
Programming Languages -III

Graphical User Interface – Java Swing

Event-Driven Programming

• Procedural programming is executed in
procedural order.

• In event-driven programming, code is
executed upon activation of events.

Graphical User Interface in Java

• Programming in GUI is normally Event driven.

• Event: A type of signal to the program that
something has happened.

• Gui depends on:

– Components: an object having a graphical
representation. Examples are Frame, Button etc.

– Event Listeners: responds to an event.

• The code that is executed once an event occurs.

Components

• A component is an object having a graphical representation

• Components can be displayed on the screen

• Swing provides many standard GUI components such as:
– Buttons

– Lists

– Menus

– text areas

• Components can be combined to create your
program's GUI.

• Swing provides containers(which are components that can
include other components) such as windows and tool bars.

Components: Abstract Window Toolkit (AWT) vs.
Swing

AWT
• Used before Swing was

introduced.

• All components are
heavyweight because they
are tied to the local
platform’s windowing
system.

• The look-and-feel of the
components is uniform on
all platforms.

Swing
• Introduced after the AWT.

• Some components are
lightweight, however,
some components like
AWT are heavyweight
because they are tied to
the underlying platform’s
windowing system.

• The look-and-feel of the
components is uniform on
all platforms.

Overview of Swing Components
• JLabel – Displays un-editable text or icons.
• JTextField – Enables user to enter data from the keyboard.

Can also display editable/un-editable text.
• JButton – Used to perform an action.
• JCheckBox – Specifies an option that can be selected or not

selected .
• JComboBox – Provides a drop-down list of items from

which the user can make a selection by clicking an item or
possibly by typing into the box.

• JList – Provides a list of items from which the user can make
a selection by clicking on any item in the list. Multiple
elements can be selected.

• JPanel – Provides an area in which components can be
placed and organized. Can also be used as a drawing area
for graphics.

Containers

• Components that can contain other components.

• Components are added to a container using one of
the various forms of its add method

panel.add(component);

• Components can be positioned manually, but a large
number of Components would be difficult to
manage.

• A layout manager helps with the placement of
components in a container and size of components.

Top Level Containers

• Every program that presents a Swing GUI contains at
least one top-level container.

• A Top level container provides the support that Swing
components need to perform their painting and event-
handling.

• Each top-level container has a content pane that,
generally speaking, contains (directly or indirectly) the
visible components in that top-level container's GUI

• Swing provides the following top-level containers:
– JFrame (Main window)
– JDialog (Secondary window)
– JApplet (An applet display area within a browser window)

Top Level Container

JFrame

• javax.swing.JFrame: JFrame is part of Java swing.

• JFrame is an indirect subclass of class java.awt.Window that
provides the basic attributes and behaviours of the window.

• Top-level window with a title and a border.
• Usually used as a program's main window.
• Visible Components are added to the Content Pane layer.

– Use getContentPane() to obtain it

JFrame

import javax.swing.*;

public class MainClass {

public static void main(String[] args) {

JFrame f1 = new JFrame ();

f1.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

f1.pack();

f1.setVisible(true);

}

}

Jframe with Buttons

import javax.swing.*;

public class MainClass {

public static void main(String[] args) {

JFrame f1 = new JFrame ();

f1. getContentPane().add(new JButton(“B1”));

f1.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

f1.pack();

f1.setVisible(true);

}

}

Jframe with Buttons Alternative
Approach

import javax.swing.*;

public class MainClass extends JFrame {

public MainClass(){

getContentPane().add(new JButton(“B1”));

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

pack();

}

public static void main(String[] args) {

MainClass f1 = new MainClass ();

f1.setVisible(true);

}

}

JLabel

1. import javax.swing.*;
2. public class testLabel1 {
3. public static void main(String[] args) {
4. JFrame f1 = new JFrame ();
5. f1.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

6. // creating a label and adding it to the frame (container).
7. JLabel l1 = new JLabel("Hello World");
8. f1.getContentPane().add(l1);
9.
10. f1.pack();
11. f1.setVisible(true);
12. }
13. }

• Displays un-editable text or icons.

Example 2: Frame with a Label

import javax.swing.*;

public class HelloWorldFrame extends JFrame {

public HelloWorldFrame() {

super(“HelloWorldSwing”);

final JLabel label = new JLabel("Hello World");

getContentPane().add(label);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

pack();

setVisible(true);

}

public static void main(String[] args) {

HelloWorldFrame frame = new HelloWorldFrame();

}

}

JDialog

• javax.swing.JDialog:
• More simple and limited than frames
• Typically used for showing a short message on the screen
• Also has a border and a title bar
• May have an owner

– If the owner is invisible the dialog will also be invisible

JOptionPane for JDialog

• Dialog boxes are
normally used to
interact with the
user.

