
Advanced Programming

Object Oriented
Programming in Java-III

Object Oriented Key Principles
1. Data Abstraction and Encapsulation

2. Inheritance

3. Polymorphism

2

Polymorphism

• Polymorphism - The ability of a superclass
variable to behave as a subclass variable

• How?

– Subclasses inherit all public and protected fields

– Thus these can be accessed by a superclass
variable

• Limitations!

– Superclass cannot access new fields and methods
within sub classes

– However if we apply a cast, then the cast object
reference can access all the new fields and
methods

3

CurrentAccount acc1 = new

CurrentAccount("100003", "Mr Nasir", 100));

SavingsAccount acc2 = new

SavingsAccount("100005", "Mr Saeed", 5.0));

BankAccount ba1,ba2;

ba1= acc1;

ba2= acc2;

system.out.println(ba1.getBalance());

system.out.println(ba2.getBalance());

ba1.debit(200);

Accessing inherited methods

• When we call a method with multiple

versions (overrides)

– JVM will use the method version which

corresponds to the actual object type

• Not the reference type

– I.e. the overridden version will be used if

appropriate

6

Accessing new methods
• When a new (not overridden) method has to be

accessed we have to apply a cast

– Casting to a CurrentAccount object
(CurrentAccount)ba1.setOverdraftLimit(amount);

– Casting to a SavingsAccount object
(SavingsAccount)ba2.addInterest();

• The cast allows the sub class object to overrule the
super class reference

• Problem:
– Applying incorrect sub class will generate an exception!

– How can we tell which element should be cast?

7

instanceof Keyword

• Checking for CurrentAccount subclass
if (ba1 instanceof CurrentAccount){ }

• Checking for SavingsAccount subclass
if (ba2 instanceof SavingsAccount){ }

• Generally, use instanceof rarely

8

Object Oriented Key Principles
• Data Abstraction and Encapsulation

– Internal information is hidden and a well defined
interface provides access to allowed information

• Inheritance

– A subclass can inherit the fields and methods of a
superclass

• Polymorphism

– A subclass object can be treated as a superclass

9

10

Benefits of Using Objects
• Modularity

– The source code for an object can be written and
maintained independently of the source code for other
objects. Once created, an object can be easily passed
around inside the system.

• Information-hiding
– By interacting only with an object's methods, the details

of its internal implementation remain hidden from the
outside world.

• Code re-use
– If an object already exists , you can use that object in your

program.

• Pluggability and debugging ease
– If a particular object turns out to be problematic, you can

simply remove it from your application.

