
1

2

Key Exchange Protocols

 A protocol between two parties to establish a
shared key (“session key”) such that:

1. Authenticity: they both know who the other party is

2. Secrecy: only they know the resultant shared key

Also crucial (yet easy to overlook):

3. Consistency: if two honest parties establish a common
session key then both have a consistent view of who
the peers to the session are

A: (B,K) and B: (x,K) x=A

3

Key Exchange Protocols

 More generally:

 n parties; any two may exchange a key

 Sessions: multiple simultaneous executions

 Adversary:

Monitors/controls/modifies traffic (m-i-t-m)

May corrupt parties: learns long-term secrets

May learn session-specific information: state/keys

 Security goal: preserve authenticity, secrecy
and consistency of uncorrupted sessions

4

Formalizing Key Exchange

 An intuitive notion but hard to formalize

 Wish list:

 Intuitive (beware!)

 Reject bad protocols (capture full capabilities of realistic
attackers)

 Accept good, natural protocols (avoid overkill reqts)

 Ensure security of KE applications: “secure channels”
as the quintessential application + composition

 Usability: easy to analyze (stand alone) + a design tool

5

Designing and Analyzing KE Protocols…

 …is non-trivial

 Yet the end product need not be complex
(only the way to get there may be)

 And: to be practical the protocol MUST be simple

 The best advice: learn from past experience
(good and bad)

 And remember: there is no ULTIMATE security
model nor there are absolute proofs of security
(but only relative to the model)

6

In this talk

 Motivate security considerations for KE proto-
cols through examples (and counter-examples)

 Sketch formalization of KE security [CK01,CK02]

 Some design and analysis methodology [BCK98]

(“analysis as a design tool”)

 Diffie-Hellman as the main example

 Time permitting: KE with ID Protection

 The SIGMA Protocol

7

Example: Diffie-Hellman Exchange

 The original protocol [DH76]:

A B

B, gy

• both parties compute the secret key K=gxy

• assumes authenticated channels (DDH assumption)

• open to m-i-t-m in a realistic unauthenticated setting

A, gx

8

Authenticated Diffie-Hellman

A B

B, gy, SIGB(g
y)

• what if attacker ever finds a triple (x,gx,SIGA(gx))?

•E.g., file of precomputed (x,gx) pairs

•Ephemeral leakage should never allow impersonation

A, gx, SIGA(gx)

9

Basic Authenticated DH (BADH)

Peer’s DH value acts as anti-replay nonce (I prefer explicit nonces)

A: “Shared K=gxy with B” (KB) B: “Shared K=gxy with A” (KA)

Looks fine, but…

B, gy, SIGB(g
x,gy)

SIGA(gy,gx)

A, gxA B

(there must be a reason we call it BADH)

10

Identity-Misbinding Attack [DVW]

 Any damage? Wrong identity binding!

A: “Shared K=gxy with B” (KB) B: “Shared K=gxy with E” (KE)

E doesn’t know K=gxy but B considers anything sent

by A as coming from E (e.g. {e-cash}K)

B, gy, SIGB(g
x,gy)

A, gx E, gx

B, gy, SIGB(g
x,gy)

SIGA(gy,gx) SIGE(g
y,gx)

A BE

11

Notes

 The above attack was discovered by Diffie-
van Oorschot-Wiener [DVW’92]; it’s the
“differential cryptanalysis” of KE protocols –
a reminder of the crucial consistency property

 The terminology Identity Misbinding Attack is
from my “SIGMA” paper (Crypto’03)

 The attack is more commonly referred to as
the Unknown Key-Share (UKS) attack.

12

A Possible Solution (ISO-9796)

A, gx

B, gy, SIGB(g
x,gy,A)

SIGA(gy,gx,B)

B

Thwarts the identity-misbinding attack by including the
identity of the peer under the signature

A

13

The ISO defense

A: aha! B is talking to E not to me!

Note that E cannot produce SIGB(g
x,gy,A)

 The ISO protocol thus avoids the misbinding
attack; but is it secure??

B, gy, SIGB(g
x,gy,E)

A, gx E, gxA BE

B, gy, SIGB(g
x,gy,E)

14

The ISO Protocol is Secure

 We will sketch the proof from Canetti-K (Euroc’01)

 Note that the actual ISO-9796 protocol is
more complicated: adds a MAC on the peers id

Which adds nothing to the security of the protocol

 An important consequence of well-analyzed
protocols: avoiding “safety margins”

15

On KE Analysis Work

 Two main methodologies

 Complexity based: security against computationally
bounded attackers, proofs of security, reduction to
underlying cryptography, probabilistic in nature

 Logic-based analysis: abstracts crypto as ideal
functions, protocols as state machines, good
protocol debuggers

 Some recent “bridging” work

 Here we focus on the first approach

 And in a small subset of works in the area

16

On KE Analysis: Bellare-Rogaway’93

 First complexity-theoretic treatment of KE

 Indistinguishability approach [GM84]: attacker can’t
distinguish the real key from a random one

 Authentication modeled via session “oracles”

 Prove several basic authentication and KE prot’s
(pre-shared secret key model)

 Extended in [BJM97] to the PK-authenticat’n setting

 A subtle flaw (Rackoff): placing the distinguish
test at the end of the run is insufficient

17

On KE Analysis: Bellare-Canetti-K’98

 Simulation-based definition of KE security

 Ideally-authenticated (AM) vs. real-life (UM)

 Modular authentication methodology

 Authenticators: AM-to-UM compilers

 Goal: sec composition w/applications, sec channels

 KE model too naïve: too strong, too weak (see Shoup’99)

 A good tuning of the definition turned out to be tricky
[CK02] (but the authentication techniques very useful!)

