
Therefore, according to the Cauchy-Kovalevskaya Theorem (under the analyticity assumptions), the
Cauchy problem has a solution which is unique in the space of analytic functions. Showing existence and
uniqueness of solutions to PDE problems (i.e., PDEs together with some initial or boundary conditions) is,
undoubtedly, a task of paramount importance in the theory of PDEs. Indeed, once a PDE model is studied,
it is extremely useful to know if that model has a solution (for otherwise, we are wasting our efforts trying
to solve it). If it does have a solution, then it is very important to be able to show that the solution is also
unique (for otherwise, the same PDE problem will produce many different solutions, and this is not usually
natural in mathematical modelling).

Even if a PDE problem has a unique solution, this does not necessarily mean that the PDE problem
is “well behaved”. By well-behaved here we understand if the PDE problem changes “slightly” (e.g., by
altering “slightly” some coefficient), then also its solution should change only “slightly” also. In other words,
“well behaved” is to be understood as follows: “small” changes in the initial data or the PDE itself should
not result to arbitrarily “large” changes in the behaviour of the solution to the PDE problem.

Definition 1.35 A PDE problem is well-posed if the following 3 properties hold:

• the PDE problem has a solution

• the solution is unique

• the solution depends continuously on the PDE coefficients and the problem data.

If a PDE problem is not well-posed, then we say that it is ill-posed.

The concept of well-posedness is due to Hadamard4.

Example 1.36 The Cauchy problem consisting of the wave equation

uxx − uyy = 0,

together with the initial conditions

u(x, 0) = f(x), uy(x, 0) = 0,

for some known initial datum f , is an example of a well posed problem. Indeed, working completely analo-
gously to Example (1.33), we can see that a solution to the above problem is given by

u(x, y) =
1

2

(
f(x − y) + f(x + y)

)
.

The proof of uniqueness of solution is more involved and will be omitted (it is based on the so-called
energy property of the wave equation).

Finally, to show the continuity of the solution to the initial data, we consider also the Cauchy problem

ũxx − ũyy = 0, together with the initial conditions ũ(x, 0) = f̃(x), ũy(x, 0) = 0,

i.e., we consider a different initial condition f̃ for the Cauchy problem, giving a new solution ũ. Working as
above, we can immediately see that the solution to this Cauchy problem is given by

ũ(x, y) =
1

2

(
f̃(x − y) + f̃(x + y)

)
.

No, we look at the difference of the solutions of the two Cauchy problems above. We have

u(x, y)−ũ(x, y) =
1

2

(
f(x−y)+f(x+y)

)
−1

2

(
f̃(x−y)+f̃(x+y)

)
=

1

2

((
f(x−y)−f̃(x−y)

)
+

(
f(x+y)−f̃(x+y)

))

.

Hence if the difference f(z) − f̃(z) is small for all z ∈ R, then the difference u − ũ will also be small! That
is the solution depends continuously on the PDE coefficients and the problem data.

We now consider an example of an ill-posed problem, which is also due to Hadamard.

4Jacques Salomon Hadamard (1865 - 1963), French mathematician
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Example 1.37 The Cauchy problem consisting of the Laplace equation

uxx + uyy = 0, for − π

2
< x <

π

2
, and y > 0,

(i.e., Ω = (−π/2, π/2) × (0, +∞)), together with the initial conditions

u(x, 0) = 0, uy(x, 0) = e−
√

n cos(nx), for − π

2
≤ x ≤ π

2

for every n = 1, 3, 5, . . . , and
u(−π/2, y) = 0 = u(π/2, y), for y ≥ 0.

As we shall see in Chapter 2, it is possible to calculate (using the method of separation of variables) that a
solution to the above problem is given by

u(x, y) =
e−

√
n

n
cos(nx) sinh(ny).

(It is easy to check that this is a solution to the Cauchy problem just by differentiating back and verifying
that it indeed satisfies the PDE and the initial conditions.)