• Provides pre-built
dialog boxes.

• Dialogs are
displayed using
static JOptionPane
methods.

1. import javax.swing.JOptionPane;
2. public class testJOptionPane {
3. public static void main(String[] args) {
4. // TODO Auto-generated method stub
5. // Obtain first user input from JOptionPane input dialogs
6. String firstNumber = JOptionPane.showInputDialog("Enter First

Integer");
7. // Obtain second user input from JOptionPane input dialogs
8. String secondNumber = JOptionPane.showInputDialog("Enter

Second Integer");
9. // Convert string inputs to int values for use in a calculation
10. int number1 = Integer.parseInt(firstNumber);
11. int number2 = Integer.parseInt(secondNumber);
12. int sum = number1 + number2;
13. //display result in JOptionPane message dialog
14. JOptionPane.showMessageDialog(null, "The sum is " + sum);
15. } // end main method
16. } // end testJOptionPane

18

Internal Containers

• Not Top level containers

• Can contain other non-top level components

• Examples:
– JScrollPane: Provides a scrollable view of its

components

– JSplitPane: Separates two components

– JTabbedPane: User chooses which
component to see

19

Containers - Layout

• Each container has a layout manager

– Determines the size, location of contained components.

• Setting the current layout of a container:
void setLayout(LayoutManager lm)

• LayoutManager implementing classes:
– BorderLayout

– BoxLayout

– FlowLayout

– GridLayout

Layout Managers

• Control the placement of components on the
container.

• This is an alternative to hardcoding the pixel
locations of the components.

• Advantage: resizing the container (frame) will not
occlude or distort the view of the components.

• Main layout managers:
– FlowLayout, GridLayout, BorderLayout, CardLayout, and

GridBagLayout

Layout Manager Hierarchy

Object

LayoutManager

FlowLayout

GridLayout

CardLayout

BorderLayout

GridBagLayout

LayoutManager is an interface. All the layout classes implement this interface

FlowLayout

• Places components sequentially (left-to-right) in the order they
were added

• Components will wrap around if the width of the container is not
wide enough to hold them all in a row.

• Default for applets and panels, but not for frames

• Options:
– left, center (this is the default), or right

• Typical syntax: in your Frame class’s constructor

setLayout(new FlowLayout(FlowLayout.LEFT)) OR

setLayout(new FlowLayout(FlowLayout.LEFT,hgap,vgap))

A Frame class that uses FlowLayout layout manager

Note: creating a subclass of JFrame

A Frame class that uses FlowLayout layout manager

Note: it’s common to make
the Frame an application
class by including a main
method. The main method
will instantiate its own
class.

A Frame class that uses FlowLayout layout manager

The constructor will typically do the following:
1) Set the layout manager for the frame’s content pane
2) Add the components to the frame’s content pane

In this case, the layout is Flow, and 6 Swing components are added

1

2

A Frame class that uses FlowLayout layout manager

Swing components are in java.swing package

Layout managers are in java.awt package

Resizing the frame causes the components to
wrap around when necessary.

GridLayout
• Arranges components into rows and columns

• In Frame’s constructor:

– setLayout

(new GridLayout(rows,columns))

OR

– setLayout(new GridLayout(rows,columns,hgap,vgap))

• Components will be added in order, left to right, row by row

• Components will be equal in size

• As container is resized, components will resize accordingly,
and remain in same grid arrangement

Setting the layout manager

Adding components

A Frame class that uses GridLayout layout manager

Resizing the frame causes the components to
resize and maintain their same grid pattern.

BorderLayout
• Arranges components into five areas: North, South, East, West, and

Center

• In the constructor:

– setLayout(new BorderLayout())
– OR

– setLayout(new BorderLayout(hgap,vgap))

– for each component:

• add (the_component, region)
• do for each area desired:

– BorderLayout.EAST, BorderLayout.SOUTH, BorderLayout.WEST,
BorderLayout.NORTH, or BorderLayout.CENTER

• Behavior: when the container is resized, the components will be resized but remain in
the same locations.

• NOTE: only a maximum of five components can be added and seen in this case, one
to each region.

Setting the layout manager

Adding components to
specific regions

A Frame class that uses BorderLayout layout manager

Resizing the frame
causes the components
to resize and maintain
their same regions.

NOTE: the CENTER region dominates the sizing.

Using Panels as “Sub-Containers”

• JPanel is a container that can contain other components.

• As containers, JPanels can have their own layout managers.

• This way, you can combine layouts within the same frame by
adding panels to the frame and by adding other components
to the panels.

• Therefore, like JFrames, you can use these methods with
JPanels:
– add() – to add components to the panel

– setLayout() – to associate a layout manager for the panel

Using Panels

This example uses panels to organize components.
The program creates a user interface for a
Microwave oven.

