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Preface
This is the third edition of this text on survival analysis,
originally published in 1996. As in the first and second
editions, each chapter contains a presentation of its topic
in “lecture-book” format together with objectives, an out-
line, key formulae, practice exercises, and a test. The “lec-
ture-book” format has a sequence of illustrations and
formulae in the left column of each page and a script in
the right column. This format allows you to read the script
in conjunction with the illustrations and formulae that
highlight the main points, formulae, or examples being
presented.

This third edition has expanded the second edition by
adding one new chapter, additional sections and clarifica-
tions to several chapters, and a revised computer appendix.

The new chapter is Chapter 10, “Design Issues for
Randomized Trials,” which considers how to compute
sample size when designing a randomized trial involving
time-to-event data.

We have expanded Chapter 1 to clarify the distinction
between random, independent, and noninformative cen-
soring assumptions often made about survival data. We
also added a section in Chapter 1 that introduces the
Counting Process data layout that is discussed in later
chapters (3, 6, and 8).

We added sections in Chapter 2 to describe how to obtain
confidence intervals for the Kaplan–Meier (KM) curve and
the median survival time obtained from a KM curve.

We have expanded Chapter 3 on the Cox Proportional
Hazards (PH) Model by describing the use of age as the
time scale instead of time-on-follow-up as the outcome
variable. We also added a section that clarifies how to
obtain confidence intervals for PH models that contain
product terms that reflect effect modification of exposure
variables of interest.
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We have added sections that describe the derivation of the
(partial) likelihood functions for thestratifiedCox (SC)model
in Chapter 5 and the extended Coxmodel in Chapter 6.

We have expanded Chapter 9 on competing risks to
describe the Fine and Gray model for a subdistribution
hazard that allows for a multivariable analysis involving a
cumulative incidence curve (CIC). We also added a numer-
ical example to illustrate the calculation of a conditional
probability curve (CPC) defined from a CIC.

The Computer Appendix in the second edition of this text
provided step-by-step instructions for using the computer
packages STATA, SAS, and SPSS to carry out the survival
analyses presented in the main text. We expanded this
Appendix to include the free internet-based computer soft-
ware package call R. We have also updated our description
of STATA (version 10.0), SAS (version 9.2), and SPSS
(version PASW 18). The application of these computer
packages to survival data is described in separate self-
contained sections of the Computer Appendix, with the
analysis of the same datasets illustrated in each section.

In addition to the above new material, the original nine
chapters have been modified slightly to correct for errata
in the second edition and to add or modify exercises
provided at the end of some chapters.

The authors’ Web site for this textbook has the following
Web-link: http://www.sph.emory.edu/dklein/surv3.htm.

This Web site includes information on how to order this
second edition from the publisher and a freely download-
able zip-file containing data-files for examples used in the
textbook.

Suggestions
for Use

This text was originally intended for self-study, but in the
15 years since the first edition was published, it has also
been effectively used as a text in a standard lecture-type
classroom format. The text may also be used to supplement
material covered in a course or to review previously
learned material in a self-instructional course or self-
planned learning activity. A more individualized learning
program may be particularly suitable to a working profes-
sional who does not have the time to participate in a regu-
larly scheduled course.
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In working with any chapter, the learner is encouraged
first to read the abbreviated outline and the objectives
and then work through the presentation. The reader is
then encouraged to read the detailed outline for a summary
of the presentation, work through the practice exercises,
and, finally, complete the test to check what has been
learned.

Recommended
Preparation

The ideal preparation for this text on survival analysis is a
course on quantitative methods in epidemiology and a
course in applied multiple regression. Also, knowledge of
logistic regression, modeling strategies, and maximum-
likelihood techniques is crucial for the material on the
Cox and parametric models described in Chapters 3–9.

Recommended references on these subjects, with sug-
gested chapter readings are:

Kleinbaum D, Kupper L, Nizam A, and Muller K, Applied
Regression Analysis and Other Multivariable Methods,
Fourth Edition, Cengage Publishers, 2007, Chapters 1–16,
22–23.

Kleinbaum D, Kupper L and Morgenstern H, Epidemio-
logic Research: Principles and Quantitative Methods, John
Wiley and Sons, Publishers, New York, 1982, Chapters
20–24.

Kleinbaum D and Klein M, Logistic Regression: A Self-
Learning Text, Third Edition, Springer Publishers,
New York, 2010, Chapters 4–7, 11.

Kleinbaum D, ActivEpi-A CD Rom Electronic Textbook on
Fundamentals of Epidemiology, Springer Publishers,
New York, 2002, Chapters 13–15.

A first course on the principles of epidemiologic research
would be helpful, since all chapters in this text are written
from the perspective of epidemiologic research. In parti-
cular, the reader should be familiar with the basic charac-
teristics of epidemiologic study designs, and should have
some idea of the frequently encountered problem of
controlling for confounding and assessing interaction/
effect modification. The above reference, ActivEpi, pro-
vides a convenient and hopefully enjoyable way to review
epidemiology.
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Introduction This introduction to survival analysis gives a descriptive
overview of the data analytic approach called survival
analysis. This approach includes the type of problem
addressed by survival analysis, the outcome variable con-
sidered, the need to take into account “censored data,”
what a survival function and a hazard function represent,
basic data layouts for a survival analysis, the goals of sur-
vival analysis, and some examples of survival analysis.

Because this chapter is primarily descriptive in content, no
prerequisite mathematical, statistical, or epidemiologic
concepts are absolutely necessary. A first course on the
principles of epidemiologic research would be helpful. It
would also be helpful if the reader has had some experi-
ence reading mathematical notation and formulae.

Abbreviated
Outline

The outline below gives the user a preview of the material
to be covered by the presentation. A detailed outline for
review purposes follows the presentation.

I. What is survival analysis? (pages 4–5)

II. Censored data (pages 5–8)

III. Terminology and notation (pages 9–15)

IV. Goals of survival analysis (page 16)

V. Basic data layout for computer (pages 16–23)

VI. Basic data layout for understanding analysis
(pages 23–28)

VII. Descriptive measures of survival experience
(pages 28–30)

VIII. Example: Extended remission data (pages 30–33)

IX. Multivariable example (pages 33–35)

X. Math models in survival analysis (pages 35–37)

XI. Censoring assumptions (pages 37–43)

2 1. Introduction to Survival Analysis



Objectives Upon completing the chapter, the learner should be able to:

1. Recognize or describe the type of problem addressed
by a survival analysis.

2. Define what is meant by censored data.

3. Define or recognize right-censored data.

4. Give three reasons why data may be censored.

5. Define, recognize, or interpret a survivor function.

6. Define, recognize, or interpret a hazard function.

7. Describe the relationship between a survivor function
and a hazard function.

8. State three goals of a survival analysis.

9. Identify or recognize the basic data layout for the
computer; in particular, put a given set of survival
data into this layout.

10. Identify or recognize the basic data layout, or
components thereof, for understanding modeling
theory; in particular, put a given set of survival data
into this layout.

11. Interpret or compare examples of survivor curves or
hazard functions.

12. Given a problem situation, state the goal of a survival
analysis in terms of describing how explanatory
variables relate to survival time.

13. Compute or interpret average survival and/or average
hazard measures from a set of survival data.

14. Define or interpret the hazard ratio defined from
comparing two groups of survival data.

Objectives 3



Presentation

This presentation gives a general introduction
to survival analysis, a popular data analysis
approach for certain kinds of epidemiologic
and other data. Here we focus on the problem
addressed by survival analysis, the goals of a
survival analysis, key notation and terminol-
ogy, the basic data layout, and some examples.

I. What Is Survival
Analysis?

We begin by describing the type of analytic
problem addressed by survival analysis. Gener-
ally, survival analysis is a collection of statisti-
cal procedures for data analysis for which the
outcome variable of interest is time until an
event occurs.

By time, we mean years, months, weeks, or
days from the beginning of follow-up of an
individual until an event occurs; alternatively,
time can refer to the age of an individual when
an event occurs.

By event, we mean death, disease incidence,
relapse from remission, recovery (e.g., return to
work) or any designated experience of interest
that may happen to an individual.

Although more than one event may be consid-
ered in the same analysis, we will assume that
only one event is of designated interest. When
more than one event is considered (e.g., death
from any of several causes), the statistical prob-
lem can be characterized as either a recurrent
event or a competing risk problem, which are
discussed in Chaps. 8 and 9, respectively.

In a survival analysis, we usually refer to the
time variable as survival time, because it gives
the time that an individual has “survived” over
some follow-up period. We also typically refer
to the event as a failure, because the event of
interest usually is death, disease incidence, or
some other negative individual experience.
However, survival time may be “time to return
to work after an elective surgical procedure,” in
which case failure is a positive event.

the problem

FOCUS

goals

data layout
examples

terminology and
notation

Outcome variable: Time until an
event occurs

TIMEStart follow-up Event

Event: death
disease
relapse
recovery

Assume 1 event

> 1 event
Recurrent event

or
Competing risk

Time � survival time

Event � failure
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Five examples of survival analysis problems
are briefly mentioned here. The first is a study
that follows leukemia patients in remission
over several weeks to see how long they stay
in remission. The second example follows a
disease-free cohort of individuals over several
years to see who develops heart disease. A third
example considers a 13-year follow-up of an
elderly population (60þ years) to see how long
subjects remain alive. A fourth example follows
newly released parolees for several weeks to
see whether they get rearrested. This type of
problem is called a recidivism study. The fifth
example traces how long patients survive after
receiving a heart transplant.

All of the above examples are survival analysis
problems because the outcome variable is time
until an event occurs. In the first example,
involving leukemia patients, the event of inter-
est (i.e., failure) is “going out of remission,”
and the outcome is “time in weeks until a
person goes out of remission.” In the second
example, the event is “developing heart dis-
ease,” and the outcome is “time in years until
a person develops heart disease.” In the third
example, the event is “death” and the outcome
is “time in years until death.” Example four,
a sociological rather than a medical study, con-
siders the event of recidivism (i.e., getting rear-
rested), and the outcome is “time in weeks until
rearrest.” Finally, the fifth example considers
the event “death,” with the outcome being
“time until death (in months from receiving
a transplant).”

We will return to some of these examples later
in this presentation and in later presentations.

II. Censored Data Most survival analyses must consider a key
analytical problem called censoring. In essence,
censoring occurs when we have some informa-
tion about individual survival time, butwedon’t
know the survival time exactly.

EXAMPLE

1. Leukemia patients/time in remission
(weeks)

2. Disease-free cohort/time until heart
disease (years)

3. Elderly (60þ) population/time until
death (years)

4. Parolees (recidivism study)/time
until rearrest (weeks)

5. Heart transplants/time until death
(months)

Censoring: don’t know survival
time exactly

Presentation: II. Censored Data 5



As a simple example of censoring, consider
leukemia patients followed until they go out
of remission, shown here as X. If for a given
patient, the study ends while the patient is still
in remission (i.e., doesn’t get the event), then
that patient’s survival time is considered cen-
sored. We know that, for this person, the sur-
vival time is at least as long as the period that
the person has been followed, but if the person
goes out of remission after the study ends,
we do not know the complete survival time.

There are generally three reasons why censor-
ing may occur:

(1) a person does not experience the event
before the study ends;

(2) a person is lost to follow-up during the
study period;

(3) a person withdraws from the study
because of death (if death is not the event
of interest) or some other reason (e.g.,
adverse drug reaction or other competing
risk)

These situations are graphically illustrated
here. The graph describes the experience of
several persons followed over time. An X
denotes a person who got the event.

Person A, for example, is followed from the
start of the study until getting the event at
week 5; his survival time is 5 weeks and is not
censored.

Person B also is observed from the start of the
study but is followed to the end of the 12-week
study period without getting the event; the sur-
vival time here is censored because we can say
only that it is at least 12 weeks.

Person C enters the study between the second
and 3rd week and is followed until he with-
draws from the study at 6 weeks; this person’s
survival time is censored after 3.5 weeks.

Person D enters at week 4 and is followed for
the remainder of the study without getting the
event; this person’s censored time is 8 weeks.

EXAMPLE

Leukemia patients in remission:

X

Study
start

Study
end

Why censor?

1. study ends – no event
2. lost to follow-up
3. withdraws

EXAMPLE

Weeks

Withdrawn

Study end

Study end

Lost

T=5

T=12

T=3.5

T = 8

T = 6

T = 3.5

2

A

B

C

D

E

F

4 6 8 10 12

X

X

X ¼) Event occurs
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Person E enters the study at week 3 and
is followed until week 9, when he is lost to
follow-up; his censored time is 6 weeks.

Person F enters at week 8 and is followed until
getting the event at week 11.5. As with person
A, there is no censoring here; the survival time
is 3.5 weeks.

SUMMARY
Event: A, F
Censored: B, C, D, E

In summary, of the six persons observed, two
get the event (persons A and F) and four are
censored (B, C, D, and E).

A table of the survival time data for the six
persons in the graph is now presented. For
each person, we have given the corresponding
survival time up to the event’s occurrence or up
to censorship. We have indicated in the last
column whether this time was censored or not
(with 1 denoting failed and 0 denoting cen-
sored). For example, the data for person C is a
survival timeof 3.5 and a censorship indicator of
0, whereas for person F the survival time is 3.5
and the censorship indicator is 1. This table is a
simplified illustration of the type of data to be
analyzed in a survival analysis.

Notice in our example that for each of the four
persons censored, we know that the person’s
true survival time becomes incomplete at the
right side of the follow-up period, occurring
when the study ends or when the person is
lost to follow-up or is withdrawn. We generally
refer to this kind of data as right-censored.
For these data, the complete survival time
interval, which we don’t really know, has been
cut off (i.e., censored) at the right side of the
observed survival time interval. Although data
can also be left-censored, most survival data is
right-censored.

Person
Survival

time
Failed (1);

Censored (0)
A 5 1

0

0

0

0

1

12

3.5

8

6

3.5

B

C

D

E

F

Right-censored: true survival time
is equal to or greater than observed
survival time

Weeks
2

A

B

C

D

E

F

4 6 8 10 12

Withdrawn

Study end

Study end

RIGHT
CENSORED

Lost

x

x

Presentation: II. Censored Data 7



Left-censored: data can occur when a person’s
true survival time is less than or equal to that
person’s observed survival time. For example,
if we are following persons until they become
HIV positive, we may record a failure when a
subject first tests positive for the virus. How-
ever, we may not know the exact time of first
exposure to the virus, and therefore do not
know exactly when the failure occurred. Thus,
the survival time is censored on the left side
since the true survival time, which ends at
exposure, is shorter than the follow-up time,
which ends when the subject’s test is positive.

In other words, if a person is left-censored
at time t, we know they had an event between
time 0 and t, but we do not know the exact time
of event.

Survival analysis data can also be interval-
censored, which can occur if a subject’s true
(but unobserved) survival time is within a
certain known specified time interval. As an
example, again considering HIV surveillance,
a subject may have had two HIV tests, where
he/she was HIV negative at the time (say, t1) of
the first test and HIV positive at the time (t2)
of the second test. In such a case, the subject’s
true survival time occurred after time t1 and
before time t2, i.e., the subject is interval-
censored in the time interval (t1, t2).

Interval-censoring actually incorporates both
right-censoring and left-censoring as special
cases. Left-censored data occur whenever the
value of t1 is 0 and t2 is a known upper bound
on the true survival time. In contrast, right-
censored data occurs whenever the value of t2
is infinity, and t1 is a known lower bound on
the true survival time.

If an individual is right-censored due to a com-
peting event (e.g., death from another cause),
then in this context, we consider what the true
survival time would have been if the competing
event hadnot occurred. Inotherwords,whenwe
state that the value of the upper bound for the
true survival time is infinity for right-censored
data, we are considering what would have
occurred in the absence of a competing risk.
Competing risks are fully discussed inChapter 9.

Left-censored: true survival time
is less than or equal to the observed
survival time

HIV +
test

Time
t0

HIV exposure

? 

Event occurs between 0 and t
but

do not know the exact time.

Interval-censored: true survival
time is within a known time interval

HIV -
test

t1

HIV +
test

t2

HIV exposure

? 
Time

0

Left censoring ) t1 ¼ 0; t2 ¼ upper bound

Right censoring ) t1 ¼ lower bound; t2 ¼ 1

Right-censored due to competing risk,
e.g., death from another cause

+
t2 ¼ 1

gives upper bound for true survival time
assuming that competing risk had not

occurred.
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III. Terminology and
Notation

We are now ready to introduce basic mathe-
matical terminology and notation for survival
analysis. First, we denote by a capital T the
random variable for a person’s survival time.
Since T denotes time, its possible values include
all nonnegative numbers; that is, T can be any
number equal to or greater than zero.

Next, we denote by a small letter t any spe-
cific value of interest for the random variable
capital T. For example, if we are interested in
evaluating whether a person survives for more
than 5 years after undergoing cancer therapy,
small t equals 5; we then ask whether capital T
exceeds 5.

Finally, we denote the small letter d to define a
(0,1) random variable indicating either failure
or censorship. That is, d ¼ 1 for failure if the
event occurs during the study period, or d ¼
0 if the survival time is censored by the end of
the study period. Note that if a person does not
fail, that is, does not get the event during the
study period, censorship is the only remaining
possibility for that person’s survival time. That
is, d ¼ 0 if and only if one of the following
happens: a person survives until the study
ends, a person is lost to follow-up, or a person
withdraws during the study period.

Wenext introduce anddescribe twoquantitative
terms considered in any survival analysis. These
are the survivor function, denoted by S(t), and
the hazard function, denoted by h(t).

The survivor function S(t) gives the probability
that a person survives longer than some speci-
fied time t: that is, S(t) gives the probability
that the random variable T exceeds the speci-
fied time t.

The survivor function is fundamental to a
survival analysis, because obtaining survival
probabilities for different values of t provides
crucial summary information from survival
data.

random variable

T = survival time (T ≥ 0)

t ¼ specific value for T

EXAMPLE

Survives > 5 years?
T > t ¼ 5

d ¼ (0, 1) random variable

¼ 1 if failure

0 censored

�

� study ends
� lost to follow-up
� withdraws

S(t) ¼ survivor function
h(t) ¼ hazard function

S(t) ¼ P(T > t)

t S(t)

1 S(1) ¼ P(T > 1)
2 S(2) ¼ P(T > 2)
3 S(3) ¼ P(T > 3)
� �
� �
� �

Presentation: III. Terminology and Notation 9



Theoretically, as t ranges from 0 up to infinity,
the survivor function can be graphed as a
smooth curve. As illustrated by the graph,
where t identifies the X-axis, all survivor func-
tions have the following characteristics:

� they are nonincreasing; that is, they head
downward as t increases;

� at time t ¼ 0, S(t) ¼ S(0) ¼ 1; that is, at the
start of the study, since no one has gotten
the event yet, the probability of surviving
past time 0 is one;

� at time t ¼ 1, S(t) ¼ S(1) ¼ 0; that is,
theoretically, if the study period increased
without limit, eventually nobody would
survive, so the survivor curve must
eventually fall to zero.

Note that these are theoretical properties of
survivor curves.

In practice, when using actual data, we usually
obtain graphs that are step functions, as illu-
strated here, rather than smooth curves. More-
over, because the study period is never infinite
in length and there may be competing risks for
failure, it is possible that not everyone studied
gets the event. The estimated survivor function,
denoted by a caret over the S in the graph, thus
may not go all the way down to zero at the end
of the study.

The hazard function, denoted by h(t), is given
by the formula: h(t) equals the limit, as Dt
approaches zero, of a probability statement
about survival, divided by Dt, where Dt denotes
a small interval of time. This mathematical for-
mula is difficult to explain in practical terms.

Theoretical S(t):

S(0) = 1

S(t)
S(• ) = 0

•

1

0 t

Ŝ(t) in practice:

S(t)

Study endt0

1

h tð Þ ¼ lim
Dt!0

P t � T < tþ DtjT � tð Þ
Dt

10 1. Introduction to Survival Analysis



Before getting into the specifics of the formula,
we give a conceptual interpretation. The haz-
ard function h(t) gives the instantaneous
potential per unit time for the event to
occur, given that the individual has survived
up to time t. Note that, in contrast to the survi-
vor function, which focuses on not failing, the
hazard function focuses on failing, that is, on
the event occurring. Thus, in some sense, the
hazard function can be considered as giving
the opposite side of the information given by
the survivor function.

To get an idea of what we mean by instanta-
neous potential, consider the concept of veloc-
ity. If, for example, you are driving in your car
and you see that your speedometer is register-
ing 60 mph, what does this reading mean?
It means that if in the next hour, you continue
to drive this way, with the speedometer exactly
on 60, you would cover 60 miles. This reading
gives the potential, at the moment you have
looked at your speedometer, for how many
miles you will travel in the next hour. However,
because you may slow down or speed up or
even stop during the next hour, the 60-mph
speedometer reading does not tell you the
number of miles you really will cover in the
next hour. The speedometer tells you only
how fast you are going at a given moment;
that is, the instrument gives your instanta-
neous potential or velocity.

Similar to the idea of velocity, a hazard func-
tion h(t) gives the instantaneous potential at
time t for getting an event, like death or some
disease of interest, given survival up to time t.
The “given” part, that is, surviving up to time t,
is analogous to recognizing in the velocity
example that the speedometer reading at a
point in time inherently assumes that you have
already traveled some distance (i.e., survived)
up to the time of the reading.

h(t) ¼ instantaneous potential

S(t): not failing
h(t): failing

FOCUS

60

Velocity at time t

Instantaneous potential

h(t)
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In mathematical terms, the given part of the
formula for the hazard function is found in
the probability statement in the numerator to
the right of the limit sign. This statement is a
conditional probability because it is of the
form, “P of A, given B,” where the P denotes
probability and where the long vertical line
separating A from B denotes “given.” In the
hazard formula, the conditional probability
gives the probability that a person’s survival
time, T, will lie in the time interval between
t and t þ Dt, given that the survival time is
greater than or equal to t. Because of the
given sign here, the hazard function is some-
times called a conditional failure rate.

We now explain why the hazard is a rate rather
than a probability. Note that in the hazard
function formula, the expression to the right
of the limit sign gives the ratio of two quanti-
ties. The numerator is the conditional proba-
bility we just discussed. The denominator is Dt,
which denotes a small time interval. By this
division, we obtain a probability per unit
time, which is no longer a probability but a
rate. In particular, the scale for this ratio is
not 0 to 1, as for a probability, but rather
ranges between 0 and infinity, and depends
on whether time is measured in days, weeks,
months, or years, etc.

For example, if the probability, denoted here
by P, is 1/3, and the time interval is one-half
a day, then the probability divided by the
time interval is 1/3 divided by 1/2, which equals
0.67 per day. As another example, suppose, for
the same probability of 1/3, that the time inter-
val is considered in weeks, so that 1/2 day
equals 1/14 of a week. Then the probability
divided by the time interval becomes 1/3 over
1/14, which equals 14/3, or 4.67 per week. The
point is simply that the expression P divided by
Dt at the right of the limit sign does not give
a probability. The value obtained will give a
different number depending on the units of
time used, and may even give a number
larger than one.

Given

limh(t)
P(t£ T < t +Dt | T ≥ t) 

Dt→0 Dt
=

Conditional probabilities: P(A|B)

P(t � T < t þ Dt | T � t)
¼ P(individual fails in the interval

[t, t þ Dt] | survival up to time t)

Hazard function � conditional
failure rate

P(t £ T < t + Dt | T ≥ t) 
Dt

lim
Dt→0

Probability per unit time

Rate: 0 to 1

P ¼ P(t � T < t þ Dt|T � t)

P Dt P/Dt ¼ rate

1

3

1

2
day

1=3

1=2
¼ 0:67=day

1

3

1

14
week

1=3

1=14
¼ 4:67=week
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When we take the limit of the right-side expres-
sion as the time interval approaches zero, we
are essentially getting an expression for the
instantaneous probability of failing at time t
per unit time. Another way of saying this is
that the conditional failure rate or hazard func-
tion h(t) gives the instantaneous potential for
failing at time t per unit time, given survival up
to time t.

As with a survivor function, the hazard func-
tion h(t) can be graphed as t ranges over vari-
ous values. The graph at the left illustrates
three different hazards. In contrast to a survi-
vor function, the graph of h(t) does not have to
start at 1 and go down to zero, but rather can
start anywhere and go up and down in any
direction over time. In particular, for a speci-
fied value of t, the hazard function h(t) has the
following characteristics:

� it is always nonnegative, that is, equal to or
greater than zero;

� it has no upper bound.

These two features follow from the ratio
expression in the formula for h(t), because
both the probability in the numerator and the
Dt in the denominator are nonnegative, and
since Dt can range between 0 and 1.

Now we show some graphs of different types of
hazard functions. The first graph given shows a
constant hazard for a study of healthy persons.
In this graph, no matter what value of t is spe-
cified, h(t) equals the same value—in this exam-
ple, l. Note that for a person who continues
to be healthy throughout the study period, his/
her instantaneous potential for becoming ill
at any time during the period remains constant
throughout the follow-up period. When the
hazard function is constant, we say that the
survival model is exponential. This term fol-
lows from the relationship between the survivor
function and the hazard function. We will
return to this relationship later.

h(t) = P(t£ T < t +Δ t | T ≥ t) lim
Δt→0 Δ t

Gives
instantaneous
potential

h(t)

0 t

Hazrd functions

� h(t) � 0
� h(t) has no upper bound

EXAMPLE

t

h(t) for healthy
persons λ

Constant hazard
(exponential model)

1
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The second graph shows a hazard function that
is increasing over time. An example of this kind
of graph is called an increasing Weibull
model. Such a graph might be expected for
leukemia patients not responding to treatment,
where the event of interest is death. As survival
time increases for such a patient, and as the
prognosis accordingly worsens, the patient’s
potential for dying of the disease also increases.

In the third graph, the hazard function is
decreasing over time. An example of this kind
of graph is called a decreasing Weibull. Such
a graph might be expected when the event
is death in persons who are recovering from
surgery, because the potential for dying after
surgery usually decreases as the time after sur-
gery increases.

The fourth graph given shows a hazard func-
tion that is first increasing and then decreas-
ing. An example of this type of graph is the
lognormal survival model. We can expect
such a graph for tuberculosis patients, since
their potential for dying increases early in the
disease and decreases later.

Of the two functions we have considered, S(t)
and h(t), the survivor function is more natu-
rally appealing for analysis of survival data,
simply because S(t) directly describes the sur-
vival experience of a study cohort.

However, the hazard function is also of interest
for the following reasons:

� it is a measure of instantaneous potential
whereas a survival curve is a cumulative
measure over time;

� it may be used to identify a specific model
form, such as an exponential, a Weibull, or
a lognormal curve that fits one’s data;

� it is the vehicle by which mathematical
modeling of survival data is carried out;
that is, the survival model is usually written
in terms of the hazard function.

EXAMPLE: (continued)

t

Weibull

t

Weibull

t

lognormal

h(t) for leukemia
patients

h(t) for Persons
recovering from
surgery

h(t) for TB
patients

2

3

4

S(t): directly describes survival
h(t): � a measure of

instantaneous potential
� identify specific model

form
� math model for survival

analysis
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Regardless of which function S(t) or h(t) one
prefers, there is a clearly defined relation-
ship between the two. In fact, if one knows
the form of S(t), one can derive the corres-
ponding h(t), and vice versa. For example,
if the hazard function is constant, i.e., h(t) ¼
l, for some specific value l, then it can be
shown that the corresponding survival func-
tion is given by the following formula: S(t)
equals e to the power minus l times t.

More generally, the relationship between S(t)
and h(t) can be expressed equivalently in either
of two calculus formulae shown here.

The first of these formulae describes how the
survivor function S(t) can be written in terms
of an integral involving the hazard function.
The formula says that S(t) equals the expo-
nential of the negative integral of the hazard
function between integration limits of 0 and t.

The second formula describes how the hazard
function h(t) can be written in terms of a deriv-
ative involving the survivor function. This for-
mula says that h(t) equals minus the derivative
of S(t) with respect to t divided by S(t).

In any actual data analysis, a computer pro-
gram can make the numerical transformation
from S(t) to h(t), or vice versa, without the user
ever having to use either formula. The point
here is simply that if you know either S(t) or
h(t), you can get the other directly.

SUMMARY

T ¼ survival time random
variable

t ¼ specific value of T

d ¼ (0.1) variable for failure/
censorship

S(t) ¼ survivor function

h(t) ¼ hazard function

At this point, we have completed our dis-
cussion of key terminology and notation. The
key notation is T for the survival time vari-
able, t for a specified value of T, and d for
the dichotomous variable indicating event
occurrence or censorship. The key terms
are the survivor function S(t) and the
hazard function h(t), which are in essence
opposed concepts, in that the survivor func-
tion focuses on surviving whereas the hazard
function focuses on failing, given survival up
to a certain time point.

Relationship of S(t) and h(t):
If you know one, you can deter-
mine the other.

EXAMPLE

h(t) ¼ l if and only if S(t) ¼ e�lt

General formulae:

S tð Þ ¼ exp �
Z t

0

h uð Þdu
� �

h tð Þ ¼ � d S tð Þ=dt
S tð Þ

� �

h(t)S(t)
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IV. Goals of Survival
Analysis

Wenow state the basic goals of survival analysis.

Goal 1: To estimate and interpret survivor and/
or hazard functions from survival data.

Goal 2: To compare survivor and/or hazard
functions.

Goal 3: To assess the relationship of explana-
tory variables to survival time.

Regarding the first goal, consider, for example,
the two survivor functions pictured at the left,
which give very different interpretations. The
function farther on the left shows a quick drop
in survival probabilities early in follow-up but a
leveling off thereafter. The function on the
right, in contrast, shows a very slow decrease
in survival probabilities early in follow-up but a
sharp decrease later on.

We compare survivor functions for a treat-
ment group and a placebo group by graphing
these functions on the same axis. Note that up
to 6 weeks, the survivor function for the treat-
ment group lies above that for the placebo
group, but thereafter the two functions are at
about the same level. This dual graph indicates
that up to 6 weeks the treatment is more
effective for survival than the placebo but has
about the same effect thereafter.

Goal 3 usually requires using some form of
mathematical modeling, for example, the Cox
proportional hazards approach, which will be
the subject of subsequent chapters.

V. Basic Data Layout
for Computer

We previously considered some examples of
survival analysis problems and a simple data
set involving six persons. We now consider the
general data layout for a survival analysis.
We will provide two types of data layouts, one
giving the form appropriate for computer use,
and the other giving the form that helps us
understand how a survival analysis works.

S(t) S(t)

tt

t

S(t)
Treatment

Placebo

6

Goal 3: Use math modeling, e.g.,
Cox proportional hazards

Two types of data layouts:

� for computer use
� for understanding

16 1. Introduction to Survival Analysis



We start by providing, in the table shown here,
the basic data layout for the computer. Assume
that we have a data set consisting of n persons.
The first column of the table identifies each
person from 1, starting at the top, to n, at the
bottom.

The remaining columns after the first one pro-
vide survival time and other information for
each person. The second column gives the sur-
vival time information, which is denoted t1 for
individual 1, t2 for individual 2, and so on, up
to tn for individual n. Each of these t’s gives the
observed survival time regardless of whether
the person got the event or is censored. For
example, if person 5 got the event at 3 weeks
of follow-up, then t5 ¼ 3; on the other hand,
if person 8 was censored at 3 weeks, without
getting the event, then t8 ¼ 3 also.

To distinguish persons who get the event from
those who are censored, we turn to the third
column, which gives the information for status
(i.e., d) the dichotomous variable that indicates
censorship status.

Thus, d1 is 1 if person 1 gets the event or is 0 if
person 1 is censored; d2 is 1 or 0 similarly, and
so on, up through dn. In the example just con-
sidered, person 5, who failed at 3 weeks, has a d
of 1; that is, d5 equals 1. In contrast, person 8,
who was censored at 3 weeks, has a d of 0; that
is, d8 equals 0.

Note that if all of the d values in this column are
added up, their sum will be the total number of
failures in the data set. This total will be some
number equal to or less than n, because not
every one may fail.

The remainder of the information in the table
gives values for explanatory variables of inter-
est. An explanatory variable, Xl is any variable
like age or exposure status, E, or a product
term like age � race that the investigator
wishes to consider to predict survival time.
These variables are listed at the top of the
table as X1, X2, and so on, up to Xp. Below
each variable are the values observed for that
variable on each person in the data set.

For computer:

Indiv. # X1 X2 Xp

t1 d1

d

d2

dn Xn1 Xn2 Xnp

t

t2

t5 = 3 got event

t8 = 3 consored

tn

X11 X12 X1p

X21 X22 X2p

1
2

5

8

n

Indiv. # X1 X2 Xpdt

t1 d1

d2

dn Xn1 Xn2 Xnp

t2

t5 = 3

tn

X11 X12 X1p

X21 X22 X2p

1
2

5

8

n

d5 = 1

di = # failures

t8 = 3 d8 = 0

Failure
status

Explanatory
variables

S
n

1
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For example, in the column corresponding to X1

are the values observed on this variable for all
n persons. These values are denoted as X11, X21,
and so on, up to Xn1; the first subscript indicates
the person number, and the second subscript, a
one in each case here, indicates the variable
number. Similarly, the column corresponding
to variable X2 gives the values observed on X2

for all n persons. This notation continues for the
other X variables up through Xp.

We have thus described the basic data layout
by columns. Alternatively, we can look at the
table line by line, that is, by rows. For each line
or row, we have the information obtained on
a given individual. Thus, for individual i,
the observed information is given by the
values ti, di, Xi1, Xi2, etc., up to Xip. This is how
the information is read into the computer,
that is, line by line, until all persons are
included for analysis.

As an example of this data layout, consider the
following set of data for two groups of leuke-
mia patients: one group of 21 persons has
received a certain treatment; the other group
of 21 persons has received a placebo. The data
come from Freireich et al., Blood, 1963.

As presented here, the data are not yet in
tabular form for the computer, as we will see
shortly. The values given for each group consist
of time in weeks a patient is in remission, up to
the point of the patient’s either going out of
remission or being censored. Here, going out
of remission is a failure. A person is censored if
he or she remains in remission until the end of
the study, is lost to follow-up, or withdraws
before the end of the study. The censored data
here are denoted by a plus sign next to the
survival time.

Columns
R

o
w

s

t#

t1 d1

d

d2

di

dn

X11

X1 X2 Xp

X21

Xn1

Xi1 Xi2

Xn2 Xnp

Xip

X12

X22

X1p

X2pt2

tn

ti

1
2

n

i

EXAMPLE

The data: Remission times (in weeks)
for two groups of leukemia patients

Group 1
(Treatment) n ¼ 21

Group 2
(Placebo) n ¼ 21

6, 6, 6, 7, 10, 1, 1, 2, 2, 3,
13, 16, 22, 23, 4, 4, 5, 5,
6þ, 9þ, 10þ, 11þ, 8, 8, 8, 8,
17þ, 19þ, 20þ, 11, 11, 12, 12,
25þ, 32þ, 32þ, 15, 17, 22, 23
34þ, 35þ

In remission
at study end

Lost to
follow-up

Withdraws

+ denotes
  censored
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Here are the data again:

Notice that the first three persons in group 1
went out of remission at 6 weeks; the next
6 persons also went out of remission, but at
failure times ranging from 7 to 23. All of the
remaining persons in group 1 with pluses next
to their survival times are censored. For exam-
ple, on line three the first personwho has a plus
sign next to a 6 is censored at 6 weeks. The
remaining persons in group 1 are also cen-
sored, but at times ranging from 9 to 35 weeks.

Thus, of the 21 persons in group 1, nine failed
during the study period, whereas the last 12
were censored. Notice also that none of the
data in group 2 is censored; that is, all 21 per-
sons in this group went out of remission during
the study period.

We now put this data in tabular form for the
computer, as shown at the left. The list starts
with the 21 persons in group 1 (listed 1–21) and
follows (on the next page) with the 21 persons
in group 2 (listed 22–42). Our n for the com-
posite group is 42.

The second column of the table gives the sur-
vival times in weeks for all 42 persons. The
third column indicates failure or censorship
for each person. Finally, the fourth column
lists the values of the only explanatory variable
we have considered so far, namely, group sta-
tus, with 1 denoting treatment and 0 denoting
placebo.

If we pick out any individual and read across
the table, we obtain the line of data for that
person that gets entered in the computer.
For example, person #3 has a survival time of
6 weeks, and since d¼ 1, this person failed, that
is, went out of remission. The X value is 1
because person #3 is in group 1. As a second
example, person #14, who has an observed sur-
vival time of 17 weeks, was censored at this
time because d ¼ 0. The X value is again 1
because person #14 is also in group 1.

EXAMPLE: (continued)

Group 1
(Treatment) n ¼ 21

Group 2
(Placebo) n ¼ 21

6, 6, 6, 7, 10, 1, 1, 2, 2, 3,
13, 16, 22, 23, 4, 4, 5, 5,
6þ, 9þ, 10þ, 11þ, 8, 8, 8, 8,
17þ, 19þ, 20þ, 11, 11, 12, 12,
25þ, 32þ, 32þ, 15, 17, 22, 23
34þ, 35þ

# failed # censored Total

Group 1 9 12 21
Group 2 21 0 21

Indiv.
# t (weeks)

d (failed or
censored)

X
(Group)

1 6 1 1
2 6 1 1

3 6 1 1
4 7 1 1
5 10 1 1
6 13 1 1
7 16 1 1
8 22 1 1

GROUP
1

9 23 1 1
10 6 0 1
11 9 0 1
12 10 0 1
13 11 0 1

14 17 0 1
15 19 0 1
16 20 0 1
17 25 0 1
18 32 0 1
19 32 0 1
20 34 0 1
21 35 0 1
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As one more example, this time from group 2,
person #32 survived 8 weeks and then failed,
because d ¼ 1; the X value is 0 because person
#32 is in group 2.

An alternative format for the computer is called
the Counting Process (CP) format.

The CP format is useful for more complicated
survival analysis situations that we discuss
in later chapters, in particular when age-at-
follow-up time is used as the outcome variable
instead of time of follow-up (Chap. 3), when
there are time-dependent variables (Chap. 6),
and when there are recurrent events and/or
gaps in follow-up (Chap. 8).

The general CP format is shown on the left.
This format differs from the previously
described “standard” data layout in two ways.
First, the CP format allows multiple lines of
data for the same individual; that is, each
individual’s total at-risk-follow-up time is sub-
divided into smaller time intervals to allow
for recurrent events on the same individual.
Second, there are two time points specified
for each individual, labeled in the layout as
tij0 and tij1, and often referred to as START and
STOP times, respectively.

EXAMPLE: (continued)

Indiv. # t (weeks)

d (failed
or

censored)
X

(Group)

22 1 1 0
23 1 1 0
24 2 1 0
25 2 1 0
26 3 1 0
27 4 1 0

GROUP
2

28 4 1 0
29 5 1 0
30 5 1 0
31 8 1 0

32 8 1 0
33 8 1 0
34 8 1 0
35 11 1 0
36 11 1 0
37 12 1 0
38 12 1 0
39 15 1 0
40 17 1 0
41 22 1 0
42 23 1 0

Alternative Data Layout: Counting
Process (Start, Stop) Format

CP Format: applies to more com-
plicated survival analysis

� Age-at follow-up is outcome
� Time-dependent variables
� Recurrent events
� Gaps in follow-up

START

Subject
1

1
1

1

1

1

1
2

n
n

n

i
i

r1

ri

rn

2

2

1

Subject
i

Subject
n

Data Layout CP Approach
i j dij

d11
d12

d1r1

dir1

dn1
dn2

di1

di2

ti10

ti20

ti11

ti21

t1r10 t1r11 X1r11

tnrn0 tnrn1 Xnrn1 Xnrnp

t1ri0

tn10

tn20 tn21

tn11

t1ri1 Xiri1

dnrn

Xirip

X111

X121

Xn11
Xn21

Xn1p

Xn2p

X1r1p

Xi1p

Xi2p

t110

t120 t121

t111 X111

X121

X11p
X12p

tij0 tij1 Xij1 Xijp

STOP
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The first two columns in this format are
labeled i (for subject number) and j (for data-
line number for the ith subject). As in the stan-
dard format, i ranges from 1 to n; also, in
the CP format, j ranges from 1 to ri, where ri
denotes the number of datalines for the i-th
subject.

The third column labeled dij denotes the failure
status (1¼failed, 0¼censored) for the j-th data-
line on the i-th subject.

The next two columns identify two time points
required for each dataline, the START time
(tij0) and the STOP time (tij1). These two col-
umns are the primary distinguishing feature of
the CP format.

The simplest CP format occurs when the out-
come is follow-up time since study entry and
when there are no recurrent events or time-
dependent covariates, as in our previously
described Remission Time Dataset. In this sit-
uation, there is one dataline for each subject
(i.e., ri¼1 for all i so that the only value that j
takes is 1), the start time (ti10) is 0 for each
subject, and the stop time (ti11) is the follow-
up time (t) until either the event or censorship
occurs.

As an example, the CP format for Group 1 of
the Remission Time Dataset is shown on the
left. Note that the value of j is 1 throughout the
table, the start times are all zero, and the stop
times are the failure or censored survival times
for each subject.

Simplest CP format: 1 dataline/
subject

i

1

i

n

1

1

1

0

0

0

d11

di1

dn1

t1

ti

tn

X111

Xi11

Xn11

X11p

Xi1p

Xn1p

j dij tij0 tij1 Xij1 Xijp

CP Format for Group 1 of Remi-
ssion Time Dataset

i j dij

1 61 1
2
3
4
5
6
7
8
9
10

19
20
21

1
1
1
1
1
1
1
1
1

1
1
1

1
1
1
1
1
1
1
1
1
0

0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0

6
6
7
10
13
16
22
23
12

32
34
35

1
1
1
1
1
1
1
1
1

11 1 0 0 6 1… … … … … …

1
1
1

start stop X(Group)
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We now illustrate the CP format that allows for
more than one dataline per subject as well as
start times other than zero. We consider data
on the first 15 subjects from a study of recur-
rent bladder cancer tumors (Byar, 1980; and
Wei, Lin and Weissfeld, 1989). The entire data-
set contained 86 patients, each followed for a
variable amount of time up to 64 months.
We describe how to analyze this dataset in
Chapter 8 on Recurrent Event Survival Analy-
sis. Here, we only describe how this data layout
fits the CP format.

The event being analyzed is the recurrence of
bladder cancer tumor after transurethral sur-
gical excision. Each recurrence of new tumors
was treated by removal at each examination.

The exposure variable of interest is drug treat-
ment status (tx, 0¼placebo, 1¼ treatment with
thiotepa). Although each of 15 subjects shown
here are in the placebo group (tx¼0), several
other subjects in the larger dataset are in the
treatment group (tx¼1).

The covariates listed here are initial number
of tumors (num) and initial size of tumors
(size) in centimeters. Both these variables
have the same value for each subject (i.e.,
time-independent variables), although the gen-
eral data layout also allows for time-dependent
variables.

Notice that several subjects in this dataset,
namely subjects 6, 9, 10, 12, 13, 14, and 15
have two or more datalines. Subject 6, for
example, has two datalines (i.e., r6 ¼ 2),
whereas subject 14 has 4 datalines (i.e., r14¼ 4).

CP Format: First 15 Subjects-
Bladder Canscer Study

i j d

1
2

1 0 1
31

1
10

0
0

4 11 10 0
3 11 20

0
0

0
0

0
1

7
4 0

start stop tx num size

5 11 50 00 10
6 11 41 00 6

6 12 40 06 10
7 11 10 00 14

8 11 10 00 18

9 31 11 00 5
9 32 10 05 18

10 11 11 00 12

10 12 11 012 16

10 13 10 016 18

11 31 30 00 23

12 31 11 00 10

12 32 11 010 15

12 33 10 015 23

13 11 11 00 3

13 12 11 03 16

13 13 11 016 23

14 11 31 00 3

14 12 31 03 9

14 13 31 09 21

14 14 30 021 23

15 31 21 00 7

15 32 21 07 10

15 33 21 010 16

15 34 20 016 24
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The first of the two lines for subject 6 tells us that
this subject had a (first) recurrent bladder cancer
event (i.e., d¼1) at 6 months (i.e., stop ¼6). This
subject was then followed for another 4 months
(from 6 to 10, as shown on the second dataline
for this subject, where the start time is 6 and the
stop time is 10. At 10 months, the subject is
censored (d¼0); in other words, this subject did
not get a second recurrent event at 10 months,
after which no further information is available.

Subject 14 had three recurrent events, the first
one at 3 months (i.e., stop ¼3), the second one
at 9 months (i.e., stop ¼9), and the third one at
21 months (i.e., stop ¼21). This subject was
followed for another 2 months (start ¼21 to
stop ¼23 on dataline number j¼4) without
another event occurring (d¼0).

As mentioned at the beginning of this section,
the CP format is also applicable when age-at-
follow-up time is used as the outcome variable
instead of time of follow-up (Chapter 3), when
there are time-dependent variables (Chapter 6),
andwhentherearegaps in follow-up (Chapter8).
We will illustrate these latter situations within
the later chapters just mentioned.

In the Computer Appendix, we describe the
computer code required by SAS, STATA, and
R packages when the data is set up in CP for-
mat for the analysis of recurrent event survival
data and when age is used as the time scale
instead of time-on-study.

VI. Basic Data Layout for
Understanding
Analysis

We are now ready to look at another data lay-
out, which is shown at the left. This layout
helps provide some understanding of how a
survival analysis actually works and, in parti-
cular, how survivor curves are derived.

The first column in this table gives ordered
failure times. These are denoted by t’s with
subscripts within parentheses, starting with
t(0), then t(1) and so on, up to t(k). Note that
the parentheses surrounding the subscripts
distinguish ordered failure times from the sur-
vival times previously given in the computer
layout.

Bladder Canscer Study (cont’d)

i j d

6
6

6
6

1 1 1
12

4
4100

0 0
0

start stop tx num size

i j d

14
3

3
14

1 1 1
12

3
391

0 0
0

2114 14 3230 0
914 13 3211 0

start stop tx num size

CP format illustrated for other
situations in later chapters.

See Computer Appendix for com-
puter code in CD format for SAS,
STATA, and R.

For analysis:

Ordered
failure times
(t(f))

# of
failures
(mf)

# censored
in [t(f, t(f-1))

(qf)

Risk
set R
(t(f))

t(0)¼ 0 m0 ¼ 0 q0 R(t(0))
t(1) m1 q1 R(t(1))
t(2) m2 q2 R(t(2))
· · · ·
· · · ·
· · · ·
t(k) mk qk R(t(k))
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To get ordered failure times from survival
times, we must first remove from the list of
unordered survival times all those times that
are censored; we are thus working only with
those times at which people failed. We then
order the remaining failure times from smal-
lest to largest, and count ties only once. The
value k gives the number of distinct times at
which subjects failed.

For example, using the remission data for
group 1, we find that 9 of the 21 persons failed,
including 3 persons at 6 weeks and 1 person
each at 7, 10, 13, 16, 22, and 23 weeks. These
nine failures have k ¼ 7 distinct survival times,
because three persons had survival time 6 and
we only count one of these 6’s as distinct. The
first ordered failure time for this group,
denoted as t(1), is 6; the second ordered failure
time t(2), is 7, and so on up to the seventh
ordered failure time of 23.

Turning to group 2, we find that although
all 21 persons in this group failed, there are
several ties. For example, two persons had a
survival time of 1 week; two more had a sur-
vival time of 2 weeks; and so on. In all, we find
that there were k ¼ 12 distinct survival times
out of the 21 failures. These times are listed in
the first column for group 2.

Note that for both groups we inserted a row of
data giving information at time 0. We will
explain this insertion when we get to the third
column in the table.

