
1.5 Second order linear PDEs

An important class of PDEs are the linear PDEs of 2nd order, which we shall be concerned in this section.
For simplicity, we shall consider only equations in 2 dimensions, i.e., for d = 2. The general form of a 2nd
order linear PDE in 2 dimensions can be written as:

auxx + 2buxy + cuyy + dux + euy + fu = g, for (x, y) ∈ Ω ⊂ R2, (1.13)

where a, b, c, d, e, f, g are functions of the independent variables x and y only. We also assume that a, b, c
have continuous second partial derivatives, and that they do not vanish simultaneously at any point of the
domain of definition Ω. Finally ,we assume that the solution u of the PDE (1.13) has continuous second
partial derivatives. We shall classify PDEs of the form (1.13) in different types, depending on the sign of the
discriminant defined by

D := b2 − ac,

at each point (x0, y0) ∈ Ω. More specifically, we have the following definition.

Definition 1.17 Let D = b2 − ac be the discriminant of a second order PDE of the form (1.13) in Ω ⊂ R2

and let a point (x0, y0) ∈ Ω.

• If D > 0 at the point (x0, y0), the PDE is said to be hyperbolic at (x0, y0).

• If D = 0 at the point (x0, y0), the PDE is said to be parabolic at (x0, y0).

• If D < 0 at the point (x0, y0), the PDE is said to be elliptic at (x0, y0).

The equation is said to be hyperbolic, parabolic or elliptic in the domain Ω if it is, respectively, hyperbolic,
parabolic or elliptic at all points of Ω.

We give some examples.

Example 1.18 The so-called wave equation

utt − uxx = 0,

is hyperbolic in R2. Indeed, for this equation we have a = 1, c = −1, and b = 0, giving D = −1 < 0 for all
(x, y) ∈ R2.

Example 1.19 The so-called heat equation

ut − uxx = 0,

is parabolic in R2. Indeed, for this equation we have c = −1 and a = b = 0, giving D = 0 for all (x, y) ∈ R2.

Example 1.20 The so-called Laplace equation

uxx + uyy = 0,

is elliptic in R2. Indeed, for this equation we have a = c = 1 and b = 0, giving D = −1 < 0 for all (x, y) ∈ R2.

Example 1.21 The equation
uxx + x2uyy = 0,

is elliptic in the set {(x, y) ∈ R2 : x 6= 0} and parabolic in the set {(x, y) ∈ R2 : x = 0}. Indeed, for this
equation we have a = 1, c = x2 and b = 0, giving D = −x2 < 0 for all (x, y) ∈ R2 such that x 6= 0 and
D = 0 when x = 0. (This equation sometimes referred to in the literature as Grušin equation.)

Example 1.22 The Tricomi equation
yuxx + uyy = 0,

is elliptic in the set {(x, y) ∈ R2 : y > 0}, parabolic in the set {(x, y) ∈ R2 : y = 0}, and hyperbolic in the set
{(x, y) ∈ R2 : y < 0}. Indeed, for this equation we have a = y, c = 1 and b = 0, giving D = −y < 0 for all
(x, y) ∈ R2 such that y > 0, D = 0 when y = 0 and D = −y > 0 when y < 0.
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The above classification of 2nd order linear PDEs can be very useful when studying the properties of
such equations. For instance, the next result shows that the type of a 2nd order linear PDE at a point
(i.e., if the PDE is hyperbolic, parabolic or elliptic), remains unchanged if we make a smooth non-singular
transformation of coordinates (also known as change of variables) on R2. In particular, we have the following
theorem.

Theorem 1.23 The sign of the discriminant D of a second order PDE of the form (1.13) in Ω ⊂ R2 is
invariant under smooth non-singular transformations of coordinates.

Proof. Consider a transformation of coordinates of R2:

(x, y) ↔ (ξ, η),

with ξ = ξ(x, y) and η = η(x, y), which is assumed to be smooth (that is, the functions ξ(x, y) and η(x, y)
have all derivatives with respect to x and y well-defined) and non-singular, i.e., its Jacobian

∂(ξ, η)
∂(x, y)

:=
∣∣∣ ξx ξy

ηx ηy

∣∣∣ = ξxηy − ξyηx 6= 0, (1.14)

in Ω. We also denote by x = x(ξ, η) and y = y(ξ, η) the inverse transformation, as it will be useful below.
We write the PDE (1.13) in the new coordinates, using the chain rule. Setting v(ξ, η) = u(x(ξ, η), y(ξ, η))

we have, respectively:
ux = vξξx + vηηx, uy = vξξy + vηηy, (1.15)

giving

uxx = vξξξ
2
x + 2vξηξxηx + vηηη2

x + vξξxx + vηηxx,

uyy = vξξξ
2
y + 2vξηξyηy + vηηη2

y + vξξyy + vηηyy, (1.16)
uxy = vξξξxξy + vξη(ξxηy + ξyηx) + vηηηxηy + vξξxy + vηηxy.