A button

A textfield

12

buttons

frame

p2

p1

A Frame class that
contains panels for
organizing
components

Creating a panel and setting
its layout

A Frame class that
contains panels for
organizing
components

Adding
components to the
panel

Listing 12.6 p 414:

A Frame class that
contains panels for
organizing
components

Creating another panel and
setting its layout…

Listing 12.6 p 414:

A Frame class that
contains panels for
organizing
components

Adding components to the second panel…

NOTE: panel p1 is embedded
inside panel p2!

Listing 12.6 p 414:

A Frame class that
contains panels for
organizing
components

Adding a panel and a button to the
frame’s content pane.

Note: the JFrame class’s default
layout manager is Border, so you if
you don’t explicitly call setLayout()
for the frame it will be Border.

Listing 12.6 p 414:

A Frame class that
contains panels for
organizing
components

Frame has BorderLayout manager

Button in the CENTER region
Panel p2 in the EAST region

Panel p2 has BorderLayout manager

Panel p1 in the CENTER region

Text field in NORTH region

Panel p1 has GridLayout manager,
four rows and three columns

Absolute Positioning of Swing
Components in a Container

• Not recommended
because the container
can be resized etc.

• Using the method:
setBounds(int x, int y, int
width, int height)

...
setSize(400, 400);
setDefaultCloseOperation(JFrame.EXIT_ON_
CLOSE);
JPanel panel = new JPanel(null);
JTextField textField = new
JTextField(20);
textField.setBounds(50, 50, 100, 20);
JButton button = new JButton("Button");
Button.setBounds(200, 100, 100, 20);
JCheckBox checkBox = new JCheckBox("Check
Me!");
checkBox.setBounds(300, 250, 100, 20);
panel.add(textField);
panel.add(button);
panel.add(checkBox);
setContentPane(panel);
...

Events and Listeners

• An event can be defined as a type of signal to the
program that something has happened.

• The event is generated by external user actions such
as mouse movements, mouse button clicks, and
keystrokes, or by the operating system, such as a
timer.

• Events are responded to by event listeners

Event Handling in Java

Event-generating Objects send Events to Listener Objects

Each event-generating object (usually a component) maintains a set of listeners for each event
that it generates.

To be on the list, a listener object must register itself with the event-generating object.

Listeners have event-handling methods that respond to the event.

source: SourceClass

 +addXListener(XListener listener)

listener: ListenerClass User

Action

Trigger an event

XListener

 +handler(XEvent event)

event: XEvent listener1

listener2
…

listenern

+handler(

XEvent

Register by invoking

source.addXListener(listener);

Keep in a list

Invoke

listener1.handler(event)

listener2.handler(event)
…

listenern.handler(event)

Selected User Actions

Source Event Type

User Action Object Generated

Click a button JButton ActionEvent

Click a check box JCheckBox ItemEvent, ActionEvent

Click a radio button JRadioButton ItemEvent, ActionEvent

Press return on a text field JTextField ActionEvent

Select a new item JComboBox ItemEvent, ActionEvent

Select an item from a List JList ListSelectionEvent

Window opened, closed, etc. Window WindowEvent

Mouse pressed, released, etc. Any Component MouseEvent

Java AWT Event
Listener Interfaces

 ActionListener

 AdjustmentListener

 ComponentListener

 ContainerListener

 FocusListener

 ItemListener

 MouseListener

 MouseMotionListener

 TextListener

 WindowListener

 ListSelectionListener

All are in the java.awt.event or javax.swing.event package

All are derived from EventListener in the java.util package

NOTE: any object that will respond to an event must implement a listener interface.

How to Implement a Listener Interface

• Use the implements keyword in the class declaration
• Register the object as a listener for a component’s

event, using the component’s addXListener method.
(where X is the type of event).

Handling Simple Action Events

Implementing the listener
interface

Registering the frame to
be a listener for action
events generated by the
two buttons

The method for
responding to an Action
event.

Alternative Approaches to Listening
• Implement the listener with the main application class, and

have the one listener assigned to all components generating
the events
– Advantage: simplicity for beginner programmers
– Disadvantage: event-handler method may require if-statement or

switch with several branches when multiple components generate the
event

• Use inner classes to implement the listeners and create a
different instance as each component’s listener.
– Named inner class or anonymous inner class (This is the approach

used in the textbook most of the time)
– Advantage: no need to test within the listeners for determining which

component sent the event. Each component has its own dedicated
listener

– Disadvantage: harder to understand

Example with named
inner classes, one for
listening to each
button

Inner class has
direct access to all
members (even
private) of the
outer class

Example with anonymous
inner classes, one for listening
to each button

