
Java Threads - 2

Joining

• One thread can wait (with or without a
timeout) for another thread (the target) to
terminate by issuing the join method call on
the target's thread object

• The isAlive method allows a thread to
determine if the target thread has terminated

Thread Example without Join

public class MyThread implements Runnable {
public void run() {

System.out.println(" this thread is now exiting ... ");
}

}

class ThreadEx1 {
public static void main(String [] args) {

MyThread t = new MyThread();
Thread thr = new Thread(t);
thr.start();
System.out.println(" the main thread is now exiting ... ");

}
}

Threads with Join
public class MyThread implements Runnable {

public void run() {
System.out.println(" this thread is now exiting ... ");

} }

class ThreadEx1 {
public static void main(String [] args) {

MyThread t = new MyThread();
Thread thr = new Thread(t);
thr.start();
try {

thr.join();
} catch (InterruptedException e) {
e.printStackTrace();}

}
System.out.println(" the main thread is now exiting ... ");

}

Java Thread States
Non-Existing

New

Executable

Blocked Dead

start

create thread object

run method

exits

Non-Existing

garbage collected

and finalization

wait, join
notify, notifyAll

thread termination

destroy

destroy

destroy

Thread States-II

• The thread is created when an object derived from the
Thread class is created

• At this point, the thread is not executable — Java calls this
the new state

• Once the start method has been called, the thread
becomes eligible for execution by the scheduler

• If the thread calls the wait method in an Object, or calls
the join method in another thread object, the thread
becomes blocked and no longer eligible for execution

• It becomes executable as a result of an associated notify
method being called by another thread, or if the thread
with which it has requested a join, becomes dead

Thread States-III

• A thread enters the dead state, either as a result of
the run method exiting (normally or as a result of an
unhandled exception) or because its destroy method
has been called

