
2.1.2 Fourier series

In applied mathematics, it is often of great interest to be able to describe functions in terms of simpler
functions. For instance, the classical theory of Power Series is concerned with representing functions as
infinite sums of simpler polynomial functions, e.g., the exponential function is known to satisfy

ex = 1 + x +
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2
+
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6
+ · · ·+ xn

n!
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n=1

xn

n!
,

i.e., the function f(x) = ex can be written as an infinite sum of multiples of powers of x! Such representations
can be very useful in various applications, such as in the solution of ordinary differential equations.

In this section, we investigate the question of describing functions in terms of simpler trigonometric
functions; these are the celebrated Fourier series expansions3. In physical terms they can be interpreted
as analysing a function into simple sine and cosine functions (waves) of different frequencies. This is a
very general and powerful idea; indeed, Fourier series are at the heart of many applications such as signal
processing and medical imaging.

Definition 2.1 For L > 0 constant, let f [−L,L] → R be a function with at most finite number of disconti-
nuities in the interval [−L,L]. The Fourier series expansion associated with f is defined as
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L

)
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L
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,

where an and bn, n = 1, 2, . . . , are called the Fourier coefficients and given by the formulas

an :=
1
L

∫ L

−L

f(x) cos
(nπx

L

)
dx, and bn :=

1
L

∫ L

−L

f(x) sin
(nπx

L

)
dx.

We investigate the above definition with an example.

Example 2.2 We are seeking the Fourier series expansion of the function f : [−1, 1] → R, with f(x) = |x|.
We have L = 1, and we calculate the Fourier coefficients:

an =
∫ 1

−1

|x| cos(nπx)dx =
∫ 0
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0
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]0
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+
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x

sin(nπx)
nπ

]1

0
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0
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and

bn =
∫ 1

−1

|x| sin(nπx)dx =
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−1

(−x) sin(nπx)dx +
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0
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nπ
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−
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[
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nπ

]1

0
+
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[ sin(nπx)
(nπ)2

]0

−1
− (−1)n

nπ
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for n = 1, 2, . . . , and

a0 =
∫ 1

−1

|x|dx =
∫ 0

−1

(−x)dx +
∫ 1

0

xdx = 1.

Hence the Fourier series expansion of f(x) = |x|, x ∈ [−1, 1] reads

1
2

+
∞∑

n=1

2
(−1)n − 1

(nπ)2
cos(nπx).

3The name refers to the great French mathematician and physicist Jean Baptiste Joseph Fourier (1768 - 1830) who first
proposed solving PDEs using trigonometric series expansions.
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To see how does the Fourier expansion compares to the original function, we consider the partial sums

1
2

+
k∑

n=1

2
(−1)n − 1

(nπ)2
cos(nπx);

then, for k = 1, we get
1
2
− 4

π2
cos(πx),

for k = 3, we get
1
2
− 4

π2
cos(πx)− 4

9π2
cos(3πx),

and so on (notice that the terms for n even are zero). In Figure 2.2, we plot the function f(x) = |x| and the
partial sums of its Fourier expansion for k = 1, k = 3 and k = 7.
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Figure 2.2: Fourier synthesis...

The first question that may spring to mind is: does it hold

f(x) =
a0

2
+

∞∑
n=1

(
an cos

(nπx

L

)
+ bn sin

(nπx

L

))
?

In the previous example, this seemed to be the case, as we take more and more terms in the series. The
following theorem gives an answer to the above question.

Theorem 2.3 Suppose that a function f : [−L,L] → R and its derivative f ′ are bounded and continuous
everywhere in [−L,L] apart from a finite number of points. Then, at every point x ∈ (−L, L) for which f is
continuous, we have

f(x) =
a0

2
+

∞∑
n=1

(
an cos

(nπx

L

)
+ bn sin

(nπx

L

))
,

at every point x ∈ (−L,L) that f has a jump discontinuity, we have

1
2
(
f(x+) + f(x−)

)
=

a0

2
+

∞∑
n=1

(
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(nπx

L

)
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(nπx

L

))
,
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where f(x+) and f(x−) denote the limit values of f from the right and from the left of x, respectively 4;
finally, at the endpoints x = −L and x = L, we have

1
2
(
f((−L)+) + f(L−)

)
=

a0

2
+

∞∑
n=1

(
an cos

(nπx

L

)
+ bn sin

(nπx

L

))
.

The proof of this theorem is quite involved and somewhat outside the scope of these notes, so it is omitted.

Remark 2.4 Note that when f is continuous at a point x ∈ (0, L), then we have f(x+) = f(x−) = f(x),
and thus 1

2

(
f(x+) + f(x−)

)
= f(x), i.e., we go back to the first part of the theorem!

Example 2.2 revisited. We investigate the above theorem in conjunction with Example 2.2. The function
f(x) = |x| in Example 2.2 is continuous in (−1, 1) and, therefore, Theorem 2.3 implies

|x| = 1
2

+
∞∑

n=1

2
(−1)n − 1

(nπ)2
cos(nπx), for all x ∈ (−1, 1).

Moreover, at the endpoints x = ±1 of the interval [−1, 1], we calculate f((−1)+) = 1 and f(1−) = 1. Hence,
Theorem 2.3 implies

1 =
1
2
(f((−1)+) + f(1−)) =

1
2

+
∞∑

n=1

2
(−1)n − 1

(nπ)2
cos(nπ(±1)) =

1
2

+
∞∑

n=1

2
1− (−1)n

(nπ)2
;

notice that in this case we have f((−1)+) = 1 = f(1−).

