Computer Science

Inner Classes

Abdul Haseeb Malik

Simple Uses of Inner Classes

* Inner classes are classes defined within other classes
* The class that includes the inner class is called the outer class

* There is no particular location where the definition of the inner class (or classes)
must be place within the outer class

* Placing it first or last, however, will guarantee that it is easy to find

Simple Uses of Inner Classes

* An inner class definition is a member of the outer class in
the same way that the instance variables and methods of
the outer class are members

* An inner class is local to the outer class definition

* The name of an inner class may be reused for something else
outside the outer class definition

* If the inner class is private, then the inner class cannot be
accessed by name outside the definition of the outer class

Inner/Quter Classes

public class Outer

{

private class Inner

{

// inner class instance wvariables

// inner class methods
} // end of inner class definition

// outer class instance variables

// outer class methods

Simple Uses of Inner Classes

* There are two main advantages to inner classes

* They can make the outer class more self-contained since
they are defined inside a class

* Both of their methods have access to each other's private
methods and instance variables

* Using an inner class as a helping class is one of the
most useful applications of inner classes

* |If used as a helping class, an inner class should be marked
private

Inner and Outer Classes Have Access to
Each Other's Private Members

* Within the definition of a method of an inner class:
* It is legal to reference a private instance variable of the outer class
* It is legal to invoke a private method of the outer class
* Essentially, the inner class has a hidden reference to the outer class

» Within the definition of a method of the outer class
* It is legal to reference a private instance variable of the inner class on an
object of the inner class
* It is legal to invoke a (nonstatic) method of the inner class as long as an
object of the inner class is used as a calling object

e Within the definition of the inner or outer classes, the modifiers
public and private are equivalent

Class with an Inner Class

Display 13.9 Class with an Inner Class (Part 1 of 2)

1 public class BankAccount
2 {
3 private class Money-= The modifier private in this line should
4 { not be changed to public.
5 private long dollars; .= However, the modifiers public and
b private int cents; private inside the inner class Money
can be changed to anything else and it
/ public Money(String stringAmount) yqyld have no effect on the class
8 { BankAccount.
9 abortOnNull(stringAmount) ;
10 int length = stringAmount.length();
11 dollars = Long.parselLong(
12 stringAmount.substring(@, length - 3));
13 cents = Integer.parselInt(
14 stringAmount.substring(length - 2, length));
15 }
16 public String getAmount()
17 {
18 if (cents > 9)
19 return (dollars + "." + cents);
20 else
21 return (dollars + ".0" + cents);

22 }

Class with an Inner Class

Display 13.9 Class with an Inner Class (Part 1 0f 2) (continued)

23 public void addIn(Money secondAmount)

24 {

25 abortOnNull(secondAmount);

26 int newCents = (cents + secondAmount.cents)%100,

27 long carry = (cents + secondAmount.cents)/100;

28 cents = newCents;

29 dollars = dollars + secondAmount.dollars + carry;

30 }

31 private void abortOnNull(Object o)

32 {

33 if (0 == null)

34 {

35 System.out.println("Unexpected null argument.");

36 System.exit(0);

37 1 o . o
The definition of the inner class ends here, but the definition of

39 1 the outer class continues in Part 2 of this display.

Class with an Inner Class

Display 13.9 Class with an Inner Class (Part 2 of 2)

40

41
42
43
44

45
46
47
48

49
50
51
52

53
54
55
56
57
58

private Money balance; To invoke a nonstatic method of the inner class
outside of the inner class, you need to create an
object of the inner class.

public BankAccount()
i

balance = new Money("#.00");

}

public String getB This invocation of the inner class method

{ getAmount () would be allowed even if
return balance.getAmount(); -a—— themethod getAmount () were marked
1 as private.

public void makeDeposit(5tring depositAmount)

{
balance.addIn(new Money(depositAmount));
¥
public void closeAccount() Motice that the outer class has access to the

i / private instance variables of the inner class.
E'.

balance.dollars = 0;
balance.cents = 0;

This class would normally have more methods, but we have only
included the methods we need to iflustrate the points covered here.

