Java RM|
(Remote Method Invocation)

Dr. Abdul Haseeb Malik



Introduction

 RMI is a Java-implementation of RPC (Remote Procedure Call)

* RMI server
e creates remote objects

* makes references to those objects accessible by publishing them using an RMI
registry.
* waits for clients to invoke methods on those objects

e RMI client

* can locate remote objects from RMI registry and obtain the remote reference to
remote objects on a server

* invokes methods

 Remote communication looks like regular Java method invocations to the
programmer and details of remote communication between server and
client are handled by RMI



2. Clientrmakesa

Narmingleokup call

|l

EMIclient | ..
3. The registry returns an

instance of the rermote
object’s stub

d,Client fequests the stuh
class fromithe codebase

5, The HTTT server returns
the remote object’s stub class

1. Serverregistersa
RMI remote ohject, bound
reglstry 0 ana

4
o
| .
|
|

Server that
ax o tad
a remote

object

¥ jawa. il server.cod ehases
ii'lﬁp:f { nyHost/ rpdir/
T'I"IE_FHEE‘I‘ e "
URL
lacation

(file, ftp, or hittp)




Simple Example

* In the following slides a simple example of Java RMI is presented in
which:
* Only a single add method will be provided on the Server

* The client will locate the object remotely and call this method to add two
numbers.



Simple Example: Remote Interface

public interface RemMethodInt extends java.rmi.Remote {
public int add(int a, int b) throws RemoteException;

 This interface needs to be present at both sides (server and client).

* It tells both sides which methods can be remotely accessible. Here it
is only one method which is named add.

* The java.rmi.Remote interface is a marker interface which is empty
and is only used to let the JVM know that these methods will be used
for remote communication.



Simple Example: RMI Server

public class RemImpl extends UnicastRemoteObject implements RemMethodInt{
//Constructor should be explicitly called.
//It creates and exports a remote object.
protected RemImpl() throws RemoteException {super();}
// Implementation of the add method defined in the interface.
public int add(int a, int b) throws RemoteException {return((a+b));

public static void main(String[] args) {
try{ Remlmpl obj = new RemIimpl();
Registry reg = LocateRegistry.createRegistry(5556);
reg.bind("adder", obj);}
catch (RemoteException e) {e.printStackTrace();}
catch (AlreadyBoundException e) { e.printStackTrace();}

}

}



Simple Example: RMI Client

public class clientimp {
public static void main(String[] args) {

try {
Registry reg = LocateRegistry.getRegistry("192.168.0.1",5556);
RemMethodInt obj = (RemMethodInt)reg.lookup("adder");
System.out.printin(obj.add(7, 5));

}

catch (RemoteException | NotBoundException e) {e.printStackTrace();}

}



Important Notes for RMI Server in Example

* A class “RemIimpl” extends the java.rmi.server.UnicastRemoteQObject to
provide support for creating and exporting remote objects.

* It also implements the “"RemMethodInt” interface and implements the
methods defined in the interface.

* At the server side an object of "RemImpl” is created.
* A Registry Is created using

Registry reg = LocateRegistry.createRegistry(5556);
Note: In this case no need to run the registry explicitly

* The object reference will be made available at the following URL
address “adder”

reg.bind("adder", obj);



Important Notes for RMI Client in Example

* We locate the registry which contains references of remote objects on
the server system.

Registry reg = LocateRegistry.getRegistry("192.168.0.1",5556);

* Within the registry the client can lookup for the adder object and
return the reference of the object.

RemMethodInt obj = (RemMethodInt)reg.lookup("adder");

* Once the client has reference of remote object, it can call methods on
it as if it was a local object.

System.out.printin(obj.add(7, 5));



