ®F

oF
Il'+$da=0, E+—a§dw=0.

Hence, for its pomnt of intersection with (6), since all four equations
must be satisfied, we have

F(a)=0, %F(a)=0, a%’,I«‘(a)=o ........ (8).

The equations of the edge of regression are obtained by eliminating
a from these three equations. We may then regard the edge of

— e e —————



6,17] EDGE OF REGRESSION 43

egression as the curve of mtersection of the surfaces (6), n which
» is now a function of @, y, ¢ given by

s -
s F (@ =0.

“hus the tangent to the edge of regression, bemng perpendicular
o the normals to both surfaces, is perpendicular to each of the
rectors
(Z ko, & O o oF)
o ' 9adx’ Oy ' Oa Oy’ 0z ' Oa Oz
2 2
nd (B'F #Foda OF Fda ),

m + P i’ 33/71: + e a—y »  ewnase

vhich, in virtue of the equations (8), are the same as the vectors
7). Thus the tangent to the edge of regression is parallel to the
angent to the characterstic, and the two curves therefore touch
b their common point.

Ex, 1. Find the envelope of the family of planes
3a?z - 3ay+2=a?,

mnd show that 1ts edge of regression 1s the ourve of intersection of the surfaces
=yl ay=s

Ex. 2. Find the edge of regression of the envelope of the family of planes

z8mf—ycos §+s=ad,

) being the parameter.

J&x. 8. Fmd the envelope of the family of cones

(az+2+y+2-1) (ay +2)=az (s+y+s-1),

¢ being the parameter.

Eix. 4. Prove that the characteristics of the family of osculating spheres
»f & twisted ourve are 1ts circles of curvature, and the edge of regression is the
narve itself,

Ex. 5. Find the envelope and the edge of regression of the spheres which
»a.88 through a fixed pomnt and whose centres lie on a given curve.

Ex. 6. Find the envelope and the edge of regression of the family of

slipsoids
NN 28 1
#(5+h)+a=b

17. Developable surfaces. An important example of the
oreceding theory 1s furnished by & one-parameter family of planes
[n this case the characteristics, being the intersections of consecu-

vhere ¢ 18 the parameter.
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tive planes, are straight lines. These straight lines are called the
generators of the envelope, and the envelope is called a developubls
surface, or briefly a developable. The reason for the name lies 1n
the fact that the surface may be unrolled or developed into a
plane without stretching or tearmng. For, since consecutive gene-
rators are coplanar, the plane containing the first and second ot
the family of generators may be turned about the second tall 1t
comncides with the plane contamning the second and third, then
this common plane may be turned about the third till 1t comncides
with the plane contaimng the third and the fourth; and so on.
In this way the whole surface may be developed into a plane.

Swnce each plane of the family touches the envelope along 1ts
charactenstic, 1t follows that the tangent plane to a developuble
swiface is the same at all pownts of a generator. The edge of re-
gression of the developable 18 the locus of the intersections of
consecutive generators, and 18 touched by each of the generators.
Moreover, since consecutive generators are consecutive tangents to
the edge of regression, the osculating plane of this curve 1s that
plane of the family which contans these generators But this
plane touches the developable. Hence the osculuting plane of the
edge of regression at any pownt 18 the tangent plane to the developable
at that pound.

Suppose the equation of & surface 18 given 1n Monge’s form,

e=f(z,y) .. .. e 0n(9),

and we require the condition that the surface may be a develop-
able The equation of tho tangent plane at the point (z, y, 2) 18

2-s=X -2+ ¥-9¥,

and, 1n order that this may be expressible i terms of a single
parameter, there must be some relation between f, and Jfy» which

we may write of s (gz-)
Y.

oz
On differentiation this gives
I , (OF\ @
g (1) 2

o dy/ 8oy’
2f (31)@’
dwdy 0y/ oy*’

- ——uwﬁthﬂ—-\—\éﬁmv‘}w Q—-

g —ﬂ;‘ﬁr—u'—v mﬂ;‘r-\-ﬂuﬂy
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and from these 1t follows that

2rer_ (o
Bw"@’_(my e e e (10).
This is the required condition that (9) may represent a develop-
able surface.

Ex. Prove that the surface zy= (g~ 0)?1s a developable.

DEVELOPABLES ASSOCIATED WITH A CURVE

18. Osculating developable. The principal planes of a
twisted curve at a current point P are the osculating plane, which
is parallel to t and n, the normal plane, which 1s parallel to n and
b, and the rectifying plane, which is parallel to b and t The
equations of these planes contain only a single parameter, which is
usually the arc-length s; and the envelopes of the planes are
therefore developable surfaces.

The envelope of the osculating plane 1s called the osculating
developable. Since the intersections of consecutive osculating planes
are the tangents to the curve, it follows that the tangents are the
generators of the developable. And consecutive tangents 1ntersect
at & pownt on the curve, so that the curve itself 18 the edge of
regression of the osculating developable.

The same may be proved analytically as follows. At a pomt r
on the curve the equation of the osculating plane 1s

(R=r)eb=0 .. . ............ (11),
where r and b are functions of s. On differentiating with respect
to ¢ we have —teb—7(R—1)en=0,
that 18 R-=r)en=0 .cccceecrerrrinrinnnnns (12),

which 18 the equation of the rectafying plane. Thus the character-
1stac, being given by (11) and (12), is the intersection of the oscu-
lating and rectifying planes, and is therefore the tangent to the
curve at r. To find the edge of regression we differentiate (12)
and obtain R=1)e(tb—=kt)=0 ... .0 oeeees.e (18).
For a pomnt on the edge of regression all three equations (11), (12)
and (13) are satisfied. Hence (R —r) vamishes identically, and the
curve itself 18 the edge of regression
Ex. Find the lating developable of the lar helix,




46 ENVELOPES. DEVELOPABLE SURFACES [

19. Polar developable. The envelope of the normal plane
of a twisted curve 1s called the polar developable, and its generators
are called the polar lines. Thus the polar line for the pomnt Pis
the mtersection of consecutive normal planes at P. The equation

of the normal plane is g _ vy o ... (14,
where r and t are functions of s. Differentiating with respect to &
we find £(R—r)en —tet =0,
which may bewritten (R—r—pn)en=0 .. ....ccceeen .(15).
This equation represents a plane through the centre of curvature
perpendicular to the principal normal It intersects the normal
plane in a straight line through the centre of curvature parallel to
the binormal (Fig 4). Thus the polar line s the axis of the circle
of ourvature. On differentiating (15) we obtain the third equation
for the edge of regression,

® —1)e(b— )= 7,
which, 1n virtue of (14), may be written

R—=1)eb=0p" .cvrrrrrrrennenns (16).
From the three equations (14), (15) and (16) 1t follows that
R—r=pn+op'b,

go that the point R comncides with the centre of spherical curva-
ture. Thus the edge of regression of the polar developable 13 the
locus of the centrs of spherical curvature. The tangents to this locus
are the polar lines, which are the generators of the developable.

20. Rectifying developable. The envelope of the rectifying
plane of a curve 18 called the rectrfymng developable, and its gene-
rators are the rectifying lines. Thus the rectifying line at a pomt
P of the curve is the intersection of consecutive rectifying planes.
The equation of the rectifying plane at the pomnt r 18

R-1)en=0 ..coeeer vrrreeenn(17),
where r and n are functions of s. The other equation of the recti-
fymg line is got by differentiating with respect to s, thus obtaining

(R—1)e(th—rt)=0 ...ceevrrinnnns (18).
From these equations it follows that the rectifying line passes
through the pomt r on the curve, and 18 perpendicular to both n

e
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and (tb—«t). Hence 1t is parallel to the vector (7t + «b), and is
therefore inchined to the tangent at an angle ¢ such that

m¢=§.. e e eer e wen(19).

n
"

~—r_—
/N
b

Fig 9.

To find the edge of regression we differentiate (18) and, in
virtue of (17), we obtain

RB-1r)e(Tb—k't)+£=0 ... .. -(20).
Further, since the rectifying Line is parallel to 7t + b, the point
R on the edge of regression 1s such that

(R —1) =1 (7t + xb),
where [ 18 some number. On substitution of this m (20) we find

i

K
SKr -k
Thus the pomnt on the edge of regression corresponding to the
pomt r on the curve 18
& (Tt + «b)
K'r—xr

The reason for the term “rectifying” applied to this developable
lies 1n the fact that, when the surface is developed into a plane by
unfolding about consecutive generators, the original curve becomes
& straight line. The truth of this statement will appear later when
we consider the properties of “ geodesics ” on a surface.

‘We may notice 1n passing that, if the given curve 1s a helix,
«/7 18 constant, and the angle ¢ of (19) 18 equal to the angle 8 of
Art. 8. Thus the rectifying lines are the generators of the cylinder

R=r+
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on which the helix is drawn, and the rectifying developable 18 the
cylinder itself

Ex. Prove that the rectifying developable of a curve 13 the polar develop-
able of 1ts 1nvolutes, and conversely.

TwO-PARAMETER FAMILY OF SURFACES

21. Envelope. Characteristic points. An equation of the

form
F(z,y,20b)=0. ... (22),

1n which g and b are independent parameters, represents a doubly
mfinite family of surfaces, corresponding to the infinitude of values
of @ and the infinitude of values of b On any one surface both a
and b are constant. The curve of intersection of the surface whose
parameter values are a, b with the consecutive surface whose para-
meter values are a + da, b+ db 13 given by the equations

F(a,b)=0, F(a+ds, b+db)y=0,
or by the equations
F(a,b)=0, F(a, b)+a—a&Iv'(a,b) da+ % F(a, by db=0.

This curve depends on the ratio da db; but for all values of this
ratio 1t passes through the point or points given by

F@h)=0, 2F@H=0, ZF(ab=0..()

These are called characterstic points, and the locus of the charac-
teristic pownts 18 called the envelope of the family of surfaces. The
equation of the envelope is obtained by eliminating a and b from
the equations (23)

Each characteristic pont 18 common to the envelope and one
surface of the family; and we can prove that the envelope touches
each surface at the characteristic point (or pownts). The normal to
a surface of the family at the point (z, ¥, £) 18 parallel to the vector

oF oF oF
(5;, % E) ................... (24)

The equation of the envelope 18 got by eliminating a and b from
the equations (23). We may therefore take F (z, y, 2, a, b)=0 as
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the equation of the envelope, provided we regard g, b as functions
of @, y, z given by

Then the normal to the envelope 18 parallel to the vector
oF 0Fda O0F3b oF 0Fda  oFdb
(a?*a—ua;*a—béz’ 3 Toa oyt B oy )
which, in virtue of (25), 1s the same as the vector (24). Thus the
envelope has the same normal, and therefore the same tangent
plane, as a surface of the family at the characteristic point. The
contact property is thus established.

Ex. 1. Show that the envelope of the plane
Scos&slmp +%sm fsm ¢+£oos ¢=1,

where 6, ¢ are independent parameters, 18 the ellipsoid
a8 oyt g
& + b7 + = L
Ex. 2. Prove that the envelope of a plane which forms with the co-
ordinate planes a tetrahedron of constant volume'1s a surface zyz=const

Ex. 3. The envelope of & plane, the sum of the squares of whose inter-
cepts on the axes 15 constant, 13 & surface

z'+y§+tl=consf.
Ex. 4. The envelope of the plane
(u—2) boz + (1 +uv) cay+ (1 —uv) abz=abe (¥ +v),
where u, v are psameters, 18 the hyperboloid
z A
atp-a=t
Ex. 5. Prove that the envelope of the surface F(z, y, ¢, a, b, ¢)=0,
where a, b, ¢ are parameters connected by the relation 7(a, b, 6)=0, 18 obtamned
by eliminating a, b, ¢ from the equations
F, F,_F,
F=0, f=0, f="t=t,
ARARI A >
Ex, 6. The envelope of the plane lz+my+ns=p, where
Pr=alB+bmd+c2nd,
18 an ellipsord.
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EXAMPLES III
1. Find the envelape of the planes through the centre of an ellipsoid anc
cutting it in sections of constant area.
2, Through a fixed point on a given circle chords are drawn Find th
envelope of the spheres on these chords as diameters.
3. A plane makes intercepts a, b, ¢ on the coordinate axes such that
1 1,1 1
atEtacg
Prove that 1ts lope 18 & id with equi-conjugate d along th
axes.
4. A fixed point O on the z-axis 18 jomed to a variable pomt P on th
yz-plane Find the envelope of the plane through 2 at rght angles to 0P,
8. Find the envelope of the plane
Z Y 5
as+u+ b+ut o+u L

where u is the parameter, and determine the edge of regression.

6. The envelope of a plane, such that the sum of the squares of 1
distances from n given pomnts 18 constant, is a comcoid with centre at tl
centroid of the given pomts

7. A fixed pownt O is jowed to & varable pomnt P on a given spheric
surface. Find the envelope of the plane through P at right angles to OP.

8. A sphere of constant radius o moves with 1ts centre on a given twist
curve, Prove that the characteristic for any of the sphere 1s 1ts gre
circle by the normal plane to the ocurve. Show also that, 1f the radius
curvature p of the curve is less than a, the edge of regresson consists of tv
branches, on whioh the current point 18

!'+pni«/a»’—p’b
The envelope is called a canal surfacs
©. Show that the radws of curvature of the edge of regression of t

rectifymg developable (Art. 20) 18 equal to coseo ¢ d% (sm’q&j—‘;), whe

fnnd::-f » and that the radius of torsion 1s equal to

s



CHAPTER III

CURVILINEAR COORDINATES ON A SURFACE.
FUNDAMENTAL MAGNITUDES

22, Curvilinear coordinates. We have seen that a surface
may be regarded as the locus of a pomt whose position vector r 15
a function of two independent parameters u, v. The Cartesian
coordinates @, y, ¢ of the point are then known functions of , v,
and the elimmnation of the two parameters leads to a single rela-
tion between @, y, # which is usually called the equation of the
surface. We shall confine our attention to surfaces, or portions of
surfaces, which present no mingularities of any kind

Any relation between the parameters, say f (u, v) =0, represents
a curve on the surface. For r then becomes a function of only one
independent parameter, so that the locus of the pant is a curve
In particular the curves on the surface, along which one of the

fa
u=a

Fig. 10.

parameters remains constant, are called the parametric curves
The surface can be mapped out by a doubly infinite set of para-
metric curves, corresponding to the infinitude of values that can
be assigned to each of the parameters. The parameters v, v thus
constitute a system of curvilinear coordinates for points on the
surface, the position of the pomnt bemng determined by the values
of v and v.
4—2
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Suppose, for example, that we are dealing with the surface of a
sphere of radius a, and that three mutually perpendicular diameters
are chosen as coordinate axes The latitude A of & pomt P on the
surface may be defined as the mclination of the radius through P
to the ay plane, and the longitude ¢ as the mclination of the plene
contang P and the z-axis to the zz plane. Then the coordinates
of P are given by

z=acosAcos$, Yy=acosAsm¢p, =asimA

Thus A and ¢ may be taken as parameters for the surface. The
parametric curves A=const, are the small circles called parallels
of latitude; the curves ¢=const. are the great circles called
mernidians of longitude. As these two systems of curves cut each
other at right angles, we say the parametric curves are orthogonal,

As another example consider the osculating developable of a
twisted curve. The generators of this surface are the tangents to
the curve. Hence the position vector of a point on the surface 1s
given by

R =r+ut,

where » is the distance of the pomt from the curve measured
along the tangent at the pomnt r. But r, t are functions of the
arc-length s of the gaven curve Hence s, u may be taken as para-
meters for the osculating developable. The parametric curves
s=const. are the generators; and the curves % =const cut the
tangents at a constant distance from the given curve.

If the equation of the surface is given 1n Monge's form

s=f(y),
the coordinates «, y may be taken as parameters In this case the

parametric curves are the intersections of the surface with the
planes z = const. and y = const.

Ex. 1. On the surface of revolution
s=ucosg, y=usng, s=f(u),
what are the parametrio curves u=const , and what are the curves ¢ =const ?
Ex. 2. On the right helicoid given by
r=ucos¢, y=usme¢, s=op,
show that the parametric curves are ciroular helices and straight hines,
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Ex. 8. On the hyperboloid of one sheet
T Ap oy _l-lp 5 A-p

S TS VAR 2 TS VL it E W
the parametrio curves are the generators. What curves are represented by
A=y, and by Ap=const ?

23. First order magnitudes. The suffix 1 will be used to
indicate partial differentiation with respect to u, and the suffix 2
partial differentiation with respect to ». Thus

e, no
Tou’ T o’
o°r o°r o°r
ru=3T4” r“=_aua1)’ ra=a'_v,x
and so on. The vector r; 1s tangential to the curve v=const at
the pomnt r, for 1ts direction 1s that of the displacement dr due to
a variation du 1n the first parameter only. We take the positive
direction along the parametric curve v =const. as that for which »
mereases This is the direction of the vector r, (Fig 10) Similarly
1, 18 tangential to the curve u = const 1n the positive sense, which
corresponds to mcrease of v.

Consider two neighbouring pomnts on the surface, with position
veotors r and r +dr, corresponding to the parameter values u, v
and w + du, v+ dv respectively Then

or or
dr= 7 du+ % dy
= r,du + rydv.
Since the two points are adjacent points on a curve passing through
them, the length ds of the element of arc jomning them is equal to
their actual distance |dr | apart. Thus
ds* = dr* = (1, du + rydv)?

=ridud + 21, e xydudy + ridvd,

If then we write KE=r2 F=rer, G@=18 .......... (1),
we have the formula
ds?= Edut + 2Fdudv+ Gdv® ........c..... (2).

The quantities denoted by E, F, G are called the fundamental
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magnitudes of the first order. They are of the greatest importaa™
and will occur throughont the remainder of this book. The g128
taty EQ — F is postive on a real surface when u and v are Te€
For y/E and 4/@ are the modules of r, and r,, and,if o denote t
angle between these vectors, F'= VEG cos o, and therefore EGF —
is positive. We shall use the notation

H=EG—F ccccvet s v, 3
and let H denote the positive square root of this quantity.

The length of an element of the parametric curve » =com8t
found from (2) by putting dv=0. Its value 18 therefore &/ Z.
The unit vector tangential to the curve v = const. 18 thus
=Ll
“VEu
Similarly the length of an element of the curve u=const.
~Gdy, and the umt tangent to this curve 1s

a =E"}r,.

R QS
b_v—éa—z—]—G ¥,

The two parametric curves through any pomnt of the surface
at an angle w such that

woso=peb=TB_ T
"~ VEG VEG
Therefore* 2t LN - S a;
refore 810 @ G % C
and ta.nm='% ,
8 1
Also since smw=|a><b|=m\r1xr,|,
1t follows that InXti=H e (5

The parametric curves will cut at right angles at any poir
F =0 at that point, and they will do so at all points if F= O ¢
the surface. In this case they are said to be orthogonal. T
F=0 ds the necessary and sufficient condition that the pararre
curves may form an orthogonal system.

* Bee also Note I, p. 268,
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x. 1. For a surface of revolution (of. Ex. 1, Art. 22)
T=(u cos v, u8In v, f(u)),
r1=(c08 v, 810 ¥, f’ (u)),
Ty=(—u8In v, % cos v, 0);
s E=ri=147%3,

F=rie13=0,
G=ryi=u?

s the p trio curves are orthogonal, and
dst=(1+f"2) dud+uddn®

ix. 2. Caloulate the same quantities for the surface in Ex. 2 of the
eding Art.
14. Directlons on a surface. Any direction on the surface
n & given pomt (u, v) 18 determined by the increments du, dv
the parameters for a small displacement in that direction.
, ds be the length of the displacement dr corresponding to
increments du, dv, and let 8s be the length of another dis-
sement 8r due to increments du, 8v. Then
dr = rydu + rydv,
L 8r=r,8u+ 1,8y
» inclation - of these directions is then given by
dsds cos Y =drs8r
= Edudu+ F (dudv+ dvdu) + Gdvdy,
* dsdssinyr = |dr x dr|
=|dudy —dvdu| |1, x 15|
=H |dudv—dvdu|.
e two directions are perpendicular 1f cos Y =0, that is if

du du du | du
B 1ﬁuzv'(%ﬁ%)u;t:o ............... (®).
Ag an 1mportant particular case, the angle 6 between the direc-
u=a
Y (4

mhv:b

* Bee also Note I, p. 268,



b6 CURVILINEAR COORDINATES ON A SURFAOE [

tion du, dv and that of the curve v = const. may be deduced
from the above results by putting Sv=0 and 8s=+E8u Thus

cosﬂ—vz,(E +Fd:’)

dy
and s = ; E o
Similarly 1ts inclination & to the parametric curve u = const. is
obtained by putting du= 0 and 8s=+G8v. Thus

du
GOEB_JG(F“ Gds)
.............. ).
d any = 2 |
o VG |ds

The formula (6) leads immediately to the differential equation
of the orthogonal trajectories of the family of curves given by
Pdu+ Q8u=0,

where P, Q are functions of %, v. For the given family of curves
we have

Su

&P
and therefore from (6), if du/dv refers to the orthogonal trajectories,
it follows that

(BEQ— FP)du+ (FQ — GP)dv=0 . (9).

This is the required differential equation. If, instead of the differ-
ential equation of the original family of curves, we are given their
equation 1n the form

$(v)=c,

where ¢ is an arbitrary constant, it follows that
$18u + ¢gdu =0,
the suffixes as usual denoting partial derivatives with respect to u
and v. The differential equation of the orthogonal trajectories is
then obtained from the preceding result by putting P =¢, and
Q = ¢, which gives
(Bpa—Fy) du+ (Fpy~ Gpy) dv=0 ......... (10).
An equation of the form
Pdu* + Qdudv + Rdv'=0

< e P Y

e e T

B o A Y ———
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etermines two directions on the surface, for 1t is a quadratic in
ufdv. Let the roots of the quadratic be denoted by du/dv and
u/8v. Then

du du_ @
Fr T
' dudu_R
? dvd P°

n substituting these values 1n (6) we see that the two directions
11l be at night angles if

ER-FQ+GP=0 ... .. ...(Q1).

Ex. 1. If ¥ 18 the angle between the two directions given by
Pdut+ Qdudy+ Rdvi=0,
HY@QP-4PR

ow that m“"Eﬂ—FQ+Gl"
Ex. 2. If the parametric curves are orthogonal, show that the differential
|uation of Lines on the surface cutting the ourves w=const. at a constant
1igle B is

du (]

o =tnh x/ g

Ex. 3. Prove that the differential equations of the ourves which blmect
@ angles between the parametric curves are

VEdu—Gdv=0 and YEdu+~Gdv=0.

25. The normal. The normal to the surface at any point is
srpendicular to every tangent lne through that powt, and is

i
n

> ra

|

Fig. 12
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therefore perpendicular to each of the vectors r; and r,. Hence 1t
18 parallel to the vector r, x ry; and we take the direction of this
vector as the positive direction of the nmormal. The unit vector n
parallel to the normal 15 therefore
po DXTs _TiXT

Slaxn| E
This may be called the unit normal to the surface. Since 1t 18
perpendicular to each of the vectors r, and r, we have

ner;=0, ner,=0 ...... .......... (13).
The scalar triple product of these three vectors has the value
[o,r, ]=nenxn=Ho'=H ........... (14).

For the cross products of n with r, and r, we have

r, xn=%lr,><(r, X, =%[(Fr,—Er,),
and similarly
1 1
XD =gl X (1, X Ty) =F(Gr,—Fr,).

26. Second order magnitudes. The second dervatives of r
with respeot to % and v are denoted by
&r o'r o°r
r“=W’ I‘u=m, Tyn= R
The fundamental magnitudes of the second order are the resolved
parts of these vectors in the direction of the normal to the surface.
They will be denoted by L, M, N. Thus
L=n-rn, .M=n-r,,, N=n-r,,.
It will be convenient to have a symbol for the quantity LN — M2,
We therefore write '
T*=LN — M3,
though this quantity 18 not necessanly positive.
We may express L, M, N i terms of scalar triple products of
vectors. For
[ry, Xay ] =1, X Tyery= Hner, = HL.
Similarly  [ry, 1y, Iy] =1, X Pyery= Hner, = HM,
and [r1, T, Y] =T X TyeTy = Hnoery= HN.
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It will be shown later that the second order magmitudes are
intimately connected with the curvature of the surface. We may
here observe in passing that they occur in the expression for the
length of the perpendicular to the tangent plane from a point on
the surface 1n the neighbourhood of the point of contact Let r be
the point of contact, P, with parameter values , v, and n the unit
normal there The position vector of a neighbouring point @
(u+ du, v+ dv) on the surface has the value

r + (r,du + Xydv) + § (tudu? + 2rgdudy + rpde?) + ...
The length of the perpendicular from @ on the tangent plane at
P is the projection of the vector PQ on the normal at P, and is
therefore equal to

ne(r,du+ rydv) + §ne(rndu’ + 2rududy + rade®) + ...
In this expression the terms of the first order vanish since n is at
right angles to r, and r,. Hence the length of the perpendicular
as far as terms of the second order is

4 (Ldu* + 2M dudy + Ndv?).

Ex. 1. OCalculate the fundamental magmtudes for the right elwoid given
o Z=u008 ¢, y=usme, s=cp.
With %, ¢ as parameters we have
T= (%008 ¢, % 8In ¢, cb),
T1=(cos ¢, s ¢, 0),
Ty=(—usIn ¢b, % co8 b, 0).

Therefore
E=r?=1, F=rier;=0, G=r=ul+c?, H*=EG-Fi=ul{d
Since F'=0 the pa: tric curves are orth 1. The umt normal to the
surface is
n—r—l—’l;.l—"=(a s ¢, —coos ¢, u)/H.
Further ry=(0, 0, 0),

Tyg=(— sn ¢, cos ¢, 0),
, Tu=(-ucos ¢, —umng,0),
so that the second order magnitudes are

L=0, ¥=-3%, N=0.
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Ex, 2. On the surface given by
z=a(u+v), y=b(u—v), z=uy,
the parametrio ourves aro straight limes Further
r1=(a, b, v),
ry=(a, ~b, u),
and therefore
E=ai4+b1+1?, F=a'-b0+uw, G=a+b3+ul,
H=4a303+a? (u—v)2+ 5% (u+)%
The umt normal 18 0= (bu+bv, aw—ou, —2ad)/H.

Agam r;=(0, 0, 0),
ri=(0,0,1),
T3=(0, 0, 0),

and therefore L=0, M=—-2b/H, N=0,

Tie LN - M= — 40?53 H?

27. Derivatives of n. Moreover, by means of the funda-
mental magmtudes we may express the derivatives of m 1n terms
of r, and r,. Such an expression is clearly possible. For, since n
18 & vector of constant length, its first derivatives are perpendicular
to n and therefore tangential to the surface They are thus
parallel to the plane of r; and r,, and may be expressed in terms
of these

We may proceed as follows, Differentiating the relation mer,=0
with respect to w we obtain

nyer; + ner,; =0,

and therefore nyery=—nery=—1L.
In the same manner we find \l

ner,=—nDery=—M

Nger;=—Nerg=—M

Nger,=—Nerg=—N
Now since 1,18 perpendicular to n and therefore tangential to the
surface we may write

. (15).

n, = ar, + bry,
where a and b are to be determined. Forming the scalar products
of each side with r, and r, successively we have

— L =qE +bF,
—M=aF +}G.
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On solving these equations for a and b, and substituting the values
so obtained 1n the formula for n,, we find
Hn,=(FM — GL)r,+ (FL— EM)r,....... (16)
Similarly it may be shown that
Hn,=(FN - GM)r,+ (FM - EN)r, .. (16).
If r; and 1, be eliminated in succession from these two equations
we obtain expressions for r, and r, i terms of n, and n,. The
reader will easily venfy that
I*r,=(FM — EN)n,+ (EM - FL) n.} an
T*r,=(GM — FN)n, + (FM - GL)n,| * ' ’
These relations could also be proved independently by the same
method as that employed in establishing (16)
From the equations (16) and (16°) 1t follows immediately that
Hén,xn,={(FM —GL)(FM—EN)—(FL-EM)(FN —GM)}r;xr,
= H*"n,
so that Hn,xn,=Tn .....ccooee ennn (18)
Thus the scalar triple product
Vil 1
[m, n;, n,] =Fn-n =5
And as a further exercise the reader may easily venfy the follow-
ing relations which will be used later:
H[n,n, r]=EM—-FL
H(n, n, r,)=FM - GL
Hin, n,, 5] = EN— FM[ “
H[n, n,, r,]=FN -GM
(Cf. Ex. 18 at the end of this chapter.)

28. Curvature of normal section. It has already been
remarked that the quantities L, M, N are connected with the
curvature properties of the surface. Consider a normal section of
the surface at & given pownt, that 1s to say, the section by a plane
containing the normal at that pomnt. Such a section is a plane
curve whose principal normal is parallel to the normal to the
surface. We adopt the convention that the principal normal to the
ourve has also the same sense as the unit normal n to the surface
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Then the curvature «, of the section 1s positive when the curve 1
concave on the side toward which n 1s directed. Let dashes denote

differentiation with respect to the arc-length ¢ of the curve. Then
1t =knn,

and therefore Ba=D0eT" it er veneens o(20)

But r=nu +1,0

and =10 + 10" + T u? + 2 U’y 4 1’

Consequently, on substituting this value in (20), remembering
that n 18 perpendicular to r, and r, we obtain

n =L+ 2Mu"y' + N . .. ... ..... (21).
This formula may also be expressed
_ Lduw*+ 2Mdudy + Ndv*
" Edu®+2Fdudy + Gdov*
It gives the curvature of the normal section parallel to the direc-
tion du/dv. We may call this briefly the normal curvature i that
direction. Tts reciprocal may be called the radius of normal
curvature.

Suppose next that the section considered .8 not & normal section.
Then the principal normal to the curve 1s not parallel to n. It is
parallel to r”, and the umt principal normal 18 r*/«, where « is the
curvature of the section. Let & be the inclination of the plane of
the section to the normal plane which touches the curve at the
pont considered. Then 6 is the angle between n and the prineipal
normal to the curve Hence

cos  =ner"[x

Kn

= % (L + 2Mu's + Nof),
Now «’ has the same value for both sections at the given point,
smee the two curves touch at that point Similarly v is the same
for both. Hence the last equation may be written
€030 = kn/re
or Kn=KC080 ...oovvnnns [T (22)
This 18 Meunier’s theorem connecting the normal curvature in any

durection with the curvature of any other section through the same
tangent line,

—_—

S =

L e ——— 3 ) g g e
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Ex. 1. If L, i, ¥ vansh at all points the surface 1s a plane.
Ex. 2. A real surface for which the equations
IS%°%¥
hold is exther spherical or plane.

Ex. 3. The centre of curvature at any pomnt of a curve drawn on &
surface 18 the projection upon 1ts lating plane of the centre of curvature
of the normal seotion of the surface which touches the curve at the given
pomt.

EXAMPLES IV

1. Taking 2, y as parameters, calculate the fundamental magnitudes and
the normal to the surface
2= ax+ 2hay + by

Q. For the surfaco of resolution
z=ucosp, y=usme, s=f(u),
with %, ¢ as parameters, show that
E=1+f"% F=0, G=ul, Hi=u?(1+/"),
n=u(—f cosh, —f'amg, /A,
" B Yrs
=Y, M=o, =YL, mtLL

3. Calculate the fundamental magmtudes and the unit normal for the

conoid
s=ucos$, ymusmg, s=f(d)
with %, ¢ as parameters.

4. On the surface generated by the binormals of a twisted ocurve, the
position vector of the current point may be expressed r+wb where r and b
are functions of 8 Taking %, & as parameters, show that

E=1, F=0, G@=1+ru% H3=1+ru4,
n=(0+rut)/ H,
where i 18 the principal normal to the curve ; also that
L=0, M=-7/H, N=(x+xriul-ru)/H,

5. When the equation of the surface 18 given 1 Monge’s form s=f (s, g),
the coordinates z, y may be taken as parameters If, as usual, p, ¢ are the
derivatives of £ of the first order, and r, 8, ¢ those of the second order, show
that

E=1+p", F=pg, G=1+¢", H'=1+p'+g},
n=(-p -¢ /&,
r ] t L
L-ﬁ’ M'TI’ N=ﬂ' T.__Hr_
Deduce that 7 18 zero for a developable surface.
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6. Find the tangent of the angle between the two directions on the surface
determined by the quadratic
Pdu?+ Qdudy+ Rdv¥=0
Let dujdv and 8u/8v be the roots of this quadratic 1n du/dv. Then, by the
first two results of Art. 24,

du 8u
=t aHl";_L
ws\p u du 3
Edv&’u F(dv 8v)+g

- H\/Fﬂ"T HV@-4PR
ER FQ “ER-FQ+GP’
F-pte
7. By means of the formulae of Art. 27 show that
Tn, xn=H (fn,-eny),
Tinsxn=4 (9n, - /n,),
where H3=EM3-2FLM+GL?,
Hif=EMN—-F(LN+M?)+GLHM,
Hig=EN1—-2FMN +GM?

8. From a given pomt P on a eurface & length PQ is laid off along the
normal equal to twice the radius of normal curvature for a given direction
through P, and & sphere 15 described on P@ as diameter. Any curve 18 drawn
on the surface, passing through P n the given direction Prove that 1ts circle
of curvature at P 18 the owrcle 1n which 1ts osculating plane at P outs the
sphere

9. Show that the curves du?— (u%+¢?)d¢?=0 form an orthogonal system
on the helicoid of Ex. 1, Art. 28

10. On the surface generated by the tangents to a twisted curve, find the
differential equation of the curves whioh cut the generators at & constant
angle 8

1 1. Fund the equations of the surface of revolution for which

ds? =dul + (a3 - u?) do?

12, Show that the curvature « at any point P of the curve of intersection

of two surfaces 18 given by

k?e1n? = k2 + kg?— 2k, k9 008 6,
where ;, kg are the normal curvatures of the surfaces n the direction of the
curve at P, and 4 18 the angle between their normals at that pomnt.

13. Prove the formulae (19) of Art. 27.

From (17) of that Art. 1t follows that
T, xr=(EM-FL)n,xny,
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and therefore TMpen xry=(EM—FL)nen,xn,
=(EM-FL) T%H.

Thus H[n, n, r]=EM-FL,

and similarly for the others.

14. Prove the formulae
Hnxn,=Mr,—Lr;
Hux n,=1Vr,—lIrn} :
On differentiating the formula HAn=r;xx; with respect to 4 we have
Hn+Hn)=T; XTIy +TyXTy.
Form the cross product of each side with n  Then
HAnxny=nergr; —Ner,r;
=M1~ Lr,,
and similarly for the other.
By substituting 1n these the values of r; and ry given in (17) we could
deduce the formulae of Ex. 7

15. Helicoids. A helwcoid is the surface generated by & curve which
18 simultaneously rotated about a fixed axis and translated in the direction of
the axis with & velocity proportional to the angular veloaity of rotation. The
plane sections through the axis are called meridians. No generality 1s lost by
assuming the curve to be plane, and the surface can be generated by the
helicoidal motion of & meridian.

Take the axs of rotation as z-axis. Let  be the perpendioular distance of
& pomnt from the axis, and » the inclination of the meridian plane through the
pont to the sz-plane. Then, if the meridian v=0 18 giwven by s=f(u), the
coordimates of a current pont on the surface are

r=ucosv, y=u8nv, s=f(u)+o,
where 018 constant, and 2o 18 called the puteh of the helicordal motion From
these it follows that
E=1+4f3 F=ofy, G=ui+cd’, Hi=c'+ul(l+£9).

The p curves are orthogonal only when ¢ 18 zero or f(u) constant.
The former case 1s that of a surface of revolution. The latter is the case of &
right helioord which 18 generated by the helicoidal motion of & straight line
cutting the axis at rght angles (Art. 26, Ex. 1). The umt normal to the
general helicoid 18

n=%(a 810 ¥—uf; CO8 ¥, — 0008 ¥—uf; 8inv, u),
and the second order maguitudes are
Y oy S y¥h
L= T M- 7 L 7
The parametrio curves %=const. are obviously helices.
16. Find the curvature of a normal section of & helicoid.

17. The locus of the md-ponts of the chords of & circular helix is a right
helicord.

w. ]



CHAPTER IV
CURVES ON A SURFACE

LiNgs oF CURVATURE

29, Principal directions. The normals at consecutive points
of a surface do not in general intersect; but at any pownt P there
are two directions on the surface, at right angles to each other, such
that the normal at a consecutive point in exther of these directions
meets the normal at P. These are called the principal dareciions
at P. To prove this property, let r be the position vector of P and
n the unit normal there. Let r+ dr be a consecutive point in the
direction du, dv, and n+ dn the unit normal at this point. The
normals will intersect if n, n + dn and dr are coplanar, that is to
say, if n, dn, dr are coplanar, This will be so if their scalar triple
product vamshes, so that

[0, dn, dr]=0 ..ccevvr corrrenennnnd (1)
This condition may be expanded in terms of du, dv. For
dn =n,du + n,dy,
dr = r,du +r,dv,
and the substitution of these values in (1) gives
[m,n,, 7] du? + {[m, ny, 73] + [, 0, 1,]} dudv + [0, n,, x,] d? =0,
which, by (19) of Art 27, is equivalent to

(EM — FL)du*+ (EN — GL) dudy + (FN — GM) dv*=0 ...(2).
This equation gives two values of the ratio du : dv, and therefore
two directions on the surface for which the required property holds.
And these two directions are at right angles, for they satisfy the
condition of orthogonality (11) of Art 24.

It follows from the above that, for displacement in & principal
direction, dn is parallel to dr. For dr 1s perpendicular to n, and
dn i also perpendicular to n since n is a umit veotor. But these
three vectors are coplanar, and therefore dn is parallel to dr. Thus,

for & principal direction, n' is parallel to ¥/, the dash denoting are-
rate of change.
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A curve drawn on the surface, and possessing the property that
the normals to the surface at consecutive points intersect, is called
a hine of curvature. It follows from the above that the direction of
a line of curvature at any pomnt is a principal direction at that point.
Through each point on the surface pass two hnes of curvature
cutting each other at right angles, and on the surface there are
two systems of lines of curvature whose differential equation 1s (2).
The pomnt of intersection of consecutive normals along a line of
curvature at P is called a centrs of curvature of the surface, and
1ts distance from P, measured in the direction of the unit normal
n, is called a (principal) radius of curvature of the surface. The
reciprocal of a principal radius of curvature 18 called a principal
owrvature. Thus at each point of the surface there are two principal
curvatures, k4 and «, and these aie the normal curvatures of the
surface m the directions of the lines of curvature. They must not
be confused with the curvatures of the lines of curvature. For the
principal normal of a line of curvature is not in general the normal
to the surface. In other words, the osculating plane of a line of
curvature does not, as a rule, give a normal section of the surface,
but the curvature of a line of curvature is connected with the
corresponding principal curvature as in Meunier’s Theorem.

The principal rad of curvature will be denoted by a, 8. As these
are the reciprocals of the principal curvatures, we have

akg=1, PBry=1.
Those portions of the surface on which the two principal curvatures
have the same sign are said to be synclastio. The surface of a sphere
or of an ellipsoid is synclastic at all ponts. On the other hand if
the principal curvatures have opposite signs on any part of the
surface, this part is said to be amtclastic. The surface of a
hyperbolic paraboloid is anticlastic at all pomnts.

At any pownt of a surface there are two centres of curvature, one
for each principal direction. Both he on the normal to the surface,
for they are the centres of curvature of normal sections tangential
to the lines of curvature. The locus of the centres of curvature is
a surface called the surface of centres, or the centro-surface. It
consists of two branches, one corresponding to each system of lines
of curvature. The properties of the centro-surface will be examined
in a later chapter.

. 5—2
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BEx. Joachimsthal’s 'Theorem. If the curve of wntersection of two
surfaces w8 a line of curvaturs on both, the surfaces cut at a constant angle.
Conversely, +f two surfaces cut at a constant angle, and the durve of intersection
18 a line of owrvdture on one of them, 1t 18 a line of curvature on the other also.

Let t be the umt tangent to the curve of mntersection, and n, & the umit
normals at the same pomnt to the two surfaces, Then t 18 perpendicular to .
and W, and therefore parallel to mx@ Further, 1f the ourve 18 a lLne of
curvature on both surfaces, t 1s parallel to m’ and W', the dash as usual
denoting arc-rate of change. Let 6 be the inclnation of the two normals.
Then cos f=ne+H, and

08 f=n'eTi+neT.

Put each of these terms vanishes because n’ and &' are both parallel to £
Thus cos § 18 constant, and the surfaces cut at a constant angle.

Similarly if 618 constant, and the curve 1s a line of curvature on the first
surface, all the terms of the above equation disappear except the last. Hence
this must vamsh also, showing that T’ 1s perpendicular to m. But 1t 18 alsc
perpendicular to 1, because I 18 a umt vector Thus fi’ is parallel to nxh
and therefore also to t. The curve of mtersection 18 thus a line of curvature
on the second surface also

80. First and second curvatures. To determine the prin
cipal curvatures at any point we may proceed as follows. Let r be
the position vector of the point, n the umt normal and p & principa
radus of curvature. Then the corresponding centre of curvature :
18 r+pn. For an infinitesimal displacement of the pownt along the
line of curvature we have therefore

ds = (dr + pdn) + ndp.
The vector1n brackets 1s tangential to the surface; and consequently
since d8 has the direction of n (cf. Art. 74),
O=dr+pdn .......oovvvieee (3),
or, if # is the corresponding principal curvature,
O=kdr+dn ...cocc. . wues RPN (:9)
This is the vector equivalent of Rodrigues’ formula. It 1s of ver
great 1mportance Inserting the values of the differentials mn term
of du and dv we may write 1t
(ery+ my) du + (kry +0p) dv =0,
Forming the scalar products of this with r, and r, succesavely w
have, by (15) of Art. 27, B
(«E — L) du+ (kF — M) dv =0 4
(kF — M)du+ (G N)dp=0f ***"" ceenn(4),
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These two equations determine the principal curvatures and the
directions of the lnes of curvature. On eliminating du/dv we have
for the principal curvatures

(kB — L) (G - N) = (cF — M,
or Hy—(EN —2FM +GL) g+ T'=0 ......... ),

a quadratic, giving two values of « as required.

The first curvature of the surface at any pont may be defined
as the sum of the principal curvatures*. We will denote 1t by J.
Thus

J =ty + k.

Bemng the sum of the roots of the quadratic (5) it 18 given by
1
J = (BN =2FM + QL) oo o (6)

The second curvature, or specific curvature, of the surface at any
point is the product of the principal curvatures. It 1s also called
the Gauss curvature, and 18 denoted by K. It 18 equal to the
product of the roots of (5), so that

K =rkqnp =%: .................. (7).

‘When the principal curvatures have been determmed from (5),
the directions of the lines of curvature are given by either of the *
equations (4). Thus corresponding to the principal curvature x,
the prinerpal direction 18 given by

du ;c,,F—M) or _(uuG—N),

W= " \kE—L ko — M

and mumilarly for the other principal direction.

The directions of the lines of curvature may, of course, be found
independently by eliminating # from the equations (4). This leads
to

(EM — FL)dw* + (EN — GL)dudv + (FN — GM) dv* =0...(8),

the same equation as (2) found by a different method. It may be
remarked that this is also the equation giving the directions of

* Bome writers call J the mean curvature and K the total curvature. On this
question see remarks 1n the Preface and also on p. 264, Note IT.
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maximum and minimum normal curvature at the point. For, the
value 'of the normal curvature, being
_ Ldu*+2M dudv+ Ndv* ©
0= s 4 S dude + G )
as found in Art. 28, 18 a function of the ratio dw:dw; and if its
derivative with respect to this ratio 18 equated to zero, we obtain
the same equation (8) as before. Thus the principal durections ot a
point are the darections of greatest and least normal curvature.
The equation (8), however, fails to determine these directions
when the coefficients vanish identacally, that 18 to say when

E:F:G=L"M:N.... ... .ouen. .(10).

