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SEQUENCES AND SERIES OF FUNCTIONS

In the present chapter we confine our attention to complex-valued functions
(including the real-valued ones, of course), although many of the theorems and
proofs which follow extend without difficulty to vector-valued functions, and
even to mappings into general metric spaces. We choose to stay within this
simple framework in order to focus attention on the most important aspects of
the problems that arise when limit processes are interchanged.

DISCUSSION OF MAIN PROBLEM

7.1 Definition Suppose {f,}, n=1,2,3,..., is a sequence of functions
defined on a set E, and suppose that the sequence of numbers { f,(x)} converges
for every x € E. We can then define a function f/ by

1) f@) =limf(x)  (xe€E).

n=
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Under these circumstances we say that {f,} converges on E and that fis
the limit, or the limit function, of { f,}. Sometimes we shall use a more descriptive
terminology and shall say that “{£,} converges to f pointwise on E” if (1) holds.
Similarly, if Zf,(x) converges for every x € E, and if we define

@ f0=3509  (xeB)

the function f is called the sum of the series Xf,.

The main problem which arises is to determine whether important
properties of functions are preserved under the limit operations (1) and (2).
For instance, if the functions f, are continuous, or differentiable, or integrable,
is the same true of the limit function? What are the relations between f and £,
say, or between the integrals of £, and that of f?

To say that f'is continuous at a limit point x means

lim £(r) = f(x).

t~x
Hence, to ask whether the limit of a sequence of continuous functions is con-
tinuous is the same as to ask whether
A3) lim lim f,(¢) = lim lim f,(2),

t=Xx n—*owo n—o t-+x

i.e., whether the order in which limit processes are carried out is immaterial.
On the left side of (3), we first let » — o0, then ¢ — x; on the right side, 1 —» x
first, then n — co.

We shall now show by means of several examples that limit processes
cannot in general be interchanged without affecting the result. Afterward, we
shall prove that under certain conditions the order in which limit operations

are carried out is immaterial.
Our first example, and the simplest one, concerns a ‘“‘double sequence.”

7.2 Example Form=1,2,3,...,n=1,2,3,..., let

m
Smn = :
" m+n
Then, for every fixed n,
lims,, , =1,
m-» o0
so that
4 lim lims,,=1.

R~ m—co
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On the other hand, for every fixed m,

lim s, , =0,
n—=w

so that

) lim lims,, ,=0.

m-=+o0 B—+c0

7.3 Example Let

x2

f;,(x)==(l—+'x—z)-'I (xreal;n=0, 1,2, ),

and consider
2

© 1@ =% A0 =3

Since £,(0) = 0, we have f(0) = 0. For x # 0, the last series in (6) is a convergent
geometric series with sum 1 + x? (Theorem 3.26). Hence

@ Sy = (1)+x2 g:g;

so that a convergent series of continuous functions may have a discontinuous
sum,

7.4 Example Form=1,2,3,..., put

£.(%) = lim (cos m!mx)*".

n—*aw

When m!x is an integer, f,,(x) = 1. For all other values of x, f,,(x) = 0. Now let

S(x) =lim f,(x).
For irrational x, f,,(x) =0 for every m; hence f(x) = 0. For rational x, say
X = p/q, where p and g are integers, we see that m!x is an integer if m > g, so
that f(x) = 1. Hence

{O (x irrational),

. . ] 2n
(8) lim lim (cos m!nx 1 (x rational).

m- o n—>w

We have thus obtained an everywhere discontinuous limit function, which
is not Riemann-integrable (Exercise 4, Chap. 6).
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7.5 Example Let

sin nx
Jn
f(x) =lim f,(x) = 0.

n=*c0

) fi(x) = (xreabn=1,2,3,..),

and

Then f’(x) = 0, and
fix) = \/ 1 cos nx,
so that {f;} does not converge to f'. For instance,

fi0) =/n> +

as n — oo, whereas f'(0) = 0.

7.6 Example Let
(10) fi)=n*x(1-x¥» (0<x<lL,n=123,..).

For0 < x <1, we have

lim £(x) = 0,
by Theorem 3.20(d). Since f,(0) = 0, we see that
11) limf,(x)=0 (O<x<]).

n— o
A simple calculation shows that

1
2n + 2

flx(l — x})dx =
0

Thus, in spite of (11),
2

n
2n + 2

- <4 00

1
[ £ ax =
0
asn— oo,
If, in (10), we replace n* by n, (11) still holds, but we now have
.t . n 1
fim [ S0 de=lim s =5
whereas

fol [ lim f,,(x)] dx = 0.

n— oo
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Thus the limit of the integral need not be equal to the integral of the limit,
even if both are finite.

After these examples, which show what can go wrong if limit processes
are interchanged carelessly, we now define a new mode of convergence, stronger
than pointwise convergence as defined in Definition 7.1, which will enable us to
arrive at positive results.

UNIFORM CONVERGENCE

7.7 Definition We say that a sequence of functions {f,},n=1,2,3,...,
converges uniformly on E to a function fif for every ¢ > 0 there is an integer N
such that » > N implies

(12) Ifx) —f(x)| <e

for all x € E.

It is clear that every uniformly convergent sequence is pointwise con-
vergent. Quite explicitly, the difference between the two concepts is this: If {f,}
converges pointwise on E, then there exists a function f such that, for every
¢ > 0, and for every x € E, there is an integer N, depending on ¢ and on x, such
that (12) holds if n > N; if {f,} converges uniformly on E, it is possible, for each
¢ > 0, to find one integer N which will do for all x e E.

