
File Handling

Files

• Files are stored are stored on disks

• Each files consist of multiple lines composed
of characters

• Each line ends with an end of line character

• The file itself may have an end of file character

• Programmers often need to read or write files
stored on disks

Streams

• Stream: an object that either delivers data to its destination (screen, file,
etc.) or that takes data from a source (keyboard, file, etc.)

– it acts as a buffer between the data source and destination

• Input stream: a stream that provides input to a program

– System.in is an input stream

• Output stream: a stream that accepts output from a program

– System.out is an output stream

• A stream connects a program to an I/O object

– System.out connects a program to the screen

– System.in connects a program to the keyboard

Text File I/O

• Important classes for text file output (to the file)

– PrintWriter

– FileOutputStream [or FileWriter]

• Important classes for text file input (from the file):

– BufferedReader

– FileReader

• FileOutputStream and FileReader take file names as arguments.

• PrintWriter and BufferedReader provide useful methods for
easier writing and reading.

• Usually need a combination of two classes

• To use these classes your program needs a line like the following:

import java.io.*;

Output to a File

Text File Output

• To open a text file for output: connect a text file to a stream for writing

FileOutputStream s = new FileOutputStream("out.txt");

PrintWriter outputStream = new PrintWriter(s);

• Goal: create a PrintWriter object

– which uses FileOutputStream to open a text file

• FileOutputStream “connects” PrintWriter to a text file.

Every File Has Two Names

1.the stream name used by Java

– outputStream in the example

2.the name used by the operating system

– out.txt in the example

Output File Streams

PrintWriter FileOutputStream

Disk Memory

smileyOutStream smiley.txt

PrintWriter smileyOutStream = new PrintWriter(new FileOutputStream(“smiley.txt”));

Methods for PrintWriter

• Similar to methods for System.out

1. println

 outputStream.println(count + " " + line);

2. print

3. format

4. flush: write buffered output to disk

5. close: close the PrintWriter stream (and file)

Example: File Output
public class OutputDemo{
public static void main(String[] args)
{
 PrintWriter outputStream = null;
 try
 { outputStream =new PrintWriter(new FileOutputStream("out.txt"));
 }
 catch(FileNotFoundException e)
 {
 System.out.println("Error opening the file out.txt. “ + e.getMessage());
 System.exit(0);
 }

System.out.println("Enter three lines of text:");

int count;

 for (count = 1; count <= 3; count++)

 {

 outputStream.println(count + " abc ");

 }

 outputStream.close();

 System.out.println("... written to out.txt.");

}

}

Overwriting/Appending a File

• Overwriting
– Opening an output file creates an empty file

– Opening an output file creates a new file if it does not already exist

– Opening an output file that already exists eliminates the old file and creates a new,
empty one and data in the original file is lost

outputStream = new PrintWriter(new FileOutputStream("out.txt"));

• Appending to a file
– To add/append to a file instead of replacing it, use a different constructor for

FileOutputStream:

outputStream = new PrintWriter(new FileOutputStream("out.txt", true));

– Second parameter: append to the end of the file if it exists.

Closing a File

• An output file should be closed when you are done writing to it (and
an input file should be closed when you are done reading from it).

• Use the close method of the class PrintWriter (or
BufferedReader close method).

• For example, to close the file opened in the previous example:
outputStream.close();

• If a program ends normally it will close any files that are open. Still the
an explicit call to close should be used because :

1. To make sure it is closed if a program ends abnormally (it could get
damaged if it is left open).

2. A file opened for writing must be closed before it can be opened for

reading.

Input

Input File Streams

BufferedReader FileReader

Disk Memory

inStream input.txt

BufferedReader inStream = new BufferedReader(new FileReader(“input.txt”));

Text File Input

• To open a text file for input: connect a text file to a stream for reading

– a BufferedReader object uses FileReader to open a text file

– FileReader “connects” BufferedReader to the text file

• For example:

FileReader s = new FileReader(“input.txt");

BufferedReader inStream = new BufferedReader(s);

Methods for BufferedReader

• read: read a char at a time

• readLine: read a line into a String

• no methods to read numbers directly, so read numbers as
Strings and then convert them (StringTokenizer
later)

• close: close BufferedReader stream

Reading Words in a String:
Using StringTokenizer Class

• There are BufferedReader methods to read a line and a character, but
not just a single word

• StringTokenizer can be used to parse a line into words

– import java.util.*

– you can specify delimiters (the character or characters that separate
words)

• the default delimiters are "white space" (space, tab, and newline)

Example: StringTokenizer

import java.util.StringTokenizer;

public class fileex2 {
public static void main(String[] args) {

StringTokenizer st =new StringTokenizer("This is a string");

while(st.hasMoreTokens()){

System.out.println(st.nextToken());
}
}
}

Testing for End of File in a Text File

• When readLine tries to read beyond the end of a text file it returns
the special value null

– so you can test for null to stop processing a text file

• read returns -1 when it tries to read beyond the end of a text file

– the int value of all ordinary characters is nonnegative

int count = 0;

String line = inputStream.readLine();

while (line != null)

{

 count++;

 outputStream.println(count + " " + line);

 line = inputStream.readLine();

}

20

Example: Using Null to
Test for End-of-File in a Text File

When using read test for -1

Using BufferedReader to Read from Keyboard

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

public class fileex3 {

public static void main(String[] args) {

BufferedReader st = new BufferedReader(new InputStreamReader(System.in));

try {
System.out.println(st.readLine());
System.out.println(st.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
}

Alternative with Scanner

• Instead of BufferedReader with FileReader, then
StringTokenizer

• Use Scanner with File:
Scanner inFile =new Scanner(new File(“in.txt”));

• Similar to Scanner with System.in:
Scanner keyboard = new Scanner(System.in);

File Class [java.io]
• Acts like a wrapper class for file names

• A file name like "numbers.txt" has only String properties

• File has some very useful methods

– exists: tests if a file already exists

– canRead: tests if the OS will let you read a file

– canWrite: tests if the OS will let you write to a file

– delete: deletes the file, returns true if successful

– length: returns the number of bytes in the file

– getName: returns file name, excluding the preceding path

– getPath: returns the path name—the full name

 File numFile = new File(“numbers.txt”);

 if (numFile.exists())

 System.out.println(numfile.length());

Reading in int’s

Scanner inFile = new Scanner(new File(“in.txt"));

int number;

while (inFile.hasInt())

 {

 number = inFile.nextInt();

 // …

 }

Reading in lines of characters

Scanner inFile = new Scanner(new File(“in.txt"));

String line;

while (inFile.hasNextLine())

 {

 line = inFile.nextLine();

 // …

 }

BufferedReader vs Scanner

Parsing primitive types
• Scanner

– nextInt(), nextFloat(), … for parsing types
• BufferedReader

– read(), readLine(), … none for parsing types
– needs StringTokenizer then wrapper class methods like
Integer.parseInt(token)

Checking End of File/Stream (EOF)
• BufferedReader

– readLine() returns null
– read() returns -1

• Scanner

– nextLine() throws exception

– needs hasNextLine() to check first

– nextInt(), hasNextInt(), …

Exercise

• Create a java program which stores rollnumber,
name and marks of a student in a text file.

• It should be able to read and display these values
along with the Grade of the student based on the
following grading system

 0-49  Fail

 50-59  Pass

 60- 69  Satisfactory

 70-79  Good

 Above 80  Excellent