In this case the normal curvature, as determined by (9), is
mdependent of the ratio du . dv, and therefore bas the same value
for all directions through the point. Such a pomnt 1s called an
umbilic on the surface

If the amplitude of normal curvature, 4, and the mean normal
curvature, B, are defined by

A=3%(ko—ra)y B=3}(ks4ks) cerereer o (11),
1t follows that
Ke=B—A4, ky=B4Ad....... cuerrnn. (12).
Hence the second curvature may be expressed
K=B2- 42

We may also mention in passing that, when the first curvature
vanishes at all powmnts, the surface is called a minimal surface.
The properties of such surfaces will be examined in a later
chapter.

Ex. 1. Find the principal curvatures and the lines of curvature on the
right helicord

z=ucos¢, y=using, s=cp.

The fundamental magnitudes for this surface were found in Ex. 1, Art, 26.

Therr values are
E=1, F=0, G=uit+e, Hi=wiid,

0 v
I=0, M=-p, N=0, T=-7,
The formula (5) for the principal curvatures then becomes
(W+03)2 k- 2=0,

0
=tara

whence
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The first curvature 1s therefore zero, 8o that the surface 18 a minimal surface.
The second curvature 18

K=

T (w4’
The dufferential equation (2) for the lines of curvature becomes
—edu+ (44 o) edp?=0,
du
that is =+ .
@ Y

Ex. 2. Find the prinaipal directions and the prineipal curvatures on the
surface
r=a(u+v), y=b(u—v), s=un.
It was shown in Ex. 2, Art 26, that
E=at+b+1%, Fe=a?-b'+un, G=at+b?+u?
H=4083b%+a® (u—v)?+ b2 (u+2)3,
and also L=0, ¥=-%2, N0, M= -%?"
The differential equation (2) for the limes of curvature thersfore gives
(03482 +?) du? — (0B + B9+ u8) dv?e=0,
du - dv
Nad 4D+ T VaR 4 bt
The equation (5) for the prinoipal curvatures becomes
Ht3—dabH (0 — b+ ww) k— 4a22=0,
40?8
H'I 3

or

o that the specifio curvature 18 K= —
and the first curvature is
Je=4ab (a? — b+ uv) HE,

Ex. 3. Find the principal curvatures ete. on the surface generated by the
binormals of & twisted curve.

The position vector of the current pomnt on the surface may be expressed

R=r+ub,

where r and b are functions of the arc-length s. Taking u, # as parameters,
and using dashes as usual to denote s-derivatives of quantities belonging to

the curve, we have

R,=b, R,=t-uh,
where ¥ 18 the umt principal normal to the curve. Hence

E=ml, F=0, G=1+rus, H'=1l4r%3,

and the unit normal to the surface is

n=Rl xRy =E+'rllt

H g "
Further R, =0, Rp=-1H,
Ry=(k —ur') B+ur (kt=rb),
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and therefore L=0, Y= -5,
T (atrrtiru)H, Ti=—Tr.
The equation () for the prmarpal radu of curvature then becomes
* (147%3)3 — VI F 7908 (k + kU3 —7/u) p —3p3=0,

The Gauss curvature 15 therefore

== (1 et
and the first ourvature

_ktertul-r'u

(1+runt

For ponts on the given ourve, ¥=0. At such pownts the Gauss ourvature is

~3, and the first curvature is .
The dufferential equation of the lines of curvature reduces to

Tdud~ (x+ xrdul — v'u) duds— (1 +72u?) rds?=0.

81. Euler’s theorem. It is sometimes convenient to refer
the surface to its lines of curvature as parametric curves. If this
is done the differential equation (2) for the lines of curvature
becomes identical with the differential equation of the parametric
curves, that 18

dudv=0.
Hence 'we must have

EM~FL=0, FN—GM=0,

and EN-GL#0.
From the first two relations it follows that
(EN-GL)M= 0}
(EN-GL)F=0)’
and therefore, since the coefficient of F and M does not vanish,
F=0, M=0 ... covvrvrrrvrrnnn. 18).

These are the necessary and sufficient conditions that the parametric
surves be lines of curvaturs. The condition F =0 is that of ortho-
gonality satisfied by all lines of curvature. The significance of the
condition M =0 will appear shortly (Art. 86).

We may now prove Euler's theorem, expressing the normal
curvature in any direction in terms of the principal curvatures at
the pomnt. Let the lines of curvature be taken as parametric curves,
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hat F=M=0. The principal curvature x4, bemng the normal
ature for the direction dv=0, is by (9)
ka=L|E,
similarly the principal curvature for the direction du =0 is
ry=2N/G.
sider a normal section of the surface in the direction du, dv,
g an angle 4 with the principal direction dv=0. Then by
»f Art. 24 and Note I, smnce F = 0, we have

cos 1#:@3—:.
d
sin 1]r=./§£-

ocurvature , of this normal section 18 by (9)
9 2
wes (B o (2)

= %cos’m}r + %rsm’\[r,
1at Kn=Kg COSP Y + i BID* VP ceuins vennen o (14).
s is Buler’s theorem on normal curvature. An immediate and
ortant consequence 18 the theorem, associated with the name
Jupin, that the sum of the normal curvatures in two directions
1ght angles 18 constant, and equal to the sum of the princypal
latures.
Then the surface is anticlastic m the neighbourhood of the point

sidered, the principal curvatures have opposite signs, and the
nal curvature therefore vanishes for the directions given by

tan r = £ /= ka/ 5

LV

re @, B are the principal radii of curvature. But where the
ace is synclastic, the curvature of any normal section has the
e s1gn as the principal curvatures, that is to say, all normal
ions are concave in the same direction. The surface in the
shbourhood of the point then lies entirely on one side of the
zent plane at the point. The same result may also be deduced
o the expression
$ (Ldu* + 2M dudy + N dv?),

T e b e S
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found in Art. 26 for the length p of the perpendicular on the
tangent plane from a pomt near the point of contact. For if K is
positive, LN — M? is positive by (7), and therefore the above
expression for p never changes sign with variation of du/dv.
Ex. If B is the mean normal curvature and 4 the amphtude, deduce
from Fuler’s theorem that
kn=B— 4 cos 2y,
Ky~ Kkg=24 8102,
xp— Ky =24 cos?

382. Dupin’s indicatrix. Consider the section of the surface
by a plane parallel and indefinitely close to the tangent plane at
the point P. Suppose first that the surface 1s synclastic in the
neighbourhood of P. Then near P 1t lies entirely on one side of
the tangent plane. Let the plane be taken on this (concave) side
of the surface, parallel to the tangent plane at P, and at an

P
e__— —9
- . o~

--C
Fig. 18

infinitesimal distance from 1t, whose measure is h in the direction
of the unit normal n. Thus % has the same sign as the principal
radii of curvature, a and 8. Consder also any normal plane QPQ
through P, cutting the former planein Q@. Then1f p is the radius
of curvature of this normal section, and 2r the length of Q@, we
have
ri=2hp

to the first order. If 4 18 the mclination of this normal section to
the principal direction dv =0, Euler’s theorem gives

1 | 1 2
a-oos’1]r+Esm —;=;_.—-.
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If then we write £ =17 cos Y and 7 = sin 4» we have

e r_

) + B= 2h.
Thus the section of the surface by the plane parallel to the tan-
gent plane at P, and indefinitely close to 1t, 18 stmilar and similarly
situated to the ellipse

%+I%I=1 ................... (15),

whose axes are tangents to the lines of curvature at P This
ellipse 18 called the indicatriz at the pont P, and P is said to be
an elliptic pownt It is sometimes described as a point of positive
curvature, because the second curvature X is posttive.

Next suppose that the Gauss curvature K is negative at P, so
that the surface is anticlastic 1n the neighbourhood. The principal
radii, a and B, have opposite signs, and the surface lies partly on
one side and partly on the other side of the tangent plane at P.
Two planes parallel to this tangent plane, one on either side, and
equidistant from 1t, cut the surface 1n the conjugate hyperbolas

e 7_

i + 8= + 2h.
These are similar and similarly mituated to the conjugate hyper-
bolas

£

7 _
7+,§—i1 ...................... (16),

which constitute the indicatrix at P. The pomt P is then called
a hyperbolic point, or & pomnt of negative curvature. The normal
curvature is zero 1n the directions of the asymptotes.

When K is zero at the pont P it is called a parabolic pownt.
One of the prinapal curvatures is zero, and the indicatrix 18 a
parr of parallel straight lines.

88. The surface z=f(a, y). It frequently happens that the
equation of the surface is given in Monge’s form
z=f(@ y)-
Let «, y be taken as parameters and, with the usual notation for
partial derivatives of s, let

H=D 5Hr=Q; Mm=T, =5 In=1
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Then, if r is the posrtion vector of a current point on the surface
r,=(1,0,p),

r=(0,1,9),
and therefore

E=1+p, F=pg, G=1+¢, H'=1+p'+¢
The inclination o of the parametric curves 18 given by

g
FETVa A+’
The unit normal to the surface 18
n=Sp"=(-p-g¢ VA

Further r,=(0,0,7)

r3=(0,0,5),

T =(0, 0, %),
so that the second order magmtudes are

rt—g -8
Lag, M=g, Neg; P=Tg Tleptg

The specific curvature is therefore
g-I_ -8
H! (1 +pﬂ + qﬂ)!
and the first curvature is

= s (L4 g0 = 2pgs +4(1 +pY).
The equation (5) for the principal curvatures becomes
H'w—H{r(1+¢)—2pgs +t(1l +p)} e+ (rt — ) =0,

and the differential equation of the lines of curvature is

{p(+p)—1pg} da+ {t (1 + p)— r (1 + @)} dwdy

+ {tpg —8 (1 + ¢} dy* = 0.

Since for a developable surface 7t — s is 1dentically zero (Art. 17),
it follows from the above value of K that the second curvature
vanishes at all points of a developable surface; and conversely, if
the specific curvature is wdentically zero, the surface is a developable.

Ex. 1. Find the equation for the principal curvatures, and the differen-
tial equation of the lines of curvature, for the surfaces

(O] 21-='%?+‘%’, (u) 3s=aad+bys, (1) u=ctan'lz.
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Ex. 2. The indicatrix at every pomt of the helicoid
g=ctan~! z
is a rectangular hyperbola.

Ex. 8. The mdicatrix at & pownt of the surface s=£(z, ) 15 a rectangular
hyperbola if
(1+p% ¢t —2pgs+(1+¢%) r=0.
Ex. 4. At a point of mtersection of the paraboloid zy=cs with the
hyperboloid 22+3%—s8+¢3=0 the prinoipal radu of the paraboloid are
£ (1+J2)fe

34. Surface of revolution. A surface of revolution may be
generated by the rotation of a plane curve about an axis 1n 1ts
plane. If thisis taken as the axis of 2, and u denotes perpendicular
distance from it, the coordinates of a point on the surface may be
expressed

w=wucosp, y=using, z=f(u),
the longitude ¢ being the inchination of the axial plane through
the given point to the zz-plane. The parametric curves v =con-
stant are the “merndian lines,” or intersections of the surface by
the axial planes; the curves u = constant are the “parallels,” or
intersections of the surface by planes perpendicular to the axis

With u, ¢ as parameters, and r the position vector of a current
point on the surface, we have

r,=(cos ¢, sin @, fi),
r,=(—wusin ¢, ucos¢, 0)
The first order magnitudes are therefore
E=1+f3 F=0, G=w, H'=w*(1+£).
Since F =0 it follows that the parallels cut the meridians ortho-
gonally. The unit normal to the surface is
n=(-fiucos$, —frusin¢, u)/H.
Further ru=(0, 0, fu),
ry=(—sm¢, cos ¢, 0),
Tu=(—ucos$, —usmg, 0),
80 that the second order magnitudes are
L=ufuy/H, M=0, N=wf/H, T'=u'ff/H"
Since F and M both vamsh identically, the parametric curves are
the lines of curvature.
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The equation for the principal curvatures reduces to

w(l+ PR = V147 [ufa +A+/D e+ fifa=0,
the roots of which are

daf
Ko = fu =- aut »
@+t {1 N (%)*}*
. o

du
and Kp=— .f'_..= .
uNI +f3 'u\/l +(%)’
The first of these is the curvature of the generating curve. The

second 18 the reciprocal of the length of the normal intercepted
between the curve and the axis of rotation. The Gauss curvature

18 given by
K= flf“
w(1+ fiB)’
and the firsy curvature by
Jo W AQEAY
Cu(+ Ao

Ex. 1. If the surface of revolution is a mnimal surface,
@f  df (o (df
u;u'é “'317{1 + clu)’}-o
Hence show that the only real minimal surface of revolution is that formed
by the revolution of a catenary about its directrix.

Ex. 2. On the surface formed by the revolution of a parabola about 1ts
durectrix, one principal curvature 18 double the other,

EXAMPLES V

1. The moment about the origin of the unit normal n at a point r of the
surface 18 m=rxn. Prove that the differential equation of the lnes of

curvature is
dmedn=0.

2. Find equations for the principal radu, the lines of curvature, and the
first and second curvatures of the following surfaces:

(i) the conod z=ucosd, y=usmnb, z=f(6);

(i1) the catenoid

2=uco8f, y=uenf, s=olog(u+Nul-o);
() the eyhindroid s(s*+y%)=2may;
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(iv) the surface 2= a2+ 2hzy + byt;
(v) the surface
z=3u(l+")—u% y=3v(1+u)—03, s=3(ul-0o?);
(vi) the surface

z_l+w y_u-v s_l-w
= - ;

" utv’ b u+tv’ o utv’
(vn) the surface zyz=ad,

3. The lines of curvature of the paraboloid zy=as Lie on the surfaces

mnh-1Z P sinh— ly—conat.
4. Show that the surface
4a3? = (% - 2a%) (y2—2a?)
has a line of umbilies lying on the sphere
234yl +ei=dal,
5. On the surface generated by the tangents to a twisted curve the ourrent
pomnt 18 R=r+4ut Taking u, s as parameters, prove that
E=1,' F=1, G=1+ute, Hi=wd,
n=b,
L=0, ¥=0, N=uxr, T*=0,
K=0, J=;‘r—‘, kg=0, 'xb-u—r“.
The lines of curvature are
s$=const., u-+s=const.
6. Examine, as 1n Ex. 5, the curvature of the surface generated by the
principal normals of a twisted curve
7. Examine the curvature of the surface generated by the radu of spherical
ourvature of a twisted curve.
8. Show that the equation of the indicatrix, referred to the tangents to the
parametric curves as (ubhque) axes, 18

EE’+JEG&1+ Fr=l

9. Caloulate the first and second ourvatures of the helicoid [Examples

1v, (15)]
z=uo08v, y=usinv, s=f(u)+cv,

and show that the latter 18 constant along a helix (w=const ).

10. Show that the lines of curvature of the helicoid 1n Ex. 9 are given by

o (L% + 0 fur) dud+ [+ ) wfn — (L+AT) Wi dudo
— 0 (U A udf8) =0,
The meridians will be lines of curvature 1f
1+ 4ufi fu=0.

11. Find the equations of the helicord generated by a circle of radius
whose plane passes through the axis; and determine the Lines of curvature
on the surface.
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CONJUGATE SYSTEMS

35. Conjugate directlons. Conjugate directions at a given
pomt P on the surface may be defined as follows. Let @ be a point
on the surface adjacent to P, and let PR be the line of intersection
of the tangent planes at P and Q. Then, as Q tends to coincidence
with P, the hmiting directions of P@ and PR are said to be conju-
gate directions at P. Thus the characteristic of the tangent plane,
as the point of contact moves along a given curve, is the tangent
lLine in the direction conjugate to that of the curve at the pownt of
contact. In other words the tangent planes to the surfacs along a
curve C envelop a developable surface each of whose generators has
the durection conjugate to that of C at their point of intersection.

To find an analytical expression of the conditron that two direc-
tions may be conjugate, let n be the unit normal at P where the
parameter values are u, v, and n+ dn that at Q where the values
are u +du, v+ dv. If R is the adjacent pomnt to P, in the direction
of the intersection of the tangent planes at P and @, we may denote
the vector PR by &r and the parameter values at B by u +8u,
v+ 8&. Then since PR 158 parallel to the tangent planes at P and
Q, 8r is perpendicular both to n and to n+ dn. Hence 3r is per-
pendicular to dn, so that

dnedr =0,
and consequently
(o, du +mydv) o (13 8u + 1, 80) = 0.
Expanding this product and remembering that (Art. 27)
ner,=—~L, mery=nger,=—M, nger,=-N,
we obtain the relation
Ldudu + M (dudvy + dudv) + Ndvdv=0 ...... ).

This is the necessary and sufficient condition that the direction
3u/8v be conjugate to the direction du/dv, and the symmetry of the
relation shows that the property 15 a recyprocal one. Moreover the
equation 18 linear in each of the ratios du : dvand du: dv, so that to
a given direction there 18 one and only one conjugate direction.
The condition (17) that two directions be conjugate may be
expressed
du du

1% ‘du by

+M(d"' Su

)+N= ........... ).



35, 36] OONJUGATE DIRECTIONS 81

Hence the two directions given by the equation
Pdu?+ Qdudv + Rdv*=0
will be conjugate provided

L(%>+M<—%)+N=o,

that is
LR—-MQ+NP=0 ....cuuv ....... (18).
Now the parametric curves are given by
dudy=0,

which corresponds to the values P=R =0 and Q=1. Hence the
directions of the parametric curves will be conjugate provided
M=0 We have seen that this condition is satisfied when the lines
of curvature are taken as parametric curves. Hence the principal
directions at a pownt of the surface are conjugate directions.

Let the lines of curvature be taken as parametric curves, so that
F=0and M=0. The directions du/dy and Su/dv are mclned to
the curve v = const. at angles 6, ' such that (Art. 24)

Gdv ¢ = [eX0]
wno-y/35%. I
Substituting from these equations w (17), and remembering that
M=0, we see that the two directions will be conjugate provided

that is to say, provided they are parallel to comyugate diameters of
the indicatriz.

36. Conjugate systems. Consider the family of curves
¢ (u,v) = const.
The direction u/8v of a curve at any point is given by
h18u + Sy =0.
The conjugate direction du/dw, in virtue of (17),1s then determined

b
7 (Lbam M) du + (Mpy— Ny d=0 v 19).

This is & differential equation of the first order and first degree,

and therefore defines a one-parameter family of curves y» (,v)=const.

This and the family ¢ (u,v)= const. are said to form a conjugate
W. 6
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system.. At a point of intersection of two curves, one from each
famly, their directions are conjugate.
Further, given two families of curves
¢ (u,v)=const.,
4 (u, v) = const.,
we may determine the condition that they form a conjugate system.
For, the directions of the two curves through a pownt u,v are given

by
¢ 8u + ¢ 8v="0
Yndu+ypdv=0]"
It then follows from (17') that these directions will be conjugabe

if
Lgayrs — M (p1dra+ pun) + Npyyd =0 ... ..(20).

This is the necessary and sufficient condition that the two familie:
of curves form a conjugate system. In particular the parametric
curves v = const., % = const. will form a conjugate system 1f M =0
Thus agrees with the result found in the previous Art. Thus M =(
18 the necessary and sufficient condition that the parametric curve.
form a conjugate system

We have seen that when the lines of curvature are taken a
parametric curves, both =0 and M =0 are satisfied. Thus th
lines of curvature form an orthogonal conjugate system. And the;
are the only orthogonal conjugate system. For,if such a system o
curves exists, and we take them for parametric curves, then F=(
and M=0. But this shows that the parametric curves are the:
lines of curvature. Hence the theorem.

Ex. 1. The parametrio curves are conjugate on the following surfaces .
(i) & surface of revolution
s=ucosd, y=umng, s=f(u);
(xi) the surface generated by the tangents to a curve, on which
R=r+ut, (u,sparameters);
(ir) the surface z=gb (u), Y=+ (), s=f(u)+F@);
(1v) the surface s=5(z)+F (), where 2, y are parameters ;
(v) =4 (u—a)™(v—a), y=B(u-bmv->b, s=0(u—o™(w—c),
where 4, B, 0, a, b, ¢ are constants,

Ex. 2. Prove that, At sny pomt of the surface, the sum of the radm «
normal curvature in

Jug
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AsymproTic LiNES

387. Asymptotic lines. The asymptotic directions at a point
on the surface are the self-conjugate directions; and an asymptotic
line is a curve whose direction at every point is self-conjugate.
Consequently, if in equation (17) connecting conjugate directions
we put 8u/8v equal to du/dv, we obtain the differential equation of
the asymptotac lines on the surface

Ldw+2Mdudv+ Ndr*=0 ............... (21).
Thus there are two asymptotic directions at a pomnt. They are real
and different when M~ LN 1s positive, that 1s to say when the
specific curvature 1s negative They are imaginary when K 1s
positive. They are 1dentical when K 18 zero In the last case the
surface is & developable, and the single asymptotic ine through a
point is the generator.

Since the normal curvature m any direction 1s equal to

Lu + 2Mu'v + Nv',
it vanishes for the asymptotic directions. These directions are
therefore the directions of the asymptotes of the mdicatrix, hence
the name. They are at right angles when the mdicatrix 1s a rect-
angular hyperbola, that 18 when the principal curvatures are equal
and opposite. Thus the asymptotic lines are orthogonal when the
surface is & minmimal surface.

The osculating plane at any point of an asympiotic line is the
tangent plane to the surface. This may be proved as follows. Since
the tangent t to the asymptotic line is perpendicular to the normal
n to the surface, net=0. On differentiating this with respect to
the arc-length of the line, we have

n'et+ne(cB)=0,
where & is the prmecipal normal to the curve. Now the first term
1 this equation vamshes, because, by Art 35, t 18 perpendicular
to the rate of change of the umt normal 1n the conjugate direction,
and an asymptotic direction is self-conjugate. Thus n’et=0 and
the last equation becomes
n.n=0.
Then since both t and fi are perpendicular to the normsl, the
osculating plane of the curve is tangential to the surface. The
6—2
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binormal is therefore normal to the surface, and we may take its
direction so that
b=n .......00 .. (22)
Then the principal normal & 1s given by
f=nxt

If the parametrc curves be asymptotic hnes, the differential
equation (21)1s 1dentical with the differential equation of the para-
metric curves

dudy=0.
Hence the necessary and sufficent conditions that the parametric
curves be asymptotic lines are
L=0, N=0, M40
In this case the differential equation of the lmes of curvature
becomes
Edu'— Gdv=0,
and the equation for the principil curvatures 1s
H i+ 2F M — M2 =0,
8o that K=—%,:, J=—%‘?—I ..............

388. Curvature and torsion. We have seen that the unii
binormal to an asymptotic Line is the umit normal to the surface
or b=n. The torsson T is found by differentiatng this relatior
with respect to the arc-length s, thus obtaining

—ri=n
where i=n x 1’ is the prncipal normal to the curve. Forming
the scalar product of each side with &, we have
—r=nxr'sn/,
so that T=[n,n,rl... .. .... (24),
which 18 one formula for the torsion,

The scalar triple product in this formula 1s of the same form as
that occmrrmg m (1) Art. 29, the vanishing of which gave the
differential equation of the lmes of curvature. The expression (24
may then be expanded exactly as m Art 29, giving for,the torsiox
of an asymptotic line

7= 3 (BM —FL) w* + (BN - GL) '/ + (EN - GM) 4.
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Suppose now that the asymptotic lines are taken as parametric
curves. Then L =N =0, and this formula becomes

T= % (B — Gv™).
Hence for the asymptotic line dv=0 we have

r=%E(%)’=%=\/——K- ............ (25)

in virtue of (23) Simularly for the asymptotic line du=0 the

torsion is
M, rdv\? M /
T=_Ee<d_s =-—~E=— -K ... .(25').

Thus the torsions of the two asymptotic lines through a point are
equal in magnitude and opposite wn sign; and the square of either s
the megative of the specific curvature. This theorem is due to
Beltram: and Enneper.

To find the curvature k of an asymptotic line, differentiate the
unit tangent t=r’ with respect to the arc-length s. Then

kB=r"
TForming the scalar product of each side with the unit vector
fi=n x r, we have the result
=0, r"] i i (26).

Ex. 1. On the surfaces in Ex 1 and Ex. 2 of Art 26 the parametric
curves are asymptotic lines

Ex. 2. On the surface s=7(z, y) the asymptotic Lines are
rdz®+ 28 drdy +tdy?=0,
and ther torsions are +VE(1+p*+ 7).
Ex. 3. On the surface of revolution (Art. 34) the asymptotic lines are
Judud+ufydg?=0.
‘Write down the value of their torsions.

Ex. 4. Find the asymptotic lines, and thewr torsions, on the surface
generated by the binormals to & twisted curve (Ex. 3, Art 30).

Ex. 5. Find the asymptotio Lines on the surface s=y sin 2.

IsoMETRICO LINES

39. Isometric parameters. Suppose that, in terms of the
parameters v, v, the square of the linear element of the surface has

the form A=A (U + dv®) cooevrniininiininns «(27),
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where A 18 a function of %, v or a constant. Then the parametric
curves are orthogonal because F'=0 Fuither, the longths of
elements of the parametric curves are /A du and J~ dv, and these
are equal if du=dp. Thus the parametric curves corresponding to
the values %, u+du, v, v+dv bound a small square provided
du=dv. In this way the surfaco may be mapped out into small
squares by means of the parametric curves, the sides of any one
square corresponding to equal merements m « and v.

More generally, if the square of the linear element has the form

ds*=n(Tdwr+ V) .o cover e (28),

where U is a function of % only and ¥ a function of v only, we may
change the parameters to ¢, y» by the transformation

dp=TUdu, dp=uJTVdu

This does not alter the parametric curves; for the curves % = const,
are identical with the curves ¢ = const., and similarly the curves
v =const. are also the curves y»=const. The cquation (28) then
becomes A=A (dg? +dY) eovvereieeiaennnns (29),
which is of the same form as (27). Whenever the square of the
linear element has the form (28) so that, without alteration of the
parametric curves, 1t may be reduced to the form (27), the
parametric curves are called isometrio lings, and the parameters
1sometric parameters. Sometimes the torm isothermal or isvthermic
is used.

In the form (27) the fundamental magmtudes £ and @ are equal;
bus in the more general form (28) thoy are such that

E U
G v v e e (30),
and therefore 2 lo; §=0 (31)
Fugp OB G =0 o e .(31).

Exther of these equations, mn conjunction with = 0, expresses the
condution that the parametric variables may be isometric. For, if it
is satisfied, de* has the form (28) and may therefore be reduced to
the form (27).

A simple example of isometric curves is afforded by the meridians
and parallels on a surfacs of revolution. With the usual notation

(Art. 84) o=ucosd, y=usn, z=f(u),
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E=1+f% F=0, G=uw,
ave det= (1 + %) du* + w2 dg?

=ul (1:—{‘:' dut + d¢’) ............... (32),

h 18 of the form (28). The parametric curves are the meridians
sonst. and the parallels u = const. Ifwe make the transformation

dy= L VTTFr du,

surves yr = const. are the same as the parallels, and the square
16 linear element becomes

ds® = w8 (A + ),
sh is of the form (27). Thus the merdians and the parallels of
rface of revolution are wsometric lines.
%. 1. Show that a system of confocal ellipses and hyperbolas are 1s0
10 lines 1n the plane.
x. 2. Determine f(v) so that on the right conoid

Z=ucosv, y=usmnv, z=f(v),

sarametrio curves may be 1sometric linea,
x. 3. Find the surface of revolution for which

ds? == d? + (a? —u?) dv?

NuLy LinNes

{0. Null Unes. The null lines (or minymal curves) on & surface
defined as the curves of zero length. They are therefore
iginary on a real surface, and their importance 1s chiefly analytic.
» differential equation of the null Lines is obtamed by equating
sero the square of the lnear element. It 18 therefore
Edu + 2F dudy + Gdv?=0 ............ ..(33).

£ the parametric curves are null lines, this equation must be
rivalent to dudy=0. Hence E=0, G=0 and F+0. These are

y and sufficient conditions that the parametric curves be
1l lines In this case the square of the linear element has the

m

ds*=\ dudy,
ere \ is a funotion of u, v or a constant; and the parameters u,
xre then said to be symmetric.

T
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When the parametrio curves are null lines, so that
E=0, G=0, H'=—F"
the differential equation of the lmes of curvature is

Ldw— Ndvw=0,
the Glauss curvature is
K= LN - M
=" m
and the first curvature
= oM
-

In the following pages our concern will be mainly with real
curves and real surfaces. Only occasional reference will be made
to null lines.

EXAMPLES VI
1. Find the asymptotic lines of the conaid
x=ucosy, y=usmnv, z=j(v),
and those of the oyhndrad
r=ucosy, y=usinvy, z=memn .
2. On the surface
2=3u(l+0%)—ub, y=3v(1+u?)—1%, s=3(ul-0f),

the asymptotio lines are % + v=const.

2
8. On the parabolod u=-1,

the asymptotic lmes are 2 + %’ =oonst.
4. Find the lnes of curvature and the principal curvatures on the
cylindroid
2 (2 +y%) =2may.
6. If a plane cuts a surface everywhere at the same angle, the section is a
line of curvature on the surface.

6. Along s line of curvature of & comaord, one principal radius varies as
the oube of the other.

7. Find the principal curvatures and the lines of curvature on the surface
B (P 4gY)=ch,

8. Find the asymptotic Lines and the lines of curvature on the catencid
of revolution

2
u-oaoshs.
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2 3
), Ifa>b> ¢, the ellipsad z—: +'1b/:, + z—,-=l has umbilic at the points
a3(a3-1%) A3 -2
y=0, 1‘""—“",:;, , B= a‘—c’)'
0. The only developable surfaces which have 1somotric lines of ourva-
y are erther comoal or eylindrical.

1. Taking the asymptotio lines as p 10 ourves, and evaluating
n', r] along the dircctions »=const. and w=const,, vorify the values

"ZK for the torsions of the asymptotic lincs

Q. Show that the moridians and parallels on a sphere form an isometrie
em, and determine the 180motric pirametors,

,3. Find tho asymptotic lines on the surface

z=a(l+cosu)coty, y=a (1+cosu), pm2CO8Y

sinv °

4. Prove that the produot of the rudn of normal curvature in conjugate
ctions 18 & minimum for lines of curvature.

5. A curve, winoh touches an asymptotic ine at P, and whose osculating
1¢ is not tangential to tho surface ut P, has 2 for a pont of inflection.

6. The normal curvature in a dircction perpeudicular to an asymptotic
18 twice the mean normnl curvaturo

7. Show that the umbilici of the surface

m & sphere. G) ﬂ * (%)3 + (E)I'l

8. Examine the curvature, and find the lincs of ourvature, on the
ace zyz=abe.

9. Show that the curvature of an asymptotio line, as given 1n (26) of
. 88, uny bo oxpressed

(r1eY Tyer’ = ryex’ ryex”)/H.
20. Tho asymptotio lines on the helicoid of Examples IV (15) are given

ufndul~ 2edudv+ udfidvd=0.




CHAPTER V
THE EQUATIONS OF GAUSS AND OF CODAZZI

41. Gauss’s formulae for ry, 'y, I's. The second derivatives
of r with respect to the parameters may be expressed in terms of
n, r, and r,, Remembering that L, M, N are the resolved parts of
Iy, Ty, Ty Normal to the surface, we may write

ry=Ln+Ir+Ar, I
Ty=Mo+mr+pr - s o (1),
Ty=Nn +nr, 4 r;

and the values of the coefficients I, m, m, A, u, v may be found as

follows. Since
1

19
r,-ru=§5;r,’=§E’1,
9 10 1
and r"r“=ﬁ(r"r“)_Eﬁr"=F’—§E"

we find from the first of (1), on forming the scalar product of each
side with r; and r, successively,
3B, =IE+\F
Fl—-x}E,=lF+)~G}'
Solving these for I and A we have

1
1= 577 (GB, - 2FF, + FE,)

1
A= byeg (2EF,— EE,~ FE,)

Agam since 1y ery =4 E; and rye 1, = 4 G, we find from the second
of (1), on forming the scalar product of each side with rand r,
successively,

1 E;=mE + uF

$Gi=mF + ,‘.G} '
Solving these for m and y we have

1
m=2—m(GE,—FGl)

: s (3).
p=5m (BG—FE)
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1ly, using the relations ry e vy =F,— 3, and ryoru=%G,,
i from the third of (1)

1
n =w (26F, - GG, - F&,)

v= ﬂ[i (EG,—2FF,+ ¥@,)
rmulae (1), with the values of the cocfficients* given by (2),
1 (4), are the equivalent of Quusy's formulue for 1y, Ty, Ta,
ay bo referred to under this name.

on the parnmetric eurves are orthogonal, the values of the
coefficients are greatly siwplified. For, in this case, F=0
1= Ji(}, so that

Al

E, Iy,

ry=Jn+ 27;. A ;l-‘—:'-!r,
Ey (e

r,,—Mn+2!. +2Gr,‘~ PTTTUPR ¢: O ¥
[} (¢

ry=ANn - 21: + 2(; r,

y are undt veetors parallel to r; and r, we have
r!
=W
a,b, n form o right-hamded systom of unit veetors, mutually
wicnlar. From these ﬂn-mulxu- we d(-ducu immedintely that
[ F,
h '\/ ‘Z!I
da - .M (}, b
w Vh' *5i

n
e=ci P

T - 1

w ML T
m=va e ®
i N 4o
wTEr e ®

erivatives of a are perpendicular to a, and the derivatives of
perpendicular to b, since a and b are vectors of constant (unit)
L

1vefrain from introducing the Ohristoffel th dex symbols, having little
a in the following pages to use the functions they represent.
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Ex. 1. Show that for the surface z=f(z, ), with %, y as parameters
(Art. 33),

l= gg, m=E§, n=££‘,
)‘=1% ) [l=— 3y v=‘-§;1 .
Ex. 2. For the surface of revolution (Art. 34) show that
I=ulfifuHY m=0, n=—uH?,
A=0, pl=1l‘, v=0.

Ex. 38, For the nght heliooid (Ex 1, Art. 26) prove that
=0, m=0, n=—1u,
A=0, p=u/(ut+c?), »=0
Ex. 4. Fora surface whose Linear element 18 given by
ded=du?+ D d?,
show that 1=0, m=0, n=—DD;,
A=0, u=D,/D, v=Dy/D.
Ex. 5. Lwuwills surfaces are such that
det=(U+ V) (Pdud+Qdu¥),

where U, P are funotions of » alone, and V; @ are functions of » alone Prove
that, for these surfaces,

(]
(U+V+P) 2(17+17)' "= "9p(U+ VY

o
A= 29(17+V)’ =2(0+ 7y ’“’i(m*%)'
Ex. 6. For the surface generated by the tangents to a twisted curve
{Ezamples V (b)] show that

1=0, m= —;1‘, = —{(1+u3c?) k+ux}fux,
A=0, p.=£, v=(ux'+ ) ux
Ex. 7. For the surface generated by the bmormals to a twisted curve
(Ex. 8, Art. 30) show that
1=0, m=0, ne=—urd,
A=0, p= ur? L
L w7 L pr = B
Ex. 8. If the asymptotic Lines are taken as parametr1o curves, prove that

the currature of the line v=const. 18 AZ/£¥, and that of the Line u=const. is
—nH|GY,
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Using the formula (26) of Art. 38 we have along the line v =const.

1 v T rn 9/1
v =B ()
and therefore 'xY'=r xry/E}
The curvature of the line 1s then
[m, ¥, ¥]=[n, 1, ru)/E¥=[n, r,, ir+r;) EY
=\H|E%,
and simlarly for the asymptotic line %=const.
Ex. 9. For a surface given by ds=¢ (du?+ do?) show that
I=i/d, m=tpsp, n=—%pi/d,
A=—3dld, p=ddi/, v=bdi/d
Ex. 10. If the null hnes are taken as parametro curves, show that
i=h|F, m=0, n=0,
A=0, p=0, v=FF

42, Gauss characterlstic equation. The six fundamental
magmtudes £, F, G, L, M, N are not functionally independent,
but are connected by three differential relations One of these, due
to Gauss, is an expression for LN — M* n terms of E, F, @ and
their derivatives of the first two orders. It may be deduced from
the formulae of the preceding Art. For, in virtue of these,

ryeTy=LN + InE + (v + M) F+ M@,
and gt =M+mE + 27)1;LF + p G.
It 15 also easly venfied that
Iy — Iy o Ty = § (B + Gy — 2F).
Adding the first and third, and subtracting the second, we obtain
the required formula, which may be written

LN — M=% (2Fu — Bu— Gu) + (m*E + 2muF + 12 Q@)

—{InE + (v + An) F+ MGY... .. (5).
This is the Gauss characteristic equation. It is sometimes expressed
in the alternative form
9 (F 0E 109G
LN—M'=*Ha{EHﬁ ‘fm}

9 (20F 10E F 3E

+3E2 {Hﬁ 2o -7a m} veve (6).
The equation shows that the specific curvature K, which s equal to
(LN — M%)/H?, is expressible in terms of the fundamental magni-
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tudes E, F, @ and their derivatives of the first two orders. In this
respect it; differs from the first curvature.

Cor. Surfaces which have the same first order magmitudes

B, F, @ (irrespective of the second order magmtudes L, M, N)
have the same specific curvature.

EX. Verfy the Gauss equation (5) for the surfaces in Examples 2,3, 6,
7 of Art. 41.

43. Mainardi-Codazzl relations. In addition to the Gause
characteristuc equation, there are two other independent relations
between the fundamental magnitudes and thewr derivatives. These
may be established as follows. If m the identity

2
= % T
we substitute the values of r,, and ry, given 1 (1), we obtan
Lyn + 11y + 0T + Ly + Iryg + ATy,

=Mn +mx, + ¥, + M, + mry, + pry,.
If in this we substitute again from (1) the values of the second
derivatives of r, and also for m, and n, from Art. 27, we obtain a
vector 1dentity, expressed in terms of the non-coplanar vectors
n, r;, v, We may then equate coefficients of like vectors on the
two sides, and obtain three scalar equations. By equating coeffi-
cients of m, for example, we have

Ly + IM+ AN = M, +mL + plM,

that is Ly~ My=mL —~(=p) U ~AN........... ... .

Similarly from the identity B—aw Ty= B% Ty, on substituting from
(1) the values of r;, and r,, We obtain the relation

Mn + gty + pay + My + mxy, + pry

=Nn+mr,+ur+ Nn, +nry, + vry,.
Substituting ageain for the second derivatives of r and for n,,ng1mn
terms of m, x;, 1y, and equating coefficients of n on the two sides
of the identity, we obtain
Mo+ mM + uN =N, +nL + M,
that is M= Ni=nL—(m—=y)M~pN .. ........... (8).
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The formulae (7) and (8) are frequently called the Codaszi
squations. But as Mainardi gave similar results twelve years earlier
than Codazzi, they are more justly termed the Muinardi-Codazzi
relations. Four other formulae are obtained by equating coefficients
of r, and of r, in the two identities: but they are not independent.
They are all deducible from (7) and (8) with the aid of the Gauss
characteristic equation.

44. Alternative expression. The above relations may be
expressed in a different form, which is sometimes more useful
By differentiating the relation H? = EG — F* with respect to the
parameters, it is easy to verify that

Hy=H(+p)
and H,=H(m+v).
a/N\_N N
Therefore ﬁ(ﬁ) =g~ F’H'
N, N
~ - F+m,
. . oM\ M, M
and similarly %(ﬁ)=ﬁ‘ﬁﬂ'
=%’—%(m+v).
Consequently
o (M\ 9 (N\_ 1 M N
5 (2) "2 (7) =g U-B-Fm+)+ g (+w
= (0L = 2mM 4 INY/Hoeoeevveere @,

in virtue of (8). Similarly it may be proved that

z (g) -2 (%) =L~ M +ANYH ......10).
The equations (9) and (10) are an alternative form of the Mamardi-
Codazzi relations.

We have seen that if six functions E, F, @, L, M, N constitute
the fundamental magmtudes of a surface, they are connected by
the three differential equations called the Gauss characterstic
equation and the Mainardi-Codazzi relations Conversely Bonnet
has proved the theorem: When siz fundamental magritudes are
gwen, satisfying the Gauss characteristic equation and the Mainardi-
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Codasei relations, they determine a surface uniquely, except as to
position and orwentation in spacet. The proof of the theorem is
beyond the scope of this book, and we shall not have occasion to
use 1t.

*45. Derivatives of the angle . The coefficients occurring
in Gauss’s formulse of Art 41 may be used to express the deriva-
taves of the angle o between the parametric curves. On differen-
tiating the relation 7

tan o =7
with respect to u, we have
FH,- HF,
P
Then on substituting the value sec'w = EG/F? and multiplying
both sides by 2HF9, we find
2EGHw, = F (2HH,)— 2F, H*

= .2 (BG— ") - 2F, (BG - )

=F(B,G+ EG)—2F.EG
=—2H*(\G+mE).

Hence the formula, o=—H (%,+ %L) ................ (11)

And in a similar manner 1t may be shown that

w,=—H(%.+%).... ........ v (12).

sec'ww, =

EXAMPLES VII

1. Show that the other four relations, smilar to the Mamnardi-Codazz
relations, obtemnable by equating coefficients of r; and of Ty the proof of
Art. 43, are equivalent to

FE =ty ~lg+mp-n),
FE=py~v,+mp—nd,

ER =Xy~ py+lu—mh+hy =,
GK=n,—m,+ln—m’+mv—np.

2. Prove that these formulse may be deduced from the Gauss character-
ist1o equation and the Mainardi-Codazzi relat:

1 Forsyth, Differentral Grometry, p 50,
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8. Prove the relations

% (%)% (%)-m5

w(7)-5()-5
iing the formulae in Ex. 1
4. If » 18 the angle between the parametric curves, prove that

- ount () + 2 (%) +ix
4 (5) &)

5. If the asymptotic lines are taken as parametrio ourves, show that the
sanardi-Codazz relations become

Yy
¥=Th HT
ence deduce that (of Art. 44)

El -Ml 1 ”l
U=ty P=F- T
s My Hy My
m=—3 =57, ==+ =5

6. When the parametric curves are null lines, show that the Mawmard:-
odazz1 relations may be expressed
L 0, 2 N_0, H
X"w 87 E % ®EF
1d the Gauss characteristic equation as
FF,
LN - M?=Fy~ ‘F 2,
7. When the linear element is of the form
dedemp (duP-+ ),
16 Mainardi-Codazz relations are

L=y BT B,

M- M,——ﬂ<L+zv>,
1d the Gauss equation
Ly~ M‘-—(¢1’+¢z’) -4 (¢u+dm)

8. When the parametric ourves are Lines of curvature, deduce from equa-
ons (7) and (8) that

Li=m-=} (5+7) B

Ny=Nu-In=} (E*% n
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9. Prove that, for any direction on a surface,
"=k, +D 1+ DsTy,
where Dy =3+ 2mwy - m/3 4,
Dy=\u1+2puy +v03+0".
10. With the notation of Ex 9, show that the curvature of an asymptotic
line, as given by (28) of Art 38, may be expressed
B (Dyw' - D).
Deduce the values H)\/E¥ and — Hn/G} for the curvatures of the parametric
curves when these are asymptotic Lines.
11. Prove the relations
Ey=2(E+\F), F =mE+(+p)F+1AG,
Eg=2 (mE+pF), Fy=nE+(m+v) F+upG.
12. From the Gauss characteristio equation deduce that, when the para-
metrio curves are orthogonal,

ool G4 +3 49

This formula 18 1mportant



CHAPTER VI

GEODESICS AND GEODESIC PARALLELS
GEODESIOS

46. Geodesic property. A geodesic line, or briefly a geodesic,
on a surface may be defined as a curve whose osculating plane at
each pomnt contains the normal to the surface at that pomnt. It
follows that the principal normal to the geodesic coincides with the
normal to the surface; and we agree to take it also in the same
sense. The curvature of a geodesic 18 therefore the normal curva-
ture of the surface 1n the direction of the curve, and has the value

r=Lu"+ 2Mu'v + Nov™ ..covevvnvnnnnnnnn(),
by Art. 28, the dashes denoting derivatives with respect to the
arc-length s of tho curve.

