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Key Exchange Protocols

 A protocol between two parties to establish a 
shared key (“session key”) such that:

1. Authenticity: they both know who the other party is

2. Secrecy: only they know the resultant shared key

Also crucial (yet easy to overlook):

3. Consistency: if two honest parties establish a common 
session key then both have a consistent view of who   
the peers to the session are 

A: (B,K) and B: (x,K)  x=A
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Key Exchange Protocols

 More generally:

 n parties; any two may exchange a key

 Sessions:  multiple simultaneous executions

 Adversary:

Monitors/controls/modifies traffic (m-i-t-m)

May corrupt parties: learns long-term secrets

May learn session-specific information: state/keys

 Security goal: preserve authenticity, secrecy 
and consistency of uncorrupted sessions
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Formalizing Key Exchange

 An intuitive notion but hard to formalize

 Wish list:

 Intuitive (beware!)

 Reject bad protocols (capture full capabilities of realistic
attackers)

 Accept good, natural protocols (avoid overkill reqts)

 Ensure security of KE applications: “secure channels”
as the quintessential application + composition

 Usability: easy to analyze (stand alone) + a design tool
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Designing and Analyzing KE Protocols…

 …is non-trivial

 Yet the end product need not be complex    
(only the way to get there may be) 

 And: to be practical the protocol MUST  be simple

 The best advice: learn from past experience 
(good and bad)

 And remember: there is no ULTIMATE security 
model nor there are absolute proofs of security    
(but only relative to the model)
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In this talk

 Motivate security considerations for KE proto-
cols through examples (and counter-examples)

 Sketch formalization of KE security [CK01,CK02]

 Some design and analysis methodology [BCK98]

(“analysis as a design tool”)

 Diffie-Hellman as the main example

 Time permitting: KE with ID Protection

 The SIGMA Protocol
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Example: Diffie-Hellman Exchange

 The original protocol [DH76]:

A B

B, gy

• both parties compute the secret key K=gxy

• assumes authenticated channels (DDH assumption)

• open to m-i-t-m in a realistic unauthenticated setting

A, gx
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Authenticated Diffie-Hellman

A B

B, gy, SIGB(g
y)

• what if attacker ever finds a triple (x,gx,SIGA(gx))?

•E.g., file of precomputed (x,gx) pairs

•Ephemeral leakage should never allow impersonation

A, gx, SIGA(gx)
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Basic Authenticated DH (BADH)

Peer’s DH value acts as anti-replay nonce (I prefer explicit nonces)

A: “Shared K=gxy with B” (KB)     B: “Shared K=gxy with A” (KA)

Looks fine, but…

B, gy, SIGB(g
x,gy)

SIGA(gy,gx)

A, gxA B

(there must be a reason we call it BADH)
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Identity-Misbinding Attack [DVW]

 Any damage? Wrong identity binding!

A: “Shared K=gxy with B” (KB)    B: “Shared K=gxy with E” (KE)

E doesn’t know K=gxy but B considers anything sent 

by A as coming from E  (e.g. {e-cash}K)

B, gy, SIGB(g
x,gy)

A, gx E, gx

B, gy, SIGB(g
x,gy)

SIGA(gy,gx) SIGE(g
y,gx)

A BE
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Notes

 The above attack was discovered by Diffie-
van Oorschot-Wiener [DVW’92]; it’s the 
“differential cryptanalysis” of KE protocols –
a reminder of the crucial consistency property

 The terminology Identity Misbinding Attack is 
from my “SIGMA” paper (Crypto’03) 

 The attack is more commonly referred to as 
the Unknown Key-Share (UKS) attack.
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A Possible Solution (ISO-9796)

A, gx

B, gy, SIGB(g
x,gy,A)

SIGA(gy,gx,B)

B

Thwarts the identity-misbinding attack by including the 
identity of the peer under the signature

A
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The ISO defense

A: aha! B is talking to E not to me!