18

On KE Analysis: Canetti-K’01

 A combination of BCK’98 setting and BR’93
indistinguishability approach (“SK-security”)

 The goal: ensure good composition and modularity
properties (as in BCK) but keep the simplicity of
indistinguishability-based analysis (“usability”)

 Secure channels as the must “test application”

 E.g., not achieved in original BR’93 formalization

 Requires a formalization of secure channels
(e.g., a transport protocol such as IPSec, SSL, SSH)

 Definition of secure channels combines secure
enc and auth against active attackers

19

SK-Security: KE protocol

 A two-party protocol in a multi-party setting

 Many protocol executions may run concurrently at the
same or different parties

 Each run of the protocol at a party is called a session
(a local object)

 Upon completion a session erases its state and outputs
a triple: (session-id, peer-id, session-key)

 Sessions named by owner and session-id: e.g., (A,s)

 CK01 uses the more technical notion of “matching sessions”;
here we follow the simplified version presented in [SIGMA];
we assume “negotiated session-id’s” (sA,sB)

20

SK-Security: Attacker

 Adversary model: unauthenticated links (UM)

 Full control of communication links:
monitors/controls/modifies traffic (m-i-t-m)

 Schedules KE sessions at will (interleaving)

May corrupt parties (total control): learns long-term
secrets (e.g. signature key or preshared master key)

May learn short-term information:

 session state (e.g., the exponent x of a gx value)

 session key (of a present or past session)

 Terminology: corrupted party, exposed session

21

SK-Security Definition (simplified)

A KE protocol is SK-secure (in the above adversary model)

if for any session (P,s) that completes at an uncorrupted
party P with peer(P,s)=Q it holds:

1. If Q completes session (Q,s) while P and Q are
uncorrupted then:

a) peer(Q,s)=P; and

b) sk(Q,s)=sk(P,s)

2. If sessions (P,s) and (Q,s) are not exposed, attacker
cannot distinguish sk(P,s) from a random value

* this simplified formulation from [SIGMA] is slightly stronger
than the one in [CK’01], cf. ENC protocol

22

SK-security results

 SK-security Secure Channels

 Any key exchanged with an SK-secure KE protocol
and used to “encrypt-then-authenticate” data
realizes a secure channel [CK01]

 A variety of protocols have been proven SK-
secure (both DH and key-transport) : e.g.,
ISO, SKEME, SIGMA, IKE, and pre-shared
authenticated protocols

 Two SK-secure flavors: with and w/o PFS
(PFS modeled through session-expiration; expired sessions are
NOT exposed even if attacker corrupts the session’s owner)

23

SK-Security and Composition

 SK-Security preserved under authenticators

 It suffices to prove a protocol secure in the ideally
authenticated-links model (AM), and apply to it an
authenticator (both a design and analysis tool)

We’ll see an application to the proof of the ISO prot’l

 CK02: SK-Security is “universally composable” (UC)
(remains secure under composition with any
application – not just secure channels)

Well, almost: true for protocols with the ACK property

 True always if we weaken UC security via
“non-information oracles” (see CK02 eprint/2002/059)

24

Authenticators [BCK98]
 Recall:

 UM (Unauthenticated-links Model):
a realistic attack model as described before

 AM (ideally Authenticated-links Model): like UM but
attacker cannot change or inject messages to links
(but it may prevent delivery)

 Authenticator: a “compiler” from AM-secure
protocols to UM-secure

 Reduces the problem of designing (and analyzing)
protocols from the complex UM to the simple AM

25

A signature-based authenticator

Single message authenticator: A B:

A, msg

B, nonce

A, SIGA(nonce,msg,B)

Compiler from AM to UM: apply the above authenticator
. to each protocol’s message

A B

msg

26

Proving ISO Using an Authenticator

 First prove basic DH is SK-secure in AM
(DDH assumption)

A B

B, gy

A, gx

 Next apply the sig-based authenticator to
this protocol a proof of the ISO protocol!!

27

Applying the Sig-Authenticator to
AM-DH

A, SIGA(gy,gx,B)

A, gx

Authenticator applied to gy is a slightly different variant:
first A sends nonce (gx), then B sends message (gy) with signature

Conclusion: the ISO protocol is SK-secure (with a simple
and intuitive proof)

B, gy, SIGB(g
x,gy,A)B, gy

msg=gx

nonce=gy

msg=gy

nonce=gx

28

Other Authenticators

 PK Encryption Based: applied to DH gives proof
of main SKEME mode

 Applied to a key-transport protocol provides a proof
of the non-pfs mode of SKEME

 Pre-shared Key Authenticator: used to prove a
simple re-key protocol and DH authenticated
with a pre-shared key

 Note: different combinations of AM-secure
protocols w/ different authenticators

 In particular: public-key and shared-key mechanisms

29

Authenticators are not always…

 possible

 Either the design is not decomposable into a basic
AM-secure protocol and an authenticator applied to it

 or desirable

 The decomposition is artificial and adds more
technicalities than understanding

 Yet, when they “work” it usually results in a more
intuitive and easier-to-analyze protocol

 And designing KE with authenticators in mind reduces
the chances of hidden flaws
 maybe even the risk of heart attack…

30

Conclusions

 Design of KE protocols is a subtle matter,
formalizing their security too

 The AM-to-UM methodology via authenticators
-- attractive: design and analysis

 SK-security: the convenience of indistinguisha-
bility, the power of simulatability

 In particular: secure channels and composition

Many practical KE protocols analyzed (esp auth’d DH):
ISO, SKEME, SIGMA (last two: id protection), IKE

 Symmetric and asymmetric authentication

31

Final Conclusion

 The KE area has matured to the point in which
there is no reason to use unproven protocols

 Do not leave home without a proof…

ThAnKs !!