Moreover, of all plane sections through a given tangent line to
the surface, the normal section has the least curvature, by Meunier’s
theorem. Therefore of all sections through two consecutive points
P, Q on the surface, the normal section makes the length of the
arc PQ a mmmum But this is the arc of the geodesic through
P, Q. Hence a geodesic 18 sometimes defined as the path of shortest
distance on the surface between two given points on 1t. Starting
with this definition we may reverse the argument, and deduce the
property that the principal normal to the geodesic coincides with
the normal to the surface. The same may be done by the Calculus
of Vanations, or by statical considerations in the following manner.
The path of shortest distance between two given points on the
surface 18 the curve along which a flexible string would lie, on the
(smooth) convex side of the surface, tightly stretched between the
two pomnts Now the only forces on an element of the string are
the tensions at 1ts extremities and the reaction normal to the
surface. But the tensions are in the osculating plane of the
element, and therefore so also is the reaction by the condition of
equilibrium. Thus the normal to the surface comcides with the
principal normal to the curve,

7—2
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47. Equations of geodesics. From the defining property of
geodesics, and the Serret-Frenet formulae, 1t follows that
Y SR e e (2),
which may be expanded, as 1n Art. 28,
U’ + 10" + 1y U+ 21U gy = k0.
Forming the scalar product of each side with r, and r, successively,
we have
By’ + Fv" + By + Buw'v' + (Fy— 3 Q) v = 0} ®
Fu' + G +(Fy~ 3 E)u+ Gu'v' + 3G =0f
These are the general differential equations of geodesios on a surface.
They are clearly equivalent to the equations

c%; (Bu' + Fr'y=} (B + 2F/ o + Goo)

(P + Q)= § (Basr+ 2P + G

A third form, which is sometimes more convenient, may be found
by solving (8) for »” and ", thus obtaining
u” + U+ 2mu'y + "t =0
o7+ M+ 2pu'y " = 0}

where 7, A etc. are the coefficients of Art. 41.

A curve on the surface is, however, determined by a single
relation between the parameters. Hence the above pair of differ-
ential equations may be replaced by a single relation between u,
v. If, for example, we take the equations (5), multiply the first by
d_v(ﬂ ', the second b (d_e)’ and subtract, btain the single
™ du)’ 7 {72 ct, we obtain the singl
differential equation of geodesics in the form

3 1
2o (%) +m—) & +a-mZ .o

Now from the theory of differential equations it follows that there
exists a unique integral v of this equation which takes a given
value v, when w= u,, and whose dervative du/du also takes a given
value when u=u, Thus through each pownt of the surface there
passes a single geodesic in each durection. Unlike lmes of curvature
and asymptotic lines, geodesics are not determined uniquely or in
peirs at & point by the nature of the surface. Through any point
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pass an infinite number of geodesics, each geodesic being deter-
mined by 1ts direction at the point.

The equations of geodesics 1nvolve only the magnitudes of the
first order, E, F, @, and their derivatives. Hence if the surface is
deformed without stretching or tearing, so that the length ds of
each arc element 1s unaltered, the geodesics remain geodesics on the
deformed surface In particular, when a developable surface is
developed into & plane, the geodesics on the surface become straight
lines on the plane. This agrees with the fact that a straight line
is the path of shortest distance between two given points on the
plane.

From (6) 1t follows 1mmediately that the parametric curves
v=const will be geodesics if A =0. Similarly the curves « = const.
will be geodesics if n=0. Hence, if the parametric curves are
orthogonal (F = 0), the curves v= const. will be geodesics provided
E is o function of u only, and the curves u = const. will be geodesics
if @ 18 a function of v only.

Ex. 1. On the right helicoid given by

Z=1%008 ¢, y=usng, 2=0gp,
we have seen (Ex. 1, Art. 26) that

E=1, F=0, G=wl+¢, Hd=uit+ed
Therefore the coeffioients of Art 41 have the values
{=0, m=0, n==—1

A=0, p=u/@+e¥), »=0.

The equations (5) for the geodesios become
- u¢’l-0
(ul+ %) "+ 2uru'p’ -=0}

From the second of these 1t follows that

(uP+0%) %=oonst.=h (say).
But for any arc on the surface
ds? = dul (U -+ o%) dop®
Henoe, for the aro of a geodesto,
(uB+0%)? dp?=R3dud + (ud + &*) Kidg®,

and therofore %= +z J(u!+ol) (42— ),
Thus 18 & first integral of the differential of geod The pl

integral may be found in terms of elliptic funohons
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Ex. 2. When the equation of the surface 18 given 1 Monge's form
z=f (2, y), we have seen (Art. 33) that, with z, y as parameters,
E=14p% F=pq, G=1+q¢% Hi=1+p*+g%
Therefore, by Art 41, l’éﬂv ﬂln%, n=§f.ﬁ’
8
)\=§§: F=%Tg: V=g§~
The equation () for geodesica then takes the form

atpr g Th=pt (L) +op-an) (3 )+<pr—2q~)‘f;{—rg

dy dy
(2 (@ udie
48. Surface of revolution. On the surface of revolution
w=ucos¢, y=usng, z=j(u),
we have seen (Art 34) that with u, ¢ as parameters
E=1+f2 F=0, G=w, H'=u(l+f.
Therefore, by Art. 41,
A=0, p,=%, y=0.

The second of equations (5) for geodesics then takes the form
o 2duds_,
@ Tuds ds

On multiplication by #* this equation becomes exact, and has for

its 1ntegral P
d¢ _
u? s =h

where h is & constant. Or, if 4 is the angle at which the geodesic
cuts the meridian, we may write this result
wsin Y =h.. . (T,

a theorem due to Clawraut. This 1s & ﬁrst mtegml of the equatlon
of geodesics, involving one arbitrary constant h.

To obteain the complete ntegral we observe that, for any arc on
the surface,

ds® = (1 4 £i*) du + u*d¢s,
and therefore, by (7), for the arc of a geodesic,
utdg? = Bt (1 + f2) du® + hawsdgp?,

80 that dp= i k L +f,.:. du.
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Thus ¢=o+hf1 \/”f‘ Bhererrrereeernenni(8),

involving the two arbitrary constants (' and A, is the complete
integral of the equation of geodesics on a surface of revolution.

Cor. It follows from (7’) that 4 is the minimum distance from
the axis of & point on the geodesic, and is attained where the geo-
desic cuts a meridian at right angles.

Ex. 1. The geodesics on & ciroular oylinder are helices,

For from (7), since % 18 tant v is tant. Thus the geodesics out the
generators at a constant angle, and are therefore helices.

Ex. 2. In the case of a mght circular cone of serm-vertical angle a, show
that the equation (8) for geodesics is equivalent to

we=} 560 (¢ sm 2+ B),

where % and B are constants.

Ex. 3. The perpendicular from the Vertex of a right circular cone, to a
tangent to a given geod 18 of tant length.

49. Torslon of a geodesic. If r1s a point on the geodesie,
r’ 18 the unit tangent and the principal normal 18 the umit normal
n to the surface. Hence the umt binormal is

b=r'xn
Differentiation with respect to the arc-length gives for the torsion
of the geodesic

—m=r'xn+rxn’

The first term in the second member is zero because r”" is parallel
to n. Hence

m=n'xr.. ..(9),
and therefore 7v=[n, 0, r']
This expression for the torsion of a geodesic 1s 1dentical with that
found in Art. 88 for the torsion of an asymptotic lme. The geo-
desic which touches a curve at any point 1s often called its geodesic
tangent at that pont. Hence the torsion of an asymptotio line s
equal to the torsion of its geodesic tangent.

Further, the expression [n, n/, '] vanishes for a principal direc-
tion (Art. 29). Hence the torsion of @ geodesic vamishes where 1t
touches a line of curvature. It also follows from (10) that f a geo-
desic 18 a plane curve it 18 a line of curvature; and, conversely,+f a
geodesic 18 a line of curvature it 18 also a plane curve.
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The triple product [n, n’, '] may be expanded, as in Art. 29,
by writing n’ =n,%’ + n,v’ and ¥ =r,w’ + r;v”  The formula for the
torsion of a geodesic then becomes

r= %1 {((BM - FL)yw+(EN — GL)w'v +(FN — GM)v*} (11).

This may be expressed in terms of the inclination of the geodesio
to the principal directions. Let the lines of curvature be taken as
parametric curves. Then

F=M=0, H'=EG
and the last formula becomes

r=vEGw (F-5).

G E,
But (Art. 24 and Note I)1f 4 18 the inclination of the geodesic to
the line of curvature v = constant,
VEW =cosy, VG =sinqn

Algo the principal curvatures are

ts=L[E, x=N/G
Hence the formula for the torsion of the geodesic becomes

T=0co8 Y 8iN Y (Kp —Kg)eeeerer oo veren (12).

From this it follows that two geodesics at right angles have their
torsuons equal in magnitude but opposite in sign. Further, besides
vanishing in the principal directions, the forsion of a geodesic
vantshes at am umblic. And, of all geodesics through & given pomt,
those which bisect the angles between the lines of curvature have
the greatest torsion.

The curvaturs of a geodesic is the normal curvature in its direc-
tion. Its value, as given by Euler's theorem (Art 81),1s therefore

k=Kqcos’ Y +rpmniy.... . .. . ... (18).
Ex. 1. If «, rare the curvature and torsion of a geodesic, prove that
3=k —kg) (K — k).
Also, if the surface 18 developable (x,=0), show that
k=rtany.

Ex. 2. Deduce from (12) that the torsions of the two asymptotio lines at
& pomnt are equal in magnitude and opposrte in sign.
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Ex. 3. Prove that the torsion of a geodesic is equal to
1| Bv+F F+@v
H|pw+dv Hu+3o |
Ex. 4. Prove that, with the notation of Art 49 for a geodesic,
k €08 Y — 7 8in Y=k, CO8 Y,
k 81N Y +7COS Yr=nxp 81D Y

CURVES IN RELATION TO GEODESICS

50. Bonnet’s theorem. Let C be any curve drawn on the
surface, r' 1ts unit tangent, & 1ts principal normal, T its torsion,
and W the torsion of the geodesic which touches 1t at the pomnt
considered. We define the mormal angle = of the curve as the
angle from fi to the normal n to the surface, 1n the positive sense

b
I

Fig. 14.

for a rotation about r. Thus = is positive if the rotation from
i to n is m the sense from & to the binormal b; negative if in the
opposite sense. Then at any pownt of the curve these quantities
are connected by the relation

d
£+ P AT (14).

This may be proved in the following manner. By (9) of the
previous Art we have Wn=mn’xr. The umt binormal to the
curve is b=1r' x fi, and

cosw=1Men, sinw=ben,
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Differentiating this last equation, we have
cos-n-%. =b’en+ben’
=—rlien+r xfien
=—7cosw+ Wneh
=(=7+ W)cos w.
dw

Hence the formula - +r=W,

expressing a result due to Bonnet. Since W is the torsion of the
geodestc tangent, it follows that the quantity (% + 'r) has the same

value for all curves touching at the point considered The formula
also shows that =’ is the torsion of the geodemc tangent relative
to the curve C; or that — = is that of O relative to the geodesio
tangent.
Ex. Prove (14) by differentiating the formula
cos w=fien

51. Joachimsthal’s theorems. We have seen that the tor-
sion W of the geodesic tangent to a line of curvature vanishes at
the point of contact. If then a curve ¢ on the surface 1s both a
plane curve and a line of curvature, r=0 and W=0; and there-
fore, 1 virtue of (14), o’ =0. Consequently its plane cuts the
surface at a constant angle. Conversely, if a plane cuts a surface
at a constant angle, the curve of intersection has zero torsion, so
that 7=0 and o’'=0. Therefore, in virtue of (14), W vanishes
identucally, showing that the curve is a line of curvature. Similarly
if = is constant and the curve is a line of curvature, r must vanish,
and the curve 1s plane. Hence +f a curve on a surface has two of
the follounng properties st also has the third: (a) it is a line of
curvature, (b) 1t 18 a plane curve, (c) its normal angle is constant.

Moreover, if the curve of intersection of two surfaces is a line of
curvature on each, the surfaces cut at a constant angle. Let = and
@, be the normal angles of the curve for the two surfaces. Then
since the torsion W of the geodesic tangent vanishes on both
surfaces,

dw _ doy
ﬁ+7_0’ E-+T—0.
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Hence %(w — @) =0,

80 that @ — @, = const,
Thus the surfaces cut at & constant angle.

Similarly, if two surfaces cut at @ constant angls, and the curve
of intersection 18 a line of curvature on one, it 8 a line of curvature
on the other also. For since

@ — w,==const.

1t follows that ==

Hence, by (14), 1f W and W, are the torsions of the geodesic tan-
gents on the two surfaces,

W—r=W,—m,
50 that W=W,
If then W vanishes, so does W,, showing that the curve 1s a line
of curvature on the second surface also. The above theorems are
due to Joachimsthal. The last two were proved in Art. 29 by
another method.

Further, we can prove theorems for spherical lines of curvature,
smilar to those proved above for plane hines of curvature. Geo-
desics on a sphere are great circles, and therefore plane curves.
Their torsion W, therefore vanishes identically. Hence for any
curve on a sphere, if @, 18 1ts normal angle,

d=,

ds
Suppose then that a surface is cut by a sphere in a line of curva-
ture. Then since the torsion W of the geodesic tangent to & line
of curvature is zero, we have on this surface also

+Tr=0

dw
n +7=0,
From these two equations 1t follows that
d
s (w—w)=0,
and therefore & — @, = const.

Hence 1f the curve of intersection of a sphere and amother surface
18 @ line of cwi vature on the latter, the two surfaces cut at a constunt
angle.



108 GEODESIOS AND GEODESIO PARALLELS [vx

Conversely, if a sphere cuts a surface at a constant angle, the
curve of wtersection 18 @ line of curvature on the surface. For

du _dw,
ds  ds’
and therefore T=1—W.

Thus W vanishes identically, and the curve is a line of curvature,

52. Vector curvature. The curvature of a curve, as defined
in Art. 2,18 a scalar quantity equal to the arc-rate of turning ot
the tangent. This 1s the magmtude of the vector curvature, which
may be defined as the arc-rate of change of the umt tangent. It1s
therefore equal to t’ or kn. Thus the direction of the vector curva-
ture is parallel to the principal normal. The scalar curvature & 18
the measure of the vector curvature, the positive direction along
the principal normal being that of the unit vector n.

If two curves, 0 and O, touch each other at P, we may define
thewr relatwe curvature at this pomnt as the difference of their
vector curvatures. Let t be their common umt tangent at P, and

F
\
\
\
\
\
\

Fig 15.

t +dt, t +dt, the unit tangents at consecutive points distant ds
along the curves from P If BE, BF, B@ represent these unit
vectors, the vector GF is equal to dt — dt,. The (vector) curvature
of C relative to Cj 18 then

dt _dt, _dt—dt, GF

ds ds~ ds  ds®
If do is the angle G'BF, the magnitude of the relative curvature
is df/ds, the arc-rate of deviation of their tangents.

58. Geodesic curvature. Conmder any curve C drawn on a
surface We define the geodesic curvature of the curve at a pomnt
P as its curvature relative to the geodesic which touches 1t at P.
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Now the vector curvature of the curve is r”, and the resolved part
of this in the direction of the normal to the surface is ner”, or x,
by Meunier’s theorem. But the vector curvature of the geodesic
is normal to the surface, and 1ts magnitude 1s also #,. That is to
say, the curvature of the geodesic 18 the normal resolved part of
the vector curvature of ¢ Hence the curvature of O relative to
the geodesio is its resolved part tangential to the surface This
tangential resolute is sometimes called the tangential curvature of
O, but more frequently its geodesic curvature. As a vector 1t 18
given by
r—ner'n or =D .. (15).

Its magnitude must be regarded as positive when the deviation
of O from the geodesic tangent 18 in the positive sense for a rota-
tion about the normal to the surface Thus we must take the
resolved part of the vector curvature r” in the direction of the
unit vectorn x r'. Hence the magmtude of the geodesio curvature
is n x r’er”. Denoting it by «, we have

rg=[0, ¥, Il (16).

A variation of this formula is obtained by writing n=r, x r/H.
Then

[m, v, r”]=—_]§(r, X Tg) X ¥/ ex”
=%(r,or’r,—r.-r’r,)-r”,
80 that Ky =11—_I(r,-r’r.-r" ~Tpel'Ter”) iieeeeen (1),

It is aleo clear from the above argument that, if « is the curva-
ture of the curve C, and = its normal angle,

Ky=K80 &
while K= K COS m_} ..... TTT eeeeo(18).
Hence =+ K
and Kp= kn tan n_} .................... (19).

All these expressions for «, vamsh when C is a geodesic. For then
" is parallel to n, and therefore perpendicular to r, and r,, while
@ is zero. This means simply that the curvature of a geodesic
relative to itself is zero.

It will be noticed that the expression [, v/, x”] for the geodesic
curvature is the same as that found in Art. 38 for the curvature of
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an ssymptotic e, This 18 due to the fact that the osculating
plane for an asymptotic line 1s the tangent plane to the surface,
while the curvature of the geodesic tangent, being the normal
curvature in the asymptotic direction, is zero. Thus the curvature
of an asymptotc line 18 equal to its geodesic curvature.

54. Other formulae for x,. From (16) or (17) we may deduce
an expansion for the geodesic curvature in terms of «', u” etc. For
instance, on substitution of the values of x’ and r” 1n terms of shese,
(17) becomes

ko= (B + ) (P + G + (B~} B+ Gru'd + 3 Gun')

— 3 (P + ) (B + B+ § w4 Bl + (B = $G:) v,
which may also be written
k= Hu' (/' + N + 2p v + ')
— Hy (1" + W + 2mu'y’ + no").. (20),

each part of which vanishes for a geodesic, in virtue of (5).

In particular for the parametric curve v=const. we have
o' =v" =0, and the geodesic curvature xg of this curve 1s there-
fore equal to Hu'\u%, which may be written

kgu=IDEY,
Similarly the geodesic curvature «, of the curve u=const. has
the value
kg =— HnG %,
When the parametric curves are orthogonal, these become
K= — £, K= &,
n= TRy mT oG yE”

From these formulae we may deduce the results, already noticed
m Art 47, that the curves »=const. will be geodesics provided
A=0, and the curves w = const. provided n=0 When the para-
metric curves are orthogonal, these conditions are H,=0and Gy=0;
g0 that the curves v = const. will be geodesics if K is a function of
% only; and the curves u = const. if G 18 a function of v only.

Another formula for the geodesic curvature of a curve may be
found in terms of the arc-rate of increase of its inclination to the
parametric curves Let 6 be the ‘inclination of the curve to the
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parametric curve v = const, measured 1n the positive sense. Then
since, by Art. 24 and Note I

Eu + Fv' =NE cos 6,
we have on differentiation

‘%(Eu'-rw)ﬁ%fcos 0—~/Esine‘i—f
Lo mon s e d
= oo (B + ) (B + Fo)— By %

Now, if the curve is a geodesic, the first member of this equation
is equal to

§ (B + 2F0/'v + Gyo™).
On substitution of this value we find for a geodesic

dé H\ , Hy,

Hg=-"Fv-"F
Thus the rate of increase of the inclination of a geodesic to the
parametric curve ¥ = const. 18 given by

Now the geodesic curvature of a curve O is tangential to the
surface, and its magnitude 18 the aro-rate of deviation of C from
its geodesic tangent. This is equal to the difference of the values
of df/ds for the curve and for its geodesic tangent But its value
for the geodesic has just been found. Hence, 1f df/ds denotes its
value for the curve O, the geodesic curvature of C 1s given by

a6 H_ ., ,
x,=£+f()»u £ 7)) IR (21).

Or, if % is the inclination of the parametre curve u = const. to the
curve O (Fig. 11, Art. 24), we may write this
x,=g+)‘~'}{;—asm&+ﬁ,sin0 ............ (22).

In the particular case when the parametric curves are ortho-
gonal, sin ¥ =cos §. Also the coefficient of sin Y becomes equal to
the geodesic curvature of the curve v = const., and the coefficient
of s 6 to that of the curve u=const Denoting these by «,, and
kg Tespectively, we have Liouwille's formula

,4,-”=g—f+lcwcost9+x,,sin9 ..... et (23).
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*55. Examples.
(1) Bonnet's yormula for the geodesio curvature of the curve qﬁ (u, v)
By differentiation we have '+’ =0 .. ...... (3
[ A
5o that d_,; == =5
where O=n E¢p—2Fd, s+ Gop®
Agan differentiating (a) we find
b+ at"+ B+ 21’ + =0,
which may be wnitten
© (W'~ VU")+ Pyt + 21w’ v’ + prav/?=0,
By means of those relations we find that
3 (Fgy— G\ | 3 F¢1—E¢l)
u ( e ) +5 e
= H3 (v + M3+ Quu'y + /%) = H3 (0 + w8+ 2mu'y v
- H Kp.
Hence Bonnet’s formula for the geodesic curvature

=.__._ <F¢2 G¢1) % [ (F¢l E¢n) e e

From this result we may deduce the geodesio curvature of a ocurve of
farmly defined by the differential equation
Pdu+Qdv=0 ...ccvvrerrrenne NG
For, on comparing this equation with (a), we see that the mquued value
. 18( FQ-GP +13( FP-EQ )
*"H % \WEQ-2FPQ+ Py T B %\ EQ-2FPQ1GP

(2) Deduce the geodesic curvatures of the parametrio curves from the res
of the previous exerase.

(3) A curve C touches the parametric curve v=const Find 1its curva
relative to the parametric curve at the point of contaot.

The relative curvature 18 the difference of their geodesto curvatures.
geodesio ourvature of C 18 got from (20) by putting v=0 and ¥'=1/J/E.
value 18 therefore H (v"+AE-1)/J/E. But the geodesic ourvature of v=oc
18 HNE~% Hence the relative curvature is Hv"/s/E.

(4) Find the geodeso curvature of the parametrio lines on the surface

r=a(u+v), y=b(u-v), s=uv

(6) Find the geodesio curvature of a parallel on a surface of revolution.

(8) Show that a twisted curve 18 a geodesic on its rectifying developt
(The prinaipal normal of the curve 18 normal to the surface )

(7) Show that the evolutes of a twisted curve are geodesics on 1ts p
developable (Arta. 11 and 19)

(8) The radius of curvature of & geodesic on a cone of revolution varie
the cube of the distance from the vertex.

(9) From the formula (16) deduce the geodesic ourvature of the ¢
v=const, putting ¥'=1,/J &
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GEODESIO PARALLELS
56. Geodesic parallels. Let a singly infimite family of geo-
desics on the surface be taken as parametric curves » = const., and
their orthogonal trajectories as the curves u =const. Then F= 0,
and the square of the linear element has the form
ds* = Edu® + Qdo
Further, since the curves v=const. are geodesics, & is a function

of u alone (Art. 47). Hence, 1f we take f VEdu a5 a new parameter
u, we have

de?=dw+ Gdv* ... ... .o (24),
which is called the geodesic form for ds®. Since E is now equal
to unity, the length of an element of arc of a geodesic is du ; and
the length of a geodesic mtercepted between the two trajectories
u=qgand u=>b1s

fbdu=b—a..

a
This is the same for all geodesics of the family, and is called the
geodesio distance between the two curves On account of this
property the orthogonal trajectories u = const. are called geodesic
parallels.

From the geodesic form for ds* we may easily deduce the
property of minimum length characteristic of the arc of a geodeaic
joining two points on 1t. Consider, for example, the two pomts
P, Q in which a geodesic 18 cut by the parallels u =a,u=>0. The
length of the arc of the geodesic joining the two ponts is (b— a).
For any other curve joining them the length of arc 18

f; ds= f; Vdu + Gdir> f: du,

gince @ is positive Thus the distance is least in the case of the
geodesic.

With the above choice of parameters many results take a simpler
form. Since @ is positive it may be replaced by D, so that

dst=dw + DPdy® ceeoivvinns eennn (25).
Then since F'=0 and F=1 we have H?= G, so that
1=0, m=0, n=—%G=-DD,
1G,_D 1G;_D,
r=0 #=3G=D *"2@~D
W. 8

TITUTE
ARNEGIE INS
OFGTE.QHNOLOGY LIBRARY.



114 GEODESIOS AND GEODESIO PARALLELS [w

The Gauss characteristic equation becomes
Y
IN - M= Gt oo VG D

and therefore the specific curvature is
IN-M_ 1 V@

E=""¢" =~ m
1D
or K=_._DW ........ PPN i)

The first curvature is J=L+%.

The general equations (4) of geodesics become
w' —~DDwr =0

d%(D’v’)—DD,'u”=O ...... cerreeennnn(27),
and the single equation (6) gives
dw dv? dv\? dy
DI+ DDi(5) + i) +2D.5=0.

EX. Beltrami's theorem Consider a singly infinite family of geodesics, out
by a curve ¢ whose direction at any point P18 conjugate to that of the geodesio
through P. The tangents to the geod at the pownts of O generate a
developable surface (Art. 35), and are tangents to 1ts edge of regression Bel-
tramr's theorem 1s that the centre of geodesio curvature at P, of that orthogonal
trayectory of the geodesis which passes through this point, is the corresponding
point on the edge of regression.

Let the geodesics be taken as the curves v=const. and thewr orthogonal
trajectories as the curves u=const Then the square of the Linear element has
the geodesio form

de¥=dud+ Gdv?
The geodesio curvature of the parametrio curve u=const. 15, by Art. 54,
10¢
“r=26
This is measured in the sense of the rotation from r; to r;. Hence the distance
p from P to the centre of geodesio ourvature, measured 1n the direction r,, is
gwven by
1 1%
p 226G
Let r be the position vector of the pomt P on the curve 0, R that of the
corresponding point @ on the edge of regression, and r the distance Pg, also
measured in the direotion r;. Then, since Z=1,

R=r+4m;.
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Along O the quantities are functions of the arc-length s of the curve. Hence,
on differentastion,
R'=(r1% +1:0) 4+ 1 47 (Pue'+T?).
But, because the generators are tangents to the edge of regression, R’ 18
parallel to ry and therefore perpendioular to ry. Forming the scalar product
with r; we have
0=G +rTyeTyg0 =7/ (G+§r 27‘]),

the other terms vanshing 1 virtue of the relations #'=0 and E=1. Hence,
since 7' 18 not zero,

1__1e
r 2G%u’
howing that r=p, Therefore the point @ on the edge of regression 1s the
centre of geodesio curvature of the orthogonal trajectory of the g

57. Geodesic polar coordinates. An important particular
cage of the preceding 1s that in which the geodesics v =const are
the engly infinite family of geodesics through a fixed point O,
called the pole. Their orthogonal trajectores are the geodesic
parallels w = const., and we suppose u chosen so that B=1. If we
take the infinitesimal trajectory at the pole as the curve =0, u
18 the geodesic distance of & pont from the pole. Hence the name
geodesic circles given to the parallels u = const. when the geodesics
are concurrent. We may take v as the inclination of the geodesic
at O to a fixed geodesic of reference 0.4. Then the position of any
point P on the surface is determined by the geodesic through O
on which 1t les, and 1ts distance u from O along that geodesic.
These parameters u, v are called the geodesic polar coordinates of
P. They are analogous to plane polar coordinutes.

On a curve C drawn on the surface let P and @ be the consecu-
tive pownts (u, v) and (w + du, v+ dv). Then dv is the angle at O

N_-Q
P
u
»
o ——A
Fig 16,



PR

B T - SR,

T o e

T O T AN 2 W -FC S S—

116 GEODESIOS AND GEODESIO PARALLELS

between the geodesics OP and 0Q. Let PN be an element of
geodesic circle through P, cutting 0Q at N. Then QN =0P
therefore N@ =du. And since the angle at N is a right angle,
NP du = PQ* = ds*
= du? + D'd?,

showing that PN = Ddv.

Hence if 4 is the angle NQP, at which the geodesic cuts
curve C, P

sin'\;r=D@, cosﬂr=@, tanwp=D$':.

And we may also notice that the area of the element of the sur
bounded by the geodesics v, v+ dv and the geodesic circle
u+ du is
d8 = Ddudw.
If the curve O is 1tself a geodesic, we may write the firs
equations (27) for geodesics in the form

g—‘(cosw]r)—D,sinxpg—:=0,
or sin yrdvyr+ D, sin yrdv = 0.
Hence, for a geodesic,  dr=—Didv ..ccvvvvre vervennen. (2¢

It 15 also important to notice that at the pole D, has the v

unity. To see this we consider a small geodesic circle dustas
from the pole. The element of a geodesic from the pole to
circle is practically straight, and the element of the geodesic ¢
18 therefore udw to the first order. Thus near the origin

D =+ terms of higher order,
and therefore, at the pole, D, =1,

58. Geodesic triangle. If dS is the area of an elemer
the surface at a pont where the specific curvature is K, we

K d8 the second curvature of the element, and f f KdS taken

any portion of the surface is the whole second curvature of

portion, We shall now prove a theorem, due to Gauss, on the w
secondcurvature of a curvilineartriangle 4 BO'bounded by geode
Such a triangle is called a geodesic triangle, and Gauss’s thec
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may be stated : The whole second curvature of a geodesio triangle is
equal to the excess of the sum of the angles of the triangle over two
rght angles.

Let us choose geodesic polar coordinates with the vertex 4 as
pole. Then the specific curvature 18

19D
E==po

and the area of an element of the surface is Ddudv. Consequently
the whole second curvature Q of the geodesic triangle is

ﬂ=fdeS=—ff%1;)dudv.

Integrate first with respect to u, from the pole A to the side BC.
C

Fug. 17.
Then since at the pole D, is equal to unity, we find on integration
.Q.=f(1—D1)dv,

where the integration with respect to v 1s along the side B(. But
we have seen that, for a geodesic

— Dydv=d.
Hence our formula may be written

a=a+[ay.

Now the first mtegral, taken from B to 0, is equal to the angle 4
of the triangle. Also

fd\p= 0 (- B).
Hence the whole second curvature of the triangle is given by
Q=A+4+B+0—=Tueeerirrreriiriinnn (29),

88 required.
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The specific curvature is positive, zero or negative according as
the surface 18 synclastic, developable or anticlastic. Consequently
A + B+ 0 18 greater than = for a synclastic surface, equal to o for
a developable, and less than o for an anticlastic surface When
the surface 18 & sphere Gauss’s theorem 1s 1dentical with Girard’s
theorem on the area of a spherical triangle

59. 'Theorem on parallels. An arbitrarly chosen family of
curves, ¢ (4, v) = const., does not in general constitute a system of
geodesic parallels In order that they may do so, the function
¢ (u, v) must satisfy a certain condition, which may be found as
follows. If the family of curves ¢ (u, v)=const. are geodesic
parallels to the family of geodesics yr (u, v) = const., the square of
the inear element can be expressed 1n the geodesic form

ds*=edg® + Didy,
where ¢ is a function of ¢ only, and D a function of ¢ and 4.
Equating two expressions for ds* we have the identity
Edw + 2Fdudy + Gdv* = 6 (¢, du + dodv)? + D8 (Yrydu + redv)’,
and therefore E=epp+ Drvryd,
F= ey + Dy,
Q=edd+ Diypd
Consequently, elimmating 4, and yr,, we must have
(E—ed?) (G— edp?)— (F — 6y ' =0 ........ (a),
which 18 equivalent to
1 1
7 (G9° ~2Fhida+ Bty =— ..o . (30)

Thus in order that the famaly of curves ¢ (u, v) = const. may be a
Jamily of geodesic parallels,

(G2 — 2Fp, .+ Ed3) H?
must be @ function of ¢ only, or a constant.

The condition is also sufficient. For

ds* — ed¢® = (B — e¢t) du + 2 (F — ey o) dudy + (G — o) do?
and this, regarded as & function of du and dv, 18 a perfect square

m virtue of () bemng satisfied. We can therefore write 1t as Dadnpe,
80 that

)

d8* = odd + Drdys,
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proving the sufficiency of the condition. In order that ¢ may be
the length of the geodesics measured from ¢ =0, it 1s necessary
and sufficient that e= 1, that 1s

Gé—2F¢ hy+ Ept= H ..............(80').

60. Geodesic ellipses and hyperbolas. Let two indepen-
dent systems of geodesic parallels be taken as parametric curves,
and let the parametric variables be chosen so that » and v are the
actual geodesic distances of the pont (u, v) from the particular

Fig 18

curves u=0 and v=0 (or from the poles in case the parallels are
geodesic circles). Then by Art. 59, since the curves u = const. and
v =const. are geodesic parallels for which ¢=1, we have
E=G=H"
Hence, if o is the angle between the parametric curves, it follows
that
E=G=—s, F=322,
sin® @ sin'w
g0 that the square of the linear element 18
du? + 2 cos w dudv + dv®
ds? = 2
s’
And, conversely, when the linear element is of this form, the para~
metric curves are systems of geodesic parallels.
With this choice of parameters the locus of a point for which
%+ v=const. is called a geodesic ellipse. Similarly the locus of a
pomt for which u — v = const. is a geodesic hyperbola. If we put

T=}@+v), T=F®—0)nrs e (32),
the above expression for ds* becomes
o= B B (383),

@ (-]
sin® 5 cos’

2 2
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showing that the curves i = const. and ¥ = const. are orthogenal.
But these are geodesic ellipses and hyperbolas. Hence o system of
geodesic ellipses and the corresponding system of geodesio hyperbolas
are orthogonal Conversely, whenever ds? is of the form (33), the
substitution (82) reduces it to the form (81), showing that the
parametric curves in (33) are geodesic ellipses and hyperbolss.

Further, if 6 18 the inclination of the curve #=const. to the
curve v = const., it follows from Art. 24 that

cos §= cos2, sin f= smi,

and therefore 6= n—D .

Thus the gaodeaw elhpsea and hyperbolas bisect the angles between
the corresy of geodesic parallels.

CA4

61. Liouville surfaces. Surfaces for which the linear ele-

ment is reducible to the form
ds*= (U + V) (Pdur+ Qdr®). ....... ..... (34),

in which U, P are functions of u alone, and V, @ are functions of
v alone, were first studied by Liouwille, and are called after him,
The parametric curves clearly constitute an isometric system (Art.
89). It is also easy to show that they are a system of geodesic
ellipses and hyperbolas. For if we change the parametric variables
by the substitution

du
VPdu=— ==
w= g Vb= 15,
the parametric curves are unaltered, and the linear element takes
the form

de = (U + V)( e d;)

But this 18 of the form (38), where

78
sm ITU+V °°E 17_'1?
Hence the pa/ra/metnc curves are gaodemc ellipses and hyperbolas.
Liouwlle also showed that, when ds* has the form (34), a first
integral of the differential equation of geodesics 1s given by

Uem? 6 — Vcos* f=congt .. .......... (35),
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where 6 is the inclmation of the geodesic to the parametric curve
v=const. To prove this we observe that F'= 0, while

E=(U+7)P, G=(T+7)Q
8o that E,= U;P+(U+ V)Pn Gy= U,Q,
E,=V,P, Gy= V2Q+(U+ V) Qw

Taking the general equations (4) of geodesics, multiplying the
first by — 2u' V, the second by 2’ U and adding, we may arrange
the result m the form

%(UG-u”— VEu?)=w {(U+ V) E,~ V,E}

- {(U+ V)G, -U,6.
Now the second member vanishes 1dentically in virtue of the pre-
ceding relations, Hence
UGv" — VEw'* = const.,
which, by Art. 24, 18 equivalent to
Usin? 0 — V cos? @ = const.
a8 required.

EXAMPLES VIII

1. From formula (21) deduce the geodesic ourvature of the curves v=const.
and w=const.

2. When the ourves of an orthogonal system have constant geodesic our-
vature, the system 13 180metrio. .

3. If the ourves of one family of an tric eystem have stant geodesi
ourvature, s0 also have the curves of the other family.

4. Streight lines on a surface are the only asymptotic lines which are
goodesics.

6. TFind the geodesics of an ellipsoid of revolution.

6. If two famihes of geod out at & t angle, the surface 18
developable.

7. A curve 18 drawn on a cone, semi-vertical angle a, 8o as to cut the
generators at & constant angle 8. Prove that the torsion of 1ts geodesio tan-
gent 18 sn B cos B/( R tan a), where R 18 the distance from the vertex.

8. Prove that any ourve is & geodesic on the surface generated by 1ts
b ls, and an asymp Line on the surface generated by its prinoipal
normals

9. Find the geod on the catenoid of revoluti

2
w=00cosh -,
0
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10. If a geodesic on a surface of revolution cuts the meridians at a con-
stant angle, the surface 18 a right cylinder

11. If the principal normals of a curve intersect a fixed line, the curve is
a geodesio on & surface of revolution, and the fixed lne 18 the axs of the
surface,

12. A curve for whioh «/r is tant is a geodesic on & oyhinder. and a

curve for which %(r/:) 18 constant 18 & geodesio on a cone.

18. Show that the family of curves given by the differential equation
Pdu+Qdv=0 will constitute & system of geodesio parallels provided

5y s srrerom) "5 se-arres o)
Bu\VEQ—2FPQ+GPY 00 \yE@—2FPQ+GPY "

14. If, on the geodesics through a pont O, points be taken at equal geodesio
dhstances from O, the locus of the pownts s an orthogonal trajectory of the
geodescs.

Let the geodesics through the pole O be taken as the curves v=const., and
let u denote the geodesic distance measured from the pole. We have to show
that the parametric ourves are orthogonal. Since the el t of arc of a
geodesio 18 du, 1t follows that E=1. Also since the curves v=const. are
geodesios, A\=0. Henoce F;=0, so that F"1s & function of v alone. Now, at the
pole, 1y is zero, and therefore r;ery=F vanishes at the pole. But F1s nde-
pendent of %, and therefore 1t hes along any geodesmo. Thus /' vanishes

dentzeally, and the p tric curves are orthogonal.

15. I, on the geodesics whick cut a given curve O orthogonally, pownts be
taken at equal geodesio distances from C, the loous of the povnts is an orthogonal
trageotory of the geodssws.

16. Necessary and sufficient conditions that a system of geodesic co-
ordinates be polar are that o/ @ vanishes with %, and 24/G/0u=1 when ¥=0.

17. Two points 4, B on the surface are joined by a fixed curve ) and a

ble curve O, encl b them & portion of the surface of constant
area. Prove that the length of C is least when 1ts geodesio curvature is
constant

18. Ifin the prewou.s example the length of C 18 constant, prove that the
area enclosed is greatest when the geodesio curvature of 15 constant

19, If the tangent to a geodesm 18 inchned at a oonstant angle to a fixed
direction, the normal to the surface along the geodesio is everywhere perpen-
dioular to the fixed direction.

20. Two surfaces touch each other along a curve. If the curve1s a geo-
desio on one surface, 1t 18 a geodesic on the other also.

21. The ratio of the ourvature to the torsion of a geodesic on & develop-

able surface 18 equal to the tangent of the inchnation of the curve to the
corresponding generating line.
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22, If a geodesic on & developable surface 18 & plane curve, 1t is one of the
generators, or else the surface 18 a cylinder.

23. If a geodemoe on a surface lie on a sphere, the radius of curvature of
the geodesio is equal to the perpendicular from the centre of the sphere on the
tangent plane to the surface.

24, The locus of the centre of geodesic curvature of a hine of curvature is
an evolute of the latter

25, The orthogonal trajectories of the helices on & helicoid are geodesica.
26. The meridians of a ruled helicord are geodestes.
27, If the curve

ze=f (u) coBu, y=j(u)smu, ;=—;1:-/f’(u)du

is given a helicoidal motion of pitch 2xr¢ about the s-axis, the various pomtions
of the curve are orthogonal trajectories of the helices, and also geodesios on
the surface.



CHAPTER VII
QUADRIC SURFACES. RULED SURFACES
QUADRIO SURFACES

62. Central quadrics. The equation of a central quadric
surface, referred to its principal axes, is of the form

in which we may assume @ >b>0 The quadrics confocal with
this are given by
@? 2
st el e @)
for different values of A. At points common to the two surfaces
(1) and (2) we have
M) =@+NG+A)(0+M) =28 (B +A)(c+21)=0.
We may regard this as an equation for determining the values of
A corresponding to the confocals which pass through a given point
{m, y, 2) on the surface (1) It is a cubic equation, one root of which
is obviously zero. Let the other two roots be denoted by u, v.
Then, because the coefficient of A*1s unity, ¢ () is identioally equal
to the product A (A —u) (A —v); that is
AQA-—w)A—0)=(@+1) (B+N) (c+A) =222 D+ ) (0 + ).

If in this identity we give A the values —a, — b, — ¢ in succession,
we find
a(a+u)(a+v)
(a—b)(a—c)

_b(+u)(b+v)

Y= (b—a)y(b—g) "o e (8).
_o(0+) (o+)
(c—a)(c—b).

Thus the coordinates of & pomt on the quadric (1) are expressible
in terms of the parameters u, v of the two confocals passing through
that point. 'We take these for parametric variables on the surface.
It follows from (8) that, for given values of » and v, there are eight:
pomnts on the surface, one in each octant, symmetrically situated
with respect to the coordinate planes,

=
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In the case of an éllipsoid, a,b, ¢ are all positive. Hence ¢ (—c)
8 negative, ¢ (—b) positive, and ¢ (— a) negative, Therefors, if u
s greater then v, we have

—c>u>—b —b>v>—a.
The values of  and v are thus negative, and are separated by —b.

For an lhyperbolowd of one sheet ¢ 18 negative, so that ¢ (w0 )18
positive, ¢ (—c¢) negative, ¢ (—b) positive and ¢ (—a) negative
Therefore

u>=—0 =b>v>-a
Consequently « is posmtive and v negative, the root between —c
and — b being the zero root

For an hyperboloid of two sheets both b and ¢ are negative.
Hence ¢ (w0 ) is posttive, ¢ (—c) ncgative and ¢ (—b) positave, so
that the non-zero roots are both positive and such that

u>—-¢, —c>v>—b
Thus both parameters are positive, and the values of w and v are
separated by —c. In all cases one of the three surfaces through
(@, 9, #) 18 an ellipsoid, one an hyperboloid of one sheet, and one
an hyperboloid of two sheets.

Any parametric curve v = const. on the quadric (1) is the curve
of intersection of the surface with the confocal of parameter equal
to this constant v. Similarly any curve u=const is the line of
intersection of the surface with the confocal of parameter equal to
this constant u.

63. Fundamental magnitudes. If ris the distance of the
point (a, y, £) from the centre of the quadre, and p the length of
the central perpendicular on the tangent plane at (a, 3, 2), we have

w=z=+y’+z’=(a+b+c)+(u+u)}
1 oy 2w
FratEt e @
Also on calculating the partial derivatives &, &, ete., we find

()

and

N _ w(u—v)
B =n +y’,+z‘n—f(a+u)(b+u)(o+u)
F=om+pyp+asu=0 o (5).
v(v—u)
G"‘”"”"*”"4(a+u)(b+u)(c+u)
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The normal has the direction of the vector (5, 2, %) , and since

b
the square of this vector 15 equal to 1/p% the umt normal is
(2. 8. 1)
a’ b’ ¢

_( be (a+u)(a+v) ca (b+u) (b+v)
- uv (a~Db) (@ —c)’ wd—c)(d—a)’
ab (c+u)(c+ u))
uv (¢ — a) (c ~b),
The second order magmtudes are therefore

- B
TR TN wy (a+u)(b+u)(c+u)l
M=ner,=0 V... (8)

1 fabe (v—u)
N=nera=za/ 2w (a+v)(b+v)(o+'v),

Since then F=0 and M =0 the parametric curves are lines of
curvature. That is to say, the lines of curvature on a central quad-
ic are the curves in which it is cut by the confocals of different
species. The principal curvatures are then given by

_L_1 [d
“BEETuN w a
N1 Jamf o e (7).

BEFT IV w
Thus, along a line of curvature, the principal curvature varies as
the cube of the other principal curvature. The first curvature is
abo
J=ko+kp=(u+1v) '\/('uv)"
and the specific curvature
K =rkgicy = a,Tb:, ........................ (8).
Therefore on the ellipsoid or the hyperboloid of two sheets the
specifie curvature 18 positive at all points; but on the hyperboloid
of one sheet 1t is negative everywhere. Moreover
P=abok ....coooviiiiiiniiiiennn, 9
Hence at all points of a curve, at which the specific ourvature is
constant, the tangent plane 8 at o constant distance from the centre.
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At an umbilic k, i8 equal to xp, and therefore u=v. If the
surface 18 an ellipsoid the values of u and v are separated by —b.
Hence at an umbilic they must have the common value —b. The
umbilier are therefore

Y )
The four umbilie1 thus he on the coordinate plane containing the
greatest and least axes, and are symmetrically situated with respect
to those axes.