Inserting (1.15) and (1.16) into (1.13), and factorising accordingly, we arrive to

Avξξ + 2Bvξη + Cvηη + Dvξ + Evη + fv = g, (1.17)

where the new coefficients A, B, C, D and E are given by

A = aξ2
x + 2bξxξy + cξ2

y ,

B = aξxηx + b(ξxηy + ξyηx) + cξyηy,

C = aη2
x + 2bηxηy + cη2

y, (1.18)
D = aξxx + 2bξxy + cξyy + dξx + eξy,

E = aηxx + 2bηxy + cηyy + dηx + eηy.

Thus the discriminant of the PDE in new variables (1.17), is given by

B2 −AC = (aξxηx + b(ξxηy + ξyηx) + cξyηy)2 − (aξ2
x + 2bξxξy + cξ2

y)(aη2
x + 2bηxηy + cη2

y)

= · · · = (b2 − ac)(ξxηy − ξyηx)2 = (b2 − ac)
( ∂(ξ, η)

∂(x, y)

)2

. (1.19)

This means that the discriminant B2 − AC of (1.17) has always the same sign as the discriminant b2 − ac

of (1.13), as ∂(ξ,η)
∂(x,y) 6= 0 from the hypothesis and, therefore,

( ∂(ξ,η)
∂(x,y)

)2
> 0. Since the discriminant of the

transformed PDE has always the same sign as the one of the original PDE, the type of the PDE remains
invariant. 2

Recalling now the methods of characteristics for the solution of first order linear PDEs presented in the
previous section, we can see the relevance of the above theorem: it assures us that applying a change of
variables will not alter the type of the PDE.

Let us now consider some special transformations for PDEs of each type. What we shall see is that, given
certain transformation, it is possible to write (1.13) locally in much simpler form, the so-called canonical
form. We begin with an example.
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Example 1.24 Consider the wave equation

uxx − yyy = 0,

which as we saw before is hyperbolic in R2. Let us also consider the transformation of coordinates of R2:

(x, y) ↔ (ξ, η), with ξ = x + y and η = x− y.

It is, of course, smooth as x + y and x− y are infinite times differentiable with respect to x and y, and it is
non-singular, as

∂(ξ, η)
∂(x, y)

= ξxηy − ξyηx = 1× (−1)− 1× 1 = −2 6= 0, for all (x, y) ∈ R2.

To calculate the transformed equation, we can use the formulas (1.18), with a = 1, b = 0, c = −1, d = e =
f = g = 0, ξx = 1, ξy = 1, ηx = 1 and ηy = −1 to calculate A = 1 − 0 − 1 = 0, B = 1 − 0 + 1 = 2,
C = 1− 0− 1 = 0, D = E = 0 and, thus, the transformed equation is given by

4vξη = 0, or vξη = 0.

For this canonical form, we can in fact compute the general solution of the wave equation. Indeed, integrating
with respect to η, we arrive to

vξ = h(ξ),

for an arbitrary continuously differentiable function h. Integrating now the last equality with respect to ξ, we
deduce

v =
∫ ξ

h(s)ds + G(η).

If we set F (ξ) :=
∫ ξ

h(s)ds, to simplify the notation, we get

v(ξ, η) = F (ξ) + G(η),

for an arbitrary twice continuously differentiable function G, or equivalently

u(x, y) = F (x + y) + G(x− y),

for all twice continuously differentiable functions F and G of one variable.

In the previous example, we found a general solution for the wave equation using a particular transforma-
tion of coordinates. Note that the general solution of the wave equation involves unknown functions! (Recall
that the general solution of an ordinary differential equation involves unknown constants; this might help
to draw an analogy. In the next sections we shall study some appropriate initial conditions and boundary
conditions that will be sufficient to specify the unknown functions and arrive to unique solutions.)

10