The second column in the data layout gives
frequency counts, denoted by mf, of those per-
sons who failed at each distinct failure time.
When there are no ties at a certain failure
time, then mf ¼ 1. Notice that in group 1, there
were three ties at 6 weeks but no ties thereafter.
In group 2, there were ties at 1, 2, 4, 5, 8, 11,
and 12 weeks. In any case, the sum of all the
mf’s in this column gives the total number of
failures in the group tabulated. This sum is
9 for group 1 and 21 for group 2.

Unordered Failed t’s
ordered (t(f))

Censored t’s
{t1, t2, . . . , tn}

k ¼ # of distinct times at whick subjects
failed (k � n)

EXAMPLE

t(0) = 0

t(1) = 6

t(2) = 7

t(3) = 10

t(4) = 13

t(5) = 16

t(6) = 22

t(7) = 23

0

3

1

1

1

1

1

1

0

1

1

2

0

3

0

5

21 persons survive ≥ 0 wks

21 persons survive ≥ 6 wks

17 persons survive ≥ 7 wks

15 persons survive ≥ 10 wks

12 persons survive ≥ 13 wks

11 persons survive ≥ 16 wks

7 persons survive ≥ 22 wks

6 persons survive ≥ 23 wks

Totals 129

Totals 021

t(0) = 0

t(1) = 1

t(2) = 2

t(3) = 3

t(4) = 4

t(5) = 5

t(6) = 8

t(7) = 11

t(8) = 12

t(9) = 15

t(10) = 17

t(11) = 22

t(12) = 23

0

2

2

1

2

2

4

2

0

0

0

0

0

0

0

0

2 0

1 0

1 0

1 0

1 0

21 persons survive ≥ 0 wks

21 persons survive ≥ 1 wks

19 persons survive ≥ 2 wks

17 persons survive ≥ 3 wks

16 persons survive ≥ 4 wks

14 persons survive ≥ 5 wks

12 persons survive ≥ 8 wks

8 persons survive ≥ 11 wks

6 persons survive ≥ 12 wks

4 persons survive ≥ 15 wks

3 persons survive ≥ 17 wks

2 persons survive ≥ 22 wks

1 person survive ≥ 23 wks

t(f) mf qf R(t(f))

Remission Data: Group 1
(n = 21, 9 failures, k = 7)

t(f) mf qf R(t(f))

Remission Data: Group 2
(n = 21, 21 failures, k = 12)

ties
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The third column gives frequency counts,
denoted by qf, of those persons censored in
the time interval starting with failure time t(f)
up to the next failure time denoted t(fþ1). Tech-
nically, because of the way we have defined this
interval in the table, we include those persons
censored at the beginning of the interval.

For example, the remission data, for group 1
includes 5 nonzero q’s: q1 ¼ 1, q2 ¼ 1, q3 ¼ 2,
q5 ¼ 3, q7 ¼ 5. Adding these values gives us
the total number of censored observations for
group 1, which is 12. Moreover, if we add the
total number of q’s (12) to the total number of
m’s (9), we get the total number of subjects in
group 1, which is 21.

We now focus on group 1 to look a little closer
at the q’s. At the left, we list the unordered
group 1 information followed (on the next
page) by the ordered failure time information.
We will go back and forth between these two
tables (and pages) as we discuss the q’s. Notice
that in the table here, one person, listed as #10,
was censored at week 6. Consequently, in the
table at the top of the next page, we have q1¼ 1,
which is listed on the second line corres-
ponding to the ordered failure time t(1), which
equals 6.

The next q is a little trickier, it is derived from
the person who was listed as #11 in the table
here and was censored at week 9. Correspond-
ingly, in the table at the top of the next page,
we have q2 ¼ 1 because this one person was
censored within the time interval that starts at
the second ordered failure time, 7 weeks, and
ends just before the third ordered failure time,
10 weeks. We have not counted person #12
(who was censored at week 10) here because
this person’s censored time is exactly at the end
of the interval. We count this person in the
following interval.

EXAMPLE: (continued)

t(0) = 0

t(1) = 6

t(2) = 7

t(3) = 10

t(4) = 13

t(5) = 16

t(6) = 22

t(7) = 23

0

3

1

1

1

1

1

1

0

1

1

2

0

3

0

5

21 persons survive

qj = censored in [t(j), t(j+1)]

≥ 0 wks

21 persons survive ≥ 6 wks

17 persons survive ≥ 7 wks

15 persons survive ≥ 10 wks

12 persons survive ≥ 13 wks

11 persons survive ≥ 16 wks

7 persons survive ≥ 22 wks

6 persons survive ≥ 23 wks

Totals 129

1

# X (group)

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

6

6

6

7

10

13

16

22

23

6

9

10

11

17

19

20

25

32

32

34

35

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

ties

Remission Data: Group 1

t(f) mf qf R(t(f))

Remission Data: Group 1

t(weeks) d
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We now consider, from the table of unordered
failure times, person #12 who was censored at
10 weeks, and person #13, who was censored
at 11 weeks. Turning to the table of ordered
failure times, we see that these two times are
within the third ordered time interval, which
starts and includes the 10-week point and ends
just before the 13th week. As for the remaining
q’s, we will let you figure them out for practice.

One last point about the q information. We
inserted a row at the top of the data for each
group corresponding to time 0. This insertion
allows for the possibility that persons may be
censored after the start of the study but before
the first failure. In other words, it is possible
that q0 may be nonzero. For the two groups in
this example, however, no one was censored
before the first failure time.

The last column in the table gives the “risk
set.” The risk set is not a numerical value or
count but rather a collection of individuals.
By definition, the risk setR(t(f)) is the collection
of individuals who have survived at least to
time t(f); that is, each person in R(t(f)) has a
survival time that is t(f) or longer, regardless
of whether the person has failed or is censored.

For example, we see that at the start of the
study everyone in group 1 survived at least
0 weeks, so the risk set at time 0 consists of
the entire group of 21 persons. The risk set at
6 weeks for group 1 also consists of all 21 per-
sons, because all 21 persons survived at least as
long as 6 weeks. These 21 persons include the
3 persons who failed at 6 weeks, because
they survived and were still at risk just up to
this point.

EXAMPLE: (continued)

t(0) = 0

t(1) = 6

t(2) = 7

t(3) = 10

t(4) = 13

t(5) = 16

t(6) = 22

t(7) = 23

0

3

1

1

1

1

1

1

0

1

1

2

0

3

0

5

21 persons survive ≥ 0 wks

21 persons survive ≥ 6 wks

17 persons survive ≥ 7 wks

15 persons survive ≥ 10 wks

12 persons survive ≥ 13 wks

11 persons survive ≥ 16 wks

7 persons survive ≥ 22 wks

6 persons survive ≥ 23 wks

t(f) qf R(t(f))

Totals 129

Group 1 using ordered failure times

mf

EXAMPLE

Risk Set: R(tf) is the set of individual
for whom

t(0) =

t(1) =

t(2) = 7

t(3) = 10

t(4) = 13

t(5) = 16

t(6) = 22

t(7) = 23

00

6 3

1

1

1

1

1

1

0

1

1

2

0

3

0

5

21 persons survive ≥ 0 wks

21 persons survive ≥ 6 wks

17 persons survive

Remission Data: Group 1

≥ 7 wks

15 persons survive ≥ 10 wks

12 persons survive ≥ 13 wks

11 persons survive ≥ 16 wks

7 persons survive ≥ 22 wks

6 persons survive ≥ 23 wks

Totals 129

t(f) q(f) R(t(f))m(f)
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Now let’s look at the risk set at 7 weeks. This set
consists of 17 persons in group 1 that survived
at least 7 weeks. We omit everyone in the X-ed
area. Of the original 21 persons, we therefore
have excluded the three persons who failed at
6 weeks and the one person who was censored
at 6 weeks. These four persons did not survive
at least 7 weeks. Although the censored person
may have survived longer than 7 weeks, we
must exclude him or her from the risk set at
7 weeks because we have information on this
person only up to 6 weeks.

To derive the other risk sets, we must exclude
all persons who either failed or were censored
before the start of the time interval being con-
sidered. For example, to obtain the risk set at
13 weeks for group 1, we must exclude the five
persons who failed before, but not including,
13 weeks and the four persons who were
censored before, but not including, 13 weeks.
Subtracting these 9 persons from 21, leaves
12 persons in group 1 still at risk for getting
the event at 13 weeks. Thus, the risk set con-
sists of these 12 persons.

The importance of the table of ordered failure
times is that we can work with censored obser-
vations in analyzing survival data. Even though
censored observations are incomplete, in that
we don’t know a person’s survival time exactly,
we can still make use of the information we
have on a censored person up to the time
we lose track of him or her. Rather than simply
throw away the information on a censored
person, we use all the information we have on
such a person up until time of censorship.
(Nevertheless, most survival analysis techni-
ques require a key assumption that censoring
is independent, i.e., censored subjects are not
at increased risk for failure. See Chap. 9 on
competing risks for further details.)

EXAMPLE: (continued)

t(0) = 0

t(1) = 6

t(2) = 7

t(3) = 10

t(4) = 13

t(5) = 16

t(6) = 22

t(7) = 23

0

3

1

1

1

1

1

1

0

1

1

2

0

3

0

5

21 persons survive ≥ 0 wks

21 persons survive ≥ 6 wks

17 persons survive ≥ 7 wks

15 persons survive ≥ 10 wks

12 persons survive ≥ 13 wks

11 persons survive ≥ 16 wks

7 persons survive ≥ 22 wks

6 persons survive ≥ 23 wks

t(f) mf qf R (t(f))

Totals 129

t(0) = 0

t(1) = 6

t(2) = 7

t(3) = 10

t(4) = 13

t(5) = 16

t(6) = 22

t(7) = 23

0

3

1

1

1

1

1

1

0

1

1

2

0

3

0

5

21 persons survive ≥ 0 wks

21 persons survive ≥ 6 wks

17 persons survive ≥ 7 wks

15 persons survive ≥ 10 wks

12 persons survive ≥ 13 wks

11 persons survive ≥ 16 wks

7 persons survive ≥ 22 wks

6 persons survive ≥ 23 wks

Totals 129

How we work with censored
data: Use all information up to
time of censorship; don’t throw
away information.
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For example, for the three persons in group 1
who were censored between the 16th and 22nd
weeks, there are at least 16 weeks of survival
information on each that we don’t want to lose.
These three persons are contained in all risk
sets up to the 16th week; that is, they are each
at risk for getting the event up to 16 weeks. Any
survival probabilities determined before, and
including, 16 weeks should make use of data
on these three persons as well as data on other
persons at risk during the first 16 weeks.

Having introduced the basic terminology and
data layouts to this point, we now consider
some data analysis issues and some additional
applications.

VII. Descriptive
Measures of Survival
Experience

We first return to the remission data, again
shown in untabulated form. Inspecting the
survival times given for each group, we can
see that most of the treatment group’s times
are longer than most of the placebo group’s
times. If we ignore the plus signs denoting
censorship and simply average all 21 survival
times for each group we get an average,
denoted by T “bar,” of 17.1 weeks survival for
the treatment group and 8.6 weeks for the
placebo group. Because several of the treat-
ment group’s times are censored, this means
that group 1’s true average is even larger than
what we have calculated. Thus, it appears from
the data (without our doing any mathematical
analysis) that, regarding survival, the treat-
ment is more effective than the placebo.

As an alternative to the simple averages that
we have computed for each group, another
descriptive measure of each group is the
average hazard rate, denoted as h “bar.” This
rate is defined by dividing the total number
of failures by the sum of the observed survival
times. For group 1, h “bar” is 9/359, which
equals .025. For group 2, h “bar” is 21/182,
which equals. 115.

EXAMPLE

t(f) mf qf R(t(f))

6 3 1 ü 21 persons
7 1 1 ü 17 persons
10 1 2 ü 15 persons
13 1 0 ü 12 persons
16 1 3 ü 11 persons
22 1 0 7 persons
23 1 5 6 persons

EXAMPLE

Remission times (in weeks) for two
groups of leukemia patients

Group 1
(Treatment) n ¼ 21

Group 2
(Placebo) n ¼ 21

6, 6, 6, 7, 10,
13, 16, 22, 23,
6þ, 9þ, 10þ, 11þ,
17þ, 19þ, 20þ,
25þ, 32þ, 32þ,
34þ, 35þ

1, 1, 2, 2, 3,
4, 4, 5, 5,
8, 8, 8, 8,
11, 11, 12, 12,
15, 17, 22, 23

T1 (ignoringþ ’s)¼ 17.1

h1 ¼ 9

359
¼ :025

T2 ¼ 8.6

h2 ¼ 21

182
¼ :115

Average hazard rate ðhÞ ¼ # failuresPn
i¼1

ti

28 1. Introduction to Survival Analysis



As previously described, the hazard rate indi-
cates failure potential rather than survival
probability. Thus, the higher the average haz-
ard rate, the lower is the group’s probability of
surviving.

In our example, the average hazard for the
treatment group is smaller than the average
hazard for the placebo group.

Thus, using average hazard rates, we again see
that the treatment group appears to be doing
better overall than the placebo group; that is,
the treatment group is less prone to fail than
the placebo group.

The descriptive measures we have used so
far—the ordinary average and the hazard rate
average—provide overall comparisons of the
treatment group with the placebo group.
These measures don’t compare the two groups
at different points in time of follow-up. Such a
comparison is provided by a graph of survivor
curves.

Here we present the estimated survivor
curves for the treatment and placebo groups.
The method used to get these curves is called
the Kaplan–Meier method, which is described
in Chap. 2. When estimated, these curves are
actually step functions that allow us to com-
pare the treatment and placebo groups over
time. The graph shows that the survivor func-
tion for the treatment group consistently lies
above that for the placebo group; this dif-
ference indicates that the treatment appears
effective at all points of follow-up. Notice, how-
ever, that the two functions are somewhat
closer together in the first few weeks of fol-
low-up, but thereafter are quite spread apart.
This widening gap suggests that the treatment
is more effective later during follow-up than
it is early on.

h

s

Placebo hazard > treatment haz-
ard: suggests that treatment is
more effective than placebo

Descriptive measures (T and h) give
overall comparison; they do not
give comparison over time.

EXAMPLE

1

Group 1
treatment

Group 2
placebo

Median = 8 Median = 23
t weeks

S(t)

.5

0
10 20
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Also notice from the graph that one can obtain
estimates of the median survival time, the time
at which the survival probability is.5 for each
group. Graphically, the median is obtained by
proceeding horizontally from the 0.5 point on
the Y-axis until the survivor curve is reached,
as marked by an arrow, and then proceeding
vertically downward until the X-axis is crossed
at the median survival time.

For the treatment group, themedian is 23weeks;
for the placebo group, the median is 8 weeks.
Comparison of the two medians reinforces our
previous observation that the treatment is more
effective overall than the placebo.

VIII. Example: Extended
Remission Data

Before proceeding to another data set, we con-
sider the remission example data (Freireich
et al., Blood, 1963) in an extended form. The
table at the left gives the remission survival
times for the two groups with additional infor-
mation about white blood cell count for each
person studied. In particular, each person’s
log white blood cell count is given next to
that person’s survival time. The epidemiologic
reason for adding log WBC to the data set
is that this variable is usually considered an
important predictor of survival in leukemia
patients; the higher the WBC, the worse the
prognosis. Thus, any comparison of the
effects of two treatment groups needs to con-
sider the possible confounding effect of such
a variable.

1

Median X

Y

0.5

0

Median (treatment) ¼ 23 weeks
Median (placebo) ¼ 8 weeks

Group 1 Group 2
t (weeks) log WBC t (weeks) log WBC

6 2.31 1 2.80
6 4.06 1 5.00
6 3.28 2 4.91
7 4.43 2 4.48
10 2.96 3 4.01
13 2.88 4 4.36
16 3.60 4 2.42
22 2.32 5 3.49
23 2.57 5 3.97
6þ 3.20 8 3.52
9þ 2.80 8 3.05
10þ 2.70 8 2.32
11þ 2.60 8 3.26
17þ 2.16 11 3.49
19þ 2.05 11 2.12
20þ 2.01 12 1.50
25þ 1.78 12 3.06
32þ 2.20 15 2.30
32þ 2.53 17 2.95
34þ 1.47 22 2.73
35þ 1.45 23 1.97
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Although a full exposition of the nature of
confounding is not intended here, we provide
a simple scenario to give you the basic idea.
Suppose all of the subjects in the treatment
group had very low log WBC, with an average,
for example, of 1.8, whereas all of the subjects
in the placebo group had very high log WBC,
with an average of 4.1. We would have to con-
clude that the results we’ve seen so far that
compare treatment with placebo groups may
be misleading.

The additional information on log WBC would
suggest that the treatment group is surviving
longer simply because of their low WBC and
not because of the efficacy of the treatment
itself. In this case, we would say that the treat-
ment effect is confounded by the effect of
log WBC.

More typically, the distribution of log WBC
may be quite different in the treatment group
than in the control group. We have illustrated
one extreme in the graph at the left. Even
though such an extreme is not likely, and is
not true for the data given here, the point is
that some attempt needs to be made to adjust
for whatever imbalance there is in the distribu-
tion of log WBC. However, if high log WBC
count was a consequence of the treatment,
then white blood cell count should not be con-
trolled for in the analysis.

Another issue to consider regarding the effect
of log WBC is interaction. What we mean by
interaction is that the effect of the treatment
may be different, depending on the level of log
WBC. For example, suppose that for persons
with high log WBC, survival probabilities for
the treatment are consistently higher over time
than for the placebo. This circumstance is illu-
strated by the first graph at the left. In contrast,
the second graph, which considers only per-
sons with low log WBC, shows no difference
in treatment and placebo effect over time.
In such a situation, we would say that there is
strong treatment by log WBC interaction,
and we would have to qualify the effect of the
treatment as depending on the level of logWBC.

EXAMPLE: CONFOUNDING

Treatment group: logWBC ¼ 1:8

Placebo group: logWBC ¼ 4:1
Indicates confounding of treatment
effect by log WBC

log WBC

PlaceboTreatment

Frequency
distribution

Need to adjust for imbalance in the
distribution of log WBC

EXAMPLE: INTERACTION

Treatment

High log WBC Low log WBC

S (t) S (t)

Treatment

Placebo Placebo

t t

Treatment by log WBC interaction
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The example of interaction we just gave is but
one way interaction can occur; on the other
hand, interaction may not occur at all. As with
confounding, it is beyond our scope to provide a
thorough discussion of interaction. In any case,
the assessment of interaction is something to
consider in one’s analysis in addition to con-
founding that involves explanatory variables.

Thus, with our extended data example, the
basic problem can be described as follows: to
compare the survival experience of the two
groups after adjusting for the possible con-
founding and/or interaction effects of logWBC.

The problem statement tells us that we are now
considering two explanatory variables in our
extended example, whereas we previously con-
sidered a single variable, group status. The
data layout for the computer needs to reflect
the addition of the second variable, log WBC.
The extended table in computer layout form is
given at the left. Notice that we have labeled the
two explanatory variables X1 (for group status)
and X2 (for log WBC). The variable X1 is our
primary study or exposure variable of interest
here, and the variable X2 is an extraneous vari-
able that we are interested in accounting for
because of either confounding or interaction.

Need to consider:

� interaction;
� confounding.

The problem:
Compare two groups after adjusting
for confounding and interaction.

EXAMPLE

Individual

Group

Group

1

2

1 6

1
1
2
2
3
4
4
5
5
8
8
8
8

11
11
12
12
15
17
22
23

2.31
4.06

2.80
5.00
4.91
4.48
4.01
4.36
2.42
3.49
3.97
3.52
3.05
2.32
3.26
3.49
2.12
1.50
3.06
2.30
2.95
2.73
1.97

3.28
4.43
2.96
2.88
3.60
2.32
2.57
3.20
2.80
2.70
2.60
2.16
2.05
2.01
1.78
2.20
2.53
1.47
1.45

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0

6
6
7

10
13
16
22
23
6
9

10
11
17
19
20
25

32
32

34
35

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

(weeks) d (Group) (log WBC)
t

#
X1 X2
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As implied by our extended example, which
considers the possible confounding or inter-
action effect of log WBC, we need to consider
methods for adjusting for log WBC and/or
assessing its effect in addition to assessing the
effect of treatment group. The two most popu-
lar alternatives for analysis are the following:

� to stratify on log WBC and compare
survival curves for different strata; or

� to use mathematical modeling procedures
such as the proportional hazards or other
survival models; such methods will be
described in subsequent chapters.

IX. Multivariable Example We now consider one other example. Our
purpose here is to describe a more general
type of multivariable survival analysis prob-
lem. The reader may see the analogy of this
example to multiple regression or even logistic
regression data problems.

We consider a data set developed from a
13-year follow up study of a fixed cohort of
persons in Evans County Georgia, during the
period 1967–1980 (Schoenbach et al., Amer. J.
Epid., 1986). From this data set, we focus on a
portion containing n¼ 170whitemaleswho are
age 60 or older at the start of follow-up in 1967.

For this data set, the outcome variable is T, time
in years until death from start of follow-up,
so the event of interest is death. Several explan-
atory variables are measured, one of which is
considered the primary exposure variable; the
other variables are considered as potential con-
founders and/or interaction variables.

The primary exposure variable is a measure
called Social Network Index (SNI). This is an
ordinal variable derived from questionnaire
measurement and is designed to assess the
extent to which a study subject has social con-
tacts of various types. With the questionnaire,
a scale is used with values ranging from 0
(absence of any social network) to 5 (excellent
social network).

Analysis alternatives:

� stratify on log WBC;
� use math modeling, e.g.,

proportional hazards model.

� Describes general
multivariable survival problem.

� Gives analogy to regression
problems.

EXAMPLE

13-year follow-up of fixed cohort from
Evans County, Georgia

n ¼ 170 white males (60þ)

T ¼ years until death

Event ¼ death

Explanatory variables:
� exposure variable
� confounders
� interaction variables

Exposure:

0
Absence
of social
network

Social Network Index (SNI)

Excellent
social

network

1 2 3 4 5
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The study’s goal is to determine whether one’s
social network, as measured by SNI, is protec-
tive against death. If this study hypothesis is
correct, then the higher the social network
score, the longer will be one’s survival time.

In evaluating this problem, several explanatory
variables, in addition to SNI, are measured at
the start of follow-up. These include AGE, sys-
tolic blood pressure (SBP), an indicator of the
presence or absence of some chronic disease
(CHR), body size as measured by Quetelet’s
index (QUET ¼ weight over height squared
times 100), and social class (SOCL).

These five additional variables are of interest
because they are thought to have their own
special or collective influence on how long a
person will survive. Consequently, these vari-
ables are viewed as potential confounders and/
or interaction variables in evaluating the effect
of social network on time to death.

We can now clearly state the problem being
addressed by this study: To describe the rela-
tionship between SNI and time to death,
controlling for AGE, SBP, CHR, QUET, and
SOCL.

Our goals in using survival analysis to solve
this problem are as follows:

� to obtain some measure of effect that will
describe the relationship between SNI and
time until death, after adjusting for the
other variables we have identified;

� to develop survival curves that describe the
probability of survival over time for differ-
ent categories of social networks; in partic-
ular, we wish to compare the survival of
persons with excellent networks to the sur-
vival of persons with poor networks. Such
survival curves need to be adjusted for the
effects of other variables.

� to achieve these goals, two intermediary
goals are to decide which of the additional
variables being considered need to be
adjusted and to determine an appropriate
method of adjustment.

EXAMPLE: (continued)

Study goal: to determine whether SNI
is protective against death,
i.e., S(t)ÞSNI .

Explanatory variables:

Exposure variable
AGE
SNI

SBP
CHR
QUET
SOCL

Potential confounders/
interaction variables

Note: QUET ¼ Weight

ðheightÞ � 100

The problem:

To describe the relationship between
SNI and time to death, after
controlling for AGE, SBP, CHR,
QUET, and SOCL.

Goals:
� Measure of effect (adjusted)
� Survivor curves for different SNI

categories (adjusted)
� Decide on variables to be

adjusted; determine method of
adjustment
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The computer data layout for this problem is
given below. The first column lists the 170 indi-
viduals in the data set. The second column lists
the survival times, and the third column lists
failure or censored status. The remainder of
the columns list the 6 explanatory variables of
interest, starting with the exposure variable
SNI and continuing with the variables to be
accounted for in the analysis.

Computer layout: 13-year follow-up study (1967–1980) of a fixed cohort of n ¼ 170
white males (60þ) from Evans County, Georgia

# t d SNI AGE SBP CHR QUET SOCL

1 t1 d1 SNI1 AGE1 SBP1 CHR1 QUET1 SOCL1

2 t2 d2 SNI2 AGE2 SBP2 CHR2 QUET2 SOCL2

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
170 t170 d170 SNI170 AGE170 SBP170 CHR170 QUET170 SOCL170

X. Math Models in
Survival Analysis

It is beyond the scope of this presentation to
provide specific details of the survival analysis
of these data. Nevertheless, the problem
addressed by these data is closely analogous
to the typical multivariable problem addressed
by linear and logistic regression modeling.
Regardless of whichmodeling approach is cho-
sen, the typical problem concerns describing
the relationship between an exposure variable
(e.g., E) and an outcome variable (e.g., D) after
controlling for the possible confounding and
interaction effects of additional variables (e.g.,
C1, C2, and so on up to Cp). In our survival
analysis example, E is the social network vari-
able SNI, D is the survival time variable, and
there are p ¼ 5 C variables, namely, AGE, SBP,
CHR, QUET, and SOCL.

General framework

E D

Controlling for C1, C2, . . . Cp.

SNI study:

E ¼ SNI ) D ¼ survival time

Controlling for AGE, SBP, CHR,
QUET, and SOCL

Presentation: X. Math Models in Survival Analysis 35



Nevertheless, an important distinction among
modeling methods is the type of outcome vari-
able being used. In survival analysis, the out-
come variable is “time to an event,” and there
may be censored data. In linear regression
modeling, the outcome variable is generally
a continuous variable, like blood pressure. In
logistic modeling, the outcome variable is a
dichotomous variable, like CHD status, yes or
no. And with linear or logistic modeling, we
usually do not have information on follow-up
time available.

As with linear and logistic modeling, one statis-
tical goal of a survival analysis is to obtain some
measure of effect that describes the exposur-
e–outcome relationship adjusted for relevant
extraneous variables.

In linear regression modeling, the measure of
effect is usually some regression coefficient b.

In logistic modeling, the measure of effect is an
odds ratio expressed in terms of an exponential
of one or more regression coefficients in the
model, for example, e to the b.

In survival analysis, the measure of effect typi-
cally obtained is called a hazard ratio; as with
the logistic model, this hazard ratio is
expressed in terms of an exponential of one or
more regression coefficients in the model.

Thus, from the example of survival analysis
modeling of the social network data, one may
obtain a hazard ratio that describes the rela-
tionship between SNI and survival time (T),
after controlling for the appropriate covariates.

Model

Survival analysis Time to event
(with censoring)

Continuous (SBP)

Dichotomous
(CHD yes/no)

Linear regression
Logistic regression

fo
llo

w
-u

p 
ti
m

e 
in

fo
no

t 
us

ed
Outcome

Measure of effect:

Linear regression:
regression coefficient b

Logistic regression:
odds ratio eb

Survival analysis:
hazard ratio eb

EXAMPLE

SNI study: hazard ratio (HR)
describes relationship between SNI
and T, after controlling for covariates.
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The hazard ratio, although a different measure
from an odds ratio, nevertheless has a similar
interpretation of the strength of the effect.
A hazard ratio of 1, like an odds ratio of 1,
means that there is no effect; that is, 1 is the
null value for the exposure–outcome relation-
ship. A hazard ratio of 10, on the other hand,
is interpreted like an odds ratio of 10; that is,
the exposed group has ten times the hazard of
the unexposed group. Similarly, a hazard ratio
of 1/10 implies that the exposed group has one-
tenth the hazard of the unexposed group.

XI. Censoring
Assumptions

There are three assumptions about censoring
often considered for survival data: inde-
pendent censoring, random censoring, and
non-informative censoring. Although these
assumptions have similarities, they are also
somewhat different and are often confused in
the textbook and published literature as being
interchangeable synonyms.

Mathematical definitions of independent (vs.
nonindependent), random (vs. nonrandom),
and non-informative (vs. informative) censor-
ing have been given elsewhere (Kalbfleisch
and Prentice, 1980; Klein and Moeschberger,
2003). Here, however, we prefer to provide
more intuitive definitions and examples.

The assumption of independent censoring is
the most useful of the three types for drawing
correct inferences that compare the survival
experience of two or more groups (e.g., treat-
ment vs. placebo). In particular, the presence
of non-independent censoring typically affects
the validity of one’s estimated effect. Random
censoring is a stronger assumption and more
restrictive than independent censoring.

Interpretation of HR (like OR):

HR ¼ 1 ) no relationship

HR ¼ 10 ) exposed hazard 10
times unexposed

HR ¼ 1/10 ) exposed hazard 1/10
times unexposed

Three assumptions about censoring:

Independent (vs.non-independent)
censoring

Random (vs. non-random)
censoring

Non-informative (vs. informative)
censoring

Mathematic definitions have been
provided elsewhere.

Independent (vs.non-independent)
censoring
� most useful
� affects validity

Random (vs. non-random)
censoring
� more restrictive than

independent,
i.e., random ) indep,
whereas indep )6 random.
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To be more specific, random censoring essen-
tially means that subjects who are censored at
time t should be representative of all the study
subjects who remained at risk at time t with
respect to their survival experience. In other
words, the failure rate for subjects who are
censored is assumed to be equal to the failure
rate for subjects who remained in the risk set
who are not censored.

Independent censoring essentially means
thatwithin any subgroup of interest, the subjects
who are censored at time t should be representa-
tive of all the subjects in that subgroup who
remained at risk at time t with respect to their
survival experience. In other words, censoring
is independent provided that it is random
within any subgroup of interest. We illustrate
these ideas with an example.

Suppose that we are interested in estimating
the 3-year survival (for some disease) among
those in Group A. We follow 100 individuals
intially disease free for 3 years. Over the 3-year
period, 20 contract disease. We estimate the
3-year risk of disease for those in Group A to
be 0.20 and the 3-year survival to be 0.80 (since
80 of 100 survived).

Now suppose we wish to continue the study for
another 2 years in order to estimate the 5-year
survival for Group A. We want to continue the
following for the 80 individuals who partici-
pated in the study and survived for the first
3 years. However, half or 40 of those 80 indivi-
duals refused to continue in the study and
were therefore lost to follow-up (censored). Of
the other 40 individuals who remained in the
study, 5 individuals contract the disease. With
this information, what is the estimate of the
5-year survival for Group A and under what
assumptions?

Random Censoring:

Failure rate
Censored Not censored

hCe(t) ¼ hNCe(t)

Independent censoring:

Failure rate
Subgrp Censored Not censored

A hA,Ce(t) ¼ hA,NCe(t)
B hB,Ce(t) ¼ hB,NCe(t)

EXAMPLE

Group A
Time # at risk # events # survived

0–3 yrs 100 20 80
3-yr risk ¼ 20/100 ¼ 0.20
3-yr survival ¼ 80/100 ¼0.80

Time # at risk # events # survived

0–3 100 20 80
40 leave study

3–5 40 5 35
5-year survival?
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If we know what happened to the 40 indivi-
duals who were censored at the 3-year mark,
then we could sum the total number of events
and the total number of individuals who sur-
vived (out of the original 100 at risk). Under an
assumption of independent and random
censoring, we assume that the 40 indi-
viduals who were censored were similar to
the 40 who remained at risk with respect
to their survival experience. Since 5 of the
40 who remained in the study after 3 years
contracted disease over the next 2 years, we
estimate that 5 of the 40 who were censored
also contracted the disease over the same time
period, even though their disease experience
was unobserved.

So over the course of the 5 years: 20 contracted
disease in the first 3 years, 5 were observed to
get disease after 3 years, and 5 of the censored
individuals were estimated to have contracted
disease. This yields 20 + 5 + 5 ¼ 30 who are
estimated to have contract disease leaving 70 of
the original 100 who have survived over the
5-year period. The estimated 5-year survival
among Group A is 0.70 under the assumptions
of random and independent censoring.

The idea behind independent and random
censoring is that it is as if the subjects censored
at time t were randomly selected to be censored
from the group of subjects who were in the risk
set at time t. Even though the censored subjects
were not randomly selected, their survival
experience would be expected to be the same
as if they had been randomly selected from the
risk set at time t.

In this example, there is no distinction made
between independent censoring and random
censoring. The reason is because we are only
considering one group of individuals (i.e., there
are no predictor variables considered). The dis-
tinction comes if we consider more than one
group for comparison. We illustrate this dis-
tinction by continuing the example.

EXAMPLE: (continued)

What happened to 40 individuals who
were censored at 3 years? Don’t know

Assuming indep and random censoring: 
40 at risk at time 5
       similar to 
40 censored at time 3

i.e., 
expect 5 events from 40 censored at time 3
since 5 events from 40 at risk 

Estimated # of cases over 5 years: 

20 + 5 + 5
first 3 years next 2 years censored cases

= 30 estimated cases from original
100 over 5 years 

Estimated 5-year survival  = 70/100 = 0.70 

The idea:
Assume survival experience of sub-
jects censored at t is as expected if
randomly selected from subjects
who are at risk at t.

So far, there is no distinction
between independent and random
censoring.

Reason:Only considering one group
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We extend the previous example to include 100
subjects from Group B who are disease free at
the start of follow-up. The goal is to estimate
their 5-year survival and compare it to the
5-year survival for Group A. Suppose over the
first 3-year period, 40 of the 100 individuals
contract disease. Then, of the 60 who survive
the first 3 years, 10 refuse to continue in the
study and are therefore censored. For the 50
who remain in the study, 10 individuals con-
tract disease by the 5th year (10 of 50 ¼ 20%).

Under independent censoring, we estimate
that 20% or 2 of the 10 censored subjects con-
tract disease by the 5th year.

So, over the course of the 5 years among the
original 100 in Group B: 40 contracted disease
in the first 3 years, 10 were observed to get
disease after 3 years, and 2 of the censored
individuals were estimated to the contracted
disease. This yields 40 + 10 + 2 ¼ 52 who are
estimated to have contracted disease, leaving
48 of the original 100 who survived over the
5-year period. The estimated 5-year survival
among Group B is 0.48 under the assumptions
of independent censoring.

Over all, combining both groups, there were
200 originally at risk of whom 60 contracted
disease within the first 3 years (20 from Group
A and 40 from Group A) leaving 140 who have
survived for the first 3 years (80 from Group A
and 60 from Group B). At the 3-year mark, 50
subjects were censored (40 in Group A and 10
in Group B).

A much higher proportion of censoring
occurred in Group A (i.e., 40/80 ¼ 0.50) than
in Group B (i.e., 10/60 ¼ 0.17).

Moreover, subjects in Group A had a higher
survival probability than those in Group B.

Therefore, the censoring was not random.

EXAMPLE: (continued)

Group B
Time # at risk # events # survived

0–3 100 40 60
10 leave study

3–5 50 10 40

Failure risk from 3 to 5 yrs ¼10/50 ¼
0.20.

Assuming independent censoring:
expect 0.20�10 ¼2 cases
from 10 censored at time 3

Estimated # of cases over 5 years:

40

first 3 years
þ 40

next 2 years
þ 2

censored cases

¼ 52 estimated cases from original
100 over 5 years

Estimated 5-year survival ¼ 48/100 ¼
0.48

Groups A and B combined
Time # at risk # events # survived

A B total A B total A B total
0–3 100 100 200 20 40 60 80 60 140
40 from A and 10 from B leave study
3–5 40 50 90 5 10 15 35 40 75

pA censoredð Þ ¼ 40=80 ¼ 0:50 or 50%

pB censoredð Þ ¼ 10=60 ¼ 0:17 or 17%

pA censoredð Þ 	 pB censoredð Þ

8<
:

Group A Group B

5-yr survival 0.70 0.48

+
Censoring not random
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However, conditional on each level of covari-
ates (conditional on group status in this exam-
ple), the censoring was random. Therefore, the
censoring was independent because indepen-
dent censoring is random censoring condi-
tional on each level of covariates.

Nevertheless, the random censoring assump-
tion was not met overall because the censored
individuals were not representative of all who
remained in the risk set at time t with respect to
the rate of failure.

If instead in the previous example, suppose 40
of 80 from Group A and 30 of 60 from Group B
were censored at the 3-year mark, as shown in
the table on the left.

Then the censoring would have been random
because an equal proportion of Group A and
Group B would have been censored from the
risk set and those censored would be represen-
tative of those who remained at risk.

We next consider the assumption of non-
informative censoring. Whether censoring is
non-informative or informative depends on
two distributions: (1) the distribution of the
time-to-event random variable and (2) the distri-
bution of time-to-censorship random variable.

We can conceptualize the distribution for the
time-to-event random variable by considering
the distribution of survival times if there was
no loss to follow-up and the study did not end
until all subjects got the event.

Similarly, we can conceptualize a time-to-
censorship random variable by considering
the distribution of censoring times for those
subjects who would not have gotten the event
if the study ended before all subjects got the
event.

EXAMPLE (continued)

Random censoring
within Group A and within Group B

+
Independent censoring

(i.e., random censoring conditional on
covariates)

Nevertheless,
(overall) randomcensoringnotmet

ALTERNATIVE EXAMPLE

Time # at risk # events # survived

A B total A B total A B total
0–3 100 100 200 20 40 60 80 60 140
40 from A and 30 from B leave study
3–5 40 30 70 5 10 15 35 20 55

pA(censored) ¼ 40/80 ¼ 0.50 or 50%
pB(censored) ¼ 30/60 ¼ 0.50 or 50%

pA(censored) ¼ pB(censored)
+

Random censoring (overall)

Non-informative censoring depends
on
� distribution of time-to-event
� distribution of time-to-

censorship

Time-to-event random variable (T):
Distribution of survival times
assuming:
� no loss-to-follow-up
� study continues until all

subjects get event

Time-to-censorship random vari-
able (C):
Distribution of censoring times
assuming:
� study ends before all subjects

get event
� censored subjects do not get

event prior to the end of study
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Non-informative censoring occurs if the dis-
tribution of survival times (T) provides no
information about the distribution of censor-
ship times (C), and vice versa. Otherwise, the
censoring is informative. Note, however, that
the data must still identify which subjects are
or are not censored.

The assumption of non-informative censoring
is often justifiable when censoring is indepen-
dent and/or random; nevertheless, these three
assumptions are not equivalent.

To illustrate how independent censoring could
be different from non-informative censoring,
we describe an artificial example where the
censoring is informative but also random and
independent.

Suppose every time an individual gets an event,
another individual in the study is randomly
selected to leave the study, e.g., after an event,
a family member decides to leave the study.
If those censored were representative of those
who remained in the risk set, then the cen-
soring would be random and independent.
However, the censoring would also be infor-
mative as the censoring mechanism would
be related to the time-to-event distribution
(since events cause censorships). In fact, if this
was the only mechanism in which individuals
were censored, the distribution of survival
times would completely specify the distribu-
tion of censoring times (highly informative).

Non-informative censoring:

T distribution n, Cdistribution
no information

Note: must still need to know which
subjects are censored or not cen-
sored.

Non-informative

Independent

Random

9=
;

� Often all

justifiable

together

� Not all

equivalent

EXAMPLE: Independent and random

but informative

censoring

Subject A gets event
+

Subject B (randomly selected)
gets event, e.g., family member
of Subject A leaves study

Assume: censored subjects represent
subjects at risk at any time

Then
� independent and random

censoring
� informative censoring since

T ) C. (i.e., T distribution
specifies C distribution)
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To see how bias can occur if the censoring is
not independent, consider a drug study in
which some individuals are censored from the
study due to the occurrence of some side
effects. It may be that the unobserved survival
experience among those who are censored due
to a drug side effect is not representative of
those who remained in the study. If those
with a side effect are more vulnerable to the
health outcome, then we would likely overesti-
mate their survival with an assumption of inde-
pendent censoring.

Many of the analytic techniques discussed in
the chapters that follow Kaplan–Meier survival
estimation, the log rank test, and the Cox
model, rely on an assumption of independent
censoring for valid inference in the presence of
right-censored data.

Chapters This presentation is now complete. We suggest
that you review the material covered here by
reading the detailed outline that follows. Then
do the practice exercises and test.

In Chap. 2 we describe how to estimate and
graph survival curves using the Kaplan–Meier
(KM) method. We also describe how to test
whether two or more survival curves are esti-
mating a common curve. The most popular
such test is called the log–rank test.

EXAMPLE: Not independent

censoring

� Drug side effect causes censoring
� Censored subjects not

representative of subjects still at
risk

� Censored subjects more
vulnerable than subjects still at
risk

+
Assuming independent censoring
would overestimate survival

Independent censoring most
relevant: affects validity

3 1. Introduction

2. Kaplan–Meier Survival
Curves and the Log–Rank
Test
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Detailed
Outline

I. What is survival analysis? (pages 4–5)

A. Type of problem addressed: outcome variable is
time until an event occurs.

B. Assume one event of interest; more than one
type of event implies a competing riskproblem.

C. Terminology: time ¼ survival time; event ¼
failure.

D. Examples of survival analysis:

i. leukemia patients/time in remission

ii. disease-free cohort/time until heart disease

iii. elderly population/time until death

iv. parolees/time until rearrest (recidivism)

v. heart transplants/time until death

II. Censored data (pages 5–8)

A. Definition: don’t know survival time exactly.

B. Typical reasons: study ends, loss to follow-up,
withdrawal from study.

C. Example that illustrates (right-) censoring.

D. Right-censoring: true survival time is equal to
or greater than observed survival times.

E. Left-censoring: true survival time is less than or
equal to observed survival time

F. Interval-censoring: true survival time is within a
known time interval (t1, t2)

G. Interval-censoring incorporates right- and left-
censoring as special cases, i.e.,

right-censoring ) t1 ¼lower bound, t2¼1;

left-censoring ) t1¼0, t2¼upper bound.

III. Terminology and notation (pages 9–15)

A. Notation: T ¼ survival time random variable:

t ¼ specific value for T

d ¼ (0–1) variable for failure/censor-
ship status

B. Terminology: S(t) ¼ survivor function

h(t) ¼ hazard function

C. Properties of survivor function:

� theoretically, graph is smooth curve,
decreasing from S(t) ¼ 1 at time t ¼ 0 to
S(t) ¼ 0 at t ¼ 1;

� in practice, graph is step function that may
not go all the way to zero at end of study if
not everyone studied gets the event.
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D. Hazard function formula:

hðtÞ ¼ lim
Dt!0

P t � T < tþ DtjT � tð Þ
Dt

E. Hazard function properties:

� h(t) gives instantaneous potential for event
to occur given survival up to time t;

� instantaneous potential idea is illustrated by
velocity;

� hazard function also called “conditional
failure rate”;

� h(t) � 0; has no upper bound; not a proba-
bility; depends on time units.

F. Examples of hazard curves:

i. exponential

ii. increasing Weibull

iii. decreasing Weibull

iv. log normal

G. Uses of hazard function:

� gives insight about conditional failure rates;

� identifies specific model form;

� math model for survival analysis is usually
written in terms of hazard function.

H. Relationship of S(t) to h(t): if you know one,
you can determine the other:

� example: h(t) ¼ l if and only if S(t) ¼ e�lt

� general formulae:

S tð Þ ¼ exp �
Z t

0

h uð Þdu
� �

h tð Þ ¼ � d S tð Þ=dt
S tð Þ

� �

IV. Goals of survival analysis (page 16)

A. Estimate and interpret survivor and/or hazard
functions.

B. Compare survivor and/or hazard functions.

C. Assess the relationship of explanatory variables
to survival time.
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V. Basic data layout for computer (pages 16–23)

A. General layout:

B. Example: Remission time data

C. Alternative Data Layout for Computer: Couuting
Process (Start, Stop) Format

� Useful formore complicated survival analysis:

i. Age-at-follow-upas time scale (Chapter 3)

ii. Time-dependent variables (Chapter 6)

iii. Recurrent events (Chapter 7)

� CP data layout

# t d X1 X2 . . . Xp

1 t1 d1 X11 X12 . . . X1p

2 t2 d2 X21 X22 . . . X2p

· · · ·
· · · ·
· · · ·
i ti di Xi1 Xi2 . . . Xip

· · · ·
· · · ·
· · · ·
n tn dn Xn1 Xn2. . .Xnp

START

Subject
1

1
1

1

1

1

1
2

n
n

n

i
i

r1

ri

rn

2

2

1

Subject
i

Subject
n

Data Layout CP Approach
i j dij

d11
d12

d1r1

dir1

dn1
dn2

di1

di2

ti10

ti20

ti11

ti21

t1r10 t1r11 X1r11

tnrn0 tnrn1 Xnrn1 Xnrnp

t1ri0

tn10

tn20 tn21

tn11

t1ri1 Xiri1

dnrn

Xirip

X111

X121

Xn11
Xn21

Xn1p

Xn2p

X1r1p

Xi1p

Xi2p

t110

t120 t121

t111 X111

X121

X11p
X12p

tij0 tij1 Xij1 Xijp

STOP
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� Simplest CP format: 1 dataline subject

� Example from Remission Time Dataset

� Example from Study of Recurrent Bladder
Cancer Tumors (Byar, 1980; Wei, Lin, and
Weisfeld, 1989)

� Computer Appendix gives programming
code

VI. Basic data layout for understanding analysis
(pages 23–28)

A. General layout:

B. Example: Remission time data

Group 1 (n ¼ 21, 9 failures, k ¼ 7);

Group 2 (n ¼ 21, 21 failures, k ¼ 12)

C. How to work with censored data:
Use all information up to the time of censor-
ship; don’t throw away information.

VII. Descriptive measures of survival experience
(pages 28–30)

A. Average survival time (ignoring censorship
status):

T ¼
Pn
i¼1

ti

n

T underestimates the true average
survival time, because censored
times are included in the formula.

i

1

i

n

1

1

1

0

0

0

d11

di1

dn1

t1

ti

tn

X111

Xi11

Xn11

X11p

Xi1p

Xn1p

j dij tij0 tij1 Xij1 Xijp

Ordered
failure times

(t(f))

# of
failures
(mf)

# censored
in [t(f), t(fþ1))

(qf)
Risk set
R(t(f))

t(0) ¼ 0 m0 ¼ 0 q0 R(t(0))
t(1) m1 q1 R(t(1))
t(2) m2 q2 R(t(2))
· · · ·
· · · ·
· · · ·
t(k) mk qk R(t(k))

Note: k ¼ # of distinct times at which subjects failed; n ¼
# of subjects (k � n); R(t(f)), the risk set, is the set of
individuals whose survival times are at least t(f) or larger.
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B. Average hazard rate:

�h ¼ # failuresPn
i¼1

ti

C. Descriptive measures T and h give overall com-
parison; estimated survivor curves give compar-
ison over time.

D. Estimated survivor curves are step function
graphs.

E. Median survival time: graphically, proceed hor-
izontally from 0.5 on the Y-axis until reaching
graph, then vertically downward until reaching
the X-axis.

VIII. Example: Extended remission data (pages 30–33)

A. Extended data adds log WBC to previous remis-
sion data.

B. Need to consider confounding and interaction.

C. Extended data problem: compare survival expe-
rience of two groups, after adjusting for con-
founding and interaction effects of log WBC.

D. Analysis alternatives:

i. stratify on log WBC and compare survival
curves for different strata;

ii. use math modeling, e.g., proportional
hazards model.

IX. Multivariable example (pages 33–35)

A. The problem: to describe the relationship
between social network index (SNI) and time
until death, controlling for AGE, systolic blood
pressure (SBP), presence or absence of chronic
disease (CHR), Quetelet’s index (QUET – a
measure of body size), and social class (SOCL).