Example 2.5 We are seeking the Fourier series expansion of the function f : [0, 2] → R, with

f(x) =
{

1, if 0 ≤ x ≤ 1;
0, if 1 < x ≤ 2. .

We notice that the domain of the function f is not of the form [−L,L] for some L > 0 and, therefore
the theory above does not apply as is. One way of overcoming this difficulty is to extend the definition of the
function f from [0, 2] to [−2, 2]. Of course, there are infinite possible extensions of a function and we shall
be seeking extensions that are “convenient” and “simple”. Below, we consider two possible extensions.

(a) Extension to an even function. We extend f to the even function5 f̃ : [−2, 2] → R, with

f̃(x) =
{

1, if −1 ≤ x ≤ 1;
0, if −2 ≤ x < −1 or 1 < x ≤ 2. .

We have L = 2, and we calculate the Fourier coefficients:

an =
1
2

∫ 1

−1

cos
(nπx

2
)
dx =

[ sin
(

nπx
2

)

nπ

]1

−1
=

sin
(

nπ
2

)

nπ
− sin

(− nπ
2

)

nπ
= 2

sin
(

nπ
2

)

nπ
,

and

bn =
1
2

∫ 1

−1

sin
(nπx

2
)
dx =

[
− cos

(
nπx
2

)

nπ

]1

−1
= −cos

(
nπ
2

)

nπ
+

cos
(− nπ

2

)

nπ
= 0,

for n = 1, 2, . . . , and

a0 =
1
2

∫ 1

−1

dx = 1.

Hence the Fourier series expansion of f̃ , x ∈ [−2, 2] reads

1
2

+
∞∑

n=1

2
sin

(
nπ
2

)

nπ
cos

(nπx

2
)
.

4We recall that the limit values of f from the right and from the left of x are, respectively, defined as

f(x+) := lim
h→0
h>0

f(x + h), and f(x−) := lim
h→0
h>0

f(x− h).

5We recall that an even function is one for which f(−x) = f(x), i.e., it admits the y-axis as axis of symmetry.
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To see how does the Fourier expansion compares to the original function, we consider the partial sums

1
2

+
k∑

n=1

2
sin

(
nπ
2

)

nπ
cos

(nπx

2
)
.

In Figure 2.3, we plot the function f̃ and the partial sums of its Fourier expansion for k = 1, k = 3 and
k = 9 and k = 39.
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Figure 2.3: Fourier synthesis...

(b) Extension to an odd function. We extend f to the odd function6 f̂ : [−2, 2] → R, with

f̂(x) =





1, if 0 ≤ x ≤ 1;
−1, if −1 ≤ x < 0;
0, if −2 ≤ x < −1 or 1 < x ≤ 2.

.

We have L = 2, and we calculate the Fourier coefficients:

an = −1
2

∫ 0

−1

cos
(nπx

2
)
dx +

1
2

∫ 1

0

cos
(nπx

2
)
dx = −

[ sin
(

nπx
2

)

nπ

]0

−1
+

[ sin
(

nπx
2

)

nπ

]1

0
= 0,

and

bn = −1
2

∫ 0

−1

sin
(nπx

2
)
dx +

1
2

∫ 1

0

sin
(nπx

2
)
dx = −

[
− cos

(
nπx
2

)

nπ

]0

−1
+

[
− cos

(
nπx
2

)

nπ

]1

0
= 2

1− cos
(

nπ
2

)

nπ
,

for n = 1, 2, . . . , and

a0 = −1
2

∫ 0

−1

dx +
1
2

∫ 1

0

dx = 0.

Hence the Fourier series expansion of f̂ , x ∈ [−2, 2] reads

∞∑
n=1

2
1− cos

(
nπ
2

)

nπ
sin

(nπx

2
)
.

6We recall that an odd function is one for which f(−x) = −f(x), i.e., it admits the origin as the centre of symmetry.
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To see how does the Fourier expansion compare to the original function, we consider the partial sums

k∑
n=1

2
1− cos

(
nπ
2

)

nπ
sin

(nπx

2
)
.

In Figure 2.4, we plot the function f̂ and the partial sums of its Fourier expansion for k = 1, k = 3 and
k = 10 and k = 40.
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Figure 2.4: Fourier synthesis...

When we extended the function f : [0, 2] → R to an even function f̃ : [−2, 2] → R, the Fourier coefficients
bn vanished, yielding a Fourier series expansion consisting only of cosine functions – this is called a cosine
series expansion. On the contrary when we extended the function f : [0, 2] → R to an even function
f̂ : [−2, 2] → R, the Fourier coefficients an vanished, yielding a Fourier series expansion consisting only of
sine functions – this is called a sine series expansion. In fact, this is a general observation: any function
f : [0, L] → R can be expressed in terms of either a cosine series or a sine series; this will be particularly
useful when solving PDEs as presented below.

We observe that the partial sums of Fourier series expansions develop oscillations near discontinuities.
This phenomenon is common whenever one tries to approximate discontinuous functions by continuous ones
and it is usually referred to as Gibbs phenomenon.

It is possible to see from Figures 2.3 and 2.4 that at points where the functions admit jump discontinuities
then the Fourier series expansions appear to converge to the average of the limit values at either side of each
discontinuity; this is in accordance with Theorem 2.3!
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