We say that the series Zf,(x) converges uniformly on E if the sequence
{s,} of partial sums defined by

z £ = 5,(%)

converges uniformly on E.
The Cauchy criterion for uniform convergence is as follows.

7.8 Theorem The sequence of functions {f,}, defined on E, converges uniformly
on E if and only if for every € > 0 there exists an integer N such that m > N,
n> N, x € E implies

(13) If;l(x) —fm(x)l e

Proof Suppose {f,} converges uniformly on E, and let f be the limit
function. Then there is an integer N such that n > N, x € E implies

1) =@ <3
so that

[fu6) = S | S /() =F )| + fx) —fulx) | <&
ifn>=N,m>=N,xekE.
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Conversely, suppose the Cauchy condition holds. By Theorem 3.11,
the sequence {f,(x)} converges, for every x, to a limit which we may call
f(x). Thus the sequence{f,} converges on E, to f. We have to prove that
the convergence is uniform.

Let ¢ > 0 be given, and choose N such that (13) holds. Fix n, and
let m — oo in (13). Since f,,(x) - f(x) as m — oo, this gives

(14 [fix) —f(x)| <&
for every n > N and every x € E, which completes the proof.

The following criterion is sometimes useful.

7.9 Theorem Suppose
limfy(x) =f(x)  (x € E).

Put
M,= sup | fux) = f() |

Then f, — f uniformly on E if and only if M, — 0 as n— 0.

Since this is an immediate consequence of Definition 7.7, we omit the
details of the proof.

For series, there is a very convenient test for uniform convergence, due to
Weierstrass.

7.10 Theorem Suppose{f,}is a sequence of functions defined on E, and suppose
[fi(x)] < M, (xeEn=123..)
Then Xf, converges uniformly on E if ZM, converges.

Note that the converse is not asserted (and is, in fact, not true).

Proof If M, converges, then, for arbitrary ¢ > 0,

$rie

provided m and n are large enough. Uniform convergence now follows
from Theorem 7.8.

SZMiSS (XEE)’
i=n
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UNIFORM CONVERGENCE AND CONTINUITY

7.11 Theorem Suppose f, — f uniformly on a set E in a metric space. Let x be
a limit point of E, and suppose that

(15) limf,() =4, @®@=1,23,...).
t—x
Then {A,} converges, and
(16) lim f(¢) = lim 4,,.
t—=x n— o0
In other words, the conclusion is that
an lim lim £,(f) = lim lim £,(¢).
t=Xx n—>w B t-ox

Proof Let ¢ >0 be given. By the uniform convergence of {f,}, there
exists N such thatn > N, m = N, t € E imply

(18) |/t) = SO | <&
Letting ¢ — x in (18), we obtain
IAn - Aml <&

for n>N,m>N, so that {4,} is a Cauchy sequence and therefore
converges, say to 4.
Next,

(19) @)= Al < IfO=£O] + /i) — 4, | + |4, — 4].

We first choose n such that
20) fO -] <3

for all ¢ € E (this is possible by the uniform convergence), and such that
@1) FEVIE

Then, for this n, we choose a neighborhood ¥ of x such that

22) 0 - 4] <3

if teVNE, t#x.
Substituting the inequalities (20) to (22) into (19), we see that

lf()— 4] <,
provided ¢t € ¥ n E, t#x. This is equivalent to (16).
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7.12 Theorem If{f,} is a sequence of continuous functions on E, and if f, = f
uniformly on E, then f is continuous on E.

This very important result is an immediate corollary of Theorem 7.11.

The converse is not true; that is, a sequence of continuous functions may
converge to a continuous function, although the convergence is not uniform.
Example 7.6 is of this kind (to see this, apply Theorem 7.9). But there is a case
in which we can assert the converse.

7.13 Theorem Suppose K is compact, and

(a) {f.} is a sequence of continuous functions on K,
(b) {f,} converges pointwise to a continuous function f on K,
© fix)=2fis ) forallxeK,n=1,23,....

Then f, — f uniformly on K.

Proof Put g,=f,—f Then g, is continuous, g, —0 pointwise, and
g = gu+1- We have to prove that g, — 0 uniformly on X.

Let ¢ > 0 be given. Let K, be the set of all x € K with g,(x) >«
Since g, is continuous, K, is closed (Theorem 4.8), hence compact (Theorem
2.35). Since g, = gn+1, We have K, > K, .,. Fix xe K. Since g,(x) -0,
we see that x ¢ K, if n is sufficiently large. Thus x ¢ () K,. In other words,
() K, is empty. Hence Ky is empty for some N (Theorem 2.36). It follows
that 0 < g,(x) < efor all x € Kand for alln > N. This proves the theorem.

Let us note that compactness is really needed here. For instance, if

Six) = nx +1

then £,(x) — 0 monotonically in (0, 1), but the convergence is not uniform.

O<x<l;n=1,23,..)

7.14 Definition If X is a metric space, €(X) will denote the set of all complex-
valued, continuous, bounded functions with domain X.

[Note that boundedness is redundant if X is compact (Theorem 4.15).
Thus %(X) consists of all complex continuous functions on X if X is compact.]
We associate with each f e €(X) its supremum norm

I1fll = sup [f) .
X€
Since f is assumed to be bounded, ||f] < oo. It is obvious that || f|| =0 only if
f(x) =0 for every x € X, that s, only if f=0. If h =+ g, then
lh(x)| < |fG) ]+ 19 | <1l + llgll
for all x € X; hence

If+gll <Al + lgl.
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If we define the distance between fe ¢(X) and g € ¥(X) to be [ f—gl,
it follows that Axioms 2.15 for a metric are satisfied.

We have thus made €(X) into a metric space.