B. Goals:

� to obtain an adjusted measure of effect;

� to obtain adjusted survivor curves for differ-
ent SNI categories;

� to decide on variables to be adjusted.

C. The data: 13-year follow-up study (1967–1980)
of a fixed cohort of n ¼ 170 white males (60þ)
from Evans County, Georgia.
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X. Math models in survival analysis (pages 35–37)

A. Survival analysis problem is analogous to typi-
cal multivariable problem addressed by linear
and/or logistic regression modeling: describe
relationship of exposure to outcome, after
accounting for possible confounding and inter-
action.

B. Outcome variable (time to event) for survival
analysis is different from linear (continuous)
or logistic (dichotomous) modeling.

C. Measure of effect typically used in survival anal-
ysis: hazard ratio (HR).

D. Interpretation of HR: like OR. SNI study: HR
describes relationship between SNI and T, after
controlling for covariates.

XI. Censoring assumptions (pages 37–43)

A. Three different assumptions about censoring:

i. Independent (vs.Non-independent) censoring

a. most useful- concerns validity of
estimated effect

ii. Random (vs. Non-random) censoring

a. more restrictive than independent
censoring

iii. Non-informative (vs. Informative) censoring

a. typically affects efficiency of estimated
effect

B. Examples.
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Practice
Exercises

True or False (Circle T or F):

T F 1. In a survival analysis, the outcome variable is
dichotomous.

T F 2. In a survival analysis, the event is usually
described by a (0, 1) variable.

T F 3. If the study ends before an individual has
gotten the event, then his or her survival time
is censored.

T F 4. If, for a given individual, the event occurs
before the person is lost to follow-up or with-
draws from the study, then this person’s sur-
vival time is censored.

T F 5. S(t) ¼ P(T >t) is called the hazard function.

T F 6. The hazard function is a probability.

T F 7. Theoretically, the graph of a survivor function
is a smooth curve that decreases from S(t) ¼ 1
at t ¼ 0 to S(t) ¼ 0 at t ¼ 1.

T F 8. The survivor function at time t gives the instan-
taneous potential per unit time for a failure to
occur, given survival up to time t.

T F 9. The formula for a hazard function involves a
conditional probability as one of its compo-
nents.

T F 10. The hazard function theoretically has no upper
bound.

T F 11. Mathematical models for survival analysis
are frequently written in terms of a hazard
function.

T F 12. One goal of a survival analysis is to compare
survivor and/or hazard functions.

T F 13. Ordered failure times are censored data.

T F 14. Censored data are used in the analysis of sur-
vival data up to the time interval of censorship.

T F 15. A typical goal of a survival analysis involving
several explanatory variables is to obtain an
adjusted measure of effect.
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16. Given the following survival time data (in weeks) for
n ¼ 15 subjects,
1, 1, 1þ, 1þ, 1þ, 2, 2, 2, 2þ, 2þ, 3, 3, 3þ, 4þ, 5þ
whereþ denotes censored data, complete the following
table:

Also, compute the average survival time (T) and the
average hazard rate (h) using the raw data (ignoring þ
signs for T).

17. Suppose that the estimated survivor curve for the
above table is given by the following graph:

What is the median survival time for this cohort?

Questions 18–20 consider the comparison of the fol-
lowing two survivor curves:

18. Which group has a better survival prognosis before
time t*?

19. Which group has a better survival prognosis after
time t*?

20. Which group has a longer median survival time?

t( f ) mf qf R(t( f ))

0 0 0 15 persons survive � 0 weeks
1
2
3

0 1

1

2 3

S(t)

t

Group B

Group A1

t*

S(t)
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Test True or False (Circle T or F):

T F 1. Survival analysis is a collection of statistical
procedures for data analysis for which the out-
come variable is time until an event occurs.

T F 2. In survival analysis, the term “event” is synon-
ymous with “failure.”

T F 3. If a given individual is lost to follow-up or with-
draws from the study before the end of the
study without the event occurring, then the
survival time for this individual is said to be
“censored.”

T F 4. In practice, the survivor function is usually
graphed as a smooth curve.

T F 5. The survivor function ranges between 0 and1.

T F 6. The concept of instantaneous potential is illu-
strated by velocity.

T F 7. A hazard rate of one per day is equivalent to
seven per week.

T F 8. If you know the form of a hazard function, then
you can determine the corresponding survivor
curve, and vice versa.

T F 9. One use of a hazard function is to gain insight
about conditional failure rates.

T F 10. If the survival curve for group 1 lies completely
above the survival curve for group 2, then the
median survival time for group 2 is longer than
that for group 1.

T F 11. The risk set at 6 weeks is the set of individuals
whose survival times are less than or equal to
6 weeks.

T F 12. If the risk set at 6 weeks consists of 22 persons,
and 4 persons fail and 3 persons are censored
by the 7th week, then the risk set at 7 weeks
consists of 18 persons.

T F 13. The measure of effect used in survival analysis
is an odds ratio.

T F 14. If a hazard ratio comparing group 1 relative to
group 2 equals 10, then the potential for failure
is ten times higher in group 1 than in group 2.

T F 15. The outcome variable used in a survival analy-
sis is different from that used in linear or logis-
tic modeling.

16. State two properties of a hazard function.

17. State three reasons why hazard functions are used.

18. State three goals of a survival analysis.
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19. The following data are a sample from the 1967–1980
Evans County study. Survival times (in years) are
given for two study groups, each with 25 participants.
Group 1 has no history of chronic disease (CHR ¼ 0),
and group 2 has a positive history of chronic disease
(CHR ¼ 1):

For group 1, complete the following table involving
ordered failure times:

Group 1 (CHR ¼ 0): 12.3þ, 5.4, 8.2, 12.2þ, 11.7, 10.0,
5.7, 9.8, 2.6, 11.0, 9.2, 12.1þ, 6.6,
2.2, 1.8, 10.2, 10.7, 11.1, 5.3, 3.5,
9.2, 2.5, 8.7, 3.8, 3.0

Group 2 (CHR ¼ 1): 5.8, 2.9, 8.4, 8.3, 9.1, 4.2, 4.1, 1.8,
3.1, 11.4, 2.4, 1.4, 5.9, 1.6, 2.8,
4.9, 3.5, 6.5, 9.9, 3.6, 5.2, 8.8, 7.8,
4.7, 3.9

t( f ) mf qf R(t( f ))

Group 1: 0.0 0 0 25 persons survived � 0 years
1.8 1 0 25 persons survived � 1.8 years
2.2
2.5
2.6
3.0
3.5
3.8
5.3
5.4
5.7
6.6
8.2
8.7
9.2
9.8

10.0
10.2
10.7
11.0
11.1
11.7
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20. For the data of Problem 19, the average survival
time (T) and the average hazard rate (h) for each
group are given as follows:

a. Based on the above information, which group has
a better survival prognosis? Explain briefly.

b. How would a comparison of survivor curves pro-
vide additional information to what is provided in
the above table?

Answers to
Practice
Exercises

1. F: the outcome is continuous; time until an event
occurs.

2. T

3. T

4. F: the person fails, i.e., is not censored.

5. F: S(t) is the survivor function.

6. F: the hazard is a rate, not a probability.

7. T

8. F: the hazard function gives instantaneous potential.

9. T

10. T

11. T

12. T

13. F: ordered failure times are data for persons who are
failures.

14. T

15. T

16.

T ¼ 33

15
¼ 2:2; ; h ¼ 7

33
¼ 0:22

17. Median ¼ 3 weeks

18. Group A

19. Group B

20. Group A

T h

Group 1: 7.5 .1165
Group 2: 5.3 .1894

t(f) mf qf R(t(f))

0 0 0 15 persons survive � 0 weeks
1 2 3 15 persons survive � 1 weeks
2 3 2 10 persons survive � 2 weeks
3 2 3 5 persons survive � 3 weeks
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Introduction We begin with a brief review of the purposes of survival
analysis, basic notation and terminology, and the basic
data layout for the computer.

We then describe how to estimate and graph survival
curves using the Kaplan-Meier (KM) method. The esti-
mated survival probabilities are computed using a product
limit formula.

Next, we describe how to compare two or more survival
curves using the log–rank test of the null hypothesis of
a common survival curve. For two groups, the log–rank
statistic is based on the summed observed minus expected
score for a given group and its variance estimate. For
several groups, a computer should always be used because
the log–rank formula is more complicated mathematically.
The test statistic is approximately chi-square in large
samples with G � 1 degrees of freedom, where G denotes
the number of groups being compared.

Several alternatives to the log–rank test will be briefly
described. These tests are variations of the log rank test
that weigh each observation differently. They are also large
sample chi-square tests with G � 1 degrees of freedom.

Finally, we describe how to compute confidence intervals
for the KM curve and for the median survival time.

Abbreviated
Outline

The outline below gives the user a preview of the material
to be covered by the presentation. A detailed outline for
review purposes follows the presentation.

I. Review (pages 58–60)

II. An example of Kaplan-Meier curves (pages 61–65)

III. General features of KM curves (pages 66–67)

IV. The log-rank test for two groups (pages 67–71 )

V. The log-rank test for several groups (pages 71–73)

VI. Alternatives to the log rank test (pages 73–78)

VII. Confidence intervals for KM curves
(pages 78–79)

VIII. Confidence intervals for the median survival
time (page 80)

IX. Summary (page 81)
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Objectives Upon completing the chapter, the learner should be able to:

1. Compute Kaplan-Meier (KM) probabilities of survival,
given survival time and failure status information on a
sample of subjects.

2. Interpret a graph of KM curves that compare two or
more groups.

3. Draw conclusions as to whether or not two or more
survival curves are the same based on computer results
that provide a log–rank test and/or an alternative test.

4. Decide whether the log–rank test or one of the
alternatives to this test is more appropriate for a given
set of survival data.

5. Compute a 95% confidence interval for a KM survival
probability.

6. Compute a 95% confidence interval for the median
survival time obtained from a KM curve.
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Presentation
This presentation describes how to plot and
interpret survival data using Kaplan-Meier
(KM) survival curves and how to test whether
or not two or more KM curves are equivalent
using the log–rank test. We also describe alter-
native tests to the log–rank test. Furthermore,
we provide formulae for computing 95%
confidence intervals for a KM curve and for
the median survival time.

I. Review We begin by reviewing the basics of survival
analysis. Generally, survival analysis is a col-
lection of statistical procedures for the analysis
of data in which the outcome variable of inter-
est is time until an event occurs. By event, we
mean death, disease incidence, relapse from
remission, or any designated experience of
interest that may happen to an individual.

When doing a survival analysis, we usually
refer to the time variable as survival time. We
also typically refer to the event as a failure.

Most survival analyses consider a key data ana-
lytical problemcalledcensoring. In essence, cen-
soring occurs when we have some information
about individual survival time, but we don’t
know the survival time exactly.

Most survival time data is right-censored,
because the true survival time interval, which
we don’t really know, has been cut off (i.e.,
censored) at the right side of the observed
time interval, giving us an observed survival
time that is shorter than the true survival time.
We want to use the observed survival time to
draw implications about the true survival time.

As notation, we denote by a capital T the
random variable for a person’s survival time.
Next, we denote by a small letter t any specific
value of interest for the variable T.

plot and interpret
KM survival curves

test equivalence of
KM curves using
log–rank test
alternative tests
9.5% CI for KM and
medium survival

FOCUS

Start EventTIME

Event: death
disease
relapse

Time ¼ survival time

Event ¼ failure

Censoring: Don’t know survival
time exactly

True survival time

Observed survival time

Right-censored

NOTATION

T = survival time

random variable
t = specific value for T
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We let d denote a (0,1) random variable
indicating either censorship or failure. A per-
son who does not fail, that is, does not get the
event during the study period, must have been
censored either before or at the end of the
study.

The survivor function, denoted by S(t), gives
the probability that the random variable T
exceeds the specified time t.

Theoretically, as t ranges from 0 up to infinity,
the survivor function is graphed as a decreas-
ing smooth curve, which begins at S(t) ¼ 1 at
t ¼ 0 and heads downward toward zero as
t increases toward infinity.

In practice, using data, we usually obtain esti-
mated survivor curves that are step functions,
as illustrated here, rather than smooth curves.

The hazard function, denoted by h(t), gives the
instantaneous potential per unit time for
the event to occur given that the individual
has survived up to time t.

In contrast to the survivor function, which
focuses on not failing, the hazard function
focuses on failing; in other words, the higher
the average hazard, the worse the impact on
survival. The hazard is a rate, rather than a
probability. Thus, the values of the hazard
function range between zero and infinity.

Regardless of which function S(t) or h(t) one
prefers, there is a clearly defined relation-
ship between the two. In fact, if one knows
the form of S(t), one can derive the corres-
ponding h(t), and vice versa.

d ¼ 0, 1ð Þ random variable

¼ 1 if failure
0 if censored

�

S tð Þ ¼ survivor function

¼ Pr T > tð Þ

1

0

Theoretical S(t)

t

S(t)

S(0)

S(¥)

¥

S(t)

S(t) in practice

t

1

0 Study end

h tð Þ ¼ hazard function

¼ instantaneous potential

given survival up to time t

Not failing

FailingS(t)

h(t)

h(t) is a rate: 0 to 1

h(t)S(t)
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The general data layout for a survival analysis
is given by the table shown here. The first col-
umn of the table identifies the study subjects.
The second column gives the observed survival
time information. The third column gives the
information for d, the dichotomous variable
that indicates censorship status. The remain-
der of the information in the table gives values
for explanatory variables of interest.

An alternative data layout is shown here. This
layout is the basis upon which Kaplan-Meier
survival curves are derived. The first column
in the table gives ordered survival times from
smallest to largest. The second column gives
frequency counts of failures at each distinct fail-
ure time. The third column gives frequency
counts, denoted by qf, of those persons censored
in the time interval starting with failure time t(f)
up to but not including the next failure time,
denoted by t(fþ1). The last column gives the
risk set, which denotes the collection of indivi-
duals who have survived at least to time t(f).

To estimate the survival probability at a given
time, we make use of the risk set at that time to
include the information we have on a censored
person up to the time of censorship, rather
than simply throw away all the information
on a censored person.

The actual computation of such a survival
probability can be carried out using the
Kaplan-Meier (KM) method. We introduce the
KM method in the next section by way of an
example.

General Data Layout:

Indiv. # t d X1 X2 . . . Xp

1 t1 d1 X11 X12 . . . X1p

2 t2 d2 X21 X22 . . . X2p

� � � � �
� � � � �
� � � � �
n tn dn Xn1 Xn2 . . . Xnp

Alternative (ordered) data
layout:

Ordered
failure
times,
t(f )

# of
failures

mf

# censored in
[t(f ), t(fþ1)),

qf

Risk
set,

R(t(f ))

t(0) ¼ 0 m0 ¼ 0 q0 R(t(0))
t(1) m1 q1 R(t(1))
t(2) m2 q2 R(t(2))
� � � �
� � � �
� � � �
t(k) mk qk R(t(k))

Table of ordered failures:

� Uses all information up to time
of censorship;

� S(t) is derived from R(t).

Survival probability:
Use Kaplan-Meier (KM)
method.
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II. An Example of
Kaplan-Meier Curves

The data for this example derive from a study
of the remission times in weeks for two groups
of leukemia patients, with 21 patients in each
group. Group 1 is the treatment group and
group 2 is the placebo group. The basic question
of interest concerns comparing the survival
experience of the two groups.

Of the 21 persons in group 1, 9 failed during the
study period and 12 were censored. In contrast,
none of the data in group 2 are censored; that
is, all 21 persons in the placebo group went out
of remission during the study period.

In Chapter 1, we observed for this data set that
group 1 appears to have better survival progno-
sis than group 2, suggesting that the treatment
is effective. This conclusion was supported by
descriptive statistics for the average survival
time and average hazard rate shown. Note,
however, that descriptive statistics provide
overall comparisons but do not compare the
two groups at different times of follow-up.

EXAMPLE

The data: remission times (weeks) for
two groups of leukemia patients

Group 1 (n ¼ 21)
treatment

Group 2 (n ¼ 21)
placebo

6, 6, 6, 7, 10, 1, 1, 2, 2, 3,
13, 16, 22, 23, 4, 4, 5, 5,
6þ, 9þ, 10þ, 11þ, 8, 8, 8, 8,
17þ, 19þ, 20þ, 11, 11, 12, 12,
25þ, 32þ, 32þ, 15, 17, 22, 23
34þ, 35þ,

Note: þ denotes censored

# failed # censored Total

Group 1 9 12 21
Group 2 21 0 21

Descriptive statistics:

�T1 ignoringþ 0sð Þ ¼ 17:1; �T2 ¼ 8:6

�h1 ¼ :025; �h2 ¼ :115;
�h2
�h1

¼ 4:6
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A table of ordered failure times is shown here
for each group. These tables provide the basic
information for the computation of KM curves.

Each table begins with a survival time of zero,
even though no subject actually failed at the
start of follow-up. The reason for the zero is
to allow for the possibility that some subjects
might have been censored before the earliest
failure time.

Also, each table contains a column denoted as
nf that gives the number of subjects in the risk
set at the start of the interval. Given that the
risk set is defined as the collection of indivi-
duals who have survived at least to time t(f),
it is assumed that nf includes those persons
failing at time t(f). In other words, nf counts
those subjects at risk for failing instanta-
neously prior to time t(f).

We now describe how to compute the KM
curve for the table for group 2. The computa-
tions for group 2 are quite straightforward
because there are no censored subjects for
this group.

The table of ordered failure times for group
2 is presented here again with the addition of
another column that contains survival proba-
bility estimates. These estimates are the KM
survival probabilities for this group. We will
discuss the computations of these probabilities
shortly.

EXAMPLE: (continued)

Ordered failure times:

Group 1 (treatment)

t(f) nf mf qf

0 21 0 0
6 21 3 1
7 17 1 1
10 15 1 2
13 12 1 0
16 11 1 3
22 7 1 0
23 6 1 5
>23 — — —

Group 2 (placebo)

t(f) nf mf qf

0 21 0 0
1 21 2 0
2 19 2 0
3 17 1 0
4 16 2 0
5 14 2 0
8 12 4 0
11 8 2 0
12 6 2 0
15 4 1 0
17 3 1 0
22 2 1 0
23 1 1 0

Group 2: no censored subjects
Group 2 (placebo)

t(f) nf mf qf Ŝ (t(f))

0 21 0 0 1
1 21 2 0 19/21 ¼ .90
2 19 2 0 17/21 ¼ .81
3 17 1 0 16/21 ¼ .76
4 16 2 0 14/21 ¼ .67
5 14 2 0 12/21 ¼ .57
8 12 4 0 8/21 ¼ .38

11 8 2 0 6/21 ¼ .29
12 6 2 0 4/21 ¼ .19
15 4 1 0 3/21 ¼ .14
17 3 1 0 2/21 ¼ .10
22 2 1 0 1/21 ¼ .05
23 1 1 0 0/21 ¼ .00
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A plot of the KM survival probabilities
corresponding to each ordered failure time is
shown here for group 2. Empirical plots such
as this one are typically plotted as a step func-
tion that starts with a horizontal line at a sur-
vival probability of 1 and then steps down to
the other survival probabilities as we move
from one ordered failure time to another.

We now describe how the survival probabilities
for the group 2 data are computed. Recall that
a survival probability gives the probability that
a study subject survives past a specified time.

Thus, considering the group 2 data, the pro-
bability of surviving past zero is unity, as it
will always be for any data set.

Next, the probability of surviving past the
first ordered failure time of 1 week is given by
19/21 or (.90) because 2 people failed at 2 week,
so that 19 people from the original 21 remain
as survivors past 2 week.

Similarly, the next probability concerns sub-
jects surviving past 2 weeks, which is 17/21
(or. 81) because 2 subjects failed at 1 week and
2 subjects failed at 2 weeks leaving 17 out of the
original 21 subjects surviving past 2 weeks.

The remaining survival probabilities in the
table are computed in the same manner, that
is, we count the number of subjects surviving
past the specified time being considered and
divide this number by 21, the number of sub-
jects at the start of follow-up.

Recall that no subject in group 2 was censored,
so the q column for group 2 consists entirely
of zeros. If some of the q’s had been nonzero,
an alternative formula for computing survival
probabilities would be needed. This alterna-
tive formula is called the Kaplan-Meier (KM)
approach and can be illustrated using the
group 2 data even though all values of q are
zero.

EXAMPLE: (continued)

KM Curve for Group 2 (Placebo)

1

0 5

.5

10 15 20
Weeks

S(t)

S(t) ¼ Pr (T > t)

Group 2 (placebo)

t(f) nf mf qf Š (t(f))

0 21 0 0 1
1 21 2 0 19/21 ¼ .90
2 19 2 0 17/21 ¼ .81
3 17 1 0 16/21 ¼ .76
4 16 2 0 14/21 ¼ .67
5 14 2 0 12/21 ¼ .57
8 12 4 0 8/21 ¼ .38

11 8 2 0 6/21 ¼ .29
12 6 2 0 4/21 ¼ .19
15 4 1 0 3/21 ¼ .14
17 3 1 0 2/21 ¼ .10
22 2 1 0 1/21 ¼ .05
23 1 1 0 0/21 ¼ .00

Ŝðtðf ÞÞ ¼
# surviving past tðf Þ

21

No censorship in group 2
Alternative formula: KM approach
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For example, an alternative way to calculate
the survival probability of exceeding 4 weeks
for the group 2 data can be written using the
KM formula shown here. This formula involves
the product of conditional probability terms.
That is, each term in the product is the proba-
bility of exceeding a specific ordered failure
time t(f) given that a subject survives up to that
failure time.

Thus, in the KM formula for survival past
4 weeks, the term 19/21 gives the probability
of surviving past the first ordered failure time,
1 week, given survival up to the first week. Note
that all 21 persons in group 2 survived up to
1 week, but that 2 failed at 1 week, leaving 19
persons surviving past 1 week.

Similarly, the term 16/17 gives the probability
of surviving past the third ordered failure time
at week 3, given survival up to week 3. There
were 17 persons who survived up to week 3 and
1 of these then failed, leaving 16 survivors past
week 3. Note that the 17 persons in the deno-
minator represents the number in the risk set
at week 3.

Notice that the product terms in the KM for-
mula for surviving past 4 weeks stop at the 4th
week with the component 14/16. Similarly, the
KM formula for surviving past 8 weeks stops
at the eighth week.

More generally, any KM formula for a survival
probability is limited to product terms up to
the survival week being specified. That is
why the KM formula is often referred to as a
“product-limit” formula.

Next, we consider the KM formula for the data
from group 1, where there are several censored
observations.

The estimated survival probabilities obtained
using the KM formula are shown here for
group 1.

The first survival estimate on the list is Ŝ(0) � 1,
as it will always be, because this gives the prob-
ability of surviving past time zero.

EXAMPLE

Ŝð4Þ ¼ 1� 19

21
� 17

19
� 16

17
� 14

16
¼ 14

21
¼ :67

Pr (T > t(f) T � t(f))

Ŝð4Þ ¼ 1� 19
21

� 17

19
� 16

17
� 14

16
¼ 14

21
¼ :67

19

21
¼ Pr T > 1 T � 1jð Þ

16

17
¼ Pr T > 3 T � 3jð Þ

17 ¼ # in risk set at week 3

Ŝð4Þ ¼ 1� 19

21
� 17

19
� 16

17
� 14

16

Ŝð8Þ ¼ 1� 19

21
� 17

19
� 16

17
� 14

16
� 12

14
� 8

12

KM formula ¼ product limit
formula

Group 1 (treatment)

t(f) nf mf qf Ŝ (t(f))

0 21 0 0 1

6 21 3 1 1� 18
21�

�
�
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The other survival estimates are calculated by
multiplying the estimate for the immediately
preceding failure time by a fraction. For exam-
ple, the fraction is 18/21 for surviving past
week 6, because 21 subjects remain up to
week 6 and 3 of these subjects fail to survive
past week 6. The fraction is 16/17 for surviving
past week 7, because 17 people remain up to
week 7 and 1 of these fails to survive pastweek 7.
The other fractions are calculated similarly.

For a specified failure time t(f), the fractionmay
be generally expressed as the conditional prob-
ability of surviving past time t(f), given avail-
ability (i.e., in the risk set) at time t(f). This
is exactly the same formula that we previously
used to calculate each product term in the pro-
duct limit formula used for the group 2 data.

Note that a subject might not be available at
time t(f) for one of two reasons: (1) either the
subject has failed prior to t(f), or (2) the subject
has been censored prior to t(f). Group 1 has
censored observations, whereas group 2 does
not. Thus, for group 1, censored observations
have to be taken into account when determin-
ing the number available at t(f).

Plots of the KM curves for groups 1 and 2 are
shown here on the same graph. Notice that the
KM curve for group 1 is consistently higher
than the KM curve for group 2. These figures
indicate that group 1, which is the treatment
group, has better survival prognosis than group
2, the placebo group. Moreover, as the number
of weeks increases, the two curves appear to get
farther apart, suggesting that the beneficial
effects of the treatment over the placebo are
greater the longer one stays in remission.

The KM plots shown above can be easily
obtained from most computer packages that
perform survival analysis, including SAS, Stata,
SPSS, and R. All the user needs to do is provide
a KM computer program with the basic data
layout and then provide appropriate commands
to obtain plots.

EXAMPLE: (continued)

Group 1 (treatment)

t(f) nf mf qf Ŝ (t(f))

0 21 0 0 1

6 21 3 1 1� 18
21

¼ :8571

7 17 1 1 :8571� 16
17

¼ :8067

10 15 1 2 :8067� 14

15
¼ :7529

13 12 1 0 :7529� 11

12
¼ :6902

16 11 1 3 :6902� 10

11
¼ :6275

22 7 1 0 :6275� 6

7
¼ :5378

23 6 1 5 :5378� 5

6
¼ :4482

Fraction at t(f ): Pr(T > t(f ) | T � t(f ))

Not available at t( f ): failed prior to t( f )
or
censored prior to t( f )

group 1 only

KM  Plots for Remission Data

Group 1 (treatment)

Group 2 (placebo)

0

1

0.8

0.6

0.4

0.2

0
8 16 24 32

Obtain KM plots from
computer package, e.g., SAS,

Stata,
SPSS
R
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III. General Features
of KM Curves

The general formula for a KM survival probabil-
ity at failure time t(f) is shown here. This formula
gives the probability of surviving past the previ-
ous failure time t(f�1), multiplied by the condi-
tional probability of surviving past time t(f),
given survival to at least time t(f).

The above KM formula can also be expressed as
a product limit if we substitute for the survival
probability Ŝ (t(f�1)), the product of all fractions
that estimate the conditional probabilities for
failure times t(f�1) and earlier.

For example, the probability of surviving
past 10 weeks is given in the table for group 1
(page 65) by .8067 times 14/15, which equals
.7529. But the .8067 can be alternatively
written as the product of the fractions 18/21
and 16/17. Thus, the product limit formula for
surviving past 10 weeks is given by the triple
product shown here.

Similarly, the probability of surviving past
16 weeks can be written either as .6902 � 10/11,
or equivalently as the five-way product of frac-
tions shown here.

The general expression for the product limit
formula for the KM survival estimate is shown
here together with the general KM formula
given earlier. Both expressions are equivalent.

A simple mathematical proof of the KM for-
mula can be described in probability terms.
One of the basic rules of probability is that
the probability of a joint event, say A and B,
is equal to the probability of one event, say A,
times the conditional probability of the other
event, B, given A.

General KM formula:

Ŝ t fð Þ
� �

¼ Ŝ t f�1ð Þ
� �� P̂r T > t fð ÞjT � t fð Þ

� �

KM formula ¼ product limit
formula

Ŝ tðf�1Þ
� � ¼Y

f�1

i¼1

P̂r T> tðiÞ T � tðiÞ
��� �

EXAMPLE

Ŝð10Þ ¼ :8067� 14

15
¼ :7529

¼ 18 ×
21

16
17

� 14

15

Ŝð16Þ ¼ :6902� 10

11

¼ 18 ×
21

16
17

14× ×
15

11
12

� 10

11

Ŝ tðf Þ
� � ¼ Yf

i¼1

P̂r T > tðiÞ T � tðiÞ
��� �

¼ Ŝðtðf�1ÞÞ
� P̂r T> tðf Þ T � tðf Þ

��� �

Math proof:

Pr(A and B) ¼ Pr(A) � Pr(B | A)
always
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If we let A be the event that a subject survives to
at least time t(f) and we let B be the event that a
subject survives past time t(f), then the joint
event A and B simplifies to the event B, which
is inclusive of A. It follows that the probability
of A and B equals the probability of surviving
past time t(f).

Also, because t(f) is the next failure time after
t(f�1), there can be no failures after time t(f�1)

and before time t(f). Therefore, the probability
of A is equivalent to the probability of surviving
past the (f � 1)th ordered failure time.

Furthermore, the conditional probability of B
given A is equivalent to the conditional proba-
bility in the KM formula.

Thus, using the basic rules of probability, the
KM formula can be derived.

IV. The Log-Rank Test
for Two Groups

We now describe how to evaluate whether or
not KM curves for two or more groups are
statistically equivalent. In this section we con-
sider two groups only. Themost popular testing
method is called the log–rank test.

When we state that two KM curves are “statisti-
cally equivalent,” we mean that, based on a test-
ing procedure that compares the two curves in
some “overall sense,” we do not have evidence to
indicate that the true (population) survival
curves are different.

A ¼ “T � t(f )” ! A and B ¼ B
B ¼ “T > t(f )”
Pr(A and B) ¼ Pr(B) ¼ S(t( f ))

No failures during t(f�1) < T < t(f )
Pr(A) ¼ Pr(T > t(f�1))¼ S(t( f −1))

Pr(B|A) ¼ Pr(T > t( f )|T ≥ t( f ))

Thus, from Pr(A and B) formula,

Pr A and Bð Þ ¼ Pr Að Þ � Pr B j Að Þ
S tð f Þ
� � ¼ S tð f�1Þ

� �
� Pr T > tð f ÞjT � tð f Þ

� �

Are KM curves statistically
equivalent?

1.0

.8

.6

.4

.2

.0
8 16 24
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The log–rank test is a large-sample chi-square
test that uses as its test criterion a statistic that
provides an overall comparison of the KM
curves being compared. This (log–rank) statis-
tic, like many other statistics used in other
kinds of chi-square tests,makes use of observed
versus expected cell counts over categories of
outcomes. The categories for the log–rank sta-
tistic are defined by each of the ordered failure
times for the entire set of data being analyzed.

As an example of the information required for
the log–rank test, we again consider the com-
parison of the treatment (group 1) and placebo
(group 2) subjects in the remission data on
42 leukemia patients.

Here, for each ordered failure time, t(f), in the
entire set of data, we show the numbers of
subjects (mif) failing at that time, separately by
group (i), followed by the numbers of subjects
(nif) in the risk set at that time, also separately
by group.

Thus, for example, at week 4, no subjects failed
in group 1, whereas two subjects failed in
group 2. Also, at week 4, the risk set for group 1
contains 21 persons, whereas the risk set for
group 2 contains 16 persons.

Similarly, at week 10, 1 subject failed in group 1,
and no subjects failed at group 2; the risk sets
for each group contain 15 and 8 subjects,
respectively.

We now expand the previous table to include
expected cell counts and observed minus
expected values for each group at each ordered
failure time. The formula for the expected
cell counts is shown here for each group. For
group 1, this formula computes the expected
number at time f (i.e., e1f) as the proportion of
the total subjects in both groups who are at risk
at time f, that is, n1f /(n1f þ n2f), multiplied by
the total number of failures at that time for
both groups (i.e., m1f þ m2f). For group 2, e2f
is computed similarly.

� Chi-square test
� Overall comparison of KM

curves
� Observed versus expected

counts
� Categories defined by ordered

failure times

EXAMPLE

Remission data: n ¼ 42

# failures # in risk set

t(f) m1f m2f n1f n2f

1 0 2 21 21
2 0 2 21 19
3 0 1 21 17
4 0 2 21 16
5 0 2 21 14
6 3 0 21 12
7 1 0 17 12
8 0 4 16 12

10 1 0 15 8
11 0 2 13 8
12 0 2 12 6
13 1 0 12 4
15 0 1 11 4
16 1 0 11 3
17 0 1 10 3
22 1 1 7 2
23 1 1 6 1

Expected cell counts:

e1f ¼ n1f
n1f þ n2f

� 	
� m1f þ m2f

� �
"

Proportion

in risk set

"
# of failures over

both groups

e2f ¼ n2f
n1f þ n2f

� 	
� m1f þ m2f

� �
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When two groups are being compared, the
log–rank test statistic is formed using the sum
of the observed minus expected counts over all
failure times for one of the two groups. In this
example, this sum is �10.26 for group 1 and
10.26 for group 2. We will use the group 2 value
to carry out the test, but as we can see, except
for the minus sign, the difference is the same
for the two groups.

For the two-group case, the log–rank statistic,
shown here at the left, is computed by dividing
the square of the summed observed minus
expected score for one of the groups — say,
group 2 — by the variance of the summed
observed minus expected score.

EXAMPLE

Expanded Table (Remission Data)

# failures # in risk set # expected Observed-expected

f t(f) m1f m2f n1f n2f e1f e2f m1f�e1f m2f�e2f

1 1 0 2 21 21 (21/42) � 2 (21/42) � 2 �1.00 1.00
2 2 0 2 21 19 (21/40) � 2 (19/40) � 2 �1.05 1.05
3 3 0 1 21 17 (21/38) � 1 (17/38) � 1 �0.55 0.55
4 4 0 2 21 16 (21/37) � 2 (16/37) � 2 �1.14 1.14
5 5 0 2 21 14 (21/35) � 2 (14/35) � 2 �1.20 1.20
6 6 3 0 21 12 (21/33) � 3 (12/33) � 3 1.09 �1.09
7 7 1 0 17 12 (17/29) � 1 (12/29) � 1 0.41 �0.41
8 8 0 4 16 12 (16/28) � 4 (12/28) � 4 �2.29 2.29
9 10 1 0 15 8 (15/23) � 1 (8/23) � 1 0.35 �0.35

10 11 0 2 13 8 (13/21) � 2 (8/21) � 2 �1.24 1.24
11 12 0 2 12 6 (12/18) � 2 (6/18) � 2 �1.33 1.33
12 13 1 0 12 4 (12/16) � 1 (4/16) � 1 0.25 �0.25
13 15 0 1 11 4 (11/15) � 1 (4/15) � 1 �0.73 0.73
14 16 1 0 11 3 (11/14) � 1 (3/14) � 1 0.21 �0.21
15 17 0 1 10 3 (10/13) � 1 (3/13) � 1 �0.77 0.77
16 22 1 1 7 2 (7/9) � 2 (2/9) � 2 �0.56 0.56
17 23 1 1 6 1 (6/7) � 2 (1/7) � 2 �0.71 0.71

Totals 9 21 19.26 10.74 �10.26 −10.26

# of failure times

Oi � Ei ¼
X
#
17

f¼1

mif � eif
� �

;

i ¼ 1; 2

EXAMPLE

O1 � E1 ¼ �10.26
O2 � E2 ¼ 10.26

Two groups:

O2�E2¼ summed observedminus
expected score for group 2

Log�rank statistic ¼ O2 � E2ð Þ2
Var O2 � E2ð Þ
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The expression for the estimated variance is
shown here. For two groups, the variance for-
mula is the same for each group. This variance
formula involves the number in the risk set in
each group (nif) and the number of failures
in each group (mif) at time f. The summation
is over all distinct failure times.

The null hypothesis being tested is that there is
no overall difference between the two survival
curves. Under this null hypothesis, the log–-
rank statistic is approximately chi-square with
one degree of freedom. Thus, a P-value for the
log–rank test is determined from tables of the
chi-square distribution.

Several computer programs are available for
calculating the log–rank statistic. For example
the Stata package has a command called “sts
test” that computes descriptive information
about Kaplan-Meier curves, the log–rank sta-
tistic, and alternative statistics to the log–rank
statistic, to be described later. Other packages,
like SAS and SPSS, have procedures that pro-
vide results similar to those of Stata. A compar-
ison of Stata, SAS, SPSS and R procedures and
output is provided in the Computer Appendix at
the back of this text.

For the remission data, the edited printout
from using the Stata “sts test” procedure is
shown here. The log–rank statistic is 16.79
and the corresponding P-value is zero to three
decimal places. This P-value indicates that the
null hypothesis should be rejected. We can
therefore conclude that the treatment and pla-
cebo groups have significantly different KM
survival curves.

Var Oi � Eið Þ

¼
X
j

n1f n2f m1f þ m2f

� �
n1f þ n2f � m1f � m2f

� �
n1f þ n2f
� �2

n1f þ n2f � 1
� �

i ¼ 1; 2

H0: no difference between survival
curves

Log-rank statistic �w2 with 1 df
under H0

Computer programs:
Stata’s “sts test”:

� descriptive statistics for KM
curves

� log–rank statistic
� Alternative statistics to

log–rank statistic

EXAMPLE

Using Stata: Remission Data

Group
Events
observed

Events
expected

1 9 19.25
2 21 10.75

Total 30 30.00

Log rank ¼ chi2(2) ¼ 16.79
P-Value ¼ Pr > chi2 ¼ 0.000
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Although the use of a computer is the easiest
way to calculate the log–rank statistic, we pro-
vide here some of the details of the calculation.
We have already seen from earlier computa-
tions that the value of O2 � E2 is 10.26. The
estimated variance of O2 � E2 is computed
from the variance formula above to be 6.2685.
The log–rank statistic then is obtained by squar-
ing 10.26 and dividing by 6.285, which yields
16.793, as shown on the computer printout.

An approximation to the log–rank statistic,
shown here, can be calculated using observed
and expected values for each group without
having to compute the variance formula. The
approximate formula is of the classic chi-square
form that sumsover eachgroupbeing compared
the square of the observedminus expected value
divided by the expected value.

The calculation of the approximate formula is
shown here for the remission data. The
expected values are 19.26 and 10.74 for groups
1 and 2, respectively. The chi-square value
obtained is 15.276, which is slightly smaller
than the log–rank statistic of 16.793.

V. The Log-Rank Test
for Several Groups

The log–rank test can also be used to compare
three or more survival curves. The null hypo-
thesis for this more general situation is that all
survival curves are the same.

Although the same tabular layout can be used
to carry out the calculations when there are
more than two groups, the test statistic is more
complicated mathematically, involving both
variances and covariances of summed observed
minus expected scores for each group. A con-
venient mathematical formula can be given in
matrix terms.We present thematrix formula for
the interested reader in an Appendix at the end
of this chapter.

EXAMPLE

O2 � E2 ¼ 10.26
Var(O2 � E2) ¼ 6.2685

Log - rank statistic ¼ O2 � E2ð Þ2
dVar O2 � E2ð Þ

¼ 10:26ð Þ2
6:2685

¼ 16:793

Approximate formula:

X2 �
X# of groups

i

Oi � Eið Þ2
Ei

EXAMPLE

X2 ¼ �10:26ð Þ2
19:26

þ 10:26ð Þ2
10:74

¼ 15:276

Log-rank statistic ¼ 16.793

H0: All survival curves are the same.

Log-rank statistics for > 2 groups
involves variances and covariances
of Oi � Ei.

Matrix formula: See Appendix at
end of this chapter.
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We will not describe further details about the
calculation of the log–rank statistic, because a
computer program can easily carry out the
computations from the basic data file. Instead,
we illustrate the use of this test with data
involving more than two groups.

If the number of groups being compared is G
(� 2), then the log–rank statistic has approxi-
mately a large sample chi-square distribution
with G � 1 degrees of freedom. Therefore,
the decision about significance is made using
chi-square tables with the appropriate degrees
of freedom.

The approximate formula previously described
involving only observed and expected values
without variance or covariance calculations
can also be used when there are more than
two groups being compared. However, practi-
cally speaking, the use of this approximate
formula is not required as long as a com-
puter program is available to calculate the
exact log–rank statistic.

We now provide an example to illustrate the
use of the log–rank statistic to compare more
than two groups.

The data set “vets.dat” considers survival times
in days for 137 patients from the Veteran’s
Administration Lung Cancer Trial cited by
Kalbfleisch and Prentice in their text (The Sta-
tistical Analysis of Survival Time Data, John
Wiley, pp. 223–224, 1980). A complete list of
the variables is shown here. Failure status is
defined by the status variable (column 11).

Among the variables listed, we now focus on the
performance status variable (column 7). This
variable is a continuous variable, so before we
can obtain KM curves and the log–rank test,
we need to categorize this variable.

Use computer program for
calculations.

G (� 2) groups:
log–rank statistic � w2 with
G � 1 df

Approximation formula:

X2 �
X#ofgroups

i

Oi � Eið Þ2
Ei

Not required because computer
program calculates the exact log–-
rank statistic

EXAMPLE

vets.dat: survival time in days,

n 137

Veteran’s Administration Lung Cancer Trial

Column 1: Treatment (standard ¼ 1, test ¼ 2)
Column 2: Cell type 1 (large ¼ 1, other ¼ 0)
Column 3: Cell type 2 (adeno ¼ 1, other ¼ 0)
Column 4: Cell type 3 (small ¼ 1, other ¼ 0)
Column 5: Cell type 4 (squamous ¼ 1, other ¼ 0)
Column 6: Survival time (days)

Column 7: Performance Status

(0 ¼ worst . . . 100 ¼ best)
Column 8: Disease duration (months)
Column 9: Age
Column 10: Prior therapy (none ¼ 0, some ¼ 1)
Column 11: Status (0 ¼ censored, 1 ¼ died)
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If, for theperformance status variable,we choose
the categories 0–59, 60–74, and 75–100, we
obtain three groups of sizes 52, 50, and 35,
respectively.

The KM curves for each of three groups are
shown here. Notice that these curves appear
to be quite different. A test of significance
of this difference is provided by the log–rank
statistic.

An edited printout of descriptive information
about the three KM curves together with the
log–rank test results are shown here. These
results were obtained using the Stata package.

Because three groups are being compared
here, G ¼ 3 and the degrees of freedom for the
log–rank test is thus G � 1, or 2. The log–rank
statistic is computed to be 29.181, which has a
P-value of zero to three decimal places. Thus,
the conclusion from the log–rank test is that
there is a highly significant difference among
the three survival curves for the performance
status groups.

VI. Alternatives to the
Log Rank Test

There are several alternatives to the log rank test
offered by Stata, SAS, SPSS, and R designed
to test the hypothesis that two or more sur-
vival curves are equivalent. In this section we
describe the Wilcoxon, the Tarone-Ware, the
Peto, and the Flemington-Harrington test. All
of these tests are variations of the log rank test
and are easily implemented in Stata.

EXAMPLE: (continued)

Performance Status Categories

Group # Categories Size

1 0–59 52
2 60–74 50
3 75–100 35

KM curves for performance status
groups

0

0.0

0.5

1.0

100 200 300 400 500 600

1

1

1
1
1

1

2
2 3

3
3
3

2
2

2
2

2

Group
Events
observed

Events
expected

1 50 26.30
2 47 55.17
3 31 46.53

Total 128 128.00
Log-rank ¼ chi2(2) ¼ 29.18
P-value ¼ Pr > chi2 ¼ 0.0000
G ¼ 3 groups; df ¼ G � 1 ¼ 2

Log-rank test is highly significant.

Conclude significant difference
among three survival curves.

Alternative tests supported by Stata

Wilcoxen
Tarone-Ware
Peto
Flemington-Harrington
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In describing the differences among these tests,
recall that the log rank test uses the summed
observed minus expected score O � E in each
group to form the test statistic. This simple sum
gives the same weight – namely, unity – to each
failure time when combining observed minus
expected failures in each group.

The Wilcoxon, Tarone-Ware, Peto, and
Flemington-Harrington test statistics are varia-
tions of the log rank test statistic and are derived
by applying different weights at the f-th failure
time (as shown on the left for two groups).

The Wilcoxon test (called the Breslow test in
SPSS) weights the observed minus expected
score at time tf by the number at risk nf, over
all groups at time tf. Thus, the Wilcoxon test
places more emphasis on the information
at the beginning of the survival curve where
the number at risk is large allowing early fail-
ures to receive more weight than later failures.
This type of weighting may be used to assess
whether the effect of a treatment on survival is
strongest in the earlier phases of administra-
tion and tends to be less effective over time.

The Tarone-Ware test statistic also applies more
weight to the early failure times byweighting the
observed minus expected score at time t(f) by
the square root of the number at risk

ffiffiffiffiffi
nf

p
. The

Peto test weights the f-th failure time by the
survival estimate ~s(t(f)) calculated over all groups
combined. This survival estimate ~s(t(f)) is similar
but not exactly equal to the Kaplan-Meier sur-
vival estimate. The Flemington-Harrington test
uses theKaplan-Meier survival estimate Ŝ(t) over
all groups to calculate its weights for the f-th
failure time, Ŝ(t(f�1))

p[1� Ŝ (t(f�1))]
q. The weights

for each of these test statistics are summarized
on the left.

Log rank uses

Oi � Ei ¼
X
f

mif � eif
� �

i ¼ group #
f ¼ fth failure time

Weighting the test statistic for two
groups

Test statistic:

P
f

wðtðf ÞÞ mif � eif
� � !2

var
P
j
wðtðf ÞÞ mif � eif

� � !

i ¼ 1, 2
f ¼ fth failure time
w(t(f)) ¼ weight at fth failure time

Wilcoxon Test

� w(tf) ¼ nf (number at risk)
� Earlier failures receive more

weight
� Appropriate if treatment effect

is strongest in earliest phases of
administration

Weights Used for Various Test
Statistics

Test Statistic w(t(f ))

Log rank 1
Wilcoxon nf

Tarone-Ware
ffiffiffiffiffi
nf

p

Peto ~s(t(f ))

Flemington-
Harrington

Ŝ(t(f�1))
p

�[1� Ŝ(t(f�1))]
q
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The Flemington-Harrington test allows the
most flexibility in terms of the choice of
weights because the user provides the values
of p and q. For example, if p ¼ 1 and q ¼ 0 then
w(t) ¼ Ŝ(t(f�1)) which gives more weight for the
earlier survival times when Ŝ(t(f�1)) is close to
one. However, if p¼ 0 and q¼ 1 then w(t)¼ 1�
Ŝ(t(f�1)) in which case the later survival times
receive more weight. If p ¼ 0 and q ¼ 0 then
w(t) ¼ 1, and the Flemington-Harrington test
reduces to the log rank test.

On the left is a comparison of test results for
the effect of treatment (vs. placebo) using the
remission data. The log rank chi-square statis-
tic (also displayed previously in this chapter) is
the highest among these tests at 16.79. The
Flemington–Harrington (FH) test with p ¼ 3
and q ¼ 1 yielded the lowest chi-square value
at 8.99, although with this weighting it is not
immediately obvious which part of the survival
curve is getting the most weight. However, all
the test results are highly significant yielding a
similar conclusion to reject the null hypothesis.

On the left are comparisons of the log rank and
Wilcoxon tests for the 3-level performance sta-
tus variable from the vets dataset discussed in
the previous section. The Wilcoxon test yields a
higher chi-square value (46.10) than the log
rank test (29.18). In contrast, the log rank test
for the effect of treatment (RX) from the remis-
sions data yields a higher chi-square value
(16.79) than the Wilcoxon test (13.46). How-
ever, both the Wilcoxon and log rank tests are
highly significant for both performance status
and for treatment variables.