Referring to a Method of the Outer Class

* |f a method is invoked in an inner class

* If the inner class has no such method, then it is assumed to be an
invocation of the method of that name in the outer class

 |If both the inner and outer class have a method with the same
name, then it is assumed to be an invocation of the method in the
inner class

* If both the inner and outer class have a method with the same
name, and the intent is to invoke the method in the outer class,
then the following invocation must be used:

OuterClassName. this.methodName ()

Public Inner Classes

*If an inner class is marked public, then it can be
used outside of the outer class

* In the case of a nonstatic inner class, it must be
created using an object of the outer class

BankAccount account = new BankAccount() ;
BankAccount.Money amount =
account.new Money ("41.99") ;

* Note that the prefix account. must come before new

* The new object amount can now invoke methods from the
inner class, but only from the inner class

11

Public Inner Classes

* In the case of a static inner class, the procedure is similar to, but

simpler than, that for nonstatic inner classes
OuterClass.InnerClass innerObject =
new OuterClass.InnerClass() ;
* Note that all of the following are acceptable
innerObject.nonstaticMethod() ;
innerObject.staticMethod() ;
OuterClass.InnerClass.staticMethod() ;

12

Public Money Inner Class

If the Money inner class in the BankAccount example was defined as
public, we can create and use objects of type Money outside the
BankAccount class.

// this is okay in main()

BankAccount account = new BankAccount();

BankAccount.Money amt = // note syntax
account.new Money (“41.99”);

System.out.println(amt.getAmount())

// but NOT this - why not??

System.out.println(amt.getBalance())

Static Inner Classes

* A normal inner class has a connection between its objects
and the outer class object that created the inner class
object

* This allows an inner class definition to reference an instance
variable, or invoke a method of the outer class

* There are certain situations, however, when an inner class
must be static

* If an object of the inner class is created within a static method of
the outer class

* If the inner class must have static members

Static Inner Classes

* Since a static inner class has no connection to an object of
the outer class, within an inner class method
* Instance variables of the outer class cannot be referenced
* Nonstatic methods of the outer class cannot be invoked

* To invoke a static method or to name a static variable of a
static inner class within the outer class, preface each with
the name of the inner class and a dot

Multiple Inner Classes

A class can have as many inner classes as it needs.

* Inner classes have access to each other’s private members as long as
an object of the other inner class is used as the calling object.

The .elass File for an Inner Class

* Compiling any class in Java produces a . class file named
ClassName.class

* Compiling a class with one (or more) inner classes causes
both (or more) classes to be compiled, and produces two
(or more) .class files

e Such as ClassName.class and
ClassNameSInnerClassName.class

17

Nesting Inner Classes

* |t is legal to nest inner classes within inner classes

* The rules are the same as before, but the names get longer
* Given class A, which has public inner class B, which has public
inner class C, then the following is valid:
A aObject = new A() ;
A.B bObject = aObject.new B() ;
A.B.C cObject = bObject.new C();

18

Inner Classes and Inheritance

e Given an OuterClass that has an InnerClass

* Any DerivedClass of OuterClass will automatically have
InnerClass as an inner class

* In this case, the DerivedClass cannot override the InnerClass
* An outer class can be a derived class
* An inner class can be a derived class also

19

Anonymous Classes

* If an object is to be created, but there is no need to name the
object's class, then an anonymous class definition can be used

* The class definition is embedded inside the expression with the
new operator

* An anonymous class is an abbreviated notation for creating a
simple local object "in-line" within any expression, simply by
wrapping the desired code in a "new" expression.

* Anonymous classes are sometimes used when they are to be
assigned to a variable of another type

* The other type must be such that an object of the anonymous
class is also an object of the other type

* The other type is usually a Java interface

* Not every inner class should be anonymous, but very simple "one-
shot" local objects are such a common case that they merit some
syntactic sugar.

Anonymous Classes

Display 13.11 Anonymous Classes (Part 1 of 2)

This is just a toy example to demanstrate

; ?”blic class AnonymousClassDemo the Java syntax for anonymous classes.
3 public static void main(String[] args)
4 {
5 NumberCarrier anObject =
6 new NumberCarrier()
7 {
8 private int number;
9 public void setNumber(int value)
10 {
11 number = value;
12 }
13 public int getNumber()
14 {
15 return number;

=
=J &N
==

L

21

Anonymous Classes

Display 13.11 Anonymous Classes (Part 1 of 2)

18
19
20
21
22
23
24
25
26
27
28
29
30

31
32
33
34
35
36

37
38
39
40

41

NumberCarrier anotherObject =
new NumberCarrier()

{
private int number;
public void setNumber(int wvalue)
{
number = 2%wvalue:
}
public int getNumber()
{
return number;
}
I G

anObject.setNumber(42) ;
anotherObject.setNumber({42);
showNumber {anObject);

showNumber (anotherObject) ;
System.out.println("End of program.");

3

public static wvoid showNumber(NumberCarrier o)

{
System.out.printlno.getNumber());

}
This is still the file

AnonyvmousClassDemo

. Java.

22

Anonymous Classes

Display 13.11 Anonymous Classes (Part 2 of 2)

SAMPLE DIALOGUE

42
84
End of program.

1 public interface NumberCarrier

2 {

3 public void setNumber(int value);
4 public int getNumber();

5 1

This is the file
NumberCarrier. java.

23