On the hyperboloid of two sheets the values of the parameters
are separated by —o. Hence at an umbilic u=v=—¢, and the
umbalici are

a(a—c) b(b— o)
W=i\/ g—-b y y=t¢ b-a)’ =0,
On the hyperboloid of one sheet the umbilici are imagmary, for u
and v have no common value.
The differential equation of the asymptotic lines on a surface is
Ldw + 2Mdudv + Nd#r=0.
Hence on the quadrc (1) they are given by
du -t dy
Via+u)(d+u)(o+u) ~ N@+v)(b+v)(o+v)

64. Geodesics. On using the values of E, F, & given in (5)

we see that the square of the Linear element takes the form
ds*=(u —v) (Udu* — Vdo*),
where U is a function of u alone, and V a function of » alone.
Central quadrics thus belong to the class of surfaces called Liouville
surfaces (Art, 61). Consequently the lines of curvature, being para-
metric curves, are isometric and constitute a system of geodesic
ellypses and hyperbolas. Moreover a first mtegral of the differential
equation of geodesics on the quadric is given by
' usn* 0 +vcosf 0=k ..covorrriinnnnnns (10),

where £ is constant, and 6 the angle at which the geodesic cuts
the curve »=const. The value of % is constant on any one geodesic,
but changes from one geodesic to another. If the geodesic touches
the parametric curve v =h, then cos =1 at the pomnt of contact,
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and therefore k=h. Similarly if 1t touches the curve w =1, sin =1
at the powt of contact, and agamn k=h Thus k has the same valus
for all those geodesics which touch the same line of curvature. On
the ellipsoid % is negative for all geodesics because both parameters
are negative. On the hyperboloid of two sheets % is positive be-
cause w and v are both positive.

Further, on writing (10) in the form

(u— k) sin? 0 + (v — k) cos” 6 =0,

we see that, for all geodesics through a given point (x, v), the
constant % is mtermediate in value between u and v, and, for a
given value of k within this interval, there are two geodesics, and
these are equally melined to the lines of curvature

At an umbnlic the parametric values u, v are equal ; and there-
fore, for all geodesics through an umbilic, % has the same value, &
say, which is —b for an elhipsoid and — ¢ for an hyperboloid of two
sheets. The equation for the umbilical geodesics 18 then

(w— ky) 81m? @ + (v — Jey) cos® 6 =0.

Thus, through each point P on o central quadric with real umbilics
there pass two umbilioal geodesics, and these are equally inclined to
the lines of curvature through the pownt If then the point P is

B A

A——"¢

Tig 19,
joined by geodesics to the four umbilics, those drawn to opposite
umbilics 4, 4’ or B, B’ must be continuations of each other. Thus
two opposite umbilics are jomed by an infimte number of geodesics,
no two of which intersect again.

Moreover, since the geodesics joining P to two consecutive
umbilics 4, B are equally inclined to the lines of curvature at P,
it follows that 4, B are foci of the geodesio ellipses and hyperbolas
formed by the lines of curvature. Of the two lines of curvature
through P, that one 18 a geodesic elipse with respect to .4 and B
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which bisects externally the angle APB, while the other one,
which bisects the angle internally, is a geodesic hyperbola. If,
however, A’ and B are taken as foci, the former is a geodesic
hyperbola and the latter a geodesic ellipse Thus, in the case of
the former,

PA + PB = const.,

PA’' — PB = const.,
8o that P4 + PA’ = const.

But P 1s any point on the surface Hence all the geodesics joining
two opposite umbilics are of equal length.

65. Other properties. On using the values of the principal
curvatures given 1n (7) we deduce from Euler’s theorem that the
curvature of a geodesic, being the normal curvature of the surface
in that direction, is gwen by

x,.—— abc ,0+1\/nbc »

3
50 that Kn= o e s e e e (11).
Hence along any one geodesio the normal curvature varies as the
cube of the central perpenducular on the tangent plane. The same 1s
also trus of a line of curvature. For, at any point, £, and p have
the same values for this curve as for the geodesic tangent, and all
geodesic tangents to a line of curvature have the same k.

Agam, consider the semi-diameter D of the quadric parallel to
the tangent to the geodesic at the point (z, ¥, £). The wnit tangent
r’ to the geodesic is (@', 3, #) and therefore

1 o + Y1

=g Tt o s (a),
while, for any direction on the surface,

oy Eé_

=% /N (<)

Along a geodesic r”=k,n; and therefore, by differentiating the
1dentity r'en =0, we have
kp=T"en=—Ton’,
w. 9
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e
and therefore n’=p(%/, %’ %>+p' (g, %’ E)

Thus on forming the scalar product ' +n’ we find, 1n vartue of (a)

and (8),

x'2 e 3
x,.=—p(?+%+%,)=—% N a2).
On substituting the value of «, given 1n (11) we have
kD =—=abe . coveenr n r eanins (18),
or kD' =— v,

From (18) it follows that pD is constant along a geodesic. The
same is also true of a line of curvature. For p and D are the same
for the lme of curvature as for its geodesic tangent, while & has
the same value for all geodesic tangents to a line of curvature.
Thus we have Joachimsthal's theorem: Along a geodesic or a line
of curvature on a central quadric the product of the semi-diameter
of the quadric parallel to the tangent to the curve and the central
perpendicular to the tangent plane is constant.

Formula (12) shows that «,.0°=—p. Now p 18 the same for all
directions at a point, and therefore, 1f p 18 the reciprocal of #y,
D varies as /p. Hence, by Art. 32, the indicatrix at any point of
a central quadric is similar and similarly situated to the parallel
central section

Ex. 1. Show that, along & geodesic or a line of curvature, «, varies
nversely as DS,

Ex. 2. For all umbilical geodesics on the quadric (1) p*Dé=ac.

Ex. 3. The constant p has the same value for all geodesios that touch
the same line of curvature.

Ex. 4. Two geodesio tangents to a line of curvature are equally inclined
to the lines of ourvature through their pomt of intersection

Ex. 5. The geodesic dist, bet: two opposite umbilics on an
ellipsoid 18 one half the circumference of the principal section through the
umbalics.

Ex. 6. All geodesics through an umbilic on an elhpsord pass through the
opposite umbilia,
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*66. Paraboloids. The equafion of a paraboloid may be ex-
pressed in the form
Pl (14)
25 I ¢ £ )N
in which we may assume that b 18 positive and greater than a.
The paraboloids confocal with this are given by
ml 2
R
for different values of X. The values of A for the confocals through
a given powt (e, g, #) on the original surface are given by
dM=fb—N)+y(@—N)—4(e—N)(a—2) (b—r)=0.
One root of this cubic is zero: let the other roots be denoted by ,
v of which u 1s the greater. Then, because the coefficient of A*in
the last equation 18 4, we have the 1dentity
MA—-w)A—)=*(d-N+¥@-N)—4(z~\)(a-21)(b-N)
If in this we give A the values a and b successively, we find
_da(a—u)(a—1)

=4(z—n),

@ b—a
WG —w) b= i (15).
¥= a-b )

and therefore by (14) z=u+v—a—b

We may take u, v for parameters on the paraboloid, and for given
values of the parameters there are four points on the surface,
symmetrically situated with respect to the coordinate planes « =0
and y=0

For the elliptic paraboloid a is positive as well as b. Hence
since ¢ (0 ) 18 positive, ¢ (b) negative and ¢ (a) positave, 1t follows
that  and v are both positive, and are separated by the value b.
For the hyperbolic purabolod a is negative. The zero root of ¢ (A)
lies between a and b, so that x> b and v< a.

The derivatives of a, ¥, z are easily calculated from (15), and the
first order magnitudes found to be

. u(u-—v)

E=2u “(a—u)(b—u)

F=3ma,=0  } . orer wunn (16).
.. v(v—w)

G =3a T (a—(b—v)
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The normal to the parabolord has the direction of the vector
(-—g, —%, 2) , and the unif vector 1n this direction, expressed i
terms of the parameters, is

n=(-— b(a—u)(a—v),_«/a(b——u)(b —2) a,b)

(b—a)uww (@a=b)uv ’ uv,
The second order magnitudes are therefore
L=ne.ry= u—rv ab
2(a—u)(b—u)
M=ner,;=0,

=nim= 2(a-»)(b—u)\/—

Smce then F' and M both vanish 1dentically, the parametric curves
are lines of curvature. That is to say, the lines of curvature on @
paraboloid are the curves wn which 1t is cut by the confocals. The
prineipal ourvatures are then given by

Ll /@
7=w
E_ 1 \/ ............. @an,
-7
and the specific curvature is
ab
K= ranp= T

The length p of the perpendicular from the vertex to the tangent
plane at the point (z, y, 2) is easily found to be

.
p u’

Hence the quotient p/z s constant along a curve on which the specific
curvature of the surface is constant.

The umbilct are given by kg = xp, which requires »=v. This is
possible only on an elliptic paraboloid , and the common parameter
value is then equal to . The umbilici on an elliptic paraboloid
are therefore given by

z=%2Va(b—a) y=0, z=b-a.
At these points the principal curvatures become equal to % \/g .
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In virtue of (16) the square of the linear element has Liouville’,
form
ds* = (u—v) (Udu* — Vdw¥),
so that the lines of curvature are isometric and constitute a system
of geodesio ellipses and hyperbolas. A first integral of the differ-
entaal equation of geodesics is given by
usn® @ +vcos? 6 =k,
as in the case of the central quadrics; and the direct consequences
of this equation, which do not depend upon the existence of a
centre, are true of the paraboloids also (Art. 64).
The curvature of a geodesic, being the normal curvature in 1ts
durection, is given by
K = K4 COB @ + Ky 8102 O
_k /b
T2V wet
Hence, along a geodesic or a line of curvature on a paraboloid, the
quotient xn2*/p® 18 constant.

EXAMPLES IX

1. The pownts at which two geodesio tangents to a given Line of curvature
on a quadrio cut orthogonally lie on the surface of & sphere.
Let k be the parametrio constant for the line of ourvature. Then for a

eodesio tangent
g w3 §4v cosd §=F.

‘Where this intersects another geodesio tangent at right angles we have
» s10? (;—r+8)+o cos? ('—;+ 8)=k.

Hence, by addition, u+v=2k,

and therefore by (4) 2yt P=a+b+o+2k,

which proves the theorem

2, The pomts at which the geodesi gents to two duffe lines of
ourvature cut orthogonally lie on & sphere.

8. If a geodesic is equally mclined to the lines of curvature at every pownt
along 1t, prove that the sum, of the principal curvatures varies as the cube of
the central perpendicular to the tangent plane along the geodesto.

4. The mt ion of a t t to & given geod on a central conicord
with a tangent plane to which 1t 18 perpendioular lies on a sphere.
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5. Prove that the differential equation of geodesics on an ellipsoid may be
expressed

du_, N/v(a+w)(b+f4)(0+u)(u—k)

BT EN w(ata)(b+v)(c+)(0-H)"

6. The length of an el t of an umbilical geodesic on an ellipsoid is

d \/ y J .
39 A/ ) oru) TE N (aro)(ot0)
7. For any ourve on & quadric the produot of the geodesic curvature and
the torsion of the gecdesio tangent 1s equal to
Ld 1\
b72 &\2D)
with the notation of Art 65.
8. The asymptotic Lnes on any quadric aré straight lines.

9. Find the ares of an element of a quadme bounded by four lwes of
curvature

10. A geodesic 18 drawn from an umbilic on an ellipsoid to the extremity
of the mean axis Show that 1ts torsion at the latter pownt 18

Zb(a=b)(b-0).

11. Find the geodesic curvature of the lines of curvature on a central
guadrio.

12. Find the tangent of the angle bet: the umbalical geodesics through
the pomnt (z, 7, &) on the ellipsoid (1).

13. The speafic curvature at every pomnt of the elliptic parabeloid
a3+ by?=2s where 1t 18 out by the cylinder a®z3+b%3=1 18 }ab.

14. The specific curvature at any pownt of a paraboloid varies as gz,
with the notation of Art. 66.

15. Wrniting da? for a quadric m the form

ds¥=(u—v) (Udu®- Vdv?),

prove that the quantities 7, \, ete. are given by

(D), mmm gk v,
g\u=v" U 7T T2m-v)’ 2(u—-2) I°

a 1 1/ 1
A=y o—u) P ity oy & ”‘§<m+%'
Hence write down the (single) differential of geod

16. Show that the coordinates of the centres of curvature for a central
quadric are, for one prinoipal direction,

(a+u) (a+v) (b+u)®(b+v) (0+%)® (¢+7)
a(@-b)@a-0’ V bG=0@-a) N olc=d)(c-b)’
and, for the other, symilar exp btained bynterchanging » and ». Henoe

show that the two sheets of the centro-surface are 1dentical.
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17. Show that the equation of & paraboloid, azd+ by=22, 18 satisfied
id ly by the suk

=220, =t l oy (e, 5= el

Talng %, v as parameters for the surface, show that
(@a=0) (u—v) P2

=1 u(l+au)’

F=0,
(b a) (u—v) @
=T v(1+av)’
where Pi=a(a-b)u-b, Q=a(a-b)v-b.
Prove also that the unit normal to the surface 18

n=—-(~/a’(a b)ur, Vh(b-a)(1+au)(l+a), -vab),

and the second order magmtudes
1ol [Ba-bu-9
APQ T u(l+au) ?
¥=0,
N:-L 1‘(“-”)(1_3)_

4rQ v (1+aw)
Hence deduce all the results of Art. 66

RULED SURFACES

67. Skew surface or scroll. A ruled surface is one that
can be generated by the motion of a straight line. The infinitude
of straight lines which thus lie on the surface are called its gene-
rators. We have already consmdered a particular class of ruled
surfaces called developable surfaces or forses. These are charac-
terised by the properties that consecutive generators intersect,
that all the generators are tangents to a curve called the edge of
regression, that the tangent plane to the surface 18 the same at all
pomnts of a given generator, and that the specific curvature of the
surface 18 identically zero. Ruled surfaces in general, however, do
not possess these properties. Those which are not developable are
called skow surfuces or scrolls. It 13 skew surfaces particularly
that we shall now consmider.

On the given ruled surface let any curve be drawn cutting all
the generators, and let 1t be taken as a curve of reference called
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the directriz. The position vector I, of a current point P, on the
directrix is a function of the arc-length & of this curve, measured
from a fixed pomt on 1t. The position vector r of any pomnt Pon
the surface 18 then given by

e+ ud e a e e (18),

where d 18 the unit vector parallel to the generator through P,

Fig 20,

and u the distance of P from the directrix in the direction of d.
The quantities u, ¢ will be taken as parameters for the surface.
The parametric curves §=const. are the generators. The unit
tangent t to the directrix 18 equal to r,, and the angle 6 at which
a generator cuts the directrix is given by

cosf=det ...... L e (19).

The square of the linear element of the surface follows from (18).
For
dr=ddu+ (t +ud’)ds

and therefore on squaring, and writing
=47 b=t.d

we have
Edu + 2Fduds + Gds*=dr®
=du? + 2 cos Oduds + (a*u? + 2bu + 1) ds®...(21).

68. Consecutive generators. Consider consecutive genera-
tors through the ponts r, and r,+tds on the directrix, and let
their directions be those of the umit vectors d and d + d'ds. If
their mutual moment is positive the ruled surface is sad to be
mght-handed; if it 1s negative the surface is left-handed. This
mutual moment is the scalar moment about either generator of a
unit vector localised 1n the other. If then we take the unit vector
d + d’ds localised n the second generator, 1ts vector moment about
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the point 1, is (tds) x (d + d’ds). Hence 1ts scalar moment about
the first generator is

(tds) x (4 +d'ds)ed =[t, &, d]ds".
The surface is therefore right-handed or left-handed according as
the scalar triple product

18 positive or negative.
The common perpendicular to the two generators is parallel to
the vector (d + d'ds) x d, and therefore to the vector ' x d. The

unit vector in this direction 1s };d’ X d, because d' and d are at

right angles, and their moduli are o and unity respectively. In
the case of a right-handed surface this vector makes an acute angle
with t. The shortest distance between the consecutive generators
is the projection of the arc-element tds on the common perpen~
dicular, and is therefore equal to

1. _ds » gq_D
(tda)-(ad xd) =2t 4, a]=2 ds.
Hence the necessary and sufficient oondition that the surface be

developable s [t, d', d] = 0.
This condition may be expressed differently. For

[t,d,df= ¢ ted ted [=| 1 b cosf'
det d* ded b a? 0
det de@ @ | |cosf O 1
= g*sin® 6 — B
Hence [t,d,d]=+Va'om® 6 —b* . ....... (23),

the pomitive or negative sign being taken according as the surface
is right-handed or left-handed. Thus the condition for a develop-
able surface 18
b'=a*an®f.
The mutual moment of two given generators and their shortest
distance apart are clearly ndependent of the curve chosen as
directrix. Hence, in the case of two consecutive generators, the

quantities Dds* and %Dde do not change with the directriz. The
quotient of the square of the second by the first 1s then likewise
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invariant. But this quotient, being equal to .D/a? is independent I
of ds, and therefore depends only on the particular generator d
chosen. It is called the parameter of distribution for that generator,
and has the same sign as D. Denoting 1t by B we have

69. Line of striction. The foot of the common perpendicular
to a generator and the consecutive generator 1s called the central
point of the generator, and the locus of the central points of all
the generators 15 the line of striction of the surface To find the
distance @ from the directrix to the central pomt of the generator
d, we first prove that the tangent to the line of striction 1s per-
pendicular to d. This may be done ss follows. Consider three

Fig 2L

consecutive generators. Let Q@' be the element of the common
perpendicular to the first and second intercepted between them,
and RR’ the mntercept of the common perpendicular to the second
and third. Then the vector QR 1s the sum of the vectors QQ’ and

Q'E. But Q@' is parallel to d’ x d and is therefore perpendicular
to @". Further

@R=7(a+d'ds),
where 7 is a small quantity of the first order. Formimng the scalar
product of this vector with 4’ we have for 1ts value
7 (4 + d' ds)+d’ = qa*ds,

which is of the second order. Hence in the limt, as the three
generators tend to comncidence, QR is perpendicular to d’. But the
boutimg direction of QR 1s that of the tangent to the lme of
striction. Hence this tangent 1s perpendicular to d’.

Now 1if % is the distance of the central point from the directrix,
the position vector of this point 1

T=r,+4d coe e (25),
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and the tangent to the line of striction 1s parallel to ¥, where

V=t+ad+a'd
But this is perpendicular to d’, so that

O=d'e¥=0>+1a
Hence U= c—f-, .......................... (26).
This determines the central point of the generator. The para-
metric equation of the line of striction is

@y +b=0.

Hence if b vanishes identically the line of striction is the directrim
This condition is that d’ be perpendicular to t.

Ex. Show that the line of striction outs the generator at an angle y; such

that
oot‘#—% {cos 0—%(55)}.

70. Fundamental magnitudes. The position vector of a
current point on the surface 18

r=r,+ud,

where r, and d are functions of the parameter s only. Hence
r,=d,
r,=t+ud,

80 that E=1, F=cosf, G=c*w+2bu+l,

H*=a*u? + 2bu + sin® 6,
as is also evident from (21) The unit normal to the surface is
L Y — @),
The second derivatives of r are
=0 r,=4d, rg=t+ud’
50 that L=0

1 N
Y=gdx@trud)d=7 | (o8

N= %[d, t+ud, t'+ud”]
The specific curvature has the value

IN-M__ D?
e T (29),
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so that, for a developable surface, K vanishes 1dentically (Art. 83).
Further, since K 1s negatve, there are no elliptic points on a real
ruled surface ; and, since we may write
H2=g'0 +a’ (v ~ @) — a*@?,
it follows that, along any generator, H* 1s least at the central
pomnt Therefore, on any one generator, the second curvature is
greatest in absolute valus at the central point; and, at points equi-
distant from thas, it has equal values.
The first curvature is given by

J EN+ GL-2FM
= I s
sothat J= % {{d, t+ud’, ¥ +ud”]—2Dcos 6}.

71. Tangent plane. The tangent plane to a developable
surface is the same at all points of a given generator. But this
is not the case with a skew surface. We shall now show that, as
the point of contact moves along & generator from one end to the
other, the tangent plane turns through an angle of 180°. To do
this we find the inchnation of the tangent plane at any pont P to
the tangent plane at the central pont P, of the same generator.
The tangent plane at the central pont is called the central plane
of the generator.

We lose no generality by taking the line of striction as directriz.
Then b=0, and the central pownt of the generator is given by
u=0 We thus have

H'=ad*u*+8m?0, D=+asinb,
so that, for the central point,
H,=sin .
Simularly the unit normal at the central pont is
n,=3xt,
sin 0
Let ¢ be the angle of rotation (in the sense which is positive for

the direction d) from the central plane to the tangent plane at the
point % This 18 equal to the angle of rotation from the normal m,
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to the normal n, and 18 given by
1
dsm¢=n.,xn=Hsm0(dxt)x(dxt+udxd’)

= H_E“ﬂ {4, d, ATt ~[t, 4, a'] d}

uD
“Heano a

Therefore smn ¢ = Bi:xbﬂ =t ;—}‘ ............... (80),

the positive or negative sign being taken according as the surface
is right-handed or left-handed. Hence, as u vanes from ~ o to
+ o0, §in ¢ varies continuously from —1 to + 1, or from +1 to —1.
Thus, as the pownt of contuct moves from one end of the generator to
the other, the tangent plane turns through half a revolution; and the
tangent planes at the ends of the generator are perpendioular to the
oentral plane.
Consequently cos ¢ is positive, and in virtue of (30)

H oH
and therefore ten ¢ = 2;%%’= + 5_1?'0 = %l‘
°
mE e s .(81),

where B is the parameter of distribution (Art. 68). Thus tan ¢ is
proportional to the distance of the pont of contact from the
central pomnt. And, in virtue of (81), the tangent planes at two
pomta u, U on the same generator will be perpendicular provided

wl=-p

Thus any plane through a generator is a tangent plane at some
point of the generator, and a normal plane at some other point of
it. Also the pownts of contact of perpendicular tangent planes
along a generator form an involution, with the central point as
centre, and imaginary double points,
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Ex. 1. Surface of bunormals. Consider the surface generated by the
binormals of & twisted curve. Take the ourve 1tself as directrix, and let t, n,
b be 1ts umt tangent, prinaipal normal and bmormal respectively. Then

6=%, d=b, d'= —rn, so that

D=[t, —mn, b]=-r.

Hence the surface 18 left-handed or nght-handed according as the torsion of
the ourve is positive or negative. Further

a*=b"=1r3,
and b=teb'=0,
80 that the curve 1tself 18 the line of striction on the surface. The parameter
of dstribution 18

D 1

A=g=—r="o
where o is the radius of torsmon of the curve., This makes 8 positive when the
torsion is negative.
Further E=1, F=0, G=1+ur*=H?3

and the specific curvature 18

D3 L

E= - 5= 1 putap

At a point on the curve 1itself the specific curvature has the value -2

Ex. 2. Surface of princypal normals Consider the ekew surface generated
by the principal normals to a twisted ourve. Agamn 6-;—, while d=n,

d'=7b —«t, so that
D=[t, rb—«t, n)= -1,
and the surface 18 therefore left-handed where r 18 positive. Further,

d=n=I+73,
and b=toen'= -y
80 that the distance of the central point from the curve is
G=-2__c
af Tkt
The parameter of distribution is
D T
B=a=—ara
The first order magmtudes are

E=1, F=0, G=(l—ux)f+uiri=H?,
and the specific curvature 18
=-Z._ =
HY {(1—ux)+udrp”
At a point on the curve itself the specific ocurvature 18 — 74,
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72. Bonnet’s theorem. The geodesic curvature of any curve
on a surface 18 equal to [n, ¥, r'], and therefore the geodesic
curvature of the directrix curve on a ruled surface is given by
[n, t, t'] if we put =0. Now for points on the directrix

dxt
=T
and H =sm 6.
Hence the geodesw carvature of the dlrectrix is
Ky= sma(d X 1) X bot = ——(dett— t'd)et.

But the first term vanishes beca.use tet’is zero. Thus

d.t’ 1 ,
"'=_Exi_0=_§fﬁ{ (det)—d -t}
=—m-—n—0{a-s(cosﬂ)—b}.
Hence the formula Zf + s—l-g-? .................... (32).

Now 1f the first member vamshes the directrix is & geodesic. If
df/ds is zero 1t cuts the generators at a constant angle. If b 18
identically zero the directriz 1s the line of striction. Hence since
the directrix may be chosen at pleasure, subject to the condition
that it cuts all the generators, we have the following theorem, due
to Bonnet:

If a curve 18 drawn on a ruled surface so as to intersect all the
generators, then, pronded it has two of the following properties, it
will also have the third: (a) it s a geodesio, (b) it 18 the line of
striction, (c) it cuts the generators at a constant angle.

Let an orthogonal trajectory of the genera.tors be chosen as

directrix. Then 8 has the constant value o 3 . The geodesic curva-

ture of the directriz is then equal to b, and this vanishes where
the directrix crosses the hine of striction. Thus the ling of striction
18 the loous of the points at which the geodesic curvature of the ortho-
gonal trajectories of the generators vanishes.

Ex. Show that a twisted curve 18 a geodesic on the surface generated by
its binormals,
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73. Asymptotic lines. Since, for a ruled surface, L =0, the

differential equation of the asymptotic lines 18
ds (2Mdu+ Nds)=0
Thus the parametric curves &==const, that is to say the genera-
tors, are one system of asymptotic lines. The other system (which
may be referred to as the system of curved asymptotic Lines) i
given by
du £M=——[d t+ud, t+ud"]

Ths equation is of the Riccata type

Z—a-u- =Pu*+Qu+ R,
1 which P, Q, R are functions of s only. Its primitive is of the
form* —
ch +
QU g e e (33),
where ¢ is sn arbitrary constant, and W, X, ¥, Z are known func-
tioms of 5. This equation then gives the curved asymptotic lines,
¢ having a different value for each member of the family.

Consider the intersections of four particular asymptotic lines
¢y, €y Gy, 0 With & given generator s=const. Leb u;, uy, U, % be
the ponts of intersection. Then by (33)

(= ) (Us — %) _ (2 —3) (Cs— Co)

(h— ) (e =)~ (Gr—0s) (Ga—00)’
whioh is independent of s, and 18 therefore the same for all gene-
rators. Since then » is the distance measured along the generator
from the directrix, this relation shows that the cross-ratio of the
four pornts, in which a generator s cut by four gwen curved asymp-
totic lines, is the same for all generators.

EXAMPLES X
1. Show that the product of the specifio curvatures of a ruled surface at
two pointa on the same generator is equal to 2115“"‘ a, where [ 18 the distance

between the points, and a the mclination of the tangent planes thereat.
‘With the notation of Art, 71, if suffixes 1 and 2 be used to dwstingush the
two pomts, we have
: Bsmna
U=t — ug= 8 (tan b, —tan chg)= .
=g (tan dy —tan da)= o o iy
* Forayth, Differential Equattons, Art, 110 (8rd ed.).

U=



73] EXAMPLES 146

Therefore <Bmu) (oos¢,cos ¢,) Dt aH aH')

by (30') Art. 71, -M=K‘K’
in wirtue of (29).

Q. Show that the normals to a ruled surface along a given generator con-
stitute a hyperbolio paraboloid with vertex at the central pomt of the
generator,

3. Determine the condition that the directrix be a geodesio,

4., The cross-ratio of four tangent planes to a skow surface at points of a
generator 18 equal to the cross-ratio of the pomts.

6. Prove that, 1f the speeific curvature of a ruled surface 18 constant, the
surface 18 a developable.

6. Determine the condition that the line of striction may be an
line.

7. Deduoe formula (32) from the value — HnG~# found 1n Art 54 for the
geodesic curvature of the parametric curve % =const.

8. Deduce formula (32) of Art 72 from formula (22) of Art. 54

O. The surface generated by the tangents to a twisted curve 1s a develop-
able surface with first curvature r/(zx) Find the Lines of curvature,

10. A straight line cuts a twisted curve at a constant angle and lies
the rectifying plane. Show that, on the surface which 1t generates, the given
curve is the line of striction. Find the y ter of distribution and the speafic
curvature.

If t, o, b are the tangent, principal normal and binormal to the curve, we
may write

ymp

t+ob ) K—oCT
d ViFd' Ara™
where o 18 constant. Hence b=d'et=0,
80 that the curve 18 the line of striction. Also
a_ga_(x—er?
o=d 144’
[t, t+cb
VIt +o’ ™ v
c(x —-or)
146 °

Hence the parameter of distribution 18
A==
The speafic curvature 18
o (k—orf
{(x=orpury

x=-___..
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From Bonnet’s theorem (Art. 72) 1t follows that the given ourve 18 a geodesio
on the surface.

11. The rgh: helwowd or right conoid 18 the surface generated by a straight
Line whioh intersects a given straight line (the axs) at right angles, and
rotates about this axis with an angular velocity proportional to the velocity of
the point of mtersection along the axis.

If we choose the fixed axis both as directrix and as z-axns, we may write

8 3
Z=ucosZ, y=umn -, s=s

The axis is the perpendioular to tiv tors, and is there-
fore the line of striction. Hence, by Bonnet’s theorem, 1t 18 also & geodesio on
the surface. Moreover, with the usual notation,

t=(0,0,1),
d=(cos§, sin g, 0), d‘=% (—smz, uos%, O),

s0 that dedi=3,
and b=d'et=0,
showing that the directrix is the Line of striction. Simularly
, 1
D[t &, d]=-},
and the parameter of distribution is
D
B=5=—0
The fundamental magnitudes of the first order are

E=1, F=o, G"u_;o"=m

. D I
The specific curvature 18 K=_F__(u,'+a2)"
The second order magnitudes are
L=0, 1{-—=— u’ N N=0.

Hence the first curvature 1s zero a.nd the surface 18 & minimal surfacs. The
prineipal curvatures are +¢/(u?+¢%). The asymptotio lines are given by
2Mduds=0
Hence the asymptotio lines are the generators and the ourves %= const.
Find also the lmes of curvature,
12, If two skew surf: have a and touch at three
points along it, they will touch at every pomt of 1t, also the central poini

and the parameter of distrbution of the generator are the same for Lotk
surfaces,
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18. If two skew surfaces have a tor, and their tangent
planes at three ponts of 1t are inclined at the same angle, they will be
inclined at this angle at every pownt of the common generator.

14. The normals to a surface at pomnts of an asymptotio Line generate a
skew surface whose line of striction 18 the asymptotic line, and the two
surfaces have the same specific curvature at any point of the lne.

15. Tind the parameter of distribution of a generator of the cyhindroid

2 (28 +2%) =2mzy.
16. On the skew surface generated by the line
Z+yt=8t(1+8), y+2at=11(3+48),
prove that the p ter of distribution of a g tor 18 § (1+2£8)%, and that
the line of striction 18 the curve
=3¢, y=38, z=283

17. The line of striction on an hyperboloid of )} of one sheet 13
the principal circular section

18. The right hehood is the only ruled surface whose generators are the
principal normals of their orthogonal trajectories.

19. Iftwo of the curved asymptotic lines of a skew surface are ortho-
gonal trajectores of the generators, they are Bertrand ourves; 1f all of them
are orthogonal trajectories, the surface 18 a right helicoid

Q0. The nght helicoid is the only ruled surface each of whose lmes of
ourvature cuts the generators at a constant angle. On any other skew surface
there are 1n general four lines of curvature which have this property

Q1. The hine of striction of a skew surface 18 an orthogonal trajectory of
the generators only if the latter are the binormals of a curve, or 1f the surface
18 & right conord.

292, If the lines of curvature of one family on a ruled eurface are such
that the segments of the g tors bet two of them are of the same
length, the parameter of distribution is constant, and the line of strmction 18 &
line of curvature

Norn. The author has recently shown that a family of curves on any sur-
face possesses a Line of striction, and that the theorem of Art 72 1s true for
& fanily of geodesics on any surface See Art 126 below

The remsining chapters of the book may be read 1n any order.

102



CHAPTER VIII

EVOLUTE OR SURFACE OF CENTRES,
PARALLEL SURFACES

SURFACE OF CENTRES

74. Centro-surface. We have already seen (Art. 29) that
consecutive normals along & line of curvature imtersect, the point
of intersection being the corresponding centre of curvature. The
locus of the centres of curvature for all ponts of a given surface 8
is called the surface of centres or centro-surface of S. In general it
consists of two sheets, corresponding to the two familes of lines of
curvature.

Along any one hne of curvature, 0, the normals to the surface
generate a developable surface whose edge of regression 18 the locus
of the centres of curvature along C. All these normals touch the
edge of regression, which 1s therefore an evolute of C. If now we
consider all members of that family of lines of curvature to which
C belongs, the locus of their edges of regression is a surface, which
is one sheet of the surface of centres. Similarly from the other
family of lines of curvature we have another family of edges of
regression which lie on the second sheet of the centro-surface.

Let PQ, RT be consecutive lines of curvature of the first system,
and PR, QT consecutive lines of the second system. The normals
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to the surface at P and @ mtersect at a pownt 4 on the first sheet
of the centro-surface, and those at R and 7' mtersect at another
pomnt 4’ on the same sheet. Simlarly the normals at P, R inter-
sect at a point B, and those at @, T intersect at another B, both
on the second sheet. Thus PA, PB are equal in magnitude to the
principel radii of curvature at P The normal P4 1s a tangent to
the edge of regression corresponding to the curve PQ, and is there-
fore a tangent to the first sheet of the centro-surface at 4. Simi-
larly RA’ is a tangent to the same sheet at 4’. And as 4, A’ are
consecutive points to this sheet, 44’ is also a tangent lme to the
sheet. But these three tangents are all in the plane PRB. Hence
in the limit, as B tends to coincidence with P, the normal plane
at P in the direction PR 1s tangential to the first sheet of the
centro-surface at A. Thus the normal at A to the first sheet of the
surface of centres is parallel to the tangent at P to the corresponding
line of curvature PQ. Similarly the normal at B to the second
sheet of the centro-surface is parallel to the tangent at P to the
other line of curvature PE. The normals to the two sheets of the
centro-surface at corresponding pomts 4, B are therefore perpen-
dicular to each other.

Because the surface of centres 18 the envelope of the principal
normal planes, and 18 composed of evolutes of the lmes of curvature
on S, it 18 often called the evolute of S. These evolutes of the lines
of curvature on 8, which are the edges of regression of the develop-
ables generated by the normals, are also geodesics on the surface
of centres To prove this consider the edge of regression of the
surface generated by the normals along the line of curvature PQ.
The osculating plane of this curve at A 18 the plane of consecutive
normals P4, QA to the surface. Hence it contains the tangent at
P to the curve PQ, and therefore also the normal at 4 to the first
sheet of the centro-surface. The edge of regression is thus a geo-
desic on the centro-surface. Simlarly the edge of regression of the
developable generated by the normals along the line of curvature
PR is a geodesic on the second sheet of the evolute.

It is easy to show that the orthogonal trajectories of these re-
gressional geodesics are the ourves on the first sheet whach correspond
to the lines a=const. on S, and the curves on the second sheet
corresponding to the lines 8= const., where a, 8 are the principal
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radii of curvature for the surface S. For, considering the first sheet
of the evolute, let 7" be one of these orthogonal trajectories, and
T the corresponding curve on S. Then the normals to S along T
generate a developable surface on which 7' and T" are orthogonal
trajectories of the generators, and therefore mtercept between them
segments of the generators of constant length (Art. 56). Thus
along the curve 7' on S the radius of curvature a is constant.

Moreover, the curves on either sheet of the evolute which correspond
to the lines of curvature on 8, form a conjugate system. For con-
venience of description let the lines of curvature be referred to as
parametric curves, PQ belonging to the system = const., and PR
to the system u = const. The normal at P touches both sheets of
the evolute, As a member of the family of normals along PR it 18
& tangent to a regressional geodesic = const. on the second sheet.
As a member of the family of normals along PQ 1t is a tangent to
& regressional geodesic v= const. on the first sheet, and touches the
second sheet at a point on the corresponding line v =const. Thus
the normals along PQ form a developable surface, whose generators
touch the second sheet along a line v = const, and are tangents
there to the lines u = const. Hence (Art. 35) the parametric curves
are conjugate on the second sheet; and these are the curves corre-
sponding to the lines of curvature on S. Similarly the theorem
may be proved for the first sheet.

All these properties will be proved analytically in the following
Art. Meanwhile we may observe in passing that 1t follows from
the last theorem and Beltrami’s theorem (Art. 56 Ex.) that the
centres of geodesic curvature of the orthogonal trajectories of the
regressional geodesics on erther sheet of the evolute are the corre-
sponding pomnts on the other sheet. For, on the second sheet, the
lines v = const. are conjugate to the geodesics u=const. And the
tangents to these geodesics along a line v = const. form a develop-
able whose edge of regression is a geodesic on the first sheet. But,
by Beltrami’s theorem, each point of this edge of regression is the
centre of geodesic curvature of the orthogonal trajectory of the
geodesica u= const. at the corresponding point on the second sheet:
hence the result. It follows that the radius of geodesic curvature
of the orthogonal trajectory is numerically equal to the difference
between the principal radii of curvature of the surface S.
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75. Fundamental magnitudes. The same results may be
obtained analytically as follows. Let the lines of curvature on S be
taken as parametric curves If &, 8 are the principal radii of
curvature at the pownt r on S, the corresponding pomt A on the
first sheet of the centro-surface is

T=T+aR s e o el (1).

Now since A 1s the centre of curvature for » = const. it follows that
T and a are constant for one differentiation with respect to u. Thus
T, + omy = 0}

Similarly T+ An,=0
These are the equivalent of Rodrigues’ formula already proved in
Art. 80. In virtue of these we obtain from (1)

Ti=an

%= (1 _ %) Lt u’n} ..................... (3),

8o that the magnitudes for the first sheet of the evolute are
— - 1 L]
E=op, F=au, G=a,’+G’-(1 - %) s E'=a,’G(1 - %)
The square of the hinear element for the first shest is

48 = Edu? + 2Fdudv + Gdv*
a

=da+G(1- E)’ F ),

which is of the geodesic form. Hence the curves v=const are
geodesics on the first sheet of the centro-surface. These are the
edges of regression of the developables generated by the normals
along the lines of curvature v =const on 8. The orthogonal tra-
jectories of these regressional geodesics are the curves a = const.,
which agrees with the result proved 1n the preceding Art.
The unit normal B to the first sheet 18 given by
ﬁﬁ=F,xF,=a,(l - %)n X Ty

But r,/VE, r;/VG and n form a right-handed system of unit vectors.
Consequently the last equation may be written

Ea=—u,(1-/53)~/§(vi_b,) e (5),
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agreeing with the result, previously established, that the normal at
A to the first sheet of the evolute is parallel to the tangent at P
to the line of curvature PQ. We may express this

where e is + 1 according a8 & (1 - 5) is negative or positive.

8
The fandamental magnitudes of the second order for the first
sheet of the evolute may now be calculated. For

L=H+Fy= ;% + (o, + ayn)=— sul;'E-%
m virtue of (2). Hence finally
L=—eVEg/a
€T

Similarly H=a.f,= 75 o(oyn, +a,,n)=0
1n virtue of (2). And
¥ =

=HeTy «/E’(l_/%)r'.r” by (3),

all the other scalar products vanishing Now
n 'l'=a%(r1 T =Ty Ny=F—3Gi=—1G,

because the parametric curves are orthogonal. Also since the
parametric curves are lines of curvature

@B,
G = BlE=3) [Cf Ex. 2 below.]
On substituting this value 1n the formula for ¥ we have
N= €a 1 .
BWE
Collecting the results thus established we have
I=-eVES, =0, F=25 .. .
Vi 0, N vE B (7

Since # =0 it follows that the parametric curves on the centro-
surface form a conjugate system. Thus the curves on ths evolute,
whach correspond to lines of curvature on the origwnal surface, are
conjugate, but (1n general) are not lines of curvature because F is
not zero,
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The fundamental magnitudes for the second sheet of the centro-
surface are obtamable from the above by interchangng simul-
taneously u and g, Z and G, L and IV, « and 8. Thus for the second
sheet we have the first order quantities

EI=BI,+ (1 - %)’E, F’=BIBB) §,=ﬂl’:

and the second order quantities

I= eff::, =0, F/__e,\/—lgn o (®),
B

where ¢ is equal to +1 according as 8, (1 - E) 18 negative or

positive.
The specific curvature for the first sheet of the evolute 18
-~ LN 1 B
K—E’——(a—,ﬂ)‘z ............... 9),
and for the second sheet
= 1 q
K'=- B RN (« X
(a—B) B, 9
Ex. 1. Wnte down the expressions for the first curvatures of the two
sheets of the evolute.
BEx. 2. Prove that, if the Lines of curvature are parametrio ourves,
_ 208, _ 98Eay
$=8a-p Fa(g-a)’
It follows from the data that F=23=0 and

£ G
a=3, B= >
From the Mainardi-Codazzi relation (8) of Art 43 1t then follows that

-4(§)-wt-e
G8y _G_ _GGE_EGG
BB T9HYa T 2H® ﬁ
Then, since H3=EG, this reduces to the required formula
2aGB,
Gy= .
'~ Bla—B)
The other result follows 1n like manner from the relation (7) of Art. 43

Ex. 8. Prove the formulae given above for the fundamental magmtudes
of the second sheet of the centro-surface.

and therefore
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76. Welingarten surf The ptotic lines on the first

Y
sheet of the centro-surface are found from the equation

Ldu+ 2Mdudy +Ndv*=0.

On substitution of the values of the fundamental magnitudes found
above, this reduces to

EoyBrdu? — @B, dv*=0.... ....... .. (10).
Simlarly the asymptotic lines on the second sheet are given by
Ey8du? — GRa*dv'=0  ........ . (10).

The asymptotic lines on the two sheets will therefore correspond 1f
these two equations are 1dentical. This will be the case if

o By =as3y,
that is to say, if 4, 8 are connected by some functional relation

S, 8)=0.
Surfaces with this property are called Weingarten surfaces. The
above analysis is reversible, so that we have the theorem If there
exists a functional relution bewween the principal curvatures of a
surface, the asymyptotic lines on tha two sheets of its evolute correspond.

Weingarten surfaces are exemplfied by surfaces of constant

specific curvature K, surfaces of constant first curvature J, or more
generally by surfaces in which there 15 any functional relation
f(J, K)=0 between these two curvatures. Since, on a Weingarten
surface, either principal radius of curvature may be regarded as a
function of the other, the formulae found above for the specifio
curvatures of the two sheets of the centro-surface may be written

7 1 dg
K= prda
_ PR} (11).
and K= — =
(a8 dg!
Thus, for any Weingarten surface,
PR |
KK' = (= Gy e e .(12).

Consider the particular case m which the functional relation
between the principal radu of curvature 18

e=B=c.. .. ... ... .(13),
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where ¢ is a constant. From this it follows that
da=dp,
80 that the formulae (11) become

Surfaces of constant negative specific curvature are called pseudo-
spherical surfaces. Hence the two sheets of the evolute of a surface,
whoss principal radii have a constant dufference, are pseudo-spherical
surfaces.

For Weingarten surfaces of the class (18), not only do the
asymptotic lines on the two sheets of the centro-surface correspond,
but corresponding portions are of equal length. For, on the first
sheet, the square of the linear element is

a8 =da* + %(a—ﬁ)’dﬂ’,
and on the second sheet
d5*=dp +§,(a-—/8)‘du’.

But, 1 virtue of (10) and (10'), since o, = 8, and &= B,, it follows
that along asymptotic Lines of the evolute,

gdu’ = g. dv’,
Hence d—dg*=dw*—d* =0,

showing that d§=d#. Thus corresponding elements of asymptotic
lines on the two sheets of the evolute are equal 1n length, and the
theorem 18 proved.

If we consider the possibility of the asymptotic lines of the
surface S corresponding with those of the first sheet of the evolute,
we sedk to 1dentafy (10) with the equation of the asymptotic lines
of the surface 8. Now smnce the lines of curvature are parametric
curves on S, 1ts asymptotic lines are given by

Ldw* + Ndv* =0,
that is Edu’ + g dv?=0.
a 8
This equation will be 1dentical with (10) provided
aB+ef=0,

that is a%(aﬂ):O SO ¢ 1:)
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This requires K to be constant along the lines of curvature » = const.
Thus un order that the asymptotuc hnes on a surface S may correspond
with those on one sheet of its centro-surface, the lines of curvature
on S corresponding to this sheet must be lines of constant specific
curvature. Hence, m order that the asymptotic lines on § may
correspond to those on each sheet of 1ts evolute, the specific curva-
ture of S must be constant.