Theorem 7.9 can be rephrased as follows:

A sequence {f,} converges to f with respect to the metric of 4(X) if and
only if f, — funiformly on X.

Accordingly, closed subsets of %(X) are sometimes called wuniformly
closed, the closure of a set o < 4(X) is called its uniform closure, and so on.

7.15 Theorem The above metric makes 6(X) into a complete metric space.

Proof Let{f,} be a Cauchy sequence in #(X). This means that to each
¢ >0 corresponds an N such that || f, —f,|l <e¢ if >N and m > N.
It follows (by Theorem 7.8) that there is a function f with domain X to
which {f,} converges uniformly. By Theorem 7.12, f is continuous.
Moreover, f is bounded, since there is an n such that [f(x) — f,(x)| < 1
for all x € X, and f, is bounded.
Thus fe#(X), and since f,—f uniformly on X, we have

If=£fll =0asn— 0.

UNIFORM CONVERGENCE AND INTEGRATION

7.16 Theorem Let a be monotonically increasing on [a, b). Suppose f, € R(c)
onla,b], forn=1,2,3, ..., and suppose f, — f uniformly on [a, b). Then f € R(x)
on [a, b}, and

(23) [ o = lim j 'r du.

n—wo%a

(The existence of the limit is part of the conclusion.)

Proof It suffices to prove this for real f,. Put
o) &, = sup |f,(x) —f(x)],

the supremum being taken over a < x < b. Then

f;l"'an st.f;l+8n’
so that the upper and lower integrals of f (see Definition 6.2) satisfy

25) fb(f,, —¢,) dat sffda sIfdasfb(f,, +¢,)du

Hence

0<[fdu~ [ fdn <28, (t) - o(@))



152 PRINCIPLES OF MATHEMATICAL ANALYSIS

Since ¢, — 0 as n— oo (Theorem 7.9), the upper and lower integrals of f
are equal.
Thus f € #(x). Another application of (25) now yields
b b
f fdo— f S do
a a

(26) < &nla(b) — «(a)].

This implies (23).
Corollary If £, € #(«) on [a, b] and if

fO=3 ) (@sx<b)

the series converging uniformly on [a, b, then

f: fda =”§1 f: 1. da.

In other words, the series may be integrated term by term.

UNIFORM CONVERGENCE AND DIFFERENTIATION

We have already seen, in Example 7.5, that uniform convergence of { f,} implies
nothing about the sequence {f,}. Thus stronger hypotheses are required for the
assertion that f,] — f'if f, — f.

7.17 Theorem Suppose {f,} is a sequence of functions, differentiable on [a, b]
and such that {f,(x,)} converges for some point x, on [a, bl. If {f,} converges
uniformly on [a, b], then {f,} converges uniformly on [a, b}, to a function f, and

@7 fie) =limfi(x) (a<x<b)

n-* a0

Proof Let &> 0 be given. Choose N such that n > N, m = N, implies
€
(28) | fulxo0) ~ fu(X0) | < 3
and

29) ) =10l < 55=p  (@S1<D)



(30)

(1)

(32)

(33)
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If we apply the mean value theorem 5.19 to the function £, — f,,, (29)
shows that

|x—tle e

o) = ) = £(0) + £uD) | < 2% —a) <3

for any x and ¢ on [a, b}, if n > N, m > N. The inequality
o) = S | S 1fu3) = f) = ful¥0) + fulX0) | + |fulX0) = fnlX0) |
implies, by (28) and (30), that
[fux) = fu®¥)| <& (@<x<bn=2N,m2N),
so that { f,} converges uniformly on [a, b]. Let
f(x) =limf(x) (a<x<b).

n—+w

Let us now fix a point x on [a, b] and define

Jol) = fulx) 5(0) = f(t):f(x)

t—x t—x

én(t) =

fora<t<b,t+#x. Then
lim ¢,(t) = f,)(x) n=1273..).
t—=x

The first inequality in (30) shows that

€
90~ 9ul0)| Sqr—ys 1 ZN,mz ),

so that {¢,} converges uniformly, for ¢ # x. Since {f,} converges to f, we
conclude from (31) that

lim ¢,(t) = ¢(7)

n=>ow

uniformly for a <t <b,t # x.
If we now apply Theorem 7.11 to {¢,}, (32) and (33) show that

lim ¢(2) = lim f}}(x);

t=x n=o
and this is (27), by the definition of @(¢).

Remark: If the continuity of the functions f, is assumed in addition to

the above hypotheses, then a much shorter proof of (27) can be based on
Theorem 7.16 and the fundamental theorem of calculus.
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7.18 Theorem There exists a real continuous function on the real line which is
nowhere differentiable.

Proof Define
34 o(x)=|x| (-1<x<1)

and extend the definition of ¢(x) to all real x by requiring that
(35) o(x +2) = ¢(x).

Then, for all s and ¢,

(36) lo@) — o] < |s—1].
In particular, ¢ is continuous on R'. Define

G 169 =3 @ro)

Since 0 <@ <1, Theorem 7.10 shows that the series (37) converges
uniformly on R'. By Theorem 7.12, f is continuous on R!.
Now fix a real number x and a positive integer m. Put

(39%) S,=13%47"

where the sign is so chosen that no integer lies between 4™x and 4"(x + §,,).
This can be done, since 4™ |d,,| = 3. Define

_ @ (x +5,) — 9(4"x)
Y = 5 *
When n > m, then 4"5,, is an even integer, so thaty, = 0. When0 <n <m,

(36) implies that |y,| < 4"
Since |y,, | = 4", we conclude that
m [\ "
nEO(Z) T
m—1

S&x +6,) = /()
L

Om
n=0

=3(3" + 1.
As m - o, d,,— 0. It follows that f is not differentiable at x.

