Computer Science

Advanced Programming

Reviewing Basics of Java
Programming Language

Java—Why?

Portable - Write Once, Run Anywhere
Security has been well thought through
Robust memory management

Designed for network programming
Multi-threaded (multiple simultaneous tasks)

Dynamic & extensible (loads of libraries)
— Classes stored in separate files
— Loaded only when needed

Java Hello World

/* This is a hello world example in Java
that will simply display Hello World
on the monitor */

public class HelloWorld

{
public static void main(String args[])
{
System.out.printIn(“Hello World”);
}

Comments

/* This is a hello world example in Java
* that will simply display Hello World

* on the monitor */

. Block Comment at start to describe purpose
— /* .. comment ..*/

e Line comments used between statements
— // comment

Class

public class HelloWorld {

}

* At least one class per java file
— Starts with keyword public class
— Followed by class name

 All names have rules to follow

e Each word in class name starts in uppercase (convention)
* No punctuation (except underscore) and no spaces

e Do not start with a number

 Java file name must be same as class name

Main method

public class HelloWorld {
public static void main(String[] args)

}
e Java classes are structured into methods

— Each java application must have one main
method

* Main method always has same signature
— Other methods differ

Statements

public class HelloWorld {
public static void main(String[] args) {
System.out.println ("Hello World!");

)
e Statements are terminated by semicolon
e Statements consist of construct and
expression
— Construct is the command
— Expression is the data to be enacted upon

Compiling and Executing Java

Programs

 Compilation
javac classname.java
* Execution

java classname

MyProgram,java MyProgram.class

ﬁ Compiler ’ #f [Jayg | 0100101...
?’_,,f-:: — — ﬁ"’ VM
_ <

My Program

The Java Virtual Machine (JVM)

Run-time Environment for Java programes.
The JVM is machine dependent.
The .class files contain Java bytecodes.

Provides platform independence: Any platform
having a JVM can execute the class files.

The class files have a defined format that is
followed by the Java compilers.

Just In Time (JIT) compilation tries to increase
speed.

Java Primitive Types

* Pre-defined by Java Type Size
Programming Language and byte 1 byte
named by its reserved short 2 bytes
keyword. int 4 bytes

* This means that you don’t
use the new operator to
create a primitive variable.

* Declaring primitive variables:
float initVal;

int retval, 2; char 2 bytes
double gamma =1.2;

boolean valueOk = false; boolean 1 bit

long 8 bytes
float 4 bytes
double 8 bytes

Basic Mathematical Operators

¢ * % + - are the mathematical operators
o
@]

/
o x /

have a higher precedence than + or -
double val = a + b $d-c *d / b;

* |sthe same as:
Double val = (a + (b % d)) -
*

Assignment Operators

= Assignment operator

When a calculation involves one variable on both
sides we can use an assignment operator

For example if we wish to increase the variable
num by 10 the full calculation is

num = num + 10;
As only num is being used we can apply the +=

assignment operator
num += 10;

Unary Operators

If an int variable is to be increased by 1, then we can

apply the pre/post unary incremental operator
— ++num oOr num-+-+

If an int variable is to be decreased by 1, then we can
apply the pre/post unary decremental operator
— ——num Oor num-—-—

We use these operators as part of an statement
— Pre operator increments/decrements at start of statement
— Post operator increments/decrements at end of statement

Statements & Blocks

 Asimple statement is a command terminated by a
semi-colon:

X =2;

* Ablockis a compound statement enclosed in curly
brackets:

{
X=2;y=3;
}

* Blocks may contain other blocks

Methods

* A method is a standalone block of code, which
— Is only run when invoked (by its name)
— Designed to achieve a set task
— May accept data when being invoked, via
parameter passing
— May or may not return a result, i.e. return type

e So far we have only written code in the main

method
— But now we will write code in separate methods

Method Format and Examples

* Format

[modifier] [static] returnType methodName (parameters) {
/Imethod code

}

* No return type example, (no body and no parameters)
private void emptyMethod () {
}

e Return type example (body, parameter and return line)

private static 1nt getPerimeter (int length) {
return 4 * length;

}

Using Methods

* A method can be invoked by any code within the same

class
— However the main method is always the starting point for the
whole program
— We will often invoke methods from main
— In which case the methods should be marked static

* To invoke a method we simply call the name of the
method and supply any needed arguments
emptyMethod () ;

* If a method returns a value then we can assign the

method call to a variable:
perimeter = getPerimeter (length);

Control Flow Statements

Normally control flows from top to bottom in a
method. Control flow statements break up the
flow of execution by employing decision making,
looping, and branching, enabling your program to
conditionally execute particular blocks of code.

Decision-making statements (if-then, if-then-else,
switch)

Looping statements (for, while, do-while)
Branching statements (break, continue, return)

If — The Conditional Statement

The if statement evaluates an expression and if that

evaluation is true then the specified action is taken
if(x<5)x=10;

If the value of x is less than 5, make x equal to 10

It could have been written:
if (x<5)
x=10;

Or, alternatively:
if(x<5){x=10;}

Relational Operators

Equal

Not equal

Greater than or equal
Less than or equal
Greater than

Less than

If... else

The if ... else statement evaluates an expression and performs
one action if that evaluation is true or a different action if it is
false.

1f (x !'= oldx) {

System.out.print (“x was changed”);

}

else {

System.out.print (“x 1s unchanged”) ;

Nested if ... else

1f (CONDITION1) {
1f (CONDITIONZ) {

System.out.println (“"Conditionl and
ConditionZ both are true”);

}
else {

System.out.println (“"Conditionl 1is true
and ConditionZ2 1s not”);

}
}

else

{

System.out.println (“"Conditionl 1is not
true”) ;

else if

Useful for choosing between alternatives:
1f (CONDITIONI1) {
// execute code block #1
}
else 1f (CONDITIONZ) {
// execute code block #2

}

else {
// if all previous tests have failed,
execute code block #3

The switch Statement

switch (n) {

case 1:

// execute code block #1
break;
case 2:

// execute code block #2
break;

default:

// 1f all previous tests fail then
//execute code block #4

break;

The for loop

* Loop ntimes
for (1 = 0; 1 < n; n++) {
// this code body will execute n times
// from O to n-1

}
 Nested for:

for (3 = 0; 3 < 10; J++) {
for (i = 0; 1 < 20; 1i++){
// this code body will execute 200 times
}

while loops

n=0

while (n<10) {
System.out.print (
n++;

\\

The value of n is” + n);

What is the minimum number of times the loop is executed?

What is the maximum number of times?

do {... } while loops

n=0
do {
System.out.print (% The value of n 1is” + n);
n++;
} while (n<10);

What is the minimum number of times the loop is executed?

What is the maximum number of times?

break

* A break statement causes an exit from the
innermost containing while, do, for or switch
statement.

for (int 1 = 0; 1 < n, 1++) |
if (CONDITION1) {
// statements here
break;

J

} // program jumps here after break

return

e Exits a method with or without a value.
 Discussed earlier in Methods

