
Advanced Programming

Reviewing Basics of Java
Programming Language

Java—Why?

• Portable - Write Once, Run Anywhere

• Security has been well thought through

• Robust memory management

• Designed for network programming

• Multi-threaded (multiple simultaneous tasks)

• Dynamic & extensible (loads of libraries)

– Classes stored in separate files

– Loaded only when needed

Java Hello World

/* This is a hello world example in Java
that will simply display Hello World
on the monitor */

public class HelloWorld
{

public static void main(String args[])
{

System.out.println(“Hello World”);
}

}

Comments

/* This is a hello world example in Java

* that will simply display Hello World

* on the monitor */

• Block Comment at start to describe purpose
– /* … comment …*/

• Line comments used between statements
– // comment

4

Class

public class HelloWorld {

. . .

}

• At least one class per java file
– Starts with keyword public class
– Followed by class name

• All names have rules to follow
• Each word in class name starts in uppercase (convention)

• No punctuation (except underscore) and no spaces

• Do not start with a number

• Java file name must be same as class name

5

Main method

public class HelloWorld {

public static void main(String[] args) {

. . .

}

}

• Java classes are structured into methods
– Each java application must have one main

method

• Main method always has same signature
– Other methods differ

6

Statements

public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello World!");

}

}

• Statements are terminated by semicolon

• Statements consist of construct and
expression
– Construct is the command

– Expression is the data to be enacted upon

7

Compiling and Executing Java
Programs

• Compilation

javac classname.java

• Execution

java classname

The Java Virtual Machine (JVM)

• Run-time Environment for Java programs.

• The JVM is machine dependent.

• The .class files contain Java bytecodes.

• Provides platform independence: Any platform
having a JVM can execute the class files.

• The class files have a defined format that is
followed by the Java compilers.

• Just In Time (JIT) compilation tries to increase
speed.

Java Primitive Types

• Pre-defined by Java
Programming Language and
named by its reserved
keyword.

• This means that you don’t
use the new operator to
create a primitive variable.

• Declaring primitive variables:
float initVal;

int retVal, 2;

double gamma = 1.2;

boolean valueOk = false;

Type Size

byte 1 byte

short 2 bytes

int 4 bytes

long 8 bytes

float 4 bytes

double 8 bytes

char 2 bytes

boolean 1 bit

Basic Mathematical Operators

• * / % + - are the mathematical operators

• * / % have a higher precedence than + or -

double val = a + b % d – c * d / b;

• Is the same as:
Double val = (a + (b % d)) –

((c * d) / b);

Assignment Operators

• = Assignment operator

• When a calculation involves one variable on both
sides we can use an assignment operator
+= -= *= /= %=

• For example if we wish to increase the variable
num by 10 the full calculation is
num = num + 10;

• As only num is being used we can apply the +=
assignment operator
num += 10;

Unary Operators
• If an int variable is to be increased by 1, then we can

apply the pre/post unary incremental operator
– ++num or num++

• If an int variable is to be decreased by 1, then we can
apply the pre/post unary decremental operator
– --num or num--

• We use these operators as part of an statement
– Pre operator increments/decrements at start of statement
– Post operator increments/decrements at end of statement

13

Statements & Blocks

• A simple statement is a command terminated by a
semi-colon:

x = 2;

• A block is a compound statement enclosed in curly
brackets:

{

x = 2; y = 3;

}

• Blocks may contain other blocks

Methods

• A method is a standalone block of code, which
– Is only run when invoked (by its name)
– Designed to achieve a set task
– May accept data when being invoked, via

parameter passing
– May or may not return a result, i.e. return type

• So far we have only written code in the main
method
– But now we will write code in separate methods

15

Method Format and Examples

• Format
[modifier] [static] returnType methodName(parameters){

//method code

}

• No return type example, (no body and no parameters)

private void emptyMethod(){

}

• Return type example (body, parameter and return line)

private static int getPerimeter(int length){

return 4 * length;

}

16

Using Methods
• A method can be invoked by any code within the same

class
– However the main method is always the starting point for the

whole program
– We will often invoke methods from main
– In which case the methods should be marked static

• To invoke a method we simply call the name of the
method and supply any needed arguments
emptyMethod();

• If a method returns a value then we can assign the
method call to a variable:
perimeter = getPerimeter(length);

17

Control Flow Statements

• Normally control flows from top to bottom in a
method. Control flow statements break up the
flow of execution by employing decision making,
looping, and branching, enabling your program to
conditionally execute particular blocks of code.

• Decision-making statements (if-then, if-then-else,
switch)

• Looping statements (for, while, do-while)

• Branching statements (break, continue, return)

If – The Conditional Statement

• The if statement evaluates an expression and if that
evaluation is true then the specified action is taken

if (x < 5) x = 10;

• If the value of x is less than 5, make x equal to 10

• It could have been written:
if (x < 5)

x = 10;

• Or, alternatively:
if (x < 5) { x = 10; }

Relational Operators

== Equal

!= Not equal

>= Greater than or equal

<= Less than or equal

> Greater than

< Less than

If… else

• The if … else statement evaluates an expression and performs
one action if that evaluation is true or a different action if it is
false.

if (x != oldx) {

System.out.print(“x was changed”);

}

else {

System.out.print(“x is unchanged”);

}

Nested if … else

if (CONDITION1) {

if (CONDITION2) {

System.out.println(“Condition1 and
Condition2 both are true”);

}

else {

System.out.println(“Condition1 is true
and Condition2 is not”);

}

}

else

{

System.out.println(“Condition1 is not
true”);

}

else if

• Useful for choosing between alternatives:
if (CONDITION1) {

// execute code block #1

}

else if (CONDITION2) {

// execute code block #2

}

else {

// if all previous tests have failed,

execute code block #3

}

The switch Statement
switch (n) {

case 1:

// execute code block #1

break;

case 2:

// execute code block #2

break;

default:

// if all previous tests fail then

//execute code block #4

break;

}

The for loop

• Loop n times

for (i = 0; i < n; n++) {

// this code body will execute n times

// from 0 to n-1

}

• Nested for:

for (j = 0; j < 10; j++) {

for (i = 0; i < 20; i++){

// this code body will execute 200 times

}

}

while loops

n=0

while(n<10) {

System.out.print(“ The value of n is” + n);

n++;

}

What is the minimum number of times the loop is executed?

What is the maximum number of times?

do {… } while loops

n=0

do {

System.out.print(“ The value of n is” + n);

n++;

} while(n<10);

What is the minimum number of times the loop is executed?

What is the maximum number of times?

break

• A break statement causes an exit from the
innermost containing while, do, for or switch
statement.
for (int i = 0; i < n, i++) {

if (CONDITION1) {

// statements here

break;

}

} // program jumps here after break

return

• Exits a method with or without a value.

• Discussed earlier in Methods