(39

n

EQUICONTINUOUS FAMILIES OF FUNCTIONS

In Theorem 3.6 we saw that every bounded sequence of complex numbers
contains a convergent subsequence, and the question arises whether something
similar is true for sequences of functions. To make the question more precise,
we shall define two kinds of boundedness.
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7.19 Definition Let{f,} be a sequence of functions defined on a set E.

We say that{f,} is pointwise bounded on E if the sequence{ f,(x)} is bounded
for every x € E, that is, if there exists a finite-valued function ¢ defined on E
such that

If;l(x)l <¢(X) (xEE’n': 1’ 29 33 ---)-

We say that {f,} is uniformly bounded on E if there exists a number M
such that

x| <M (xeEn=1,23..).

Now if {f,} is pointwise bounded on E and E, is a countable subset of E,
it is always possible to find a subsequence {f, } such that {/, (x)} converges for
every x € E;. This can be done by the diagonal process which is used in the
proof of Theorem 7.23.

However, even if {f,} is a uniformly bounded sequence of continuous
functions on a compact set E, there need not exist a subseguence which con-
verges pointwise on E. In the following example, this would be quite trouble-
some to prove with the equipment which we have at hand so far, but the proof
is quite simple if we appeal to a theorem from Chap. 11.

720 Example Let
Ju(x) = sin nx Osx<2m,n=1,23,..)).

Suppose there exists a sequence {n,} such that {sin n,.x} converges, for every
x € [0, 2n]. In that case we must have

lm (sinmx —sinn 1 x) =0 (0 < x <2n);

k-0
hence
(40) lim (sin mex — sinme 1 x)2 =0 (0 < x < 2n).
k- 0

By Lebesgue’s theorem concerning integration of boundedly convergent
sequences (Theorem 11.32), (40) implies

2n

@1 lim f (sin 7 x — sin 14 1)? dx = 0.
k=0 %0

But a simple calculation shows that

2z
f (sin mx — sin 4, x)* dx = 2m,
0

which contradicts (41).
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Another question is whether every convergent sequence contains a
uniformly convergent subsequence. Qur next example will show that this
need not be so, even if the sequence is uniformly bounded on a compact set.
(Example 7.6 shows that a sequence of bounded functions may converge
without being uniformly bounded; but it is trivial to see that uniform conver-
gence of a sequence of bounded functions implies uniform boundedness.)

7.21 Example Let

x2

M=

Then [f,(x)| <1, so that{f,} is uniformly bounded on [0, 1]. Also
Hm f,(x) =0 0O<x<1),

n=w

O<x<l,n=1,23,..)

but

f(%) =1 (=123..)

so that no subsequence can converge uniformly on [0, 1].

The concept which is needed in this connection is that of equicontinuity;
it is given in the following definition.

7.22 Definition A family # of complex functions f defined on a set E in a
metric space X is said to be equicontinuous on E if for every € > 0 there exists a
¢ > 0 such that

If) -/ <e

whenever d(x, y) <8,x € E, y € E, and fe #. Here d denotes the metric of X.

It is clear that every member of an equicontinuous family is uniformly
continuous.

The sequence of Example 7.21 is not equicontinuous.

Theorems 7.24 and 7.25 will show that there is a very close relation
between equicontinuity, on the one hand, and uniform convergence of sequences
of continuous functions, on the other. But first we describe a selection process
which has nothing to do with continuity.

7.23 Theorem If{f,} is a pointwise bounded sequence of complex functions on
a countable set E, then {f,} has a subsequence {f, } such that {f, (x)} converges for
every x € E.
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Proof Let{x},i=1,2,3,...,bethe points of E, arranged in a sequence.
Since {f,(x;)} is bounded, there exists a subsequence, which we shall
denote by {f; i}, such that{f .(x,)} converges as k — o0.

Let us now consider sequences S,, S,, S3, ..., which we represent
by the array

St fin fiz fis fis
Syt faqx Ja2 f2.3 f2,4
Syt fiyx Si2 fis Sia

..................

and which have the following properties:

(a) S, is asubsequence of S,_,, forn=2,3,4,....

®) {fuu(x,)} converges, as k— oo (the boundedness of {f,(x,)}

makes it possible to choose S, in this way);

(¢) The order in which the functions appear is the same in each se-

quence; i.e., if one function precedes another in S;, they are in the same

relation in every S,, until one or the other is deleted. Hence, when

going from one row in the above array to the next below, functions

may move to the left but never to the right.

We now go down the diagonal of the array; i.e., we consider the
sequence
St fin Sfaz Sfa3 faarr

By (c), the sequence S (except possibly its first n — 1 terms) is a sub-
sequence of S,, for n=1,2,3,.... Hence (b) implies that {f, ,(x;)}
converges, as n — oo, for every x; € E.

7.24 Theorem If K is a compact metric space, if f, e €(K) for n=1,2,3, ...,
and if {f,} converges uniformly on K, then{f,} is equicontinuous on K.

Proof Let ¢ >0 be given. Since {f,} converges uniformly, there is an
integer N such that

Ifa—fxll <& (@ >N).

(See Definition 7.14.) Since continuous functions are uniformly con-
tinuous on compact sets, there is a 6 > 0 such that

Ifix) i) | <e

ifl<i<N and d(x,y)<?é.
If n > N and d(x, y) < 4, it follows that

Ifa¥) = /)| < 1fux) =) | + ) = /O | + 160) = £0) | < 3e.