77. Lines of curvature. We have seen that the lines of
curvature on a surface S do not in general correspond with those
on its centro-surface. We naturally enquire if the lines of curvature
on one sheet of the evolute correspond with those on the other. If
in the general differential equation of the lines of curvature on a
surface,

(EM— FL)dw +(EN — GL) dudv + (FN — GM)dv* =0,
we substitute the magnitudes belonging to the first sheet of the
centro-surface we obtain, after reduction, the differential equation
of the lines of curvature on this sheet, in the form

ERro,a,du? + GaPag By dv?

+ {EB'ag + Ga’er B, + EG (a — BY} dudy = 0.
Similarly on using the fundamental magnitudes for the second
sheet we find the differential equation of its lines of curvature to be

ER B a,du® + Ga® B, Bydr?

+ {ERaB; + Ga*By? + EG (a — BY} dudy=0.
The lines of curvature on the two sheets will correspond if these
two equations are identical. The necessary and sufficient conditions
for this are
a=p and a,=p,
%a_ 98 da_ 098
i Tl Tl
whence a—fB=c,
where o is constant. Hence only in the case of the Weingarten
surfaces, on which the principal radii differ by a constant, do the
lines of curvature on the two sheets of the centro-surface oorrespond.
This theorem is due to Ribaucour.

78. Degenerate evolute. In particular instances either sheet
of the evolute may degenerate into a curve. In such a case the

that is



76-178] DEGENERATE EVOLUTE 167

edge of regression of the developable generated by the normals
along a line of curvature becomes a single point of that curve. We
proceed to enquire under what conditions the normals to a surface
8 will all intersect a given curve C.

Let r be a point on the surface S, n the unit normal there, and

T the point in which this normal cuts the curve . Then we may
write

F=r+tn
or P=T—iD .coiiiieiiniininnnienn, (16)

Let the arc-length u of 0 be chosen as one of the parameters. Then
T is a function of % only, but the other quantities are functions of
u and another parameter v. Now the normal n to the surface S 18
perpendicular to both r; and r,. It follows then from (16) that

ne(f,—tn—tn)=0
and n e (tn+iny) =0,
which are equivalent to

tg=0, ty=mneF,=co80, ... . ....... .(17),

where @ is the mchination of the normal to the tangent to the
curve 0. Simnce then

(] ot Oty

%(cos e)=a_1)=ﬁ= )
it follows that cos 8 is a function of w only Thus the normals to S,
which meet at a pomt of the curve 0, form a right ewcular cone
whose semi-vertical angle § changes as the point moves along the
curve. These intersecting normals emanate from a line of curvature
on S, which must then be circular. Thus the surfuce § has a system
of circular lines of ourvature. And, further, the sphere described
with centre at the pont of concurrence of the normals, and passing
through the feet of these normals, will touch § along one of the
circular lines of curvature. Thus S is the envelope of @ singly
infinate family of spheres with centres on the ourve C.

Conversely, 1f a surface S has a system of errcular lines of curva~
ture, the normals along one of these generate & circular cone, whose
vertex lies on a curve O to which the corresponding sheet of the
evolute degenerates, The surface S1s then the envelope of a singly
infinite family of spheres with centres on 0.
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If both systems of lines of curvature of S are circular, each sheet
of the evolute degenerates to a curve. Then, from the preceding
argument, it follows that each of these curves lies on a singly in-
finite family of circular cones whose axes are tangents to the other
curve. Surfaces of this nature are called Dupin’s Cyclides.

PARALLEL SURFACES

79. Parallel surfaces. A surface, which is at a constant
distance along the normal from anether surface S, 18 said to be
parallel to S, As the constant distance may be chosen arbitrarily,
the number of such parallel surfaces 1s infimte. If r is the current
pont on the surface S, n the umt normal to that surface, and ¢ the
constant distance, the corresponding point on the parallel surface is

Let the lines of curvature on S be taken as parametric curves, so
that F=0 and M=0. Then if a, B are the principal radu of
curvature on 8 we have, in virtue of (2),

T=r+ an,=—(0—:"—)r1

(19).
(c—8)
g™

and F=ry+on, =~

The magnitudes of the first order for the parallel surface are
therefore

2=(2%'5, P=o, G=(°~73£)’G ......... (20),

g2 (0—a)(c— By
and H= g EG.
The unit normal to the parallel surface is given by

§ﬁ=fnxf.=(c_ai(c_ﬂ) Hn,

B
Thus the normals to the two surfaces at corresponding points are
parallel; and we may write
n=en,
where ¢ is equal to +1 according as <c-azg—/3 ) positive or
negative,



78-80] PARALLEL SURFAOES 169

For the magmitudes of the second order on the parallel surface
we have

f=en-{——(cTTa)ru—r.%(u)}=—e(c:a)L=—z(i;—;i)E

Similaily *

b

and

N=ene. {_(cjsﬂ)rﬁ_r,a%(_o_l—é_'a)}=_e(c'—8ﬁ)lv=_€£c_}£) @

Thus F=M =0, so that the parametric curves are lines of curva-
ture on the parallel surface also. Hence the lines of ourvature on
the parallel surface correspond to those on the orvginal surface, and
their tangents at corresponding pownts are parallel, smnce T, is
parallel to r;, and T, is parallel to r,.

80. Curvature. The principal radu of curvature for the
parallel surface are

G=EL=c(a—c)
and E=§/Z—V_=E(ﬂ—0)}

as we should expect. The first curvature is therefore

_ 171 1 e(J—2K)
J_e(a—c+/9—) 1—of + K’
and the second curvature

B= 1 _ K
Te(a-c)(B—¢) l-cJ+K"
If the specific curvature K of the original surface is constant and

equal to l, and we take ¢ = + a, we have
J=Fe E
Thus with every surfuce of constant sscond curvaturs i—, thers are

associated two surfaces of constant first ourvature i%, whach are

parallel to the former and dastant + a from it. This theorem is due
to Bonnet.
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Similarly if J 18 constant and equal to %, and we take ¢=aq,
we find '

= l, = const.
a
1 s .
Thus with a surface of constant first curvature 2 there 18 associated

1 ,
a parallel surface of constant second curvature — at a distance a

al
Srom at.
The asymptotic Lines on the parallel surface are given by
Ldw + Ndv =0,
which reduces to
B(c—a) Bdut+o?(c—B) Gdv*=0 .. ... (22).

Hence they do not correspond with the asymptotic lines on the
original surface, which are given by

Ldw? + Ndv* =0
or BEdw + aGdv* = 0.

81. Involutes of a surface. We have seen that the normals
to & surface are tangents to a family of geodesics on each sheet of
the centro-surface. We now proceed to show that the tangents to a
singly infinite family of geodesics on a gwen surface are normals to
a family of parallel surfaces.

Let the family of geodesics be taken as the curves v=const and
therr orthogonal trajectories as the curves u =const Then we may
choose u 80 that the square of the linear element has the geodesic
form

ds* = du? + Gdrt.
An involute of a geodesic » = const. is the locus of a pomnt whose
position vector T 1s given by
T=r+C=%)r ccorivierinns e (28),
where ¢ 18 constant, and r a pomnt on the geodesic. We shall prove
that, for a given value of ¢, the locus of these involutes is a surface
§ cutting orthogonally all the tangents to the family of geodesics.
From (28) it follows that
F=(Cc—ur,
f=Ty+(c—u) .
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Using the values of I, m, A, ete. found 1n Art. 56 when ds® has the
geodesic form, we may write this

T,=(c—u)In
- G e (24).
Ti=r+(c—u) (M’n + 5(—3 r,) (24)
Hence the unit normal & to the locus of the involutes 1s given by
Ha=%xf=(- u)Lnxr,+(c—u)'€g'nx n,

and is therefore parallel to r, Thus the surface § 18 normal to the
tangents to the family of geodesics on the given surface 8§ It is
called an énvolute of S with respect to this family of geodesics
And, since the value of the constant ¢ may be chosen arbitrarily,
the involutes are mnfinite in number and constitute a family of
parallel surfaces

‘With respect to any one of these mvolutes 5, the original surface
S forms one sheet of the evolute The famuly of geodesics on S are
the edges of regression of the developables generated by the normals
along one family of lines of curvature on S. The orthogonal tra-
jectories of the geodesics correspond to the lines on 8 along which
one of the principal radi of curvature is constant. The second
sheet of the evolute of 8 18 (Art. 74) the locus of the centres of
geodesic curvature of these orthogonal trajectories of the given
farmly of geodesics on 8. This second sheet 18 called the comple-
mentary surface to S with respect to that family of geodesics. From
the proof of Beltrami’s theorem (Art. 56, Ex.) it follows that, with
the above choice of parametric lines on S, the position vector of
the point R on the complementary surface corresponding to the
point r on § 18 given by

R=r—%6:r,. e e e e e +(25)

Fix. 1. Calculate the fundamental magnitudes for an mvolute of & given
surface.

Eix. Q. Prove from (25) that the normal to the complementary surface is
paxrallel to Ts.

Ex. 8. Show that surfaces parallel to & surface of revolution are surfaces
of revolution.

x. 4. Show that null lines on two parallel surfaces do not (in general)
correspond.

W. 11
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INVERSE SURFACES

82, Inverse surface. Consider next the surface S which is
derived from a given surface S by inversion. Let the centre of
inversion be taken as origin. Then, if ¢ 18 the radius of inversion,
the posmition vector T of a point on the inverse surface, corresponding
to the point r on §, has the direction of r and the magmtude ¢/r.
It 18 therefore given by

<& .
r_;’-ar v e .. (26)
- _C 20
Hence B=Snh——gnr
Lo 20 . 7).
n—;fu—F"'n

Also by differentiating the identity r*=r® with respect to the
parameters we have

Ten=7r, Toh=Tr4 s . (28).

The first order magnitudes for the inverse surface are obtained
by squaring and multiplying (27) Then, 1 virtue of (28), we find

E=w=§E )
F=n-n=§r-. R (29),
g-w=%6

and therefore H= ;c—: H,

Since the first order magmitudes for § are proportional to those
for S it follows that the angle between any two curves is um-
altered by wnversion, and also that null lines are inverted into null
lines

The umt normal to the inverse surface 18 found from the
formula

r TR
Ho="7x r=FHn——(1,r,xr T X T),
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Now by (28) the expression m brackets 1s equal to

1s. 1
p l‘ur,—rul';!‘.)xl‘=;{rx(r,xr,)}xr
H
=?(rxn)xr

H
=Hrn—-?n.rr_

If then we put p=mn.r, and substitute the value j i
formula for T, we find ue Just fonad i the

o=

T

T=D s o e 4 . (30)

l.[t is cflea.r that p is the perpendicular distance from the centre of
inversion to the tangent plane to S, measured 1n the sense of the
unit normal n.

To find the second order magnitudes we need the relations
obtained by ditferentiating (28), namely

Etrery=rry+r’
Forery=1rgtnn
GArery=rrg+rd

The second derivatives Ty, Fi, Tn are obtained by differentiat-

ing (27). On substituting the values so found and making use
of (81), we find

_ 3 3
I-5-fu=-51-2LF

- _ c? 2¢%p

M= -r,,=—ﬁM—7F~. ........... (32).

CEer oy %P
N=0.Fs 7al\"—- = G“
From (29) and (32) 1t follows that
P p— (" L)
Eff—-FL=— (;) (EM - FL),

with two similar relations. Hence the ifferential equation of the
lines of curvature on S is the same as on S, showing that lines of
ourvature invert into lines of curvature. This is one of the most
important properties of inverse surfaces,

11—2
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88. Curvature. Let the lines of curvature on S be taken as
parametric curves, so that =M =0. It then follows from (29)
and (32) that F'= M =0. Hence the parametric curves are lines of
curvature on the inverse surface also, affording another proof of the
property that lines of curvature invert into hines of curvature. The
preipal curvatures on S are then given by

"n='En B=7

and those on the inverse surface by

_ LI 2
- i Lo
[ TR (83).
_ N ” 2p
lcb=§=—c—,lcb —F
- = r?
Hence Kg—Kp= _o_’(”" — k),

8o that umbilici invert into umbilior. The specific curvature of the
nverse surface is

?=hm=gx+¥?J+”'

F »
and the first curvature is

.7=E,,+7z,=—:—:.7—%°.
The normal curvature n any direction follows from (33) by
Euler’s Theorem. Thus

Kn = 7, 08" + % 810 4
I 2
ST @M T e e e (34),

since the angle +r is unaltered by inversion.
The perpendicular from the centre of inversion to the tangent
plane to the inverse surface is

2
p=F-E=:-‘-,r-(%r—n),
so that i=f—:p.

Ex. Show that the quantity (n:..+§) is merely altered in mgn by in-
version of the surface.
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EXAMPLES XI

1. Show that the centres of curvature for the central
the notation of Art. 62, " quadrio are, mith

gy /@U@ o fBrup (ot

z \/a(a—b)(a-c)' y= b(b:‘c)gb-z))’
= [ (00 (e+2)
¢(0—a)(c~b)’

P 4 oA R A () 4
7 '\/a(a—b)(a—c)' y= b(T-‘c)(B__'%'

- (0428 (c+)
7 \/a(a—a)(c—b) *

Hence prove that the two sheets of the centro-surface are identical. Prove
also that

.
{a+up ™ Brup (oFup—

az? b7 o
@runt prup T prap—

The elimination of % between these two equations gives the equation of the
centro-surface. (Cf. Forsyth, pp 113—115)

Q. The middle evoluts of a surface, as defined by Ribaucour, 1s the locus
of the pomnt midway between the two centres of ourvature. The current
point on the middle evolute 18 therefore given by

) T=r+i(a+B)n,
where T is & point on the given surface. Find the fundamental magnitudes
and the unit normal for the middle evolute.

3. Givea g trical proof of the th (Art. 81) that there is a family
of surfaces normal to the tangents to a family of geodesics on & given surface.

4, Caloulste the fund tal magnitudes for the complementary surface
determined by formula (25), Art. 81.

5. Verify the values of the second order ‘magnitudes for the inverse surface
a8 given by formula (32).

6. Show that conjugate lines are not generally 1nverted 1nto conjugate
lines, nor asymptotic lines 1nto asymptotic lines.

and

7. Determine the conjugate systems on & surface such that the corre-
sponding ourves on & parallel surface form a oconjugate system.

8. Determine the oharacter of & surface such that 1ts asymptotic lnes
oorrespond to conjugate hnes on & parallel surface.
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9. The centro-surface of a helicoid 1s another helicold with the same ans
and pitch as the given surface.

10. A sphere of radius a rolls on the outside of a closed oval surface of
volume V and area §, and the parallel surface, which 1s 1ts outer envelope,
has volume V7’ and area §’. Show that

V'— Ve=a (8'+8) = 3f mab

11. In the previous exercise, the fundamental magmitudes for the outer

surface are given by
B =(1-4a*K) B+ da(a/~1) L,
F'=(1—4a*F) F44a(aJ -1) H,
@'=(1—-4a3K) G +4a (aJ—1) ¥,
L'=(1-2aJ) L+2aKE,
M'=(1-2aJ) H+2KF,
N'=(1-20]) N+2KG



CHAPTER IX

CONFORMAL AND SPHERICAL REPRESENTATIONS.
MINIMAL SURFACES
CONFORMAL REPRESENTATION

84. Conformal representation. When a one-to-one corre-
spondence exists between the pomnts of two surfaces, exther surface
may be said to be represented on the other. Thus two concentric
spherical surfaces are represented on each other, the two points on
the same radial line corresponding The surface of a cylinder is
represented on that portion of a plane into which 1t can be de-
veloped. A conical surface 18 likewise represented on the portion of
a plane into which it can be unwrapped The surface of a film is
represented on the portion of the screen on which the image 1s
thrown, a point of the film corresponding to that point of the
screen on which 1ts 1mage appears. Likewise the surface of the
earth is represented on a map, each pomnt of the map correspond-
ing to one and only one powf on the earth’s surface.

In general, corresponding portions of the two surfaces represented
are not similar to each other But in the examples mentioned
above there is similanty of the corresponding small elements.
‘When this 1elation holds the representation 18 said to be conformal
The condition necessary for this 18 clearly that, in the neighbour-
bood of two corresponding points, all corresponding elements of
arc should be proportional. If this relation holds 1t follows by
elementary geometry that all corresponding infinitemimel figures
on the two surfaces are similar. Let parameters u, v be chosen to
map out the surfaces S, 8 so that corresponding points on the two
surfaces have the same parameter values. Let the squares of their
hnear elements be

dst = Edu? + 2Fdudy + Gdv?,
and ds* = Edu? + 2F dudv + Gdr.

Then, 1f d5/ds has the same value for all directions at a given point,
we must have
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where 7 18 a function of « and v or a constant. Conversely, if these
relations hold, all corresponding elements of arc at a given point
have the same ratio, and the representation 1s conformal. Then
ds=nds.

The quantity » may be called the linear magnification. When 1t
has the value unity for all pomnts of the surface, dg=ds. The
conformal representation is then said to be sometrio, and the two
surfaces are said to be applicable. In this case corresponding ele-
ments of the two surfaces are congruent. In the examples men-
tioned above the cylindrical and the conical surfaces are applicable
to those portions of the plane into which they can be developed.

‘We may notice 1n passing that null lines on a surfacs correspond
to null lungs in the conformal representation. For since d& =n'ds’,
if ds* vanishes along a curve on S, di® will vamsh along the corre-
sponding curve on 8. Conversely, 1f null lines on S correspond to
null lunes on S, the representation is conformal Let the null lines
be taken as parametric curves. Then
E=@=0and £E=F=0.

de# _2Fdudv_F

de~ 2Fdudy” F
Since then d/ds has the same value for all arcs through a given
pont, the representation is conformal.

It would be out of place here to attempt a systematic discussion
of conformal representation. We shall be content with giving the
important cases of the representation of a sphere and a surface of
revolution on & plane. We may also mention the following general
theorem, whose proof depends upon the theory of functions of &
complex variable:

If ¢, ¥ are a pair of isometric parameters on the surface S, and
u, v 15ometric pardmeters on S, the most general conformal repre-
sentation of vne surface on the other 13 given by

u+1w=F(P+ 1) i L(2),
where f i any analytic function of the argument, the point (z, y)
corresponding to the point (¢, ).
85. Surface of revolution. Consider, as an example, a con-
formal representation of a surface of revolution upon a plane If

Therefore
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the axis of the surface is taken as z-axis, and  is the distance of
a point on the surface from this axs, the coordinates of the point
may be expressed
z=ucos$, y=using, z=js(u),
where ¢ 15 the longitude The square of the linear slement 18
ds* = du® + ds* + ud¢p?

=1 +f7) dv* +urdg?
If then we put dyr= %deu,
we have ds? = ut (o + dg?)

Thus ¢, y are isometric parameters on the surface of revolution.
The curves ¢ = const. are the meridians, and the curves y- = const.
the parallels

On the plane, rectangular coordinates @, y are isometric para-
weters, smee d8 = da® + dy®. Consider the representation defined by

o +iy="k(p+ i),
that is w=kp, y=ky .. .. veerennnnd (3),
where % 15 constant. Then the point (z, y) on the plane corresponds
to the pomnt (¢, ) on the surface of revolution. Further
48 =de* + dy* =1 (d¢* + d*)
=B,
ghowing that the representation 18 conformal, with a linear magni-
fication k/u. The lnes #= const. correspond to meridians on the
surface of revolution, and the lines y = const. to the parallels.

Any straight hne ao+by+¢=0 on the plane cuts the lines
= const. at a constant angle. Therefore, sice the representation
is conformal, the corresponding line %(a¢ +by)+c=0 on the
surface of revolution cuts the meridians at a constant angle. Such
a line 18 called a lozodrome curve, or briefly a lozodrome, on the
gurface of revolution. On substituting the value of y we find, for
the equation of loxodromes on the surface,

a¢+bf%«/1+f,"du=const. ............. (4)

A tnangle in the plane corresponds to a curvilinear triangle
bounded by loxodromes on the surface of revolution. And, since
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corresponding angles in the two figures are equal, 1t follows that
the sum of the angles of a curvilinear triangle, bounded by lozo-
dromes on @ surface of revolution, 18 equal to two right angles.

Finally we may show that, when the linear element of a surface
18 reducible to the form

det=U (du+dv") ceeovrrerr oond (5),

where U 1& a funotion of u only, or a constant, the surface is applic-
able to a surface of revoluton. For 1f we write r=4 T, and solve
this equation for u 1n terms of 7, the equation

du=1VTT7ar

determines a function f(r) such that the surface of revolution
z=rcosv, y=rsmv, z=[(r)
has the same linear element
ds*= U (dus + dv*)
as the given surface.

The above representation of a surface of revolution on a plane
is only a particular case. The general conformal representation of
the surface of revolution on & plane 18 given by

T+Y=F(P+1) ot e (6),
where f is any analytic function of the argument.

86. Surface of a sphere. The theory of maps, whether
geographical or astronomical, renders the sphere an important
example of a surface of revolution. The surface of the earth, or the
celestial sphere, 18 to be represented conformally on & plane, so
that there 18 similarity of detail though not similarity at large If
¢ is the longitude and X the latitude, then, with the centre as
ongin,

z=asin\, U=aCO8N\,
a being the radius of the sphere Thus the square of the linear
element is
ds® = a*d\? + a® cos? Ad¢*
= a? cos® \ (sec’ A dA? + d?).

If then we write 4 =log tan ()—: + g) ............ (7),
so that dyr =secAd,

we have ds* = a?cos* N (d? + dy) ........ .. (8)
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The particular conformal representation given in the previous
Art. becomes for the sphere

o=kp, y= Iclogta.n 4)

Meridians on the sphere, with a consta.nt dafference of longitude,
are represented by equidistant parallel straight lmes &= const.
Parallels of latitude, with a constant difference of latitude, are
represented by parallel straight lines y=const, whose distance
apart mecreases toward the poles. The magmification is
k k
=27 acosn’

which increases from k/a at the equator to infinity at the poles
This representation of a sphere on a plane is known as Mercator’s
projection

Another conformal representation of a sphere on a plane is given

by
@ + iy = ketolw+i),

where ¢ is a constant. This is equivalent to
w=ke¥cosop, y=ke¥sined .. . ...(9).
That the representation is conformal is easly verified For
8 =da® + dy? = lPe™ (dp* + d?),
and therefore, in virtue of (8),
'k g
a5 = @ cos'n
as required. The linear magmfication 18 now
ok e ok (L—smA)b~D
“Gomr a (1+amaytle+d)
Meridians on the sphere are represented by the straight Iines
y=wotancd,
through the origin. Parallels of latitude are represented by the
concentrie circles

dry= rw:k,(1+smh

with centre at the orgin. The particular case for which ¢=1 is
known a8 stereographic projection. It 18 sometimes used for terres-
trial maps. Various other values of ¢ are used for star-maps.

1—sin X)‘
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SPHERIOAL REPRESENTATION
87. Spherical image. We shall now consider briefly the
spherical representation of a surface, in which each point or con
figuration on the surface has 1ts representation on & unit sphere
whose centre may be taken at the origm. If n is the unit normal
at the point P on the surface, the pownt @ whose position vecto:
18 1 18 said to correspond to P, or to be the image of P. Clearly §
Lies on the unit sphere, and if P moves 1n any curve on the surface
Q moves m the corresponding curve on the sphere.
Since the position vector T of 18 given by
= n,
it follows from Art. 27 that
T=n=H"{(FM - GL)r,+(FL— EM)xy},
fo=n,= H={(FN—GM)r,+(FM—~ EN)r,}.

Consequently, if 6, f; g denote the fundamental magnitudes of the
first order for the spherical image,

e=H—(EM*—2FLM + GL*),

f=H"(EMN-FM:~FLN + GLM),

g=H*(EN*~2FMN + GM?),
or, in terms of the first and second curvatures,

e=JL —-KE
J=IM—EF ) .coov urr v (11).
9=JN -KG

Hence also eg —fi=K*H*,

which we may wnite h*=EK'H*

or h=eKH ....c. cev vvvrenne. (12),

where ¢= 1t 1 according as the surface is synclastic or anticlastic
The areas of corresponding elements of the spherical image and
the given surface are hdudv and Hdudy, and their ratio is there-
fore numerically equal to K. This property 18 sometimes used tc
define the “specific curvature.” We may -also observe in passing
that, smee A? must be positive and not zero, K must not vanish
so that the surface to be repreaented on the sphere cannot be a
developable surface.
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In virtue of (11) we may write the square of the linear element
of the 1mage
dp = J (Ldw? + 2Mdudy + Ndv*) — K (Edu? + 2Fdudv + Gdv?),

or, if « is the normal curvature of the given surface in the direc-
tion of this arc-element,

A= (T = E)dst ... oo, @18).

If then &, and x; are the principal curvatures of the surface, we
may write this, n virtue of Euler’s theorem,

dg* = {(#ta + £5) (e COS* Y + £p 81D ) — Kqrs} ds*

= (ke COP Y A O ) A8 vvverras cerreaea (14).
It is clear from either of these formulae that the value of the
quotient ds/ds depends upon the direction of the arc-element.
Hence 1n general the spherical image is not a conformal representa-
tion. It is conformal, however, if k5= + k5. When xs=— iy at all
points, the first curvature vanishes identically, and the surface is
a minimal surface Thus the spherical representation of a imal
surface 1 conformal.

Moreover it follows from (14) that the turming values of ds/ds
are given by cosyr=0 and siny» =0. Thus the greatest and least
values of the magnification at a pownt are nwmerically equal to the
principal curvatures.

88. Other properties. It is easy to show that the lines of
curvature on a surface are orthogonal in their spherical representa-
tion. For if they are taken as parametric curves we have F'=M=0,
hence f=0 which proves the statement. Further if =0 and
=0 we must also have M =0 unless J vanishes identically. Thus,
if the surface is not & mimmal surface, the lines of curvature are
the only orthogonal system whose spherical vmage 18 orthogonal.

Moreover, the tangent to a line of curvature i parallel to the
tangent to its spherical image at the corresponding point; and, oon-
versely, 1f this relation holds for a curve on the surface it must be @
line of curvature. For, by Rodrigues’ formula (Art. 80), along a
hine of curvature dr is parallel to dn and therefore also to dF.
Hence the first part of the theorem. Conversely if dr is parallel to
df 1t 18 also parallel to dn. The three vectors m, n+ dn, dr are
therefore coplanar, and the line is a line of curvature.
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Agam, 1f dr and ds are two infinitesimal displacements on a
given surface, and dn the change 1n the unit normal due to the
former, the directions of the displacements will be conjugate
provided

dneds=0.
And conversely this relation holds if the directions are conjugate.
But dn=df, where df 1s fhe spherical image of dr. Con-
sequentl

1 v df eds=
Thus, if two directions are conjugate at a point on a given surfacs,
each 18 perpendicular to the spherical image of the other at the
corresponding point. It follows that the inclination of two conju-
gate directions 15 equal, or supplementary, to that of their spherical
representations.

Further, an asymptotic line 18 self-conjugate. Hence an asym-
ptotic line on a surface 18 perpendicular to its spherical image at the
corresponding pount.

Ex. 1. Taking the lines of ourvature as parametrio ourves, deduce the
theorem that & line of curvature 1s parallel to its spherical image at the
corresponding point, from the formulae for ¥; and Ty 1n Art 87.

Ex. 2. Prove otherwise that the mclination of conjugate lines 1s equal or
supplementary to that of their spherical image.

Let the conjugate lines be taken as parametric curves, so that /=0, Then
equations (11) become

FLN EN3
9=——, f==—m =7

Hence the angle 0 botween the parametrio ourves on the umt sphere is

given by
cusD=~—/'%= :Wit_auxcosm,

the negative or the poutive sign bemng taken according as the surface is
synclastio or antaclastic.

Ex. 3. If a lne of curvature 18 plane, 1ts plane outs the surface at
a constant angle.

If r 18 a pomnt on the Line of curvature, n 18 the corresponding point on the
spherical image. But we have seen that the t to these at
pomts are parallel; and therefore

dn__dr

—_—=t

di  —ds’

8
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Let & be the (constant) umt normal to the plane of the curve. Then

dn
(a,-n)::a,. = d‘= ia‘?:?a

But %‘r lies in the given plane and 18 therefore perpendicular to a. Thus the

last expression vamshes, showing that @« n is constant, so that the plane
cuts the surface at a constant angle.

Moreover, the relation ae¢n=const is equvalent to @ e F=const. Thus
the projection of T on the diameter parallel to @ 1s coustant, showmg that
the spherical 1mage of & plane Line of curvature is a small circle, whose plane
is parallel to that of the hine of curvature.

89. Second order magnitudes. ‘We may also calculate the
magnitudes of the second order, Z, M, I, for the spherical repre-
sentation. Its umit normal & is given by

hO =T, x f=n,x n,= KHn,
1n virtue of Art. 27 (18). But h =eKH, and therefore
B=eR v veer e e e (15),

where e=+ 1 according as the surface 1s synclastic or anticlastic.
Consequently

E=E'?u=en°nu=e{a%(n-n,)—m'}
=—en’=—e¢e

Proceeding 1n hike manner for the others we have

L=—ee
H=—efl e o ..(18).
N=—e

Thus only the first order magnitudes need be considered. Also
the radius of curvature of any normal section of the sphere is given
b,
v __edu'+ 2fdudy + gdv?
* Zdut+ 2Mdudy + Gdo*’

and 18 therefore numerically equal to unity, as we should expect.

*90. Tangentlal coordinates. The tangential coordinates of
a pomt P on a given surface are the direction cosines of the
normal at P, and the perpendicular distance of the origin from
the tangent plane at that pomt These are equivalent to the unit
normal n at P, and the distance p from the origin to the tangent
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plane, measured 1n the direction of n If r is the position vector
of P, we have
p=ren
and, on differentiation with respect to » and v, 1t follows that
p= r-nl}
Pa=Teny| "

The position vector r of the current point on the surface may be
expressed in terms of m, n,, n,. For, by the usual formula for the
expression of a vector in terms of three non-coplanar vectors,

[3, 3, n]r=[r, n,, n,]n +[r, n,, n]m, +[r, 0, n,]n,.
Now in Art. 27 it was shown that .

[, 0, n,]= HEK.
Further o, xn,=HEn,
80 that [r, n), n,]= HEp.
. 1
Again D, Xn= HE (92, — fn,),
and therefore [, , 1] = g (97s — ).
.. 1
Similarly [r,n,n]= H—K(ep, —fp).

On substitution of these values in the above formula we have

r=pm + 5 (P = ) B+ (opa—fo)ma) .. (1)

Hence, when p and n are given and their derivatives can be calou-
lated, the surfuce is completely determined.

MiNIMAL SURFACES

91. General properties. A minimal surface may be defined
as one whose first curvature, J, vanishes identacally. Thus the
principel curvatures at any point of the surface are equal in mag-
nitude and opposite m sign, and the indicatrix 1s a rectangular
hyperbola. Hence the asymptotic lies form an orthogonal system,
bisecting the angles between the Lines of curvature. The vanishing
of the first curvature is expressed by the equation

EN-2FM+GL=0 ..... . ..(18),
which 15 satisfied by all mimmal surfaces,
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Minimal surfaces derive their name from the fact that they are
surfaces of minimum area satisfying given boundary conditions.
They are 1llustrated by the shapes of thin soap films 1n equilibrium,
with the air pressure the same on both sides. If this property of
least area be taken as defining mimimal surfaces, the use of the
Calculus of Variations leads to the vanishing of the first curva-
ture as an equivalent property.

We have seen that the asymptotrc lines on a minimal surface
form am orthogonal system. This follows also from (18). For, af
these lmes are taken as parametric curves we have L=N=0,
while M does not vamsh. Hence F =0, showing that the para-
metric curves are orthogonal. Conversely, if the asymptotic lines
are orthogonal, the surface 1s menimal. For, with the same choice
of parametric curves we have L =N =0 and F=0, so that J van-
ishes 1dentically.

Further, the null lines on @ mimmal surface form a conjugate
system. For, 1if these are taken as parametric curves we have
E =G=0, while F does not vamsh. It therefore follows from (18)
that M =0, showing that the parametric curves are conjugate.
Conversely, +f the null lines are conjugate the surface is mvmmal.
For then, with the same choice of parametric curves, =G =0
and M =0, so that (18) 18 satisfied 1dentacally

Again, the lines of curvature on & minvmal surface form an iso-
metric system. To prove this let the lines of curvature be taken
o8 parametric curves. Then F=0 and M=0, and the equation
(18) becomes

L N

B*@

while the Mainardi-Codazz relations reduce to
L- ([’ 7)B=0,

=0,

'@
L N
and N,= 2 V) G‘)G’

Thaus L 18 a function of u only, and N a function of v only. Con-
sequently

E_# Iy
BquIOgG Bua'uhg( .N)_O’

showing that the parametric curves are isometric.
w 12
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92. Spherical image. The fundamental magnitudes for the
spherical representation, as given by (11), become 1n the case of a
winimal surface

e=—KE, f=-KF, g=—KG ... (19).
From these relations several interesting general pioperties may be
deduced.

We have already seen that the spherical representation of a
manimal surface 18 conformal. This also follows directly from (19).
For, 1n virtue of these relations,

48 =— Kds.

Thus d3/ds is independent of the direction of the arc-element
through the point, and the representation is conformal. The mag-
nification has the value ¥— X, the second curvature being essentually
negative for a real minmal surface. The converse of the above
theorem has already been considered 1n Art. 87, where it was shown
that 1f the spherical image of a surface 1s a conformal representa-
tion, exther the surface is minimal, or else its principal curvatures
are equal at each point.

Further, null lines on a minimal surface become both null lines
and asymptotric hngs 1n the spherical representation. For, if the
null hnes be taken as parametric curves, we have

E=0, G=0,
and therefore, by (19), e=0, g=0.
Thus the parametric curves in the spherical 1mage also are null
hnes. Agamn, considering the second order magmtudes for the

hers, we h -
sphere, we have Te—eo=0,

N=—¢=0,
and therefore the parametric curves m the spherical image are
also asymptotic lines.

Conversely, if the null lines on a surface become null lines in the
spherwcal representation, either the surfuce 18 minimal, or else its
princwpal curvatures are equal. To prove this theorem, take the
null lines as parametric curves. Then Z=G=0, and since the
parametric curves are also null lines in the spherical image,
¢=g=0. But for any surface

e=JL-K E}
g=JN-KGf"’
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80 that we must have
JL=0 and JN=0.
Consequently either J =0 and the surface is minimal, or else
L=0and N=0.
In the latter case it follows that

J‘“T and K—-I’T,,

and therefore S —4K=0
which 18 the condition that the principal curvatures should be
cqual.

Lastly, isometric lines on a minimal surface are also isometric
in the spherical representation This is obvious from the fact that
the spherical image is a conformal representation. It may also be
proved as follows, If the isometric lines are taken as parametric
curves we have
E_T
[
where U is a function of u only and V" a function of » only. From
(19) 1t then follows that

F=0,

showing that the parametric curves in the spherical image are also
isometric. Hence the theorem. In particular the spherical image
of the lines of curvature on a mimmal surface are 180metric curves,
for the lines of curvature on a minimal surface have been shown
to be isometric,

93. Cartesian coordinates. If we use the form 2=y (z, 3)
for the equation of a surface, the differential equation (18) of
minimal surfaces becomes

&z azaz o'z 0z _
{1+@ }Bw’ a_zé‘ya?aff{”( )}ay 0 (20)

This form of the equation is useful for particular problems.
By way of illustration we may prove that the catenoid 1s the only
1 surface of revolution If the axis of revolution is taken as
the s-axis we may write

s=f(a*+y"),
12—2
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where the form of the function f is to be determined so that the
surface may be mmima.l By dlﬂ'erentiatmn we have

== 2af”, 5= 2yf’,
o'z , » 3’5 _ ’
%,=2f + 4o f”, aq;—ay—ﬁlswyf’,et.c.,
and on substituting these values in (20) we have
@+ +2 (@ +y)f+f =0
On putting r*=a°+ * we may write this equation
d z ds\?) de
= {1 + (d:»)} =0
which gives, on integration,

F .
dz\?
\/ 1+ (ET )
where a is a constant. A second integration leads to

r
z+ c=acosh"‘a,

z2+0
or r—a,cosh———

Thus the only minimal surface of revolutmn is that formed by the
revolution of a catenary about its directrix,

Ex. 1. The only minimal surface of the type

e=f(2)+F(y)
is the surface as=1log cos az - log cos ay.
On substituting the above expression for z 1n (20) we find

' o
At Em=o

The first part is & function of 2 only, and the second a function of y only.

Hence each must be constant; so that

. =a and L —a
I+ T+F?
Integration leads to

f(.z)-%]ogcosu , F)= —é log cos ay.
Hence the theorem.

Ex. 2. Show that the surface
sin a¢=snh az sinh ay

18 mimmal.
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EXAMPLES XII
1. Show that the surfaces
z=ucos¢, y=using, s=op,
and F=ucosp, y=usm g, s=ocosh~1%
are applicable. ¢

Q. Show that, in a star-map (Art. 86), the magnification is 1
parallel of latitude sin=1e. ’ ortion 18 Jast on the
3. Show that rhumb lines of the mand:sns of & sphere become straight

];:o:o:o: ’8 proj , and spirals 1n & stereographic

4. TFind the loxodrome curves on the surfaces n Ex. 1.
5. Find the surface of revolution for which
dst=du?+ (o —u?) dp.
6. Show that, for the surface generated by the revolution of the evolute
of the catenary about the directrix, the linear element 1s reduaible to the form
de? = du?+udod.
7. Any two stereographic projections of a ephere are inverses of each
other, the origin of inversion 1n exther being the origin of projection in the other
8. In any representation of a surface S on another, §', the cross-ratio of
four tangents at & point of & is equal to the cross-ratio of the corresponding
tangents to S’
9. Determine f(v) so that the conond
T=u008v, y=usnv, s=f(v)
may be applicable to a surface of revolution.
1 0. If the curve of intersection of a sphere and a surface be a line of
ourvature on the latter, the sphere outs the surface at a constant angle.
11. 1lfe, f, g refer to the spherical image, prove the formulae
WEmeM3—2f LY +gIA,
WF=eMN —f(LN+M?)+gLH,
W@=eN3—2fUN + g
1 2. What are the first and second curvatures for the spherical image?
13. The angles bet the asymp directions at a point on & surface
and bet thewr spherical tat are equal or supplementary,
aocording as the second mu'vature at the point 18 positive or negative
14. The osoulating planes of a lne of curvature and of 1ts spherical
image at corresponding points are parallel.
15. Show that the lines of curvature on & surface are given by
(6 M ~fL) dud+(s N~ g L) dudv+(fN - g i) d*=0,
and the principal curvatures by
—(eN ~9fM +qgL) x+h=0.

v
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16. The angle 4 between any direction on & surface and 1ts spherical
1mage 18 given by
.Ldu’+2Hdudv+Ndv’
dad
Hence an asymptotic direction 18 perpendicular to 1ts sph 1 image.

17. The formulae (17) of Art. 27 may be wntten
Br=(f¥—-gLl)ym+(fL-eH)n,,
Rry=(fN-gH)n;+(f¥~eN)n;.

18. Show that the lines of curvature of a surface of revolution remain

trio in their spherical

19. Show that the spherical 1mages of the asymptotic lines on & mimmal

surface, as well as the asymptotac lines th lves, are an i system

20. If one system of asymptotio ines on & surface are represented on

the sphere by great circles, the surface 18 ruled,

Q1. The right helicoid 18 the only real ruled minimal surface.

22. The parameters of the lLines of curvature of a minimal surface may
be 8o chosen that the linear elements of the surface and of 1ts spherical 1mage
have the respective forms

008 f=—

du’-’l‘ (Al +dd), dP=x (dud-+dot),

where « is the absolute value of each prinaipal curvature.

283. Prove that Ex. 22 1s still true 1f we write “asymptotic lines” 1 place
of “lines of curvature.”

24. Every helicoud 13 applicable to some surface of revolution, and helices
on the former correspond to parallels on the latter

25. If the fundamental magnitudes of the first order are functions of
s sngle parameter, the surface is applicable to & surface of revolution.
26. Show that the helicold
Z=%C0BY, Y=URINY, l—n‘v+a/\/‘u’i—$ ‘f‘“
18 & minimal surface

27. Prove that each sheet of the evolute of a pseudo-sphere 1s applicable
to a catenoid.

Q8. Prove that the surface
Z=1c08 a+mn % cosh v,

y=v-+cosacosusmhv,
s=8nacos%coshv

18 & mimmal surface, that the parametrio curves are plane lines of curvature,
and that the seoond curvature 18

—mn? af(cosh v+ cosa cos u)t.

~



CHAPTER X

CONGRUENCES OF LINES
RECTILINEAR CONGRUENCES

94. Congruence of straight lines. A rectilinear congruence
is a two-parameter system of straight Lines, that 1s to say, a family
of straight Lines whose equation involves two independent para-
meters. The congruence therefore comprises a double infimtude
of straight lmes Such a system is constituted by the normals to
a given purface. In dealing with this particular congruence we
may take the two parameters as the current parameters u, v for
the surface. The normals along any one parametric curve u=a
constitute a single nfimtude of straight Lines, and the whole
system of normals a double infimtude These normals are also
normals to the family of surfaces parallel to the given surface, and
are therefore termed a normal congruence In general, however,
the lines of a rectilinear congruence do not possess this property
of normality to a family of surfaces. As other examples of con-
gruences may be mentioned the family of straight lines which
intersect two given curves, and the family which mntersect a given
curve and are tangents to a given surface.

A rectilinear congruence may be represented analytically by an
equation of the form

R=r+td. ... ... crerreeeneenD),
where r and d are funotions of two independent parameters u, .
The point r may be taken as a point on a surface of reference, or
director surface, S, which 1s cut by all the limes of the congruence.
We may take 4 as a umt vector giving the direction of the line or
ray, and ¢ is then the distance from the director surface to the
current pont R on the ray.

‘We may make & spherical representation of the congruence by
drawing radii of a umt sphere parallel to the rays of the congruence.
Thus the point d on the sphere represents the ray (1). The hnear
element do of the spherical representation 18 given by

do?=(dd) = edu® + 2fdudv+ gdv* ........... (2),
where e=d}, f=d,«d;,, g=4dg
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these being the fundamental magmtudes of the first order for the
spherical representation. And, since d is the umit normal to the
sphere, we have

where, a8 usual, h2=eg —f2

Another quadratic form, whose coefficients play an important
part 1 the following argument, is that which arses from the
expansion of dredd. We may write this

dredd = (r;du + rydv)s(d, du + dydv)
= adu? + (b + V') dudy + cdo? ............(4),
where a=rmed,, b=rged;,, ¥ =r.d;, c=r,ed;

The rays through any curve C on the director surface form a
ruled surface 2. A relation between the parameters u, » determines
such a curve and therefore also a ruled surface. The infinitude of
such surfaces, corresponding to the infinitude of relations that may
connect u and v, are called the surfaces of the congruence. We say
that each of these surfaces “ passes through ” each of the rays that
lie upen 1t. Any surface of the congruence 1s represented by a
curve on the umt sphere, which may be called its spherical repre-
sentation 1n the above sense. This curve is the locus of the ponts
on the sphere which represent the rays lymg upon that surface.

