
Java Threads

2

A single threaded program

class ABC

{

….

public void main(..)

{

…

..

}

}

begin

body

end

3

A Multithreaded Program

Main Thread

Thread A Thread B Thread C

start start
start

Threads may switch or exchange data/results

4

Single and Multithreaded Processes

Single-threaded Process

Single instruction stream Multiple instruction stream

Multiplethreaded Process

Threads of

Execution

Common

Address Space

threads are light-weight processes within a process

Java Concurrency Models
• Processes versus Threads

Operating System

Threads Fibres Process

thread library

Java Concurrency Models

• Java supports threads

– Threads execute within a single JVM

– Native threads map a single Java thread to an OS thread

– Green threads adopt the thread library approach (threads
are invisible to the OS)

– On a multiprocessor system, native threads are required to
get true parallelism (but this is still implementation
dependent)

Threads in Java
Thread

void run()
void start()

...

Thread()
Thread(Runnable target)

subclass

association

MyThread

void run()
{

...

}

RunnableObject

void run()
{

...

}

parameter to

Runnable

implements

void run()

The Thread Class
public class Thread extends Object

implements Runnable {

public Thread();

public Thread(String name);

public Thread(Runnable target);

public Thread(Runnable target,

String name);

public Thread(Runnable target,

String name, long stackSize);

public void run();

public void start();

...

}

Thread Creation

1. Extend Thread class and override the run
method, or

2. Create an object which implements the
Runnable interface and pass it to a
Thread object via the Thread constructor

10

Thread Creation

• Create a class that extends the Thread class

• Create a class that implements the Runnable
interface

Thread

MyThread

Runnable

MyClass

Thread

(objects are threads) (objects with run() body)

[a] [b]

11

1st method: Extending Thread class

• Create a class by extending Thread class and override run()
method:

class MyThread extends Thread

{

public void run()

{

// thread body of execution

}

}

• Create a thread:

MyThread thr1 = new MyThread();

• Start Execution of threads:

thr1.start();

• Create and Execute:

new MyThread().start();

12

An example

class MyThread extends Thread {
public void run() {

System.out.println(" this thread is running ... ");
}

}

class ThreadEx1 {
public static void main(String [] args) {

MyThread t = new MyThread();
t.start();

}
}

13

2nd method: Threads by implementing
Runnable interface

• Create a class that implements the interface Runnable and override
run() method:

class MyThread implements Runnable

{

.....

public void run()

{

// thread body of execution

}

}

• Creating Object:
MyThread myObject = new MyThread();

• Creating Thread Object:
Thread thr1 = new Thread(myObject);

• Start Execution:
thr1.start();

14

An example

class MyThread implements Runnable {
public void run() {

System.out.println(" this thread is running ... ");
}

}

class ThreadEx2 {
public static void main(String [] args) {

Thread t = new Thread(new MyThread());
t.start();

}
}

Warning

The run method should not be called directly
by the application. The system calls it.

If the run method is called explicitly by the
application then the code is executed

sequentially not concurrently

16

A Program with Three Java Threads

• Write a program that creates 3 threads

17

Three threads example
class A extends Thread
{

public void run()
{

for(int i=1;i<=5;i++)
{

System.out.println("\t From ThreadA:
i= "+i);

}
System.out.println("Exit from A");

}
}

class C extends Thread
{ public void run()

{ for(int k=1;k<=5;k++)
{

System.out.println("\t From
ThreadC: k= "+k);

}
System.out.println("Exit from C");

}
}

class ThreadTest
{

public static void main(String args[])
{

A Aobj = new A();
B Bobj= new B();
C Cobj = new C();

Aobj.start();
Bobj.start();
Cobj..start();

}
}

class B extends Thread

{
public void run()

{for(int j=1;j<=5;j++)
{

System.out.println("\t From
ThreadB: j= "+j);

}
System.out.println("Exit from

B");
}

}

