
Advanced Programming

Object Oriented
Programming in Java-I

Object Oriented Concepts

• Data Abstraction and Encapsulation

• Inheritance

• Polymorphism

Real World Objects
• We all interact with real world objects (i.e. things)

– A chair

– A sweet

– A pen

• All objects can be described by:
– Attributes (combination of which define the object state)

– Behaviours (actions performed using attributes)

• Simple attributes are measurable quantities
– E.g. height, length, weight, calories, ink-level, etc

• Some behaviours are easy to describe
– Adjust Height – increases / decrease chair height

– Write – decreases ink in pen

3

Classes of Real Objects

• When two objects can be described by the exact
same set of attributes and behaviours
– Then the objects belong to the same class

– Not necessarily the same attribute values!

• If two objects can be described by a similar set of
attributes and actions
– Then the objects could be related

• If two objects are of the same class and have the
same value for their attributes
– Then at that point in time they are identical

4

Java Class

• We design computer programs to solve problems in
the real world
– The real world is composed of objects
– Thus we can use software “objects” in programs

• In Java, we can define a Class, which specifies
– Attributes as a set of fields (variables, constants, etc.)
– Behaviours as methods

• All classes are unique, but can be related
– Thus encouraging re-use of code

• To put the class into action
– We declare instances of the class called objects

Circle.java

public class Circle {

private int radius;

public Circle(int rad){radius = rad;}

public int diameter(){return 2 * radius;}

public double area(){

return radius * radius * Math.PI;

}

public double circumference(){

return 2 * radius * Math.PI;

}

}

6

Fields

• Only one field is specified:
private int radius;

• Data Encapsulation:
– The field is declared private meaning only code inside

the class can directly access it

• Data Abstraction:
– Other potential state attributes (diameter, area and

circumference) can be calculated from the radius

– Thus fields are not defined for these potential attributes

– Instead we define methods to calculate them

7

Constructor
• Purpose is to initialise some/all the fields of a

class when initializing an object
– Always has same name as class
– A class can have zero, one or more constructors
– If no constructor is defined then JVM generates a

default constructor which initialises all fields to default
values

• Circle Constructor is:
public Circle(int rad){radius = rad;}

– The constructor will be used by outside code, so is
declared public

– This constructor accepts one parameter and initialises
the field to that parameter

8

Methods
• The purpose of methods within a class is to simulate behaviour of

real world equivalent
– Calculate derivable attributes

• Method Types:
– Constructors: Used to initialize the fields of a class when creating an

instance of the class (discussed on previous slide)
– Accessors: Read the value of a field
– Mutators: Change the value of a field

• Many methods will be marked as public
– Some may be also specified to be static, meaning they can be used

without an instance

• In the circle class we have three methods, all of which calculate a
derived attribute:
– + diameter(): int

– + circumference(): double

– + area(): double

9

Main Class
public class CircleDemo {

public static void main(String[] args) {

Circle circleObj = new Circle(10);

System.out.println("Circle object

created with radius of 10");

System.out.println("Diameter is “ +

circleObj.diameter());

System.out.println("Circumference is

“ + circleObj.circumference());

System.out.println("Area is “ +

circleObj.area());

}

}

10

Object Instance

• The class, by itself, is a template

• Does not do anything unless we create an instance

• Syntax:
– ClassName identifier = new ClassName(args)

• Example
– Circle circle = new Circle(10);

• The left hand side is declaring the object variable
– The right hand side is instantiating the object by using the

class constructor

11

Reference and Instantiation (1)

• When an object instance is declared,
Circle circle3;

– A reference variable is declared

– The reference has nowhere to point i.e. no object
data

• When an object instance is instantiated using
the constructor,
circle3 = new Circle();

– An object is created on the heap, with sufficient
memory for each field in the object

– A link is created back, such that the reference
variable will point to the newly created object

• Setting a reference to null destroys the link

12

Reference and Instantiation (2)
• We do not have to instantiate every object reference

– Instead we can assign an instantiated object to a reference

circle3 = circle2;

• In doing so the object reference and instantiated object
link to the exact same object on the heap
– I.e. circle2 and circle3 point to same memory

locations

– Thus any changes made by one object to its field will be
reflect by the other object

• If we set circle2 to null, i.e: circle2 = null;
– Link between circle2 reference and object data is broken

– Leaving only circle3 pointing to the object data on heap

13

Object Methods

• To make use of an object methods, we apply
dot notation to the object instance

• Format

identifier.method(args);

• Example
circle1.area();

14

Static Fields

• Static fields are class variables

– Each object instance shares these fields

• If one object changes the value of a static

field

– Then change is visible to every object instance

• Common use for static variables is to

maintain an auto-number count for
generating ID field values

• Other uses will become clear in

multithreading
15

Static Methods

• Static methods are methods which are used via the
Class rather than through an object instance.
– E.g. Integer.parseInt() and String.format()

• In the example, static versions of the diameter,
area and circumference methods can be
defined
//non static sevice method

public int diameter(){return 2 * radius;}

//static – class method

public static int diameter(int r){return 2 * r;}

• Static methods can be used externally, instead of
re-coding relevant calculations

– All is needed is for the radius to be provided
Circle.diameter(radius)

16

Summary: Data Abstraction and
Encapsulation

• Abstraction
– Class is a model of some object
– Class interface has a well-defined set of

operations
• Encapsulation

– Only code inside class has direct access to field
– Code outside class has indirect access via

methods
• Controlled indirect access to fields via Accessors

and Mutators