95. Limits. Principal planes. Consider a curve C on the
director surface, and the corresponding ruled surface 3. Let r and

Fig 28,

r+ dr be consecutive points on the curve, through which pass the
consecutive rays with directions d and d + dd determined by the
parameter values u, v and % + du, v+ dv respectively. Further let
8 be the are-length of the curve O up to the pomt r, ds the element
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of arc between the consecutive rays, and let dashes denote deriva-
tives with respect to s. Then the distance r from the director
surface to the foot of the common perpendicular to the consecutive
rays, a8 found 1 Art. 69, 18 given by
r.d dredd
@ T T e
__ (adu’+(b+b’)dudv+cd ®)
edu® + 2f dudv+gdv /" T :
The pownt of the ray determined by  is the central point of the
ray relative to the surface =
The distance r from the director surface to the central point is
a function of the ratio du : dv, so that it vanes with the direction
of the curve O through the pomnt r. There are two values of this
ratio for which 18 & maximum or mmmmum These are obtamed
by equating to zero the derivatives of r with respect to du/dv.
This leads to the equation
[2fa — e (b + b')] du® + 2 (ga — ec) dudy
+[g (B+b) = 2fc] dv*=0 ....(6),
which gives the two directions for stationary values of r. To
determine these values we have only to elimimate du/dv from the
last two equations, thus obtaining the quadratic
Bt [ec—f(b+¥)+ga]lr+ao—-3 (b +by=0 .(7)
whose roots are the two stationary values required. Denoting these
by 7 and ry we have
B(ri+r)=f0+ b’)—ac—ga}
4hryry=dac— (b+ by
The points on the ray determined by these values of r are called
its lumits. They are the boundaries of the segment of the ray
containing the feet of the common perpendiculars to it and the
consecutive rays of the congruence. The two ruled surfaces of the
congruence which pass through the given ray, and are determined
by (6), are called the principal surfaces for that ray. Their tangent
planes at the limits contain the given ray and the common per-
pendiculars to it and the consecutive rays of the surfaces. These
tangent planes are called the principal planes of the ray. They are
the central planes of the ray relative to the principal surfaces
(Art. 71).

r=—
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Ex. 1. Find the hmts and the prinopal planes for a ray in the con-
gruence of straight lines whioh interseot a given owrcle and 1ts axis.

Let the centre of the given circle be taken as orgm, 1ts plane as the
director surface and 1ts ams as the s-axis. Let a ray of the congruence meet

Fig 24.

the ciroumference of the circle n P, and the axis n @ Denote 0@ by % and
the angle XOP by 6, and let », 8 be taken as parsmeters for the congruence
Then, if R is the radius of the circle, the position vector of P 18
r=(Rcosd, Rsmé, 0),
and the umt vector d 1n the direction P@ of the ray 18
ds(—Enosé, - Rsmn g, u)'
NERitu?
From these 1t 18 easy to verify that

pied R
o=mirap /=0 9=
Ny
The equation (7) for the distance of the limits from the pomnt P reduces to
1N R udr=0,
50 that n=0, ry=VEI1A
The limits are therefore the points P and @.
The differential equation (6) for the principal surface becomes simply
dudf=0
Thus the principal plane through the ray corresponding to dd=0 1s the plane
POQ contamng the ray and the ams of the awcle. The principal plane -
corresponding to du=0 18 the plane cont: g PQ and a ive ray
through @. These principal planes are clearly perpendicular. The principal

while a=0, b=0, b'=0, o=
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surfaces are the planes through the axis, and the cones with vertices on the
axs and generators passing through the given circle

Ex. 2. E the cong; of tangenta to a given sphere from points
on a given diameter,

Take the centre of the sphere as origin and 1ts surface as director surface.
Let the given diameter be taken as z-axis and polar ams, the colatitude 8
being measured from OZ and the longitude ¢ from the plane ZOX. If
& tangent from the pomt @ on the given diameter touch the sphere at
P (0,¢), the position vector of P may be expressed as

r=ZR(smfcos ¢, smhumg, cos 6),

R being the radius of the sphere The umt vector d 1n the direction PQ of
the ray 18

d=(—cosfcosch, ~cosfeng, 5md)
Taking 6, ¢ as parameters, show that

e=1, f=0, g=cos?),
and a=0, b=b'=0, o=~ Ramfbcosd.
Hence show that the distances of the himits from P are
71=0, ry=Rtané,
80 that 2 and @ are the liouts. The equation (6) becomes
dodg=0

Hence the prinoipal surfaces are the planes through the given dismeter and
the tangent cones from points on that diameter

96. Hamilton’s formula. Let the parameters be so chosen
that the principal surfaces correspond to the parametric curves.
Then the equation (6) determining the principal surfaces must be
equivalent to dudv=0. This requires

2fa—e(b+b)=0
2fo—g (b+b)=0)"
and therefore, since the coefficients of the two quadratic forms are
not proportional, we must have
f=0, b+b'=0 .. .. 9.
The first of these is equivalent to d,+d,=0 Hence the principal
surfaces are represented on the unit sphere by orthogonal curves.

The mutual perpendicular to the consecutive rays d and d + dd
is perpendicular to both d and dd. Hence it is perpendicular to
d and S—:, where do 1s the arc element of the umt sphere corre-
sponding to dd. But these are two unit vectors, perpendicular to
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each other. Hence the unit vector in the direction of the common

perpendicular is %‘; x d. Now, in virtue of (8) we may write this
du dv d, xd,
(d: P +d, ) h
or, since d, and 4, are perpendicular (f = 0),
1
— - N ¢ (1)}
doeg (94, dv — edydu) (10).

The consecutive rays corresponding to the limits are determined
by dv=0 and du = 0, that is by the parametric curves. For these
we have respectively do = Vedu and do =+¥gdv, 8o that (10) be-
comes in the cases corresponding to the hmits

1 1
-7 ad 78y e e (1),

which are perpendicular to each other. Now the tangent plane to
the ruled surface of the congruence through the consecutive rays
1s parallel to d and the common perpendicular Therefore, in
virtue of (11), the two principal planes for any ray are perpen-
dicular to each other.

The angle 6§, between the common perpendicular (10) in the
general case and that corresponding to the principal surface dv =0,
is given by
(gidv — edydu) _ Vedu

cos = — 7; d,. do vg il
edu?
Thus cos’o=edu’+gdv"
- g
and therefore s f = odut + gdo”

Further, with this choice of parameters, the distance r from the
durector surface to the foot of the common perpendicular 1s given
by

adu? + cdv

edu® + gdv*’
and therefore for the limits (dv =0 and du =0),

a 0
n=-z, n=-c.

9
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It follows immediately that
r=1r08% 0+ r,8in? f ..ccoverrernnnnnns (12).

This is Hamilton’s formula cc ting the position of the central
point of a ray, relative to any surface through 1t, with the inchna-
tion of the central plane of the ray for this surface to the principal
planes of the ray. The formula 18 independent of the choice of
parameters. Also, if the director surface 18 changed, the three
distances r, ry, 7y are altered by the same amount, and the formula
still holds.

‘We may observe in passing that the normal to a surface of the
congruence through the ray d is perpendicular both to this ray and

to the common perpendicular g—: % d to it and a consecut1ve ray.

It 18 therefore parallel to

dx(g—gxd),

which is identical with g—: . Thus the normal to a surface of the

congruence 18 parallel to the tangent to the spherical representation
of the surface, in the sense of Art. 94.

Ex. For any choioe of parametric curves the umt vector perpendicular to
consecutive rays 18

ad du, y do\_ dyxds
d-;><d=(d1;r+d,a;)x——,l

=i [ P+ g -s20 72|

©07. Focl. Focal planes. The ruled surface 3 of the con-
gruence will be a developable 1f consecutive generators intersect.
The locus of the point of intersection of consecutive rays on the
surface is the edge of regression of the developable. It is touched
by each of the generators, and the point of contact is called the
Jfoous of the ray.

Let p be the distance of the focus along the ray from the direc-
tor surface. Then the focus is the point

R=r+pd
But since the ray touches the edge of regression at the focus, the
differential of R is parallel to d. That 1s to say
(rydu + 1ydv) + dpd + p (dydu + dydv)
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18 parallel to d and therefore perpendicular to d, and d;. Hence,
on forming its scalar product with d, and d, in turn, we have
(adu + bdv) + p (edu+fdv)=0
(' du + cdv) + p (fdu+gdv) = 0}
These two equations determine p and du/dv. On ehminating p we
have
adu+bdy bdu+cdy
edu+jfdv  fdu+gdv
which is a quadratic in du/dv, giving two directions, real or
imaginary, for which % 15 a developable surface. Thus through
each ray of the congruence there pass two developable surfaces,
each with 1ts edge of regression. Each ray of the congruence is
therefore tangent to two curves in space, the points of contact
being the focu or focal pownts of the ray. The locus of the foci
of the rays is called the focal surface of the congruence. It 18
touched by all the rays of the congruence. The focal planes are
the planes through the ray and the consecutive generators of the
developable surfaces through the ray. They are the tangent planes
+at the foc1 to the two sheets of the focal surface.
On eliminating du/dv from the equations (13) we have

=0 eeveeernen (14),

a+ep b+jfo -0
b+fp ct+gpl 7
or hp'+[ag —(b+b) f+celp + (ac—bb)=0 . (15),

a quadratic in p giving the distances of the two focy from the
director surface. It will be observed that this differs from the
quadratic (7) only in the absolute term. Denoting the roots of
(15) by p, and p, we have

B (p+ pa) = (b + &) f— 60— ga (16)
hepyp,=ac— bl AT
Comparing these with the equations (8) for the limits we see that
i+ r=pi+p,
(2R 20 i S
and (n=r (= par= € b)} an

From the first of these relations 1t follows that the point midway
between the limits 1s also midway between the focr It is called
the meddle poing of the ray ; and the locus of the middle points of
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all the rays 1s the middle surface of the congruence. From the
second of equations (17) we see that, since the second member is
positive, the distance between the foci 15 never greater then the
distance between the hmits. The two distances are equal only
when b=p". Thus on each ray there are five special points, the
two limits, the two foc1 and the middle pont. The foci, when they
are real, lie between the limits,

‘We have seen that the central plane, P (through a given ray
and the common perpendicular to it and a consecutive ray), is
inclined to one of the principal planes at an angle  given by

r=7,c08° 0 + rys1m0? 4,

The angle 6 varies from 0 to 721 as r varies from 7 to 7y, the

principal planes being perpendicular to each other. When the
foot of the common perpendicular is one of the focy, the plane P is
a focal plane. At the foe1 » has the values p, and p,. Let 6, and
A, be the corresponding values of . Then

py=", c08* 6, + 7y 8in? 0,}

pa=",CO8* B+ 780 6,
Adding these, and 1emembering that p,+p,=r+7;, we see
that

cos® 6, + cos* Gy =1,
and therefore, as 6, and 6; are both positive and neither is greater
than 721, we must have
R — Y
Thus the focal planes are not perpendicular, but are symmetrically
placed with respect to the principal planes, so that the planes
bisecting the angles between the focal plames also busect the angles
between the principal planes.
Further, the angle ¢ between the focal planes 18 given by
$=06,—6i=5 -2

Hence 8in ¢ = cos 26, = cos” 6, — cos’ 6,

=0Tl . (19)

Py .
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*98. Parameter of distribution. Consider again the con-
secutive rays d and d + dd corresponding to the parameter values
4, v and w+ du, v+ dv. Then 1n virtue of the results proved in
Art. 68 we see that, if

D=[r,d,d],
the mutual moment of the two rays 1s Dds? their shortest distance
apart 18 Dds'/do, while the parameter of distribution for the ray d
on the ruled surface determined by du/dw is

D Dds
| (20).
Now Dds*=[dr, dd, d]

=[r,du + redy, d,du + dydy, d].
Expanding this triple product according to the distributive law we
see that the coefficient of du® is equal to

v, d,, d]=r,-d,><d’;:d’

1
=Zr, -(fd,—-ed,)
1 9
=z (af —b'e).
Similarly the cocfficient of dudv 1s equal to
1
zr,-d,x(dlxd,)+’1:r,-d,x(d,xd,)

= 1rye (9~ fd) 47 1y (f, — o)

=} (ag +bf - bf — 0s)

and the coefficient of dv® reduces to
,1; (bg —¢f).
‘We may write the result 1n determinantal form as
st s 1100 e

50 that the parameter of distribution has the value
adu+bdy, bdu+ cd:l

3

edu+fdv, fdu+gdv
B= i (edus+ 2fdud+gdm < Gl
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r the developable surfaces of the congruence 8 vanishes 1denti-
ly. Equating this value of 8 to zero we have the same differential
1ation (14) for the developable surfaces of the congruence, found
we by a different method.
*09. Mean ruled surfaces. The value of 8 as given by (21)
1 function of du/dv: and therefore, for any one ray, the parameter
distribution is different for different surfaces through the ray.
ose surfaces for which it has its greatest and least values are
led the mean surfuces of the congruence through that ray The
ferential equation of the mean ruled surfaces 18 obtamned by
nating to zero the derivative of 8 with respect to du/dv.
The analysis can be simplified by a suitable choice of the surface
reference and the parametric curves Let the middle surface of
2 congruence be taken as director surface. Then, by (8) or (16),
follows that

F+b)—ag—ce=0.
irther, let the parameters be chosen, as i Art. 96, so that the
incipal surfaces correspond to the parametric curves Then, 1n
‘tue of (9), f=b+b =0. Thus our choics of surface and curves
reference gives the simplification

f=0, b+¥=0, ag+ce=0 ............ (22).
1e value of 8 as given by (21) then reduces to
g= bedu? + 2ag dudy + bgde?
Veg (edu® +gdv®)
b dudv
==t 2”/% (m”rgdv,) .............. (23)

16 values of du/dv corresponding to the stationary values of 8
e found by equating to zero the derivative of this expression with
spect to du/dv. This leads to the equation
edu? — gdv? ..eeiniiiiiiinn . (24),
, In virtue of (22), to
adu?+0dP =0 .cooviiiiiiiienen (24'),
the differential equation of the mean surfaces. There are thus
70 mean surfaces through each ray. Now on the sphercal
presentation the equation (24) 18 that of the curves bisecting the
1gles between the parametric curves, which correspond to the
-meipal surfaces. Hence the central planes for the mean surfaces
w 13



194 REOTILINEAR CONGRUENOES [x

bisect the angles between the prinoipal planes, and therefore also the
angles between the focal planes. Further, 1t follows from (5) and
(24") that the distance » to the central point of the ray, relative to
o mean surface, is zero Thus the central point of a ray, relative to
either of the maan surfaces, coincides with its middle point. Both
these results illustrate the appropriateness of the term “mean” as
applied to these surfaces.

The extreme values of the parameter of distribution, corre-
sponding to the mean surfaces, are obtamed by substituting in
(23) the values of du/dv given by (24). Denoting these values of
B by B, and 8, we have

b . a
B1=E+Z

- rer e e (26).
52=T;-'g—;

The values of B for the principal surfaces are found from (23) by
putting dv=0 and du=0 in turn. The two values so obtained are
equal. Denoting them by 8 we have

5 _ b
B=Ta=i‘(ﬂx+ﬂn)'

For this reason the parameter of distribution for a principal surface
is called the mean paramater of the ray. It1s the arithmetic mean
of the extreme values of the parameter of distribution.

Let ¢ be the inchnation of the central plane of a ray for any
ruled surface, to the central plane for the mean surface Nedu = '\/:z]_alv,

for which the parameter of distribution1s 8,. We proceed to prove
the formula

B=P1cos’d + Bmnieh. . .oovevnnnnnn (26),
for the parameter of the ray relative to the first surface. The
formula is analogous to (12), and is proved 1n a similar manner.

The unit common perpendicular to consecutive rays of the first
surface is given by (10), being

1
g 00 =t
For the mean surface ¥edu = ¥gdv this becomes
1 -
Vo (Vgd,~Ved,).

F —
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Hence the angle ¢ between the central planes for the two surfaces,
bemg the angle between these two perpendiculars, is given by
equating 1ts cosine to the scalar product of the umit vectors. Thus

cosp= Vedu +Vgdv .
V2 (edur+ gdu?)
1 Vegdudy
2 =
Hence Cos p=5+ 1 +gdu
and therefore sin?¢p = 1 Veg dudy

2 edu+gdv”
Then, 1 virtue of (25),

2 2 = b g dudy
B cos? ¢ + By 81n® N/_e-g+2a\/;(edu‘+gdv’>
=8

as required. If 8, and B, have the same sign, 1t follows from this
formula that the parameter of distribution has the same sign for
all surfaces through the ray. Such rays are said to be elliptic. If,
however, 8, and B, have opposite signs, the parameter of distribution
is positave for some surfaces, negative for others. Such rays are said
to be hyperbolic. If either B, or B, 18 zero the ray 1s said to be
parabolic

For the developable surfaces of the congruence 3 vanishes iden-
tically. Hence the inclinations of the focal planes to the central
plane for the mean surface corresponding to B, are given by

ta.n¢=i«/-—%’l ............... .(27).

It follows, as already proved, that the central planes for the mean
surfaces bisect the angles between the focal planes. If 8,=0 the
ray is parabolic, and the focal planes coincide with the central
plene for this mean surface The two developables through the ray
then comneide, and the foc1 coincide with the middle point of the
ray. The two sheets of the focal surface are then 1dentical. When
this property holds for all the rays the congruence 1s said to be
parabolc.

Ex. 1. Show that, for a principal surface, cos?¢p=4. Deduce that the

central planes for the mean surfaces bisect the angles between the principal
surfaces.

Ex. 2. The foo are imaginary when the ray 1s elliptic,
13—2



196 REOTILINEAR OONGRUENOCES [x

100. Normal congruence. A congruence of straight lines
is said to be normal when 1ts rays are capable of orthogonal inter-
section by a surface, and therefore in general by a family of surfaces.
Normal congruences were the first to be studied, especially 1n
connection with the effects of reflection and refraction of rays of
hght. If this normal property is possessed by the congruence

R=r+1d,
there must be variations of R representing displacements perpen-
dicular to d, so that d « dR =0, that 18
de(dr+ddt +tdd) =0,
or dedr=-—dt
It follows that d « dr is a perfect differential Also the analysis is
reversible, and therefore we have Hamalton's theorem that the
necessary and sufficient condition that @ congruence be normal 18 that
d « dr be a perfect dyfferential. We may write
dedr=der,du+d «r,dy,
and if this is a perfect dufferential 1t follows that

2aemy=La@.n,

or divry=d,em,
that is B=ber ceeeis e o (28).
Conversely, if this relation holds, the congruence 1s normal.
Further, 1f b = ¥’ it follows from (17) that

Pr—pa=Ti—7y
But Prtpa=ri+ 1y,
and therefore p, =, and p,=1r,. Hence the foci coincide with the
lmits. Also the focal planes comaide wath the principal planes, and
are therefore perpendicular to each other.

The assemblage of normals to & surface § has already been cited
as an example of a normal congruence. The foc1 for any normal
are the centres of curvature, and the focal surface 1s the centro-
surface of 8. The focal planes concide with the principal planes,
and are the principal normal planes of the surface S. The normals
to § are also normals to any surface parallel to § This agrees with
the fact that when we integrate di=—d . dr, the second member
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being a perfect differential, the result involves an additive constant,
which 18 arbitrary - Thus a normal congruence 1s out orthogonally
by a famly of surfaces.

Ex. 1. For rays of a normal congruence 8;= —~ S and =0,

Bx. 2. The tangenis to a singly wnfimte famly of geodesws on & surface
constitute a normal congruence (Art. 81)

Ex. 3. The congruences considered 1n the examples of Art. 95 are
normal

Ex. 4. For the congruence of normals to a given surface, take the surface
tself as director surface and its Lines of curvature as parametric curves
(F=M=0) Bhow that, since d=n,

a=~—1I, b=b=0, o=~X,
e=JL—-KE, f=0, g=JN-EG,
and deduce that the equation for the focal distances from the surface 1s the
equation for the principal radu of curvature

101. Theorem of Malus and Dupin. If a system of rays
constututing a mormal congruence 1 subjected to any number of
reflections and refractions at the surfaces of successwe homogeneous
medsa, the congruence remains normal throughout.

Consider the effect of reflection or refraction at the surface
bounding two homogeneous media. Take this as director surface.
Let r be the pownt of mncidence of the ray whose initial direction
15 that of the unit vector d, and which emerges parallel to @'
Also let n be the umit normal to the surface at the pomnt of me1-
dence. Then, since the incident and refracted (or reflected) rays
are coplanar with the normal, we may write

d=1n + pd.

Hence dxn=pud xn.
But, by the laws of reflection and refraction of light, d x n/d’ x n
18 constant for the same two media, bemng equal to the index of
1efraction 1n the case of refraction, or to umty in the case of
reflection. Hence u 18 constant for the congruence. Now, for a
displacement dr along the surface, n ¢ dr =0 and therefore

dedr=ud «dr.
But the first member of this equation is a perfect differential, since
the incident system 1s & normal congruence. Consequently, x being
constant, d' e dr 18 also & perfect differential, and the emerging
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system likewise 18 a normal congruence. Thus the system remains
normal after each reflection or refraction, and the theorem 1s proved.

*102. Isotropic congruence. When the coefficients of the
two quadratic forms

adu? + (b +b') dudy + cdv® and edu? + 2fdudy + gdo*
are proportional, that is to say when
a b+bic=e.2f1g wiieerinnnnn. .(29),

the congruence 1s said to be ssotropic. When these relations hold
1t follows from () that the central pomnt of a ray is the same for
all surfaces of the congruence which pass through the ray. Thus
the two limits coincide with each other and with the middle point
of the ray and the hmit surfaces comncide with each other and
with the middle surface The line of striction for any ruled surface
of the congruence 1s the locus of the central points of 1ts generators,
and therefore the locus of the middle points of the rays. Thus the
lines of striction of all surfaces of the congruence lie on the middle
surface.

Let the middle surface be taken as director surface. Then the
value of r as given by (5) must vansh 1dentically, so that

a=0, b+0'=0, ¢c=0 .. (80)
Hence dredd=0 ....... ...(307)

for any displacement dr on the middle surface. Thus 1if we make
& sphercal representation of the middle surface, making the pomnt
of that surface which 1s cut by the ray @ correspond to the poi.nt
d on the umt sphere, any element of arc on the mddle surface is
perpendicular to the corresponding el t on the spherical repre-
sentation,

Moreover, 1n virtue of the relations (29) 1t follows that the value
of 8 as given by (21) is independent of the ratio du:dv Hence
in an wotropic congruence the parameter of distribution for any ray
has the same value for all surfaces through that ray. Now, by (31)
of Art. 71, the tangent plane to a ruled surface at a pomt of the
generator distant « from the central point, 18 inclined to the central
plane at an angle ¢ given by

tan¢=§.
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Hence, smce the central pomnt of & ray 1s the same for all surfaces
through 1t, any two surfaces of the congruence through a given ray
cut each other along ths ray at o constant angle

Ex. 1. Onaray of an 1sotropic congruence two points P, @ are taken at
a given constant distance from the middle surface 1 opposite direotions along
the ray Show tha the surface generated by P 15 applicable to that generated
by @

The pomts P and @ have position vectors r+¢d and r—id, where ¢ is
oonstant. And for the locus of P

da?=(dr + tdd)’ = (dr)? +13 (dd )3,
1 virtue of (30'). The same result 18 obtained for the locus of Q.

Ex. 2. Deduce from (27) that, for rays of an wotropus congruencs, the foos
and fooal planes ars vmaginary.

Ex. 3. The only normal 1sotropic congruence 18 a system of rays through

a pownt.
CURVILINEAR CONGRUENCES

103. Congruence of curves. We shall now consider briefly
the properties of a ourvilinear congruence, which 18 a family of
curves whose equations 1volve two independent parameters. If
the curves are given as the lines of intersection of two families of
surfaces, their equations are of the form

Sy 2% 9=0, g(z,9,5uv)=0.. ...(31),
in which u, v are the parameters. In general only & finite number
of curves will pass through a pownt (2, ¥, #). These are deter-
mined by the values of %, v which satisfy the equations
J (0, Yo, 20, %y 0) =0, (@, Yo, 20, U v) =0
The curve which corresponds to the values u, v of the parameters

is given by
fu,v)=0, g(u,v)=0. ............. (32).
A consecutive curve 18 given by
fu+du, v+dv)=0, g(u+du, v+dv)=0,

S v) +fx"’”‘fﬂ""”"} ............... (33),
g, v)+gidu+gadv=0
each value of the ratio du/dv determining a different consecutive
curve. The curves (32) and (33) will mntersect if the equations
fdu+ fodv =0, gidu+gedv=0

or by
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bold simultaneously, that 1s if

£=§§=x, (68F) vv re erer e (34).

The points of intersection of the curve », v with consecutive curves
are given by (82) and (34). These ponts are called the foci or
Jfocal points of the curve. The locus of the foci of all the curves 1s
the focal surface of the congruence., Its equation is obtained by
eliminating u, v from the equations (32) and (34). The focal
surface consists of as many sheets as there are foci on each curve.

The number of foc1 on any curve depends upon the nature of
the congruence. The foc: are found from the equations

S=0, =0, figs—fagh=0 ........ .(85)

In the case of a rectilinear congruence, /=0 and g=0 are planes.
Hence the above equations are of order 1, 1, 2 respectively in the
coordinates, showing that there are two foci (real or 1maginary) on
any ray. The two may of course comncide as in a parabolic con-
gruence. In the case of a congruence of conics we may suppose
that =0 is a comcord and g=0 a plane. The equations deter-
mming the foc1 are then of order 2, 1, 8 respectively m the
coordinates, and there are six foc1 on each conie.

104. Surfaces of the congruence. As m the case of
a rectilinear congruence, the various curves may be grouped so
as to constitute surfaces. Any assumed relation between the
parameters determines such a surface. Taking the relation

v=¢ )
and eliminating u, v between this equation and the equations of
the congruence, we obtain a relation between , y, 2, representing
one of the surfaces of the congruence Each relation between the
parameters gives such a surface. There 1s thus an imfinitude of
surfaces corresponding to the infinitude of forms for the relation
between the parameters.

We shall now prove the theorem that all the surfaces of the
congruence, which pass through a gwen curve, touch one another as
well as the focal surface at the foci of that curve. Consider the
surface through the curve u, v determined by the equations

f=0, g=0, v=¢(u) ... . .. ..(36).
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Then any displacement (da, dy, dz) on that surface 1s such that

%m+”@+”aﬂ? gwmﬂm=o

3., .99, 9. .[3 .2 .
£m+9@+£m+[9 9¢(ﬂm -0

But at the foci
Loty
5 G
and therefore for any direction 1n the tangent plane at a focus we
must have

Wm+”@+”a x@%h+@@+wm)

Thus the normal to the surface at the focus is parallel to the vector

Cv 29 Y\ Y %)

3

o "oz’ Oy oy’ 0Oz
which is independent of the assumed relation between the para-
meters, and is therefore the same for all surfaces of the congruence
through the given curve. Hence all these surfaces touch one
another at the foci of the curve.

Again, the equation of the focal surface is the elimmant of u, v
from the equations (32) and (84). At any point of the focal surface
we have from the first of these

@Idw+a'—f:dy+§fdz+aidu+a—fdv=0

gm+@@+am+WM+@a_

and therefore, 1n virtue of (34),
afdm+afdy+afdz i
Wm+ﬂ@+%a m TaTh

Thus (dw, dy, dz) is perpendxculs.r to the vector (37), which is
therefore normal to the focal surface. Hence at a focus of the curve
the focal surface has the same tangent plane as any surface of the
congruence which passes through the curve. The theorem is thus
established. It follows that any surface of the congruence touches
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the focal surface at the foci of all 4ts curves The tangent plane
the focal surface at the foc1 of a curve are called the focal plane
the curve.

105. Normal congruence. A curvilinear congruence is ¢
to be normal when it 18 capable of orthogonal intersection b
family of surfaces Let the congruence be given by the equati
(81). Along a particular curve the parameters w, v are const:
and therefore, for a displacement along the curve, we have
differentiation

o Ay _ O
1G9 D &)

If i this equation we substitute the values of u, v 1 terms
@, y, # a8 given by (31), we obtain the differential equation of
curves of the congruence in the form

where X, ¥, Z are independent of u, . If then the congruenc:

nornal to a surface, the differential equation of the surface must
Xdo+Ydy + Zdz=0 ... ...... (39)

In general this equation 18 not mtegrable. It is well known fr

the theory of differential equations that the condition of integ

bty s Y 0Z 9Z 93X X oY

(G -5)+ (5~ 5) + 2 (5~ ) ="

If this condition is satisfied there is a family of surfaces satisfy

the equation (39), and therefore cutting the congruence ort

gonally.

Ex. 1. The congruence of circles
le+my+ne=u, 23+y2+23=0

has for 1ts differential equation

_dz__ dy __ds

ny~ms ls—nz mz-ly"
Hence they are normal to the surfaces given by

(ny —mz) dz + (s — nz) dy + (mz - ly) de=0.
The condition of wtegrability 1s satisfied, and the integral may be expres
ny —ms=o(nz - lz),
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where ¢ is an arbitrary oonstant. This represents a family of planes with
common line of intersection z/l=y/m=13/n.
Ex. 2. The congruence of conics
y—s=u, (y+2—dr=yv
has a differential equation

y+s
It 18 normal to the surfaces given by
(y+3) dz+dy + dz=0.
The condition of integrability 1s satisfied, and the integral 1s
y+z=ce~?,
Ex. 3. Show that the congruence of circles
Pty +d=uy=uvs
has the differential equation

_dv _dy ds
2B-yi—® 2y 2zs’
and 18 out orthogonally by the family of spheres
o3+ g2+ st =0,

EXAMPLES XIII
Reotilunear Congruences
1. The current pomnt on the middle surface 18

R=r+id,
where t=2—}‘§ [f(o+Y)—eo—ga)
The condition that the surface of reference may be the middle surface is
so+ga=f(b+0)
Q. Prove that, on each sheet of the focal surface, the curves corresponding
to the two familes of developabl faces of the cong: are conjug

3. The tangent planes to two confocal quadrics at the points of contact
of a common tangent are perpendicular. Hence show that the common tan
gents to two confocal quadrics form a normal congruence.

4. If two surfaces of a congruence through a given ray are represented on
the unit sphere by ourves which out orthogonally, their Lines of striction meei
the ray at ponts equidistant from the middle point.

5. Through each point of the plane =0 a ray (I, m, n) 18 drawn, such that

I=ky, m=—kz, n=V1—k(24+y).
Show that the congruence so formed 1s 1sotropic, with the plane s=0 as
mddle surface.
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6. In Ex. 1, Art 102, prove conversely that, if the surfaces are apphicable,
the congruence 1s 1s0tropre.

7. If (I, m, n)1s the umt normal to a mmimal surface at the current point
(7, 3, 2), the Line parallel to (m, —7, ») through the powt (z,, 0) generates
a normal congruence.

8. The Lines of striction of the mean ruled surfaces lie on the middle
surface.

9. For any ohowoe of parameters the differential equation of the mean

surfaces of a oongruance 18
~(b+¥) f+ee  adu+(b+b) dudy+cds?
243 edul+ 2f dudv+gdv?

10. The mean parameter of distribution (Axt. 99) of a congruence is the
square root of the difference of the squares of the distances between the imits
and between the fool.

11. If the two sheets of the focal surface 1nterseot, the ourve of inter-
section 15 the envelope of the edges of regression of the two families of
developable surfaces of the congruence.

12. In the congruence of strmght lines wluoh ntersect two twisted
ourves, whose arc-lengths are g, &, the d of the developabl
surfaces of the congruence is dsds¢' =0 The focal pla.nea for a ray are the
planes through the ray and the tangents to the curves at the points where it
outs them.

13. One end of an 1nextensible thread 18 attached to a fixed pomnt on
a smooth surface, and the thread is pulled tightly over the surface. Show
that the possible positions of 1ts straight portions form a normal congruence,
and that a partiole of the thread describes a normal surface.

14. In the congrusnce of tamgents to one system of asymptotic lines on
a gwen surface, S, show that the two sheets of the focal surface conoide with
each other and with the surface S, and that the distance between the himt
powts of a ray 18 equal to 1/V'=E, K being the specific curvature of the
surface § at the pownt of contact of the ray

Take the surface § as director surface, the given syatem of asymptotio

lines as the parametric curves »=oonst.,, and thewr orthogonal trajestories as
the curves u=const. Then, for the surface S,

L=0, F=0,
s
0 that X
Also, with the usual notation, d=r,/~/Z and therefore

B Y
a=Tng(7p)= mm"‘

N by Art 41,
&=Fv5 (78) = 7™ nvE™

S i
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‘om these 1t is easily verified that

= b=——— b =0, =——-
a=0, wWE TR

EG  4M3G+G?

"ZET;'f “3EG* 9T wmG@
B
e

18 equation (15), for the distances of the foe from the director surface,
duces to p?=0 .Thus the foor coincide; and the two sheets of the focal
rface comncide with the surface S The congruence 1s therefore parabolic
rt. 99). Similarly the equation (7), for the distances of the limits, reduces to

ao B0 _ 1
Py iy o

' -t —,
"=V
hus the distance between the Limits 18 1/v/ = X,

156. When the two sheets of the focal surface of a rectilinear congruence
nnoide, the specifio curvature of the focal surface at the pont of contact of
ray 18 —1/3, where ! 18 the distance between the limuts of the ray.

16. If, in a normal congruence, the distance between the fodi of a ray is
\e same for all rays, show that the two sheets of the focal surface have their
secifio ourvature constant and negative.

17. Rays are incident npon a reflecting surface, and the developables of
\e 1ncident congruence are reflected 1nto the developables of the reflected
gruence Show that they out the reflecting surface 1n conjugate lines

18. When a congruence consists of the tangents to one system of lines
! ourvature on a surface, the focal distances are equal to the radii of geodesic
1rvature of the other system of lines of ourvature.

19. A 'y and sufficient condition that the tangents to a family of
uves on a surface may form a normal congruence 1s that the curves be
sodesics.

Q0. The extremities of a straight Line, whose length is constant and
hose direction depends upon two parameters, are made to deacribe two
rfaces applicable to each other Show that the positions of the Line form
o isotropio congruence.

Q1. The spherical representations (Art 94) of the developable surfaces
f an isotropic congruence are null Lines,

22, In an isotropic congrusnce the envelope of the plane which cuts
ray orthogonally at 1ts middle point 18 & munimal surface.
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Curnbnear Congruences

28. Prove that the congruence
z-y=u(s—2) }
2=y (z+y+o)=",
18 normal, being out orthogonally by the family of surfaces
ys+er+ay=cl
24, Show that
278 - yh=ud, 3yi+428=0?
p & normal cong e, cut orthogonally by the surfe
zyt=as®

25. Four surfaces of the cong pass through a given curve of the
congruence Show that the cross-ratio of their four tangent planes at & pownt
of the curve 15 1ndependent of the pownt chosen

26. If the ourves of a congruence cut a fized ourve, C, each pomnt of
intersection 18 & focal point, unless the tangents at this pownt to all curves
of the congruence which pass through it, are coplanar with the tangent to
the curve ' at the same pomt.

27. Ifall the curves of a congruence meet a fixed curve, this fixed curve
lies on the focal surface,

28. Show that the congruence
ag (2)+by (9)+ox (5)=u}
¢ (2)+¥ @) +x ()=
18 normal to & family of surfaces, and determne the farmly.
29. Find the parallel plane sections of the surfaces
$@)+¥ @) +x(s)=u
which constitute & normal congruence, and determine the famly of surfaces
which cut them orthogonally
80. If & congruence of awroles is out orthogonally by more then two

surfaces, 1t 18 cut orthogonally by a famuly of surfaces Such a congruence 18
called & oyclac system

Nore. The author has recently shown that curvilinear ocongruences may bo
more effectavely treated along the same Lines as reotilinear congruences. The
existence of & it surface and a surface of striction is thus easily established,
and the equations of these surfaces are readily found. See Art. 129 below.

T~ i

H—— v

-



CHAPTER X1
TRIPLY ORTHOGONAL SYSTEMS OF SURFACES

106. A triply orthogonal system consists of three families

of surfaces

« (@, y, 2)=const.

V(@ Y £)=0const.} .iee cernieiernnen 1)

w (@, Y, 8)=const
which are such that, through each pomnt of space passes one and
only one member of each family, each of the three surfaces cutting
the other two orthogonally. The simplest example of such a system
18 afforded by the three families of planes

@=const, ¥ =const, #=-const,
parallel to the rectangular coordinate planes. Or again, if space 18
mapped out in terms of spherical polar coordinates 7, 8, ¢, the
surfaces r=const. are concentric spheres, the surfaces 6= const
we coaxial cwrcular cones, and the surfaces ¢ =const. are the
neridian planes. These three families form a triply orthogonal
system. Another example is afforded by a farmly of parallel sur-
‘aces and the two families of developables in the congruence of
10rmals (Arts. 74, 100). The developables are formed by the
10ormals along the lmes of curvature on any one of the parallel
jurfaces. As a last example may be mentioned the three families
»f quadrics confocal with the central quadrie
LAY
a b o

t is well known that one of these is a family of ellipsoids, one
« family of hyperboloids of one sheet, and the third a family of
\yperboloids of two sheets This example will soon be considered
n further detail

10%7. Normals. The values of u, v, w for the three surfaces
hrough a pomt are called the curnlinear coordinates of the pomt.
3y means of the equations (1) the rectangular coordinates z, y, 2,
nd therefore the position vector r, of any point in space may be
xpressed in terms of the curvilinear coordinates. We assume that
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$his has been done, and we denote partial derivatives with res;
to u, v, w by the suffizes 1, 2, 8 respectively. Thus

or or _or
rl:a_l;’ rl=%! "m—a—"ua”x

and so on.
The normal to the surface u=const. at the pomnt (z, y, 2

parallel to the vector
G 5%
oz’ Oy’ 02/

Let a denote the unit mormal m the direction of u increas
Similarly let b and ¢ denote umt normals to the surfaces v=co

o
N

* TFig 26.
and w=const. respectively, in the directions of v increasing a
w meressing. Further we may take the three families in tk
cyclic order for which a, b, ¢ are a right-handed system of w
vectors. Then since they are mutually perpendicular we have

asb=bec=cea=0 } @)

and a=bxoc, b=oxa, c=axbj " '
And, because they are unit vectors,

al=b'=0'=1 ...ccce. srrnrinnnnns 3).

Since the normal to the surface u = const. 18 tangential to t
surfaces v =const, and w=const through the pownt consdere
for a displacement ds in the direction of & both v and w a
constent. In terms of the change du in the other parameter let

ds=pdu.
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Thus pdu 15 the length of an element of arc normal to the surface
u=const. The unit normal in this direction is therefore given by

a=dr_lor_1
X ds pou p v
so that TI=PB  ciieres cereeeens seeennn (4),
and therefore r?=p

Similarly if the elements' of arc normal to the other two surfaces,

in the directions of b and ¢, are gdv and rdw respectively, we have
T=gb, T=7C .. ccco. . cer veree (B),

and consequently re=¢% ri=r%

Thus 1y, r,, ry are a nght-handed set of mutually perpendicular

vectors, so that

Nelg=TyeTy=Tye0,=0 ..ccooee oo ooos (6)
Further, in virtue of (2), (4) and (5),
L XTy= %—E T,
nxn=%n> ..... ce e D),

X, =% T

and [ry, o, 1] =pgr[a, b, c]=pgr ..... ......(8).
108. Fundamental magnitudes. A surface u=-const. 1s

cut by those of the other two families in two families of curves,
v=const. and w=const Thus for pownts on a surface u = const.
we may take v, w as parametric variables Similarly on a surface
v = const. the parameters are w, w and so on Thus the parametric
curves on any surface are its curves of intersection with members
of the other families On a surface % =const the fundamental
magnitudes of the first order are therefore

E=ri=¢"

F=rer,=0 }

G=ri=r
so that 1= 79,
and sunilarly for the other surfaces Since F'=0 the parametric
curves on any surface constitute an orthogonal system.

w. 14
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To find the fundamental magmtudes of the second order we
examine the second derivatives of r. By differentiating the equa-
tions (6) with respect to w, u, v respectively, we have

Tyye T+ X, erp=0

r.,-r.+r,-r.,=0}.

TyeX +T5eTp=0,
Subtracting the second and third of these, and comparmg the
result with the first, we see 1mmediately that

. Tt Ta=TieTn=0) ver. (10),
Similarly Tyer=0
Again, by differentiating r? =p* with respect to u, v, w, we have
Ty eIy =ppy
Ty oT=PPgp severernn o0 . (1),
Ty * Iy = PPs,
and therefore r,-r,,=—r,-r,,=—pp,} o a2),
TyeIp=—T e T=—Dps

with two similar sets of equations. Now the umt normal to the
surface % = const. is r,/p, and the parameters are v, w. Hence the
second order magnitudes for that surface have the vilues

1 1
L=§r1'rn=_1‘JQ‘h\
1
M=Zriom=0  y.. .. (13).

1 1
1\7=§r1-r,,=—1—J 'rr,‘\
Similar results may be written down for the surfaces » = const. and
w=const. They are collected for reference in the table*

Surface Parameters E F G H L I M N
1 1
u=const. v, 0 ¢ 0 7 gr —-qn 0 —=rn
P p
1 1
v=const. w, U B 0 P —affg 0 —-épp,
- 1 1
w=oonst. u, v ©° 0 ¢ pr —zPm 0 -odm

* Forsyth gives & similar table on p. 418 of his *' Leotures.”



109] DUPIN’S THEOREM 211

Ex. Elliptic coordinates. Conmder the quadrios confocal with the
sllipsord .
z oy A
atEta=h
in which we may assume a?>> 5*>¢? The oonfocals are given by
zﬂ + yl 'ﬂ _
antpatans
for different values of A Hence the values of \ for the confooals through
s given point (%, ¥, ¢) are given by the oubio equation
@ (\)= (a3 +X) (B*+X) (*+2) = 222 (B142) (P +1)=0
Let u, v, w denote the roots of this equation. Then, mnce the coefficient of
818 equal to umty, we have
(A=) A=2) A—w)=(a"+]) (B -+2) (¢ +1) =32 (B*+1) (*+1)
If 1 this 1dentity we give X the values —af, —b% —c* 1n succession, we flnd
(@) (@) (@ +w)
T (aA-b) (aF-¥)
y,=(b“+u) (624 9) (B*+w)
(09— o) ('~ a¥)
2 (@0 (@ +) (e +w)
(@-a) (=8
These equations give the Oartesian coordinates i terms of the parameters
u, v, w, which are called the ellsptio coordinates of the powt (z, y, 2).
By loganthmic differentiation of (14) we find
oz Oy o\ _l/ « y z
r‘=(874’ ou’ 37&) =3 (a7+u’ Biu’ c“+u)’
with similar expressions for ry and rs. From these the relations (6) are easily
verified, and further
pP=ryp=

L

(14)

(u—2) (u—w)
4 (at+u) (b+u) (i +u)’
(v—w) (v-2)
4 (a%+0) (B¥+v) (¢ +0)’
(w—u)(w-2)
4 (aP+w) (b +w) (et +w)
These are the first order magmtudes &, G for the confocal surfaces, ' being
equal to zero, and by partial differentiation we may calculate Z, & according
to the above table
109. Dupin’s theorem. We have seen that, for each surface
of a triply orthogonal system, F'=0 and M =0. Thus the para-
metric curves are lines of curvature, and we have Dupin's theorem:
The curves of intersection of the surfaces of a triply orthogonal
system are lines of curvature on each.

g=rd=

ri=ryg=

14—2



212 TRIPLY ORTHOGONAL SYSTEMS OF SURFACES [x

The principal curvatures on each of the surfaces are then easily
calculated On a surface u=const. let #,, denote the principal
curvature in the direction of the curve of parameter v (the curve
w=const.), and Ky, the principal curvature 1n the direction of the
curve of parameter w (the curve v = const.). Then

e g

“E e veere (16).
N N

Fw= G

Similarly on a surface v=const the principal curvatures in the
durections of the curves of parameters w and u are respectively

. L n

T
Eoarl (16),
=2__ P

foou )

and on a surface w=const. m the directions of the curves of
parameters u, v they are respectively

Let x, be the curvature of the curve of parameter u. Then
8INCE Ky, 8DA Ky, 8T the resolved parts of the vector curvature of
this curve n the directions of the normals ¢ and b respectively,
we have (Art. 53)

KuCOBW = Kyy, KyBINT=1rey ... (18),
where @ is the normal angle of the curve relative to the surface
w=const Hence

”"l = xwi + /‘W.
and tan @ = _ P2 ,
Kuwu  QPs
with similar results for the curves of parameters v and w. Further,
since the curve of parameter u is a line of curvature on the surface
w=const,, the torsion W of 1ts geodesic tangent 1s zero, Hence,
by Art. 50, its own torsion T 18 given by

ceee ereenn (19),
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110. Second derivatives of r. Expliat expressions for the
second derivatives of r in terms of 1, 1y, 1, are easily calculated.
The resolved parts of ry in the directions of the normals a, b, o
are respectively

ryea, ryeb, ryec,

or :—l-r or; 1 Iyer, 1, or,
p 1 1y q 2 11> r 3 1
which, in virtue of (11) and (12), are equal to

1 1
Py —;PP:: — 7P
Hence we may write

1
Iy ’5}711'1 q,Pnri “1_,er:

1
and siilarly Ty= z Qs —7% Qs — 17‘ 1'% % O (20).
T, l1-r L =Ly
u=_Tals p,lx q'“;

In the same way we find that the resolved parts of ry in the
directions of a, b, ¢ are respectively

0, s, Ta.
Hence the result

1 1 \
Ty = Eq.r, +; 73Xy
.. 1 1
and similarly Ta=_7ils+ Ep.l‘l . (21)

1 1
Tp=~ D1y +— O, T,
13 _pp” q% s

We may also calculate the dervatives of the umt normals
a,b,c. For

o m 1, 1
P m\p) " p'® p’p“

-—ip,r,—;;p,r, by (20)

1 1
=- E?lb —';2710-
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oa_ 0 1 1
Similarly w3 (P) _1_’ rm_zT,P:rx

1
=p_q QT by (21)

=';‘ AN

and o _1 LI o o,
aw p r 143 p 1
with corresponding results for the denvatives of b and c.
Ex. Prove the relations

1'11’=P1“+1P2'+£Fs )

Tueriy=pipy -%Pa g1y

TyeTy= —%Pﬂ;—i—’}%"m
Tige I'ig=pgPs,
To'=gg*+rg,
with similar results derivable from these by cyolio interchange of variables
and suffixes.

