
We now investigate the following question: is it always possible to find transformations of coordinates
that make the general PDE (1.13) “simpler”? In Example (1.24) we saw that for the case of the wave
equation it is indeed possible to reduce the wave equation in the simpler PDE vξη = 0.

For the general PDE, we employ a geometric argument. We seek functions ξ(x, y) and η(x, y) for which
we have

aξ2
x + 2bξxξy + cξ2

y = 0 and aη2
x + 2bηxηy + cη2

y = 0; (1.20)

i.e., A = C = 0 for the coefficients of the transformed PDE (1.17). The equations (1.20) are PDEs of first
order, for which we are now seeking to construct curves such that ξ(x, y) = const for any constant. When
(x, y) are points on a curve, i.e, they are such that ξ(x, y) = const, they are dependent. Hence, differentiating
this equation with respect to x, we get

0 =
d const

dx
=

dξ(x, y)
dx

= ξx
dx

dx
+ ξy

dy

dx
= ξx + ξy

dy

dx
,

where in the penultimate equality we made use of the chain rule for functions of two variables; the above
equality yields

ξx

ξy
= −dy

dx
, (1.21)

assuming, without loss of generality, that ξy 6= 0 (for otherwise, we argue as above with the rôles of the x
and y variables interchanged, and we get necessarily ξx 6= 0 from hypothesis (1.14)). Now, we go back to
the desired equations (1.20), and we divide the first equation by ξ2

y to obtain

a
(ξx

ξy

)2

+ 2b
ξx

ξy
+ c = 0,

and, using (1.21), we arrive to

a
(dy

dx

)2

− 2b
dy

dx
+ c = 0, (1.22)

which is called the characteristic equation for the PDE (1.13). This is a quadratic equation for dy
dx , with

discriminant D = b2 − ac ! The roots of the characteristic equation are given by

dy

dx
=

b±√D
a

. (1.23)

Each of the equations above is a first order ordinary differential equation that can be solved using standard
separation of variables to give (families of) solutions f1(x, y) = const and f2(x, y) = const, say. The curves
defined by the equations f1(x, y) = const and f2(x, y) = const are called the characteristic curves of the
second order PDE.

Therefore, if the original PDE (1.13) is hyperbolic, i.e., if D > 0, the characteristic equation has two
real distinct roots, giving two real distinct characteristics curves for the PDE. If the original PDE (1.13) is
parabolic, thereby D = 0, the characteristic equation has one double root, giving one real characteristic curve
for the PDE. Finally, if the original PDE (1.13) is elliptic, thereby D < 0, the characteristic equation has no
real roots, and therefore the PDE has no real characteristic curves, but as we shall see below it has complex
characteristic curves. The characteristic curves can be thought as the “natural directions” in which the PDE
“communicates information” to different points in its domain of definition Ω. With this statement in mind,
it is possible to see that each type of PDE models different phenomena and also admits different properties,
rendering the above classification into hyperbolic, parabolic and elliptic PDEs of great importance.

The case of hyperbolic PDE

Now we go back to the question of the possibility of simplification of the original PDE (1.13), assuming
that (1.13) is hyperbolic. Therefore, as we have seen above it will have two real distinct characteristics for
which the equation (1.22), and thus (1.20) holds too (by observing that all the steps followed above are in
fact equivalences). This means that for every (x0, y0) ∈ Ω there exists a local transformation of coordinates
(x, y) ↔ (ξ, η) with ξ = f1(x, y) and η = f2(x, y) such that A = C = 0 in (1.17) (i.e., we can use one
characteristic curve for each new variable, since both functions satisfy (1.22), and thus (1.20). Finally, we
check if this transformation of coordinates has non-zero Jacobian:

∂(ξ, η)
∂(x, y)

= ξxηy − ξyηx = ξyηy

(ξx

ξy
− ηx

ηy

)
== −ξyηy

(b +
√D
a

− b−√D
a

)
= −ξyηy

2
√D
a

6= 0,
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whereby the penultimate equality follows from (1.21). Thus, we have essentially proven the following theorem.

Theorem 1.25 Let (1.13) be a hyperbolic PDE. Then, for every (x0, y0) ∈ Ω there exists a transformation
of coordinates (x, y) ↔ (ξ, η) in the neighbourhood of (x0, y0), such that (1.13) can be written as

vξη + · · · = g, (1.24)

where “. . . ” are used to signify the terms involving u, ux, or uy. This is called the canonical form of a
hyperbolic PDE.

Proof. The proof essentially follows from the above discussion: since we are able to show that for every
(x0, y0) ∈ Ω there exists a local transformation of coordinates (x, y) ↔ (ξ, η) for which we have A = C = 0
in (1.17), then (1.17) becomes

2Bvξη + Dvξ + Evη + fv = g.

Dividing now the above equation by 2B (which is not zero, as it can be seen from (1.19)), (1.24) follows. 2

The above theorem shows that each second order linear hyperbolic PDE can be written in the (simpler)
canonical form (1.24).

