File Handling

Files

Files are stored are stored on disks

Each files consist of multiple lines composed
of characters

Each line ends with an end of line character
The file itself may have an end of file character

Programmers often need to read or write files
stored on disks

Streams

Stream: an object that either delivers data to its destination (screen, file,
etc.) or that takes data from a source (keyboard, file, etc.)

— it acts as a buffer between the data source and destination
Input stream: a stream that provides input to a program
— System. inisaninput stream
Output stream: a stream that accepts output from a program
— System.out is an output stream
A stream connects a program to an 1/O object
— System.out connects a program to the screen
— System. in connects a program to the keyboard

Text File 1/O

Important classes for text file output (to the file)

— PrintWriter

— FileOutputStream [or FileWriter]
Important classes for text file input (from the file):

— BufferedReader

— FileReader

FileOutputStream and FileReader take file names as arguments.

PrintWriter and BufferedReader provide useful methods for
easier writing and reading.

Usually need a combination of two classes
To use these classes your program needs a line like the following:

import java.io.%*;

Output to a File

Text File Output

* To open a text file for output: connect a text file to a stream for writing
FileOutputStream s = new FileOutputStream("out.txt");

PrintWriter outputStream = new PrintWriter(s);

e Goal:createa PrintWriter object
— whichuses FileOutputStreamto open a text file
* FileOutputStream “connects” PrintWriter to atextfile.

Every File Has Two Names

1.the stream name used by Java
— outputStream in the example

2.the name used by the operating system
— out.txt inthe example

Output File Streams

PrintWriter FileOutputStream

smileyOutStream smiley.txt

PrintWriter smileyOutStream = new PrintWriter(new FileOutputStream(“smiley.txt”));

1.

o bxw N

Methods for PrintWriter

Similar to methods for System.out
println

outputStream.println(count + " " + line);

print

format

flush: write buffered output to disk

close: close the PrintWriter stream (and file)

Example: File Output

public class OutputDemo{
public static void main (String[] args)

{

System.out.println ("Enter three lines of text:");

PrintWriter outputStream = null;
try

{ outputStream =new PrintWriter (new FileOutputStream("out.txt"));

}
catch (FileNotFoundException e)

{

System.out.println ("Error opening the file out.txt.

System.ex1it (0) ;
}

int count;

for (count = 1; count <= 3; count++)

{

outputStream.println (count + " abc ");

}

outputStream.close() ;

System.out.println("... written to out.txt.");

A\

+ e.getMessage())

Overwriting/Appending a File

* Overwriting
— Opening an output file creates an empty file
— Opening an output file creates a new file if it does not already exist

— Opening an output file that already exists eliminates the old file and creates a new,
empty one and data in the original file is lost
outputStream = new PrintWriter (new FileOutputStream("out.txt"))

* Appending to a file

— To add/append to a file instead of replacing it, use a different constructor for
FileOutputStream:

outputStream = new PrintWriter (new FileOutputStream("out.txt", true));

— Second parameter: append to the end of the file if it exists.

Closing a File

* An output file should be closed when you are done writing to it (and
an input file should be closed when you are done reading from it).

e Usethe close method of theclass PrintWriter (or
BufferedReader close method) .

* For example, to close the file opened in the previous example:
outputStream.close() ;

* If a program ends normally it will close any files that are open. Still the
an explicit call to close should be used because :

1. To make sure it is closed if a program ends abnormally (it could get
damaged if it is left open).

2. A file opened for writing must be closed before it can be opened for
reading.

Input

Input File Streams

BufferedReader FileReader

inStream input.txt

BufferedReader inStream = new BufferedReader(new FileReader(“input.txt”));

Text File Input

* To open a text file for input: connect a text file to a stream for reading
— aBufferedReader object uses FileReader to open a text file
— FileReader “connects” BufferedReader to the text file

* For example:

FileReader s = new FileReader (“input.txt");

BufferedReader inStream = new BufferedReader (s);

Methods for BufferedReader

read: read a char at atime
readLine:readalineintoa String

no methods to read numbers directly, so read numbers as
Strings and then convert them (StringTokenizer

later)

close:close BufferedReader stream

Reading Words in a String:
Using StringTokenizer Class

* There are Buf feredReader methods to read a line and a character, but
not just a single word

e StringTokenizer can be used to parse a line into words
— import Java.util.*
— you can specify delimiters (the character or characters that separate
words)
* the default delimiters are "white space" (space, tab, and newline)

Example: StringTokenizer

import java.util.StringTokenizer;

public class fileex2 {
public static void main(String[] args) {

StringTokenizer st =new StringTokenizer("This is a string");
while(st.hasMoreTokens()){

System.out.printin(st.nextToken());

}
}
}

Testing for End of File in a Text File

* When readLine tries to read beyond the end of a text file it returns
the special value null

— so you can test for null to stop processing a text file

 readreturns -1 when it tries to read beyond the end of a text file
— the int value of all ordinary characters is nonnegative

Example: Using Null to
Test for End-of-File in a Text File

Int count = 0;
String line = inputStream.readLine();

while (line = null)

{

}

count++;
outputStream.printin(count + " ** + line);
line = inputStream.readL.ine();

When using read test for -1

20

Using BufferedReader to Read from Keyboard

import java.io.BufferedReader;
import java.io.lOException;
import java.io.InputStreamReader;

public class fileex3 {
public static void main(String[] args) {

BufferedReader st = new BufferedReader(new InputStreamReader(System.in));

try {
System.out.printin(st.readLine());

System.out.printin(st.readLine());
}

catch (IOException e) {
e.printStackTrace();

}
}
}

Alternative with Scanner

* Instead of BufferedReader with FileReader, then
StringTokenizer

e Use Scanner with File:

Scanner inFile =new Scanner (new File (“in.txt”));

e Similar to Scanner with System. in:

Scanner keyboard = new Scanner (System.1in);

File Class (java.io]

Acts like a wrapper class for file names
A file name like "numbers.txt" hasonly String properties
F'i1le has some very useful methods
— exists:testsif afile already exists
— canRead: tests if the OS will let you read a file
— canWrite: tests if the OS will let you write to a file
— delete: deletes the file, returns true if successful
— length: returns the number of bytes in the file
— getName: returns file name, excluding the preceding path
— getPath: returns the path name—the full name

File numFile = new File (“numbers.txt”);
1f (numFile.exists())
System.out.println (numfile.length());

Reading in 1nt’s

Scanner inFile = new Scanner (new File (Yin.txt"));
int number;
while (inFile.hasInt())

{

number = inFile.nextInt();

/] ..

Reading in lines of characters

Scanner inFile = new Scanner (new File (Yin.txt"));
String line;
while (inFile.hasNextLine())

{

line = inFile.nextLine();

/] ..

RBufferedReader vs Scanner

Parsing primitive types
* Scanner

— nextInt (), nextFloat (), ...for parsing types
* BufferedReader

— read(), readLine (), .. none for parsing types

— needs StringTokenizer then wrapper class methods like
Integer.parselnt (token)

Checking End of File/Stream (EOF)
* BufferedReader
— readLine () returnsnull
— read () returns -1
* Scanner
— nextLine () throws exception
— needs hasNextLine () to check first
— nextInt (), hasNextInt (), ...

Exercise

* Create a java program which stores rollnumber,
name and marks of a student in a text file.

* |t should be able to read and display these values
along with the Grade of the student based on the
following grading system

0-49 - Fail

50-59 - Pass

60- 69 = Satisfactory
70-79 = Good

Above 80 = Excellent

