
Java RMI 
(Remote Method Invocation)

Dr. Abdul Haseeb Malik



Introduction
• RMI is a Java-implementation of RPC (Remote Procedure Call)

• RMI server 
• creates remote objects
• makes references to those objects accessible by publishing them using an RMI 

registry.
• waits for clients to invoke methods on those objects

• RMI client 
• can locate remote objects from RMI registry and obtain the remote reference to 

remote objects on a server 
• invokes methods 

• Remote communication looks like regular Java method invocations to the 
programmer and details of remote communication between server and 
client are handled by RMI





Simple Example

• In the following slides a simple example of Java RMI is presented in 
which:

• Only a single add method will be provided on the Server

• The client will locate the object remotely and call this method to add two 
numbers.



Simple Example: Remote Interface

public interface RemMethodInt extends java.rmi.Remote {

public int add(int a, int b) throws RemoteException;

}

• This interface needs to be present at both sides (server and client).

• It tells both sides which methods can be remotely accessible. Here it 
is only one method which is named add.

• The java.rmi.Remote interface is a marker interface which is empty 
and is only used to let the JVM know that these methods will be used 
for remote communication.



Simple Example: RMI Server
public class RemImpl extends UnicastRemoteObject implements RemMethodInt{

//Constructor should be explicitly called.

//It creates and exports a remote object.

protected RemImpl() throws RemoteException {super();}

// Implementation of the add method defined in the interface.

public int add(int a, int b) throws RemoteException {return((a+b)); }

public static void main(String[] args) {

try { RemImpl obj = new RemImpl();

Registry reg = LocateRegistry.createRegistry(5556);

reg.bind("adder", obj);}

catch (RemoteException e) {e.printStackTrace();}

catch (AlreadyBoundException e) { e.printStackTrace();}

}

}



Simple Example: RMI Client

public class clientImp {

public static void main(String[] args) {

try {

Registry reg = LocateRegistry.getRegistry("192.168.0.1",5556);

RemMethodInt obj = (RemMethodInt)reg.lookup("adder");

System.out.println(obj.add(7, 5));

}

catch (RemoteException | NotBoundException e) {e.printStackTrace();}

}

}



Important Notes for RMI Server in Example

• A class “RemImpl” extends the java.rmi.server.UnicastRemoteObject to
provide support for creating and exporting remote objects.

• It also implements the “RemMethodInt” interface and implements the 
methods defined in the interface.

• At the server side an object of “RemImpl” is created.

• A Registry is created using 

Registry reg = LocateRegistry.createRegistry(5556);
Note: In this case no need to run the registry explicitly
• The object reference will be made available at the following URL 

address “adder”
reg.bind("adder", obj);



Important Notes for RMI Client in Example

• We locate the registry which contains references of remote objects on 
the server system.

Registry reg = LocateRegistry.getRegistry("192.168.0.1",5556);

• Within the registry the client can lookup for the adder object and 
return the reference of the object.

RemMethodInt obj = (RemMethodInt)reg.lookup("adder");

• Once the client has reference of remote object, it can call methods on 
it as if it was a local object.

System.out.println(obj.add(7, 5));