Flemington-Harrington Test

w tð Þ ¼ Ŝ tðf�1Þ
� �p

1� Ŝ tðf�1Þ
� �� �q

if p ¼ 1 and q ¼ 0, w(t) ¼ Ŝ(t(f�1))
if p ¼ 0 and q ¼ 1,
w(t) ¼ 1 � Ŝ(t(f�1))

if p ¼ 0 and q ¼ 0,
w(t) ¼ 1 (log rank test)

Comparisons of Test Results:
Remission Data, Testing
Treatment (RX)

Test
Chi-square
(1 df) P-value

Log rank 16.79 0.0000
Wilcoxon 13.46 0.0002
Tarone-

Ware
15.12 0.0001

Peto 14.08 0.0002
FH (p¼ 3,

q ¼ 1)
8.99 0.0027

FH (p¼ 1,
q ¼ 3)

12.26 0.005

Vets Data, 3-Level Performance
Status

Test
Chi-square
(2 df) P-value

Log rank 29.18 0.0000
Wilcoxon 46.10 0.0000

Remission Data, 2-Level Treatment

Test
Chi-square
(1 df) P-value

Log rank 16.79 0.0000
Wilcoxon 13.46 0.0002

Presentation: VI. Alternatives to the Log Rank Test 75



A comparison of survival curves gives insight
into why the Wilcoxon test yields a higher chi-
square value than the log rank test for the 3-
level performance status variable. The 3 curves
being compared are farthest apart in the early
part of followup before becoming closer later.
By contrast, a comparison of the 2 curves for
treatment shows the curves diverging over time.

In general, the various weightings should pro-
vide similar results and will usually lead to the
same decision as to whether the null hypothe-
sis is rejected. The choice of which weighting
of the test statistic to use (e.g., log rank or
Wilcoxon) depends on which test is believed to
provide the greatest statistical power, which
in turn depends on how it is believed the null
hypothesis is violated.

If there is a clinical reason to believe the effect
of an exposure is more pronounced toward the
beginning (or end) of the survival function,
then it makes sense to use a weighted test sta-
tistic. However, one should make an a priori
decision on which statistical test to use
rather than fish for a desired p-value. Fishing
for a desired result may lead to bias.

1

1

1
1
1

1

2

1.0

KM curves for performance status groups

KM Plots for Remission Data
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0.6

0.4

0.2

0
0 8 16 24 32
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Choosing a Test

� Results of different weightings
usually lead to similar
conclusions

� The best choice is test withmost
power

� Power depends on how the null
is violated

� Theremay be a clinical reason to
choose a particular weighting

� Choice of weighting should be a
priori
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The stratified log rank test is another variation
of the log rank test. With this test the summed
observed minus expected scores O � E are cal-
culated within strata of each group and then
summed across strata. The stratified log rank
test provides a method of testing the equi-
valence of survival curves controlling for
the stratified variable. An example of the stra-
tified log rank test is presented next using the
remission data.

On the left is Stata output from performing a
stratified log rank test for the effect of treat-
ment (RX) stratified by a 3-level variable
(LWBC3) indicating low, medium, or high log
white blood cell count (coded 1, 2, and 3,
respectively).

Within each stratum of LWBC3, the expected
number of events is calculated for the treated
group (RX ¼ 0) and for the placebo group
(RX ¼ 1). The total expected number of events
for the treated group is found by summing the
expected number of events over the three
strata: 2.91 þ 7.36 þ 6.11 ¼ 16.38. Similarly
the total expected number of events for the pla-
cebo group is calculated: 1.09 þ 2.64 þ 9.89 ¼
13.62. This compares to 9 observed cases from
the treated group and 21 observed cases
from the placebo group yielding a chi-square
value of 10.14 with 1 degree of freedom (for
2 levels of treatment) and a corresponding
p-value of 0.0014.

Recall that when we did not control for log
white blood cell count, the log rank test for the
effect of treatment yielded a chi-square value of
16.79 and a corresponding p-value rounded
to 0.0000.

Stratified log rank test

� O � E scores calculated within
strata

� O � E scores then summed
across strata

� Allows control of stratified
variable

Stratified log-rank test
->1wbc3 = 1

->1wbc3 = 2

->1wbc3 = 3

rx

rx

0
1

0
4

2.91

0 5 7.36

0  4 6.11

0  9 16.38
1 21 13.62

1 12 9.89

1 5 2.64

Total 4 4.00

Total 10 10.00

Total

->Total

16 16.00

Total 30 30.00

1.09

Events
observed

Events
observed

Events
expected

rx
Events

observed
Events

expected

Events
expected

rx
Events

observed

Events
expected

(*)
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The only difference between the unstratified
and stratified approaches is that for the unstrat-
ified approach, the observed minus expected
number of events for each failure time is sum-
med over all failure times for each group (i).
With the stratified approach, the observed
minus expected number of events is summed
over all failure times for each group within
each stratum and then summed over all strata.
Either way, the null distribution is chi-square
with G � 1 degrees of freedom, where G repre-
sents the number of groups being compared
(not the number of strata).

The stratified approach can also be applied to
any of the weighted variations of the log rank
test (e.g., Wilcoxon). A limitation of the strati-
fied approach is the reduced sample size within
each stratum. This is particularly problematic
with the remission dataset, which has a small
sample size to begin with.

We have shown how the stratified log rank test
can be used to test the effect of treatment while
controlling for log white blood cell count. In
the next chapter we show how modeling can
be used to test an association of a predictor
variable while simultaneously controlling for
other covariates.

VII. Confidence intervals
for KM curves

We now describe how to calculate (95%)
confidence intervals (CIs) for the estimated
Kaplan–Meier (KM) curve.

The 95% CI formula for estimated KM proba-
bility at any time point over follow-up has the
general large sample form shown on the left,
where ŜKM(t)denotes the KM survival estimate
at time t and Var[ŜKM(t)] denotes variance of
ŜKM(t). The most common approach used to
calculate this variance uses the Greenwood’s
formula, also shown on the left.

Log rank unstratified

Oi � Ei ¼
X
j

mif � eif
� �

i ¼ group #, f ¼ fth failure time

Log rank stratified

Oi � Ei ¼
X
s

X
f

mifs � eifs
� �

i ¼ group #, f ¼ jth failure time,
s ¼ stratum #

Stratified or unstratified (G groups)
Under H0:

log rank statistic �w2 with
G � 1 df

Can stratify with other tests
Wilcoxon, Tarone-Ware,
Peto, Flemington-Harrington

Limitation
Sample-size may be small within
strata

Alternatively
Test associations using modeling

� Can simultaneously control
covariates

� Shown in next chapter

95% CI for the KM curve:

ŜKM(t)	 1.96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vâr½ŜKM(t)]

q

where Greenwood’s formula for
Var[ŜKM(t)] is given by

Vâr½ŜKM(t)] ¼ ŜKM(t)
� �2 X

f :tðf Þ
t

mf

nf ðnf � mf Þ
� �

t(f) ¼ f-ordered failure time
mf ¼ number of failures at t(f),
nf ¼ number in the risk set at t(f),
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The summation component of Greenwood’s
formula essentially gives at each failure time t(f),
a weighted (by 1/nf) average of the conditional
risk of failing at those failure times prior to t(f).
Thus, the variance formula gives the square of
the KM coordinate at each event time weighted
by the cumulative estimate of the risk at time t.

We illustrate how Greenwood’s variance is cal-
culated for the treatment group (Group 1) of
the remission times data described earlier. The
layout for this computation is shown n the left.

At 6 weeks, the estimate of the survival function
is 0.857. There were three events at 6 weeks and
21 patients at risk. Therefore, mf/nf(nf � mf) ¼
3/(21�18) ¼ 0.0079. As this is the only compo-
nent of the sum, the variance is then 0.0079 �
0.8572 ¼ 0.0058. The corresponding 95% confi-
dence interval is shown on the left, where the
upper level should be modified to 1.

At 10 weeks, the estimate of the survival func-
tion is 0.753. There was 1 event at 10 months
and 15 patients at risk. Therefore,mf/nf(nf-mf)¼
1/(15�14) ¼ 0.0048.

There were two other risk components prior to
this time, 0.0079 at time 6 and 0.0037 at time 7
and their sumis0.0164. The varianceat 10weeks
is then 0.0164�0.7532, which equals 0.0093.

The 95% CI for the proportion of patients at
10 weeks is shown on the left to have the limits
(0.564, 0.942). Note that since the variance is
only defined at event times, the 95% confidence
interval remains the same at 11 and 12 weeks
also.

On the left we show the KM curves and their
corresponding 95% confidence intervals for
Group 1 (treatment) and Group 2 (placebo)
for the remission time data.

mf

nf

1
nf (nf - mf)

mf

P[T > t(f ) | T ≥ t(f ) ]nf

1

weight Conditional risk

nf - mf

t n m

m

nðn�mÞ
P m

nðn�mÞ S(t) Var[S(t)]
0 21 0 0 0 1 0
6 21 3 0.0079 0.0079 0.857 0.0058
7 17 1 0.0037 0.0116 0.807 0.0076

10 15 1 0.0048 0.0164 0.753 0.0093
13 12 1 0.0076 0.0240 0.690 0.0114
16 11 1 0.0091 0.0330 0.628 0.0130
22 7 1 0.0238 0.0569 0.538 0.0164
23 6 1 0.0333 0.0902 0.448 0.0181

10weeks:
m3

n3ðn3 �m3Þ ¼
1

15ð14Þ ¼ :0048

X
f:tðfÞ
t¼10

mf

nfðnf �mfÞ
� �

¼ 0:0079 þ 0:0037 þ 0:0048 ¼ 0:0164:

Vâr½ŜKM(10)] = (0.753)2(.0164) = 0.0093

95% CI : 0:753 	 1.96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0093

p
¼ ð0:564;0:942Þ

Same CI at t ¼11 and 12, since no
events occurred at those times.
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VIII. Confidence intervals
for the median
survival time

Returning again to the remission time dataset,
we now consider the calculation of the 95% CI
for the median of the remission times for the
placebo group. Recall that the median survival
for this group is 8 weeks.

Brookmeyer and Crowley (1982) proposed a
simple way to calculate the CI for the median
survival time based on the fact that the square
of a standardized function of the survival curve
around the true (unknown) median value (M)
is asymptotically w2distributed. This relation-
ship is shown mathematically on the left.

Using the above result about the standar-
dized survival curve, a general formula for the
95% CI for the median survival is provided
by the inequality expression shown on the left.
The times for which this inequality holds are
plausible values of the true median, while
the boundaries represent upper and lower
times for the 95% CI for the median. The
lower boundarymay be 0 and the upper bound-
ary may not always exist.

For the remission time data, the calculation of
the CI around the median of 8 weeks is given in
the table shown on the left. Since the inequality
in the CI formula is satisfied in the range t¼4
weeks to 8 weeks, the resulting 95% CI is (4,8).

Brookmeyer and Crowley (B&C) caution that
the upper limit for these estimates should
be adjusted to reflect censoring. They recom-
mend reporting semiopen intervals that extend
one event beyond the event that satisfies the
inequality; some packages (e.g., SAS, R) incor-
porate this recommendation.

In this example, the 95% CI for the median
survival time obtained from SAS output is
given by the interval (4, 11), with the upper
limit now extended beyond 8 weeks but not
including the event at month 11.

Remission data example:
Group 1 median ¼ 8 weeks
95% CI ?

Formula for 95% CI derived from:

ŜKMðMÞ � 0:5
� �2
Vâr½ŜKM(M)]

� w21 where

M ¼ true (unknown) median sur-
vival time, i.e., SKM(M) ¼ 0.5

ŜKM(M) ¼ estimated survival prob-
ability fromKM curve at the true
median survival time

Vâr½ŜKM(M)] uses Greenwood’s
formula.

95% CI for median survival:

ŜKMðtÞ � 0:5
� �2

< 3:84Vâr½ŜKMðtÞ�

t(i) S(t) (S(t)–0.5)
2 3.84 Var(S(t)) Inequality

satisfied?
ˆ ˆ ˆ

0

0.096 > 0.028 so the inequality is not satisfied

0.014 > 0.044 and the inequality is satisfied

1
2
3
4
5
8
11
12
15
17
22
23

1
0.90
0.81
0.76
0.67
0.57
0.38
0.29
0.19
0.14
0.10
0.05
0.00

-
0.016 N

N
N

N
N
N
N
N
N

Y
Y
Y

0.028
0.033
0.041
0.045
0.044
0.038
0.028
0.022
0.016
0.008

0

0.250
0.160
0.096
0.068
0.029
0.005
0.014
0.44
0.096
0.130
0.160
0.203
0.050

Caution (ref B&C, 1982): upper
limit should be adjusted to reflect
censoring, e.g., SAS’s LIFETEST
adjusts above 95% CI from (4,8)
to (4, 11).
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IX. Summary We now briefly summarize this presentation.
First, we described how to estimate and graph
survival curves using the Kaplan-Meier (KM)
method.

To compute KM curves, we must form a data
layout that orders the failure times from smal-
lest to largest. For each ordered failure time,
the estimated survival probability is computed
using the product limit formula shown here.
Alternatively, this estimate can be computed as
the product of the survival estimate for the
previous failure time multiplied by the condi-
tional probability of surviving past the current
failure time.

When survival curves are being compared, the
log–rank test gives a statistical test of the null
hypothesis of a common survival curve. For
two groups, the log–rank statistic is based on
the summed observed minus expected scores
for a given group and its variance estimate. For
several groups, a computer should always be
used since the log–rank formula is more com-
plicated mathematically. The test statistic is
approximately chi-square in large samples
with G � 1 degrees of freedom, where G
denotes the number of groups being compared.

Large sample confidence intervals for KM
curves can be computed based on Greenwood’s
formula, shown at the left, for the variance of
an estimated KM survival probability.

KM curves:

KM curves:

1

0.8

0.6

0.4

0.2

0
0 8 16 24 32

t(f): fth ordered failure time

Ŝ tðf Þ
� � ¼ Yf

i¼1

P̂r T > tðiÞ T � tðiÞ
��� �

¼ Ŝ tðf�1Þ
� �

� P̂r T > tðf Þ T � tðf Þ
��� �

Log-rank test:

H0: common survival curve for
all groups

Log - rank statistic =
O2 � E2ð Þ2

Var O2 � E2ð Þ
log–rank statistic �w2 with G � 1 df
under H0

G ¼ # of groups

Greenwood’s Variance formula:

Vâr ŜKMðtÞ� � ¼ ŜKMðtÞ� �2

�
X

f:tðfÞ
t

mf

nf nf - mfð Þ
� �
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The expression for the 95% confidence interval
is shown below Greenwood’s formula.

A large sample confidence interval formula for
the median of the KM curve can also be com-
puted using the inequality formula shown here
on the left. The upper and lower boundaries of
t for which this inequality holds provide the
95% confidence limits.

Chapters This presentation is now complete. You can
review this presentation using the detailed
outline that follows and then try the practice
exercises and test.

Chapter 3 introduces the Cox proportional
hazards (PH) model, which is the most popular
mathematical modeling approach for estimat-
ing survival curves when considering several
explanatory variables simultaneously.

95% CI for KM:

ŜKMðtÞ 	 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vâr ŜKMðtÞ� �q

95% CI for median survival:

ŜKMðtÞ � 0:5
� �2

3:84Vâr ŜKMðtÞ� �

1. Introduction

32. Kaplan-Meier Survival Curves
and the Log-Rank Test

Next:

3. The Cox Proportional
Hazards Model and Its
Characteristics
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Detailed
Outline

I. Review (pages 58–60)

A. The outcome variable is (survival) time until an
event (failure) occurs.

B. Key problem: censored data, i.e., don’t know
survival time exactly.

C. Notation: T ¼ survival time random variable

t ¼ specific value of T
d ¼ (0, 1) variable for failure/cen-

sorship status
S(t) ¼ survivor function
h(t) ¼ hazard function

D. Properties of survivor function:

i. theoretically, graph is smooth curve,
decreasing from S (t) ¼ 1 at time t ¼ 0 to S
(t) ¼ 0 at t ¼ 1;

ii. in practice, graph is step function.

E. Properties of h(t):

i. instantaneous potential for failing given
survival up to time;

ii. h(t) is a rate; ranges from 0 to 1.

F. Relationship of S (t) to h(t): if you know one you
can determine the other.

G. Goals of survival analysis: estimation of survi-
vor and hazard functions; comparisons and
relationships of explanatory variables to sur-
vival.

H. Data layouts

i. for the computer;

ii. for understanding the analysis: involves
risk sets.

II. AnExampleofKaplan-MeierCurves (pages 61–65)

A. Data are from study of remission times in weeks
for two groups of leukemia patients (21 in each
group).

B. Group 1 (treatment group) has several censored
observations, whereas group 2 has no censored
observations.

C. Table of ordered failure times is provided for
each group.

D. For group 2 (all noncensored), survival prob-
abilities are estimated directly and plotted.
Formula used is

Ŝ tðf Þ
� � ¼ # surviving past tðf Þ

21
:
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E. Alternative approach for group 2 is given by a
product limit formula.

F. For group 1, survival probabilities calculated by
multiplying estimate for immediately preceding
failure time by a conditional probability of sur-
viving past current failure time, i.e.,

Ŝðf Þ ¼ Ŝðf�1Þ P̂r T > tðf Þ T � tðf Þ
��� �

:

III. General Features of KM Curves (pages 66–67)

A. Two alternative general formulae:

Sðf Þ ¼
Yf
i¼1

Pr T > tðiÞ T � tðiÞ
��� � (product limit

formula)

Sðf Þ ¼ Sðf�1Þ Pr T > tðf Þ T � tðf Þ
��� �

B. Second formula derived from probability rule:

Pr A and Bð Þ ¼ Pr Að Þ � Pr BjAð Þ
IV. The Log-Rank Test for Two Groups (pages 67–71)

A. Large sample chi-square test; provides overall
comparison of KM curves.

B. Uses observed versus expected counts over cate-
gories of outcomes, where categories are
defined by ordered failure times for entire set
of data.

C. Example provided using remission data involv-
ing two groups:

i. expanded table described to show how
expected and observed minus expected cell
counts are computed.

ii. for ith group at time f, where i ¼ 1 or 2:

observed counts ¼ mif,

expected counts ¼ eif, where

expected counts ¼ (proportion in risk set) �
(# failures over both groups),

i.e., eif ¼ nif
n1f þ n2f

� 	
m1f þ m2f

� �
:

D. Log-rank statistic for two groups:

Oi � Eið Þ2
Var Oi � Eið Þ ;

where i ¼ 1. 2,
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Oi � Ei ¼
X
f

mif � eif
� �

; and

Var Oi � Eið Þ

¼
X
f

n1f n2f m1f þ m2f

� �
n1f þ n2f � m1f � m2f

� �
n1f þ n2f
� �2

n1f þ n2f � 1
� �

i ¼ 1; 2

E. H0: no difference between survival curves.

F. Log-rank statistic � w2 with 1 df under H0.

G. Approximate formula:

X2 ¼
XG
i¼1

Oi � Eið Þ2
Ei

; where G ¼ 2 ¼ # of groups

H. Remission data example: Log-rank statistic ¼
16.793, whereas X2 ¼ 15.276.

V. The Log-Rank Test for Several Groups
(pages 71–73)

A. Involves variances and covariances; matrix for-
mula in Appendix.

B. Use computer for calculations.

C. Under H0, log–rank statistic �w2 with G � 1 df,
where G ¼ # of groups.

D. Example provided using vets.dat with interval
variable “performance status”; this variable is
categorized into G ¼ 3 groups, so df for log–-
rank test is G � 1 ¼ 2, log–rank statistic is
29.181 (P ¼ 0.0).

VI. Alternatives to the Log-Rank Test (pages 73–78)

A. Alternative tests supported by Stata: Wilcoxen,
Tarone-Ware, Peto, and Flemington-Harring-
ton.

B. Alternative tests differ by applying different
weights at the j-th failure time.

C. The choice of alternative depends on the reason
for the belief that the effect is more pronounced
towards the beginning (or end) of the survival
function.

D. The stratified-log–rank test is a variation of the
log–rank test that controls for one or more stra-
tified variables.
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VII. Confidence Intervals for KM Curves
(pages 78–79)

A. General form of 95% CI:

ŜKM(t)	 1.96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vâr½ŜKM(t)]

q

B. Vâr[ŜKM(t)]uses Greenwood’s formula:

Vâr½ŜKM(t)] ¼ ŜKM(t)
� �2 X

f :tðf Þ
t

mf

nf ðnf � mf Þ
� �

C. Example using Remission Time Data

VIII. Confidence Intervals for the Median Survival
Time (page 80)

A. General form of 95% CI where values of t satis-
fying the following inequality provide confi-
dence limits:

ŜKMðtÞ � 0:5
� �2

< 3:84Var½ŜKMðtÞ�
B. Example using Remission Time Data

IX. Summary (page 81)
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Practice
Exercises

1. The following data are a sample from the 1967-1980
Evans County study. Survival times (in years) are given
for two study groups, eachwith 25 participants. Group 1
has no history of chronic disease (CHR¼ 0), and group 2
has a positive history of chronic disease (CHR ¼ 1):

Group 1 (CHR ¼ 0): 12.3þ, 5.4, 8.2, 12.2þ, 11.7, 10.0,
5.7, 9.8, 2.6, 11.0, 9.2, 12.1þ,
6.6, 2.2, 1.8, 10.2, 10.7, 11.1,
5.3, 3.5, 9.2, 2.5, 8.7, 3.8, 3.0

Group 2 (CHR ¼ 1): 5.8, 2.9, 8.4, 8.3, 9.1, 4.2, 4.1, 1.8,
3.1, 11.4, 2.4, 1.4, 5.9, 1.6, 2.8,
4.9, 3.5, 6.5, 9.9, 3.6, 5.2, 8.8,
7.8, 4.7, 3.9

a. Fill in the missing information in the following
table of ordered failure times for groups 1 and 2:

Group 1 Group 2

t(f) nf mf qf S(t(f)) t(f) nf mf qf S(t(f))

0.0 25 0 0 1.00 0.0 25 0 0 1.00
1.8 25 1 0 .96 1.4 25 1 0 .96
2.2 24 1 0 .92 1.6 24 1 0 .92
2.5 23 1 0 .88 1.8 23 1 0 .88
2.6 22 1 0 .84 2.4 22 1 0 .84
3.0 21 1 0 .80 2.8 21 1 0 .80
3.5 20 2.9 20 1 0 .76
3.8 19 1 0 .72 3.1 19 1 0 .72
5.3 18 1 0 .68 3.5 18 1 0 .68
5.4 17 1 0 .64 3.6 17 1 0 .64
5.7 16 1 0 .60 3.9
6.6 15 1 0 .56 4.1
8.2 14 1 0 .52 4.2
8.7 13 1 0 .48 4.7 13 1 0 .48
9.2 4.9 12 1 0 .44
9.8 10 1 0 .36 5.2 11 1 0 .40
10.0 9 1 0 .32 5.8 10 1 0 .36
10.2 8 1 0 .28 5.9 9 1 0 .32
10.7 7 1 0 .24 6.5 8 1 0 .28
11.0 6 1 0 .20 7.8 7 1 0 .24
11.1 5 1 0 .16 8.3 6 1 0 .20
11.7 4 8.4 5 1 0 .16

8.8 4 1 0 .12
9.1
9.9

11.4 1 1 0 .00

b. Based on your results in part a, plot the KM curves
for groups 1 and 2 on the same graph. Comment on
how these curves compare with each other.
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c. Fill in the following expanded table of ordered failure
times to allow for the computation of expected and
observed minus expected values at each ordered fail-
ure time. Note that your new table here should com-
bine both groups of ordered failure times into one
listing and should have the following format:

t(f) m1f m2f n1f n2f e1f e2f m1f�e1f m2f�e2f

1.4 0 1 25 25 .500 .500 �.500 .500
1.6 0 1 25 24 .510 .490 �.510 .510
1.8 1 1 25 23 1.042 .958 �.042 .042
2.2 1 0 24 22 .522 .478 .478 �.478
2.4 0 1 23 22 .511 .489 �.511 .511
2.5 1 0 23 21 .523 .477 .477 �.477
2.6 1 0 22 21 .516 .484 .484 �.484
2.8 0 1 21 21 .500 .500 �.500 .500
2.9 0 1 21 20 .512 .488 �.512 .512
3.0 1 0 21 19 .525 .475 .475 �.475
3.1
3.5
3.6
3.8
3.9 0 1 18 16 .529 .471 �.529 .529
4.1 0 1 18 15 .545 .455 �.545 .545
4.2 0 1 18 14 .563 .437 �.563 .563
4.7 0 1 18 13 .581 .419 �.581 .581
4.9 0 1 18 12 .600 .400 �.600 .600
5.2 0 1 18 11 .621 .379 �.621 .621
5.3 1 0 18 10 .643 .357 .357 �.357
5.4 1 0 17 10 .630 .370 .370 �.370
5.7 1 0 16 10 .615 .385 .385 �.385
5.8 0 1 15 10 .600 .400 �.600 .600
5.9 0 1 15 9 .625 .375 �.625 .625
6.5 0 1 15 8 .652 .348 �.652 .652
6.6 1 0 15 7 .682 .318 .318 �.318
7.8 0 1 14 7 .667 .333 �.667 .667
8.2 1 0 14 6 .700 .300 .300 �.300
8.3 0 1 13 6 .684 .316 �.684 .684
8.4 0 1 13 5 .722 .278 �.722 .722
8.7 1 0 13 4 .765 .235 .335 �.335
8.8 0 1 12 4 .750 .250 �.750 .750
9.1 0 1 12 3 .800 .200 �.800 .800
9.2
9.8
9.9

10.0 1 0 9 1 .900 .100 .100 �.100
10.2 1 0 8 1 .888 .112 .112 �.112
10.7 1 0 7 1 .875 .125 .125 �.125
11.0 1 0 6 1 .857 .143 .143 �.143
11.1 1 0 5 1 .833 .167 .167 �.167
11.4 0 1 4 1 .800 .200 �.800 .800
11.7 1 0 4 0 1.000 .000 .000 .000

Totals 22 25 30.79 16.21
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d. Use the results in part c to compute the log–rank
statistic. Use this statistic to carry out the log–rank
test for these data. What is your null hypothesis and
how is the test statistic distributed under this null
hypothesis? What are your conclusions from the
test?

2. The following data set called “anderson.dat” consists
of remission survival times on 42 leukemia patients,
half of whom get a certain new treatment therapy and
the other half of whom get a standard treatment
therapy. The exposure variable of interest is treatment
status (Rx ¼ 0 if new treatment, Rx ¼ 1 if standard
treatment). Two other variables for control as potential
confounders are log white blood cell count (i.e.,
logwbc) and sex. Failure status is defined by the relapse
variable (0 if censored, 1 if failure). The data set is listed
as follows:

Subj Survt Relapse Sex log WBC Rx

1 35 0 1 1.45 0
2 34 0 1 1.47 0
3 32 0 1 2.20 0
4 32 0 1 2.53 0
5 25 0 1 1.78 0
6 23 1 1 2.57 0
7 22 1 1 2.32 0
8 20 0 1 2.01 0
9 19 0 0 2.05 0

10 17 0 0 2.16 0
11 16 1 1 3.60 0
12 13 1 0 2.88 0
13 11 0 0 2.60 0
14 10 0 0 2.70 0
15 10 1 0 2.96 0
16 9 0 0 2.80 0
17 7 1 0 4.43 0
18 6 0 0 3.20 0
19 6 1 0 2.31 0
20 6 1 1 4.06 0
21 6 1 0 3.28 0
22 23 1 1 1.97 1
23 22 1 0 2.73 1
24 17 1 0 2.95 1
25 15 1 0 2.30 1
26 12 1 0 1.50 1
27 12 1 0 3.06 1
28 11 1 0 3.49 1

(Continued on next page)
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Subj Survt Relapse Sex log WBC Rx

29 11 1 0 2.12 1
30 8 1 0 3.52 1
31 8 1 0 3.05 1
32 8 1 0 2.32 1
33 8 1 1 3.26 1
34 5 1 1 3.49 1
35 5 1 0 3.97 1
36 4 1 1 4.36 1
37 4 1 1 2.42 1
38 3 1 1 4.01 1
39 2 1 1 4.91 1
40 2 1 1 4.48 1
41 1 1 1 2.80 1
42 1 1 1 5.00 1

a. Suppose we wish to describe KM curves for the
variable logwbc. Because logwbc is continuous,
we need to categorize this variable before we com-
pute KM curves. Suppose we categorize logwbc
into three categories - low, medium, and high - as
follows:

low (0–2.30), n ¼ 11;
medium (2.31–3.00), n ¼ 14;
high (>3.00), n ¼ 17.

Based on this categorization, compute and graph
KM curves for each of the three categories of
logwbc. (You may use a computer program to assist
you or you can form three tables of ordered failure
times and compute KM probabilities directly.)

b. Compare the three KM plots you obtained in part a.
How are they different?

c. Below is an edited printout of the log–rank test
comparing the three groups.

Group
Events

observed
Events
expected

1 4 13.06
2 10 10.72
3 16 6.21

Total 30 30.00

Log-rank ¼ chi2(2) ¼ 26.39
P-value ¼ Pr > chi2 ¼ 0.0000

What do you conclude about whether or not the
three survival curves are the same?
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Test To answer the questions below, you will need to use a
computer program (from SAS, Stata, SPSS, R or any
other package you are familiar with) that computes and
plots KM curves and computes the log–rank test. Freely
downloadable files can be obtained from weblink http://
www.sph.emory.edu/dkleinb/surv3.htm.

1. For the vets.dat data set described in the presentation:

a. Obtain KM plots for the two categories of the vari-
able cell type 1 (1 ¼ large, 0 ¼ other). Comment on
how the two curves compare with each other. Carry
out the log–rank, and draw conclusions from the
test(s).

b. Obtain KM plots for the four categories of cell type -
large, adeno, small, and squamous. Note that you
will need to recode the data to define a single vari-
able which numerically distinguishes the four cate-
gories (e.g., 1 ¼ large, 2 ¼ adeno, etc.). As in part a,
compare the four KM curves. Also, carry out the
log–rank for the equality of the four curves and
draw conclusions.

2. The following questions consider a data set from a
study by Caplehorn et al. (“Methadone Dosage and
Retention of Patients in Maintenance Treatment,”
Med. J. Aust., 1991). These data comprise the times in
days spent by heroin addicts from entry to departure
from one of two methadone clinics. There are two fur-
ther covariates, namely, prison record and methadone
dose, believed to affect the survival times. The data set
name is addicts.dat. A listing of the variables is given
below:

Column 1: Subject ID

Column 2: Clinic (1 or 2)

Column 3: Survival status (0 ¼ censored, 1 ¼ departed
from clinic)

Column 4: Survival time in days

Column 5: Prison record (0 ¼ none, 1 ¼ any)

Column 6: Methadone dose (mg/day)
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a. Compute andplot theKMplots for the two categories
of the “clinic” variable and comment on the extent to
which they differ.

b. A printout of the log–rank and Wilcoxon tests (using
Stata) is provided below. What are your conclusions
from this printout?

Group
Events

observed
Events
expected

1 122 90.91
2 28 59.09

Total 150 150.00

Log-rank ¼ chi2(1) ¼ 27.89
P-value ¼ Pr > chi2 ¼ 0.0000
Wilcoxon ¼ chi2(1) ¼ 11.63
P-value ¼ Pr > chi2 ¼ 0.0007

c. Compute and evaluate KM curves and the log–rank
test for comparing suitably chosen categories of the
variable “Methadone dose.” Explain how you deter-
mined the categories for this variable.
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Answers to
Practice
Exercises

1. a.

Group 1 Group 2

t(f) nf mf qf S(t(f)) t(f) nf mf qf S(t(f))

0.0 25 0 0 1.00 0.0 25 0 0 1.00
1.8 25 1 0 .96 1.4 25 1 0 .96
2.2 24 1 0 .92 1.6 24 1 0 .92
2.5 23 1 0 .88 1.8 23 1 0 .88
2.6 22 1 0 .84 2.4 22 1 0 .84
3.0 21 1 0 .80 2.8 21 1 0 .80
3.5 20 1 0 .76 2.9 20 1 0 .76
3.8 19 1 0 .72 3.1 19 1 0 .72
5.3 18 1 0 .68 3.5 18 1 0 .68
5.4 17 1 0 .64 3.6 17 1 0 .64
5.7 16 1 0 .60 3.9 16 1 0 .60
6.6 15 1 0 .56 4.1 15 1 0 .56
8.2 14 1 0 .52 4.2 14 1 0 .52
8.7 13 1 0 .48 4.7 13 1 0 .48
9.2 12 2 0 .40 4.9 12 1 0 .44
9.8 10 1 0 .36 5.2 11 1 0 .40

10.0 9 1 0 .32 5.8 10 1 0 .36
10.2 8 1 0 .28 5.9 9 1 0 .32
10.7 7 1 0 .24 6.5 8 1 0 .28
11.0 6 1 0 .20 7.8 7 1 0 .24
11.1 5 1 0 .16 8.3 6 1 0 .20
11.7 4 1 3 .12 8.4 5 1 0 .16

8.8 4 1 0 .12
9.1 3 1 0 .08
9.9 2 1 0 .04

11.4 1 1 0 .00

b. KM curves for CHR data:

2 2
2
2

2
2

2
2

2
2

2
2

1
1

1
1

1
1

1
1

1.0

0.5

0.0

0 2 4 6 8 10 12 14

Group 1 appears to have consistently better survival
prognosis than group 2. However, the KM curves
are very close during the first 4 years, but are quite
separate after 4 years, although they appear to
come close again around 12 years.

c. Using the expanded table format, the following
information is obtained:
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t(f) m1f m2f n1f n2f e1f e2f m1f � e1f m2f � e2f

1.4 0 1 25 25 .500 .500 �.500 .500
1.6 0 1 25 24 .510 .490 �.510 .510
1.8 1 1 25 23 1.042 .958 �.042 .042
2.2 1 0 24 22 .522 .478 .478 �.478
2.4. 0 1 23 22 .511 .489 �.511 .511
2.5. 1 0 23 21 .523 .477 .477 �.477
2.6 1 0 22 21 .516 .484 .484 �.484
2.8 0 1 21 21 .500 .500 �.500 .500
2.9 0 1 21 20 .512 .488 �.512 .512
3.0 1 0 21 19 .525 .475 .475 �.475
3.1 0 1 20 19 .513 .487 �.513 .513
3.5 1 1 20 18 1.053 .947 �.053 .053
3.6 0 1 19 17 .528 .472 �.528 .528
3.8 1 0 19 16 .543 .457 .457 �.457
3.9 0 1 18 16 .529 .471 �.529 .529
4.1 0 1 18 15 .545 .455 �.545 .545
4.2 0 1 18 14 .563 .437 �.563 .563
4.7 0 1 18 13 .581 .419 �.581 .581
4.9 0 1 18 12 .600 .400 �.600 .600
5.2 0 1 18 11 .621 .379 �.621 .621
5.3 1 0 18 10 .643 .357 .357 �.357
5.4 1 0 17 10 .630 .370 .370 �.370
5.7 1 0 16 10 .615 .385 .385 �.385
5.8 0 1 15 10 .600 .400 �.600 .600
5.9 0 1 15 9 .625 .375 �.625 .625
6.5 0 1 15 8 .652 .348 �.652 .652
6.6 1 0 15 7 .682 .318 .318 �.318
7.8 0 1 14 7 .667 .333 �.667 .667
8.2 1 0 14 6 .700 .300 .300 �.300
8.3 0 1 13 6 .684 .316 �.684 .684
8.4 0 1 13 5 .722 .278 �.722 .722
8.7 1 0 13 4 .765 .235 .335 �.335
8.8 0 1 12 4 .750 .250 �.750 .750
9.1 0 1 12 3 .800 .200 �.800 .800
9.2 2 0 12 2 1.714 .286 .286 �.286
9.8 1 0 10 2 .833 .167 .167 �.167
9.9 0 1 9 2 .818 .182 �.818 .818

10.0 1 0 9 1 .900 .100 .100 �.100
10.2 1 0 8 1 .888 .112 .112 �.112
10.7 1 0 7 1 .875 .125 .125 �.125
11.0 1 0 6 1 .857 .143 .143 �.143
11.1 1 0 5 1 .833 .167 .167 �.167
11.4 0 1 4 1 .800 .200 �.800 .800
11.7 1 0 4 0 1.000 .000 .000 .000

Totals 22 25 30.79 16.21 �8.790 8.790
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d. The log–rank statistic can be computed from the
totals of the expanded table using the formulae:

log-rank statistic ¼ Oi � Eið Þ2
dVar Oi � Eið Þ

Var Oi � Eið Þ

¼
X
i

n1f n2f m1f þ m2f

� �
n1f þ n2f � m1f � m2f

� �
n1f þ n2f
� �2

n1f þ n2f � 1
� �

The variance turns out to be 9.658, so that the log–-
rank statistic is (8.79)2/9.658 ¼ 7.993.

Using Stata, the results for the log–rank test are
given as follows:

Group
Events

observed
Events
expected

1 22 30.79
2 25 16.21
Total 47 47.00

Log-rank ¼ chi2(1) ¼ 7.99
P-value ¼ Pr > chi2 ¼ 0.0047

The log–rank test gives highly significant results.
This indicates that there is a significant difference
in survival between the two groups.

2. a. For the Anderson dataset, the KM plots for the three
categories of log WBC are shown below:

0
0

0.2

0.4

0.6

0.8

1

8 16

Group 1 (log WBC 0-2.3)

Group 2 (log WBC 2.31-3.0)

Group 3 (log WBC > 3.0)

24 32
Weeks

S(t)

b. The KM curves are quite different with group 1
having consistently better survival prognosis than
group 2, and group 2 having consistently better
survival prognosis than group 3. Note also that the
difference between group 1 and 2 is about the same
over time, whereas group 2 appears to diverge from
group 3 as time increases.

c. The log–rank statistic (26.391) is highly significant
with P-values equal to zero to three decimal places.
These results indicate that there is some overall
difference between the three curves.
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Appendix:
Matrix
Formula
for the
Log-Rank
Statistic for
Several
Groups

For i ¼ 1, 2,. . ., G and f ¼ 1, 2,. . ., k, where G ¼ # of groups
and k ¼ # of distinct failure times,

nif ¼ # at risk in ith group at fth ordered failure time

mif ¼ observed # of failures in ith group at fth ordered
failure time

eif¼ expected # of failures in ith group at fth ordered failure
time

¼ nif
n1f þ n2f

� 	
m1f þ m2f

� �

nf ¼
XG
i¼1

nif

mf ¼
XG
i¼1

mif

Oi � Ei ¼
Xk
f¼1

mif � eif
� �

Var Oi � Eið Þ ¼
Xk
f¼1

nif nf � nif
� �

mif nf � mf

� �
n2f nf � 1
� �

 !

Cov Oi � Ei; Ol � Elð Þ ¼
Xk
f¼1

�nif nlf mf nf � mf

� �
n2f nf � 1
� �

 !

d ¼ O1 � E1; O2 � E2; . . . ; OG�1 � EG�1ð Þ0
V ¼ vilð Þð Þ
where vii¼ Var (Oi� Ei) and vil¼ Cov (Oi� Ei,Ol� El) for i
¼ 1, 2,. . ., G � 1; l ¼ 1, 2,. . ., G � 1.

Then, the log–rank statistic is given by the matrix product
formula:

Log-rank statistic ¼ d0V�1d

which has approximately a chi-square distribution with
G � 1 degrees of freedom under the null hypothesis that
all G groups have a common survival curve.
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Introduction We begin by discussing some computer results using the
Cox PH model, without actually specifying the model;
the purpose here is to show the similarity between the
Cox model and standard linear regression or logistic
regression.

We then introduce the Cox model and describe why it is so
popular. In addition, we describe its basic properties,
including the meaning of the proportional hazards
assumption and the Cox likelihood. We also describe how
and why we might consider using “age as the time scale”
instead of “time-on follow-up” as the outcome variable.

Abbreviated
Outline

The outline below gives the user a preview of the material
to be covered by the presentation. A detailed outline for
review purposes follows the presentation.

I. A computer example using the Cox PH model
(pages 100–108)

II. The formula for the Cox PH model
(pages 108–110)

III. Why the Cox PHmodel is popular (pages 110–112)

IV. ML estimation of the Cox PH model
(pages 112–114)

V. Computing the hazard ratio (pages 114–117)

VI. Interval estimation: interaction (pages 117–119)

VII. Adjusted survival curves using the Cox PHmodel
(pages 120–123)

VIII. The meaning of the PH assumption
(pages 123–127)

IX. The Cox likelihood (pages 127–131)

X. Using age as the time scale (pages 131–142)

XI. Summary (pages 143–144)
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Objectives Upon completing this chapter, the learner should be able to:

1. State or recognize the general form of the Cox PH
model.

2. State the specific form of a Cox PHmodel appropriate
for the analysis, given a survival analysis scenario
involving one or more explanatory variables.

3. State or recognize the form and properties of the
baseline hazard function in the Cox PH model.

4. Give three reasons for the popularity of the Cox PH
model.

5. State the formula for a designated hazard ratio of
interest given a scenario describing a survival analysis
using a Cox PH model, when

a. there are confounders but no interaction terms in
the model;

b. there are both confounders and interaction terms
in the model.

6. State or recognize the meaning of the PH assumption.

7. Determine and explain whether the PH assumption is
satisfied when the graphs of the hazard functions for
two groups cross each other over time.

8. State or recognize what is an adjusted survival curve.

9. Compare and/or interpret two or more adjusted
survival curves.

10. Given a computer printout involving one or more
fitted Cox PH models,

a. compute or identify any hazard ratio(s) of interest;
b. carry out and interpret a designated test of

hypothesis;
c. carry out, identify or interpret a confidence

interval for a designated hazard ratio;
d. evaluate interaction and confounding involving

one or more covariates.
11. Give an example of how the Cox PH likelihood is

formed.

12. Given left truncated survival data, describe how and
when you would consider using “age as the time scale”
instead of “time-on follow-up” as the outcome
variable.

13. Given left-truncated survival data, state the hazard
function formula that uses “age as the time scale” as
the outcome variable.

14. Illustrate the difference between an “open cohort” and
a “closed cohort”.
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Presentation

This presentationdescribes theCoxproportional
hazards (PH) model, a popular mathematical
model used for analyzing survival data. Here,
we focus on the model form, why the model is
popular, maximum likelihood (ML) estimation
of the model parameters, the formula for the
hazard ratio, how to obtain adjusted survival
curves, and the meaning of the PH assumption.

I. A Computer Example
Using the Cox PH
Model

We introduce the Cox PH model using com-
puter output from the analysis of remission
time data (Freireich et al., Blood, 1963), which
we previously discussed in Chapters 1 and 2.
The data set is listed here at the left.

These data involve two groups of leukemia
patients, with 21 patients in each group.
Group 1 is the treatment group, and group 2 is
the placebo group. The data set also contains
the variable log WBC, which is a well-known
prognostic indicator of survival for leukemia
patients.

For this example, the basic question of interest
concerns comparing the survival experience of
the two groups adjusting for the possible con-
founding and/or interaction effects of logWBC.

model form
why popular
ML estimation
hazard ratio
adjusted survival
curves
PH assumption

FOCUS

EXAMPLE

Leukemia Remission Data

Group 1(n ¼ 21) Group 2(n ¼ 21)

t (weeks) log WBC t (weeks) log WBC

6 2.31 1 2.80
6 4.06 1 5.00
6 3.28 2 4.91
7 4.43 2 4.48

10 2.96 3 4.01
13 2.88 4 4.36
16 3.60 4 2.42
22 2.32 5 3.49
23 2.57 5 3.97
6þ 3.20 8 3.52
9þ 2.80 8 3.05

10þ 2.70 8 2.32
11þ 2.60 8 3.26
17þ 2.16 11 3.49
19þ 2.05 11 2.12
20þ 2.01 12 1.50
25þ 1.78 12 3.06
32þ 2.20 15 2.30
32þ 2.53 17 2.95
34þ 1.47 22 2.73
35þ 1.45 23 1.97

þ denotes censored observation
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We are thus considering a problem involving
two explanatory variables as predictors of sur-
vival time T, where T denotes “weeks until
going out of remission.” We label the explana-
tory variables X1 (for group status) and X2 (for
log WBC). The variable X1 is the primary study
or exposure variable of interest. The variable X2

is an extraneous variable that we are including
as a possible confounder or effect modifier.

Note that if we want to evaluate the possible
interaction effect of log WBC on group status,
we would also need to consider a third variable,
that is, the product of X1 and X2.

For this dataset, the computer results from fit-
ting three different Cox proportional hazards
models arepresentedbelow.The computer pack-
age used is Stata. This is one of several packages
that have procedures for carrying out a survival
analysis using the Cox model. The information
printed out by different packages will not have
exactly the same format, but they will provide
similar information. A comparison of output
using Stata, SAS, SPSS, and R procedures on
the same dataset is provided in the computer
appendix at the back of this text.

EXAMPLE: (continued)

T ¼weeks until going out of remission
X1 ¼ group status ¼ E
X2 ¼ log WBC (confounding?)

Interaction?
X3 ¼ X1 � X2 ¼ group status � log
WBC

Computer results for three Cox PH
models using the Stata package

Other computer packages provide
similar information.

Computer Appendix: uses Stata, SAS,
and SPSS on the same dataset.

Edited Output From Stata:

Model 1:

Coef. Std. Err. z p > |z| Haz. Ratio [95% Conf. Interval]

Rx 1.509 0.410 3.68 0.000 4.523 2.027 10.094

No. of subjects ¼ 42 Log likelihood ¼ �86.380 Prob > chi2 ¼ 0.0001

Model 2:

Coef. Std. Err. z p > |z| Haz. Ratio [95% Conf. Interval]

Rx 1.294 0.422 3.07 0.002 3.648 1.595 8.343
log WBC 1.604 0.329 4.87 0.000 4.975 2.609 9.486

No. of subjects ¼ 42 Log likelihood ¼ �72.280 Prob > chi2 ¼ 0.0000

Model 3:

Coef. Std. Err. z p > |z| Haz. Ratio [95% Conf. Interval]

Rx 2.355 1.681 1.40 0.161 10.537 0.391 284.201
log WBC 1.803 0.447 4.04 0.000 6.067 2.528 14.561
Rx x log WBC �0.342 0.520 �0.66 0.510 0.710 0.256 1.967

No. of subjects ¼ 42 Log likelihood ¼ �72.066 Prob > chi2 ¼ 0.0000
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We now describe how to use the computer
printout to evaluate the possible effect of treat-
ment status on remission time adjusted for the
potential confounding and interaction effects
of the covariate log WBC. For now, we focus
only on five columns of information provided
in the printout, as presented at the left for all
three models.

For each model, the first column identifies the
variables that have been included in themodel.
The second column gives estimates of regres-
sion coefficients corresponding to each vari-
able in the model. The third column gives
standard errors of the estimated regression
coefficients. The fourth column gives p-values
for testing the significance of each coefficient.
The fifth column, labeled as Haz. Ratio, gives
eCoef for each variable in each model.

As we discuss later in this chapter, eCoef gives an
estimated hazard ratio (HR) for the effect of
each variable adjusted for the other variables in
a model (e.g. Models 1 and 2) without product
terms. With product terms such as Rx � log
WBC in Model 3, the hazard ratio formula is
more complicated, as we also discuss later.

Except for the Haz. Ratio column, these com-
puter results are typical of output found in stan-
dard linear regression printouts. As the printout
suggests, we can analyze the results from a Cox
model in a manner similar to the way we would
analyze a linear regression model.

We now distinguish among the output for the
three models shown here. All three models are
using the same remission time data on 42 sub-
jects. The outcome variable for each model is
the same: time in weeks until a subject goes
out of remission. However, the independent
variables are different for each model. Model 1
contains only the treatment status variable,
indicating whether a subject is in the treat-
ment or placebo group. Model 2 contains two
variables, treatment status and log WBC. And
model 3 contains an interaction term defined as
the product of treatment status and log WBC.