111. Lamé’s relations. The three parameters u, v, w are
curvilinear coordinates of a pomt r 1n space. The length ds of an
element of arc through the pomt 18 given by

ds® = dr* = (r,du + rodv + r,dw)
=p'du? + g*dv® + r*du?,
since r;, Iy, Iy are mutually perpendhcular. The three functions
P, 9, T are not independent, but are connected by six differential
equations, consisting of two groups of three. These were first
deduced by Lamé*, and are called after him. We may write them

9 (M), 2 (%), ¢n_q
av<q) +3'w('r>+ Va2 =0
0 (P (AW
aw( )+8u(p)+ F 0 e (22),
KA P\ L Pat _
h(p)+8v(q)+7~'—_o;
* Legons sur les coordindes ourvilignes et leurs diverses applications, pp, T8-79
(1869).
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and _Psg por)
P 7 + p
e
q.,=%+q‘?’”> et nene (29)

Txn=%+%

q ’

They may be proved by the method employed in establishing the
Meinardi-Codazz relations. Thus if in the identty

[

& ry= a%rm
we substitute the values of ry and r,, given by (20) and (21), and
after differentiation substitute agam the values of the second
derivatives of r 1n terms of the first derivatives, we find an equa-
tion in which the coefficient of r, vamishes identically, while the
vanshing of the coefficients of r; and r, leads to the third equation
of (22) and the first of (23). Similarly from the identity

w
we obtain the first of (22) and the second of (23); and from the
1dentity

[}
Tyg= 552'-,

I
u® w®
the second of (22) and the third of (23).

Moreover, just as the six fundamental magnitudes E, F, @,
L, M, N, satisfying the Gauss characteristic equation and the
Mamardi-Codazz1 relations, determine a surface except as to
position and orentation in space (Art 44), so the thres functions
», ¢, 1y satisfying Lamés equations, determine a triply orthogonal
system of surfaces emcept as to posron and orientation in space.
But the proof of this theorem 1s beyond the scope of this book*.

Ex.t Given that the family w=const. of a triply orthogonal system are
surfaces of revolution, and that the curves v=const sre meridians on these,
examine the nature of the system.

On the surfaces w=const, u and v are the parameters. Since the curves
v=const. are meridians they are also geod and therefore E 18 & funct:
of u only (Art. 47), the parametrio curves bemng orthogonal. Thus p,=0
From the first of (23) it then follows that either rg=0 or py=0.

* Bee Forsyth, §§ 248-25L, + Of. Esenhart, § 184,
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In the first case, smnce py=0 and r,=0, (16) gives ,,=0 and x,,=0. Thus
the sarfaces v=const. are planes; and since they are meridian planes, the
axes of the surfaces of lution must ide. The surfs st. and
u=oonst are therefore those obtamned by talang a family of plane curves
and their orthogonal trajectories, and rotating their plane about a line in 1t
as axis.

In the second case we have ps=0, and therefore, mn virtue of (17), keu=0.
Consequently the family of surfaces w=const. are developables, erther ciroular
oyhinders or ciroular cones. Further, since ps=0, x,,=0 by (18), and therefore
the surfaces t. are also developables And we have seen that

ko3 = Kund+ Ky
so that x, also vanishes. Thus the ourves of parameter u are straight limes,

and the surfaces u==const parallel surfaces. These parallel surfaces are planes
when the surfaces w= oonst. are oyhnders.

*112. Theorems of Darboux. In conclusion we shall con-
sider the questions whether any arbitrary family of surfaces forms
part of a triply orthogonal system, and whether two orthogonal
families of surfaces admit a third family orthogonal to both. As
the answer to the second question supplies an answer to the first,
we shall prove the following theorem due to Darboux

A y and sufficient condition that two orthogonal famlies
of surfaces admit a third family orthogonal to both is that their
ourves of intersection be lines of curvature on both.

Let the two orthogonal families of surfaces be

% (&, y, £) = const.
A com} ................ (24)

Their normals are parallel to the vectors Vu and Vu. Denoting
these gradients by a and b respectively, we have the condition of
orthogonality of the surfaces,

- aeb=0.
If there exists u third family of surfaces

w (a, y, £) =const. ......... treeees o (25),

arthogonal to each of the above families, then any displacement
dr tangential to (25) must be coplanar with a and b; that is

axbedr=0

* This Art. 18 intended only far readers famliar with the formulae of advanced

Vector Apalysis. The d ployed are th trio, and
should not be confused with those of the follewmg ahnpter

——

S SN
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The condition that this differential equation may admit an integral
involving an arbitrary constant is
(axb)eVx(axb)=0,
which may be expanded
axbe(beVa—asVb+aVeb—bVea)=0..(26).

The scaler triple products from the last two terms vanish, owing
to the repeated factor. Further, since a « b =0, it follows that

0=V(asb)=a«Vb+b:Va+bx(Vxa)+tax(Vxb)
Again the last two terms vanish since

Vxa=VxVu=0

and Vxb=VxVy=0,

Consequently a«Vb=-b.Va.

Substituting this value in (26), we have the condition
(axb)e(@eVb)=0 ... ........(27)

for the existence of a family of surfaces orthogonal to both the
families (24).

Now consider a curve cutting the family of surfaces u=const
orthogonally. A displacement dr along this curve is parallel to
the vector & at the point and therefore, in virtue of the con-
dition (27), .
drxbe(dr.Vb)=0,
which may be written

[dr, b, db]=0.

Now the curve considered Lies on a member of the family v=const.;
and, as b is normal to this surface, the last equation shows that
the curve 18 a lne of curvature. Thus the curves which cut the
surfaces u=const. orthogonally are lmes of curvature on the
surfaces v=const. Hence their orthogonal trajectories on tho
latter are also lines of curvature. But these are the curves of
intersection of the two famlies (24). Since these are lines of
curvature on v=const., and the two families cut at a constant
angle, it follows from Joachimsthal’s theorem that they are also
lines of curvature on the surfaces u = const., and Darboux’s theorem
is established.

‘We may now proceed to answer the other question, whether an
arbitrary family of surfaces

u(@, Y, 8) =C0D8b, rvvvuer eririnennad (28)
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forms part of a triply orthogonal system. If there 1s a second
family of surfaces orthogonal to the above, their curves of inter-
section must be lines of curvature on u=const Hence, a family
of lines of curvature on (28) must constitute a normal congruence
if there are to be three orthogonal families.

Let t denote the unit tangent to a line of curvature on %=const,
Then the necessary and sufficient condition that the lines of ourva-
ture of this system should constitute a normal congruence is that
tedr admits an ntegral involving an arbitrary constant. The
condition for this is

teVxt=0 ..o el (29).
As for the direction of t we observe that, if n 1s the unit normal
to the surface u=const, the tangent t to a line of curvature it
parallel to the rate of change of n in that direction; that is to say
t is parallel to dn, and therefore to dr « Vn. Hence, since dr has
the direction of t,

t.Vn=\2t,
where M is a scalar factor. Thus t is expressible in terms of the
first and second derivatives of u, and the equation (29) 18 therefort
of the third order in these derivatives. Moreover the above analysi
18 reversible, and so we have Darboux’s theorem*

In order that a family of surfaces w(z, vy, z)= const. may fom
part of a truply orthogonal system, 1t 18 necessary and sufficient tha
u should satisfy a certain partial differential equation of the thirc
order.

Such a family of surfaces is called a Lamé family.

EXAMPLES XIV

1. Show that any famuly of spheres or planes, whose equation contain
one parameter, can form part of a triply orthogonal system.

2. Show that a family of parallel surfaces 1s & Lamé family.

3. Prove the existence of a triply orthogonal system of spheres.

4, A necessary and sufficient dition that the surf t. o
a triply orthogonal system be parallel 18 that  be & function of 4 alone.

5. The curves p=oconst. are curves of equidistance on a surface w=consi
between consecutive members of that family.

6. Examine the exstence of a triply orthogonal system of minmime
surfaces.
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7. Prove that the equations (21), satisfied by r, are also satisfied by 1
8. Determins a tiply orthogonal system of surfaces for which
p=1, ¢=1, r=Au+Bv+0,

where 4, B, 0 are funotions of  alone.

9, Prove that the surfaces

ay=us, 22+l +=v, 23+y'+d=w (233

are a triply orthogonal system

10. Prove that the surfaces

ys=az, N+ P4V +P=b, NP1V d=c

cut one another orthogonally Hence show that, on & hyperbolio paraboloid
whose principal sections are equal parabolas, the sum or the difference of the

dastances of any point on & line of curvature from the two generators through
the vertex is constant.

11. A tnply orth ]l system of surfs remams triply orthogonal
after nversion (Art 83)

12. Putting p*=a, g?=b, +1=q, rewnite the equations (20) to (23) of the
present chapter in terms of a, b, ¢ and thewr dervatives*.

13. Osaloulate the first and second ourvatures of the surfaces of a triply
orthogonal system 1n terms of p, g, #, also in terms of a, b, e

14. The reaprocal system of vectors to ry, ¥y, I's of the present chapter
is 1, m, n, where [ £lem. Vect Anal., Art 47)

1=ry/a, m=ryb, n=rso.
Qalculate the derivatives of thess vectors 1n terms of 1, m, m, @, b, o.

* For orthogonal systems exther of these notations 18 satisfactory, ‘but, with triple
systema generally, 1t 18 better to treat the aquares and scalar produots of the deriva-
tives of r as the fundamental quantities Bee Art. 128, or a recent psper by the
anthor “On Triple Systems of Surf: and Non-Ortk 1 Curvil Coordi-
naites,” Proc. Royal Soo. Hdin. Vol. 46 (1926), pp 194—206.




CHAPTER XII
DIFFERENTIAL INVARIANTS FOR A SURFACE

113. Point-functions. In this chapter we propose to give a
brief account of the properties and uses of differential invariants
for a surface. The “differential parameters” mtroduced by Beltrami
and Darboux have long been employed in various parts of the sub-
ject. The author has shown, however, that these are only some of
the scalar members of a family of both vector and scalar differential
invariants®, which play an important part in geometry of surfaces,
and 1n the discussion of physical problems connected with curved
surfaces.

A quantity, which assumes one or more definite values at each
point of a surface, is called a function of position or a pont-function
for the surface. If it has only one value at each pomt it 1s said to
be umform or single-valued. We shall be concerned with both
scalar and vector point-functions, but in all cases the functions
treated will be uniform. The value of the function at any pomt of
the surface is determined by the coordinates 4, » of that pomt, 1t
18 therefore a function of these variables,

114. Gradient of a scalar function. Consider first a scalar
funetion of position, ¢ (u, v). We define the gradient or slope of the
function at any pont P as a vector quantity whose direction 1s that
direction on the surface at P which gives the maximum arc-rate
of increase of ¢, and whose magnitude is this maximum rate of
increase. There is no ambiguity about the direction; for it 1s the
direction of increase, not decrease.

A curve ¢ = const. is called a level curve of the function Let O,
0" be two consecutive level curves, corresponding to the values ¢
and ¢ +d¢ of the function, where d¢ is positive. Let PQ be an
element of the orthogonal trajectory of the level curves, intercepted
between 0, ¢, and let dn be the length of this element Let PR

* The theory of these invariants hu been developed at some length by the author
1n a paper entitled: *“On Diffe in G 'y of Burf. with

some applications to Mathematioal Phylml," Quarterly Journal of Mathematios,
Vol. 50, pp. 280-369 (1926).

I P S S | S —"
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be an element of arc of another curve through P, cutting €' in R,
and let ds be the length of PR. Then clearly PQ 1s the shortest
distance from P to the curve O, and 1te direction 1s that which

c Q
dn’ R
c e ds 2z,
P Xo
-1
Fig. 26.

gives the maximum rate of increase of ¢ at P. Thus the gradient
of ¢ at P has the direction PQ and the magmtude dep/dn. This
vector will be denoted * by V¢ or grad ¢. If m is the unit vector
in the direction PQ, orthogonal to the curve ¢ = const., we have

V¢=j—:m o reneses werenieies ead (1)

And from the above definition it is clear that grad ¢ 1s independent
of the choice of parameters u, v. Itisitself a point-function for the
surface.
The rate of increase of ¢ in the direction PR is given by
d¢ _dpdn _do
ds  dnds dn
where 0 is the inclination of PR to PQ. Thus the rate of increase
of ¢ wn any direction along the surfuce is the resolved part of V¢ in
that direction If ¢ 18 the unit vector in the direction PR, the rate
of 1ncrease of ¢ 1n this direction is therefore ¢ « V¢, This may be
called the derwvative of ¢ 1n the direction of ¢. If dris the elementary
vector PR we have dr=ods; and therefore the change d¢ in the
function due to the displa.cemenb dr on the surface 18 given by

¢——ds=de(oo\7¢)

or dp=dreVe ... .. i (2).
From the defimition of V¢ it 18 clear that the curves ¢ = const.

will be parallels, provided the magnitude of V¢ is the same for

all points on the same curve; that 18 to say, provided (V) is a

cos 6,

* We shall borrow the notation and inology of three-p d 1
invariants.
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function of ¢ only Hence a necessary and sufficient condation that
the curves ¢ = const. be parallels is that (V$)* 1 a function of ¢ only

The curves y» = const. will be orthogonal trajectories of the curves
¢ = const. if the gradients of the two functions are everywhere per-
pendicular. Hence the condition of orthogomality of the two systems
of curves 18*

Ve Var=0.

Although the gradient of ¢ is ndependent of any choice of
parameters, it will be convenient to have an expression for the
function in terms of the selected coordinates u, v This may be
obtained as follows. If 8u, & 15 an infimtesimal displacement along
the curve ¢ (%, v) = const.,

¢18u + ¢y Su=0.
Hence a displacement du, dv orthogonal to this 15 given by
(Art 24)

du _ G —F,

Do Egy— by

V=(G¢,— F¢a) r +(E¢H—F¢u) b
15 therefore parallel to V¢. But the resolved part of this in the
direction of r; is equal to

1 E
TER V= (G¢.—F¢,)W+(E'¢z— F¢1)%

The vector

2
JE 10
VET? NEu’
* Beltrami’s differential parameter of the first order, A, ¢, is the square of the
magnitude of V¢, that s
A ¢=(Ve)
His mixed differential parameter of the first order, A, (¢, ¥), is the scalar produet
of the gradients of ¢ and y; or
Al Y=V Ty
Darboux’s funotion © (¢, ¥) 16 the magnitude of the veotor produot of V¢ and Vy;
that 18 to say
8 (¢ ¥)n=VpxVy
The inchination § of the curve y=oconst to the onrve ¢ = coust. 18 also the melination

of Vy to V¢ And, since 00s? § 4 sin? 6=1, 1t follows from the last two equations, on
aquaring and adding, that

A (¢, ¥)+68 (9, ¥)=(Vo)I (Vy)2
=419 Ay

Y )
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.

ach is B times the derivative of ¢ in the direction of r;. Hence
ud ¢ 18 V/H? or
G, — F E¢,— F
V¢=( ¢IH’ o), 4 € ¢’H" ¢l)r, ......... )
ich is the required expression for the gra.d.leni'.,
We may regard this as the result obtained by operating on the
action ¢ with the vectorial differential operator

1 9 9 9

=gun (0 -FL) + i (BL-FL) =
1at this operator 1s invariant 18 clear from the definition of V¢
uch 18 independent of parameters. The operator V plays a funda-
sntal part m the following argument, for all our invarants are
pressible in terms of 1t. 'When the parametric curues are orthogonal
takes a simpler form. For then F=0 and H*= EG, so that
o 1_2
at@™m
form which will frequently be employed when 1t 15 desired to
nplfy the calculations.

V=%n

Ex. Prove the follawmg relations:
(V¢)’= 3 (Eet ~ 2P po+ Gepy?),
Voo V*l'= 3 [EdaVa—F (st dadr) + G,
véx V‘l”‘ (b1¥a—$a¥1) 0.

115. Some applications. The gradients of the parameters
v are given by

Vu= g—’ 5’ Ty,
Vo = E’E—: 1:1;’ r,
that Vu x Vo= H'
d therefore (Vu x Vv)’=i.

.

SURNDRNOVESR
R

Pt
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Hence (V)= % =G (Vux Vup,

VueVy=— §=—F(Vux Vo),

(Voy =§= E(Vux Vo).

If then it is desired to take as parametric variables any two func-
tions ¢, 4, the corresponding values E, F, @, H of the fundamental
magnitudes are given by

B=ggxvyy
E=E’(V‘I’)’) F=—H_-'V¢'V’\Il‘, §=E’(V¢).'

If the parametric curves are orthogonul we have simply
1 1
(Vup=7, (Vo= @

In order that curves w=const. may be a system of geodesic
parallels, £ must be a function of u only (Art 56). Hence
y and sufficient condihon that the curves ¢ = const. be
geodesic parallels 1 that (Vo) be o function of only. If the
parameter ¢ 13 to measure the actual geodesic distance from a
fixed parallel, we must have (Vey=1
The following application of the gradient will be required later.
If 018 a curve on the surface joinng two points 4, B, the definte
integral from 4 to B of the resolved part of V¢ tangential to the
curve 18

and

f:t.v¢ds=f:drov¢=f:d¢=¢x—¢A,

t bemg the umt tangent to the curve. Thus, if 4 is fixed, the
definite integral 1s a pomt-function determined by the position of
B. If ¢ is single-valued, and the definite mtegral 15 taken round
a closed curve, ¢ becomes equal to ¢4 and the mtegral vanishes.
When the path of integration 15 closed we denote the fact by
a small circle placed at the foot of the wtegral sign. Thus

f.V"’ «dr=0..... e s ®).
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Conversely, suppose that the vector F' is tangential to the surface,

and that f F o dr vanshes for every closed curve drawn on the

x
surface. Then ] « dr must be the same for all paths joinmg 4

and B. If then A is fixed, the value of the integral is a pomt-
function ¢ determined by the position of B. Hence, for any small
displacement dr of B, we have
Fedr=dp=V¢.dr.

This is true for all values of dr tangential to the surface. Hence,
since F and V¢ are both tangential to the surface they must be
equal, and we have the theorem*

If avector point-function F 18 everywhere tangental to the surface,

ade. F « dr vanishes for every closed curve drawn on the surface,

then F 1s the gradient of some scalar point-function.

116. Divergence ofa vector. The operator V may beapplied
to a vector function F mn different ways One of these leads to a
scalar dafferential invariant, which we shall call the dwergence of
F and shall denote by div F or V « F. We define it by the equation

dvF=V.F
=g (6% —F o)+ gume (BS -F5)-

That this is invanant with respect to the choice of parameters
may be shown by actual transformation from one pair to another.
But 1t is unnecessary to do this, as the mvariant property will follow
directly from another expression that will shortly be found for
dav F, which 15 entirely mndependent of coordinates.

To 1llustrate the importance of the divergence function, consider
the divergence of the unit normal n to the surface. Thus

divn =7 r, «(Gn,— Fny)) + H_" ry¢(En,— Fn,)
and, on subamutmg the values of n, and n, given in Art. 27, we find
dlvn———-(L'.N sFM+GL)  fht3e

= i e e .(5),
where J as usual denotes the first curvature. Hence:
. ) 16
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The first curvature of a surfuce is the negative of the divergence
of the unit normal®.

If R is a scalar pomt-function we may find the divergence of Rn
in the sume manner. Then, remembering that n is porpendicular

to r, and 1, we find
divRa=Rdivn=-JR ... v eens(B)

The first curvature of a minimal surface vanishes identically.

Hence minimal surfuces are characterised by the relations
divn=0
or div Rn=0.

It will be convenient to have an exprossion for the divergence
of a vector in terms of tho components of the vector. Supposy, for
instance, that

¥ = Pr;+ Qry + R,
Then clearly, from the definition,
divF =div(Pr,) +div (Qr,) + div (Rn).
The value of the last term has already been found. Consider the
first term. We have
1

div Pry = e [G (Pyxr; + Pry) = F (Pyry + I'ryy)]

+ !}5 rye[B (Pnrl + I'ryg) — F(Plrl + I’ru)]

Prl,9 9 o1
=P L e+ 0 -2k nem).

* The reader who 18 familinr with the threo-parametrio divergence will recugnine
that () 18 true algo for this vaiue of div m. For tho two functions differ only by the

ermn e 3‘% , Where %‘ denotes differentiation slong the normal. But a in purpen.
dicular to its derivativo, because it is & veotor of cunstant length, Thus the vaiue
of the extra term is zero,

Thie provides a formula for the first curvature of & surface of the family

F(z,y, 3)moconst,
For the unit normal is the veator

a=(l arF 10F 10F
“\a oz’ woy’ no)
K\ /AF\Y  (3F\3
S=( 95 il
where w=(G)+ (5 + (&)
Henoe exoept for sign, whioh 18 arbitrary without some convention,
Je=divn

5 (%)% 65)+a (%)
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. P 3
Thus div Pr, =P, + 5I 5 (BG — )
139
=F55 (EP).
.. 10
Similarly we find dwv Qry = % (HQ).
Hence the complete formula

dvF-7 [a% @p)+2 (HQ)] B S .

An important particular case is that in which the vector ¥ 18
equal to the gradient of a scalar function ¢. The divergence of the
gradient® of ¢ 18 V « Ve and will be wntten V*¢ The operator V?
is analogous to the Laplacian of three parameters. Inserting in (7)
the values of P and @ found from (3), we have

_1203(Gp—F¢y\ 10 (Ep—F;
qub_ﬁau( j:4 )+§a—v( H ) ...... (8)
‘When the parametric curves are orthogonal this takes the simpler

form
=B (e DR (5 D)] o

117. Isometric parameters. From the last result 1t follows
that, when the parametric curves are orthogonal,

1 8 /G
V= 365u(2)
2 (G
=30 5 (7)
by Art. 115. If then u, v are 1s0metric parameters, so that
dst = (dut +dv?),
the quotient G/E is constant, and therefore V*u=0. Conversely if

F =0 and also V2 =01t follows from the above equation that G/E
is constant, or a function of v only, so that

ds* =\ (duw? + Vdv?).
We may then take f‘\/l_’dv for & new second parameter, and our

parameters are thus isometric. Hence the theorem:

* The 1nvariant V3¢ 18 1dentical with Bel 's 1 p ter of the
second order, Ag¢.

156—2
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A necessary and sufficient condition that u be the isometric para-
mater of one family of an 1sometric system 1s that Viu=0.
Again, if the square of the linear element 1s of the form
ds* =\ (Udu*+ Vdo?),
where U is a function of u only, and ¥ a function of v only, the
parametric curves are 1sometric lmes (Art. 39). Also
14 vV T, 17,
Vg0 (0)-- 5 T2 T
==} (Vu)'f(w),
where f(u) is a function of u only. Conversely if Vau/(Vu) is a
fanction of u only, the curves u=const. and their orthogonal
trajectories ¥ = const, form an isometric system. For since

2 (@
vu=4 (5 (3)
1t follows, in virtue of the last equation, that
2 (G) 2V (Vau)

7\B) =y~ wy @
=-£ rw.
Thus a%logg= ~f @),
and therefore a—% log % =0,

showing that the parametric curves are 1sometric Thus:

A necessary and sufficrent condition that a family of curves
w=const. and their orthogonal trajectories form an vsometrio system
18 that Viu/(Vu) be a function of u.

118. Curl of a vector. The operator V may be applied to a
vector function ¥ in such a way as to give a vector dufferential
mvariant. We shall call this the curl or rotation of F and denote
it by curl F or V x F. It 1 defined by the equation

cwlF=VxF

The invariant property of this function will appear from another

[



118] OURL OF A VECTOR 229
expression that will be found for it, entirely independent of co-
ordinates,

Consider first the curl of a vector Rn normal to the surface
Then

curl Rn = FEnX [G (Rin+ Rn,))— F(R,n + Rn,)]

+ Er, x [E(R,n+ Rn;)— F(R,n+ Rn,)].

On substituting the values of n; and n, as given m Art. 27 we find
that the terms mvolving these derivatives disappear, and the
formula may then be written
curl Rn=VRxn ..... ... (9).
We may notice that this vector 1s perpendlcular to o and there-
fore tangential to the surface. If R is constant, VR vamishes, so
that the curl of any normal vector of constant length vanishes identi-
cally In particular the curl of the umt normal 1s zero: or
Vxn=curln=0 ... .. ... (10).
And we may here notice also that the curl of the position vector r
of the current point on the surface vanishes identically or
Vxr=curlr=0 ..... ......... (11)
As 1n the case of the divergence we may find an expansion for
curl F 10 terms of the components of F'. For, 1f
F=Pr,+ Qr,+ En,
we have curl F' = curl Pr, + curl @r, + curl Rn
The value of the last term has already been found The first term
18 equal to

curlPr,= s X [G (Piry+ Pry)— F(Pyry + Pry)]

H’ 1, X [E (P, + Pry) — F(P.xr, + Pry)].

On substituting the values of ry, and ry; a8 given by Gauss’s formulae
(Art. 41) we find on reduction

curl Pr; = Ell [% (FP)— a—a” (EP):I n+ § (Mr,— Lry).
Simlarly
corl @ru= [ 2 (00) = % (FQ)| m + F (0= M
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Taking the sum of the three results, we have the complete formula

ourl F' = — l: (FP+GQ) -5 (E’P + FQ)] n+H(PM+ Q)

‘_E(PL*- QM)+ VR XD .eunvrninnenn (12).

One important consequence of this may be noticed. If we put
F =V, and substitute the corresponding values of P and Q as
found from (8), the coefficient of n vanishes identically. Thus:

The curl of the gradient of a scalar pount-funotion 18 tangential
to the surface.

An equally important converse will soon be proved, viz. If both
F and curl F are tangential to the surface, then ¥ is the gradient
of some scalar function.

119. Vector functions (cont.). We have seen that ¢« Ve 18
the derivative of ¢ 1n the direction of the umit vector . The same
operator ¢+ V may be applied to a vector function, giving the
derwatwe of the vector m that direction. Thus

oF oF oF
H,c-r,(Gﬁ -F av) H,c -r,(Ea— I' )
18 the derivative of F* in the direction of c. As a particular case
put ¢=r/y/E and we find for the dermvative of F in this
direction

Foy g LB (GFu~ FR) 4 F(E¥, — TF)]

1p_10F

SVE ‘" JVEu
ag required Though this interpretation of ¢ « VF as the “rate of
change” of ¥ in the direction of ¢ 1s applicable only when ¢ is
tangential to the surface, we define the function ¢+ VF for all
values of ¢ by the above equation.

Simularly the operator V* defined by (8) may be applied to a
vector point-function, giving a vector differential invariant of the
second order. As illustrations we shall calculate the values of Vir
and Vn, where r and n have their usual meanings We lose no

generality by taking orthogonal parametric curves. Then, m virtue
of (8),

ceVF =
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Rt VA RS HICWE)
-EL—[:BM \/E "’%/E L‘+2E %")
av \/F r.+JE Nn-— 2@'1"'20(; )]
(52
Thus ViIr=Jn e e e (13)

is the required relation.
Cor. 1. From this equation and (6) we have
VeVir=—_Jt

Cor. 2. The current pownt r on a minimal surface satisfies the

equation
Vir =0.

Next consider the function V2n. For simplicity in calculation
we shall take the lines of curvature as parametrc curves. Then
F=0,M=0and

L N
n=—3n, Dy=-3l
Hence by (8")
1

V““m[au E au(gx/gr)]

Then in virtue of Gauss’s formulae for ry, and ry, and the Mainardi-
Codazz1 relations, this reduces to

I»  N* 1.2 1 L I
Vo= (gt g (zrmtgn )( +73)
= [P=2KIn=YJ .0 e s (14),
which 18 the required formula, K as usual denoting the second
curvature
Since VJ 1s tangential to the surface, by forming the scalar

product of each member of (14) with n we deduce

2K =n+V¢n+ J*

=neVin+(V -n)’}

which may also be written

2K =mn+eVin—-VeVir ... ... (16)

.. (16),
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Thus the second curvature is a dyferential snvariant of n of the
second order.

120. Formulae of expansion. If ¢ denotes a scalar point-
function, and U, V vector pownt-functions, we require expressions
for the divergence and the curl of the functions $U and U x V, in
terms of the differential invariants of the separate functions. The
formulae required may be expressed*

Ve(pU)=V$eU+¢VeT .. ...ee . (17),
VX (@U)=Vo X U+¢V xT . ... ...... .(18),
Ve(UXV)=VeVXU-UeVXV ......... (19).

For brevity of expression in the proof of these we may suppose
the parametiric curves orthogonal. Then

Ve @U)= 5h BT+ 4T+ Lre (4T + 4T,

-(pr )0 g - o)

=V$U+¢V.U,
which proves (17), and (18) may be established in a smilar
manner. In the case of (19) we have

V-(UxV)=%,r,o(U’,xV+UxV,)+(1—;1',-(U,><V+U><V,).

Then since the dot and the cross m a scalar triple product may
be interchanged, provided the cyclic order of the factors 15 main-
tained, we have

Ve(UxV)= (%,r,xU,+(1?r. x U,) v-u. (ll,]r, xv,+...)
=VeVXU-U.VxV
&8 required
As examples, apply (17) and (18) to the function Rn. Then
div RBn=VR en+ Rdivn.
But VR 18 perpendicular to n, and divn = —J, Hence
divRn=—-JR

* For other formulae see § 7 of the anthor's paper “On Differential Invariants
eto,’" already referred to, or Examples XV below,
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as previously found Similarly
curl Rn=VR xn + Reuwln.
But curln =0, and therefore
curl Rn=VR xm,
agreeing with (9). Again
div ourl Bn =div (VR x n)
=neVxVRE—-VR.Vxn,
Now each of these terms vamshes; the first because curl grad R is
tangential to the surface (Art. 118), and the second because
curln=0 Hence
diveurl Rn=0 .. ... .eeen (20).

Thus if @ vector function w8 everywhere normal to the surface, the
divergence of its ourl vanishes identically.

Ex. 1. Show that divr=2.

Ex. 2. Show that divJr=revJ/42J
and ourl Jr=vJxr.

Ex. 8. Prove the formulae*

v (V) =9V +yve,
V3PP =@V +2V e VI + Vi,
VXY () =GV X Y+ YV x Vb,

121. Geodesic curvature. Take any orthogonal system of
parametric curves, and let a, b be unit vectors in the directions of
r; and 1y, 8o that

r, T,
a= -V—‘E , b= -ﬁ .
Then a, b, n form a right-handed system of mutually perpendicular
unit vectors, such that
axb=n, bxn=a, nxa=b.

The vector curvature of the parametric curve v = const. 18 the arc-

rate of change of & 1n this direction, which 18 equal to ;/EB—E . But

da_ 9 —5—>==—r L ‘—r
a_u“a_u(w VE 2T 2EJE™
L E,
=—n— b
VE" " 2vEg
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" by Art. 41. Hence the vector curvature of the curve v=const. 15

L E,

Z® 2my6™
The normal component of this, L/E, 1s the curvature of the
geodesic tangent, or the normal curvature of the surface m the
direction of &. The tangential component is the curvature relative
to the geodesic, or the geodesic ourvaturs (Art 53). Since this is
regarded as positive when the relative curvature 1s in the positive
sense for a rotation about the normal, the geodesic curvature of
v=const. 18 the coefficient of b in the above expiession, or

El

=T 3RyG"

Now the divergence of b is, by (7),

. (n\_109(H 1 9 _ B
av (75) -2 5(76) ~7a58 VP~ 2ive
=— Kﬂ.
Hence the geodesic curvature of the parametric curve v = const. is
the negative of the divergence of the umt vector b. But the para-
metric curves v=const. may be chosen arbitrarly. Hence the
theorem:

Given a family of curves on the surface, with an assigned positive
darection along the curves, the geodesic curvature of a member of the
Jfamaly is the negative of the dwergenoe of the umt vector tangential
to the surface and orthogonal to the curve, whose direction is obtained
by a postwe rotation of one right ungle (about the normal) from the
direction of the curve

The same result could have been obtained by considering the
curve u=const In this case the vector curvature 18

10b N G
Vewm ~a"TIevE™
The geodesic curvature of u = const is the resolved part of this in
the direction of —a, which 1s the direction obtamed by a positive
rotation of one right angle from b about the normal Hence
G‘l
%= oG VE"

But this is equal to div &, and is therefore the negative of div (—a),
ag required by the above theorem.



121] GEODESIO OURVATURE 235

Bonnet's formula for the geodesic curvature of the curve
o (u, v) = const. (Art. 56) follows immediately from this theorem,
For the unit vector orthogona.] to the curve is V¢/|{Ve|. But

|V¢|= V(B —2Fd, ¢+ Goy),

and therefore v
g =div W& ....................................... @1)

32 s L o)
H | ou\W(Epg — 2Fd, by + G¢,’)
RTEC S|
ov \y/(Eds— 21"4’14’- +Gy)
The sign is indeterminate unless one direction along the ourve is
taken as the positive direction.

Another formula for the geodesic curvature of a curve may be
deduced from the above theorem. For if t 1s the unit tangent to
the curve, the unit vector orthogonal to the curve in the sense
indicated is n x t. Hence the required geodesic curvature 18

ky=—div(n x t)
=neVxt—teVxn
by (19). But curl n is zero, and the last term vanishes, giving
gg=necurlt ... ..oen 1 (22).
Hence the theorem:

Given o family of curves on the surface, with an assigned positive
direction along the curves, the geodesic curvature of a member of the
famaly 18 the normal resolute of the curl of the umit tangent.

We may observe in passing that, since the parametric curves are
orthogonal, the curl of the umt tangent & to the line »= const. is,
by (12),

ourln=£ a-Lfp- B o

vEG E 28yG
and similarly curlb= %T a-— «/l};‘[G bty GG:'/ E
If now we form the vector product curl a x curlb, the coefficient
of n in the expression is equal to (LN — M*)/H* or K. Hence the
second curvature is given by

K=mnecurla xcurlb
=[n, curla, curlb] ........ ....... (23).
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Ex. Deduoe from (22) that
k=" e curl (T2 +Iy)

- AP+ G) % 2 (B4 ),

EXAMPLES XV

1. Prove that divr=2 and curlr=0.

. Venfy the values of curl Pr; and curl @ry given 1 Art 118,

8. If ¢ is & point-function, and F'is a ft of ¢, show that
VFe F'V.

Hence, by means of (17), prove that
VEF=F" (Vo) +F' V¢
4. If F=F(¢, y, ...) 18 a funotion of several point-functions, show that
F=—v v+
AR
5. If u, v are geodesic polar coordinates, so that H=1, F=0and H3=@,
show that
1
v¢=¢xr1+@¢zrx

and V=g o Ei+g o (B)-

Hence, if H is a funotion of u only, show that f %‘ satisfies the equation
Vi¢p=0; and also that
K=-v3log H.

6. If t1s a umt veotor tangential to the surface, and b=t x n, show that
the normal curvature in the direction of £ is —(te vn)et, and the torsion
of the geodesio in this direction (tevn)eb Deduce Eulers theorem on normal
curvature (Art, 31), and the formula (x,~ &) s1n 8 cos d for the torsion of the
geodesio,

7. Show that the directions of ¢ and d on a surface are comjugate if
(cevn)ed=0; and hence that the asymptotic directions are such that
(devn)ed=0. Deduce the differential equation of the asymptotic lines

(dr e vn)edr=0.

8. Ift1s the umt tangent to a line of curvature, show that (te vn)x t=0

Deduce the differential equation of the lines of ourvature
(dre vn) x dr=0.

9. If @, b are the unit & ts to the orthogonal p curves

(Art, 121), show that
K=(aeva)e(bevb)—(beva)e(aevb),
and also that K= -div(adiva+bdivb).

’

3
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10. Asn Art 120, prove the formulae
V(bY) =V + YV,
Vx(UxV)=VevU-UevV+UveV-Vv U,
V(U eV)=VeVU+UsVV+VxVxU+UxVxV.
1 1. If ¢ 18 a constant vector, show that
V(ceU)=cevU+cxcurl U,

Ve(cxU)==coeculU,
Vx(exU)=cdivU-cevU.

12. Ifa s tangential to the surface, show that

8eVr=a.
And, if ¢ 18 a constant vector,

V(Cer)=CeVr, Ve(Cxr)=0,
Vx(CxXTr)=2c—CeVr.

13. Provethat WevU=4vU*-UxcurlU.

14. If r1s the pomtion vector of the current point on the surface, and
©=ren, prove that Vr?1s twice the tangential component of r, and that

(Vrd)2emd (13- pt),

Also show that Virt=2(2+pJ)

15. If F1s a function of ¢ and v, deduce from Ex. 4 that

A 2 .
\Z F=-$ v’¢+%v’q;+%’(v¢)l+z bz—.f‘;vqs. v¢+%(v¢)f
und that
@rp=(E) ogr+2 L Log ooy (Y oy
9% o oy ‘I'

16. If 2y, ¢ are the rectangular coordinates of the current point on the

surface, and /, m, n the direction cosmes of the normal, show that
(V) +(vy)i+ (Vs =2

and (VIR+(Vmp+(Vn)p=J- 2K,

17. If y=|V¢|, prove that the geodesic curvature of the curve ¢=const.
is given by

VV’¢ Vys Ve
(vey

18. Prove that a family of geodesics 18 characterised by the property

n e ourl £=0, t being the umt tangent. Deduce that t 18 the gradient of some

scalar funotion v, and that the curves t. are the geod llels to
the fumily of geod v the actual geodemo distance from & fixed
‘parallel

19. Show that the equation of the indicatrix at & point is (revn)er= -1,
the point 1tself being the origin of position vectors.
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20. Prove that the second curvature 1s given by the formula
2K =(v3r)2— = (curlgrad z)%
oUs

Q1. Ifp=remn,showthat Vp=revn
and Vip=p (2K ~J%) ~J~-reVJ
=p (2K ~J)+J -divJr
Hence, 1n the case of & mimmal surface,
vip=2pK.
22. Prove the relations
divourl V=V eV XV +¢Vevx V,
V(¢ V)=¢VIV +2Vp « YV +Vvig.

TRANSFORMATION OF INTEGRALS

122, Divergence theorem. We shall now prove various
theorems connecting line integrals round a closed curve drawn on
the surface, with surface integrals over the enclosed region. These
are analogous to the three-parametne theorems of Giauss, Stokes
and Green, and others deducible from them. Let C be any closed
curve drawn on the surface; and at any point of this curve let m
be the unit vector tangential to the surface and normal to the
curve, drawn outward from the region enclosed by 0. Let t be the
unit tangent to the curve, m that sense for which m, t, n form
a right-handed system of umit vectors, so that .

m=txn t=nxm n=mxt .
The sense of t 1s the positive sense for a description of the curve,
If ds is the length of an element of the curve, the corresponding

Fig 27.

displacement dr along the curve in the positive sense is given by
dr=tds.

Consder first a transformation of the surface integral of the
divergence of a vector over the region enclosed by 0. The area
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dS of an element of this region is equal to Hdudy. If the vector
F 15 given by

F=Pr,+Qry+ Rn,
then by (7)

avF=1 [a% &P+ (HQ)] —JR

and the definite mtegral of div ¥ over the portion of the surface
enclosed by C is

[

[fa was= [[[ZP)+Z @Q)| dudo - [[ 1Ras
- f [HP]:du ¥ f[HQ]:du- [[Ras,

N, M being the pomts in which the curve v = const. meets C, and
B, A those 1n which u = const. meets 1t. If now we assign to du at
the points B, A and to dv at the pomnts N, M the values corre-
sponding to the passage round O in the positive sense, the above
equation becomes

f J' divFdS = foﬂpdu— anQdu— f JRAS.

Consider now the line u.\t.egmlJ. F«mds taken round C in the

posttive sense. Clearly Bnem=0, and mds=t x ndg=dr xn.

~ Hence

-

JoF-mds= fo(Pr, +Qr) + (rdu+ rado) x ("1’;“),
In the mtegrand the coefficient of du is
% (Pr, +Qry + (Fr,— Br) =— HQ
and the coefficient of dv is
3(Pr.+ Qr)« (6~ Fr)= HP,
s0 that Lands:LHPdv—LHQdu.

Comparing this with the value found for the surface integral of the
divergence, we have the required result, which may be writen

IdldeS:LF.mds—UJF.ndS ....... (24,
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This is analogous to Gauss’s “divergence theorem,” and we shall
therefore refer to 1t as the duvergence theorem. The last term in (24)
has no counterpart in Gauss’s theorem, but 1t has some important
consequences in geometry of surfaces, and in phymca.l problems
connected therewith.

From this theorem the snvariant property of divF follows
1mmediately. For, by letting the curve C converge to a point P
inmde 1t, we have for that pomnt

Femds
divF +Jn. f PO — (25).

Now the second member of this equation, and also the second term
of the first member, are clearly mdependent of the choice of
coordinates. Hence div F* must also be mndependent of it, and is
thus an invariant. This equation may also be regarded as giving
an alternative definition of div F.

123. Other theorems. From the divergence theorem other
important transformations are easily dedueible. If, for instance, in
(24) we put F = ¢c, where ¢ is a scalar function and ¢ a constant
vector, we find in virtue of (17),

UV¢-0(ZS=£¢0-mds—ffJ¢c-ndS.

And, since this is true for all values of the constant vector ¢, 1t
follows that

ﬂV¢dS= J’ émds— j fJ¢nds ........... @6). -

This theorem has some important applhcations, both geometrical
and phymecal. Putting ¢ equal to & constant we obtain the formula

fnmds=ﬂ.rnds @)

If now we let the curve O converge to a pomnt inside 1t, the last
equation gives

mds
S (28).

Hence we have an alternative defimtion of the first curvaturs of
a surface, independent of normal curvature or principal directions.
We may state it:

ad
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The limiting value of the line integral f mds, per unit of enclosed

area, 18 normal to the surface, and its ratio to the unit normal is equal
to the first curvature.

In the case of & closed surface another important result follows
from (27) For we may then let the curve O converge to a pomnt
outside it. The line integral in (27) then tends to zero, and the
surface integral over the whole surface must vamsh Thus, for
a closed surface,

ﬂ.rnd5=o,

the integral being taken over the whole surface. In virtue of (13)
we may also write this

f VirdS=0,

Agan, apply the divergence theorem to the vector F' x ¢, where
¢ 18 a constant vector. Then by (19) the theorem becomes

c.ffcurl FdS=c. cmxl“da—c-ﬂ.]nx Fds.

