
Advanced Programming

Object Oriented
Programming in Java -- II

Object Oriented Key Principles
1. Data Abstraction and Encapsulation

2. Inheritance

3. Polymorphism

2

Inheritance

• A class can extend another class,
inheriting all its data members and
methods while redefining some of
them and/or adding its own.

• Inheritance represents the is a
relationship between data types. For
example: a Circle is a Shape.

Inheritance in Java:

public class Circle extends TwoDimShape

{

...

}

subclass superclassextends

TwoDimShape

Circle

Inheritance in Java
• Java supports inheritance

– A “subclass” inherits from a “superclass”

• In the sub class:

– In class header use the extends keyword to
specify the superclass

– Only declare the additional fields and methods

– In subclass constructor call the superclass
constructor via super keyword

– (optionally) override superclass methods

5

Inheritance Example
public class Square {

protected int length;

public Square(int len){length = len;}

public int perimeter(){return 4 * length;}

public int area(){return length * length;}

}

public class Rectangle extends Square{

private int width;

public Rectangle(int len, int wid){

super(len);

width = wid;

}

public int perimeter()

{return 2 * (length + width);}

public int area(){return length * width;}

}

6

Visibility

• public

– Any field or method specified as public can be used
by any external class

– Class constructors, accessor methods should be
specified as public

• private

– Any field or method specified as private can be
used by code inside the class

– Fields and internal helper methods should be
private

• protected

– Any field or method specified as protected can be
used by code inside the class and in subclasses
• i.e. classes which inherit from the original class

7

Multiple Inheritance

• Multiple inheritance allows a class to be

derived from two or more classes,

inheriting the members of all parents

– Collisions, such as the same variable name in

two parents, have to be resolved

• Java supports single inheritance, meaning

that a derived class can have only one

parent class

• Java does not support multiple inheritance

via two or more classes

8

Inheritance Hierarchy Example

TwoDimShape

Circle

ThreeDimShape

Sphere

Shape

CubeSquare

Inheritance Relationships

• Inheritance creates an is-a relationship,

– I.e. the child is a specialised version of the parent

• A child class of one parent can be the parent

of another child, forming a class hierarchy.

• A subclass will inherit all attributes and

operations defined in any of its super classes

– Subclass may be augmented with additional

attributes and operations

– Subclass can override attributes and operations

10

Inheritance Hierarchy Example

BankAccount

CurrentAccount SavingsAccount

StudentAccount

HighInterestSavingsAccount

PremierAccount

11

Banking Inheritance Example

• Subclass inherits the variables and methods
defined by the super class
public class CurrentAccount extends BankAccount {

• Subclass specializes by adding its own
members:
– fields: overdraftLimit

– methods: getOverdraftLimit()

setOverdraftLimit()
debit() - overridden

12

BankAccount

CurrentAccount

superclass

subclass

Superclass – BankAccount (1)
public class BankAccount {

//fields

private String number;

private String name;

private double balance;

//default constructor

public BankAccount(){

number = "--------";

name = "--------";

balance = 0.0;

}

//overloaded constructor

public BankAccount(String accountNo, String accountName){

number = accountNo;

name = accountName;

balance = 0.0;

}

13

Superclass – BankAccount (2)
public String getAccountNo() {return number;}

public String getAccountName() {return name;}

public double getBalance() {return balance;}

public void setAccountName(String accountName)

{name=accountName;}

public void credit (double amount)

{balance = balance + amount;}

public void debit (double amount)

{balance = balance - amount;}

}

14

Adding constructors in a subclass

• Super class constructors are not inherited by the
sub class, even though they have public visibility

– However we need to use the super class constructor in
order to set up the "parent's part" of the object

• The super reference is a reference to the super
class of a sub class
– Whereas this is a reference to the class itself

• Super() is used to invoke the parent's constructor
super(accountNo, accountName);

• The sub class constructor specifies parameters to:

– Initialise fields from its super class

– And to initialise its own fields

15

Subclass Constructors
//default constructor

public CurrentAccount(String accountNo,

String accountName){

//invoke the parent's constructor

super(accountNo, accountName);

//initialise field

overdraftLimit = 0.0;

}

//overloaded constructor

public CurrentAccount(String accountNo,

String accountName, double accountLimit){

super(accountNo, accountName);

overdraftLimit = accountLimit;

}

16

Overriding methods
• A subclass can override the definition of an inherited

method in favour of its own
– Unless the original method is defined as final in the super class

• The new overridden version of the method must have the

same signature as the parent's method
– But can have a different body

• The type of the object executing the method determines

which version of the method is invoked

17

Overloading vs. Overriding

• Overloading

– Multiple methods with the same name in the same
class, but with different signatures (parameters)

– Allows similar operation to be defined in different
ways for different parameters

• Overriding

– Two methods with same name and the same
signature
• Original version in a parent class

• Recoded version in a child class

– Allows a similar operation to be defined in different
ways for different sub classes

18

Inheritance Design Issues (1)

• All derivations should be is a relationships

– i.e. a sub class is a child of super class

• Override methods as appropriate to tailor

or change the functionality of a child

• Add new variables to children, but don't

redefine inherited variables

– Use visibility modifiers carefully to provide

needed access without violating encapsulation

19

Inheritance Design Issues (2)

• Allow each class to manage its own data

– Use the super reference to invoke the parent's

constructor to set up its data

• The final modifier

– If the final modifier is applied to a method, then

that method cannot be overridden in any

descendant classes

– If the final modifier is applied to an entire class,

then that class cannot be used to derive any

children at all

20

Summary

• A subclass inherits methods and fields from
superclass by using the keyword “extends”

• Multiple Inheritance from classes is not
supported in Java

• Classes form a hierarchy in any application

• A subclass does not inherit constructors

• A subclass can redefine a method specifically
for its own needs