Note that E cannot produce SIGB(g
x,gy,A)

 The ISO protocol thus avoids the misbinding 
attack; but is it secure??

B, gy, SIGB(g
x,gy,E)

A, gx E, gxA BE

B, gy, SIGB(g
x,gy,E)
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The ISO Protocol is Secure

 We will sketch the proof from Canetti-K (Euroc’01)

 Note that the actual ISO-9796 protocol is      
more complicated: adds a MAC on the peers id

Which adds nothing to the security of the protocol

 An important consequence of well-analyzed 
protocols: avoiding “safety margins”
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On KE Analysis Work

 Two main methodologies

 Complexity based: security against computationally 
bounded attackers, proofs of security, reduction to 
underlying cryptography, probabilistic in nature

 Logic-based analysis: abstracts crypto as ideal 
functions, protocols as state machines, good 
protocol debuggers

 Some recent “bridging” work 

 Here we focus on the first approach

 And in a small subset of works in the area
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On KE Analysis: Bellare-Rogaway’93

 First complexity-theoretic treatment of KE   

 Indistinguishability approach [GM84]: attacker can’t 
distinguish the real key from a random one

 Authentication modeled via session “oracles”

 Prove several basic authentication and KE prot’s  
(pre-shared secret key model)

 Extended in [BJM97] to the PK-authenticat’n setting

 A subtle flaw (Rackoff): placing the distinguish 
test at the end of the run is insufficient
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On KE Analysis: Bellare-Canetti-K’98

 Simulation-based definition of KE security

 Ideally-authenticated (AM) vs. real-life (UM) 

 Modular authentication methodology

 Authenticators: AM-to-UM compilers

 Goal: sec composition w/applications, sec channels

 KE model too naïve: too strong, too weak (see Shoup’99)

 A good tuning of the definition turned out to be tricky 
[CK02] (but the authentication techniques very useful!)
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On KE Analysis: Canetti-K’01

 A combination of BCK’98 setting and BR’93 
indistinguishability approach (“SK-security”)

 The goal: ensure good composition and modularity 
properties (as in BCK) but keep the simplicity of 
indistinguishability-based analysis (“usability”)

 Secure channels as the must “test application”

 E.g., not achieved in original BR’93 formalization

 Requires a formalization of secure channels              
(e.g., a transport protocol such as IPSec, SSL, SSH)

 Definition of secure channels combines secure      
enc and auth against active attackers
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SK-Security: KE protocol

 A two-party protocol in a multi-party setting 

 Many protocol executions may run concurrently at the 
same or different parties

 Each run of the protocol at a party is called a session
(a local object)

 Upon completion a session erases its state and outputs  
a triple: (session-id, peer-id, session-key)

 Sessions named by owner and session-id: e.g., (A,s)

 CK01 uses the more technical notion of “matching sessions”;  
here we follow the simplified version presented in [SIGMA];   
we assume “negotiated session-id’s” (sA,sB)
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SK-Security: Attacker

 Adversary model: unauthenticated links (UM)

 Full control of communication links: 
monitors/controls/modifies traffic (m-i-t-m)

 Schedules KE sessions at will (interleaving)

May corrupt parties (total control): learns long-term 
secrets (e.g. signature key or preshared master key)

May learn short-term information: 

 session state (e.g., the exponent x of a gx value)

 session key (of a present or past session)

 Terminology: corrupted party, exposed session
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SK-Security Definition (simplified)

A KE protocol is SK-secure (in the above adversary model)              

if for any session (P,s) that completes at an uncorrupted 
party P with peer(P,s)=Q it holds:

1. If Q completes session (Q,s) while P and Q are 
uncorrupted then:

a) peer(Q,s)=P; and

b) sk(Q,s)=sk(P,s)

2. If sessions (P,s) and (Q,s) are not exposed, attacker  
cannot distinguish sk(P,s) from a random value

* this simplified formulation from [SIGMA] is slightly stronger            
than the one in [CK’01], cf. ENC protocol
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SK-security results