In conjunction with (43), this proves the theorem.
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7.25 Theorem If K is compact, if f, € €(K) for n=1,2,3,..., and if {} is
pointwise bounded and equicontinuous on K, then

(44)

(45)

(46)

(a) {f.} is uniformly bounded on K,
(b) {f.} contains a uniformly convergent subsequence.

Proof

(@) Let e>0 be given and choose § > 0, in accordance with Definition
7.22, so that

1) =£0) | <&

for all n, provided that d(x, y) < 6.

Since K is compact, there are finitely many points p,, ..., p, in K
such that to every x € K corresponds at least one p; with d(x, p;) < .
Since{f,} is pointwise bounded, there exist M, < oo such that |f,(p;)| < M,
for all n. If M=max(M,,...,M,), then [f(x)|<M +¢ for every
x € K. This proves (a).
(b) Let E be a countable dense subset of K. (For the existence of such a
set E, see Exercise 25, Chap. 2.) Theorem 7.23 shows that {f,} has a
subsequence { f, } such that{f, (x)} converges for every x € E.

Put f,, =g;, to simplify the notation. We shall prove that {g,}
converges uniformly on K.

Let ¢ >0, and pick 6 > 0 as in the beginning of this proof. Let
V(x, 6) be the set of all y € K with d(x, y) <. Since E is dense in K, and
K is compact, there are finitely many points x,, ..., x,, in E such that

KcV(x,6)u: v Vix,,9).

Since {g,(x)} converges for every x € E, there is an integer N such
that

g:(x) — 9,(x;) | <&

whenever i > N,j> N, 1 <s <m.
If x € K, (45) shows that x € V(x,, ) for some s, so that

19:(x) — gi(x5) | <e

for every i. If i > N and j > N, it follows from (46) that

94x) — g,(x)| < 1g:(x) — gi(xs) | +1940x) — g(x5) | + 1g;(x5) — g,(x) |
< 3e.

This completes the proof.
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THE STONE-WEIERSTRASS THEOREM

7.26 Theorem If f is a continuous complex function on [a, b], there exists a
sequence of polynomials P, such that

lim P,(x) = f(x)

uniformly on [a, b]. If f is real, the P, may be taken real.

This is the form in which the theorem was originally discovered by
Weierstrass.

Proof We may assume, without loss of generality, that [a, b] = [0, 1].
We may also assume that f(0) =f(1) = 0. For if the theorem is proved
for this case, consider

g(x) =) =fO) = x[f() —fO)] O=<x<1).

Here g(0) = g(1) =0, and if g can be obtained as the limit of a uniformly
convergent sequence of polynomials, it is clear that the same is true for f,
since f — g is a polynomial.

Furthermore, we define f(x) to be zero for x outside [0, 1]. Then f
is uniformly continuous on the whole line.

We put

(47) Qn(x) = cn(l - xZ)n (n = 1’ 21 3a . ')’
where c, is chosen so that

i
(48) [ omda=1 @=123..)
-1
We need some information about the order of magnitude of c,. Since

fl a -xZ)"dx=2f1(1 —xz)"deZFN;(l — x?) dx
0 0

-1

vn
ZZIU (I —nx?) dx
0

4
BENG
>21,

n

it follows from (48) that
(49) ¢y </n.
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(50)

(1)

The inequality (1 — x?)" > 1 — nx? which we used above is easily
shown to be true by considering the function

(1= x»)" =14 nx?

which is zero at x = 0 and whose derivative is positive in (0, 1).
For any ¢ > 0, (49) implies

0. < /n(1=-8% (b< x| <),

so that O, — 0 uniformly in 6 < |x| < 1.
Now set

1
P(x) = f fx+00M0dt  O0<x<]).
-1
Our assumptions about f show, by a simple change of variable, that
1-x 1
Py =[S+ 000 dt= [ [0 - %) d,
and the last integral is clearly a polynomial in x. Thus {P,} is a sequence

of polynomials, which are real if fis real.
Given & > 0, we choose § > 0 such that |y — x| < & implies

) -1 <5

Let M =sup |f(x)|. Using (48), (50), and the fact that Q,(x) >0, we
see that for0 <x <1,

1
P =101 = | [ [fx+0 - f010,0)
1
<[ MG +0~10)100) d
-4 & ] 1
<2M| _Qndi+3 [ O di+2m L 0.(1) dt

€
<4M\/n(1 -5 +5

<é

for all large enough n, which proves the theorem.

It is instructive to sketch the graphs of Q, for a few values of n; also,

note that we needed uniform continuity of f to deduce uniform convergence
of {P,}.
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In the proof of Theorem 7.32 we shall not need the full strength of
Theorem 7.26, but only the following special case, which we state as a corollary.

7.27 Corollary For every interval [— a, a] there is a sequence of real poly-
nomials P, such that P,(0) = 0 and such that
lim P,(x) = |x]|

uniformly on [ - a, a).

Proof By Theorem 7.26, there exists a sequence {P,*} of real polynomials
which converges to |x| uniformly on [— a, a]. In particular, P}(0)— 0
as n — 00. The polynomials

P,,(x)=P;"(x)—P,',"(0) (n=1,23,..)
have desired properties.

We shall now isolate those properties of the polynomials which make
the Weierstrass theorem possible.

7.28 Definition A family o of complex functions defined on a set E is said
to be an algebra if () f + g € o, (ii) fg € o, and (i) ¢f e o for all fe of, g €
and for all complex constants ¢, that is, if & is closed under addition, multi-
plication, and scalar multiplication. We shall also have to consider algebras of
real functions; in this case, (iii) is of course only required to hold for all real c.

If o/ has the property that f € o whenever f, e (n=1,2,3,...) and
[, = f uniformly on E, then & is said to be uniformly closed.

