
1.6 The Cauchy problem and well-posedness of PDEs

In the previous sections, we studied the method of characteristics for the solution of first and second order
linear PDEs. We found that, normally, the general solutions of these PDEs contain unknown functions. We
also gave some heuristic arguments on the importance of characteristic curves in describing the properties
and the solution of PDEs. In particular, we mentioned that information “travels along characteristic curves”,
whenever these exist, i.e., the solution of the PDE has “preferred direction(s)” to relate its values from one
point in space to another.

In the theory of ordinary differential equations, we have seen that the general solution of an ODE involves
unknown constants, which can be determined when we equip the ODE with some “initial condition”, e.g.,
the ODE

du(t)
dt

= 3u(t),

has general solution given by u(t) = Ae3t, for all constants A ∈ R. If we add the requirement that the
solution of the above ODE must satisfy also the initial condition

u(0) = 5,

we find that necessarily A = 5, giving the solution u(t) = 5e3t.
In this section, we shall study some appropriate corresponding conditions for PDEs, that will be sufficient

to specify the unknown functions and arrive to unique solutions.

Definition 1.31 Consider a PDE of the form (1.1), of order k in Ω in d dimensions and let S be a
(given) smooth surface on Rd. Let also n = n(x) denote the unit normal vector to the surface S at a point
x = (x1, x2, . . . , xd) ∈ S. Suppose that on any point x of the surface S the values of the solution u and of
all its directional derivatives up to order k − 1 in the direction of n are given, i.e., we are given functions
f0, f1, . . . , fk−1 : S → R such that

u(x) = f0(x), and
∂u

∂n
(x) = f1(x), and

∂2u

∂n2
(x) = f2(x) dots, and

∂k−1u

∂nk−1
(x) = fk−1(x). (1.29)

The Cauchy problem consists of finding the unknown function(s) u that satisfy simultaneously the PDE
and the conditions (1.29). The conditions (1.29) are called the initial conditions and the given functions
f0, f1, . . . , fk−1, will be referred to as the initial data.

The degenerate case of d = 1 and k = 1, i.e., the case of and ODE of first order with the corresponding
initial condition is given above. We now consider some less trivial examples.

Example 1.32 We want to find a solution to the Cauchy problem consisting of the PDE

ux + uy = 0, (1.30)

together with the initial condition
u(0, y) = sin y.

(Here the surface S in Definition 1.31 is implicitly given by the initial condition: we have S = {(x, y) ∈ R2 :
x = 0}, i.e., the surface S (which is now just a curve as we are in R2) is the y-axis on the Cartesian plane.)

In Example 1.15, we used the method of characteristics to deduce that the general solution to the PDE
(1.30) is

u(x, y) = f(y − x), for all (x, y) ∈ R2.

If we set x = 0 we get, using the initial condition:

sin y = u(0, y) = f(y).

Hence a solution to the Cauchy problem is given by

u(x, y) = sin(y − x).

In Figure 1.1 we sketch S for this problem, along with some characteristic curves (which are of the form
y = x + c). Notice that S intersects all characteristic curves.
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Figure 1.1: Example 1.32. Sketch of the Cauchy problem.

Example 1.33 We want to find a solution to the Cauchy problem consisting of the wave equation

uxx − uyy = 0, (1.31)

together with the initial conditions

u(x, 0) = sin x, and uy(x, 0) = 0.

(Again, here the surface S in Definition 1.31 is implicitly given by the initial condition: we have S = {(x, y) ∈
R2 : y = 0}, i.e., the surface S (which is now just a curve as we are in R2) is the x-axis on the Cartesian
plane.) In Example 1.24, we used the method of characteristics to deduce that the general solution to the
PDE (1.31) is

u(x, y) = F (x + y) + G(x− y), for all (x, y) ∈ R2,

for some functions F, G; thus, if we set y = 0 we get, using the first initial condition:

sin x = u(x, 0) = F (x) + G(x). (1.32)

Differentiating the general solution with respect to y, we get

uy(x, y) = F ′(x + y)(x + y)y + G′(x− y)(x− y)y = F ′(x + y)−G′(x− y);

setting y = 0 and using the first initial condition, we arrive to

0 = uy(x, 0) = F ′(x)−G′(x), or F (x)−G(x) = c, (1.33)

for some constant c ∈ R. Solving the system (1.32) and (1.33) with respect to F (x) and G(x) (two equations
with two unknowns!), we get

F (x) =
1
2
(sin x + c), and G(x) =

1
2
(sinx− c).

Now that we have specified F and G, we can write the solution to the above Cauchy problem

u(x, y) = F (x + y) + G(x− y) =
1
2
(sin(x + y) + c) +

1
2
(sin(x− y)− c) =

1
2
(sin(x + y) + sin(x− y)).

Notice that S intersects all characteristic curves.

One question that arises is whether the solutions to the Cauchy problems in the previous examples are
unique. A partial answer to this question is given by the celebrated Cauchy-Kovalevskaya Theorem.

Theorem 1.34 (The Cauchy-Kovalevskaya Theorem) Consider the Cauchy problem from Definition
(1.31) for the case of a linear PDE of the form (1.3). Let x0 be a point of the initial surface S, which is
assumed to be analytic3. Suppose that S is not a characteristic surface at the point x0. Assume that all
the coefficients of the PDE (1.3), the right-hand side f , and all the initial data f0, f1, . . . , fk−1 are analytic
functions on a neighbourhood of the point x0. Then the Cauchy problem has a solution u, defined in the
neighbourhood of x0. Moreover, the solution u is analytic in a neighbourhood of x0 and it is unique in the
class of analytic functions.

The proof of the above Theorem is out of the scope of these notes; it can be found in any standard PDE
theory textbook.

3An analytic surface which can be described by a function g(x) = const for g analytic function. An analytic function is a
function that can be written as a (absolutely convergent) power series.
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