
Java Serialization

Introduction

• Serialization is simply turning an existing object into a byte array.

• This byte array represents
• the class of the object,

• the version of the object,

• and the internal state of the object.

• This byte array can be used to
• Store the state of the object for later retrieval (store in a file).

• Send object over a network to another JVM running the same code.

• Deserialization is converting a byte array back to an Object.

Serialization

• A marker interface called Serializable is provided.
• It is an empty interface, hence, classes implementing this interface are not

required to override any methods related to the interface.

• ObjectOutputStream.writeObject(Object) traverses all the internal
references of the object recursively and writes all of them provided
classes associated with the objects have also implemented
Serializable.

• Any fields that the programmer does not want to serialize should be
marked as transient.

Object Storage in a File

• Classes ObjectInputStream and ObjectOutputStream are high-level
streams that contain the methods for serializing and deserializing an
object.

• Writing Objects to a File
1. FileOutputStream file = new FileOutputStream("Student1.ser");

2. The writeObject(Object obj) from the ObjectOutputStream class can be
used to write an object into a file

• Reading Objects from a File

Classes Implementing the Serializable Interface

public class LibraryAccount implements Serializable {

private int Id;

private static int NumberAccounts=0;

public LibraryAccount(){

NumberAccounts++;

this.Id= NumberAccounts;

}

public int getId(){return this.Id;}

public static int getNumberofAccounts() {

return NumberAccounts;}

}

public class Student implements Serializable {

private int Roll;

private String Name;

private LibraryAccount lib;

private final static long serialVersionUID = 1000;

public Student(int Roll, String Name){

this.Roll= Roll;

this.Name = Name;

}

public int getRoll(){return this.Roll;}

public String getName(){return this.Name;}

public LibraryAccount getLibAccount(){

return this.lib;}

public void createLibraryAccount(){

this.lib = new LibraryAccount();}

}

Writing Objects in a File

public class WriterClass {

public static void main(String[] args) {

Student std = new Student(1,"Muhammad Ali");

std.createLibraryAccount();

System.out.println(std.getRoll()+ " " + std.getName() + " " +
std.getLibAccount().getId());

try { /* A file is created/opened where we want to write an object. “ser” is normally a
convention that is followed for file names containing a serialized file.*/

FileOutputStream file = new FileOutputStream("Student1.ser");
/ *The writeObject(Object obj) from the ObjectOutputStream class can be used to
write an object into a file.*/

ObjectOutputStream out = new ObjectOutputStream(file);

out.writeObject(std);

out.close();

file.close();}

catch (FileNotFoundException e) {e.printStackTrace();}

catch (IOException e) {e.printStackTrace();}

} }

Reading Object (Deserialization) from a File
public class ReaderClass {

public static void main(String[] args) {

try { /* The file is opened from where we want to read an object.*/

FileInputStream input = new FileInputStream(“Student1.ser”);

/ *The readObject() from the ObjectInputStream class can be used to
read an object from a file. The return object needs to be casted before use.*/

ObjectInputStream inStream = new ObjectInputStream(input);

Student obj = (Student) inStream.readObject();

System.out.println(obj.roll+ " " + obj.name);

inStream.close();

input.close();

}

catch (FileNotFoundException e) {e.printStackTrace();}

catch (IOException e) {e.printStackTrace(); }

catch (ClassNotFoundException e) {e.printStackTrace();}

}

}

Sending Objects over a Network

• Example attached separately in the shared folder.

