
2.2.1 Separation of variables

For simplicity of the presentation, let Ω = [0, L] ⊂ R. We seek the (unique) solution u : [0, T ] × Ω → R to
the initial/boundary-value problem

ut(t, x) = uxx(t, x) in (0, T ]× [0, L],
u(0, x) = f(x), for 0 ≤ x ≤ L (2.13)

u(t, 0) = u(t, L) = 0, for 0 < t ≤ T,

where f : [0, L] → R is a known function.
We begin by making the crucial assumption that the solution u of the problem (2.13) is of the form

u(t, x) = T (t)X(x),

for some twice differentiable functions of one variable T and X. (Indeed, if we find one solution to the
problem (2.13), it has to be necessarily the only solution, due to the uniqueness of the solution property
described above.) Then we have

ut = T ′(t)X(x) and uxx = T (t)X ′′(x).

Inserting this into the PDE ut = uxx, we arrive to

T ′(t)X(x) = T (t)X ′′(x), or
T ′(t)
T (t)

=
X ′′(x)
X(x)

, (2.14)

after division by T (t)X(x), which we can assume to be non-zero without loss of generality (for otherwise,
the solution u is identically equal to zero which means that we found the solution if also f = 0, or that
this is impossible if f 6= 0). We notice that the left-hand side of (2.14) depends only on the independent
variable t and the right-hand side depends only on the independent variable x. Since t and x are independent
variables, the only possibility for the relation (2.14) to hold is for both the left- and the right-hand sides to
be constant, say equal to λ ∈ R. From this we get the ordinary differential equations

T ′(t)− λT (t) = 0, and X ′′(x)− λX(x) = 0.

Now from the the boundary conditions we get

T (t)X(0) = T (t)X(L) = 0 giving X(0) = X(L) = 0, and T (0)X(x) = f(x) for x ∈ [0, L].

Now we separate 3 cases: whether λ is positive, negative or zero.

The case λ > 0:

If λ > 0, then the two-point boundary value problem

X ′′(x)− λX(x) = 0, 0 < x < L, and X(0) = X(L) = 0,

has solution of the form
X(x) = A cosh(

√
λx) + B sinh(

√
λx),

for some constants A,B ∈ R, which can be determined using the boundary conditions X(0) = X(L) = 0.
We have

0 = X(0) = A cosh(0) = A, and 0 = X(L) = B sinh(
√

λa),
which implies that also B = 0. This means that if λ > 0, we get X(x) = 0 and thus, the only solution is the
trivial solution u(t, x) = 0, which is not acceptable as u(0, x) 6= 0, in general.

The case λ = 0:

If λ = 0, then the two-point boundary value problem becomes

X ′′(x) = 0, 0 < x < L, and X(0) = X(L) = 0;

it has solution of the form
X(x) = Ax + B,

for some constants A,B ∈ R, which can be determined using the boundary conditions X(0) = X(L) = 0.
We have then

0 = X(0) = B, and 0 = X(L) = AL,

implying also that A = 0. Hence if λ = 0 we again arrive to the trivial solution u = 0 which is not acceptable.
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The case λ < 0:

If λ < 0, then there exists κ ∈ R such that λ = −κ2. The two-point boundary value problem

X ′′(x) + κ2X(x) = 0, for 0 < x < L, and X(0) = X(L) = 0,

has solution of the form
X(x) = A cos(κx) + B sin(κx),

for some constants A,B ∈ R, which can be determined using the boundary conditions X(0) = X(L) = 0.
We have

0 = X(0) = A cos(0) = A, and 0 = X(L) = B sin(κL);

this implies sin(κL) = 0, which means κL = nπ for any n = 1, 2, . . . integers. From this we find

κ =
nπ

L
,

and, thus, we obtain the solutions
X(x) = Bn sin

(nπx

L

)
,

for all n = 1, 2, . . . integers and Bn ∈ R. We now turn our attention to T , which satisfies the first order
ODE:

T ′(t)− κ2T (t) = 0, for 0 < t < T, .