EDITED OUTPUT FROM STATA

Model 1:
Coef. Std. Err. p > |z| Haz. Ratio

Rx 1.509 0.410 0.000 4.523

No. of subjects ¼ 42 Log likelihood ¼ �86.380

Hazard ratios

Model 2:

Coef. Std. Err. p > |z| Haz. Ratio

Rx 1.294 0.422 0.002 3.648
log WBC 1.604 0.329 0.000 4.975

No. of subjects ¼ 42 Log likelihood ¼ �72.280

Model 3:
Coef. Std. Err. p > |z| Haz. Ratio

Rx 2.355 1.681 0.161 10.537
log WBC 1.803 0.447 0.000 6.067
Rx � log WBC �0.342 0.520 0.510 0.710

No. of subjects ¼ 42 Log likelihood ¼ �72.066

Models 1 and 2: ecoef ¼ HR
Model 3: HR formula more
complicated

EXAMPLE: (continued)

Same dataset for each model
n ¼ 42 subjects
T¼ time (weeks) until out of remission

Model 1: Rx only

Model 2: Rx and log WBC

Model 3: Rx, log WBC, and
Rx � log WBC
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We now focus on the output for model 3. The
method of estimation used to obtain the coeffi-
cients for this model, as well as the other two
models, is maximum likelihood (ML) estima-
tion. Note that a p-value of 0.510 is obtained for
the coefficient of the product term for the inter-
action of treatment with log WBC. This p-value
indicates that there is no significant inter-
action effect, so that we can drop the product
term from the model and consider the other
two models instead.

The p-value of 0.510 that we have just des-
cribed is obtained by dividing the coefficient
�0.342 of the product term by its standard
error of 0.520, which gives �0.66, and then
assuming that this quantity is approximately
a standard normal or Z variable. This Z statistic
is known as a Wald statistic, which is one of
two test statistics typically used with ML esti-
mates. The other test statistic, called the likeli-
hood ratio, or LR statistic, makes use of the log
likelihood statistic. The log likelihood statistic
is obtained by multiplying the “Log likelihood”
in the Stata output by �2 to get �2 ln L.

We now look at the output for model 2, which
contains two variables. The treatment status
variable (Rx) represents the exposure variable
of primary interest. The log WBC variable is
being considered as a confounder. Our goal is
to describe the effect of treatment status
adjusted for log WBC. Note that for Model 2,
�2 ln L equals 144.550.

To use the likelihood ratio (LR) statistic to
test the significance of the interaction term,
we need to compute the difference between
the log likelihood statistic of the reduced
model which does not contain the interaction
term (model 2) and the log likelihood statistic
of the full model containing the interaction
term (model 3). In general, the LR statistic
can be written in the form �2 ln LR minus
�2 ln LF, where R denotes the reduced model
and F denotes the full model.

EDITED OUTPUT: ML ESTIMATION

Model 3:

Coef.
Std.
Err. p > |z|

Haz.
Ratio

Rx 2.355 1.681 0.161 10.537
log WBC 1.803 0.447 0.000 6.067
Rx � log WBC �0.342 0.520 0.510 0.710

No. of subjects ¼ 42 Log likelihood ¼ �72:066

EXAMPLE: (continued)

P ¼ 0:510 :
�0:342

�0:520
¼ �0:66 ¼ Z Wald

statistic

LR statistic: uses Log likelihood ¼
�72.066

�2 ln L (log likelihood statistic) ¼
�2 � (�72.066) ¼ 144.132

Edited Output

Model 2:

Coef. Std. Err. p > |z| Haz. Ratio

Rx 1.294 0.422 0.002 3.648
log WBC 1.604 0.329 0.000 4.975

No. of subjects ¼ 42 Log likelihood ¼ �72:280
�2 ln L ¼ �2� (-72.280) ¼ 144.550

EXAMPLE: (continued)

LR (interaction in model 3)
¼�2 ln Lmodel 2 � (�2 ln Lmodel 3)

In general:
LR ¼ �2 ln LR � (�2 ln LF)
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To obtain the LR statistic in this example, we
compute 144.550minus 144.132 to obtain 0.428.
Under the null hypothesis of no interaction
effect, the test statistic has a chi-square distribu-
tion with p degrees of freedom, where p denotes
the number of predictors being assessed. The
p-value for this test is between 0.40 and 0.50,
which indicates no significant interaction.
Although the p-values for the Wald test (0.510)
and the LR test are not exactly the same, both
p-values lead to the same conclusion.

In general, the LR and Wald statistics may not
give exactly the same answer. Statisticians
have shown that of the two test procedures,
the LR statistic has better statistical properties,
so when in doubt, you should use the LR test.

We now focus on how to assess the effect of
treatment status adjusting for log WBC using
the model 2 output, again shown here.

There are three statistical objectives typically
considered. One is to test for the significance
of the treatment status variable, adjusted for
logWBC. Another is to obtain a point estimate
of the effect of treatment status, adjusted for
log WBC. And a third is to obtain a confidence
interval for this effect. We can accomplish
these three objectives using the output pro-
vided, without having to explicitly describe
the formula for the Cox model being used.

To test for the significance of the treatment
effect, the p-value provided in the table for the
Wald statistic is 0.002, which is highly signifi-
cant. Alternatively, a likelihood ratio (LR) test
could be performed by comparing the log like-
lihood statistic (144.559) for model 2 with the
log likelihood statistic for a model which does
not contain the treatment variable. This latter
model, which should contain only the log WBC
variable, is not provided here, so we will not
report on it other than to note that the LR test
is also very significant. Thus, these test results
show that using model 2, the treatment effect
is significant, after adjusting for log WBC.

EXAMPLE: (continued)

LR (interaction in model 3)
¼ �2 ln Lmodel 2 � (�2 ln Lmodel 3)
¼ (�2 � �72.280) � (�2 � �72.066)
¼ 144.550 � 144.132 ¼ 0.428

(LR is w2 with 1 d.f. under H0: no
interaction.)
0.40 < P < 0.50, not significant
Wald test P ¼ 0.510

LR 6¼ Wald

When in doubt, use the LR test.

OUTPUT

Model 2:

Coef. Std. Err. p > |z| Haz. Ratio

Rx 1.294 0.422 0.002 3.648
log WBC 1.604 0.329 0.000 4.975

No. of subjects ¼ 42 Log likelihood ¼ �72:280

Three statistical objectives.

1. test for significance of effect
2. point estimate of effect
3. confidence interval for effect

EXAMPLE: (continued)

Test for treatment effect:
Wald statistic: P ¼ 0.002 (highly

significant)
LR statistic: compare
�2 log L from model 2 with
�2 log L from model without Rx

variable
Printout not provided here

Conclusion: treatment effect is
significant, after adjusting for logWBC
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A point estimate of the effect of the treatment is
provided in the HR column by the value 3.648.
This value gives the estimated hazard ratio
(HR) for the effect of the treatment; in particu-
lar, we see that the hazard for the placebo
group is 3.6 times the hazard for the treatment
group. Note that the value 3.648 is calculated
as e to the coefficient of the treatment variable;
that is, e to the 1.294 equals 3.648.

To describe the confidence interval for the effect
of treatment status, we consider the output for
the extended table for model 2 given earlier.

From the table, we see that a 95% confidence
interval for the treatment effect is given by
the range of values 1.595–8.343. This is a confi-
dence interval for the hazard ratio (HR), which
surrounds the point estimate of 3.648 previ-
ously described. Notice that this confidence
interval is fairly wide, indicating that the point
estimate is somewhat unreliable. As expected
from the low p-value of 0.002, the confidence
interval for HR does not contain the null value
of 1.

The calculation of the confidence interval for
HR is carried out as follows:

1. Compute a 95% confidence interval for the
regression coefficient of the Rx variable
(b1). The large sample formula is 1.294 plus
or minus 1.96 times the standard error
0.422, where 1.96 is the 97.5 percentile of
the standard normal or Z distribution.

2. Exponentiate the two limits obtained for
the confidence interval for the regression
coefficient of Rx.

EXAMPLE: (continued)

Point estimate:

HR = 3.648
= e1.294

Coefficient of treatment variable

Output

Model 2:

Coef. Std. Err. z P>|z| Haz. Ratio [95% Conf. Interval]

Rx 1.294 0.422 3.07 0.002 3.648 1.595 8.343
Log WBC 1.604 0.329 4.87 0.000 4.975 2.609 9.486

No. of subjects ¼ 42 Log likelihood ¼ �72.280 Prob > chi2 ¼ 0.0000

EXAMPLE: (continued)

95% confidence interval for the HR:
(1.595, 8.343)

1 1.595 3.648 8.343

95% CI for b1: 1.294 � (1.96) (0.422)

0 1.96 Z

0.975

95% CI for HR ¼ eb1

exp b̂1 � 1:96sb̂1

h i
¼ e1:294� 1:96 0:422ð Þ
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The Stata output provides the required confi-
dence interval directly, so that the user does
not have to carry out the computations
required by the large sample formula. Other
computer packages may not provide the confi-
dence interval directly, but, rather, may pro-
vide only the estimated regression coefficients
and their standard errors.

To this point, we have made use of information
from outputs for models 2 and 3, but have not
yet considered the model 1 output, which is
shown again here. Note that model 1 contains
only the treatment status variable, whereas
model 2, shown below, contains log WBC in
addition to treatment status. Model 1 is some-
times called the “crude” model because it
ignores the effect of potential covariates of
interest, like log WBC.

Model 1 can be used in comparison with model
2 to evaluate the potential confounding effect
of the variable log WBC. In particular, notice
that the value in the HR column for the treat-
ment status variable is 4.523 for model 1, but
only 3.648 for model 2. Thus, the crude model
yields an estimated hazard ratio that is some-
what higher than the corresponding estimate
obtained when we adjust for log WBC. If we
decide that the crude and adjusted estimates
are meaningfully different, we then say that
there is confounding due to log WBC.

Once we decide that confounding is present,
we then must control for the confounder, in
this case, log WBC, in order to obtain a valid
estimate of the effect. Thus, we prefer model 2,
which controls for log WBC, to model 1, which
does not.

Note that if we had decided that there is no
“meaningful” confounding, then we would not
need to control for logWBC toget a valid answer.
Nevertheless, we might wish to control for log
WBC anyhow, to obtain amore precise estimate
of the hazard ratio. That is, if the confidence
interval for the HR is narrower when using
model 2 than when using model 1, we would
prefer model 2 to model 1 for precision gain.

Stata: provides CI directly

Other packages: provide b̂ and sb̂

EDITED OUTPUT

Model 1:

Coef. Std. Err. p > |z| Haz. Ratio

Rx 1.509 0.410 0.000 4:523

No. of subjects¼ 42Log likelihood¼�86.380

Model 2:

Coef. Std. Err. p > |z|
Haz.
Ratio

Rx 1.294 0.422 0.002 3:648
log WBC 1.604 0.329 0.000 4.975

No. of subjects¼ 42Log likelihood¼�72.280

EXAMPLE: (continued)

HR for model 1 (4.523) is higher than
HR for model 2 (3.648)

Confounding: crude versus adjustedcHR are meaningfully different.

Confounding due to log WBC ) must
control for log WBC, i.e., prefer model
2 to model 1.

If no confounding, then consider
precision: e.g., if 95% CI is narrower
for model 2 than model 1, we prefer
model 2.
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The confidence intervals for Rx in each model
are shown here at the left. The interval forRx in
model 1 has width equal to 10.094 minus 2.027,
or 8.067; for model 2, the width is 8.343 minus
1.595, or 6.748. Therefore, model 2 gives a
more precise estimate of the hazard ratio than
does model 1.

Our analysis of the output for the three models
has led us to conclude that model 2 is the best
of the three models and that, using model 2, we
get a statistically significant hazard ratio of
3.648 for the effect of the treatment, with a
95% confidence interval ranging between 1.6
and 8.3.

Note that we were able to carry out this analy-
sis without actually specifying the formulae for
the Cox PH models being fit. Also, the strategy
and methods used with the output provided
have been completely analogous to the strategy
and methods one uses when fitting logistic
regression models (see Kleinbaum and Klein,
Logistic Regression, Chapters 6 and 7, 2010),
and very similar to carrying out a classical lin-
ear regression analysis (see Kleinbaum et al.,
Applied Regression Analysis, 4th ed., Chapter 16,
2008).

In addition to the above analysis of this data, we
can also obtain survival curves for each treat-
ment group, adjusted for the effects of log
WBC and based on the model 2 output. Such
curves, sketched here at the left, give additional
information to that provided by estimates and
tests about the hazard ratio. In particular, these
curves describe how the treatment groups com-
pare over the time period of the study.

For these data, the survival curves show that
the treatment group consistently has higher
survival probabilities than the placebo group
after adjusting for log WBC. Moreover, the
difference between the two groups appears to
widen over time.

EDITED OUTPUT: Confidence

Intervals

[95% Conf. Interval]

Rx model 1 2.027 10.094

width ¼ 8.067

width ¼ 6.748

Rx model 2 1.595 8.343
log WBC 2.609 9.486

EXAMPLE: (continued)

Model 2 is best model.

cHR ¼ 3:648 statistically significant

95% CI for HR: (1.6, 8.3)

Cox model formulae not specified

Analysis strategy and methods for
Cox model analogous to those for
logistic and classical linear models.

EXAMPLE: (continued)

Survival Curves Adjusted for log WBC
(Model 2)

8 16 24
Time

.0

.2

.4

.6

.8

1.0

Treatment (Rx = 0)

Placebo
(Rx = 1)

S(t)
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Note that adjusted survival curves are mathe-
matically different from Kaplan–Meier (KM)
curves. KM curves do not adjust for covariates
and, therefore, are not computed using results
from a fitted Cox PH model.

Nevertheless, for these data, the plotted KM
curves (which were described in Chapter 2) are
similar in appearance to the adjusted survival
curves.

In the remainder of this presentation, we des-
cribe the Cox PH formula and its basic charac-
teristics, including the meaning of the PH
assumption and the Cox likelihood.

II. The Formula for the
Cox PH Model

The Cox PH model is usually written in terms
of the hazard model formula shown here at
the left. This model gives an expression for
the hazard at time t for an individual with a
given specification of a set of explanatory vari-
ables denoted by the boldX. That is, the boldX
represents a collection (sometimes called a
“vector”) of predictor variables that is being
modeled to predict an individual’s hazard.

The Cox model formula says that the hazard at
time t is the product of two quantities. The first
of these, h0(t), is called the baseline hazard
function. The second quantity is the exponen-
tial expression e to the linear sum of biXi, where
the sum is over the p explanatory X variables.

An important feature of this formula,which con-
cerns the proportional hazards (PH) assump-
tion, is that the baseline hazard is a function
of t, but does not involve the X’s. In contrast,
the exponential expression shown here, involves
the X’s, but does not involve t. The X’s here are
called time-independent X’s.

Adjusted survival
curves KM curves

Adjusted for
covariates

No covariates

Use fitted Cox
model

No Cox model
fitted

Remainder:

� Cox model formula
� basic characteristics of Cox

model
� meaning of PH assumption

h t;Xð Þ ¼ h0 tð Þe
Pp
i¼1

biXi

X ¼ X1;X2; . . .Xp

� �
explanatory/predictor variables

h0 tð Þ � e

Pp
i¼1

biXi

Baseline
hazard

Exponential

Involves t
but not X’s

Involves X’s but not
t (X’s are time-
independent)
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It is possible, nevertheless, to considerX’s which
do involve t. SuchX’s are called time-dependent
variables. If time-dependent variables are con-
sidered, the Cox model form may still be used,
but such a model no longer satisfies the PH
assumption, and is called the extended Cox
model.

The use of time-dependent variables is discussed
in Chapter 6. For the remainder of this presenta-
tion,wewill consider time-independentX’s only.

A time-independent variable is defined to be
any variable whose value for a given individual
does not change over time. Examples are SEX
and smoking status (SMK). Note, however,
that a person’s smoking status may actually
change over time, but for purposes of the anal-
ysis, the SMK variable is assumed not to
change once it is measured, so that only one
value per individual is used.

Also note that although variables like AGE and
weight (WGT) change over time, it may be
appropriate to treat such variables as time-
independent in the analysis if their values do
not change much over time or if the effect of
such variables on survival risk depends essen-
tially on the value at only one measurement.

The Cox model formula has the property that if
all the X’s are equal to zero, the formula
reduces to the baseline hazard function. That
is, the exponential part of the formula becomes
e to the zero, which is 1. This property of the
Cox model is the reason why h0(t) is called the
baseline function.

Or, from a slightly different perspective, the
Cox model reduces to the baseline hazard
when no X’s are in the model. Thus, h0(t) may
be considered as a starting or “baseline” version
of the hazard function, prior to considering any
of the X’s.

Another important property of the Cox model
is that the baseline hazard, h0(t), is an unspeci-
fied function. It is this property that makes the
Cox model a semiparametric model.

X’s involving t: time-dependent

Requires extended Cox model
(no PH)

Time-dependent variables:
Chapter 6

Time-independent variable:
Values for a given individual
do not change over time; e.g.,
SEX and SMK

Assumed not to change once
measured

AGE and WGT values do not
change much, or effect on survival
depends on one measurement.

X1¼ X2 ¼ · · · ¼ Xp¼ 0

h t;Xð Þ ¼ h0 tð Þ e
Pp
i¼1

biXi

¼ h0 tð Þ e0
¼ h0 tð Þ

Baseline hazard

No X’s in model: h(t,X) ¼ h0 (t).

h0(t) is unspecified.

Cox model: semiparametric

Presentation: II. The Formula for the Cox PH Model 109



In contrast, a parametric model is one whose
functional form is completely specified, except
for the values of the unknown parameters. For
example, the Weibull hazard model is a para-
metric model and has the form shown here,
where the unknown parameters are l, p, and
the bi’s. Note that for the Weibull model, h0 (t)
is given by lptp�1 (see Chapter 7).

One of the reasons why the Cox model is so
popular is that it is semiparametric. We discuss
this and other reasons in the next section (III)
concerning why the Cox model is so widely
used.

III. Why the Cox PH
Model Is Popular

Akey reason for the popularity of theCoxmodel
is that, even though the baseline hazard is not
specified, reasonably good estimates of regres-
sion coefficients, hazard ratios of interest, and
adjusted survival curves can be obtained for a
wide variety of data situations. Another way
of saying this is that the Cox PH model is a
“robust” model, so that the results from using
the Cox model will closely approximate the
results for the correct parametric model.

For example, if the correct parametric model is
Weibull, then use of the Cox model typically
will give results comparable to those obtained
using a Weibull model. Or, if the correct model
is exponential, then the Cox model results will
closely approximate the results from fitting an
exponential model.

Wewould prefer to use a parametricmodel if we
were sure of the correct model. Although there
are variousmethods for assessinggoodnessof fit
of a parametric model (for example, see Lee,
Statistical Methods for Survival Data Analysis,
1982), we may not be completely certain that a
given parametric model is appropriate.

Example: Parametric Model

Weibull:
h (t, X) ¼ lptp�1

where l ¼ exp
Pp
i¼1

biXi

� �

and h0 (t) ¼ ptp�1

Semiparametric property

+
Popularity of the Cox model

Cox PH model is “robust”: Will
closely approximate correct
parametric model

If correct model is:

Weibull )
Coxmodel will

approximate

Weibull

Exponential )
Coxmodel will

approximate
exponential

Prefer parametric model if sure of
correct model, e.g., use goodness-
of-fit test (Lee, 1982).
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Thus, when in doubt, as is typically the case,
the Cox model will give reliable enough results
so that it is a “safe” choice of model, and the
user does not need to worry about whether the
wrong parametric model is chosen.

In addition to the general “robustness” of the
Cox model, the specific form of the model is
attractive for several reasons.

As described previously, the specific form of
the Cox model gives the hazard function as a
product of a baseline hazard involving t and an
exponential expression involving the X’s with-
out t. The exponential part of this product is
appealing because it ensures that the fitted
model will always give estimated hazards that
are non-negative.

We want such nonnegative estimates because,
by definition, the values of any hazard function
must range between zero and plus infinity, that
is, a hazard is always nonnegative. If, instead of
an exponential expression, the X part of the
model were, for example, linear in the X’s, we
might obtain negative hazard estimates, which
are not allowed.

Another appealing property of the Coxmodel is
that, even though the baseline hazard part of
the model is unspecified, it is still possible to
estimate the b’s in the exponential part of the
model. As we will show later, all we need are
estimates of the b’s to assess the effect of
explanatory variables of interest. The measure
of effect, which is called a hazard ratio, is cal-
culated without having to estimate the baseline
hazard function.

Note that the hazard function h(t,X) and its
corresponding survival curves S(t,X) can be
estimated for the Cox model even though the
baseline hazard function is not specified. Thus,
with the Cox model, using a minimum of
assumptions, we can obtain the primary infor-
mation desired from a survival analysis,
namely, a hazard ratio and a survival curve.

When in doubt, the Cox model is a
“safe” choice.

h t;Xð Þ ¼ h0 tð Þ � e

Pp
i¼1

biXi

Baseline
hazard

Exponential

+
0 � h t;Xð Þ < 1 always

h0 tð Þ �
Xp
i¼1

biXi

|fflfflfflffl{zfflfflfflffl}
Linear

+
Might be < 0

Even though h0(t) is unspecified,
we can estimate the b’s.

Measure of effect: hazard ratio
(HR) involves only b’s, without
estimating h0(t).

Can estimate h(t,X) and S(t, X) for
Cox model using a minimum of
assumptions.
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One last point about the popularity of the Cox
model is that it is preferred over the logistic
model when survival time information is avail-
able and there is censoring. That is, the Cox
model uses more information, the survival
times, than the logistic model, which considers
a (0, 1) outcome and ignores survival times and
censoring.

IV. ML Estimation of the
Cox PH Model

We now describe how estimates are obtained
for the parameters of the Cox model. The
parameters are the b’s in the general Cox
model formula shown here. The corresponding
estimates of these parameters are called maxi-
mum likelihood (ML) estimates and are
denoted as b̂i.

As an example of ML estimates, we consider
once again the computer output for one of the
models (model 2) fitted previously from remis-
sion data on 42 leukemia patients.

The Cox model for this example involves two
parameters, one being the coefficient of the
treatment variable (denoted here as Rx) and
the other being the coefficient of the log WBC
variable. The expression for this model is
shown at the left, which contains the estimated
coefficients 1.294 forRx and 1.604 for log white
blood cell count.

As with logistic regression, the ML estimates of
the Cox model parameters are derived by max-
imizing a likelihood function, usually denoted
as L. The likelihood function is a mathematical
expression which describes the joint probabil-
ity of obtaining the data actually observed on
the subjects in the study as a function of the
unknown parameters (the b’s) in the model
being considered. L is sometimes written nota-
tionally as L(b) where b denotes the collection
of unknown parameters.

The expression for the likelihood is developed
at the end of the chapter. However, we give a
brief overview below.

Cox model preferred to logistic model.
+
Uses survival
times and
censoring

+
Uses (0,1) outcome;
ignores survival times
and censoring

h t;Xð Þ ¼ h0 tð Þ e
Pp
i¼1

bi Xi

ML estimates: b̂i

Coef. Std.Err. p > |z| Haz. Ratio

Rx 1.294 0.422 0.002 3.648
log WBC 1.604 0.329 0.000 4.975

No. of subjects ¼ 42 Log likelihood ¼ �72.280

Estimated model:

ĥ t;Xð Þ ¼ ĥ0 tð Þ e1:294 Rx þ 1:604 log WBC

ML estimates: maximize likelihood
function L

L ¼ joint probability of observed
data ¼ L(b)
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The formula for the Cox model likelihood func-
tion is actually called a “partial” likelihood func-
tion rather thana (complete) likelihood function.
The term “partial” likelihood is used because the
likelihood formula considers probabilities only
for those subjects who fail, and does not explic-
itly consider probabilities for those subjects who
are censored. Thus the likelihood for the Cox
model does not consider probabilities for all sub-
jects, and so it is called a “partial” likelihood.

In particular, the partial likelihood can be writ-
ten as the product of several likelihoods, one
for each of, say, k failure times. Thus, at the f-th
failure time, Lf denotes the likelihood of failing
at this time, given survival up to this time. Note
that the set of individuals at risk at the jth
failure time is called the “risk set,” R(t(f)), and
this set will change – actually get smaller in size
– as the failure time increases.

Thus, although the partial likelihood focuses
on subjects who fail, survival time information
prior to censorship is used for those subjects
who are censored. That is, a person who is
censored after the f-th failure time is part of
the risk set used to compute Lf even though
this person is censored later.

Once the likelihood function is formed for a
given model, the next step for the computer is
to maximize this function. This is generally
done by maximizing the natural log of L,
which is computationally easier.

The maximization process is carried out by tak-
ing partial derivatives of log of L with respect to
each parameter in themodel, and then solving a
system of equations as shown here. This solu-
tion is carried out using iteration. That is, the
solution is obtained ina stepwisemanner,which
starts with a guessed value for the solution, and
then successively modifies the guessed value
until a solution is finally obtained.

L is a partial likelihood:

� considers probabilities only for
subjects who fail

� does not consider probabilities
for subjects who are censored

Number of failure times

L ¼ L1 � L2 � L3 � � � � � Lk ¼
Yk
j¼1

Lj

where
Lf ¼ portion of L for the jth failure
time given the risk set R (t(f))

Information on censored subjects
used prior to censorship.

t( f )

Lf uses in R(t( f )) Censored later

Steps for obtaining ML estimates:

� form L from model
� maximize ln L by solving

@ ln L

@bi
¼ 0

i ¼ 1; . . . ; pð# of parametersÞ

Solution by iteration:

� guess at solution
� modify guess in successive steps
� stop when solution is obtained
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Once the ML estimates are obtained, we are
usually interested in carrying out statistical
inferences about hazard ratios defined in
terms of these estimates. We illustrated previ-
ously how to test hypotheses and form confi-
dence intervals for the hazard ratio in Section I
above. There, we described how to compute
a Wald test and a likelihood ratio (LR) test.
We also illustrated how to calculate a large
sample 95% confidence interval for a hazard
ratio. The estimated hazard ratio (HR) was
computed by exponentiating the coefficient of
a (0,1) exposure variable of interest. Note that
the model contained no interaction terms
involving exposure.

V. Computing the Hazard
Ratio

In general, a hazard ratio (HR) is defined as the
hazard for one individual divided by the hazard
for a different individual. The two individuals
being compared can be distinguished by their
values for the set of predictors, that is, the X’s.

We can write the hazard ratio as the estimate
of h(t,X*) divided by the estimate of h(t,X),
where X* denotes the set of predictors for one
individual, and X denotes the set of predictors
for the other individual.

Note that, as with an odds ratio, it is easier to
interpret an HR that exceeds the null value of 1
than an HR that is less than 1. Thus, the X’s are
typically coded so that group with the larger
hazard corresponds to X*, and the group with
the smaller hazard corresponds to X. As an
example, for the remission data described pre-
viously, the placebo group is coded as X�

1 ¼ 1,
and the treatment group is coded as X1 ¼ 0.

Statistical inferences for hazard
ratios: (SeeSection I,pages100–107)

Test hypotheses Confidence intervals

Wald test
LR test

Large sample 95% CI

cHR ¼ eb̂ for a (0, 1) exposure
variable (no interaction)

cHR ¼ ĥ t;X�ð Þ
ĥ t;Xð Þ

where

X� ¼ X�
1 ; X

�
2; � � � ;X�

p

� �

and

X ¼ X1; X2; � � � ;Xp

� �

denote the set of X’s for two
individuals

To interpret cHR, want cHR > 1, i.e.,
ĥ (t, X*) > ĥ (t, X).

Typical coding: X*: group with
larger h

X: group with
smaller h

EXAMPLE: Remission Data

X� ¼ ðX�
1; X

�
2 ; � � � ;X�

pÞ, where X�
1 ¼ 1

denotes placebo group.

X ¼ (X1, X2, . . ., Xp), where X1 ¼ 0
denotes treatment group.
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Wenowobtain an expression for theHR formula
in terms of the regression coefficients by substi-
tuting theCoxmodel formula into thenumerator
and denominator of the hazard ratio expression.
This substitution is shown here. Notice that the
only difference in the numerator and denomina-
tor are theX*’s versus theX’s. Notice also that the
baseline hazards will cancel out.

Using algebra involving exponentials, the haz-
ard ratio formula simplifies to the exponential
expression shown here. Thus, the hazard ratio
is computed by exponentiating the sum of each
bi “hat” times the difference between X�

i and Xi.

An alternative way to write this formula, using
exponential notation, is shown here. We will
now illustrate the use of this general formula
through a few examples.

Suppose, for example, there is only one X vari-
able of interest, X1, which denotes (0,1) expo-
sure status, so that p ¼ 1. Then, the hazard
ratio comparing exposed to unexposed persons
is obtained by letting X�

1 ¼ 1 and X1 ¼ 0 in the
hazard ratio formula. The estimated hazard
ratio then becomes e to the quantity b1 “hat”
times 1 minus 0, which simplifies to e to the
b1 “hat.”

Recall the remission data printout for Model 1,
which contains only the Rx variable, again
shown here. Then the estimated hazard ratio
is obtained by exponentiating the coefficient
1.509, which gives the value 4.523 shown in
the HR column of the output.

As a second example, consider the output for
Model 2, which contains two variables, the Rx
variable and log WBC. Then to obtain the haz-
ard ratio for the effect of the Rx variable
adjusted for the log WBC variable, we let the
vectors X* and X be defined as X* ¼ (1, log
WBC) and X ¼ (0, log WBC). Here we assume
that log WBC is the same for X* and X though
unspecified.

cHR ¼ ĥ t;X�ð Þ
ĥ t;Xð Þ ¼ ĥ0ðtÞ e

Pp
i¼1

b̂i X
�
i

ĥ0ðtÞe
Pp
i¼1

b̂i Xi

cHR ¼ ĥ0ðtÞ e
Pp
i¼1

b̂i X
�
i

ĥ0ðtÞ e
Pp
i¼1

b̂i Xi

¼ e

Pp
i¼1

b̂i X�
i �Xið Þ

cHR ¼ exp
Xp
i¼1

bi X
�
i � Xi

� �" #

EXAMPLE

X ¼ (X1, X2,. . ., Xp) ¼ (X1), where X1

denotes (0, 1) exposure status (p ¼ 1)
X�
1 ¼ 1;X1 ¼ 0

cHR ¼ exp b̂1 X�
1 � X1

� �h i

¼ exp b̂1 1� 0ð Þ
h i

¼ eb̂1

Model 1:

Coef. Std. Err. P > |z| Haz. Ratio

Rx 1.509 0.410 0.000 4.523

EXAMPLE 2

Model 2:

Coef.
Std.
Err. p > |z|

Haz.
Ratio

Rx 1.294 0.422 0.002 3.648
log WBC 1.604 0.329 0.000 4.975

X* ¼ (1, log WBC), X ¼ (0, log WBC)
HR for effect of Rx adjusted for log
WBC:
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The estimated hazard ratio is then obtained by
exponentiating the sum of two quantities, one
involving the coefficient 1.294 of the Rx vari-
able, and the other involving the coefficient
1.604 of the log WBC variable. Since the log
WBC value is fixed, however, this portion of
the exponential is zero, so that the resulting
estimate is simply e to the 1.294.

This second example illustrates the general rule
that the hazard ratio for the effect of a (0,1)
exposure variable which adjusts for other vari-
ables is obtained by exponentiating the esti-
mated coefficient of the exposure variable. This
rule has the proviso that the model does not
contain any product terms involving exposure.

We now give a third example which illustrates
how to compute a hazard ratio when the model
does contain product terms. We consider the
printout for Model 3 of the remission data
shown here.

To obtain the hazard ratio for the effect of Rx
adjusted for log WBC using Model 3, we con-
sider X* and X vectors which have three com-
ponents, one for each variable in themodel. The
X* vector, which denotes a placebo subject,
has components X�

1 ¼ 1; X�
2 ¼ logWBC and

1� logWBC. The X vector, which denotes a
treated subject, has components X1 ¼ 0, X2 ¼
logWBC andX3¼ 0� logWBC.Note again that,
as with the previous example, the value for log
WBC is treated as fixed, though unspecified.

Using the general formula for the hazard ratio,
wemustnowcompute the exponential of the sum
of three quantities, corresponding to the three
variables in the model. Substituting the values
from the printout and the values of the vectors
X* and X into this formula, we obtain the expo-
nential expression shown here. Using algebra,
this expression simplifies to the exponential of
2.355 minus 0.342 times log WBC.

EXAMPLE 2: (continued)

cHR ¼ exp b̂1 X�
1 � X1

� �þ b̂1 X�
2 � X2

� �h i

¼ exp 1:294 1� 0ð Þ½
þ1:604 log WBC� log WBCð Þ	

¼ exp 1:294 1ð Þ þ 1:604 0ð Þ½ 	 ¼ e1:294

General rule: If X1 is a (0,1)
exposure variable, then

cHR ¼ eb̂1 (¼ effect of exposure
adjusted for other X’s)

provided no other X’s are product
terms involving exposure.

EXAMPLE 3

Model 3:

Coef.
Std.
Err. p > |z|

Haz.
Ratio

Rx 2.355 1.681 0.161 10.537
log WBC 1.803 0.447 0.000 6.067
Rx � log

WBC
�0.342 0.520 0.510 0.710

Want HR for effect of Rx adjusted for
log WBC.

Placebo subject:

X� ¼ X�
1 ¼ 1; X�

2 ¼ log WBC,
�
X�
3 ¼ 1� log WBC

�

Treated subject:

X ¼ (X1 ¼ 0, X2 ¼ log WBC,
X3 ¼ 0 � log WBC)

cHR ¼ exp
X3
i¼1

b̂i X
�
i � Xi

� �" #

cHR ¼ exp 2:355ð1� 0Þ½
þ 1:803 log WBC� log WBCð Þ
þ �0:342ð Þ 1� log WBCð
�0� log WBCÞ	

¼ exp 2:355� 0:342 log WBC½ 	
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In order to get a numerical value for the hazard
ratio, we must specify a value for log WBC. For
instance, if log WBC ¼ 2, the estimated hazard
ratio becomes 5.32, whereas if log WBC ¼ 4,
the estimated hazard ratio becomes 2.68. Thus,
we get different hazard ratio values for dif-
ferent values of log WBC, which should make
sense since log WBC is an effect modifier in
Model 3.

The example we have just described using
Model 3 illustrates a general rule which states
that the hazard ratio for the effect of a (0,1)
exposure variable in a model which contains
product terms involving this exposure with
other X’s can be written as shown here. Note
that b “hat” denotes the coefficient of the expo-
sure variable and the d “hats” are coefficients of
product terms in the model of the form E �Wj.
Also note that this formula does not contain
coefficients of nonproduct terms other than
those involving E.

For Model 3, b “hat” is the coefficient of the Rx
variable, and there is only one d “hat” in the
sum, which is the coefficient of the product
term Rx � log WBC. Thus, there is only one W,
namely W1 ¼ log WBC. The hazard ratio for-
mula for the effect of exposure is then given by
exponentiating b “hat” plus d “hat” times log
WBC. Substituting the estimates from the
printout into this formula yields the expression
obtained previously, namely the exponential of
2.355 minus 0.342 times log WBC.

VI. Interval Estimation:
Interaction

We have previously illustrated inModel 2 of the
Remission Time Data how to obtain a 95%
interval estimate of the HR when there is only
one regression coefficient of interest, e.g., the
HR is of the form exp[b1].

EXAMPLE: (continued)

log WBC ¼ 2:

cHR ¼ exp 2:355� 0:342 2ð Þ½ 	
¼ e1:671 ¼ 5:32

log WBC ¼ 4:

cHR ¼ exp 2:355� 0:342 4ð Þ½ 	
¼ e0:987 ¼ 2:68

General rule for (0, 1) exposure
variables when there are product
terms:

cHR ¼ exp b̂þ
X

d̂j Wj

h i

where

b̂ ¼ coefficient of E

d̂j ¼ coefficient of E�Wj

( cHR does not contain coefficients of
non-product terms)

EXAMPLE

Model 3:

E

b̂ ¼ coefficient of Rx
W1

d̂1 ¼ coefficient of Rx� log WBC

cHR Model 3ð Þ ¼ exp b̂þ d̂1 log WBC
h i

¼ exp 2:355� 0:342 log WBC½ 	

Model 2:
h(t, X)¼ h0 (t)exp[b1Rxþ b2log WBC]

HR ¼ exp[b1]
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The procedure typically used to obtain a large
sample 95% confidence interval (CI) for the
parameter is to compute the exponential of the
estimate of the parameter plus or minus a per-
centage point of the normal distribution times
the estimated standard error of the estimate.
Note that the square root of the estimated vari-
ance is the standard error.

This computation is relatively simple when
there are no interaction effects in the model.
However, when there is interaction, the compu-
tational formula for the estimated standard
error is more complex.

Suppose we focus on Model 3, shown here
on the left, and, again, we assume that Rx is a
(0, 1) exposure variable of interest. Then the
formula for the HR for the effect of Rx
controlling for the variable log WBC is given
on the left underneath the model formula.

The difficult part in computing the CI for a HR
involving interaction effects is the calculation
for the estimated variance. When there is no
interaction, so that the parameter of interest is
a single regression coefficient, this variance is
obtained directly from the listing of estimated
coefficients and corresponding standard
errors.

For Model 3, we can alternatively write the
estimated HR formula as exp[‘̂ ], where ‘ is
the linear function b1 þ b3log WBC and ‘̂ is
the estimate of this linear function using the
ML estimates.

To obtain a 95% CI for exp[‘] we must expo-
nentiate the CI for ‘. The formula is shown on
the left.

This CI formula, though motivated by our
example using Model 3, is actually the general
formula for the 95% CI for any HR of interest
from a Cox PH model. In general, for a model
with a (0, 1) exposure variable X1 and inter-
action terms X1�W1, . . ., X1�Wk, the linear
function may take any form of interest, as
shown in the left.

Large sample 95% confidence
interval:

exp b̂1 � 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Vârb̂1

q� �

where

sb̂1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Vârb̂1

q

No interaction: simple formula

Interaction: complex formula

Model 3:

h(t,X)¼ h0 (t)exp[b1Rxþ b2log WBC

þ b3 (Rx � log WBC)]

HR ¼ exp[b1 þ b3log WBC]

Interaction: variance calculation
difficult

No interaction: variance directly
from printout

ĤR ¼ exp½‘̂	;
where ‘ ¼ b1 þ b3log WBC

95% CI for HR ¼ exp½‘̂	
exp½‘̂� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffi
Var‘̂Þ

q
	

General Formula:
can consider any ‘, e.g.,

‘ ¼ b1 þ d1W1 þ d2W2 þ . . . dkWk;

where X1 ¼ (0, 1) exposure variable
and b1 ¼ coeff of X1,
dj ¼ coeff of X1�Wj, j¼1,. . ., k
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When the HR involves interaction effects, the
estimated variance considers a linear sum of
estimated regression coefficients. Because the
coefficients in the linear sum are estimated
from the same data set, these coefficients are
correlated with one another. Consequently, the
calculation of the estimated variancemust con-
sider both the variances and the covariances of
the estimated coefficients, which makes com-
putations somewhat cumbersome.

Nevertheless, most computer packages that
have procedures for fitting survival analysis
models like the Cox model provide for comput-
ing the estimated variance of linear functions
like ‘̂ as part of the program options. See the
Computer Appendix for details on the use of
the “contrast” option in SAS and the “lincom”
option in STATA.

For the interested reader, we provide here the
general formula for the estimated variance of
the linear function ‘̂.

In applying this formula, the user obtains the
estimated variances and covariances from the
variancecovariance output. The user must
specify values of interest for the effect modi-
fiers defined by the Ws in the model.

Applying this variance formula to Model 3, we
obtain the variance expression shownon the left.
Since log WBC is the only effect modifier here,
the userwould need to specify logWBCvalues of
interest, e.g., log WBC ¼2 and log WBC¼4.

Using the “contrast” option in SAS’s PHREGpro-
cedure, we show on the left computed 95% CI’s
for the Rx variable for two choices of log WBC.
When logWBC is 2, the estimatedHR is 5.32with
a95%CIgivenby the limits (1.29, 21.91),whereas
when logWBC is 4, the estimatedHR is 2.68with
a 95% CI given by the limits (0.80, 8.97).

These results suggest the interaction of log WBC
with Rx, and they conflict with the previously
reported nonsignificance of the test for interac-
tion inModel 3, whichmight primarily be attrib-
uted to the small sample size (n¼42)of this study.

Varð‘̂Þ ¼ Varðb̂1 þ d̂1W1 þ � � � d̂kWkÞ
where the estimates b̂1; d̂i; . . . ; d̂k are
correlated, so one must use

Varðb̂1Þ;Covðb̂1; d̂iÞ and Covðd̂i; d̂jÞ

Computer packages SAS and
STATA compute Vâr ‘̂ as part of
the programoptions (see Computer
Appendix).

General formula for Vâr ‘̂:

Vârð‘̂Þ ¼ Vârðb̂1Þ þ
X
j

W2
j Vârðd̂1Þ

þ 2
X
j

WjCôvðb̂1; d̂jÞ

þ 2
X
j

X
k

WjWkCôvðd̂j; d̂kÞ

� Variances and covariances pro-
vided in the computer output

� User specifies W’s values of
interest.

Model 3:
‘ ¼ b1 þ b3log WBC

Varð‘̂Þ ¼Varðb̂1Þ þ ðlogWBCÞ2Varðb̂3Þ
þ 2ðlogWBCÞ2Covðb̂1; b̂3Þ

95% CI for Rx in Model 3
(SAS edited output):

log WBC dHR S.E. Conf Limits
2 5.3151 3.8410 1.2894 21.9101
4 2.6809 1.6520 0.8013 8.9700

CI results suggest log WBC by Rx
interaction but conflict with non-
significant interaction test result.
Note: small study size (n¼42)
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VII. Adjusted Survival
Curves Using the Cox
PH model

The two primary quantities desired from a
survival analvsis point of viem are estimated
hazard ratios and estimated survival curves.
Having just described how to compute hazard
ratios, we now turn to estimation of survival
curves using the Cox model.

Recall that if no model is used to fit survival
data, a survival curve can be estimated using a
Kaplan–Meier method. Such KM curves are
plotted as step functions as shown here for
the remission data example.

When a Cox model is used to fit survival data,
survival curves can be obtained that adjust for
the explanatory variables used as predictors.
These are called adjusted survival curves,
and, like KM curves, these are also plotted as
step functions.

The hazard function formula for the Cox PH
model, shown here again, can be converted to
a corresponding survival function formula as
shown below. This survival function formula
is the basis for determining adjusted survival
curves. Note that this formula says that the
survival function at time t for a subject with
vector X as predictors is given by a baseline
survival function S0(t) raised to a power equal
to the exponential of the sum of bi times Xi.

The expression for the estimated survival func-
tion can then be written with the usual “hat”
notation as shown here.

The estimates of Ŝ0(t) and b̂i are provided by
the computer program that fits the Cox model.
The X’s, however, must first be specified by the
investigator before the computer program can
compute the estimated survival curve.

Two primary quantities:

1. estimated hazard ratios
2. estimated survival curves

No model: use KM cunzes

1.0

0.5 Placebo
group

Treatment
group

0
10 20
t in weeks

S(t)

Cox model: adjusted survival
curves (also step fuuctions).

Cox model hazard function:

h t;Xð Þ ¼ h0 tð Þe
Pp
i¼1

bi Xi

Cox model survival function:

S t;Xð Þ ¼ S0 tð Þ½ 	e
Pp
i¼1

bi Xi

Estimated survival function:

Ŝ t;Xð Þ ¼ Ŝ0 tð Þ� 	e
Pp
i¼1

b̂i Xi

Ŝ0(t) and b̂i are provided by the
computer program. The Xi must
be specified by the investigator.
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For example, if we consider model 2 for the
remission data, the fitted model written in terms
of both the hazard function and corresponding
survival function is given here.

We can obtain a specific survival curve by
specifying values for the vector X, whose com-
ponent variables are Rx and log WBC.

For instance, if Rx ¼ 1 and log WBC ¼ 2.93, the
estimated survival curve is obtained by sub-
stituting these values in the formula as shown
here, and carrying out the algebra to obtain the
expression circled. Note that the value 2.93 is
the overall mean logWBC for the entire dataset
of 42 subjects.

Also, if Rx ¼ 0 and log WBC ¼ 2.93, the esti-
mated survival curve is obtained as shown here.

Each of the circled expressions gives adjusted
survival curves, where the adjustment is for
the values specified for the X’s. Note that for
each expression, a survival probability can be
obtained for any value of t.

The two formulae just obtained, again shown
here, allow us to compare survival curves for
different treatment groups adjusted for the
covariate log WBC. Both curves describe esti-
mated survival probabilities over time assum-
ing the same value of log WBC, in this case, the
value 2.93.

Typically, when computing adjusted survival
curves, the value chosen for a covariate being
adjusted is an average value like an arithmetic
mean or a median. In fact, most computer pro-
grams for the Cox model automatically use the
mean value over all subjects for each covariate
being adjusted.

In our example, the mean log WBC for all
42 subjects in the remission data set is 2.93.
That is why we chose this value for log WBC
in the formulae for the adjusted survival curve.

EXAMPLE: Model 2 Remission Data

ĥ (t,X) ¼ ĥ0 (t)e
1.294 Rx þ 1.604 log WBC

Ŝ (t,X)¼ [Ŝ0 (t)]
exp(1.294 Rx þ 1.604 log WBC)

Specify values for X ¼ (Rx, log WBC)

Rx ¼ 1, log WBC ¼ 2.93:

Ŝ t;Xð Þ ¼ Ŝ0 tð Þ� 	exp b̂1Rxþb̂2log WBCð Þ

¼ Ŝ0 tð Þ� 	exp 1:294 0:5ð Þþ1:604 2:93ð Þð Þ

¼ Ŝ0 tð Þ� 	exp 5:35ð Þ¼ Ŝ0 tð Þ� 	210:6

Rx ¼ 0, log WBC ¼ 2.93:

Ŝ t;Xð Þ ¼ Ŝ0 tð Þ� 	exp 1:294 0ð Þþ1:604 2:93ð Þð Þ

¼ Ŝ0 tð Þ� 	exp 4:70ð Þ¼ Ŝ0 tð Þ� 	109:9

Adjusted Survival Curves

Rx ¼ 1, log WBC ¼ 2.93:
Ŝ (t,X) ¼ [Ŝ0 (t)]

400.9

Rx ¼ 0, log WBC ¼ 2.93:
Ŝ (t,X) ¼ [Ŝ0 (t)]

109.9

Typically, use X ¼ X or Xmedian

Computer uses X

EXAMPLE: (continued)

Remission data (n ¼ 42):

log WBC ¼ 2:93
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More generally, if we want to compare survival
curves for two levels of an exposure variable,
and wewant to adjust for several covariates, we
can write the formula for each curve as shown
here. Note that we are assuming that the expo-
sure variable is variable X1, whose estimated
coefficient is b1 “hat,” and the value of X1 is 1
for exposed and 0 for unexposed subjects.

Also, if we want to obtain an adjusted survival
curve which adjusts for all covariates in the
model, the general formula which uses the
mean value for each covariate is given as
shown here. This formula will give a single
adjusted survival curve rather than different
curves for each exposure group.

To illustrate this formula, suppose we again
consider the remission data, and we wish to
obtain a single survival curve that adjusts for
both Rx and log WBC in the fitted Cox model
containing these two variables. Using the mean
value of each covariate, we find that the mean
value for Rx is 0.5 and the mean value for log
WBC is 2.93, as before.

To obtain the single survival curve that adjusts
for Rx and log WBC, we then substitute the
mean values in the formula for the adjusted
survival curve for themodel fitted. The formula
and the resulting expression for the adjusted
survival curve are shown here. (Note that for
the remission data, where it is of interest to
compare two exposure groups, the use of a
single survival curve is not appropriate.)