 SK-security  Secure Channels

 Any key exchanged with an SK-secure KE protocol 
and used to “encrypt-then-authenticate” data 
realizes a secure channel [CK01]

 A variety of protocols have been proven SK-
secure (both DH and key-transport) : e.g.,  
ISO, SKEME, SIGMA, IKE, and pre-shared 
authenticated protocols 

 Two SK-secure flavors: with and w/o PFS             
(PFS modeled through session-expiration; expired sessions are 
NOT exposed even if attacker corrupts the session’s owner)
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SK-Security and Composition

 SK-Security preserved under authenticators 

 It suffices to prove a protocol secure in the ideally 
authenticated-links model (AM), and apply to it an 
authenticator (both a design and analysis tool)

We’ll see an application to the proof of the ISO prot’l

 CK02: SK-Security is “universally composable” (UC) 
(remains secure under composition with any 
application – not just secure channels)

Well, almost: true for protocols with the ACK property

 True always if we weaken UC security via                  
“non-information oracles” (see CK02 eprint/2002/059)



24

Authenticators [BCK98]
 Recall: 

 UM (Unauthenticated-links Model):                           
a realistic attack model as described before

 AM (ideally Authenticated-links Model): like UM but 
attacker cannot change or inject messages to links 
(but it may prevent delivery)

 Authenticator: a “compiler” from AM-secure 
protocols to UM-secure 

 Reduces the problem of designing (and analyzing) 
protocols from the complex UM to the simple AM                         
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A signature-based authenticator

Single message authenticator: A        B:

A, msg

B, nonce

A, SIGA(nonce,msg,B)

Compiler from AM to UM: apply the above authenticator                  
. to each protocol’s message

A B

msg
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Proving ISO Using an Authenticator

 First prove basic DH is SK-secure in AM   
(DDH assumption)

A B

B, gy

A, gx

 Next apply the sig-based authenticator to 
this protocol a proof of the ISO protocol!!
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Applying the Sig-Authenticator to 
AM-DH

A, SIGA(gy,gx,B)

A, gx

Authenticator applied to gy is a slightly different variant:                     
first A sends nonce (gx), then B sends message (gy) with signature

Conclusion: the ISO protocol is SK-secure (with a simple 
and intuitive proof)

B, gy, SIGB(g
x,gy,A)B, gy

msg=gx

nonce=gy

msg=gy

nonce=gx
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Other Authenticators

 PK Encryption Based: applied to DH gives proof 
of main SKEME mode

 Applied to a key-transport protocol provides a proof 
of the non-pfs mode of SKEME

 Pre-shared Key Authenticator: used to prove a 
simple re-key protocol and DH authenticated 
with a pre-shared key

 Note: different combinations of AM-secure 
protocols w/ different authenticators

 In particular: public-key and shared-key mechanisms
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Authenticators are not always…

 possible

 Either the design is not decomposable into a basic  
AM-secure protocol and an authenticator applied to it

 or desirable

 The decomposition is artificial and adds more 
technicalities than understanding

 Yet, when they “work” it usually results in a more 
intuitive and easier-to-analyze protocol

 And designing KE with authenticators in mind reduces 
the chances of hidden flaws 
 maybe even the risk of heart attack…
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Conclusions

 Design of KE protocols is a subtle matter, 
formalizing their security too

 The AM-to-UM methodology via authenticators    
-- attractive: design and analysis

 SK-security: the convenience of indistinguisha-
bility, the power of simulatability

 In particular: secure channels and composition

Many practical KE protocols analyzed (esp auth’d DH): 
ISO, SKEME, SIGMA (last two: id protection), IKE

 Symmetric and asymmetric authentication
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Final Conclusion

 The KE area has matured to the point in which       
there is no reason to use unproven protocols

 Do not leave home without a proof…

ThAnKs !!