Example 1.26 We shall calculate the characteristic curves of the wave equation (Example (1.18). In this
case we have a = 1, b = 0, and c = −1. Thus the characteristic equation reads:

(dy

dx

)2

− 1 = 0, or
dy

dx
= ±1,

from which we get two solutions y− x = C1 and y + x = C2, for C1, C2 ∈ R arbitrary constants. This yields
the transformation of coordinates ξ = y − x and η = y + x. Comparing this to (Example (1.18), we can see
that we have arrived to the same transformation of coordinates!

Example 1.27 We shall calculate the characteristic curves and the canonical form of the Tricomi equation

yuxx + uyy = 0

In this case we have a = y, b = 0, and c = 1. As we saw in Example (1.22), this equation is hyperbolic for
y < 0, parabolic for y = 0 and elliptic for y > 0. We first consider the case y < 0. Then the characteristic
equation reads:

y
(dy

dx

)2

+ 1 = 0, or
dy

dx
= ± 1√−y

,

from which we get two solutions in implicit form2 2
3 (−y)3/2 +x = C1 and 2

3 (−y)3/2−x = C2, for C1, C2 ∈ R
arbitrary constants. This yields the transformation of coordinates ξ = 2

3 (−y)3/2 + x and η = 2
3 (−y)3/2 − x.

Notice that for y = 0 (i.e., when the PDE is parabolic), we have ξ = η, i.e., the two characteristic curves
meet, i.e., we only have one characteristic direction! Moreover, ξ and η are not well defined for y > 0, which
is again consistent with the theory developed above, as when y > 0 the PDE is elliptic and, therefore, it has
no real characteristic curves! (More details about the last two cases can be found in the discussion below.)

Also, it is a simple (but worthwhile) exercise to verify that, with the above change of variables, the Tricomi
equation can be written in the canonical form (1.24) when y < 0.

The case of parabolic PDE

We now assume that (1.13) is parabolic, i.e., D = b2−ac = 0. Therefore, the equation (1.22) has one double
root given by

dy

dx
=

b

a
. (1.25)

which yields one family of characteristic curves, say f2(x, y) = const for which (1.25), and thus (1.20) holds.
We set η = f2(x, y) as before. As far as ξ is concerned, we now have flexibility in its choice: the only

2We remind the reader how an ordinary differential equation is solved using separation of variables: we have

dy

dx
= ± 1√−y

, or
√−ydy = ±dx, or

Z √−ydy =

Z
±dx, or − 2

3
(−y)3/2 = ±x + const.
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requirement is that the Jacobian of the resulting transformation of coordinates (x, y) ↔ (ξ, η) is non-zero,
i.e.,

∂(ξ, η)
∂(x, y)

= ξxηy − ξyηx 6= 0. (1.26)

If the above are true, we have C = 0 (from the choice of ξ) in (1.17). Moreover, in this case we necessarily
have that B = 0, too. This is because the PDE is parabolic, i.e., D = 0, which from (1.19) and (1.26) implies
that B2 − AC = 0. But C = 0, giving finally B = 0 also. Thus, we have essentially proven the following
theorem.

Theorem 1.28 Let (1.13) be parabolic PDE. Then, for every (x0, y0) ∈ Ω there exists a transformation of
coordinates (x, y) ↔ (ξ, η) in the neighbourhood of (x0, y0), such that (1.13) can be written as

vξξ + · · · = g, (1.27)

where “. . . ” are used to signify the terms involving u, ux, or uy. This is called the canonical form of a
parablic PDE.

Proof. The proof essentially follows from the above discussion: since we are able to show that for every
(x0, y0) ∈ Ω there exists a local transformation of coordinates (x, y) ↔ (ξ, η) for which we have B = C = 0
in (1.17), then (1.17) becomes

Avξξ + Dvξ + Evη + fv = g.

Dividing now the above equation by A (which is necessarily non-zero from assumption (1.26)), the result
follows. 2

The above theorem shows that each second order linear parabolic PDE can be written in the (simpler)
canonical form (1.27).

The case of elliptic PDE

We now assume that (1.13) is elliptic, i.e., D < 0. Therefore, the equation (1.22) has no real roots and,
therefore, if (1.13) is elliptic then it has no real characteristic curves. Since complex variables (and the
theory of analytic functions) are beyond the scope of these notes, we shall only state the main result for
elliptic problems, without proof.

Theorem 1.29 Let (1.13) be an elliptic PDE. Then, for every (x0, y0) ∈ Ω there exists a transformation of
coordinates (x, y) ↔ (ξ, η) in the neighbourhood of (x0, y0), such that (1.13) can be written as

vξξ + vηη + · · · = g, (1.28)

where “. . . ” are used to signify the terms involving u, ux, or uy. This is called the canonical form of an
elliptic PDE.

The above theorem shows that each second order linear parabolic PDE can be written in the (simpler)
canonical form (1.28).

Remark 1.30 Notice that the whole discussion in this section about linear second order PDEs will still be
valid for the case of semilinear second order PDEs too! Indeed, since in second order semilinear PDEs the
non-linearities are not present in the coefficients of the second order derivatives, the calculations and the
theorems above will still be valid (as all the calculations above are done to control the coefficients of the
second order derivatives).
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