From this expression for the survival curve, a
survival probability can be computed for any
value of t that is specified. When graphing this
survival curve using a computer package, the
values of t that are chosen are the failure times
of all persons in the study who got the event.
This process is automatically carried out by the
computer without having the user specify each
failure time.

General formulae for adjusted
survival curves comparing two
groups:

Exposed subjects:

Ŝ t;X1ð Þ ¼ Ŝ0 tð Þ� 	exp b̂1 1ð Þþ
P
i6¼1

b̂i �Xi

� �

Unexposed subjects:

Ŝ t;X0ð Þ ¼ Ŝ0 tð Þ� 	exp b̂1 0ð Þþ
P
i6¼1

b̂i �Xi

� �

General formula for adjusted
survival curve for all
covariates in the model:

Ŝ t;X
� � ¼ Ŝ0 tð Þ� 	exp P b̂i �Xi½ 	

EXAMPLE

Single survival curve for Cox model
containing Rx and log WBC:

Rx ¼ 0:50

log WBC ¼ 2:93

Ŝ t;Xð Þ ¼ Ŝ0 tð Þ� 	exp b̂1Rxþb̂2log WBCð Þ

¼ Ŝ0 tð Þ� 	exp 1:294 0:5ð Þþ1:604 2:93ð Þð Þ

¼ Ŝ0 tð Þ� 	exp 5:35ð Þ¼ Ŝ0 tð Þ� 	210:6

Compute survival probability by
specifying value for t in
Ŝ(t, X) ¼ [Ŝ0 (t)]

210.6

Computer uses t’s which are failure
times.
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The graph of adjusted survival curves obtained
from fitting a Cox model is usually plotted as a
step function. For example, we show here the
step functions for the two adjusted survival
curves obtained by specifying either 1 or 0 for
treatment status and letting log WBC be the
mean value 2.93.

We now turn to the concept of the proportional
hazard (PH) assumption. In the next section,
we explain the meaning of this assumption and
we give an example of when this assumption is
not satisfied.

In later presentations,we expandon this subject,
describing how to evaluate statistically whether
the assumption is met and how to carry out the
analysis when the assumption is not met.

VIII. The Meaning of the
PH Assumption

The PH assumption requires that theHR is con-
stant over time, or equivalently, that the hazard
for one individual is proportional to the hazard
for any other individual, where the proportion-
ality constant is independent of time.

To understand the PH assumption, we need
to reconsider the formula for the HR that
compares two different specifications X* and
X for the explanatory variables used in the
Cox model. We derived this formula previously
in Section V, and we show this derivation again
here. Notice that the baseline hazard function
ĥ0(t) appears in both the numerator and
denominator of the hazard ratio and cancels
out of the formula.

EXAMPLE

Adjusted Survival Curves for
Treatment and Placebo Groups

8 16 24
Time

0

0.2

0.4

0.6

0.8

1.0

Treatment (Rx  = 0)

Placebo
(Rx  = 1)

(Remission data)

S (t)

[S0(t)]109.9

[S0(t)]400.9

Next section: PH assumption

� explain meaning
� when PH not satisfied

Later presentations:

� how to evaluate PH
� analysis when PH not met

PH:HR is constant over time, i.e., ĥ
(t,X*) ¼ constant � ĥ (t,X)

cHR ¼ ĥ t;X�ð Þ
ĥ t;Xð Þ

¼
ĥ0 tð Þ exp P

b̂i X
�
i

h i

ĥ0 tð Þ exp P
b̂i Xi

h i

¼ exp
Xp
i¼1

b̂i X�
i � Xi

� �" #

where X� ¼ X�
1; X

�
2; . . . ; X

�
p


 �
and

X ¼ (X1, X2, . . ., Xp)
denote the set of X’s for two
individuals.
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The final expression for the hazard ratio
therefore involves the estimated coefficients
bi “hat” and the values of X* and X for each
variable. However, because the baseline hazard
has canceled out, the final expression does not
involve time t.

Thus, once the model is fitted and the values
for X* and X are specified, the value of the
exponential expression for the estimated haz-
ard ratio is a constant, which does not depend
on time. If we denote this constant by y “hat,”
then we can write the hazard ratio as shown
here. This is a mathematical expression which
states the proportional hazards assumption.

Graphically, this expression says that the esti-
mated hazard ratio comparing any two indivi-
duals plots as a constant over time.

Another way to write the proportional hazards
assumption mathematically expresses the haz-
ard function for individual X* as y “hat” times
the hazard function for individual X, as shown
here. This expression says that the hazard
function for one individual is proportional to
the hazard function for another individual,
where the proportionality constant is y “hat,”
which does not depend on time.

To illustrate the proportional hazard assump-
tion, we again consider the Cox model for the
remission data involving the two variables Rx
and log WBC. For this model, the estimated
hazard ratio that compares placebo (Rx ¼ 1)
with treated (Rx ¼ 0) subjects controlling for
log WBC is given by e to the 1.294, which is
3.65, a constant.

Thus, the hazard for placebo group (Rx ¼ 1) is
3.65 times the hazard for the treatment group
(Rx ¼ 0), and the value, 3.65, is the same
regardless of time. In other words, using the
above model, the hazard for the placebo group
is proportional to the hazard for the treatment
group, and the proportionality constant is 3.65.

ĥ t;X�ð Þ
ĥ t;Xð Þ ¼ exp

Xp
i¼1

b̂i X�
i � Xi

� �" #

does not involve t.

Let Constant

ŷ ¼ exp
Xp
i¼1

b̂i X�
i � Xi

� �" #

then

ĥ t;X�ð Þ
ĥ t;Xð Þ ¼ ŷ

cHR X� versusXð Þ

t

ĥ t;X�ð Þ ¼ ŷĥ t;Xð Þ

Proportionality constant
(not dependent on time)

EXAMPLE: Remission Data

ĥ t; Xð Þ ¼ ĥ0 tð Þe1:294Rxþ1:604 log WBC

cHR ¼ ĥ t; Rx ¼ 1; log WBC ¼ 2:93ð Þ
ĥ t; Rx ¼ 0; log WBC = 2.93ð Þ

¼ exp 1:294½ 	 ¼ 3:65 Constant

Placebo

ĥ (t, Rx ¼ 1, log WBC ¼ 2.93)
¼ 3.65 ĥ (t, Rx ¼ 0, log WBC ¼ 2.93)

Treatment
3.65 ¼ proportionality constant
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To further illustrate the concept of proportional
hazards, we now provide an example of a situ-
ation for which the proportional hazards
assumption is not satisfied.

For our example, we consider a study in which
cancerpatients are randomized to either surgery
or radiation therapy without surgery. Thus, we
have a (0,1) exposure variable denoting surgery
status,with0 if a patient receives surgery and1 if
not. Suppose further that this exposure variable
is the only variable of interest, so that a Cox PH
model for the analysis of this data, as shown
here, will contain only the one variableE, denot-
ing exposure.

Now the question we consider here is whether
the above Cox model containing the variable E
is an appropriate model to use for this situa-
tion. To answer this question we note that
when a patient undergoes serious surgery, as
when removing a cancerous tumor, there is
usually a high risk for complications from sur-
gery or perhaps even death early in the recov-
ery process, and once the patient gets past this
early critical period, the benefits of surgery,
if any, can then be observed.

Thus, in a study that compares surgery to no
surgery, we might expect to see hazard func-
tions for each group that appear as shown here.
Notice that these two functions cross at about
3 days, and that prior to 3 days, the hazard for
the surgery group is higher than the hazard for
the no surgery group, whereas after 3 days, the
hazard for the surgery group is lower than the
hazard for the no surgery group.

Looking at the above graph more closely, we
can see that at 2 days, when t ¼ 2, the hazard
ratio of non-surgery (E ¼ 1) to surgery (E ¼ 0)
patients yields a value less than 1. In contrast,
at t ¼ 5 days, the hazard ratio of nonsurgery to
surgery yields a value greater than 1.

EXAMPLE: PH Not Satisfied

Cancer patients
Surgery

Radiation with
no surgery

E ¼ 0 if surgery

1 if no surgery

�

h (t,X) ¼ h0 (t)e
bE

Is the above Cox PH model
appropriate?
Note:
Serious
surgery ) High risk for death early

Hazards cross

E = 0 (surgery)

E = 1 (no surgery)

E = 1

E = 0

h(t,X )

3 t(days)

2 days:
ĥ t ¼ 2; E ¼ 1ð Þ
ĥ t ¼ 2; E ¼ 0ð Þ < 1

but

5 days:
ĥ t ¼ 5; E ¼ 1ð Þ
ĥ t ¼ 5; E ¼ 0ð Þ > 1
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Thus, if the above description of the hazard
functions for each group is accurate, the haz-
ard ratios are not constant over time. That is,
the hazard ratio is some number less than 1
before 3 days and greater than 1 after 3 days.

It is therefore inappropriate to use a Cox PH
model for this situation, because the PH model
assumes a constant hazard ratio across time,
whereas our situation yields a hazard ratio that
varies with time.

In fact, if we use a Cox PH model, shown here
again, the estimated hazard ratio comparing
exposed to unexposed patients at any time is
given by the constant value e to the b “hat,”
which does not vary over time.

This example illustrates the general rule that if
the hazards cross, then the PH assumption
cannot be met, so that a Cox PH model is inap-
propriate.

It is natural to ask at this point, if the Cox PH
model is inappropriate, how should we carry
out the analysis? The answer to this question is
discussed in Chapters 5 and 6. However, we
will give a brier reply with regard to the surgery
study example just described.

Actually for the surgery study there are several
oplions available for the analysis. These include:

� analyze by stratifying on the exposure
variable; that is, do not fit any model, and,
instead oblain Kaplan-Meier curves for
each exposure group separately;

� start the analysis at three days, and use a
Cox PH model on three-day survivors;

� fit Cox model for less than three days and a
different Cox model lor greater than three
days to get two difterent hazard ratio
estimates, one for each of these two lime
periods;

� fit a modified Cox model that includes a
time-dependent variable which measures
the interaction of exposure with time. This
model is called an extended Cox model.

EXAMPLE: (continued)

Given the above description, HR is
not constant over time.

Cox PH model inappropriate because
PH model assumes constant HR:

h(t,X) ¼ h0(t)e
bE

cHR ¼ ĥ t; E ¼ 1ð Þ
ĥ t; E ¼ 0ð Þ ¼ eb̂

General rule:
If the hazards cross, then a Cox PH
model is not appropriate.

Analysis when Cox PH model not
appropriate? See Chapters 5 and 6.

EXAMPLE: (continued)

Surgery study analysis options:

� stratify by exposure (use KM
curves)

� start analysis at 3 days; use Cox
PH model

� fit PH model for < 3 days and for
> 3 days; get cHR (< 3 days) andcHR (> 3 days)

� include time-dependent variable
(e.g., E � t); use extended Cox
model
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Further discussion of these options is given in
subsequent chapters. We point out here, that
different options may lead to different con-
clusions, so that the investigator may have to
weigh the relative merits of each option in light
of the data actually obtained before deciding
on any particular option as best.

One final comment before concluding this
section: although we have shown that when
the hazards cross, the PH assumption is not
met, we have not shown how to decide when
the PH assumption is met. This is the subject
of Chapter 4 entitled, “Evaluating the PH
Assumption.”

IX. The Cox Likelihood Typically, the formulation of a likelihood
function is based on the distribution of the
outcome. However, one of the key features of
the Cox model is that there is not an assumed
distribution for the outcome variable (i.e., the
time to event). Therefore, in contrast to a para-
metric model, a full likelihood based on the
outcome distribution cannot be formulated
for the Cox PH model. Instead, the construc-
tion of the Cox likelihood is based on the
observed order of events rather than the
joint distribution of events. Thus the Cox likeli-
hood is called a “partial” likelihood.

To illustrate the idea underlying the formula-
tion of the Cox model, consider the following
scenario. Suppose Gary, Larry, and Barry are
each given a lottery ticket. Winning tickets are
chosen at times tj (j ¼ 1,2, . . .). Assume each
person is ultimately chosen and once a person
is chosen he cannot be chosen again (i.e., he is
out of the risk set). What is the probability that
the order each person is chosen is first Barry,
then Gary, and finally Larry?

Different options may lead to dif-
ferent conclusions.

Hazards
cross

) PH not met

but
? ) PH met

See Chapter 4: Evaluating PH
Assumption

Likelihood

� Typically based on outcome
distribution

� Outcome distribution not
specified for Cox model

� Cox likelihood based on order
of events rather than their
distribution
○ Called partial likelihood

Illustration

Scenario:

� Gary, Larry, Barry have lottery
tickets

� Winning tickets chosen at
times t1, t2, . . .

� Each person ultimately chosen
� Can be chosen only once

Question:
What is the probability that the
order chosen is as follows?

1. Barry
2. Gary
3. Larry
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The probability that Barry’s ticket is chosen
before Gary’s and Larry’s is one out of three.
Once Barry’s ticket is chosen, it cannot be
chosen again. The probability that Gary’s ticket
is then chosen before Larry’s is one out of
two.OnceBarry’s andGary’s tickets are chosen,
they cannot be chosen again which means that
Larry’s ticket must be chosen last. This yields a
probability of 1/6 for this given order of events
(see left).

Now consider a modification of the previous
scenario. Suppose Barry has 4 tickets, Gary
has 1 ticket, and Larry has 2 tickets; now what
is the probability that the order each person is
chosen is first Barry, then Gary, and finally
Larry?

Barry, Gary, and Larry have 7 tickets in all and
Barry owns 4 of them so Barry’s probability of
being chosen first is 4 out of 7. After Barry is
chosen, Gary has 1 of the 3 remaining tickets
and after Barry and Gary are chosen, Larry
owns the remaining 2 tickets. This yields a
probability of 4/21 for this order (see left).

For this scenario, the probability of a particu-
lar order is affected by the number of tickets
held by each subject. For a Cox model, the
likelihood of the observed order of events is
affected by the pattern of covariates of each
subject.

Answer:

Probability ¼ 1

3
� 1

2
� 1

1
¼ 1

6
%

Barry

"
Gary

-
Larry

Scenario:

Barry – 4 tickets
Gary – 1 ticket
Larry – 2 tickets

Question:
What is the probability that the
order chosen is as follows?

1. Barry
2. Gary
3. Larry

Answer:

Probability ¼ 4

7
� 1

3
� 2

2
¼ 4

21

For this scenario

Subject’s number of tickets
affects probability

For Cox model

Subject’s pattern of covariates
affects likelihood of ordered
events
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To illustrate this connection, consider the
dataset shown on the left. The data indicate
that Barry got the event at TIME ¼ 2 years.
Gary got the event at 3 years,Harrywas censored
at 5 years, and Larry got the event at 8 years.
Furthermore, Barry and Larry were smokers
whereas Gary and Harry were nonsmokers.

Consider the Cox proportional hazards model
with one predictor, SMOKE. Under this model
the hazards for Barry, Gary, Harry, and Larry
can be expressed as shown on the left. The
individual hazards are determined by whether
the subject was a smoker or nonsmoker.

The individual level hazards play an analogous
role toward the construction of the Cox likeli-
hood as the number of tickets held by each
subject plays for the calculation of the prob-
abilities in the lottery scenario discussed ear-
lier in this section. The subjects who smoke are
analogous to persons given extra lottery tick-
ets, thereby affecting the probability of a par-
ticular order of events.

On the left is the Cox likelihood for these data.
Notice the likelihood is a product of three
terms, which correspond to the three event
times. Barry got the event first at TIME ¼
2 years. At that time, all four subjects were
at risk for the event. The first product (L1) has
the sum of the four subjects’ hazards in the
denominator and Barry’s hazard in the numer-
ator. Gary got the event next at 3 years when
Gary, Harry, and Larry were still in the risk set.
Consequently, the second product (L2) has the
sum of the three hazards for the subjects still
at risk in the denominator and Gary’s hazard in
the numerator. Harry was censored at 5 years,
which occurred between the second and third
event. Therefore, when Larry got the final event
at 8 years, nobody else was at risk for the event.
As a result, the third product (L3) just has
Larry’s hazard in the denominator and the
numerator.

ID TIME STATUS SMOKE

Barry 2 1 1
Gary 3 1 0
Harry 5 0 0
Larry 8 1 1

SURVT ¼ Survival time (in years)
STATUS¼ 1 for event, 0 for censor-
ship
SMOKE ¼ 1 for a smoker, 0 for a
nonsmoker

Cox PH model

hðtÞ ¼ h0ðtÞeb1SMOKE

ID Hazard

Barry h0ðtÞeb1
Gary h0(t)e

0

Harry h0(t)e
0

Larry h0ðtÞeb1
Individual hazards (Cox likeli-
hood) analogous to number of tick-
ets (lottery scenario) For example,
smokers analogous to persons with
extra lottery tickets

Cox Likelihood

L ¼ h0 tð Þeb1
h0 tð Þeb1 þ h0 tð Þe0 þ h0 tð Þe0 þ h0 tð Þeb1

� �

� h0 tð Þe0
h0 tð Þe0 þ h0 tð Þe0 þ h0 tð Þeb1

� �

� h0 tð Þeb1
h0 tð Þeb1

� �

Likelihood is product of 3 terms

L ¼ L1 � L2 � L3

L1 ¼ h0 tð Þeb1
h0 tð Þeb1 þ h0 tð Þe0 þ h0 tð Þe0 þ h0 tð Þeb1

� �

L2 ¼ h0 tð Þe0
h0 tð Þe0 þ h0 tð Þe0 þ h0 tð Þeb1

� �

L3 ¼ h0 tð Þeb1
h0 tð Þeb1

� �
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To summarize, the likelihood in our example
consists of a product of three terms (L1, L2, and
L3) corresponding to the ordered failure times
(t1, t2, and t3). The denominator for the term
corresponding to time tj (j ¼ 1, 2, 3) is the sum
of the hazards for those subjects still at risk at
time tj, and the numerator is the hazard for the
subject who got the event at tj.

A key property of the Cox likelihood is that
the baseline hazard cancels out in each term.
Thus, the form of the baseline hazard need not
be specified in a Cox model, as it plays no role
in the estimation of the regression parameters.
By factoring h0(t) in the denominator and then
canceling it out of each term, the likelihood
for Barry, Gary, and Larry can be rewritten as
shown on the left.

As we mentioned earlier, the Cox likelihood is
determined by the order of events and censor-
ships and not by the distribution of the outcome
variable. To illustrate this point, compare data-
sets A and B on the left, and consider the likeli-
hood for a Cox PH model with smoking status
as the only predictor. Although the values for
the variable TIME differ in the two datasets, the
Cox likelihood will be the same using either
dataset because the order of the outcome
(TIME) remains unchanged.

t1, time ¼ 2, four at risk (L1)
t2, time ¼ 3, three at risk (L2)
t3, time ¼ 8, one at risk (L3)

For each term:

Numerator – single hazard
Denominator – sum of hazards

Baseline hazard, h0(t) cancels

L ¼ eb1

eb1 þ e0 þ e0 þ eb1

� �

� e0

e0 þ e0 þ eb1

� �
� eb1

eb1

� �

Thus, L does not depend on h0(t)

Data A

ID TIME STATUS SMOKE

Barry 2 1 1
Gary 3 1 0
Harry 5 0 0
Larry 8 1 1

Data B

ID TIME STATUS SMOKE

Barry 1 1 1
Gary 7 1 0
Harry 8 0 0
Larry 63 1 1

Comparing datasets

� TIME variable differs
� Order of events the same
� Cox PH likelihood the same
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Wehave used a small dataset (four observations
with three failure times) for ease of illustration.
However, the approach can be generalized.
Consider a dataset with k failure times and let
Lf denote the contribution to the likelihood
corresponding to the f-th failure time. Then the
Cox likelihood can be formulated as a product of
each of the k terms as shown on the left. Each of
the terms Lf is constructed in a similar manner
as with the data for Gary, Larry, and Barry.

Once the likelihood is formulated, the question
becomes: which values of the regression para-
meters would maximize L? The process of max-
imizing the likelihood is typically carried out
by setting the partial derivative of the natural
log of L to zero and then solving the system of
equations (called the score equations).

X. Using Age as the
Time Scale

Recall that when we introduced the topic of
survival analysis in Chapter 1, we wrote that
the “time” variable used as the outcome vari-
able could be measured as time-on-study (i.e.,
follow-up time since study entry) in years,
months, weeks, or days from the beginning of
follow-up. We also wrote that, alternatively, we
might use age as the time scale, so that time is
measured as age at follow-up until either
an event or censorship occurs. In this section,
we focus on the use of age as the time scale, and
describe when such use is appropriate, provide
the form of the Cox PH model in this situation,
and illustrate its use.

A key decision in any survival analysis is where
to define the starting point for determining
individual’s “true” survival time, which we call
time 0. Depending on the study, choices for
time 0 might be: the time the subject enters the
study, the time the subject begins treatment,
the time of disease onset, the time of diagnosis,
a point in calendar time, the time of a seminal
event (e.g., surgery), birth, or conception. If we
define time 0 at birth, then an individual’s
survival time is represented by their age.

General Approach

� k failure times
� Likelihood a product of K terms
� Construction of each term

similar toBarry,Gary, andLarry

L ¼ L1 � L2 � L3 � . . .� Lk

¼
Yk
f¼1

Lf

Obtaining maximum likelihood
estimates

Solve system of equations

@ ln L

@bi
¼ 0; i ¼ 1; 2; 3; . . . ; p

p ¼ # of parameters

Outcome variable:
time until an event occurs

where “time” is measured as

time-on-study (years, months,
etc., of follow-up from study
entry)

or
age at follow-up

Time 0:
starting time of the true survival
time

Possible choices for time 0:

� Study entry
� Beginning of treatment
� Disease onset
� Disease diagnosis
� Surgery
� Point in calendar time
� Birth
� Conception
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Time 0 is not necessarily the time point where a
subject’s survival time is first observed (which
we call time t0). For example, if survival time is
measured by age at follow-up and a subject
enters the study at age 45, then t0¼45 years
for this subject. In this example, the subject’s
survival time has been left-truncated at t0¼ 45,
which we now define.

Left truncationat time t0 isdefinedas follows:

The subject is not observed from time 0 to t0.
If the subject has the event before time t0, then
that subject is not included in the study. If the
subject has the event after time t0, the subject is
included in the study but with the caveat that
the subject was not at risk to be an observed
event until time t0.

We note that there are two types of left trunca-
tion at t0. The first type of left truncation occurs
if the subject has the event before t0 and thus is
not included in the study. If, for example, the
exposure (E) under study causes individuals to
die before they could enter the study, this could
lead to a (selective) survival bias that would
underestimate the effect of exposure.

The second type of left truncation occurs if the
subject survives beyond time t0 (i.e., t > t0). This
is required in order for the subject to have his/
her survival time observed.

Thus, a condition of the subject’s entry into the
study is that they survive until time t0. If they
do not meet that condition, then their left trun-
cation is of the first type and thus not included
in the study. If they do survive past time t0,
then their left truncation is of the second type.

Left truncation (of both types) at time t is com-
monly confused with left censorship at time t.
If a subject is left censored at time t, then that
subject is (i) included in the study, (ii) known
to be event free at time 0, (iii) known to be at
risk for the event after time 0, and (iv) known to
have had the event before time t but with the
exact time of event being unknown.

Time 0 not necessarily equal to t0,
where
t0 ¼ time when subject’s survival

time is first observed
e.g., if survival time is measured by

age and subject enters study at
age 45

+
t0 ¼ age 45 but time 0 < age 45
since time 0 ¼ age-at-birth

Left truncation:
� subject not observed before t0
� if subject has event before t0,

then not included in the study
� if subject has event after t0,

then included in the study and
assumed not at risk for event
until t0

Two types of left truncation:
Type 1: subject has event before t0

and not included in the
study,

e.g.,
E causes death before study entry

+
Bias: effect of E underestimated

Type 2: t0 > 0
and

t > t0

where t ¼ observed survival time

Study entry ) subject survives
until t0
Type 1: subject not included in the

study
Type 2: subject included in the study

Subject A 0

Left censored at tA

x denotes failure
0 denotes censored

Subject  first observed

time
tAt0 = 0

X
?
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For example, for subject A in the above graph,
suppose death is the outcome and a patient is
first treated for some illness at the time of their
first visit to the clinic (t0¼0). Further, suppose
that the patient does not show up at the next
scheduled clinic visit 6 months later because
that patient had died in the interim. If the spe-
cific month of death is unable to be ascertained,
then that patient is included in the study and
left censored at tA ¼ 6 months.

In contrast, the diagram on the left illustrates
the two types of left truncation.

In this diagram, subjectBprovidesanexampleof
left truncationof the first type thatwouldoccur if
an individual diedbetweendisease onset (time0)
and disease diagnosis (time t0) and thus was
never included in the study. In this example,
having the disease was a necessary condition
for study inclusion, whereas subject B died
before it was known that he/she had the disease.

Subject C illustrates Type 2 left truncation,
since he/she developed the disease (time 0)
prior to being diagnosed with the disease at
time t0 and was observed after t0.

One clarifying point is that when we say a sub-
ject is observed at time t, we do not necessarily
mean that the subject is observed in an active
prospective manner. Rather, what we mean by
a subject being observed at time t is as follows:
if that subject had an event at time t, then the
subject would be recorded in the study as having
had an event at time t.

We now compare two approaches of measur-
ing survival time. One approach is to measure
survival time as time-on-study and the other is
to measure survival time as age-at-follow-up
until either an event or censorship. The choice
of approach determines the risk set at the
time of each event. We illustrate this idea with
hypothetical data.

Example: left censored data
Subject A: t0 ¼ 0

tA ¼ 6
true t ¼ ? < 6

Type 1 left truncation

Subject B

Subject C

time

observation begins

x

x

0 tB t0 tC

Type 2 left truncation

Example: Type 1 left truncation
Subject B: Time 0 < t0

not included in the
study

Example: Type 2 left truncation
Subject C: Time 0 < t0 but first

observed at t0

Being observed at time t means:
If event at t ) recorded event at t

2 approaches for measuring sur-
vival time:

Time-on-study
vs.

Age-at-follow-up

� Choice determines the risk set.
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Consider the data shown on the left on four
different subjects, for each of which we have
identified time-on-follow-up (t), whether failed
or censored (d), age at study entry (a0), and age
at the end of follow-up (a). Note that t is simply
a � a0, the difference between age at follow-up
time and age at study entry.

Using time-on-study (i.e., from entry into the
study) as the time scale, the data layout based
on ordered follow-up times is shown on the
left, below which is shown a graphical repre-
sentation that follows each subject from the
time of study entry. There are only two failures
and these occur at follow-up times 2 (subject H)
and 3 (subject K).

The risk set at the first failure time (t(1) ¼2)
consists of all four subjects, and the risk set at
the second failure time (t(2) ¼3) contains sub-
jects I, J, and K. Subjects I and J are censored
after time t(2)¼3, i.e., the value for q2 is 2 at this
time. Notice that the risk set at time t(2) ¼3 is
contained in the risk set at time t(1) ¼2, which
is generally true when the outcome variable
being considered is time-on-follow-up. The data
layout represented here, in which the size of the
risk set always decreases over time, is called a
closed cohort.

Now let’s consider the data layout that would
result if we used age as the time scale, which is
shown on the left. Below this layout is a graph-
ical representation that follows each subject
from age at study entry.

Using age as the time scale, the first failure
time is at age a(1) ¼ 67 (for subject H), and
there are two subjects (H and I) in the risk set
at this time; subject I is in the risk set at a(1) ¼
67 because (s)he entered the study at age 65
and was still at risk when subject H failed.
However, because subjects J and K did not
enter the study until ages 74 and 75, these
subjects are not in the risk set at a(1) ¼67.

Hypothetical Survival Data
Subject t d a0 a
H 2 1 65 67
I 6 0 65 71
J 6 0 74 80
K 3 1 75 78

Time-on-study Layout
f t(f) nf mf qf R(t(f))
1 2 4 0 0 H,I,J,K
2 3 3 2 2 I,J,K

0

H

I

K
J

2

c
x

x

Time-on-study as Time Scale

c

3

2

4 6

6

6

8 10

R(t(1) ¼ 2) ¼ {H, I, J, K}
R(t(2) ¼ 3) ¼ {I, J, K}
I and J censored after t(2) ) q2 ¼ 2
{I, J, K} contained in {H, I, J, K}

Age as Time Scale Layout
f a(f) nf mf qf R(af)
1 67 2 1 1 H,I
2 78 2 1 1 J,K

65 6967 71 73 75 77 79 81

K
J

x

x
c

cI
H 2

Age as Time Scale w. Left Truncation

6
6

3   

First failure: R(a(1) ¼ 67) ¼ {H, I}

I still at risk at a(1) ¼ 67 but
J and K not in study at a(1) ¼ 67
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The second failure time is at age a(2) ¼ 78 (for
subject K). The only two subjects in the risk set
at a(2)¼ 78 are subjects J and K, since subject H
failed at age 67 and subject I was censored at
age 71. The values in the q column are 1 at
failure age 67 (for subject I) and 1 at failure
age 72 (for subject J). In contrast to the previ-
ous data layout, the risk set at the later failure
age (containing J, K) is not a subset of the risk
set at the first failure age (containing H, I), but,
rather, is a mutually exclusive subset. This data
layout, in which the size of the risk set may
increase or decrease over time, is called an
open cohort.

We thus see that using time-on-study as the time
scale can give a different view of the survival
data (i.e., a closed cohort) than found when
using age as the time scale (i.e., an open cohort).
So which time scale should be used and how do
we make such a decision in general?

To answer this question, a key issue is to deter-
mine whether all subjects in the study first
begin to be at risk for the outcome at the time
they enter the study.

Suppose the study is a clinical trial to com-
pare, say, treatment and placebo groups, and
subjects start to be followed shortly after ran-
dom allocation into one of these two groups.

Then, itmay be reasonable to assume that study
subjects begin to be at risk for the outcome
upon entry into the study. In such a situation,
using time-on-study as the time scale is typically
appropriate. Further, covariates of interest may
be controlled for by stratification and/or being
entered into a regression model (e.g., Cox PH
model) as predictors in addition to the treatment
status variable.

Suppose, instead of the above scenario, the
study is observational (i.e., not a clinical trial)
and subjects are already at risk for the outcome
prior to their study entry. Also, suppose the time
or age at which subjects first became at risk is
unknown.

Second failure: R(a(2)¼ 78)¼ {J, K}

H and J no longer at risk at a(2)¼ 78
I censored between a(1) ¼ 67 and
a(2) ¼ 78 ) q1 ¼1

J censored after a(2) ¼ 78 ) q2 ¼1

{J, K} not contained in {H, I}

Time-on-Study vs. Age as Time
Scale

� Closed cohort vs. Open cohort
� How we decide which to use?

Key issue:
Did all subjects first become at

risk at their study entry?

Clinical trial:
� Subjects start to be followed for

the outcome after random
allocation

� Reasonable to assume subjects
start to be at risk upon study
entry

+
Time-on-Study typically used

as the outcome
(Covariates may also be controlled)

Observational study:
� Subjects already at risk prior to

study entry
� Unknown time or age when

first at risk
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For example, the subjects may all have high
blood pressure when the study begins and
are then followed until a coronary event occurs
(or censorship); such subjects already had high
blood pressure when recruited for the study, but
the date or their age when their high blood
pressure condition was first diagnosed is
assumed unknown.

In this situation, it seems reasonable that the
time at risk prior to study entry (tr), which is
unknown, contributes to the true survival time
(T) for the individual, althoughonly theobserved
time-on-study (t) is actually available to analyze.
The individual’s true (i.e., total) survival time is
therefore underestimated by the time-on-study
information (obtained fromstudy entry), i.e., the
true survival time is left-truncated.

So, for the situationwherewehave left-truncated
survival data, the use of time-on-study follow-up
times that ignores unknown delayed entry time
may be questioned.

Recall that although both subjects I and J were
censored at follow-up time 6 (say, in weeks)
from study entry, subject I entered the study at
age 65, whereas subject J entered the study
at age 74. Because subject J is 9 years older
than subject I upon study entry, and recognizing
that age is a well-known risk factor for most
diseases, e.g., coronary disease,wewould expect
subject J to have higher potential for failing (i.e.,
higher hazard rate) than subject I at study entry.
However, if we just use time-on-study follow-up
times in our analysis, we are not taking into
account the increased failure potential for sub-
ject J over subject I at study entry.

One way to account for the age difference at
entry would simply to control for age at entry
(i.e., a0) as a covariate in one’s survival analysis
by adding the variable a0 to a Cox PH model.
This approach is reasonable provided the
model is specified correctly (e.g., proportional
hazards assumption is met for age).

Alternatively, considering subjects I and J, who
have entered at the same time but are 9 years
different in age, wemight consider using age as
the time scale to represent a subject’s potential
for failure, which we now describe.

� Example: Subjects with high
blood pressure enter study, but
unknown date or age when first
diagnosed (prior to study
entry).

� Reasonable to assume that
T ¼ tr þ t

where
T ¼ true survival time
tr ¼ time at risk prior to study entry
t ¼ observed time-on-study

Left-truncated survival data
+

Time-on-study questionable

Subject t d a0 a
H 2 1 65 67
I 6 0 65 71
J 6 0 74 80
K 3 1 75 78

Subject J is 9 years older than
Subject I

+
h(t| subject J) > h(t| subject I).
But, using time-on-study approach
does not account for this difference.

One modified approach:
Use time-on-study, but control for
a0, e.g.,
hðt; X; a0Þ ¼ h0ðtÞ exp½

P
biXi þ ga0	

+
OK provided model correctly spe-
cified but not always appropriate.

Alternatively, may consider using
age as the time scale.
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In a Cox PH model that uses age as the time
scale (as shown on the left), the outcome vari-
able will be age-at-event (a) rather than time-
on-study (t). X denotes the set of covariates in
the model, e.g.,X¼ (Rx, BMI, SMK). The base-
line hazard function h0(a) is an unspecified
function of a (rather than t).

At this point, we might again ask, when, if at
all, would using a model based on h(a, X) be
preferable to simply using a model of the form
h(t, X, a0) where t denotes time-on follow-up,
and a0 denotes age at entry?

The answer is that “it depends”. Moreover, in
many situations, it might not matter, since use
of either model form will often lead to essen-
tially the same results, provided the model is
well-specified in each case.

On one hand, using h(a, X) may be preferable
if age is a much stronger determinant of the
outcome than time-on-study, i.e., age at event
may have a larger effect on the hazard than
time-on-study (Korn et al. 1997). Also, because
age is taken into account in an unspecified base-
line hazard h0(a), a more effective control of age
may result that avoids the possibility of mispe-
cifying the way the age at entry (a0) might be
entered into a time-on-study model, e.g., using
only a linear termwhen a quadratic term suchas
is also required for model adequacy.

On the other hand, h(t,X, a0) may be preferable
if time-on-study is a stronger determinant of the
outcome than age at the event, as in a rando-
mized clinical trial. Also, a time-on-study model
would seem appropriate if age at entry (a0) is
“effectively controlled” (e.g., using a quadratic
term if necessary) or is stratified in the model.

hða; XÞ ¼ h0ðaÞ exp½
X

biXi	

X denotes set of covariates,
e.g., X ¼ (Rx, BMI, SMK)
h0(a) ¼ baseline hazard

h(a, X)  versus h(t, X, a0):
Which to use? Does it matter?

Age-at-event Time-on-study

It depends!
And, it might not matter!
(often same results, if model
well-specified)

Prefer h(a, X) provided

� age is stronger determinant of
outcome than time-on-study

� h0(a) is unspecified, so that age
is not modeled as a covariate
i.e., avoids mispecifying the
model as linear in a0 when a0

2

also needed

Prefer h(t, X, a0) provided

� time-on-study is stronger
determinantofoutcome thanage

� age at entry (a0) is effectively
controlled in the model using a
linear and/ or possibly higher/
order term (or age is controlled
by stratification)
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We now specify several alternative forms that
a Cox PH model might take to account for
risk-truncated survival data. As previously
introduced, our notation uses t to denote time-
on-study follow-up time, a to denote attained
age at the event or censorship, a0 to denote age
at study entry,X to denote the vector of predic-
tor variables, not including age, bi to denote the
vector of Cox model coefficients corresponding
to X, and g1 to denote the coefficient of a0 if
model includes a0.

On the left, we provide seven different Cox PH
models that might be considered to analyze
risk-truncated survival data.

Models 0–3 use an analysis based on time-on-
study follow-up, whereas Models 4–6 consider
age as the time scale.

Of all these models, Model 0 is the least appro-
priate since this model uses time-on-study as
the outcome and does not adjust for age at
entry (a0) in any way.

Alternative Cox PH models for
age-truncated survival data:
Let
t ¼ follow-up time,
a ¼ attained age at event or censor-

ship
a0 ¼ age at enrollment into study

(Note: t ¼ a–a0)
X ¼ (X1, X2,. . ., Xk), vector of pre-

dictors, not including a0
bi¼ regression coeff. corresponding

to Xi.
g ¼ regression coeff. if a0 included

in model

Model 0:
h(t,X) = h0(t)exp[SβiXi] ,

h(t,X,a0) = h0(t)exp[SβiXi + γ1a0] ,

hg(t,X ) = h0g(t)exp[SβiXi] ,

hg(a,X ) = h0g(a|a0)exp[SβiXi] ,

h(a,X ) = h0(a)exp[SβiXi] ,

h(a,X ) = h0(a|a0)exp[SβiXi] ,

unadjusted for a0

Model 1:  

adjusted for a0 as linear covariate

Model 2:

adjusted for a0 with quadratic covariate

Model 3:

stratified by a0 or birth cohort, g= 1, …, s

Model 4:  

unadjusted for left truncation at a0

Model 5:

adjusted for left truncation at a0

Model 6:

adjusted for left truncation at a0 and
stratified by birth cohort, g= 1, …, s 

time
on

study

age
as

time
scale

h(t,X,a0) = h0(t)exp[SβiXi + γ1a0 + γ2a0 ]
2
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Models 1–3 are time-on-study models that
control for age at entry (a0), but do so differ-
ently. Model 1 controls for a0 as a covariate and
assumes a linear effect of a0. Model 2, in con-
trast, assumes that a0 has both linear and
quadratic effects. Model 3 stratifies on either
a0 or on birth cohort defined from a0. Model 3
is called a Stratified Cox (SC) PHmodel, which
we describe in detail in Chapter 5.

Models 1–3 are all reasonable if we assume that
study subjects begin to be at risk upon study
entry, as in a randomized clinical trial. More-
over, even for an observational study design in
which subjects have different ages at entry,
these models may appear justifiable if they
provide effective control of a0.

Model 3 controls for entry age by stratifying
either on age at entry (a0) or on birth cohort
based on a0. Model 3 provides an alternative
way to control for age without explicitly putting
a0 as a covariate in the model (as was done in
Models 1 and 2). If we stratify by birth cohort
instead of by a0, we can account for possible
advances in medical management in later birth
cohorts. Nevertheless, stratifying by age at entry
or stratifying by birth cohort would likely give
similar results unless enrollment happens over
a long period of time. In the latter case, we
recommend stratifying on birth cohort.

Models 4–6 use age-at-event or censorship
rather than time-on-study as the outcome vari-
able. These models differ in the way the base-
line hazard function is specified.

Model 4 uses h0(a) to indicate that, although
age is the outcome, the model does not adjust
for left truncation at the entry age (a0). In
effect, this baseline hazard assumes that each
subject’s observed risk period started at birth.

Models 1–3 control for a0 differently
Model 1: linear effect of a0
Model 2: quadratic effect of a0
Model 3: stratifies on a0 or on

birth cohorts defined
from a0 (uses Stratified
Cox PH model)

Models 1–3 reasonable

� if all study subjects begin risk at
study entry

� if models provide effective
control of a0

Model 3
hgðt; XÞ ¼ h0gðtÞ exp½

P
biXi	

� alternative method of control
� may account for advances in

medical management if
stratified on birth cohort

� stratifying on either a0 or on
birth cohort likely to give similar
results unless enrollment over
long time period

Models 4–6:

� outcome is age-at-event
� differ in baseline hazard

Model 4: hða;XÞ¼h0ðaÞexp½
P

biXi	

� does not adjust for left-
truncation at a0

� assumes risk starts at birth
� data layout describes closed

cohort
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In other words, Model 4 allows keeping in the
risk set R(aP) any subject (e.g., subject Q in
the figure at left) who was not under study at
age aP but who enrolled later (at age a0Q).
Here, subject Q is in the risk set R(aP) because
we assume he is at risk from birth (Age¼0)
when subject P fails at aP. The data layout with
ordered failure ages is thus a closed cohort that
starts with all subjects in the risk set at birth.

If Model 4 were applied to our previous exam-
ple involving four subjects, subjects J and K
would be incorrectly included in the risk set R
(a¼67) when subject H failed, even though
both these subjects were enrolled after age 67.
This model inappropriately assumes that all
subjects were at risk from birth; it does not
adjust for age-truncation.

Model 5, on the other hand, accounts for left
truncation by age at entry. The baseline hazard
h0(a | a0) is used to indicate that the data layout
with ordered failure ages is an open cohort.
For this model, the risk set R(a) at time a con-
tains only those subjects who are under study
at age a.

If Model 5 was applied to our previous example,
subjects J and K, who had not enrolled when
subject H failed at 67, would not be in the risk
set R(a¼67). Also, subjects H and I, who were
no longer in the study when subject K failed at
age 78, would not be in the risk set R(a¼78).

Model 6 is similar to Model 3 stratified on birth
cohort. However,Model 6 adjusts for age trunca-
tion, whereasModel 3 does not. AswithModel 3,
Model 6 is intended to account for possible
advances in medical management in later
birth cohorts. Model 6 would not be necessary
if we are considering a study in which everyone
is enrolled within a short period of time.

0 a0P aP a0Q aQ

P
X

Q

Age

R(a) ¼ {P, Q} using Model 4 even
though Q enrolled after P failed

Previous example:

65 6967 71 73 75 77 79 81

K
J

x

x
c

cI
H 2

Age as Time Scale w. Left Truncation

6
6

3   

R(a¼ 67)¼ {H, I, J, K} usingModel
4 since all four subjects at risk from
birth x until H fails at age a ¼ 67

Model 5: hða; XÞ ¼ h0ðaja0Þ exp½
P

biXi	

� adjusts for left-truncation at a0
� data layout describes open

cohort

0 a0P aP a0Q aQ

P X

Q

Age

R(a) ¼ {P} and R(a*) ¼ {Q} using
Model 5 because Q enrolled after P
failed

Previous example with H, I, J,
K: R(a¼67) ¼ {H, I} and R(a¼78) ¼
{J, K} using Model 5 since J and K
had not enrolled when H failed at
67 and {H, I} were not used in
study when K failed at 78.

Model 3 Model 6
Stratifies on

birth cohort? Yes Yes

Adjusts for age-
truncation? No Yes
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In summary, of the seven models we have
presented, Models 0 and 4 are inappropriate
because Model 0 does not account for age at
all and Model 4 ignores age truncation by
incorrectly assuming that all study subjects
were observed for the outcome from birth.

The other five models (i.e., 1–3, 5, 6) all adjust
for age at study entry in some way. A logical
question at this point is whether in practice,
it makes a difference which model is used to
analyze age-truncated survival data?

The above question was actually addressed by
Pencina et al. (Statist. Med., 2007) by compar-
ing Models 1–6 above in terms of the estimated
regression coefficients they produce. These
authors consider Model 5, the age-truncated
age scale model, to be “possibly the most appro-
priate refinement” to account forage-truncation.
They also view time-on-study Models 1 and 2,
which use linear and/or quadratic terms to
adjust for entry age as a covariate as “attempts
to approximate” Model 5.

Nevertheless, by considering numerical simula-
tions as well as four practical examples from the
Framingham Heart Study, Pencina et al. con-
clude that correct adjustment for the age at
entry is crucial in reducingbias of the estimated
coefficients. The unadjusted age-scale model
(Model 1) is inferior to any of the five other
models considered, regardless of their choice of
time scale. Moreover, if correct adjustment for
age at entry is made when considering Models
2–6, their analyses suggest that there exists
little if anypractical ormeaningful difference
in the estimated regression coefficients
depending on the choice of time scale.

To illustrate, we show on the left results from
Pencina et al. corresponding to Models 1–6
applied to 12-year follow-up Framingham
Heart Study data. The outcome considered
here is coronary heart disease (CHD) in men.

These results focus on two risk factorsmeasured
at baseline: diabetes mellitus status and edu-
cation status, the latter categorized into two
groups defined by post-high-school education
(yes/no). The estimated regression coefficients
(separately) relating these two risk factors to
CHD outcome are presented in the table.

Summary about Models 0–6:
Models 0 and 4:

� Both inappropriate
� Model 0 does not adjust for age
� Model 4 incorrectly assumes

that all subjects are at risk from
birth

Models 1–3, 5, 6

� All adjust for age-at-entry (a0)
� Question: Do they differ in

practice?

Pencina et al. (2007):

� Compare estimated regression
coefficients for Models 1–6

� Consider Model 5 (age-
truncated age scale) most
appropriate conceptually

� Consider Models 1 and
2 (covariate adjusted for a0)
“attempts to approximate
Model 5”

� Used numerical simulations
and practical examples from
Framingham

Conclusions:

� correct adjustment for the age
at entry is crucial

� Model 1 inferior (and biased)
� Little practical or meaningful

difference between Models 2
through 6

Time-on-
study

Age-time-scale

Cox PH Regression Coefficients (± se) for two
CHD risk factors among men- Framingham
Heart Disease Study (Pencina et al, 2007)

Model
4 5 61 2 3

linear quad strat unadj age-trunc strat

Diabetic versus non-diabetic (n=2439)

Education: post− HS versus HS or less (n = 2177)
0.18 −0.38∗−0.43∗−0.43∗−0.43∗ −0.40∗

± 0.15± 0.16± 0.15± 0.15± 0.15± 0.15

0.23*0.48∗ 0.45∗0.47∗0.48∗0.49∗

± 0.21± 0.21± 0.21± 0.21± 0.21 ± 0.20

∗ The coefficient is significantly different from zero at
the 0.05 level. 
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As expected, the table shows a substantial dif-
ference in the coefficient of the risk group vari-
able estimated by the unadjusted age-scale
model (Model 4) and the five other models.
Moreover, the results for Models 1–3, 5, and 6
are all quite similar.

Pencina also point out that the directions of
coefficients for these five models are in the
directions anticipated conceptually, e.g., diabe-
tes coefficients are positive, whereas education
coefficients are negative.

The quadratic baseline age term (Model 2) was
significant for both CHD risk factors. This
suggests potential misspecification in the mod-
eling of the relationship between CHD and age
introduced by Model 1, which treats entry age
as linear. However, its inclusion in the time-on-
study model did not materially influence the
magnitude or significance of the estimated
exposure variable (diabetes or education status)
coefficient.

When using age as the time scale and account-
ing for age truncation (i.e., using Model 5
above), the data layout requires the counting
process (CP) in start–stop format previously
introduced in Section VI of Chapter 1 with a0
as the start variable and a as the stop variable.
However, since we are not considering recur-
rent events data here, the CP format for age-
truncated survival data has a simpler form,
involving only one line of data for each study
subject, as shown on the left. The computer
code needed to program the analysis is
described in the Computer Appendix for
STATA, SAS, SPSS, or R packages.

Note that the CP format corresponding to
Model 4, which assumes the starting time is
birth, would modify the Model 4 layout by let-
ting a0 ¼ 0 in the a0 column for all subjects.
Nevertheless, this layout would be equivalent
to the “standard” layout that omits a0 column
and simply treats the a column data as time-
on-study information. Again, since Model 4
appears to be inferior to the other models, we
caution the reader not to use this format unless
the risk period was observed since birth.