The solution of the ODE is of the form
T (t) = Ce−κ2t,

for some constant C ∈ R; giving the family of solutions

T (t) = Cne−n2π2t/L2
,

for all n = 1, 2, . . . and Cn ∈ R. Hence, setting Dn = BnCn, we deduce that all the functions of the form

un(t, x) := Dne−n2π2t/L2
sin

(nπx

L

)
,

are solutions to the problem (2.13). Since the heat equation is linear, it is not hard to see that if two functions
are solutions to the heat equation, then any linear combination of these functions is a solution to the heat
equation also. Hence, we can formally write the solution of the problem (2.13)

u(t, x) =
∞∑

n=1

Dne−n2π2t/L2
sin

(nπx

L

)
(2.15)

(at this point the above equality is only formal, as we do not know if the above series converges). Notice that
the Dn’s are still not determined; this is to be expected as we have not yet made use of the initial condition
u(0, x) = T (0)X(x) = f(x) which, in view of (2.15) can be written as

f(x) = u(0, x) =
∞∑

n=1

Dn sin
(nπx

L

)
. (2.16)

Expanding the function f(x) into a sine series, we have

f(x) =
∞∑

n=1

an sin
(nπx

L

)
, where an =

2
L

∫ L

0

f(x) sin
(nπx

L

)
dx,

as shown in (2.10). Hence, setting

Dn = an =
2
L

∫ L

0

f(x) sin
(nπx

L

)
dx,

we finally conclude that the solution to the problem (2.13) is given by

u(t, x) =
∞∑

n=1

( 2
L

∫ L

0

f(x) sin
(nπx

L

)
dx

)
e−n2π2t/L2

sin
(nπx

L

)
.
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Example 2.7 We want to solve the problem (2.13), where L = 1 and f : [0, 1] → R is defined by

f(x) =
{

x, if 0 ≤ x ≤ 1
2 ;

1− x, if 1
2 < x ≤ 1.

To calculate the solution (2.15), we compute the Fourier coefficients:

2
L

∫ L

0

f(x) sin
(nπx

L

)
dx = · · · = 4 sin

(
nπ
2

)

(nπ)2
,

(this was done in Example 2.6). The solution then is given by

u(t, x) =
∞∑

n=1

4 sin
(

nπ
2

)

(nπ)2
e−n2π2t/L2

sin(nπx).

2.3 The wave equation and the initial/boundary value problem

The wave equation is a paradigm of equations of hyperbolic type as we saw in the previous chapter. As the
name suggest, the solutions to the wave equation model wave propagation. In most applications, hyperbolic
equations describe transport/propagation phenomena; in the following, t will be denoting the “time”-variable,
ranging between time 0 and some final time T > 0. For (unknown) solution u : [0, T ] × Ω → R, the wave
equation reads

utt = ∆u, for (x1, x2, . . . , xd) ∈ Ω ⊂ Rd, and t ∈ [0, T ], (2.17)

where ∆ is the Laplace operator in d dimensions; in particular, in one space dimension the hear equation
reads:

utt = uxx, for x ∈ Ω ⊂ R, and t ∈ [0, T ]. (2.18)

As we saw in Chapter 1, the wave equation is of hyperbolic type. Therefore, it admits two families
of characteristic curves. We also saw that, for the corresponding Cauchy problem to be well-defined, we
should require two Cauchy initial conditions. Also, the PDE for each fixed time t ∈ [0, T ] takes the form
of the Poisson problem. Hence, again at leat heuristically, we can see that Dirichlet and/or Neumann type
boundary condition(s) are required on the boundary of Ω, for each time t, for the problem to be well posed.

Next, we shall be concerned with finding the solution to the initial/boundary value problem (??), using
the separation of variables.

2.3.1 Separation of variables

For simplicity of the presentation, let Ω = [0, L] ⊂ R. We seek the (unique) solution u : [0, T × Ω → R to
the initial/boundary-value problem

utt(t, x) = uxx(t, x) in (0, T ]× [0, L],
u(0, x) = f(x), for 0 ≤ x ≤ L

ut(0, x) = g(x), for 0 ≤ x ≤ L (2.19)
u(t, 0) = u(t, L) = 0, for 0 < t ≤ T,

where f, g : [0, L] → R are known functions.
We begin by making the crucial assumption that the solution u of the problem (2.13) is of the form

u(t, x) = T (t)X(x),

for some twice differentiable functions of one variable T and X. (Indeed, if we find one solution to the
problem (2.19), it has to be necessarily the only solution, due to the uniqueness of the solution property
described above.) Then we have

utt = T ′′(t)X(x) and uxx = T (t)X ′′(x).

