
2.1.3 Back to the Laplace problem

In the previous section we saw how to represent functions in terms of Fourier series expansions; this discussion
was motivated by the formula (2.9), which was resulted from solving the Laplace problem on a rectangular
domain using separation of variables.

Going back to (2.9), we are now in position to determine the Ẽn’s as the Fourier coefficients of the sine
series expansion of the function f : [0, a] → R (which is the Dirichlet boundary condition on the top part of
the rectangular boundary). More specifically, we extend f to an odd function in f̂ : [−a, a] → R, i.e., we set

f̂(x) :=
{

f(x), if 0 ≤ x ≤ a;
−f(−x), if −a ≤ x < 0;

then, we have
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1
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)
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)
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f(x) sin
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)
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f(x) sin
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)
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∫ a

0

f(x) sin
(nπx

a

)
dx, (2.10)

using the change of variables y = −x in the penultimate equality, which is now computable provided we
know f(x)!

Example 2.6 We want to solve the Laplace problem (2.4), where a = 1 and f : [0, 1] → R is defined by

f(x) =
{

x, if 0 ≤ x ≤ 1
2 ;

1− x, if 1
2 < x ≤ 1.

The method of solution of the Laplace problem using separation of variables is presented in Section 2.3.1,
where we arrived to the solution (2.8) with unknown coefficients En, n = 1, 2, . . . , which can be determined
from the boundary condition (2.9) after expanding f(x) into a sine series.

Using (2.10) with a = 1, we calculate

Ẽn = 2
∫ 1

2

0

x sin(nπx)dx + 2
∫ 1

1
2

(1− x) sin(nπx)dx = · · · = 4 sin
(

nπ
2

)

(nπ)2
.

In Figure 2.5, we plot the function f and the partial sums with 3, 9 and 39 first terms,respectively. Recalling
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Figure 2.5: Fourier synthesis...

now the definition of Ẽn := En sinh
(

nπb
a

)
, we conclude that the solution of (2.4) for a = 1 is given by the

series

u(x, y) =
∞∑

n=1

4 sin
(

nπ
2

)

(nπ)2 sinh(nπb)
sin(nπx) sinh(nπy).
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2.2 The heat equation and the initial/boundary value problem

The heat equation (also known as the diffusion equation) is a paradigm of equations of parabolic type as we
saw in the previous chapter. In most applications the parabolic equations describe phenomena that evolve
in time; in the following, t will be denoting the “time”-variable, ranging between time 0 and some final time
T > 0. For (unknown) solution u : [0, T ]× Ω → R, the heat equation reads

ut = ∆u, for (x1, x2, . . . , xd) ∈ Ω ⊂ Rd, and t ∈ [0, T ], (2.11)

where ∆ is the Laplace operator in d dimensions; in particular, in one space dimension the hear equation
reads:

ut = uxx, for x ∈ Ω ⊂ R, and t ∈ [0, T ]. (2.12)

As we also saw in Problem Sheet 1, the heat equation can viewed as one canonical form of the Black-Scholes
equation of mathematical finance.

As we saw in Chapter 1, the heat equation is of parabolic type. Therefore, it admits one family of
characteristic curves and, at least intuitively, we can see that it requires Cauchy initial condition. Also, the
PDE for each fixed time t ∈ [0, T ] takes the form of the Poisson problem. Hence, again at leat heuristically,
we can see that Dirichlet and/or Neumann type boundary condition(s) are required on the boundary of Ω,
for each time t, for the problem to be well posed. We shall refer to the heat equation together with the
Cauchy initial condition and the boundary conditions, as the initial/boundary value problem.

Next, we shall be concerned with finding the solution to the initial/boundary value problem, using the
separation of variables.
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