
Advanced Programming-- Java

Socket Programming

The Client-Server Paradigm

• Each of these applications use the client-
server paradigm, which is roughly

1.One program, called the server blocks
waiting for a client to connect to it

2.A client connects

3.The server and the client exchange
information until they're done

4.The client and the server both close their
connection

Basic Terminology 1

• Hosts:
– Devices connected to the internet.
– In addition to computers, can be routers printers storage

devices etc.

• Internet Addresses
– Every host on the Internet is identified by a unique, four-

byte Internet Protocol (IP) address.
– Two versions exists: IPv4 and IPv6.
– The IPv4 version is written in dotted quad format like

199.1.32.90 where each byte is an unsigned integer
between 0 and 255.

– The IPv6 expands the address space to 2128 and is
supported by Java.

Basic Terminology 2

• Ports:
– In general a host has only one Internet address
– This address is subdivided into 65,536 ports , numbered

from 0-65535.
– Ports are logical abstractions that allow one host to

communicate simultaneously with many other hosts
– Servers listen on a port.
– Many services run on well-known ports. For example, http

tends to run on port 80
– These port numbers are reserved so you can't use them

when you write your own server.
– User-level process/services generally use port number

value >= 1024.

Basic Terminology 3

• Multiple clients can be communicating with a
server on a given port. Each client connection is
assigned a separate socket on that port.

• Client applications get a port and a socket on the
client machine when they connect successfully
with a server.

• A socket is one endpoint of a two-way
communication link between two programs
running on the network. A socket is bound to a
port number so that the TCP layer can identify
the application that data is destined to be sent to.

InetAddress

• InetAddress is Java's representation of an IP address.

• Creating an InetAddress Instance
– InetAddress has no public contructor, so you must obtain instances via a set of

static methods. To get the InetAddress instance for a domain name:

InetAddress address = InetAddress.getByName(“yahoo.com");
– To get the InetAddress matching a String representation of an IP address:

InetAddress address = InetAddress.getByName("78.46.84.171");
– Localhost (the computer the program is running on):

InetAddress address = InetAddress.getLocalHost();
• Instances of this class are used together with UDP DatagramSockets and

normal Socket's and ServerSocket's.

InetAddress Example

Public class InetExample{
public static void main (String [] args){

try{
System.out.println(InetAddress.getByName(“yahoo.com”));
System.out.println(InetAddress.getByName(“google.com”));
System.out.println(InetAddress.getByName(“121.52.147.9”));
System.out.println(InetAddress.getLocalHost());
System.out.println(InetAddress.getLoopBackAddress());

}
catch(UnknownHostException e){
e.printStackTrace();
}

}
}

TCP

• The transport layer comprises two types of
protocols:
– TCP is a connection-oriented protocol that provides a

reliable flow of data between two computers.
Example applications that use such services are HTTP,
FTP, and Telnet.

– UDP is a protocol that sends independent packets of
data, called datagrams, from one computer to
another with no guarantees about arrival and
sequencing. Example applications that use such
services include Clock server and Ping.

TCP/IP Socket Programming

• Socket:
– This class implements one side of a two-way connection between your Java

program and another program on the network.
– The Socket class sits on top of a platform-dependent implementation, hiding

the details of any particular system from your Java program.
– By using the Socket class instead of relying on native code, your Java programs

can communicate over the network in a platform-independent fashion.

• ServerSocket
– This class implements server sockets.
– A server socket waits for requests to come in over the network.
– It performs some operation based on that request, and then possibly returns a

result to the requester.