Let # be the set of all functions which are limits of uniformly convergent
sequences of members of &/. Then Z is called the uniform closure of of. (See
Definition 7.14.)

For example, the set of all polynomials is an algebra, and the Weierstrass
theorem may be stated by saying that the set of continuous functions on [a, b]
is the uniform closure of the set of polynomials on [a, b].

7.29 Theorem Let # be the uniform closure of an algebra of of bounded
Sunctions. Then & is a uniformly closed algebra.

Proof If fe# and g € &, there exist uniformly convergent sequences
{f.},{g,} such that f, —» f,g,—¢g and f, € &, g, € &. Since we are dealing
with bounded functions, it is easy to show that

Sotgnof+9,  fugn—-fo,  chodf,

where c is any constant, the convergence being uniform in each case.
Hence f+g € &, fg € #, and ¢f € B, so that & is an algebra.
By Theorem 2.27, # is (uniformly) closed.
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7.30 Definition Let o be a family of functions on a set E. Then s is said
to separate points on E if to every pair of distinct points x,, x, € E there corre-
sponds a function f € & such that f(x,) # f(x2).

If to each x € E there corresponds a function g € & such that g(x) # 0,
we say that s/ vanishes at no point of E.

The algebra of all polynomials in one variable clearly has these properties
on R!. An example of an algebra which does not separate points is the set of
all even polynomials, say on [— 1, 1], since f(—x) = f(x) for every even function f.

The following theorem will illustrate these concepts further.

7.31 Theorem Suppose sf is an algebra of functions on a set E, of separates
points on E, and of vanishes at no point of E. Suppose x,, x, are distinct points
of E, and ¢y, c, are constants (real if of is a real algebra). Then of contains a
Junction f such that

fx)=¢y, fx)=c;.

Proof The assumptions show that s contains functions g, h, and k
such that

gx) #g(x2),  h(x) #0,  k(x2) #0.
Put
u=gk —g(xpk, v=gh—g(x)h
Then u e o, v € o, u(x,) = v(x;) =0, u(x,;) # 0, and v(x,) # 0. Therefore

_ap oo
4 v(xy) * u(x,)

has the desired properties.

We now have all the material needed for Stone’s generalization of the
Weierstrass theorem.

7.32 Theorem Let of be an algebra of real continuous functions on a compact
set K. If o separates points on K and if of vanishes at no point of K, then the
uniform closure B of o consists of all real continuous functions on K.

We shall divide the proof into four steps.

STEP 1 Iffe B, then |f|leB.

Proof Let
(52) a=sup [f(x)| (xeKkK)
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and let ¢ >0 be given. By Corollary 7.27 there exist real numbers
€1y .+ - € SUch that

(53) <eg (—a<y<a).

Yoy =1yl
i=1
Since £ is an algebra, the function

g=Ycf

i=1

is a member of #. By (52) and (53), we have
lgx) — /()| <e  (xeK).

Since 4 is uniformly closed, this shows that |f| € #.

STEP 2 Iffe ® and g € B, then max(f,g) € # and min(f,g) € 8.

By max (f, g) we mean the function 4 defined by

() S 2 g0,
hx) = {g(x) if £ (x) < (),

and min (f, g) is defined likewise.

Proof Step 2 follows from step 1 and the identities

max(f,g)=j-:—;;g+ |f;9|’
min(f,q)=£-;ig— 'f;gl'

By iteration, the result can of course be extended to any finite set
of functions: If f], ..., f, € #, then max (f}, ..., f,) € #, and

min (f}, ..., f,) € 8.

STEP 3 Given a real function f, continuous on K, a point x € K, and ¢ > 0, there
exists a function g, € # such that g (x) = f(x) and

(54) g.()>f()—¢e (teK).

Proof Since of = # and o satisfies the hypotheses of Theorem 7.31 so
does #. Hence, for every y € K, we can find a function 4, € # such that

(35) h(x)=1(x), b)) =f0).
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By the continuity of A, there exists an open set J,, containing y,

such that
(56) h(@)>f(t)—e (tel).
Since K is compact, there is a finite set of points y,, ..., y, such that
7 KcJ, v--uld,.
Put

g.=max(h,,...,h,).
Bystep 2,9, € 4, and the relations (55) to (57) show that g, has the other
required properties.

STEP 4  Given a real function f, continuous on K, and & > 0, there exists a function
h € & such that

(58) lh(x) -fx)| <& (xeK).

Since & is uniformly closed, this statement is equivalent to the conclusion
of the theorem.

Proof Let us consider the functions g,, for each x € K, constructed in
step 3. By the continuity of g,, there exist open sets ¥, containing x,

such that
(59) g:)<fO+e  (teV)
Since K is compact, there exists a finite set of points x,,..., X,
such that
(60) KcV, vV, .
Put

h=min(g,,,...,d,,)
By step 2, h € #, and (54) implies

(61) h@t) > f()—e  (teK),
whereas (59) and (60) imply
(62) ht)<fi)+e (tek).

Finally, (58) follows from (61) and (62).
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Theorem 7.32 does not hold for complex algebras. A counterexample is

given in Exercise 21. However, the conclusion of the theorem does hold, even
for complex algebras, if an extra condition is imposed on &/, namely, that &/
be self-adjoint. This means that for every fe o its complex conjugate f must

also belong to ./; f is defined by f(x) = f(x).

7.33 Theorem Suppose o is a self-adjoint algebra of complex continuous
functions on a compact set K, of separates points on K, and sf vanishes at no
point of K. Then the uniform closure & of &4 consists of all complex continuous
functions on K. In other words, o is dense €(K).