Now we study what happens as we vary the odd number n appearing in the initial conditions. We can see
that

|uy(x, 0)| = |e−
√

n cos(nx)| ≤ e−
√

n,

i.e., as we increase n, the initial condition uy(x, 0) changes at an exponentially small manner. Also, recalling
the definition of the hyperbolic sine5, we have

u(x, y) =
e−

√
n

n
cos(nx) sinh(ny) =

e−
√

n+ny − e−
√

n−ny

2n
cos(nx).

Notice that when y 6= 0, the exponent of the first exponential is positive and thus, a change in n results to an
exponentially large change in u(x, y). Hence, a small change in the initial data (realised when changing the
constant n), result to exponentially large change in the solution u for y 6= 0! Hence the problem is ill-posed.

In Chapter 2, we shall consider appropriate conditions for each type of linear second order equations
(elliptic, parabolic, hyperbolic), that result to well-posed problems.

5We recall that the hyperbolic sine and the hyperbolic cosine are defined as

sinh x :=
1

2
(ex − e−x), and cosh x :=

1

2
(ex + e−x)
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Chapter 2

Problems of Mathematical Physics

In this chapter we shall be concerned with the classical equations of mathematical physics, together with
appropriate initial (and boundary) conditions.

2.1 The Laplace equation

We begin the discussion with Laplace equation:

∆u = 0, for (x1, x2, . . . , xd) ∈ Ω ⊂ R
d, (2.1)

where ∆ := (·)x1x1
+(·)x2x2

+· · ·+(·)xdxd
denotes the so-called Laplace operator in d dimensions; in particular,

in two dimensions Laplace equation reads:

∆u = uxx + uyy = 0, for (x, y) ∈ Ω ⊂ R
2, (2.2)

where ∆ := (·)xx + (·)yy. The non-homogeneous version of the Laplace equation, namely

∆u = f in Ω (2.3)

for some known function f : Ω ⊂ R
d → R, is known as the Poisson equation.

Laplace and Poisson equations model predominately phenomena that do not evolve in time, typically
properties of materials (elasticity, electric or gravitational charge), probability densities of random variables,
etc.

As we saw in Chapter 1, Laplace (and therefore, Poisson) equation is of elliptic type. in fact, Laplace
equation is the archetypical equation of elliptic type (see also Theorem 1.29 for the canonical form of PDEs
of elliptic type).

Ω
∂Ω

∆u=0

Dirichlet b. c. u =f

(a) Dirichlet boundary value problem.

Ω
∂Ω

∆u =0

N eum an n b. c . ∂ u
∂ n = f

n

(b) Neumann boundary value problem.

Figure 2.1: Dirichlet and Neumann boundary value problems.

For the problem to be well posed, we equip the Laplace equation with conditions along the whole of the
boundary ∂Ω of the domain Ω. We shall call these boundary conditions1. We shall consider two types of

1In the previous chapter, we talked about the Cauchy problem consisting of a PDE, together with initial conditions. The
term “initial conditions” is used for PDEs that model evolution phenomena (i.e., PDEs for which one variable is “time”), for
which the Cauchy problem is well posed. For elliptic PDEs, however, which model phenomena that do not evolve in time, it is
conventional to use the term “boundary conditions” instead.
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boundary conditions, namely the Dirichlet boundary condition:

u(x, y) = f(x, y), for(x, y) ∈ ∂Ω,

where f : ∂Ω → R is a known function, and the Neumann boundary condition:

∂u

∂n
(x, y) = f(x, y), for(x, y) ∈ ∂Ω,

where ∂u
∂n (x, y) is the directional derivative of u in the direction of the unit outward normal vector n at the

point (x, y) of the boundary ∂Ω. We shall refer to the Laplace equation together with the Dirichlet boundary
condition as the Dirichlet boundary value problem and to the Laplace equation together with the Neumann
boundary condition as the Neumann boundary value problem (see Figure 2.1 for an illustration).

Next, we shall be concerned with finding the solution to the Laplace equation with the above boundary
conditions.
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