Example TCP Server

1. Open the Server Socket:

ServerSocket server = new ServerSocket(PORT);

2. Wait for the Client Request:

Socket client = server.accept();

3. Create I/O streams for communicating to the client

DataInputStream is = new DataInputStream(client.getInputStream());

DataOutputStream os = new DataOutputStream(client.getOutputStream());

4. Perform communication with client

5. Receive from client

String line = is.readLine();

6. Send to client:

os.writeBytes(“Hello\n”);

5. Close socket:

client.close();

TCP Server Code

import java.net.*;
import java.io.*;
public class TCPServer {
public static void main(String args[]) throws IOException {
// Register service on port 1254
ServerSocket s = new ServerSocket(1254);
Socket s1=s.accept(); // Wait and accept a connection
// Get a communication stream associated with the socket
OutputStream s1out = s1.getOutputStream();
DataOutputStream dos = new DataOutputStream (s1out);
dos.writeUTF(“Hi there”); // Send a string!
// Close the connection, but not the server socket
dos.close();
s1out.close();
s1.close();}
}

TCP Client Example

1. Create a Socket Object:

Socket client = new Socket(server, port_id);

2. Create I/O streams for communicating with the server.

is = new DataInputStream(client.getInputStream());

os = new DataOutputStream(client.getOutputStream());

3. Perform I/O or communication with the server:

Receive data from the server: String line = is.readLine();

Send data to the server: os.writeBytes(“Hello\n”);

4. Close the socket when done:

client.close();

TCP Client Example

import java.net.*;
import java.io.*;
public class TCPClient {
public static void main(String args[]) throws IOException {
// Open your connection to a server, at port 1254
Socket s1 = new Socket(“localhost”,1254);
// Get an input file handle from the socket and read the input
InputStream s1In = s1.getInputStream();
DataInputStream dis = new DataInputStream(s1In);
String st = new String (dis.readUTF());
System.out.println(st);
// When done, just close the connection and exit
dis.close();
s1In.close();
s1.close();}
}

UDP

• UDP protocol uses packets.
• Connectionless
• Packets can arrive out of order
• Packet delivery is not guaranteed.
• The format of datagram packet is:

| Msg | length | Host | serverPort |
• Java supports datagram communication through

the following classes:
• DatagramPacket
• DatagramSocket

The DatagramPacket Class

• The class DatagramPacket contains several constructors that can be
used for creating packet object. e.g.

DatagramPacket(byte[] buf, int length, InetAddress address, int port);

• The key methods of DatagramPacket class are:
– byte[] getData() //Returns the data buffer.
– int getLength() // Returns the length of the data to be sent or the

length of the data received.
– void setData(byte[] buf) // Sets the data buffer for this packet.
– void setLength(int length) //Sets the length for this packet.

• The class DatagramSocket supports methods that can be used for
transmitting or receiving data a datagram over the network.
– void send(DatagramPacket p) // Sends a datagram packet from this

socket.
– void receive(DatagramPacket p) //Receives a datagram packet from

this socket.

Simple UDP Server
public class UDPServer{
public static void main(String args[]){

DatagramSocket aSocket = null;
try { int socket_no = 5556;
aSocket = new DatagramSocket(socket_no);
byte[] buffer = new byte[1000];
while(true) {
DatagramPacket request = new DatagramPacket(buffer, buffer.length);
aSocket.receive(request);
DatagramPacket reply = new DatagramPacket(request.getData(),
request.getLength(),request.getAddress(),
request.getPort());
aSocket.send(reply); }
}
catch (SocketException e) { System.out.println(“Socket: ” +
e.getMessage()); }
catch (IOException e) { System.out.println(“IO: ” + e.getMessage()); }
finally { if (aSocket != null) aSocket.close(); }

}}

UDPClient
public class UDPClient {

public static void main(String args[]){

DatagramSocket aSocket = null;

try {

aSocket = new DatagramSocket();

byte [] m = “ This message will be echoed”.getBytes();

InetAddress aHost = InetAddress.getLoopbackAddress();

int serverPort = 5556;

DatagramPacket request = new DatagramPacket(m, m.length, aHost, serverPort);

aSocket.send(request);

byte[] buffer = new byte[1000];

DatagramPacket reply = new DatagramPacket(buffer, buffer.length);

aSocket.receive(reply);

System.out.println(“Reply: ” + new String(reply.getData()));

}

catch (SocketException e) { System.out.println(“Socket: ” + e.getMessage()); }

catch (IOException e) { System.out.println(“IO: ” + e.getMessage()); }

finally { if (aSocket != null) aSocket.close();}

}}