Summary of Framingham results
from Pencina et al.:

� Model 4 inferior to othermodels
� Results for Models 1–3, 5, and 6

are similar
� Directions of estimated

coefficients were as anticipated
conceptually, e.g., þ diabetes
and smoking � education

� Quadratic terms (Model 2)
were significant, suggesting
that Model 1 is mispecified but

� Did not materially influence
magnitude or significance of
exposure variables (e.g.,
diabetes, smoking, education)

Data Layout for Age-as-Time Scale:
CP format for age-truncated
survival data (Model 5)

Subj# d a0 a X1 . . . Xp

1 d1 a01 a1 X11 . . . X1p

2 d2 a02 a2 X21 . . . X2p

3 d3 a03 a3 X31 . . . X3p
..
. ..

. ..
. ..

. ..
.

. . . ..
.

n dn a0n an Xn1 . . . Xnp

Model 4 layout: Set a0 ¼ 0 for all
subjects or use “standard” layout
(w/0 a0 column)

Subj# d a X1 . . . Xp

1 d1 a1 X11 . . . X1p

2 d2 a2 X21 . . . X2p

3 d3 a3 X31 . . . X3p
..
. ..

. ..
. ..

.
. . . ..

.

n dn an Xn1 . . . Xnp
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XI. Summary In this section we briefly summarize the
content covered in this presentation.

� We began with a computer example that
uses the Cox PH model. We showed how
to use the output to estimate the HR, and
how to test hypotheses and obtain
confidence intervals about the hazard ratio.

� We then provided the formula for the hazard
function for theCoxPHmodel anddescribed
basic features of this model. The most
important feature is that the model contains
two components, namely, a baseline hazard
function of time and an exponential function
involving X’s but not time.

� We discussed reasons why the Cox model is
popular, the primary reason being that the
model is “robust” for many different
survival analysis situations.

� We then discussed ML estimation of the
parameters in the Cox model, and pointed
out that the ML procedure maximizes a
“partial” likelihood that focuses on
probabilities at failure times only.

� Next, we gave a general formula for
estimating a hazard ratio that compared
two specifications of the X’s, defined as X*
and X. We illustrated the use of this
formula when comparing two exposure
groups adjusted for other variables.

� We then described how to obtain a 95% CI
for the HR when the hazard model contains
interaction terms of the formX1�Wj, where
X1 is a (0,1) exposure variable and Wj is an
effect modifier of exposure. The formula is
shown at the left. In this formula, the Vâr ‘̂
is difficult to calculate without the use of a
computer program.

Fortunately, most computer packages have
procedures for calculating this formula as
part of the program options, e.g., SAS’s
“contrast” option and STATA’s “lincom”
option.

1. Review: S (t), h (t), data layout,
etc.

2. Computer example of Coxmodel:
� estimate HR
� test hypothesis about HR
� obtain confidence intervals

3. Cox model formula:

h t; Xð Þ ¼ h0 tð Þe
Pp
i¼1

bi Xi

4. Why popular: Cox PH model is
“robust”

5. ML estimation: maximize a
partial likelihood L ¼ L(b) ¼
joint probability of observeddata

6. Hazard ratio formula:

cHR ¼ exp
Xp
i¼1

b̂i X
�
i � Xi

� �" #

7. Interval estimation-interaction:
HR¼exp[‘],

where ‘ ¼ b1 þ d1W1 þ d2W2 þ . . .þ dkWK

b1 ¼ coeff: of X1; and

dj ¼ coeff: of X�Wj; j ¼ 1; . . . ; k

95% CI for HR¼exp[‘]:

exp[‘̂� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffi
Vâr‘̂Þ

q
]

Most computer packages, e.g., SAS,

STATA, compute Vâr‘̂ as part of the
program options (see Computer
Appendix).
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� We then defined an adjusted survival curve
and presented formulas for adjusted curves
comparing two groups adjusted for other
variables in the model and a formula for a
single adjusted curve that adjusts for all X’s
in the model. Computer packages for these
formulae use the mean value of each X
being adjusted in the computation of the
adjusted curve.

� We described the PH assumption as
meaning that the hazard ratio is constant
over time, or equivalently that the hazard
for one individual is proportional to the
hazard for any other individual, where the
proportionality constant is independent of
time. We also showed that for study
situations in which the hazards cross, the
PH assumption is not met.

� We then showed how the Cox likelihood is
derived using ordered failure times.

� Finally, we considered the use of “age as the
time scale” instead of “time-on-follow-up”
as the outcome variable, described why
such use is appropriate to account for left
truncation of age, provided the form of the
Cox PHmodel in this situation, illustrate its
use, and described the data layout required
using a “stop-start” Counting Process (CP)
format.

Chapters This presentation is now complete. We recom-
mend that the reader review the detailed out-
line that follows and then do the practice
exercises and test.

The next Chapter (4) describes how to evaluate
the PH assumption. Chapters 5 and 6 describe
methods for carrying out the analysis when the
PH assumption is not met.

8. Adjusted survival curves: 0 or 1
Comparing E groups:

Ŝ t;Xð Þ ¼ Ŝ0 tð Þ� 	exp b̂1 Eþ
P
i 6¼1

b̂i �Xi

� �

Single curve:

Ŝ t;Xð Þ ¼ Ŝ0 tð Þ� 	exp P b̂i �Xi½ 	

9. PH assumption:

ĥðt;X�Þ
ĥðt;XÞ ¼ ŷ (a constant over t)

i.e., ĥðt;X�Þ ¼ ŷĥðt;XÞ
Hazards cross ) PH not met

10. Derivation of Cox PH Likeli-
hood

11. Using “age-as-the-time scale”
instead of “time-on-follow-up”
Reason: account for left trun-
cation of age
Cox PH model that adjusts for
age truncation:

hða;XÞ ¼ h0ðaja0Þ exp½
X

biXi	
where a ¼ age at event or
censorship
a0 ¼ age at study entry
Data Layout: CP (start–stop)
format

1. Introduction to Survival
Analysis

2. Kaplan–Meier Survival Curves
and the Log–Rank Test

3. The Cox Proportional Hazards
Model and Its Characteristics

4. Evaluating the Proportional
Hazards Assumption

5. The Stratified Cox Procedure
6. Extension of the Cox

Proportional Hazards Model
for Time-Dependent Variables
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Detailed
Outline

I. A computer example using the Cox PH model
(pages 100–108)

A. Printout shown for three models involving leu-
kemia remission data.

B. Three explanatory variables of interest: treat-
ment status, log WBC, and product term; out-
come is time until subject goes out of remission.

C. Discussion of how to evaluate which model is
best.

D. Similarity to classical regression and logistic
regression.

II. The formula for the Cox PH model
(pages 108–110)

A. h t; Xð Þ ¼ h0 tð Þ exp Pp
i¼1

bi Xi

� �

B. h0 (t) is called the baseline hazard function.

C. X denotes a collection of p explanatory vari-
ables X1, X2,..., Xp.

D. The model is semiparametric because h0(t) is
unspecified.

E. Examples of the Cox model using the leukemia
remission data.

F. Survival curves can be derived from the Cox PH
model.

III. Why theCoxPHmodel is popular (pages 110–112)

A. Can get an estimate of effect (the hazard ratio)
without needing to know h0(t).

B. Can estimate h0(t), h(t, X), and survivor func-
tions, even though h0(t) is not specified.

C. The e part of the formula is used to ensure that
the fitted hazard is nonnegative.

D. The Cox model is “robust”: it usually fits the
data well no matter which parametric model is
appropriate.

IV. ML estimation of the Cox PH model
(pages 112–114)

A. Likelihood function is maximized.

B. L is called a partial likelihood, because it uses
survival time information only on failures, and
does not use censored information explicitly.

C. L makes use of the risk set at each time that a
subject fails.

D. Inferences are made using standard large sam-
ple ML techniques, e.g., Wald or likelihood ratio
tests and large sample confidence intervals
based on asymptotic normality assumptions.
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V. Computing the hazard ratio (pages 114–117)

A. Formula for hazard ratio comparing two indi-
viduals, and X ¼ (X1, X2, . . ., Xp):

h t; X�ð Þ
h t; Xð Þ ¼ exp

Xp
i¼1

b̂i ðX�
i � XiÞ

" #

B. Examples are given using a (0, 1) exposure vari-
able, potential confounders, and potential
effect modifiers.

C. Typical coding identifies X* as the group with
the larger hazard and X as the group with the
smaller hazard, e.g., X�

1 ¼ 1 for unexposed
group and X1 ¼ 0 for exposed group.

VI. Interval estimation: interaction (pages 117–119)

A. Example- Model 3 from Remission Time Data

i. h(t, X) ¼ h0(t)exp[b1Rx þ b2logWBC
þ b3(Rx � logWBC)]

ii. HR ¼ exp[b1 þ b3logWBC]

B. General form of HR:
HR ¼ exp[‘], where
‘ ¼ b1 þ d1W1 þ d2W2 þ . . . þ dk Wk,
X1 ¼ (0, 1) exposure variable, b1 ¼ coeff of X1,
and dj ¼ coeff of X1 � Wj, j¼1,..., k

C. General form of 95% CI for HR ¼ exp[‘]:

exp ‘̂� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Vâr ‘̂Þ

q� �
; where

Var ‘̂

 �

¼ Var b̂1 þ d̂1W1 þ . . .þ d̂kWk


 �

D. Computation of var complicated.

i. Computer programs, e.g., in SAS, STATA,
can do this for the user.

ii. Otherwise, user must carry out complicated
calculation using formula for var:

Vâr ‘̂

 �

¼ Vâr b̂1

 �

þ
X
j

W2
jVâr d̂j


 �

þ 2
X
j

WjCôv b̂1; d̂j

 �

þ 2
X
j

X
k

WjWkCôv d̂j; d̂k

 �

iii. Variances and covariances provided in
computer output

iv. User specifies W’s values of interest.

v. Model 3 formula for Vârð‘̂ Þ:
Vâr ‘̂


 �
¼ Vâr b̂1


 �
þ log WBCð Þ2Vâr b̂3


 �

þ 2 log WBCð Þ2Cov b̂1; b̂3

 �

E. Example of 95% CI: Model 3
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VII. Adjusted survival curves using the Cox PH
model (pages 120–123)

A. Survival curve formula can be obtained from
hazard ratio formula:

S t;Xð Þ ¼ S0 tð Þ½ 	exp
P

biXi½ 	
where S0(t) is the baseline survival function that
corresponds to the baseline hazard function h0(t).

B. To graph S(t, X), must specify values for
X ¼ (X1, X2, . . ., Xp).

C. To obtain “adjusted” survival curves, usually
use overall mean values for the X’s being
adjusted.

D. Examples of “adjusted” S(t, X) using leukemia
remission data.

VIII. The meaning of the PH assumption
(pages 123–127)

A. Hazard ratio formula shows that hazard ratio is
independent of time:

h t;X�ð Þ
h t;Xð Þ ¼ y

B. Baseline hazard function not involved in the
HR formula.

C. Hazard ratio for two X’s are proportional:

h t;X�ð Þ ¼ y h t;Xð Þ
D. An example when the PH assumption is not

satisfied: hazards cross

IX. The Cox likelihood (pages 127–131)

A. Lottery Example

B. Likelihood based on order of events

X. Using age as the time scale (pages 131–142)

A. Definition of Left Truncation

i. Type I: subject has event before t0 and not
included in study

ii. Type II: t0 > 0 and t> t0 where t0 time when
first observed t ¼ observed survival time

B. Left Truncation versus Left Censoring

C. Time-on-study versus Age-as-time scale: Closed
cohort versus Open cohort

D. When to use Age-as-time-scale

i. It depends

a. Type of study

b. Well-defined model involving a0 where
a0 denotes age at entry
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E. Alternative Models

i. Time-on-study

a. outcome is t ¼ time since first observed

b. consider control for a0, e.g.,

h t;X; a0ð Þ ¼ h0 tð Þ exp
X

biXi þ g1a0
h i

or

h t;X; a0ð Þ ¼ h0 tð Þ exp
X

biXi þ g1a0 þ g2a
2
0

h i

ii. Age-as-time-scale

a. outcome is a ¼ age at event or censor-
ship

b. adjusting for age truncation, e.g.,

h a;Xð Þ ¼ h0 a j a0ð Þ exp
X

biXi

h i
or

hg a;Xð Þ ¼ h0g a j a0ð Þ exp
X

biXi

h i

F. Example from Pencina et al (2007)

i. age-as-time-scale model

a. need to adjust for age truncation sub-
jects

b. incorrect results if subjects assumed to
be observed from birth

ii. time-on-study model: when a0 is controlled,
results similar to age-as-time-scale model.

iii. overall recommendation: correct adjust-
ment for the age at entry is crucial

XI. Summary (pages 143–144)
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Practice
Exercises

1. In a 10-year follow-up study conducted in Evans
County, Georgia, involving persons 60 years or older,
one research question concerned evaluating the rela-
tionship of social support to mortality status. A Cox
proportional hazards model was fit to describe the
relationship of a measure of social network to time
until death. The social network index was denoted as
SNI, and took on integer values between 0 (poor social
network) to 5 (excellent social network). Variables to be
considered for control in the analysis as either potential
confounders or potential effect modifiers were AGE
(treated continuously), RACE (0,1), and SEX (0,1).

a. State an initial PH model that can be used to assess
the relationship of interest, which considers the
potential confounding and interaction effects of
the AGE, RACE, and SEX (assume no higher than
two-factor products involving SNI with AGE,
RACE, and SEX).

b. For yourmodel in part 1a, give an expression for the
hazard ratio that compares a person with SNI = 4 to
a person with SNI ¼ 2 and the same values of the
covariates being controlled.

c. Describe how you would test for interaction using
your model in part 1a. In particular, state the null
hypothesis, the general form of your test statistic,
with its distribution and degrees of freedom under
the null hypothesis.

d. Assuming a revised model containing no interac-
tion terms, give an expression for a 95% interval
estimate for the adjusted hazard ratio comparing a
person with SNI ¼ 4 to a person with SNI ¼ 2 and
the same values of the covariates in your model.

e. For the no-interaction model described in part 1d,
give an expression (i.e., formula) for the estimated
survival curve for a person with SNI ¼ 4, adjusted
for AGE, RACE, and SEX, where the adjustment
uses the overall mean value for each of the three
covariates.

f. Using the no-interaction model described in part 1d,
if the estimated survival curves for persons with
SNI ¼ 4 and SNI ¼ 2 adjusted for (mean) AGE,
RACE, and SEX are plotted over time, will these
two estimated survival curves cross? Explain briefly.

g. For the (interaction) model described in Part 1a,
what is the formula for the 95% CI for the HR that
compares a person with SNI ¼ 4 to a person with
SNI ¼ 2 and the same values of the covariates being
controlled?
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2. For this question, we consider the survival data for 137
patients from the Veteran’s Administration Lung
Cancer Trial cited by Kalbfleisch and Prentice in their
book (The Statistical Analysis of Survival Time Data,
Wiley, 1980). The variables in this dataset are listed as
follows:

For these data, a Cox PH model was fitted yielding the
following edited computer results:
Response: survival time

a. State the Cox PHmodel used to obtain the above
computer results.

b. Using the printout above, what is the hazard
ratio that compares persons with adeno cell
type with persons with large cell type? Explain
your answer using the general hazard ratio for-
mula for the Cox PH model.

Variable name Coef. Std. Err. p > |z| Haz. Ratio [95% Conf. interval]

1 Treatment 0.290 0.207 0.162 1.336 0.890 2.006
3 Adeno cell 0.789 0.303 0.009 2.200 1.216 3.982
4 Small cell 0.457 0.266 0.086 1.579 0.937 2.661
5 Squamous cell �0.400 0.283 0.157 0.671 0.385 1.167
7 Perf. status �0.033 0.006 0.000 0.968 0.958 0.978
8 Disease dur. 0.000 0.009 0.992 1.000 0.982 1.018
9 Age �0.009 0.009 0.358 0.991 0.974 1.010

10 Prior therapy 0.007 0.023 0.755 1.007 0.962 1.054

Log likelihood = �475.180

(
Variable# Variable name Coding

1 Treatment Standard = 1, test = 2
Four
indicator
variables
for cell type

2 Cell type 1 Large = 1, other = 0
3 Cell type 2 Adeno = 1, other = 0
4 Cell type 3 Small = 1, other = 0
5 Cell type 4 Squamous = 1, other = 0
6 Survival time (Days) integer counts
7 Performance

status
0 =worst, . . . , 100 = best

8 Disease duration (Months) integer counts
9 Age (Years) integer counts

10 Prior therapy None = 0, some = 10
11 Status 0 = censored, 1 = died
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c. Using the printout above, what is the hazard
ratio that compares persons with adeno cell
type with persons with squamous cell type?
Explain your answer using the general hazard
ratio formula for the Cox PH model.

d. Based on the computer results, is there an effect
of treatment on survival time? Explain briefly.

e. Give an expression for the estimated survival
curve for a person who was given the test treat-
ment and who had a squamous cell type, where
the variables to be adjusted are performance
status, disease duration, age, and prior therapy.

f. Suppose a revised Cox model is used which con-
tains, in addition to the variables already
included, the product terms: treatment� perfor-
mance status; treatment � disease duration;
treatment � age; and treatment � prior therapy.
For this revisedmodel, give an expression for the
hazard ratio for the effect of treatment, adjusted
for the other variables in the model.

3. The data for this question contain survival times of 65
multiple myeloma patients (references Krall et al., “A
Step-up Procedure for Selecting Variables Associated
with Survival Data,” Biometrics, vol. 31, pp. 49–57,
1975). A partial list of the variables in the dataset is
given below:

Variable 1: observation number
Variable 2: survival time (in months) from time of

diagnosis
Variable 3: survival status (0 = alive, 1 = dead)
Variable 4: platelets at diagnosis (0 = abnormal,

1 = normal)
Variable 5: age at diagnosis (years)
Variable 6: sex (1 = male, 2 = female)
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Below, we provide edited computer results for several
different Cox models that were fit to this dataset. A num-
ber of questions will be asked about these results.

a. For model 1, give an expression for the hazard
ratio for the effect of the platelet variable
adjusted for age and sex.

b. Using your answer to part 3a, compute the esti-
mated hazard ratio for a 40-year-old male. Also
compute the estimated hazard ratio for a 50-
year-old female.

c. Carry out an appropriate test of hypothesis to
evaluate whether there is any significant inter-
action in model 1. What is your conclusion?

d. Considering models 2–5, evaluate whether age
and sex need to be controlled as confounders?

e. Which of the five models do you think is the best
model and why?

Model 1:

Variable Coef. Std. Err. p > |z| Haz. Ratio [95% Conf. Interval]

Platelets 0.470 2.854 .869 1.600 0.006 429.689
Age 0.000 0.037 .998 1.000 0.930 1.075
Sex 0.183 0.725 .801 1.200 0.290 4.969
Platelets � age �0.008 0.041 .850 0.992 0.915 1.075
Platelets � sex �0.503 0.804 .532 0.605 0.125 2.924

Log likelihood ¼ �153.040

Model 2:

Platelets �0.725 0.401 .071 0.484 0.221 1.063
Age �0.005 0.016 .740 0.995 0.965 1.026
Sex �0.221 0.311 .478 0.802 0.436 1.476

Log likelihood ¼ �153.253

Model 3:

Platelets �0.706 0.401 .078 0.493 0.225 1.083
Age �0.003 0.015 .828 0.997 0.967 1.027

Log likelihood ¼ �153.509

Model 4:

Platelets �0.705 0.397 .076 0.494 0.227 1.075
Sex �0.204 0.307 .506 0.815 0.447 1.489

Log likelihood ¼ �153.308

Model 5:

Platelets �0.694 0.397 .080 0.500 0.230 1.088

Log likelihood ¼ �153.533
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f. Based on your answer to part 3e, summarize the
results that describe the effect of the platelet
variable on survival adjusted for age and sex.

g. Why might you consider using age-as-the-time-
scale instead of time-on-follow-up as the out-
come to analyze these data?

Test
1. Consider a hypothetical 2-year study to investigate the

effect of a passive smoking intervention program on the
incidence of upper respiratory infection (URI) in new-
born infants. The study design involves the random
allocation of one of three intervention packages (A, B,
C) to all healthy newborn infants in Orange County,
North Carolina, during 1985. These infants are fol-
lowed for 2 years to determine whether or not URI
develops. The variables of interest for using a survival
analysis on these data are:

T ¼ time (in weeks) until URI is detected or time until
censored

s ¼ censorship status (¼ 1 if URI is detected, ¼ 0 if
censored)

PS ¼ passive smoking index of family during the week
of birth of the infant

DC ¼ daycare status (¼ 1 if outside daycare, ¼ 0 if only
daycare is in home)

BF¼ breastfeeding status (¼ 1 if infant is breastfed,¼ 0
if infant is not breastfed)

T1¼ first dummy variable for intervention status (¼ 1 if
A, ¼ 0 if B, ¼ �1 if C)

T2 ¼ second dummy variable for intervention status
(¼ 1 if B, ¼ 0 if A, ¼ �1 if C).

a. State the Cox PH model that would describe the
relationship between intervention package and sur-
vival time, controlling for PS, DC, and BF as con-
founders and effect modifiers. In defining your
model, use only two factor product terms involving
exposure (i.e., intervention) variables multiplied by
control variables in your model.

b. Assuming that the Cox PH model is appropriate,
give a formula for the hazard ratio that compares
a person in intervention group A with a person in
intervention group C, adjusting for PS, DC, and BF,
and assuming interaction effects.

c. Assuming that the PH model in part 1a is appropri-
ate, describe how you would carry out a chunk test
for interaction; i.e., state the null hypothesis,
describe the test statistic and give the distribution
of the test statistic and its degrees of freedom under
the null hypothesis.
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d. Assuming no interaction effects, how would you
test whether packages A, B, and C are equally effec-
tive, after controlling for PS, DC, and BF in a Cox
PH model without interaction terms (i.e., state the
two models being compared, the null hypothesis,
the test statistic, and the distribution of the test
statistic under the null hypothesis).

e. For the no-interaction model considered in parts 1c
and 1d, give an expression for the estimated survival
curves for the effect of intervention A adjusted for
PS, DC, and BF. Also, give similar (but different)
expressions for the adjusted survival curves for
interventions B and C.

2. The data for this question consists of a sample of 50
persons from the 1967–1980 Evans County Study.
There are two basic independent variables of interest:
AGE and chronic disease status (CHR), where CHR is
coded as 0 ¼ none, 1 ¼ chronic disease. A product term
of the form AGE � CHR is also considered. The depen-
dent variable is time until death, and the event is death.
The primary question of interest concerns whether
CHR, considered as the exposure variable, is related
to survival time, controlling for AGE. The edited output
of computer results for this question is given as follows:

Model 1:

Variable Coef. Std. Err. Chi-sq p > |z|

CHR 0.8595 0.3116 7.61 .0058

Log likelihood ¼ �142.87
Model 2:

CHR 0.8051 0.3252 6.13 .0133
AGE 0.0856 0.0193 19.63 .0000

Log likelihood ¼ �132.45
Model 3:

CHR 1.0009 2.2556 0.20 .6572
AGE 0.0874 0.0276 10.01 .0016
CHR � AGE �0.0030 0.0345 0.01 .9301

Log likelihood ¼ �132.35
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a. State the Cox PH model that allows for main
effects of CHR and AGE as well as the interaction
effect of CHR with AGE.

b. Carry out the test for significant interaction; i.e.,
state the null hypothesis, the test statistic, and its
distribution under the null hypothesis. What are
your conclusions about interaction?

c. Assuming no interaction, should AGE be con-
trolled? Explain your answer on the basis of con-
founding and/or precision considerations.

d. If, when considering plots of various hazard func-
tions over time, the hazard function for persons
with CHR ¼ 1 crosses the hazard function for per-
sons with CHR ¼ 0, what does this indicate about
the use of any of the three models provided in the
printout?

e. Using model 2, give an expression for the esti-
mated survival curve for persons with CHR ¼ 1,
adjusted for AGE. Also, give an expression for the
estimated survival curve for persons with CHR ¼ 0,
adjusted for AGE.

f. What is your overall conclusion about the effect of
CHR on survival time based on the computer results
provided from this study?

3. The data for this question contain remission times of 42
multiple leukemia patients in a clinical trial of a new
treatment. The variables in the dataset are given below:

Variable 1: survival time (in weeks)
Variable 2: status (1 ¼ in remission, 0 ¼ relapse)
Variable 3: sex (1 ¼ female, 0 ¼ male)
Variable 4: log WBC
Variable 5: Rx status (1 ¼ placebo, 0 ¼ treatment)
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Below, we provide computer results for several differ-
ent Cox models that were fit to this dataset. A number
of questions will be asked about these results starting
below.

a. Use the above computer results to carry out a chunk
test to evaluate whether the two interaction terms in
model 1 are significant. What are your conclusions?

b. Evaluate whether you would prefer model 1 or
model 2. Explain your answer.

c. Using model 2, give an expression for the hazard
ratio for the effect of the Rx variable adjusted for
SEX and log WBC.

d. Using your answer in part 3c, compute the hazard
ratio for the effect of Rx for males and for females
separately.

e. By considering the potential confounding of log
WBC, determine which of models 2 and 3 you pre-
fer. Explain.

f. Of the models provided which model do you con-
sider to be best? Explain.

Model 1:

Variable Coef. Std. Err. p > |z| Haz. Ratio [95% Conf.Interval]

Rx 0.894 1.815 .622 2.446 0.070 85.812
Sex �1.012 0.752 .178 0.363 0.083 1.585
log WBC 1.693 0.441 .000 5.437 2.292 12.897
Rx � Sex 1.952 0.907 .031 7.046 1.191 41.702
Rx � log WBC �0.151 0.531 .776 0.860 0.304 2.433

Log likelihood ¼ �69.515

Model 2:

Rx 0.405 0.561 .470 1.500 0.499 4.507
Sex �1.070 0.725 .140 0.343 0.083 1.422
log WBC 1.610 0.332 .000 5.004 2.610 9.592
Rx � Sex 2.013 0.883 .023 7.483 1.325 42.261

Log likelihood ¼ �69.555

Model 3:

Rx 0.587 0.542 .279 1.798 0.621 5.202
Sex �1.073 0.701 .126 0.342 0.087 1.353
Rx � Sex 1.906 0.815 .019 6.726 1.362 33.213

Log likelihood ¼ �83.475

Model 4:

Rx 1.391 0.457 .002 4.018 1.642 9.834
Sex 0.263 0.449 .558 1.301 0.539 3.139
log WBC 1.594 0.330 .000 4.922 2.578 9.397

Log likelihood ¼ �72.109
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Answers to
Practice
Exercises

1. a. h(t,X) ¼ h0(t) exp[b1 SNI þ b2 AGE þ b3 RACE
þ b4 SEX þ b5 SNI � AGE þ b6 SNI � RACE
þ b7 SNI � SEX]

b. HR¼ exp[2b1þ 2(AGE)b5þ 2(RACE)b6þ 2(SEX)b7]
c. H0: b5 ¼ b6 ¼ b7 ¼ 0. Likelihood ratio test statistic:

�2 ln LR � (�2 ln LF), which is approximately X2
3

underH0, where R denotes the reduced model (con-
taining no product terms) under H0, and F denotes
the full model (given in part la above).

d. 95% CI for adjusted HR:

exp 2 b̂1 � 1:96� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vâr b̂1


 �r� �

e. Ŝ t;Xð Þ ¼ Ŝ0 tð Þ� 	exp 4b̂1þðAGEÞb̂2þðRACEÞb̂3þðSEXÞb̂4½ 	
f. The two survival curves will not cross, because both

are computed using the same proportional hazards
model, which has the property that the hazard func-
tions, as well as their corresponding estimated sur-
vivor functions, will not cross.

g. 95% CI for HR ¼ exp[‘]: exp[‘̂� 1:96
ffiffiffiffiffiffiffiffiffiffiffiffi
Vâr ‘̂

p
]

where ‘¼ 2b1 þ 2(AGE)b5 þ 2(RACE)b6þ 2(SEX)b7
2. a. h (t,X)¼ h0 (t) exp [b1X1þ b3X3þ b4X4þ b5X5þ b7X7

þ . . . þ b10X10]

b. Adeno cell type: X* ¼ (treatment, 1, 0, 0, perfstat,
disdur, age, prther)
Large cell type: X ¼ (treatment, 0, 0, 0, perfstat,
disdur, age, prther)

HR ¼ h t; X�ð Þ
h t; Xð Þ ¼ exp

Xp
i¼1

bi X
�
i � Xi

� �" #

¼ exp ½0þ b̂3 1� 0ð Þ þ b̂4 0� 0ð Þ
þ b̂5 0� 0ð Þ þ 0þ . . .þ 0	

¼ : exp b̂3
h i

¼ exp 0:789½ 	 ¼ 2:20

c. Adeno cell type: X* ¼ (treatment, 1, 0, 0, perfstat,
disdur, age, prther)
Squamous cell type:X¼ (treatment, 0, 0, 1, perfstat,
disdur, age, prther)

HR ¼ h t; X�ð Þ
h t; Xð Þ ¼ exp

Xp
i¼1

bi X
�
i � Xi

� �" #

¼ exp ½0þ b̂3 1� 0ð Þ þ b̂4 0� 0ð Þ
þ b̂5 0� 1ð Þ þ 0þ . . .þ 0	

¼ exp b̂3 � b̂5
h i

¼ exp ½0:789
� �0:400ð Þ	 ¼ exp 1:189½ 	 ¼ 3:28
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d. There does not appear to be an effect of treatment
on survival time, adjusted for the other variables in
the model. The hazard ratio is 1.3, which is close to
the null value of one, the p-value of 0.162 for the
Wald test for treatment is not significant, and the
95% confidence interval for the treatment effect
correspondingly includes the null value.

e. Ŝ t;Xð Þ ¼ Ŝ0 tð Þ� 	exp 2b̂1þb̂5þðperfstatÞb̂7þðdisdurÞb̂8þðageÞb̂9þðprtherÞb̂10½ 	

f. HR ¼ h t;X�ð Þ
h t;Xð Þ ¼ exp b1 þ perfstatð Þb11 þ disdurð Þb12½

þ ageð Þb13 þ prtherð Þb14	

where b1 is the coefficient of the treatment variable
and b11, b12, b13, and b14 are the coefficients of prod-
uct terms involving treatment with the four vari-
ables indicated.

3. a. cHR ¼ exp 0:470þ �0:008ð Þageþ �0:503ð Þsex½ 	
b. 40-year-old male:

cHR ¼ exp 0:470þ �0:008ð Þ40þ �0:503ð Þ1½ 	 ¼ 0:70

50-year-old Female:

cHR ¼ exp 0:470þ �0:008ð Þ50þ �0:503ð Þ2½ 	 ¼ 0:39

c. The LR (chunk) test for the significance of both
interaction terms simultaneously yields the follow-
ing likelihood ratio statistic which compares mod-
els 1 and 2:

LR ¼ �2 � �153:253ð Þ � �2 � �153:040ð Þ½ 	
¼ 306:506� 306:080 ¼ 0:426

This statistic is approximately chi-square with
2 degrees of freedom under the null hypothesis of
no interaction. This LR statistic is highly nonsignif-
icant. Thus, we conclude that there is no significant
interaction in the model (1).

d. The gold-standard hazard ratio is 0.484, which is
obtained formodel 2. Note that model 2 contains no
interaction terms and controls for both covariates
of interest. When either age or sex or both are
dropped from the model, the hazard ratio (for pla-
telets) does not change appreciably. Therefore, it
appears that neither age nor sex need to be con-
trolled for confounding.
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e. Models 2–5 are all more or less equivalent, since
they all give essentially the same hazards ratio and
confidence interval for the effect of the platelet var-
iable. A political choice for best model would be the
gold-standard model (2), because the critical
reviewer can see both age and sex being controlled
in model 2.

f. � The point estimate of the hazard ratio for normal
versus abnormal platelet count is 0.484 ¼ 1/2.07,
so that the hazard for an abnormal count is twice
that for a normal count.

� There is a borderline significant effect of platelet
count on survival adjusted for age and sex
(P ¼.071).

� The 95% CI for the hazard ratio is given by 0.221
< HR < 1.063, which is quite wide and therefore
shows a very imprecise estimate.

4. Subjectsmayalreadyat risk for theoutcomeprior to their
study entry (at diagnosis). If so, then the timeat risk prior
to study entry contributes to the true survival time (say,
T) for the individual, although only the observed time-on-
study (t), is actually available to be analyzed. The indivi-
dual’s survival time is therefore underestimated by the
time-on-study information (obtained from study entry),
i.e., the true survival time is left-truncated. However, if
age-as-the-time-scale as the outcome is considered, then
it is possible to adjust for this left truncation by using age
at entry in a hazard model of the form

h a,Xð Þ ¼ h0 aja0ð Þ exp
X

biXi

h i

where a denotes age at follow-up, a0 denotes age at
study entry, and h0(a|a0) is a baseline hazard that
adjusts for age truncation at a0.
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Introduction We begin with a brief review of the characteristics of the
Cox proportional hazards (PH) model. We then give an
overview of three methods for checking the PH assump-
tion: graphical, goodness-of-fit (GOF), and time-dependent
variable approaches.

We then focus on each of the above approaches, starting
with graphical methods. The most popular graphical
approach involves the use of “log–log” survival curves.
A second graphical approach involves the comparison of
“observed” with “expected” survival curves.

The GOF approach uses a test statistic or equivalent
p-value to assess the significance of the PH assumption.
We illustrate this test and describe some of its advantages
and drawbacks.

Finally, we discuss the use of time-dependent variables in
an extended Cox model as a third method for checking the
PH assumption. A more detailed description of the use of
time-dependent variables is provided in Chapter 6.

Abbreviated
Outline

The outline below gives the user a preview of the material
to be covered by the presentation. A detailed outline for
review purposes follows the presentation.

I. Background (pages 164–165)

II. Checking the proportional hazards assumption:
overview (pages 165–167)

III. Graphical approach 1: log–log plots
(pages 167–175)

IV. Graphical approach 2: observed versus expected
plots (pages 175–180)

V. The goodness-of-fit (GOF) testing approach
(pages 181–183)

VI. Assessing the PH assumption using time-
dependent covariates (pages 183–187)
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Objectives Upon completing this chapter, the learner should be able to:

1. State or recognize three general approaches for
evaluating the PH assumption.

2. Summarize how log–log survival curves may be used to
assess the PH assumption.

3. Summarize how observed versus expected plots may be
used to assess the PH assumption.

4. Summarize how GOF tests may be used to assess the
PH assumption.

5. Summarize how time-dependent variables may be used
to assess the PH assumption.

6. Describe — given survival data or computer output
from a survival analysis that uses a Cox PH model —
how to assess the PH assumption for one or more
variables in the model using:
a. a graphical approach
b. the GOF approach
c. an extended Cox model with time-dependent

covariates
7. State the formula for an extended Cox model that

provides a method for checking the PH assumption for
one or more of the time-independent variables in the
model, given survival analysis data or computer output
that uses a Cox PH model.
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Presentation

This presentation describes three approaches
for evaluating the proportional hazards (PH)
assumption of the Cox model — a graphical
procedure, a goodness-of-fit testing procedure,
and a procedure that involves the use of time-
dependent variables.

I. Background Recall from the previous chapter that the gen-
eral form of the Cox PH model gives an expres-
sion for the hazard at time t for an individual
with a given specification of a set of explana-
tory variables denoted by the bold X.

The Cox model formula says that the hazard at
time t is the product of two quantities. The first
of these, h0(t), is called the baseline hazard
function. The second quantity is the exponential
expression e to the linear sum of biXi, where the
sum is over the p explanatory X variables.

An important feature of this formula, which
concerns the proportional hazards (PH)
assumption, is that the baseline hazard is a
function of t, but does not involve the X’s,
whereas the exponential expression involves
the X’s, but does not involve t. The X’s here are
called time-independent X’s.

It is possible, nevertheless, to consider X’s
that do involve t. Such X’s are called time-
dependent variables. If time-dependent vari-
ables are considered, the Cox model form may
still be used, but such a model no longer satis-
fies the PH assumption, and is called the
extended Cox model. We will discuss this
extended Cox model in Chapter 6 of this series.

Evaluating PH:

FOCUS
graphical
goodness-of-fit
time-dependent
variables

Cox PH model:

h t; Xð Þ ¼ h0 tð Þe
Pp
i¼1

bi Xi

X = (X1, X2,. . ., Xp) explanatory/
predictor variables

h0 tð Þ � e

Pp
i¼1

biXi

Baseline hazard

Involves t but
not X’s

Exponential

InvolvesX’s but
not t (X’s are time-

independent)

X’s involving t: time-dependent
Requires extended Cox model
(no PH) "

Chapter 6
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From the Cox PH model, we can obtain a
general formula, shown here, for estimating a
hazard ratio that compares two specifications
of the X’s, defined as X* and X.

We can also obtain from the Cox model an
expression for an adjusted survival curve.
Here we show a general formula for obtaining
adjusted survival curves comparing two groups
adjusted for other variables in the model.
Below this, we give a formula for a single
adjusted survival curve that adjusts for all X’s
in the model. Computer packages for these for-
mulae use the mean value of each X being
adjusted in the computation of the adjusted
curve.

The Cox PH model assumes that the hazard
ratio comparing any two specifications of pre-
dictors is constant over time. Equivalently, this
means that the hazard for one individual is
proportional to the hazard for any other indi-
vidual, where the proportionality constant is
independent of time.

The PH assumption is not met if the graph of
the hazards cross for two or more categories of
a predictor of interest. However, even if the
hazard functions do not cross, it is possible
that the PH assumption is not met. Thus,
rather than checking for crossing hazards, we
must use other approaches to evaluate the rea-
sonableness of the PH assumption.

II. Checking the
Proportional Hazards
Assumption: Overview

There are three general approaches for asses-
sing the PH assumption, again listed here. We
now briefly overview each approach, starting
with graphical techniques.

Hazard ratio formula:

cHR ¼ exp
Pp
i¼1

b̂i X�
i � Xi

� �� �

where X� ¼ X�
1; X

�
2; � � � ;X�

p

� �
and X = (X1, X2,. . ., Xp)
denote the two sets of X’s.

Adjusted survival curves
comparing E groups:

Ŝðt;XÞ ¼ Ŝ0 tð Þ� 	exp b1 Eþ
P
i 6¼1

biXi

� �

Single curve:

Sðt;XÞ ¼ Ŝ0 tð Þ� 	exp Pp
i¼1

b̂iXi

� �

PH assumption:

ĥ t;X�ð Þ
ĥ t;Xð Þ ¼ ŷ; constant over t

i.e:; ĥ t;X�ð Þ ¼ ŷĥ t;Xð Þ

Hazards cross: ) PH not met

Hazards don’t cross n) PH met

Three approaches:

� graphical
� goodness-of-fit test
� time-dependent variables
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There are two types of graphical techniques
available. The most popular of these involves
comparing estimated –ln(–ln) survivor curves
over different (combinations of) categories of
variables being investigated. We will des-
cribe such curves in detail in the next section.
Parallel curves, say comparing males with
females, indicate that the PH assumption is
satisfied, as shown in this illustration for the
variable Sex.

An alternative graphical approach is to com-
pare observed with predicted survivor curves.
The observed curves are derived for categories
of the variable being assessed, say, Sex, with-
out putting this variable in a PH model. The
predicted curves are derived with this variable
included in a PH model. If observed and pre-
dicted curves are close, then the PH assump-
tion is reasonable.

A second approach for assessing the PH
assumption involves goodness-of-fit (GOF)
tests. This approach provides large sample Z
or chi-square statistics which can be computed
for each variable in the model, adjusted for the
other variables in the model. A p-value derived
from a standard normal statistic is also given
for each variable. This p-value is used for
evaluating the PH assumption for that variable.
A nonsignificant (i.e., large) p-value, say
greater than 0.10, suggests that the PH assump-
tion is reasonable, whereas a small p-value, say
less than 0.05, suggests that the variable being
tested does not satisfy this assumption.

When time-dependent variables are used to
assess the PH assumption for a time-indepen-
dent variable, the Cox model is extended to
contain product (i.e., interaction) terms
involving the time-independent variable being
assessed and some function of time.

Graphical techniques:
–ln(–ln) S curves parallel?

Observed vs. predicted: Close?

Goodness-of-fit (GOF) tests:

� Large sample Z or chi-square
statistics

� Gives p-value for evaluating PH
assumption for each variable in
the model.

p-value large ) PH satisfied
(e.g. P > 0.10)

p-value small ) PH not satisfied
(e.g. P < 0.05)

Time-dependent covariates:

Extended Cox model:
Add product term involving some
function of time.
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For example, if the PH assumption is being
assessed for Sex, a Cox model might be
extended to include the variable “Sex � t” in
addition to Sex. If the coefficient of the prod-
uct term turns out to be significant, we can
conclude that the PH assumption is violated
for Sex.

The GOF approach provides a single test
statistic for each variable being assessed. This
approach is not as subjective as the graphical
approach nor as cumbersome computationally
as the time-dependent variable approach.
Nevertheless, a GOF test may be too “global”
in that it may not detect specific departures
from the PH assumption that may be observed
from the other two approaches.

III. Graphical Approach 1:
Log–Log Plots

The two graphical approaches for checking
the PH assumption are comparing log–log
survival curves and comparing observed versus
expected survival curves. We first explain what
a �ln �ln survival curve is and how it is used.

A log–log survival curve is simply a transforma-
tion of an estimated survival curve that results
from taking the natural log of an estimated
survival probability twice. Mathematically, we
write a log–log curve as �ln(�ln Ŝ). Note that
the log of a probability such as Ŝ is always a
negative number. Because we can only take
logs of positive numbers, we need to negate
the first log before taking the second log. The
value for �ln(�ln Ŝ) may be positive or nega-
tive, either of which is acceptable, because we
are not taking a third log.1

EXAMPLE

h(t, X) = h0(t) exp[bSex þ d(Sex � t)]

d 6¼ 0 . PH assumption violated

GOF provides test statistic
Graphical: subjective
Time-dependent: computationally

cumbersome
GOF: global,may not detect specific

departures from PH

� log–log survival curves
� observed versus expected

survival curves

log�log Ŝ ¼ transformation of Ŝ
¼ �ln�ln Ŝ)

� ln Ŝ is negative ) � (ln Ŝ) is
positive.

� can’t take log of ln Ŝ, but can
take log of (�ln Ŝ).

� �ln(�ln Ŝ) may be positive or
negative.

1An equivalent way to write to �ln(�lnŜ) is
� ln

R t
0
h uð Þdu� �

, where
R t
0
h uð Þdu is called the “cumulative

hazard” function. This result follows from the formula
S tð Þ ¼ exp � R t

0
h uð Þdu� 	

, which relates the survivor func-
tion to the hazard function (see p. 15 in Chapter 1).
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As an example, in the graph at left, the
estimated survival probability of 0.54 is trans-
formed to a log–log value of 0.484. Similarly,
the point 0.25 on the survival curve is trans-
formed to a �ln �ln value of �0.327.

Note that because the survival curve is usually
plotted as a step function, so will the log–log
curve be plotted as a step function.

To illustrate the computation of a log–log value,
suppose we start with an estimated survival
probability of 0.54. Then the log–log trans-
formation of this value is �ln(�ln 0.54), which
is �ln(0.616), because ln(0.54) equals �0.616.
Now, continuing further, �ln(0.616) equals
0.484, because ln(0.616) equals �0.484. Thus,
the transformation �ln(�ln 0.54) equals 0.484.

As another example, if the estimated survival
probability is 0.25, then �ln(�ln 0.25) equals
�ln(1.386), which equals �0.327.

Note that the scale of the y-axis of an estimated
survival curve ranges between 0 and 1, whereas
the corresponding scale for a �ln(�ln) curve
ranges between �1 and þ1.

We now show why the PH assumption can be
assessed by evaluating whether or not log–log
curves are parallel. To do this, we must first
describe the log–log formula for the Cox PH
model.

EXAMPLE

S

−ln(−ln)S

1

0

0.54

0.484

−0.327

0.25 0t t

+

−

EXAMPLE

Ŝ = 0.54: want �ln(�ln 0.54)
�ln(�ln 0.54) = �ln(0.616)

since ln(0.54) = �0.616
�ln(0.616) = 0.484

since ln(0.616) = �0.484
Thus, �ln(�ln 0.54) = 0.484

ANOTHER EXAMPLE

Ŝ = 0.25: want �ln(�ln 0.25)
�ln(�ln 0.25) = �ln(1.386) = �0.327
Thus, �ln(�ln 0.25) = �0.327

y-axis scale:

1

0






þ1

Ŝ
�1







� ln 1� lnð ÞŜ

log–log Ŝ for the Cox PH model:
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We start with the formula for the survival curve
that corresponds to the hazard function for the
Cox PHmodel. Recall that there is amathemat-
ical relationship between any hazard function
and its corresponding survival function. We
therefore can obtain the formula shown here
for the survival curve for the Cox PH model.
In this formula, the expression S0(t) denotes
the baseline survival function that corresponds
to the baseline hazard function h0(t).

The log–log formula requires us to take logs of
this survival function twice. The first time we
take logs we get the expression shown here.

Now since S(t, X) denotes a survival probabil-
ity, its value for any t and any specification of
the vector X will be some number between
0 and 1. It follows that the natural log of any
number between 0 and 1 is a negative number,
so that the log of S(t, X) as well as the log of
S0(t) are both negative numbers. This is whywe
have to put a minus sign in front of this expres-
sion before we can take logs a second time,
because there is no such thing as the log of a
negative number.

Thus, when taking the second log, we must
obtain the log of �ln S(t, X), as shown here.
After using some algebra, this expression can
be rewritten as the sum of two terms, one of
which is the linear sum of the biXi and the
other is the log of the negative log of the
baseline survival function.

This second log may be either positive or
negative, and we aren’t taking any more logs,
so we actually don’t have to take a second
negative. However, for consistency’s sake, a
common practice is to put a minus sign in
front of the second log to obtain the �ln �ln
expression shown here. Nevertheless, some
software packages do not use a second minus
sign.

Cox PH hazard function:

h t;Xð Þ ¼ h0 tð Þe
Pp
i¼1

biXi

# From math

Cox PH survival function:

S t;Xð Þ ¼ S0 tð Þ½ �e
Pp
i¼1

biXi

Baseline survival function.

log–log) takes logs twice

log #1:

ln S t;Xð Þ ¼ e

Pp
i¼1

biXi � ln S0 tð Þ
0 � S t;Xð Þ � 1

ln(probability) = negative value, so
ln S(t,X) and ln S0(t) are negative.

But �ln S(t,X) is positive, which
allows us to take logs again.

log #2:

ln � ln Sðt;XÞ½ �

¼ ln �e

Pp
i¼1

biXi � ln S0 tð Þ
2
4

3
5

¼ ln e

Pp
i¼1

biXi

2
4

3
5þ ln � ln S0 tð Þ½ �

¼
Xp
i¼1

bi Xi þ ln � ln S0 tð Þ½ �

¼
Xp
i¼1

bi Xi þ ln � ln S0 tð Þ½ �

or

� ln � ln S t;Xð Þ½ �

¼ �
Xp
i¼1

bi Xi � ln � ln S0 tð Þ½ �
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Now suppose we consider two different speci-
fications of the X vector, corresponding to two
different individuals, X1 and X2.

Then the corresponding log–log curves for
these individuals are given as shown here,
where we have simply substituted X1 and X2

for X in the previous expression for the log–log
curve for any individual X.

Subtracting the second log–log curve from the
first yields the expression shown here. This
expression is a linear sum of the differences in
corresponding predictor values for the two
individuals. Note that the baseline survival
function has dropped out, so that the differ-
ence in log–log curves involves an expression
that does not involve time t.