Proof Let o/ be the set of all real functions on K which belong to <.

If fe o and f=u + iv, with u, v real, then 2u = f + f, and since &/
is self-adjoint, we see that u e o/z. If x; # x,, there exists fe o/ such
that f(x;) = 1, f(x,) = 0; hence 0 = u(x,) # u(x,) = 1, which shows that
& separates points on K. If x € K, then g(x) # 0 for some g € o, and
there is a complex number A such that Ag(x) > 0; if f = Ag, f=u + iv, it
follows that u(x) > 0; hence &/ vanishes at no point of X.

Thus &/ satisfies the hypotheses of Theorem 7.32. It follows that
every real continuous function on X lies in the uniform closure of &y,
hence lies in #. If fis a complex continuous function on K, f=u +iv,
then u e &, v e &, hence f e #. This completes the proof.

EXERCISES

L

2.

Prove that every uniformly convergent sequence of bounded functions is uni-
formly bounded.

If {f,} and {g.} converge uniformly on a set E, prove that {f, 4+ g.} converges
uniformly on E. If, in addition, {f,} and {g.} are sequences of bounded functions,
prove that {f,g.} converges uniformly on E.

. Construct sequences {f,}, {g.} which converge uniformly on some set E, but such

that {f.g.} does not converge uniformly on E (of course, {f,g.} must converge on
E).

. Consider

® 1
0= 215w
For what values of x does the series converge absolutely? On what intervals does
it converge uniformly? On what intervals does it fail to converge uniformly ? Is f
continuous wherever the series converges? Is f bounded?
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5. Let

6

7

8.

9

1
0 (x<;—+——1-),
Sy ={sin*Z (1 < sl)
n(x)—<sn; n+l X '—1’
0 (l<x)-
n

Show that {f.} converges to a continuous function, but not uniformly. Use the
series I f, to show that absolute convergence, even for all x, does not imply uni-
form convergence.

Prove that the series

X2+ n
n2

converges uniformly in every bounded interval, but does not converge absolutely
for any value of x.
Forn=1,23,..., x real, put

=15

Show that {f,} converges uniformly to a function f, and that the equation
flx)= {i_l:nf.ﬁ(x)

is correct if x # 0, but false if x =0.

If

0 (x<0),
’(")==1 (x>0

if {x,} is a sequence of distinct points of (a, b), and if =|c.| converges, prove that
the series

) = :‘Zlc.. Ix—x) (a<x<b)

converges uniformly, and that f is continuous for every x # x,.
Let {f.} be a sequence of continuous functions which converges uniformly to a
function f on a set E. Prove that

lim fi(xn) = /(%)

for every sequence of points x, € E such that x, - x, and x € E, Is the converse of
this true?



10.

11.

12.

13.
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Letting (x) denote the fractional part of the real number x (see Exercise 16, Chap. 4,
for the definition), consider the function
2, (nx)
S(x)= P (x real).

Find all discontinuities of f, and show that they form a countable dense set.
Show that fis nevertheless Riemann-integrable on every bounded interval.
Suppose {f,}, {ga} are defined on E, and
(a) I f, has uniformly bounded partial sums;
(b) g.—0 uniformly on E;
(©) 9:1(x) = g2(x) = g3(x) = for every x € E.

Prove that I f,g, converges uniformly on E. Hint: Compare with Theorem
3.42,
Suppose g and fu(n = 1, 2, 3, ...) are defined on (0, ), are Riemann-integrable on
[t, T] whenever 0 <t < T < 0, | fu| <g, fs > f uniformly on every compact sub-
set of (0, o), and

f g(x) dx < .
[\]
Prove that

tim [ fix)dx= f £(x) dx.
n=wo [ [+
(See Exercises 7 and 8 of Chap. 6 for the relevant definitions.)

This is a rather weak form of Lebesgue’s dominated convergence theorem
(Theorem 11.32). Even in the context of the Riemann integral, uniform conver-
gence can be replaced by pointwise convergence if it is assumed that fe Z. (See
the articles by F. Cunningham in Math. Mag., vol. 40, 1967, pp. 179-186, and
by H. Kestelman in Amer. Math. Monthly, vol. 77, 1970, pp. 182-187.)

Assume that {f;} is a sequence of monotonically increasing functions on R! with
0 <fy(x) <1 for all x and all n.
(a) Prove that there is a function fand a sequence {n,} such that

S = fim fulx)

for every x € R'. (The existence of such a pointwise convergent subsequence is
usually called Helly’s selection theorem.)
(b) If, moreover, f is continuous, prove that f,, —f uniformly on compact sets.
Hint: (i) Some subsequence {f,} converges at all rational points r, say, to
f(r). (ii) Define f(x), for any x € R!, to be sup f(r), the sup being taken over all
r < x. (iii) Show that f,,(x) —f(x) at every x at which f is continuous. (This is
where monotonicity is strongly used.) (iv) A subsequence of {f,} converges at
every point of discontinuity of f since there are at most countably many such
points. This proves (a). To prove (b), modify your proof of (iii) appropriately.
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14.

15

-

16.

17

-

18.

19.

Let f be a continuous real function on R' with the following properties:
0<f(t) <1, f(t + 2) =f(¢) for every ¢, and

0 O<t<dH

fm::: G<t<)

Put ®(¢r) = (x(¢), ¥(¢)), where
X0)=Z27HGH ), A= 5273,

Prove that @ is continuous and that ® maps I = [0, 1] onto the unit square 12 < R2,
If fact, show that ® maps the Cantor set onto I2.
Hint: Each (xo0, yo) € I? has the form

© ©
x0=22-"a2n-19 y0=22—"a2n

n=} n=1

where each ¢, isO or 1. If
t0=213—'_1(2a‘)
=

show that f(3%¢,) = ai, and hence that x(to) = xo, ¥(to) = Yo.