Inserting this into the PDE utt = uxx, we arrive to

T ′′(t)X(x) = T (t)X ′′(x), or
T ′′(t)
T (t)

=
X ′′(x)
X(x)

, (2.20)
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after division by T (t)X(x), which we can assume to be non-zero without loss of generality (for otherwise,
the solution u is identically equal to zero which means that we found the solution if also f = 0, or that
this is impossible if f 6= 0). We notice that the left-hand side of (2.20) depends only on the independent
variable t and the right-hand side depends only on the independent variable x; thus, the only possibility for
the relation (2.20) to hold is for both the left- and the right-hand sides to be constant, say equal to λ ∈ R.
From this we get the ordinary differential equations

T ′′(t)− λT (t) = 0, and X ′′(x)− λX(x) = 0;

from the the boundary conditions we get

T (t)X(0) = T (t)X(L) = 0 giving X(0) = X(L) = 0.

Now we separate 3 cases: whether λ is positive, negative or zero. Completely analogously to the discussion in
Section 2.2.1, we conclude that λ positive or zero yield only the trivial solution, which may not be admissible
due to the non-zero initial conditions. So we are left with the case λ < 0, for which we set λ = −κ2 for some
κ ∈ R. As in the case of the parabolic problem, the two-point boundary value problem

X ′′(x) + κ2X(x) = 0, for 0 < x < L, and X(0) = X(L) = 0,

has solutions
X(x) = Bn sin

(nπx

L

)
,

with κ = κn = nπ
L , for all n = 1, 2, . . . integers and Bn ∈ R. We now turn our attention to T , which satisfies

the second order ODE:
T ′′(t) + κ2

nT (t) = 0, for 0 < t < T,

which has the family of solutions

T (t) = Cn cos
(nπt

L

)
+ Dn sin

(nπt

L

)
,

for all n = 1, 2, . . . and Cn ∈ R. Hence, setting En = BnCn and Fn = BnDn , we deduce that all the
functions of the form

un(t, x) :=
(
En cos

(nπt

L

)
+ Fn sin

(nπt

L

))
sin

(nπx

L

)
,

are solutions to the problem (2.19). The wave equation is linear; thus the principle of superposition yields
that the solution of the problem (2.19) is (at least formally) of the form

u(t, x) =
∞∑

n=1

(
En cos

(nπt

L

)
+ Fn sin

(nπt

L

))
sin

(nπx

L

)
(2.21)

(at this point the above equality is only formal, as we do not know if the above series converges). Notice
that the En’s and the Fn’s are still not determined; this is to be expected as we have not yet made use of the
initial conditions u(0, x) = f(x) and ut(0, x) = g(x). In view of (2.21), the initial condition u(0, x) = f(x)
can be written as

f(x) = u(0, x) =
∞∑

n=1

En sin
(nπx

L

)
. (2.22)

To apply the second initial condition ut(0, x) = g(x), we first calculate ut from (2.21):

ut(t, x) =
∞∑

n=1

(
− En

nπ

L
sin

(nπt

L

)
+ Fn

nπ

L
cos

(nπt

L

))
sin

(nπx

L

)
;

and we then set t = 0, to deduce

g(x) = ut(0, x) =
∞∑

n=1

Fn
nπ

L
sin

(nπx

L

)
. (2.23)

Expanding the functions f and g into sine series, we get

f(x) =
∞∑

n=1

an sin
(nπx

L

)
, where an =

2
L

∫ L

0

f(x) sin
(nπx

L

)
dx,
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g(x) =
∞∑

n=1

cn sin
(nπx

L

)
, where cn =

2
L

∫ L

0

g(x) sin
(nπx

L

)
dx,

as shown in (2.10). Hence, setting En = an and Fn
nπ
L = cn, or Fn = Lcn

nπ we finally conclude that the
solution to the problem (2.19) is given by (2.21).

Example 2.8 We want to solve the problem (2.13), where L = 1 and f : [0, 1] → R and g : [0, 1] → R are
defined by

f(x) = sin(2πx), and g(x) = 0.

To calculate the solution (2.21), we compute the Fourier coefficients:

an =
2
L

∫ L

0

f(x) sin
(nπx

L

)
dx = 2

∫ 1

0

sin(2πx) sin(nπx)dx =
{

1, if n = 2;
0, othewise. ,

(the last equality is left as an exercise), and

cn =
2
L

∫ L

0

g(x) sin
(nπx

L

)
dx = 0,

giving E2 = 2, En = 0 for n 6= 2, and Fn = 0, for n = 1, 2, . . . . The solution is then given by

u(t, x) = cos(2πt) sin(2πx),

which is drawn in Figure 2.6.
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(d) Solution for t = 0.3
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(e) Solution for t = 0.5
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(f) Solution for t = 0.7
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(g) Solution for t = 0.75
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(h) Solution for t = 0.8
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(i) Solution for t = 1

Figure 2.6: Example 2.8. The solution u(t, x) for various t.
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