And, since this 15 true for all values of the constant vector e, we
have

ffcm-lrds=jnmxrda—ﬂ.1nxrds ...... (29)

Thus 1mportant result may be used to prove the invarant property
of curl F. For, on letting the curve (' converge to a point mside
it, we have at this pont

m x Fds

= ° e 30).
curl F+Jn x F =Lt s (30)

Now each term of this equation, except curl F, is independent of
the choice of coordinates. Hence curl F must also be mndependent.
It is therefore an 1nvanant. The equation (30) may be regarded
8 giving an alternative definition of curl F.

In the case of a minimal surface, J=0 Thus (26) becomes

fosis= [ ma
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and from (27) we see that
J. mds=0
for any closed curve drawn o; the surfuce. Similarly (29) becomes
ﬁcurl FdS =Lm x Fds.

In particular 1f we put for F' the position vector r of the current
point, sinee curl r=0 we obtain

for x mds=0.

This equation and the equation f mds =0 are virtually the equa-
°

tions of equilibrium of & thin film of constant tension, with equal
pressures on the two sides. The one equation expresses that the
vector sum of the forces on the portion enclosed by C' 18 zero, the
other that the vector sum of their moments about the origin
vanishes®,

Analogues of Green’s theorems are easily deducible from the
divergence theorem. For 1f we apply this theorem to the function
V4, which is tangential to the surface, since by (17)

v ($IY) =V« Tyt $Vhp

the divergence theorem gives
f°¢v\p «mds =”(V¢. Vo + $ V) dS.
Transposing terms we may write this
[fv¢-V\de=fu¢m-Vqrds—ﬁqw’qrds.... .(81).
On interchanging ¢ and y- we have similarly
[[98-9pds =[ym - vpas- [[yvgas . .. @2

These have the same form as the well-known theorems due to
Green. From (81) and (82) we also have the symmetrical relation

[@V¢=499) mds= [[9v ~yvig)as (88

* For the application of these theoreme to the eqmlibrium of stretched mem-
branes, and the flow of heat i & ourved lamuna, see the author's paper already
referred to, §§ 16-17.
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If in this formula we put yr = const., we obtain the theorem

fom.vqbda:ffv-qsds . )

which could also be deduced from the divergence theorem by
putting F =V,

Geodestc polar coordinates and the concept of geodesic distance
may be used to extend this theory mn various directions®. But for

fear of overloading the present chapter we shall refrain from domg
this.

124. Circulation theorem. Consider next the defimite
integral of n « curl ' over the portion of the surface enclosed by
the curve O (Fig 27). If, as before, F = Pr, + Qr, + Rn, we have
in virtue of (12)

1(2 2
neoulF= E{ﬁ(ﬁ'm 6Q —%(EP+FQ)}.
Hence, since dS= Hdudy, the definite integral referred to 18
) 2
[fa+vx FdS=ﬁ{§1z(FP+ 6Q)-2 &P+ FQ)} dudv

- [t7p + 601" -~ [1mP + Pt .

If now we assign to dv at N, M and to du at B, 4 the values corre-
sponding to the passage round C'1n the positive sense, this becomes

ﬁn-v xFdg=| (FP+GQ)dv + [ (8P +FQ) du.
But the line integral
fF-dr=f(Pr,+Qr,+Rn)-(r,du+r,dv)

- f (BP + FQ)du+ J’ (FP +GQ) dv.
The two 1ntegrals are therefore equal, so that
ﬂn-curleS=f!‘-dr .............. (36).

This may be referred to as the circulation theorem, and the integral
in the second member as the circulation of the vector F' round the
curve 0. The theorem 1s analogous to Stokes's theorem, and 15
*® Loc. oit., § 14,
16—2
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virtually identical with it, smee the normal resolute of our function
curl F' 18 equal to the normal resolute of the three-parametric
funetion.

If we apply the above theorem to the function ¢c, where ¢ 18 a
scalar function and ¢ a constant vector, we find 1n virtue of (18)

ffn.V¢xcdS=L¢c-dr.

And, since this is true for all values of the constant vector o, we
have the theorem

ﬁn x V¢dS’=L¢dr .................. (36),

which is sometimes useful.
If we apply the circulation theorem to the function V¢, we find

ﬁ .VxV¢dS=LV¢-dr=0.

And since this is true for the region bounded by any closed curve,
1t follows that n e curl grad ¢ vanishes identically. Thus the curl
of the gradient of a scalar jfunction is tangential to the surface, as
already proved m Art. 118. Conversely, suppose that both F and
curl F' are tangential to the surface. Then, by the circulation
theorem,

fi‘odr=ffn-curleS=0.
And, since this 18 true for any closed curve, it follows from Art.

115 that ¥ 18 the gradient of some scalar function. Hence the
theorem* '

If a vector function and its ourl are both tangential to the surface,
the vector 18 the gradient of some scalar function.
EXAMPLES XVI
1. Show thn.tf T ¢ dr=018 true for any closed curve,

Q. By applyng the diverg th to the fu ourl 2n, prove that
div curl Zn vamshes 1dentically

8. For a closed surface, prove that the integrals

Un.mulm.s, [/nxv.pds

vanish identically,

R T S ey,

TS
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4. Prove the relations

/fV-V¢dS=[.¢V-mda—//(¢d1vV+J¢n-V)dS

/fv.wm&fu (U, V, m]d.+f[(U-va-Jva.n) ds.
5. If V=v¢ and v3¢=0, show shat

f [vsds-= f $me Vs
6. I F=v¢) and vi= —2ma, show that

RS-

7. Show that f ¢V edr= -/ YVpedr.
8. From (18) and the ciroulation theorem deduce the relation

ff¢nonVdS=f'¢V-dr—ffwﬁxv-nd&
Putting V=V 1n this result, prove that
f[v¢xv¢-nds=f.¢v\p-dr=-—f. YV¢edr.
9. Ifep aa#f=d1v (pV¢), and ¢ vamshes over the closed ourve ¢, show that

[[wsas=- [[ucvopas.

10. If p=ren and § 1s the area of the surface bounded by the closed
ourve C, show that

zs:/ r.mda-ﬁ.fpds.
11. Prove the relation

f/deS=J dec—/fﬁnd&.
med.
Hence deduce that 28n =vin+Lt 'dS .

12, Show that, for any closed ourve,

/.mxrdwf/.lnxrd&

13. Deduce formula (34) from the divergence theorem.

14. The pole for geodesio polar coordinates 18 insde the closed curve 0,
and u 18 the geodesic distance from the pole. In formula (33) put ¢p=Ilogu,
180lating the pole with a small geodesic circle. Letting this geodesio circle

[
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converge to the pole, deduce the analogus of Gresn’s formula for the value of
¥ at the pole, viz.

2y =[ (YVilogu—loguvy)e mds+[/(luguv"k—¢ovﬂlog u)dS.
Hence show that 21r=[ me Vloguds—//vilogudﬂ.
16. Show that the formulae of Ex. 14 are true with log & mn place of
logu.
16. If, m Ex. 14, H 18 a function of % only, the function
du
Q= bl
satisfies V30=0. Using @ m place of logu 1 that exerase, prove the for-
mulae

zml,=f.(wvn-nv\p)- mds +/jav’wds
and ﬂﬂuf.movﬂdl.

The latter is analogous to Gauss’s integral for 4m.
17 Prove the following generalisation of (31):

f/WVU-deS=f.UWVV-mda—[fUdiv(WvV)ds

-f. VWVU-mda—fde;v(WvU)dﬂ.

18. A necessary and syficient condition that a famaly of curves on a surface
be parallels 18 that the dwergence of the umit tangent vanish vdentioally. (See
Art 130.)

19. The orthogonal tragectories of a family of parallels constituts & family
of geodesics; and conversely. (Ex 18.)

20. The surface integral of the geodesic curvature of a family of curves
over any region 18 equal to the circulation of the umt tangent round the
boundary of the region. Hence this ciroulation vamshes for a family of
geodesics,

1. If 81 a vector pownt-function for a given surfacs, the vector 8; x 8y H
ia independent of the chowee of parametric curves. (Art. 131 )

Q2. 4 necsssary and sufi dution that an orthogonal system of curves
on a surface may be vsomeirw s that, at any pownt, the sum of the derwatives of
the geodesio curvatures of the curves, each wn 1ts own durection, be sero.

23. An orthogonal sysiem of curves cutting an isomatrwc orthogonal system
at a varabls angls 8 wll viself be wometric provided v39=0.
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CONCLUSION
FURTHER RECENT ADVANCES

125. Orthogonal systems of curves on a surface, Since
this book was sent to the press, several important additions have
been made by the author to our knowledge of the properties of
famlies of curves and surfaces, and of the general small deformation
of a surface. A brief account is here given of the new results es-
tablished, and it will be seen that the two-parametme divergence
and curl mntroduced in Chapter XII play an important part in the
theory.

WIZ are already familiar with the theorem of Dupin, which states
that the sum of the normal curvatures of a surface in any two
perpendicular directions at & point is invariant, and equal to the
first curvature of the surface (Art. 81). The author has shown that
this is only one aspect of & more comprehensive theorem dealing
with the curvature of orthogonal systems of curves drawn on the
surface—a theorem specifying both the first and the second curva-
tures*. Let the orthogonal system considered be taken as parametric
curves, and let a, b be the unit vectors tangential to these curves.
Then the vector curvature of the curve v = const is (Art. 52)

Ao £ n-— E, b= L

VEW E~ 2E¥yG E
and that of the curve u = const. is

i ¥, _ & —En—udiva..

VG G 206NVET G
The sum of these vector curvatures has a component Jn normal to
the surface, and a component —(adiva+bdivb) tangential to
the surface. Now the divergence of the latter component, by (7)
of Art, 116, has the value

Wvlﬁ[%(«/%)“%(«%]
1 [3(1 a~/§) 3(1 a«/ﬁ)].

n-—bdivb

“EG u\VE ou ) w\JG v
* ““Some New Theorems m Geometry of & Surface,"” The Mathematical Gacetts,
Vol. 18, pp. 1—6 (January 1936),
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which 18 equal to the second curvature K, in virtue of the Gauss
characteristic equation. Hence the theorem:

The sum. of the vector curvatures of the two curves of an orthogonal
system through any point has a normal component whose magnitud
18 equal to the first curvature of the surface, and a tangential com-
ponent whose divergence is equal to the second curvature at thai
point.

The normal component of this vector curvature is thus invariant,
being the same for all orthogonal systems This 18 substantially
Dupin’s theorem. The tangential component is not itself invarant,
but 1t possesses an invariant divergence. The behaviour of this
component is expressed by the following theorem*-

The vector curvature is the same for orthogonal systems that cut
each other at a constant angle. If, however, the wnclination 6 of one
system to the other 1s variable, thevr curvatures duyfer by the tangential
vector curl (On), whose dwergence vanishes 1dentioally.

Since the divergence of the normal component Jn is equal to
—J? we also have the result:

The dwergence of the vector curvature of an orthogonal system on
the surface i3 invarant and equal to K —J*,

126. Family of curves on a surface. Again the author
has shownt that many of the properties possessed by the generators
of a ruled surface do not belong exclusively to families of straight
lines on a surface, but that a family of curves on any surface
possesses & line of striction and a focal curve or envelope, though
these are not necessarily real. When the surface 1s developable,
and the curves are the generators, the focal curve is the edge of
regression.

Consider then a singly infinite family of curves on a given
surface, and let these be taken as the parametric curves v = const.
If a curve » meets g consecutive curve v+ dv, a point on the former
corresponding to parameter values (u, v) must be identical with
some pomnt on the latter with parameter values (u + du, v + dv), or

r(4,9) =r (u+ du, v +dv).

* For the proof of this theorem sea § 6 of the author’s paper just referred to.
4 Loc. cit., §§1—4.
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Hence rdu+rdv=0.
Now this is possible only where r, is parallel to ry; that is to say
where

nxn=Hn=0,
Hence the required locus of points of mtersection of consecutive
curves of the family is given by

H=0.

This may be called the focal curve or envelope of the family; and
the pomnts in which 1t 18 met by any curve are the foci of that
curve. A ourve touches the focal curve at each of its foci. Also
this focal curve is clearly the focal curve of the family = const.,
and of the family ¢ (u, v) = const.

Consmder next the possibility of a normal to a curve of the
family v = const being normal also to a consecutive curve. The
author has shown* that this is possible only where

9 (H* . H a3 H

a—u(-E)=O, that is TEa_u(VE)=o
Now H =0 15 the equation of the focal curve. Hence the locus of
points possessing the required property is

%(%)ﬂ, or diva=0.

This locus may be called the lins of striction of the family of curves,
the line of striction of the generators of a ruled surface bemg a
particular case. Hence the theorem:

Gaven a one-parameter family of curves on a surface, with t as
the unit tangent, the equation of the line of striction of the family
may be expressed

divt=0.

Or, since divt is the geodesic curvature of the orthogonal
trajectories of the family of curves, we have the result-

The line of striction of a family of curves 1s the locus of points at
which the geodesic curvature of their orthogonal trajectories is gero.

An 1mportant example 1s that of a family of geodesics; and for
such a family the author has provedt the following extension of
Bonnet's theorem on the generators of a ruled surface (Art. 72):

* Loc cit, §3. ¥ Loc. ott., §8.
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If a curve s drawn on o surface so as to cut a family of geodesics,
then provided 1t has two of the following properties i will also have
the third: (a) that +t is a geodesic, (b) that 1 s the lins of striction
of the family of geodesics, (c) that 1t cuts the family at a constant
angle.

Another theorem is connected with the curl of the umt tangent
to the family of curves. Since

o=t g Ly B
cula=——ma—pb—op g™
1t follows that & ecurla is equal to the torsion of the geodesic
tangent to the curve v= const. (Art. 49), n e curla to the geodesic
curvature of the curve (Art 54), and —becurla to the normal
curvature of the surface in 1ts direction. Hence the theorem -

If t 1s the umit tangent at any pownt to the curve of a family, the
geodesio curvature of the curve is n » curlt, the torsion of tts geodesio
tangent 18 t+ curlt, and the normal curvature of the surface in the
direction of the curve 1s t x m » curl t.

Since these three quantities vanish for geodesics, Iines of curvature
and asymptotic lines respectively, it follows that-

A family of curves with a unit tangent t will be geodesics if
n « curlt vanishes identically: they wnll be lines of curvature if
t e curlt 18 gero, and they will be asymptotio hnes 1f t X m e curlt
vamishes identically.

127. Small deformation of a surface. The differential
nvariants of Chapter XTI have also been employed by the author
n the treatment of the general problem of small deformation of a
surface, involving both extension and shear®. A surface S under-
goes a small deformation, so that the point whose original position
vector is r suffers a small displacement s, which 1s a point-function
for the surface; and the new position vector r’ of the point 1s given
by :

r'=r+s.
It is shown that the dilation 6 of the surface, being the increase of
area per umt area, 18 given by

f=divs

* «“On small Deformation of Burfaces and of thin elasho Shells,” Quarterly
Journal of Mathematics, Vol 50 (1925), pp 272—206.
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and that the unit normal n’ to the deformed surface ' is expres-
sible as
n'=n-nxcurls,
the change being due to a rotation of the element of surface repre-
sented by the vector
curls— 4 (necurls)n.
The first curvature J” of the deformed surface is found to have the
value _
J'=J+n.V5-2V.s
and the second curvature K the value
K'=(1-20) K+ K (V*+Vs)n,
where V and V* are two new mvarant operators with properties
gimilar to those of V. Inextensional deformation, m which the
length of any element of arc remains unaltered, is considered as &
particular case.

The above relations are proved at the outset; and the paper
then goes on to examine in detail the geometry of the strain. The
eatension in any direction at & pomt, or the increase of length per
unit length of arc, 18 shown to be t« Vs et, t being the unit vector
in that direction ; and the sum of the extensions in two perpendicular
directions on the surface is invarant, and equal to the dilation 6.
The values of the “components” of strain, the existence of principal
lines of strain, and a geometrical representation of strain are also
examined.

The last two divisions of the paper, dealing with the stresses in
u thin shell and the equations of equilibrium, do not belong to the
domain of Differential Geometry.

128. Oblique curvilinear coordinates in space. Much of
the theory of Chapter XI has been extended by the author to triple
systems of surfaces which do not cut orthogonallyt. Let the three
systems of surfaces be

u=const, v=const, w= const.,
the position vector r of a pomt 1 space being a funotion of the
oblique curvilinear coordinates u, v, w. A set of fandamental

+ ““On triple 8, of Burfaces and th 1 Curvilinear Coordinates,”
Proo. Roy. Soc. Ednburgh, Vol. 46 (1928). '
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magnitudes for the system of surfaces may be defined by the
equations
a=rs b=rd o=x}
Sf=TieTy, g=Tger;, h=Tyer1,,
the suffizes 1, 2, 3 having the same meanings as m Chapter XL
In terms of these quantities the unit normals to the parametric
surfaces are
NLXT, X1 XY,
Vio—f* WNoa—g?' WNab—h
Expressions are then determined for the three-parametric gradient
and Laplacian of a scalar function in space, and for the three-
parametric divergence and ourl of a vector function.
A formula is also found for the first curvature of any surface
@ (w, v, w) = const.
and the properties of the coordinate surfaces are examined 1n some
detail. The intersections of the parametric surfaces constitute
three congruences of curves, which are studied along the lines
explained m the following Art. Lastly, a simple proof of Gauss’s
Divergence Theorem is given in terms of the oblique curvilinear
coordinates.

129. Congruences of curves. The method of Arts 103-5,
in which a congruence of curves 1s defined as the mtersections of
two two-parametric families of surfaces, 18 not very effective. The
author has shown* that a curvilinear congruence is most advan-
tageously treated along the same lines as a rectilmear congruence.
Any surface cutting all the curves of the congruence 1s taken as
durector surface, or surface of reference. Any convenient system of
curvilinear coordinates %, » on this surface will determine the
individual curves of the congruence, and the distance s along a
ocurve from the director surface determines a particular point r.
Thus r is a function of the three parameters u, v, s, or

r=r( v 8)
and the fundamental magnitudes @, b, ¢, f; g, b mntroduced in the
preceding Art. are again employed.

* #On Oongruences of Ourves,” Téhoku Mathematical Journal, Vol 28 (1927),
Pp. 114—125. -

27
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By this method the existence and properties of the foci and
focal surface are very easily estabhshed, the equation of the focal
surface being

[r1, s, 1,]=0.
Moreover, corresponding to the developable surfaces of & rectilinear
congruence, are here introduced what may be called the envelope
surfaces of the congruence. The number of these to each curve 1s
equal to the number of foci on the curve.

Hitherto nothing was known of pownts on a curve corresponding
to the limats of a ray in a rectilinear congruence. The existence
of such pomts on a curve 18 here proved by the following method
First 1t 18 shown that

Of all the normals at a given point, to the curve of the congruence
through that point, two are also normals to consecutive curves

It 18 then an easy step to the theorem:

On each curve of the congruence there are certain points (called
“lamits”) for which the two common normals to this curve and
consecutwe curves are comcrdent. and the feet of these normals are
statwonary at the limat points for variation of the consecutive curve

This theorem then leads directly to the definition of princypal
sunfaces and princwpal planes for a curve

The duwergence of the congruence 1s then defined as the three-
parametric divergence of the unit tangent t to the curves of the
congruence. The surface

divt=0
may be called the surfuce of striction or orthocenirio surface of the
congruence. It 18 shown to have important properties, being the
locus of the points of striction or orthocentres, which are the points
at which the two common normals to the curve and consecutive
curves are at right angles The orthocentre of & ray of a rectilinear
congruence 18 the “middle pomnt” of the ray.

The properties of surfaces of the comgruence (Art 104) are
examined 1n some detail; and an expression is found for the first
ourvature of the surface

v=¢(u), or ¥ (u,v)=const.
In terms of the fundamental magnitudes the necessary end sufficient
condition that the congruence may be normal is

Jn—-ghi=9—-f,
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which for a rectilinear congruence is smply fi=g,. The first
curvature of the surfaces, which are cut orthogonally by the curves
of a normal congruence, 18 given by

J=—divt,
or, if p denotes the value of the product [1y, Ty, Ty],
J=-B,

The common focal surface of the congruences of parametric curves,
for the triple system of the preceding Art., 18 given by

p=0.

EXAMPLES XVII

1. If, with the notation of Chap I, the one-parametric operator V for

a ourve 1n space 18 defined by 4
v=tz,
prove that Ver=1, Vet=0, Ven=-x, Veb=0,
vxr=0, Vxt=kb, Vxn=-mm, vxb=-sb.

Also calculate the one-parametric divergence and curl of ¢t, ¢n and ¢b.

2. If, for a given surface, 1 and m are defined by

n
1-BXE, o _mxn,

show that 1, m, n form the reciprocal system of vectors to ry, 13, n, satisfying
the relations

ler=1, mern=1,

and lery=mer;=len=men=0
Prove also that
Hl=Gr-Fry, H'm=Er;—Fry,
and similarly that Bl F n
I=El+Fm, ry=F1+&
and show that ' v =

B=@/H% m*=E/H% lem=-F|/H3 [l, m,n]=1/H.
3. In terms of the veotors 1, m of Ex 2, show that
=122, m%
v¢_lau+m %’
8o that l=vy, m=vy

4. Prove that the focal curve of & family of curves on & surface (Art. 126)

18 the envelops of the family, being touched by each member at the foar of
that curve,

——— a2

(P

'
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5. Show that the focal curve of tho families of parametric curves 1s also
the focal curve of the family ¢ (u, v)=const.

6. Prove that conseoutive parametric curves v=const. on a surface can
Ppoasess a common normal only where
o (H?
% E) =0
and deduce the equation diva=0 for the line of striction of the family.

7. Show that the foc1 on a generator of a skew surface are two 1magmary
points equidistant from the central point, or point of striction. Prove that,
a8 the speafic curvature of the surface tends to zero, these points tend to
comcidence, and deduce the dual nature of the edge of regreamon of a de-
velopable surface, as formed by the coalescence of the focal curve with the
line of striction.

8. The parametric curves are orthogonal, and the curves v=const. are
geodestos (divb=0). If a ourve O cuts these at a varable angle 6, 1ts umt
tengent 18 & cos 6+b sm 4, and 1ts geodesio curvature 18 v (b cos 6 - & sin 8).
Show that this latter expression 1s equal to

- (sinsdiva.+%‘:>,
where df/ds 18 the arc-rate of increase of 8 along 0. Deduce the theorem of
Art. 126 on a family of geodesics

O. An orthogonal system of ourves on a surface is inclined at a variable
angle 6 to the orthogonal parametrio curves, Show that the umt tangents to

the curves are
(acosé+beamé), (bcosd—asméb)

Deduce the value of the tangential component of the vector curvature of this
orthogonal system, and show that 1t may be expressed in the alternative forms
~(adiva+b divb)+nxvé,

or —(a.diva+b div b)—ourl (4n)

10. A surface S und a small deformation as described 1 Art. 127,
the displacement 8 bemng of the first order, wlule small quantities of higher

order are neghgible. Show that the fund gnitudes for the deformed
surface are

E'=E+2r 8, G'=G+2r3e8y, F'=F+(r;e8;+rye8)).
Deduce that H'=H(1+divs),

and hence that the dilation 4 1s equal to dive. Also show that the umt

normal can be expressed as
=n-nxourls
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11, If u v, v are (oblique) ourvilinear coordinates in space, prove that
the normal to the surface ¢ (4, , w)=const. is parallel to the veotor
$1X3 XY+ PgTsX Ty + Ty X Ty,

and show that this vector 1s p times the rate of change of ¢ in the direction
of the normal, where p=[r;, Iy, Is]

12. If the position vector T of & point 1n space 18 a function of the three
parameters w, v, w, while a, b, 0,1, g, A are the magmtudes of Art 128, and
4, B, C, F, @, H are the co-factors of these elements in the determinant

D= a k g =p,
Ao f
g fe
prove that PryXTy=AT+Hr3+Gry,
with two simlar formulae. Also show that the umt normals to the parametrie
surfaces are I;X Xy/v4, ete,

13. With the notation of Ex. 12, if 1, m, n are the recyprocal system of
veotors to Ty, I, Iy defined by

ryx Ty X T
=TT TeXDy o Tixny

p
show that lery=mer;=ner;=1,
while lerg=mer;=etc =0.
Prove that r=al+im+gn,

Dl=Ar)+Hry+Grs,

and write down the corresponding formulae for ry, ry, m and n. Also show that
1’=4/D, m*=2B|D, n#=C/D,
men=F/D, nel=G/D, lem=H|D

14. If, with the same notation, the three-p trio V 18 defined by
9 [} 2
v=lﬁ+ma—”+nm,
prove that

Ve (Xri+ Yrs+Zra)=%,[a%(px)+%(?7)+a%(?z):|'
vx(p1+em+Rn)=;7:(ﬁ.—e.)n.

Deduce from the former that the first ourvature of the parametric surface
w==00nst. 18 gi1ven b;

5
1o /4 o/ H 0/@
IJ=—C| (= —=)+= (=) |
il (35 (F) % (H)]
Also prove the 1dentaty V e Vx F*=0, where F 18 any vector pownt-function.
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15, If a, b, o, f, g, h are the magmtudes of Art 128, prove the relations
Tyerp=4bs, TieTu=hs—}by, TieTu=3}(ga+h—f),
and write down all the corresponding formulae

16. With the notation of Exx 12—15, show that, for a triply orthogoral
system of surfaces (f=g=~h=0),
D=p*=ahe, F=@=H=0,
A =be, B=ca, C=ab,
l=r/a, m=ryb, n=ryo,
9 1o 1y

=No T2 T50
V= mtTn T ot

The first order magnitudes for the surface w=oconst are b, 0, ¢; and the
second order magnitudes are —bl/QJE, 0, —01/2~/a—. The first curvature of the

surface 18
1 9

Vabe BTLJM'

The second derivatives of r are given by
rm=}(ml-0m-am), ru=4(;m+en),

und similar formulae, and the dervatives of 1, m, n by

J=-

1 1
L= -5 (wl+am+aen), L=~z (al-bm),
and 8o on. Lamé’s relations are equivalent to

_at%_ ot asdy
OB~ 9a ~ % T2’

Va5 7) 5 ()} -0
with similar formulae

1'7. With the notation of Art. 129, show that consecutive curves of the
congruence can meet only where [Iy, Iy, rs]=0. This is the equation of the
focal surface.

18. For any veotor point-function n space, the scalar triple product of its
dervatives wn thres non-coplanar directions, divided by the scalar triple produot
of the unit wveotors in those directions, is an wvariant.

19. For a family of parallel surfs the three-p trio funoh
curl i vanishes 1dentically.

20. If a family of ourves on a surface outs a family of geodesics at an
angle which is constant along any one curve, the geodesic curvature of any
member of the former vanishes at the line of striction of the latter. (Ex 8)

W 17
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130. Family of curves (continued) Some further 1m-
portant propertaes of families of curves on & surface should here be
mentioned. Consider first the arc-rate of rotation of the tangent
plane to the surface, as the point of contact moves along one of the
curves We have seen that the direction of the azis of rotation is
the durection conjugate to that of the curve at the pomt of contact
(Art. 85). The author has shown* that

If t 1s the unit tangent for a funuly of curves on & surfuce, the
tangential component of curl t gwes both the durection of the awis of
rotation of the tangent plane, and the magnitude of the arc-rate of
turning, as the pownt of contact moves along a curve of the family.

In the case of a family of geodesics n » curl t vanishes 1dentically,
and curl t 18 therefore tangential to the surface. Thus:

If tas the umit tangent for a famuly of geodesics, curl t gives both the
direction conjugate to that of t, and also the arc-rate of rotation of the
tangent plans, as the point of contact moves along one of the geodesics.

The moment of a family of curves may be defined as follows.
Consmder the tangents to two consecutive curves at two points
distant ds along an orthogonal trajectory of the curves. The quotient
of therr mutual moment by ds? 1s the moment of the family at the
pomt considered. It is a pomt-function for the surface; and the
author has shown thatt the moment of a family of curves with unit
tangent t has the valus t « curl t. This 18 equal to the torsion of the
geodesic tangent, and vanishes wherever a curve of the famly
18 tangent to a lme of curvature (Art 49). The locus of such
points may be called the lne of gero moment of the family. Its
equation 18 t e curl t = 0. Sumilarly the ling of normal curvature of
the famuly is the locus of points at which their geodesic curvature
is zero Its equation 18 mecurlt=0 And the line of tangential
curvature is the locus of pomnts at which the normal curvature
vanishes. It is given by n x tecurlt=0.

In connection with a family of parallels the author has proved
the theoremi.

A necessary and sufficient condition that o family of curves with
unit tangent t be a family of parallels is that dw t vanash identically.

¢ #Qn Families of Ourves and Surfaces.” Quasterly Journal of Mathematics,
Vol 50 (1937), pp 350—861.

+ Loe. cit., § 6.

1 Loc cit., §7.
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The quantity divt may be called the divergencs of the family.
Thus the characteristic property of a family of parallels is that its
divergence is everywhere zero. Further, —divt 1s the geodesic
ourvature of the orthogonal trajectories of the family, and, if this
16 zero, the orthogonal trajectories are geodesics. Thus:

The orthogonal trajectories of a family of parallel curves constitute
a family of geodesios. And conversely, the orthogonal trajectories of
a famaly of geodesics constitute a family of parallels

Thus to every family of parellels there is a family of geodesics,
and vice versa. The expression “geodesic parallels” is therefore
tautological, &s all parallels are of this nature. And, in connection
with the properties of geodesics, the following theorem may also be
mentioned *:

If a famaly of curves on a surface cuis a famly of geodesics ab
an angle which 18 constant for each curve, the line of normal our-
vature of the former s the line of striction of the latter.

With the notation of Art 122 we may define the fluw of a family
of curves across any closed curve (' drawn on the surface, as the

value of the line integral f t +m ds taken round that curve. Simi-

larly the value of the integral f t « dr may be called the ciroulation

of the family round 0. Then from the Divergence Theorem it follows
immediately that:

The surface integral of the divergence of a family of ourves over
any reqion is equal to the flum of the family across the boundary of
the reguon.

Similarly from the Circulation Theorem we deduce that:

The surface integral of the geodesic curvature of a Samily of
curves over any region is équal to the circulation of the Samaly round
the boundary of the region.

And since the divergence of a family of parallels, and the geodesic
curvature of & family of geodesics vansh identically, it follows that:

For any closed ourve drawn on the surface, the fluw of a family
of parallels and the circulation of o Sfamily of geodesics vanish
identically.

* Loc. oit.s § 7
172
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Agam, if @, b are umt tangents to the orthogonal parametrio
carves, we have seen that
K =—div(adiva+bdivb).
Hence the total second curvature of any portion of the surface is
given by

UKdS=—f°(a.d1va+bdwb)-mds

provided the parametric curves present no singularities within the
region. We may take a family of geodesics as the curves v = const.
Then divb=0. And since the geodesics may be chosen arbitranly,

subject to possessing no singularity within the region, we have the
theorem:

The #nugmlf temdivtds round a closed curve has the same

value for all familes of geodesics, being minus the total second cur-
vature of the region enclosed.

If, however, the geodesics of the family are concurrent at a pole
within the region enclosed by O, we must isolate this pole with
(say) a small geodesic circle 0, and take the line integral round both
curves. Then, letting the circle O’ converge to the pole, we find
the limiting value of the line integral round it to be 2, and our
theorem becomes

_UKdS=2"r_J‘ temdivtds.

This formula expresses the totul second curvature of a portion of
the surface, with reference to the boundary values of the divergence

and the dwrection of a family of concurrent geodesics, with pols in
the region consudered.

This theorem is more general than the Gauss-Bonnet formula

| jKdS=27r_ fcx,ds

for the line integral of the geodesic curvature «, of a closed curve,
which may be deduced from the above theorem as a particular
case™,
131. Family of surfaces. We have shown in Art. 119 that,
if V is the two-parametrio operator for a surface, the second cur-
* Loc. cit, §8.
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ature of the surface is given by the formula

2K=n+Vn+(V.n)
7hen we are dealing with a family of surfaces, n is also a point-
nction in space; and it should be possible to find & similar formula
1 which V is three-parametric. The author has shown* that, i
»rms of this operator,

2K=n.Vn+(Ven)y+(V xn),
formula expressing the second curvature of the surface of a family,
1 & space differential mvariant of n  This may be transformed and
ritten
2K =div (n divn +n x curln),

hich empresses K as the divergence of a oertain vector.
By analogy with the line of striction of a family of curves, we
ay define the line of parallelism of a family of surfaces as the
cus of points at which the normal to a surface 18 normal also to
consecutive surface. In terms of three-parametric differential
variants, the equation of this line may be expressed +
neVn=0,
curln =0,
ther of which is equivalent to two scalar equations. With the
station of Art. 128, if the given family of surfaces 18 the famly
= const., the scalar equations are

50 &)=

1ese conditions are satisfied identically for a system of parallel
rfaces. Thus:

A necessary and sufficient condition that a family of surfuces be
rallels is that curl n vanish tdentically.

In closing, we may mention certain other differential invariants
point-functions 1n space, and point-functions on a surface. In
onection with the former the author has proved the theoremi.
For any vector pmnt—functwn in 8pace, the soalar traiple product
its derivatives in three non-copl directions, di "'bytha
dar triple product of the umt vectors sn those directions, 18 an
variant.

* Loc. cit., §3 + Loo. oit, §8, 1 Loo. ctt., §4.
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If the vector is of constant length, this invariant vanishes. For
then the three derivatives are perpendicular to the vector, and are
therefore coplanar.

There 18 & similar differential invariant for a point-fanction on a
given surface; and, 1n this connection, the author has proved the
theorem *:

For the vector point-function 8 on a given surfuce, the cross-product
of the derwatwes of 8 in the directions of two umt vectors a, b tan-
gential to the surfuce, divided by the triple product [a, b, n), s
independeni of the durections chosen.

Taking the two directions as those of the parametric curves, we
see that the value of this invarmant is s, x 8,/H. This function 18
therefore independent of the choice of parameters on the surface.
We bave already seen that this differential invarant of the position
vector r of a pomt on the surface 13 equal to the umit normal n
And 1t is easily verified that the same differential invariant of the
unit normal has the value Km. If this invariant of any pomnt-
function s 18 denoted by A (s), we have the formula

K=neA(n)
for the second curvature of the surface,

Finally, considering the same invariant of ¢n, where ¢ is a scalar
pomt-function, we easily deduce that the value of (¢,n,— ¢en,)/H
is independent of the choice of parameters. And, if 8 18 a vector
point-functon, by considering A (¢8) we find that s x (¢.8;, — ¢8,)/H
18 a differential invariant of ¢ and s.

* Loc. cit., §4. Bee slso the author’s paper ** On Isometrio Systems of Qurves
and Surfaces”’, Amer, Journ. of Math., Vol. 49 (1927), pp. 627—684,
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NOTE I

DIRECTIONS ON A SURFACE

The explanation of Arts. 23, 24 may be amplified as follows, so
as to attach a definite mgn to the inclination of one direction to
another on a surface. We define the positive direction along the
normal as that of the umt vector

n=r xr/H
which we have seen to be a definite vector (p. 4). Then the positave
gense for a rotation about the normal 18 chosen as that of a nght-
handed screw travelling in the direction of m. Consequently the
angle o of rotation from the direction of r; to that of r, in the
posttive sense lies between 0 and , so that sin w 18 positive. For
any other two directions on the surface, parallel to the unit vectors
d and e, the angle ¥ of rotation from d to e in the positive sense
18 then given by
smyn=dxe, cosy=dee,
In the case of the displacements dr and 8r, of lengths ds and 83,
corresponding to the parameter variations (du, dv) and (8u, &)
respectively, the angle 4 of rotation from the first to the second 18
such that
ds 8ssmmyrn =dr x &r
=(r,du + 1, dv) X (1, 3u + 15 &)
=H (du dv — dudv)n.
Consequently
ds 8s sin = H (du dv — u dv).
Similarly
ds 8s cos Y= E du du + F (du 8v + du dv) + G dv .
In particular the angle 6 from the direction of r, to that of
(du, dv) 18 given by

H dv 1 du | dv
sm€=m£, cosB=v—E.(E£+F£).
Similarly the angle % from the direction of (du, dv) to that of r,
(Fig. 11, p 55) satasfies the relations

H du 1 du | A dv
sm5=w5, OOBQHW (Fa"'(;'d—a)-
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NOTE II

ON THE CURVATURES OF A SURFACE

In the preceding pages we have avoided the use of the terms
mean curvature and total curvature for J and K respectively, because
we consider them both unsuitable and misleading. If any justifica-
tion is needed for the course we have taken it will be found in the
following considerations, which show that J is the first curvaturs
of the surface, being exactly analogous to the first curvature « of
a curve.

It was proved in Arts. 116 and 119 that, for a curved surface,

neVin4(Ven)y=2K . 3)
the symbols having their usual meamngs. If now we wish to

mtroduce a one-parametric V for a twisted curve, 1t must be
defined by

d
V=t e
Then, with the notation of Chapter I for a curve,
V-n=t-%=t-('f‘b—lc’t)=—!&
which corresponds to (1). Further
Vig=V .+ (t¢) = to (eng' +t¢") = ¢"
Vir=r"=a0 ..coooees eninnnnnnns (5),
corresponding to (2). Similarly
Vin=n"=1b—(#+P)n—«t

and therefore

and therefore

n+Vin=— (s +19),
s0 that

neVin4(Venp=—r ... [EPPRN (:))
which corresponds to (8). These formulae show that J is exactly
analogous to « as & first curvature, and that 2K corresponds to
— 7% Thus, as the torsion of a curve is frequently called its second
curvature, so the quantity K is a second curvaturs for the surface.

R
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This terminology is also justified by the order of the invariants
involved. For, on comparison of (1) and (8), it is seen that K is a
dufferential invariant of n of higher order than J, just as T 18 of
higher order than x. And these conclusions are also confirmed by
the theorem of Art. 126 on the vector curvature of an orthogonal
system. For this theorem shows that J is determined by the
curvatures of the orthogonal curves; whereas to find K, 1t 1s
necessary to take the divergence of the tangential component of
this curvature. Hence K 1s of higher order than J

The quantity J 18 not a “mean” at all. The half of J, which is
the mean of the principal curvatures, does not occur naturally in
geometrical analysis And K 1s not the “total” curvature of the
surface, any more than = is the total curvature of a curve. The
relation which exists between the areas of an element of & surface
and its spherical representation (Art. 87) is not sufficient to justify
the title; for the theorem expressed by (48) of Art 128 shows that
J has at least an equal right to the same title. Thus the terms
Jfirst and second are more appropriate, and the author believes they
will meet with general approval.
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First ourvature of surface, 69, 226, 240,

Flux, "across boundary, 259

Fooal curve, 248-249

Focal planes; of ray, 190; of curve, 202
Fo;;}, x;rtsos of congroence, 190, 200,
FM;B of ray, 189, 190; of ourve, 200,

Forsyth, Preface, 144, 165, 210, 215
Frenst-Serret formulae, 15
Fund, 1} d firat order,

gg- of sm'fnoes. 68—10‘ normal, 81,
Curvilinear “::;otdinth, 51, 207, 251
Cyolio gysi -

Qyolides, 158
Cylindroid, 78

58; second order, 58

Gauss; ourvature, 69, formulas, 90;
charaoteristio eqmtmn, 98, theorems,
117, 268, 240, 248, 95!

Generators, 26, M, 186—1“
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teodemo curvature, 108, 288; distance,
118, ellpses and hyperbolas, 119,
form of ds3, 118, parallels, 113, 259,
polar coordinates, 116; tangeut, 1083
trangle, 116

teodesics, 99, torsion of, 108; curva-
ture of, 104, family of, 249

Hrard, 118

jradient of function, 220, 252

Freen, 288, 242, 246

Jamilton's formula, 187-189; theorem,
196

Jehees, 18, 26, 28
Jeliconds, 85, 79, 146
Typerbole, point, 76, ray, 105

‘mage, spherical, 172
[ndicatrix; of Dupin, 74, 79; spherical,
28-80

[nextensional deformation, 261

[ntnnsie equations of curve, 26

[nvariants, differential, 220

[nverse surfaces, 162

[nversion, 162

[nvolates, 80, of a surface, 160, 161

[sometrio parameters, 86, 88, 1C8, 227;
resentation, 168

[sothermal, 1s0thermic, 168

[sotropia congruence, 198

Joachimsthal, 68, 106, 107, 180

Lamé famly of surfaces, 218

Lamé's relations, 214, 267

Laplacan, 227, 262

Level curves of a function, 220
Limits; of a ray, 185, of a curve, 258
Lane of curvatare, 67, 69, 72

Lune of striction, 138, 248, 249
Liouville, 92, 111, 120

Lozxodrome, 169

Magmfication, linear, 168

Magmitndes; first order, 58; second
order, 658

Mainardi, 94, 96

Malus, 197

Mannheim, 86

Maps, 171

Mean curvature, 69, 70, parameter, 194;
surfaces of congruence, 198

Measurs of curvatuie, 69

Mercator's projection, 171

Moeridians, 77

Meumer's theorem, 62

Middle evolute, 165, point of ray, 190;
surface of congruence, 191, 198

Mimimal surfaces, 70, 17G-180, 241;
lines, 87

Modulus, 1

Moment, 5, 8; of family of curves, 258;
mutual, 6, 187

Monge, eyustion of surface, 44, 52, 75,
76, 102

Mutual moment, 8, 187, 258

Normal; to curve, 11; to surface, 88,
57; angle, 105; plane, 11; congrueuce,
lgﬂ, 196, 202, 258; ocurvature, 61, 82,
7

Null Lines, 87, 177

Oblique curvilinear coordinates, 251

Orthacentres of curve, 2563

Orthocentric surtace, 258

Orthogonal ouives, 52, 54; surfaces,
207, trajectories, 56; systems of
ourves, 247
o plane, 12, developable, 45,

Parabolio point, 75; ray, 195

Paraboloids, 131-183

Parallel veators, 4, curves, 77, 359;
surfaces, 158, 261

Parallelism, of vectors, 4; of surfaces,
261; lne of, 261

Parallels; on surface of revolution, 77,
geodesio, 118; on any surface, 269

Parameters, 88, 40, 48, 51; of distri-
botion, 188, 192-195; differential,
220, 222

Parametrio curves, 51

Pant-function, 220

Polar lines, 46; developable, 46, 112,
142; coordinates (geodesic), 115

Pole, 115

Position vector, 1

Prinoipal normal, 12; ourvatures, 87-
70; surfaces of a ray, 185, surfaces
of a ourve, 258; planes, 185, 258

Products of veotors, 2

Peeudo-spherical surface, 156

Quadno surfaces, 124-185
Bac};un, of ourvature, 18, 87; of torsion,
1

Rectifying developable, 46, 112, 142;
lLines, 46; glmne, 19

Reflection of light, 197

Ratraction of light, 197

Regression, edge of, 42

Relative curvature, 108

Representation of surfaces, 187
Bevglntion, surface of, 77, 86, 87, 102,

168
Ribaucour, 156, 166
Riccatr, 144
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Right-handed serew,

Bight helicoid, 59, 85 146, 147, 183
Rodrigues, 68

Rotation, 8; of a vector, 328

Ruled surfaces, 135-144

Basnt-Venant, 84

Soalar produot, 2

Serew ourvature, 17

Seroll, 185

Beoond curvature of a surface, 69, 281,
232, 248, 260, 261

Becond order magmtudes, 58

Self-oonjugate directions, 88

Skew surface, 185

Slope, 220

Specific curvature, 69

Sphere of curvature, 21

Sphenosal curvature, 21, 23; indicatrx,
28-80, 1mage, 172, 178, representa-
tion, 172

Square of a vector, 2

Stereographio projection, 171

Stokes, 238, 248

Strain, 261
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Strction, line of, 188, 248-249, pomts
of, 253, surface of, 253

Surface, 88, of centres, 67 ; of revolu-
tion, 77, 86, 102, 168; of congruence,

g 184, 193, 200 . .
ymmetrio parameters, 8'

Synclastio surface, 87

Tangent, 1; plane, 38, 89
Tafganml curvature, 109; coordinates,

5
Torse, 185
Toreion, 14, 264
Total ourvature, 69, 264 ; differential, 8
Transformation of mtsgrals 288
Triple produots, 5, 6
Triply orthogonal systsm, 207

Umbilie, 70, 127, 183
Unit nomsL 12, 58, tangent, 11

Veotor curvature, 108, 247
Vector product, 4

Wewngarten, 164
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