
Exceptions

2

Syntax Errors, Runtime Errors, and Logic
Errors

• Syntax errors arise because the rules of the
language have not been followed. They are
detected by the compiler.

• Runtime errors occur while the program is
running if the environment detects an
operation that is impossible to carry out.

• Logic errors occur when a program doesn't
perform the way it was intended to.

3

Runtime Errors

import java.util.Scanner;

public class ExceptionDemo {

 public static void main(String[] args) {

 Scanner scanner = new Scanner(System.in);

 System.out.print("Enter an integer: ");

 int number = scanner.nextInt();

 // Display the result

 System.out.println(

 "The number entered is " + number);

 }

}

If an exception occurs on this

line, the rest of the lines in the

method are skipped and the

program is terminated.

Terminated.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

4

Catch Runtime Errors

import java.util.*;

public class HandleExceptionDemo {

 public static void main(String[] args) {

 Scanner scanner = new Scanner(System.in);

boolean continueInput = true;

 do {

 try {

 System.out.print("Enter an integer: ");

 int number = scanner.nextInt();

 // Display the result

 System.out.println(

 "The number entered is " + number);

 continueInput = false;

 }

 catch (InputMismatchException ex) {

 System.out.println("Try again. (" +

 "Incorrect input: an integer is required)");

 scanner.nextLine(); // discard input

 }

 } while (continueInput);

 }

}

If an exception occurs on this line,

the rest of lines in the try block are

skipped and the control is

transferred to the catch block.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

13

5

Exception Classes

LinkageError

Error

AWTError

AWTException

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Several more classes

Several more classes

Several more classes

IllegalArgumentException

6

System Errors

LinkageError

Error

AWTError

AWTException

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Several more classes

Several more classes

Several more classes

IllegalArgumentException

System errors are thrown by JVM
and represented in the Error class.
The Error class describes internal
system errors. Such errors rarely
occur. If one does, there is little
you can do beyond notifying the
user and trying to terminate the
program gracefully.

7

LinkageError

Error

AWTError

AWTException

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Several more classes

Several more classes

Several more classes

IllegalArgumentException

Exceptions

Exception describes errors
caused by your program
and external
circumstances. These
errors can be caught and
handled by your program.

8

Runtime Exceptions

LinkageError

Error

AWTError

AWTException

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Several more classes

Several more classes

Several more classes

IllegalArgumentException

RuntimeException is caused by
programming errors, such as bad
casting, accessing an out-of-
bounds array, and numeric errors.

9

Checked Exceptions vs. Unchecked
Exceptions

RuntimeException, Error and their subclasses are
known as unchecked exceptions. All other
exceptions are known as checked exceptions,
meaning that the compiler forces the programmer
to check and deal with the exceptions.

Categories Of Exceptions

• Unchecked exceptions

• Checked exception

Characteristics Of Unchecked
Exceptions

• The compiler doesn’t require you to catch them if they
are thrown.
– No try-catch block required by the compiler

• They can occur at any time in the program (not just for
a specific method)

• Typically they are fatal runtime errors that are beyond
the programmer’s control
– Use conditional statements rather than the exception

handling model.

• Examples:
– NullPointerException,IndexOutOfBoundsException,

ArithmeticException…

Common Unchecked Exceptions:
NullPointerException

• int [] arr = null;

• arr[0] = 1;

• arr = new int [4];

• int i;

• for (i = 0; i <= 4; i++)

• arr[i] = i;

• arr[i-1] = arr[i-1] / 0;

NullPointerException

Common Unchecked Exceptions:
ArrayIndexOutOfBoundsException

• int [] arr = null;

• arr[0] = 1;

• arr = new int [4];

• int i;

• for (i = 0; i <= 4; i++)

• arr[i] = i;

• arr[i-1] = arr[i-1] / 0;

ArrayIndexOutOfBoundsException
(when i = 4)

Common Unchecked Exceptions:
ArithmeticExceptions

1. int [] arr = null;

2. arr[0] = 1;

3. arr = new int [4];

4. int i;

5. for (i = 0; i <= 4; i++)

6. arr[i] = i;

7. arr[i-1] = arr[i-1] / 0;

ArithmeticException
(Division by zero)

Checked Exceptions

• Must be handled if the potential for an error
exists
– You must use a try-catch block

• Deal with problems that occur in a specific
place
– When a particular method is invoked you must

enclose it within a try-catch block

• Example:
– InterruptedException in the case of join()

Checked Exceptions

try {

t1.join();

} catch (InterruptedException e) {

e.printStackTrace();

}

17

Declaring, Throwing, and Catching
Exceptions

method1() {

 try {

 invoke method2;

 }

 catch (Exception ex) {

 Process exception;

 }

}

method2() throws Exception {

 if (an error occurs) {

 throw new Exception();

 }

}

catch exception throw exception

declare exception

18

Declaring Exceptions

Every method must state the types of checked
exceptions it might throw. This is known as
declaring exceptions.

public void myMethod()
throws IOException

public void myMethod()
throws IOException, OtherException

19

Throwing Exceptions

When the program detects an error, the program
can create an instance of an appropriate
exception type and throw it. This is known as
throwing an exception. Here is an example,

throw new TheException();

TheException ex = new TheException();
throw ex;

20

Throwing Exceptions Example

/** Set a new radius */

public void setRadius(double newRadius)

throws IllegalArgumentException {

if (newRadius >= 0)

radius = newRadius;

else

throw new IllegalArgumentException(

"Radius cannot be negative");

}

21

Catching Exceptions
try {

statements; // Statements that may throw exceptions

}

catch (Exception1 exVar1) {

handler for exception1;

}

catch (Exception2 exVar2) {

handler for exception2;

}

...

catch (ExceptionN exVar3) {

handler for exceptionN;

}

The Finally Clause

• An additional part of Java’s exception handling
model (try-catch-finally).

• Used to enclose statements that must always be
executed whether or not an exception occurs.

The Finally Clause: Exception Thrown

try
{

f.method();
}

catch
{
}

finally
{
}

f.method ()
{

}

The Finally Clause: Exception Thrown

try
{

f.method();
}

catch
{
}

finally
{
}

4) A the end of the catch

block control transfers

to the finally clause

f.method ()
{

}

2) Exception thrown here

The Finally Clause: No Exception
Thrown

try
{

f.method();
}

catch
{
}

finally
{
}

f.method ()
{

}

2) Code runs okay here