(This simple example of a so-called *‘space-filling curve” is due to I. J.
Schoenberg, Bull. A.M.S., vol. 44, 1938, pp. 519.)
Suppose f'is a real continuous function on R, f,(¢) = f(nt) forn=1, 2,3, ..., and
{2} is equicontinuous on [0, 1]. What conclusion can you draw about f?
Suppose {f,} is an equicontinuous sequence of functions on a compact set X, and
{fu} converges pointwise on K. Prove that {f,} converges uniformly on X.
Define the notions of uniform convergence and equicontinuity for mappings into
any metric space. Show that Theorems 7.9 and 7.12 are valid for mappings into
any metric space, that Theorems 7.8 and 7.11 are valid for mappings into any
complete metric space, and that Theorems 7.10, 7.16, 7.17, 7.24, and 7.25 hold for
vector-valued functions, that is, for mappings into any R*.
Let {f,} be a uniformly bounded sequence of functions which are Riemann-inte-
grable on [a, b}, and put

Fy(x) = fxf,.(t) dt (@a<x<b).

Prove that there exists a subsequence {F,,} which converges uniformly on [a, b].
Let K be a compact metric space, let .S be a subset of €(K). Prove that § is compact
(with respect to the metric defined in Section 7.14) if and only if .S is uniformly
closed, pointwise bounded, and equicontinuous. (If S is not equicontinuous,
then S contains a sequence which has no equicontinuous subsequence, hence has
no subsequence that converges uniformly on X.)



20.

21.

22,

23.
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If f is continuous on [0, 1] and if
1
f fGxdx=0 (1=0,1,2,...),
V]

prove that f(x) =0 on [0, 1]. Hint: The integral of the product of f with any
1
polynomial is zero. Use the Weierstrass theorem to show that fo f3(x)dx=0.

Let K be the unif circle in the complex plane (i.e., the set of all z with |z| = 1), and
let & be the algebra of all functions of the form

fe = o @ rea

Then & separates points on K and ./ vanishes at no point of X, but nevertheless
there are continuous functions on K which are not in the uniform closure of /.
Hint: For every fe of

f " een df =0,

and this is also true for every fin the closure of &.
Assume f € Z() on [a, b], and prove that there are polynomials P, such that

b
lim | f— Pu|? de=0.
(Compare with Exercise 12, Chap. 6.)
Put Py = 0, and define, for n=0, 1,2, ...,
x2 — Pi(x)

Pyii(x) = Pu(x) + 2

Prove that
lim P.(x)= x|,
uniformly on [—1, 1].
(This makes it possible to prove the Stone-Weierstrass theorem without first

proving Theorem 7.26.)
Hint: Use the identity

]xl -—P..+1(x)=[|x{ _Pn(x)][l _ {xl ';Pn(x)]
to prove that 0 < P,(x) < P.+.(x) < |x| if |x| <1, and that
[x]\" 2
|| —Pn(x)S[xI(l——z—) <L

if |x] <1.
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24,

25.

Let X be a metric space, with metric d. Fix a point a € X. Assigntoeachpe X
the function f, defined by
fi(x)=d(x,p)—d(x,a) (x€X).

Prove that | f,(x)] <d(a, p) for all x € X, and that therefore f, € €(X).
Prove that
ILfe — foll = d(p, 9)

for all p,q € X.

If @(p) = f, it follows that @ is an isometry (a distance-preserving mapping)
of X onto ¥(X) < €(X).

Let Y be the closure of ®(X)in ¥(X). Show that Y is complete.

Conclusion: X is isometric to a dense subset of a complete metric space Y,
(Exercise 24, Chap. 3 contains a different proof of this.)
Suppose ¢ is a continuous bounded real function in the strip defined by
0<x <1, —w <y< . Prove that the initial-value problem

Y =6(xy), y0=c
has a solution. (Note that the hypotheses of this existence theorem are less stringent
than those of the corresponding uniqueness theorem; see Exercise 27, Chap. 5.)
Hint: Fixn, Fori=0,...,n, put x; = i/n. Let f, be a continuous function
on [0, 1] such that £,(0) = c,

Su(t) = d(xy, fulxr)) ifx, <t <xi4q,
and put
Au(t) = fu(t) — P2, £u(2)),

except at the points x;, where A,(t) = 0. Then
£ = ¢ + [ 190, A1) + M) d.

Choose M < « so that |¢| < M. Verify the following assertions.

@ |fa]l <M, |A)| <2M, A, € R, and | | < |c| + M = M,, say, on [0, 1], for
all n,

(b) {f,} is equicontinuous on [0, 1], since { fa] <M.

(¢) Some {f,,} converges to some f, uniformly on [0, 1].

(d) Since ¢ is uniformly continuous on the rectangle 0 <x <1, [y| < M,

B, fur(1)) > (1, £(2))

uniformly on [0, 1].
(e) An(t)~ 0 uniformly on [0, 1], since

Au(t) = ¢(xi, fulx)) — (2, fu(2))

in(xi, X141).
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(f) Hence
f=c+ fo 81, £(1)) dt.

This f is a solution of the given problem.
26. Prove an analogous existence theorem for the initial-value problem

Y =®(x,y), y0=c

where now ¢ € R, y € R¥, and @ is a continuous bounded mapping of the part of
R¥+1 defined by 0 < x < 1,y € R* into R*, (Compare Exercise 28, Chap. 5.) Hint:
Use the vector-valued version of Theorem 7.25.