Alternatively, using algebra, we can write the
above equation by expressing the log–log sur-
vival curve for individual X1 as the log–log
curve for individual X2 plus a linear sum term
that is independent of t.

The above formula says that if we use a Cox PH
model and we plot the estimated log–log sur-
vival curves for individuals on the same graph,
the two plots would be approximately parallel.
The distance between the two curves is the
linear expression involving the differences in
predictor values, which does not involve time.
Note, in general, if the vertical distance
between two curves is constant, then the curves
are parallel.

The parallelism of log–log survival plots for the
Cox PH model provides us with a graphical
approach for assessing the PH assumption.
That is, if a PH model is appropriate for a given
set of predictors, one should expect that empiri-
cal plots of log–log survival curves for different
individuals will be approximately parallel.

Two individuals:
X1 = (X11, X12,. . ., X1p)
X2 = (X21, X22,. . ., X2p)

ln � ln S t;X1ð Þ½ �

¼
Xp
i¼1

bi X1i þ ln � ln S0 tð Þ½ �

ln � ln S t;X2ð Þ½ �

¼
Xp
i¼1

bi X2i þ ln � ln S0 tð Þ½ �

8>>>>>>>><
>>>>>>>>:

ln � ln S t;X1ð Þ½ �
� lnð � ln S t;X2ð Þ½ �Þ

¼
Xp
i¼1

bi X1i � X2ið Þ

does not involve t

� ln � ln S t;X1ð Þ½ �
¼ ln � ln S t;X2ð Þ½ �

þ
Xp
i¼1

bi X1i � X2ið Þ

Graphical approach using log–log
plots: PH model is appropriate if
“empirical” plots of log–log sur-
vival curves are parallel.
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By empirical plots, we mean plotting log–log
survival curves based on Kaplan–Meier (KM)
estimates that do not assume an underlying
Cox model. Alternatively, one could plot
log–log survival curves which have been
adjusted for predictors already assumed to sat-
isfy the PH assumption but have not included
the predictor being assessed in a PH model.

As an example, suppose we consider the com-
parison of treatment and placebo groups in a
clinical trial of leukemia patients, where sur-
vival time is time, in weeks, until a patient
goes out of remission. Two predictors of
interest in this study are treatment group
status (1 = placebo, 0 = treatment), denoted as
Rx, and log white blood cell count (log WBC),
where the latter variable is being considered as
a confounder.

A Cox PH model involving both these predic-
tors would have the form shown at the left. To
assess whether the PH assumption is satisfied
for either or both of these variables, we would
need to compare log–log survival curves involv-
ing categories of these variables.

One strategy to take here is to consider the
variables one at a time. For the Rx variable,
this amounts to plotting log–log KM curves
for treatment and placebo groups and asses-
sing parallelism. If the two curves are approxi-
mately parallel, as shown here, we would
conclude that the PH assumption is satisfied
for the variable Rx. If the two curves intersect
or are not parallel in some other way, we would
conclude that the PH assumption is not satis-
fied for this variable.

For the log WBC variable, we need to categorize
this variable into categories – say, low, medium,
and high – and then compare plots of log–log
KM curves for each of the three categories. In
this illustration, the three log–log Kaplan–Meier
curves are clearly nonparallel, indicating that
the PH assumption is not met for log WBC.

Empirical plots: use �ln[�ln Ŝ]
where

1. Ŝ is a KM curve
2. Ŝ is an adjusted survival curve

for predictors satisfying the PH
assumption; predictor being
assessed not included in model

EXAMPLE

Clinical trial of leukemia patients:
T = weeks until patient goes out of
remission

Predictors (X’s):
Rx (= 1 if placebo, 0 if treatment)
log WBC

Cox PH model:

h(t, X) = h0(t)exp[b1Rx þ b2 log WBC]
Assessing PH assumption: compare
log–log survival curves for categories
of Rx and log WBC

One-at-a-time strategy: Rx variable

ln(−ln)S

Treatment

Placebo

t

One-at-a-time strategy: log WBC

ln(−ln)S

Low
Medium

High

t

Presentation: III. Graphical Approach 1: Log–Log Plots 171



The above examples are sketches of some of the
possibilities that could occur from compari-
sons of log–log curves. For the actual data set
containing 42 leukemia patients, computer
results are shown here for each variable sepa-
rately. Similar output using Stata, SAS, SPSS,
and R packages is provided in the Computer
Appendix.

We first show the log–log KM curves by treat-
ment, Rx. Notice that the two log–log curves
are roughly parallel, indicating that the Rx var-
iable satisfies the PH assumption when being
considered by itself.

Here we show the log–log KM curves by log
WBC, where we have divided this variable into
low (below 2.3), medium (between 2.3 and 3),
and high (above 3) values. Notice that there is
some indication of nonparallelism below 8 days,
but that overall the three curves are roughly
parallel. Thus, these plots suggest that the PH
assumption is more or less satisfied for the
variable log WBC, when considered alone.

As a third example, we consider the log–log KM
plots categorized by Sex from the remission
data. Notice that the two curves clearly inter-
sect, and are therefore noticeably nonparallel.
Thus, the variable, Sex, when considered by
itself, does not appear to satisfy the PH assump-
tion and therefore should not be incorporated
directly into a Cox PH model containing the
other two variables, Rx and log WBC.

The above examples suggest that there are
some problems associated with this graphical
approach for assessing the PH assumption. The
main problem concerns how to decide “how
parallel is parallel?” This decision can be quite
subjective for a given data set, particularly if the
study size is relatively small. We recommend
that one should use a conservative strategy for
this decision by assuming the PH assumption
is satisfied unless there is strong evidence of
nonparallelism of the log–log curves.

EXAMPLE: Computer Results

3

2

1

0

4

2

−2

−4

0

4

2

−2

−4

0

0 8 16 24 32

0 8 16 24 32

0 8 16 24 32

Placebo

Treatment

Low

Medium

Males

Females

High

PH OK for Rx

PH OK for
log WBC

PH not satisfied
for Sex

Remission data:

Remission data: log–log
KM curves by log WBC 

Remission data: log–log
KM curves by Sex

log–log KM curves by Rx

−1

−2

−3

Problems with log–log survival
curve approach:

How parallel is parallel?
Recommend:

� subjective decision
� conservative strategy: assume

PH is OK unless strong
evidence of nonparallelism
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Another problem concerns how to categorize a
continuous variable like log WBC. If many cate-
gories are chosen, the data “thins out” in each
category, making it difficult to compare different
curves. [Also, one categorization into, say, three
groups may give a different graphical picture
fromadifferent categorization into three groups.]

In categorizing continuous variables, we recom-
mend that the number of categories be kept
reasonably small (e.g., two or three) if possible,
and that the choice of categories be as meaning-
ful as possible and also provide reasonable bal-
ance of numbers (e.g., as when using terciles).

In addition to the two problems just described,
another problem with using log–log survival
plots concerns how to evaluate the PH assump-
tion for several variables simultaneously.

One strategy for simultaneous comparisons is
to categorize all variables separately, form
combinations of categories, and then compare
log–log curves for all combinations on the
same graph.

A drawback of this strategy is that the data will
again tend to “thin out” as the number of com-
binations gets even moderately large. Also,
even if there are sufficient numbers for each
combined category, it is often difficult to deter-
mine which variables are responsible for any
nonparallelism that might be found.

As an example of this strategy, suppose we use
the remission data again and consider both Rx
and log WBC together. Because we previously
had two categories of Rx and three categories
of log WBC, we get a total of six combined
categories, consisting of treated subjects with
low log WBC, placebo subjects with low log
WBC, treated subjects with medium log WBC,
and so on.

How parallel is parallel?
Recommend:

� many categories ) data “thins
out”

� different categorizations may
give different graphical
pictures

Recommend:

� small # of categories (2 or 3)
� meaningful choice
� reasonable balance (e.g.,

terciles)

How to evaluate several variables
simultaneously?

Strategy:

� categorize variables separately
� form combinations of

categories
� compare log–log curves on

same graph

Drawback:

� data “thins out”
� difficult to identify variables

responsible for nonparallelism

EXAMPLE

Remission Data:

Treatment

Placebo

Low Medium High
log WBC

Rx
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The computer results are shown here for the
log–log curves corresponding to each of the six
combinations of Rx with log WBC. Notice that
there are several points of intersection among
the six curves. Therefore, these results suggest
that the PH assumption is not satisfied when
considering Rx and log WBC together.

However, the sample sizes used to estimate
these curves are quite small, ranging between
four subjects for group 4 (Rx = 1, log WBC =
low) to 12 subjects for group 6 (Rx = 1, log
WBC = high), with the total study size being
42. Thus, for this small study, the use of six
log–log curves provides unreliable information
for assessing the PH assumption.

An alternative graphical strategy for consider-
ing several predictors together is to assess the
PH assumption for one predictor adjusted for
other predictors that are assumed to satisfy the
PH assumption. Rather than using Kaplan–
Meier curves, this involves a comparison of
adjusted log–log survival curves.

As an example, again we consider the remis-
sion data and the predictors Rx and log WBC.
To assess the PH assumption for Rx adjusted
for log WBC, we would compare adjusted
log–log survival curves for the two treatment
categories, where each adjusted curve is
derived from a PH model containing log WBC
as a predictor. In computing the adjusted sur-
vival curve, we need to stratify the data by
treatment, fit a PH model in each stratum,
and then obtain adjusted survival probabilities
using the overall mean log WBC in the esti-
mated survival curve formula for each stratum.

For the remission data example, the estimated
log–log survival curves for the two treatment
groups adjusted for log WBC are shown here.
Notice that these two curves are roughly paral-
lel, indicating that the PH assumption is satis-
fied for treatment.

EXAMPLE: (continued)

Log–logdKM curvesby six combinations
of Rx by log WBC

3

4

4

3

3

2

2

5

5

6

6

2

1

0

0 8 16 24

−1

−2

−3

Plots suggestPHnot satisfied.However,
the study is small, i.e., plots are
unreliable.

Alternative strategy:

Adjust for predictors already satis-
fying PH assumption, i.e., use
adjusted log–log Ŝ curves

EXAMPLE

Remission data:
� compare Rx categories adjusted

for log WBC
� fit PH model for each Rx stratum
� obtain adjusted survival curves

using overall mean of log WBC

Log–log Ŝ curves for Rx groups using
PH model adjusted for log WBC

3

2

1

0

0 8 16 24 32

Treatment

Placebo−0

−2
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As another example, we consider adjusted
log–log survival curves for three categories of
logWBC, adjusted for the treatment status (Rx)
variable. The adjusted survival probabilities in
this case use the overall meanRx score, i.e., 0.5,
the proportion of the 42 total subjects that are
in the placebo group (i.e., half the subjects have
a score of Rx = 1).

The three log–log curves adjusted for treatment
status are shown here. Although two of these
curves intersect early in follow-up, they do not
suggest a strong departure from parallelism
overall, suggesting that the PH assumption is
reasonable for log WBC, after adjusting for
treatment status.

As a third example, again using the remission
data, we assess the PH assumption for Sex,
adjusting for both treatment status and log
WBC in the model. This involves obtaining
log–log survival curves for males and females
separately, using a PH model that contains
both treatment status and log WBC. The adjust-
ment uses the overall mean treatment score and
the overall mean log WBC score in the formula
for the estimated survival probability.

The estimated log–log survival curves for Sex,
adjusted for treatment and log WBC are shown
here. These curves clearly cross, indicating that
the PH assumption is not satisfied for Sex, after
adjusting for treatment and log WBC.

We have thus described and illustrated one of
the two graphical approaches for checking the
PH assumption, that is, using log–log survival
plots. In the next section, we describe an alter-
native approach that compares “observed”
with “expected” survival curves.

IV. Graphical Approach 2:
Observed Versus
Expected Plots

The use of observed versus expected plots
to assess the PH assumption is the graphical
analog of the goodness-of-fit (GOF) testing
approach to be described later, and is therefore
a reasonable alternative to the log–log survival
curve approach.

EXAMPLE: (continued)

Log–log Ŝ curves for log WBC groups
using PH model adjusted for Rx

2

1

0

0 8 16 24 32

−1

−2

3

High

Medium
Low

(Rx=0.5)

Remission data:
Assess PH assumption for Sex:

� use PH model containing Rx and
log WBC

� use Rx and log WBC in survival
probability formula

Log–log Ŝ curves for Sex adjusted for
Rx and log WBC

Females

Males

7

6

5

4

3

2

1
0 8 16 24 32

ü 1. log–log survival curves
2. observed versus expected

survival curves

Graphical analog of GOF test
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As with the log–log approach, the observed ver-
sus expected approach may be carried out
using either or both of two strategies—(1)
assessing the PH assumption for variables
one-at-a-time, or (2) assessing the PH assump-
tion after adjusting for other variables. The
strategy which adjusts for other variables uses
a stratified Cox PH model to form observed
plots, where the PH model contains the vari-
ables to be adjusted and the stratified variable
is the predictor being assessed. The stratified
Cox procedure is described in Chapter 5.

Here, we describe only the one-at-a-time strat-
egy, which involves using KM curves to obtain
observed plots.

Using the one-at-a-time strategy, we first must
stratify our data by categories of the predictor
to be assessed. We then obtain observed plots
by deriving the KM curves separately for each
category.

As an example, for the remission data on 42
leukemia patients we have illustrated earlier,
the KM plots for the treatment and placebo
groups, with 21 subjects in each group, are
shown here. These are the “observed” plots.

To obtain “expected” plots, we fit a Cox PH
model containing the predictor being assessed.
We obtain expected plots by separately substi-
tuting the value for each category of the predic-
tor into the formula for the estimated survival
curve, thereby obtaining a separate estimated
survival curve for each category.

As an example, again using the remission data,
we fit the Cox PH model with Rx as its only
variable. Using the corresponding survival
curve formula for this Cox model, as given in
the box at the left, we then obtain separate
expected plots by substituting the values of
0 (for treatment group) and 1 (for placebo
group). The expected plots are shown here.

Two strategies:

1. One-at-a-time: uses KM curves
to obtain observed plots

2. Adjusting for other variables:
uses stratified Cox PHmodel to
obtain observed plots (see
Chapter 5)

One-at-a-time:

� stratify data by categories of
predictor

� obtain KM curves for each
category

EXAMPLE: Remission Data

Treatment

KM (Observed) Plots by Rx Group

Expected Survival Plots by Rx Group
Using PH Model

Treatment

Placebo

Placebo

Weeks

Weeks

0
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1 h(t, X ) = h0(t) eβ1Rx

 = [ 0(t)]exp[βˆ 1Rx]

8 16 24 32

0 8 16 24 32
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To compare observed with expected plots we
then put both sets of plots on the same graph as
shown here.

If for each category of the predictor being
assessed, the observed and expected plots are
“close” to one another, we then can conclude
that the PH assumption is satisfied. If, how-
ever, one or more categories show quite dis-
crepant observed and expected plots, we
conclude that the PH assumption is violated.

For the example shown above, observed and
expected curves appear to be quite close for
each treatment group. Thus, wewould conclude
using this graphical approach that the treat-
ment variable satisfies the PH assumption.

An obvious drawback to this graphical
approach is deciding “how close is close”
when comparing observed versus expected
curves for a given category. This is analogous
to deciding “how parallel is parallel” when
comparing log–log survival curves. Here, we
recommend that the PH assumption be consid-
ered as not satisfied only when observed and
expected plots are strongly discrepant.

EXAMPLE: (continued)

Observed Versus Expected Plots by Rx

S
1

0.8

0.6

0.4

0.2

0
0 8 16 24 32

Placebo

Treatment

Expected
Observed

If observed and expected plots are:

� close, complies with PH
assumption

� discrepant, PH assumption
violated

Example: Remission Data (continued)

Observed and expected plots are close
for each treatment group.
Conclude PH assumption not violated.

Drawback: How close is close?

Recommend: PH not satisfied only
when plots are strongly discrepant.
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As another example, again using the remission
data, we consider observed versus expected
plots by Sex, as shown here. Note that the
observed plots for males and females, which
are described by the thicker lines, cross at
about 12 weeks, whereas the expected plots
don’t actually intersect, with the female plot
lying below the male plot throughout follow-
up. Moreover, for males and females sepa-
rately, the observed and expected plots are
quite different from one another.

Thus, the above plots suggest that the PH
assumption is not satisfied for the variable
Sex. We came to the same conclusion when
using log–log survival curves, which crossed
one another and were therefore clearly non-
parallel.

When using observed versus expected plots to
assess the PH assumption for a continuous
variable, observed plots are derived, as for cat-
egorical variables, by forming strata from cate-
gories of the continuous variable and then
obtaining KM curves for each category.

However, for continuous predictors, there are
two options available for computing expected
plots. One option is to use a Cox PH model
which contains k � 1 dummy variables to indi-
cate k categories. The expected plot for a given
category is then obtained as an adjusted sur-
vival curve by substituting the values for the
dummy variables that define the given category
into the formula for the estimated survival
curve, as shown here for category c.

Example: Remission Data

Observed Versus Expected Plots by Sex

S
1

0.8

0.6

0.4

0.2

0
0 8 16 24 32

Males

Females

Expected
Observed

PH assumption not satisfied for Sex.
Sameconclusionaswith log–logcurves.

Continuous variable:

� form strata from categories
� observed plots are KM curves

for each category

� two options for expected plots
1. Use PH model with k � 1

dummy variables Xc for k
categories, i.e.,

h t;Xð Þ¼ h0 tð Þ exp
Xk�1

i¼1

bi XciÞ
 

Obtain adjusted survival
curve:

Ŝ t;Xcð Þ ¼ Ŝ0 tð Þ� 	exp P b̂iXcið Þ

where
Xc = (Xc1, Xc2,. . ., Xc,k�1)
gives values of dummy
variables for category c.
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The second option is to use a Cox PH model
containing the continuous predictor (say, X)
being assessed. Expected plots are then
obtained as adjusted survival curves by spe-
cifying predictor values that distinguish cate-
gories, as, for example, when using mean
predictor values for each category.

As an example to illustrate both options, we
consider the continuous variable log WBC
from the remission data example. To assess
the PH assumption for this variable, we would
first stratify logWBC into, say, three categories
– low, medium, and high. The observed plots
would then be obtained as KM curves for each
of the three strata, as shown here.

Using option 1, expected plots would be
obtained by fitting a Cox PH model containing
two dummy variables X1 and X2, as shown
here, where X1 takes the values 1 if high or
0 if other and X2 takes the values 1 if medium
or 0 if other. Thus, when log WBC is high, the
values of X1 and X2 are 1 and 0, respectively;
whereas when log WBC is medium, the values
are 0 and 1, respectively; and when log WBC is
low, the values are both 0.

The expected survival plots for high, medium,
and low categories are then obtained by sub-
stituting each of the three specifications of
X1 and X2 into the formula for the estimated
survival curve, and then plotting the three
curves.

Options for a continuous variable:

2. Use PH model:
h(t, X) = h0(t) exp(b X)
so X = X

Continuous
Obtain adjusted survival curve:

Ŝ t;Xc

� � ¼ Ŝ0 tð Þ� 	exp b̂Xcð Þ

where Xc denotes the mean value
for the variable Xwithin category c.

Example: Remission Data

Observed (KM) Plots by log WBC
Categories

S
1

0.8

0.6

0.4

0.2

0
0 8 16 24

Low

Medium
High

32

Option 1:
h(t, X) ¼ h0(t) exp(b1X1 þ b2X2)

where X1 ¼ 1 if high

0 if other
X2 ¼ 1 if medium

0 if other

��

so that
high= (1,0);medium=(0,1); low=(0,0)
Expected survival plots:

X1¼ 1; X2¼ 0 : Ŝ t; Xhigh

� �¼ Ŝ0 tð Þ� 	exp b̂1ð Þ

X1¼ 0; X2¼ 1 : Ŝ t; Xmediumð Þ¼ Ŝ0 tð Þ� 	exp b̂2ð Þ

X1¼ 0; X2¼ 0 : Ŝ t; Xlowð Þ¼ Ŝ0 tð Þ� 	
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The expected plots using option 1 (the dummy
variable approach) are shown here for the
three categories of log WBC.

Here we put the observed and expected plots on
the same graph. Although there are some dis-
crepancies, particularly early in follow-up for
the low log WBC category, these plots suggest
overall that the PH assumption is satisfied for
log WBC.

Using option 2, expected plots would be
obtained by first fitting a Cox PH model con-
taining the continuous variable log WBC, as
shown here.

Adjusted survival curves are then obtained for
specified values of log WBC that summarize
the three categories used to form observed
curves. Here, we find that the mean log WBC
scores for low, medium, and high categories
are, respectively, 1.71, 2.64, and 3.83. These
values are substituted into the estimated sur-
vival curve formula as shown here.

Here are the observed and expected plots using
option 2. As with option 1, although there are
some discrepancies within categories, overall,
these plots suggest that the PH assumption is
satisfied for the log WBC variable.

EXAMPLE: (continued)

Expected Plots for log WBC Using
Option 1 (Dummy Variables)

S
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High Medium
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Observed Versus Expected Plots Using
Option 1
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Medium

Expected
Observed

Low

Option 2: Treat logWBC as continuous
h(t, X) = h0(t)exp[b(log WBC)]

S(t, Xhigh) = [S0(t)]exp[3.83β]

S(t, Xmed) = [S0(t)]exp[2.64β]

S(t, Xlow) = [S0(t)]exp[1.71β]

log WBChigh = 3.83:

log WBClow = 1.71:

log WBCmed = 2.64:

Observed Versus Expected Plots for
log WBC Using Option 2.

S
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0.4

0.2

0
0 8 16 24 32

High Medium

Low
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V. The Goodness of Fit
(GOF) Testing Approach

The GOF testing approach is appealing because
it provides a test statistic and p-value for
assessing the PH assumption for a given predic-
tor of interest. Thus, the researcher can make
a more objective decision using a statistical test
than is typically possible when using either of
the two graphical approaches described above.

A number of different tests for assessing the PH
assumption have been proposed in the litera-
ture. We present the test of Harrel and Lee
(1986), a variation of a test originally proposed
by Schoenfeld (1982) and based on the residuals
defined by Schoenfeld, now called the Schoen-
feld residuals.

For each predictor in the model, Schoenfeld
residuals are defined for every subject who
has an event. For example, consider a Cox PH
model with three predictors: RX, LOGWBC,
and SEX. Then there are three Schoenfeld resi-
duals defined for each subject who has an
event, one for each of the three predictors.

Suppose subject i has an event at time t. Then
her Schoenfeld residual for LOGWBC is her
observed value of log white blood cell count
minus a weighted average of the log white
blood cell counts for the other subjects still at
risk at time t. The weights are each subject’s
hazard.

The idea behind the statistical test is that if the
PH assumption holds for a particular covar-
iate then the Schoenfeld residuals for that
covariate will not be related to survival time.

Statistical test appealing

� Provides p-value
� More objective decision than

when using graphical approach

Test of Harrel and Lee (1986)

� Variation of test of Schoenfeld
� Uses Schoenfeld residuals

Schoenfeld residuals defined for

� Each predictor in model
� Every subject who has event

Consider Cox PH model
h(t,X) = h0(t)exp(b1RX

þ b2log WBC þ b3SEX)
3 predictors ! 3 Schoenfeld

residuals for each
subject who has
event

Schoenfeld residual for ith subject
for LOGWBC:

Observed LOGWBC
– LOGWBC weighted average

Weights are other subjects’ hazard
(from subjects still at risk)

Underlying idea of test
If PH holds then Schoenfeld resi-
duals uncorrelated with time
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The implementation of the test can be thought
of as a three-step process.

Step 1. Run a Cox PH model and obtain
Schoenfeld residuals for each predictor.

Step 2. Create a variable that ranks the order of
failures. The subject who has the first (earliest)
event gets a value of 1, the next gets a value of 2,
and so on.

Step 3. Test the correlation between the
variables created in the first and second steps.
The null hypothesis is that the correlation
between the Schoenfeld residuals and ranked
failure time is zero.

Rejection of the null hypothesis leads to a con-
clusion that the PH assumption is violated.

The implementation of the test for the PH
assumption in Stata, SAS, SPSS, and R is
shown in the Computer Appendix. Stata uses
a slight variation of the test we just described in
that it uses the scaled Schoenfeld residual
rather than the Schoenfeld residual (Grambsch
and Therneau, 1994). The tests typically (but
not always) yield similar results.

To illustrate the statistical test approach, we
return to the remission data example. The
printout on the left gives p-values P(PH) for
treatment group and log WBC variables based
on fitting a Cox PHmodel containing these two
variables.

The P(PH) values are quite high for both vari-
ables, suggesting that both variables satisfy
the PH assumption. Note that each of these
p-values tests the assumption for one variable
given that the other predictors are included in
the model. For example, the P(PH) of 0.917
assesses the PH assumption for Rx, assuming
the PH assumption is satisfied for log WBC.

Steps for test implementation

1. Obtain Schoenfeld residuals
2. Rank failure times
3. Test correlation of residuals to

ranked failure time H0: r = 0

H0 rejected
Conclude PH assumption violated

PH test in Stata, SAS, SPSS, R
shown in Computer Appendix

Stata uses scaled Schoenfeld
residuals rather than Schoenfeld
residuals (typically similar results)

EXAMPLE: Remission Data

Column name. Coeff. StErr. P(PH)

Rx 1.294 0.422 0.917
log WBC 1.604 0.329 0.944

Both variables satisfy PH assumption.

Note: P(PH) = 0.917 assesses PH for
Rx, assuming PH OK for log WBC.
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As another example, consider the computer
results shown here for a Cox PH model con-
taining the variable SEX in addition to log
WBC and treatment group. The P(PH) values
for log WBC and treatment group are still non-
significant. However, the P(PH) value for SEX
is significant below the 0.05 level. This result
suggests that log WBC and treatment group
satisfy the PH assumption, whereas SEX does
not. We came to the same conclusion about
these variables using the graphical procedures
described earlier.

An important point concerning a testing
approach is that the null hypothesis is never
proven with a statistical test. The most that
may be said is that there is not enough evidence
to reject the null. A p-value can be driven
by sample size. A gross violation of the null
assumption may not be statistically significant
if the sample is very small. Conversely, a slight
violation of the null assumption may be highly
significant if the sample is very large.

A statistical test offers a more objective
approach for assessing the PH assumption
compared to the subjectivity of the graphical
approach. However, the graphical approach
enables the researcher to detect specific kinds
of departures from the PH assumption; the
researcher can see what is going on from the
graph. Consequently, we recommend that
when assessing the PH assumption, the inves-
tigator use both graphical procedures and sta-
tistical testing before making a final decision.

VI. Assessing the PH
Assumption Using
Time-Dependent
Covariates

When time-dependent variables are used to
assess the PH assumption for a time-
independent variable, the Coxmodel is extended
to contain product (i.e., interaction) terms
involving the time-independent variable being
assessed and some function of time.

EXAMPLE

Column name Coeff. StErr. P(PH)

Rx 1.391 0.457 0.935
log WBC 1.594 0.330 0.828
Sex 0.263 0.449 0.038

log WBC and Rx satisfy PH.

Sex does not satisfy PH.

(Same conclusions using graphical
approaches).

Statistical Tests

Null is never proven

� May say not enough evidence to
reject

p-value can be driven by sample size

� Small sample – gross violation
of null may not be significant

� Large sample – slight violation
of null may be highly significant

Test – more objective
Graph – more subjective, but can

detect specific violations
Recommend – Use both graphs and
tests

Extended Cox model:
contains product terms of the form
X � g(t), where g(t) is a function of
time.
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When assessing predictors one-at-a-time, the
extended Cox model takes the general form
shown here for the predictor X.

One choice for the function g(t) is simply g(t)
equal to t, so that the product term takes the
form X � t. Other choices for g(t) are also pos-
sible, for example, log t, or the “heaviside func-
tion” shown at the left.

Using the above one-at-a-timemodel, we assess
the PH assumption by testing for the signifi-
cance of the product term. The null hypothesis
is therefore “d equal to zero.” Note that if the
null hypothesis is true, the model reduces to a
Cox PHmodel containing the single variable X.

The test can be carried out using either a Wald
statistic or a likelihood ratio statistic. In either
case, the test statistic has a chi-square distribu-
tion with one degree of freedom under the null
hypothesis.

For example, if the PH assumption is being
assessed for Sex, a Cox model might be
extended to include the variable Sex � t in addi-
tion to Sex. If the coefficient of the product term
turns out to be significant, we can conclude that
the PH assumption is violated for Sex.2

In addition to a one-at-a-time strategy, the
extended Cox model can also be used to assess
the PH assumption for several predictors
simultaneously as well as for a given predictor
adjusted for other predictors in the model.

One-at-a-time model:

h(t,X) = h0(t)exp[b X þ d(X�g(t))]

Some choices for g(t):

g tð Þ ¼ t

g tð Þ ¼ log t

g tð Þ ¼ 1 if t 	 t0

0 if t < t0

� ðheaviside
functionÞ

H0: d = 0
Under H0, the model reduces to:

h(t,X) = h0(t)exp[b X]

Use either Wald statistic or
likelihood ratio statistic:
w2 with 1 df under H0

Example

h(t,X) = h0(t)exp[b1Sex þ b2 (Sex � t)]

b2 6¼ 0 = PH assumption violated

Strategies for assessing PH:

� one-at-a-time
� several predictors

simultaneously
� for a given predictor adjusted

for other predictors

2 In contrast, if the test for H0: b2 = 0 is nonsignificant,
we can conclude only that the particular version of the
extended Cox model being considered is not supported
by the data.
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To assess the PH assumption for several
predictors simultaneously, the form of the
extended model is shown here. This model
contains the predictors being assessed as
main effect terms and also as product terms
with some function of time. Note that different
predictors may require different functions of
time; hence, the notation gi (t) is used to define
the time function for the ith predictor.

With the above model, we test for the PH
assumption simultaneously by assessing the
null hypothesis that all the di coefficients are
equal to zero. This requires a likelihood ratio
chi-square statistic with p degrees of freedom,
where p denotes the number of predictors
being assessed. The LR statistic computes the
difference between the log likelihood statistic
(i.e., �2 ln L) for the PH model and the log
likelihood statistic for the extended Cox
model. Note that under the null hypothesis,
the model reduces to the Cox PH model
shown here.

As an example, we assess the PH assumption
for the predictors Rx, log WBC, and Sex from
the remission data considered previously. The
extended Cox model is given as shown here,
where the functions gi (t) have been chosen to
be the same “heaviside” function defined by g(t)
equals 1 if t is 7 weeks or more and g(t) equals
0 if t is less than 7 weeks. The null hypothesis is
that all three d coefficients are equals to zero.
The test statistic is a likelihood-ratio chi-square
with 3 degrees of freedom.

If the above test is found to be significant, then
we can conclude that the PH assumption is not
satisfied for at least one of the predictors in the
model. To determine which predictor(s) do not
satisfy the PH assumption, we could proceed
by backward elimination of nonsignificant
product terms until a final model is attained.

Several predictors simultaneously:

h t;Xð Þ ¼ h0 tð Þ exp
Xp
i¼1

biXi½
 

þdi Xi� gi tð Þð Þ�
!

gi(t) = function of time for ith
predictor

H0: d1 = d2 = . . . = dp = 0

LR ¼� 2 ln LPH model

� �2 ln Lext: Cox modelð Þ
_
w2p underH0

Cox PH (reduced) model:

h t;Xð Þ ¼ h0 tð Þ exp
Xp
i¼1

biXi

 !

EXAMPLE: Remission Data

h t;Xð Þ ¼ h0 tð Þ exp b1 Rxð Þ½
þ b2 log WBCð Þ þ b3 Sexð Þ
þ d1 Rx� g tð Þð Þ
þ d2 log WBC� g tð Þð Þ
þ d3 Sex� g tð Þð Þ�

where g tð Þ ¼ 1 if t 	 7

0 if t < 7

�

H0: d1 = d2 = d3 = 0

LR _
w2 with 3 df under H0

If test is significant, use backward
elimination to find predictors not
satisfying PH assumption.
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Note that the use of a heaviside function for g(t)
in the above example yields different expres-
sions for the hazard function depending on
whether t is greater than or equal to 7 weeks
or t is less than 7 weeks. Chapter 6 provides
further details on the properties of heaviside
functions, and also provides numerical results
from fitting extended Cox models.

We show here an extended Cox model that
can be used to evaluate the PH assumption
for a given predictor adjusted for predictors
already satisfying the PH assumption. The
predictor of interest is denoted as X*, and the
predictors considered to satisfy the PH
assumption are denoted as Xi. The null hypoth-
esis is that the coefficient d* of the product
term X*g(t) is equal to zero. The test statistic
can either be a Wald statistic or a likelihood
ratio statistic, with either statistic having a chi-
square distribution with 1 degree of freedom
under the null hypothesis.

As an example, suppose, again considering the
remission data, we assess the PH assumption
for the variable, Sex, adjusted for the variables
Rx and log WBC, which we assume already
satisfy the PH assumption. Then, the extended
Cox model for this situation is shown here.

To carry out the computations for any of the
likelihood ratio tests described above, two
different types of models, a PH model and an
extended Cox model, need to be fit. See the
Computer Appendix for details on how the
extended Cox model is fit using SAS, Stata,
SPSS, and R.

The primary drawback of the use of an extended
Cox model for assessing the PH assumption
concerns the choice of the functions gi(t) for
the time-dependent product terms in the model.
This choice is typically not clear-cut, and it is
possible that different choices, such as g(t) equal
to t versus log t versus a heaviside function, may
result in different conclusions about whether
the PH assumption is satisfied.

Heaviside function:

g tð Þ ¼ 1 if t 	 7

0 if t < 7

�

h(t,X) differs for t 	 7 and t < 7.

Properties of heaviside functions
and numerical results are described
in Chapter 6.

Assessing PH for a given predictor
adjusted for other predictors:

h t;Xð Þ ¼ h0 tð Þ exp
Xp�1

i¼1

biXi þ b�X�
"

þ d�
�
X� � gðtÞ�

#

X* = Predictor of interest
H0: d* = 0
Wald or LR statistic _
w2 with 1 df

Example: Remission Data

for Sex, adjusted for Rx and log WBC:

h t;Xð Þ ¼ exp b1Rx½
þ b2log WBCþ b�Sex
þ d�ðSex� g tð ÞÞ�

Two models for LR test of PH:

1. Cox PH model
2. extended Cox model

See Computer Appendix for SAS,
Stata, SPSS, and R

Drawback: choice of gi(t)

Different choices may lead to
different conclusions about PH
assumption.
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Further discussion of the use of time-dependent
covariates in an extended Coxmodel is provided
in Chapter 6.

This presentation is now complete. We have
described and illustrated three methods for
assessing the PH assumption: graphical, good-
ness-of-fit (GOF), and time-dependent covariate
methods. Each of these methods has both
advantages and drawbacks. We recommend
that the researcher use at least two of these
approaches when assessing the PH assumption.

Chapters We suggest that the reader review this presen-
tation using the detailed outline that follows.
Then answer the practice exercises and the test
that follow.

The next Chapter (5) is entitled “The Stratified
Cox Procedure.” There, we describe how to use
a stratification procedure to fit a PH model
when one or more of the predictors do not
satisfy the PH assumption.

Chapter 6: Time-dependent
covariates

This presentation:
Three methods for assessing PH.

i. graphical
ii. GOF
iii. time-dependent covariates

Recommend using at least two
methods.

1. Introduction to Survival
Analysis

2. Kaplan–Meier Survival
Curves and the Log–Rank
Test

3. The Cox Proportional
Hazards Model and Its
Characteristics

ü4. Evaluating the Proportional
Hazards Assumption

Next:

5. The Stratified Cox Procedure
6. Extension of the Cox

Proportional Hazards Model
for Time-Dependent Variables

Presentation: Chapters 187



Detailed
Outline

I. Background (pages 164–165)

A. The formula for the Cox PH model:

h t;Xð Þ ¼ h0 tð Þ exp
Xp
i¼1

biXi

" #

B. Formula for hazard ratio comparing two indi-
viduals,

X� ¼ X�
1; X

�
2; . . . ;X

�
p

� �
and X = (X1, X2,. . ., Xp):

h t;X�ð Þ
h t;Xð Þ ¼ exp

Xp
i¼1

bi X
�
i � Xi

� �" #

C. Adjusted survival curves using the Cox PH
model:

Sðt;XÞ ¼ ½S0ðtÞ�exp½
P

b1X1�

i. To graph S (t, X), must specify values for
X ¼ (X1, X2,. . ., Xp).

ii. To obtain “adjusted” survival curves, usually
use overall mean values for the X’s being
adjusted.

D. The meaning of the PH assumption

i. Hazard ratio formula shows that hazard
ratio is independent of time:

ĥ t;X�ð Þ
ĥ t;Xð Þ ¼ ŷ

ii. Hazard ratio for two X’s are proportional:

ĥ t;X�ð Þ ¼ ŷĥ t;Xð Þ
II. Checking the proportional hazards assumption:

overview (pages 165–167)

A. Three methods for checking the PH assumption:

i. Graphical: compare�ln�ln survival curves
or observed versus predicted curves.

ii. Goodness-of-fit test: use a large sample Z
statistic.

iii. Time-dependent covariates: use product (i.e.,
interaction) terms of the form X � g(t).

B. Abbreviated illustrations of each method are
provided.

III. Graphical approach 1: log–log plots
(pages 167–175)

A. A log–log curve is a transformation of an esti-
mated survival curve, where the scale for a
log–log curve is �1 to þ1.
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B. The log–log expression for the Cox model
survival curve is given by

ln � lnS t; Xð Þ½ � ¼
Xp
i¼1

bi Xi þ ln � ln S0 tð Þ½ �

C. For the Cox model, the log–log survival curve
for individual X1 can be written as the log–log
curve for individual X2 plus a linear sum term
that is independent of time t. This formula is
given by

ln � lnS t;X1ð Þ½ �

¼ ln � lnS t;X2ð Þ½ � þ
Xp
i¼1

bi X1i � X2ið Þ

D. The above log–log formula can be used to check
the PH assumption as follows: the PH model is
appropriate if “empirical” plots of log–log sur-
vival curves are parallel.

E. Two kinds of empirical plots for �ln �ln Ŝ:
i. Ŝ is a KM curve

ii. Ŝ is an adjusted survival curve where pre-
dictor being assessed is not included in the
Cox regression model.

F. Several examples of log–log plots are provided
using remission data from a clinical trial of
leukemia patients.

G. Problems with log–log curves:

i. How parallel is parallel?

ii. How to categorize a continuous variable?

iii. How to evaluate several variables simulta-
neously?

H. Recommendation about problems:

i. Use small number of categories, meaning-
ful choice, reasonable balance.

ii. With several variables, two options:

a. Compare log–log curves from combina-
tions of categories.

b. Adjust for predictors already satisfying
PH assumption.

IV. Graphical approach 2: observed versus expected
plots (pages 175–180)

A. Graphical analog of the GOF test.

B. Two strategies

i. One-at-a-time: uses KM curves to obtain
observed plots.

ii. Adjusting for other variables: uses stratified
Cox PH model to obtain observed plots.
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C. Expected plots obtained by fitting a Cox model
containing the predictor being assessed; substi-
tute into the fitted model the value for each
category of the predictor to obtain the expected
value for each category.

D. If observed and expected plots are close, con-
clude PH assumption is reasonable.

E. Drawback: how close is close?

F. Recommend: conclude PH not satisfied only if
plots are strongly discrepant.

G. Another drawback: what to do if assessing con-
tinuous variable.

H. Recommend for continuous variable:

i. Form strata from categories.

ii. Observed plots are KM curves for each cat-
egory.

iii. Two options for expected plots:

a. Use PH model with k � 1 dummy vari-
ables for k categories.

b. Use PH model with continuous predic-
tor and specify predictor values that
distinguish categories.

V. The goodness-of-fit (GOF) testing approach
(pages 181–183)

A. Appealing approach because

i. provides a test statistic (p-value).

ii. researcher can make clear-cut decision.

B. References

i. methodological: Schoenfeld (1982), Harrel
and Lee (1986).

ii. SAS and Stata use different GOF formulae.

C. The method:

i. Schoenfeld residuals for each predictor
uses a chi-square statistic with 1 df.

ii. Correlations between Schoenfeld’s resi-
duals and ranked failure times.

iii. If p-value small, then departure from PH.

D. Examples using remission data.

E. Drawbacks:

i. global test: may fail to detect a specific kind
of departure from PH; recommend using
both graphical and GOF methods.

ii. several strategies to choose from, with no
one strategy clearly preferable (one-at-a-
time, all variables, each variable adjusted
for others).
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VI. Assessing the PH assumption using time-
dependent covariates (pages 183–187)

A. Use extended Cox model: contains product
terms of form X � g(t), where g(t) is function
of time, e.g., g(t) ¼ t, or log t, or heaviside func-
tion.

B. One-at-a-time model:

h(t, X) ¼ h0(t) exp[bX þ dXg(t)]
TestH0: d¼ 0 usingWald or LR test (chi- square
with 1 df).

C. Evaluating several predictors simultaneously:

h t; Xð Þ ¼ h0 tð Þ exp
Xp
i¼1

biXi þ diXigi tð Þ½ �
 !

where gi(t) is function of time for ith predictor.
Test H0: d1 ¼ d2 ¼ ··· ¼ dp ¼ 0 using LR
(chi-square) test with p df.

D. Examples using remission data.

E. Two computer programs, required for test:

i. Cox PH model program.

ii. Extended Cox model program.

F. Drawback: choice of g(t) not always clear; dif-
ferent choices may lead to different conclusions
about PH assumption.

Practice
Exercises

The dataset “vets.dat” considers survival times in days
for 137 patients from the Veteran’s Administration Lung
Cancer Trial cited by Kalbfleisch and Prentice in their text
(The Statistical Analysis of Survival Time Data, Wiley,
2002). The exposure variable of interest is treatment status
(standard ¼ 1, test ¼ 2). Other variables of interest as
control variables are cell type (four types, defined by
dummy variables), performance status, disease duration,
age, and prior therapy status. Failure status is defined by
the status variable (0 if censored, 1 if died). A complete list
of the variables is given below.

Column 1: Treatment (standard ¼ 1, test ¼ 2)

Column 2: Cell type 1 (large ¼ 1, other ¼ 0)

Column 3: Cell type 2 (adeno ¼ 1, other ¼ 0)

Column 4: Cell type 3 (small ¼ 1, other ¼ 0)

Column 5: Cell type 4 (squamous ¼ 1, other ¼ 0)

Column 6: Survival time (days)

Column 7: Performance status (0¼worst,. . ., 100¼ best)
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Column 8: Disease duration (months)

Column 9: Age

Column 10: Prior therapy (none ¼ 0, some ¼ 10)

Column 11: Status (0 ¼ censored, 1 ¼ died)

1. State the hazard function form of the Cox PH model
that describes the effect of the treatment variable and
controls for the variables, cell type, performance sta-
tus, disease duration, age, and prior therapy. In stat-
ing this model, make sure to incorporate the cell type
variable using dummy variables, but do not consider
possible interaction variables in your model.

2. State three general approaches that can be used to
evaluate whether the PH assumption is satisfied for
the variables included in the model you have given in
question 1.

3. The following printout is obtained from fitting a
Cox PH model to these data. Using the information
provided, what can you conclude about whether the
PH assumption is satisfied for the variables used in
the model? Explain briefly.

4. For the variables used in the PH model in question 1,
describe a strategy for evaluating the PH assumption
using log–log survival curves for variables considered
one-at-a-time.

5. Again considering the variables used in question 1,
describe a strategy for evaluating the PH assumption
using log–log survival curves that are adjusted for
other variables in the model.

Cox regression Coef. Std. Err. p > |z| Haz. Ratio
[95% Conf.
Interval] P(PH)

Treatment 0.290 0.207 0.162 1.336 0.890 2.006 0.628
Large cell 0.400 0.283 0.157 1.491 0.857 2.594 0.033
Adeno cell 1.188 0.301 0.000 3.281 1.820 5.915 0.081
Small cell 0.856 0.275 0.002 2.355 1.374 4.037 0.078
Performance status �0.033 0.006 0.000 0.968 0.958 0.978 0.000
Disease duration 0.000 0.009 0.992 1.000 0.982 1.018 0.919
Age �0.009 0.009 0.358 0.991 0.974 1.010 0.198
Prior therapy 0.007 0.023 0.755 1.007 0.962 1.054 0.145
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6. For the variable “performance status,” describe how
you would evaluate the PH assumption using
observed versus expected survival plots?

7. For the variable “performance status,” log–log plots
which compare high (	50) with low (<50) are given
by the following graph. Based on this graph, what do
you conclude about the PH assumption with regard to
this variable?

8. What are some of the drawbacks of using the log–log
approach for assessing the PH assumption and what
do you recommend to deal with these drawbacks?

9. For the variable “performance status,” observed ver-
sus expected plots that compare high (	50) with low
(<50) are given by the following graph. Based on this
graph, what do you conclude about the PH assump-
tion with regard to this variable?

10. State the form of an extended Cox model that allows
for the one-at-a-time assessment of the PH assump-
tion for the variable “performance status,” and
describe how you would carry out a statistical test of
the assumption for this variable.

11. State the form of an extended Cox model that allows
for the simultaneous assessment of the PH assump-
tion for the variables treatment, cell type, perfor-
mance status, disease duration, age, and prior
therapy. For this model, describe how you would
carry out a statistical test of the PH assumption for
these variables. Also, provide a strategy for assessing
which of these variables satisfy the PH assumption
and which do not using the extended Cox model
approach.
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12. Using any of the information provided above and
any additional analyses that you perform with this
dataset, what do you conclude about which variables
satisfy the PH assumption and which variables do not?
In answering this question, summarize any additional
analyses performed.

Test The following questions consider a dataset from a study
by Caplehorn et al. (“Methadone Dosage and Retention of
Patients in Maintenance Treatment,” Med. J. Aust., 1991).
These data comprise the times in days spent by heroin
addicts from entry to departure from one of two metha-
done clinics. There are two additional covariates, namely,
prison record and maximum methadone dose, believed to
affect the survival times. The dataset name is addicts.dat.
A listing of the variables is given below:

Column 1: Subject ID

Column 2: Clinic (1 or 2)

Column 3: Survival status (0 ¼ censored, 1 ¼
departed from clinic)

Column 4: Survival time in days

Column 5: Prison record (0 ¼ none, 1 ¼ any)

Column 6: Maximum methadone dose (mg/day)

1. The following edited printout was obtained from fit-
ting a Cox PH model to these data:

Based on the information provided in this printout,
what do you conclude about which variables satisfy
the PH assumption and which do not? Explain briefly.

Cox regression
Analysis time_t:
survt Coef. Std. Err. p > |z| Haz. Ratio

[95% Conf.
Interval] P(PH)

Clinic �1.009 0.215 0.000 0.365 0.239 0.556 0.001
Prison 0.327 0.167 0.051 1.386 0.999 1.924 0.332
Dose �0.035 0.006 0.000 0.965 0.953 0.977 0.347

No. of subjects: 238 Log likelihood = �673.403
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2. Suppose that for the model fit in question 1, log–log
survival curves for each clinic adjusted for prison and
dose are plotted on the same graph. Assume that these
curves are obtained by substituting into the formula
for the estimated survival curve the values for each
clinic and the overall mean values for the prison and
dose variables. Below, we show these two curves. Are
they parallel? Explain your answer.

3. The following printout was obtained from fitting a
stratified Cox PH model to these data, where the vari-
able being stratified is clinic:

Using the above fitted model, we can obtain the
log–log curves below that compare the log–log survival
for each clinic (i.e., stratified by clinic) adjusted for the
variables prison and dose. Using these curves, what do
you conclude about whether or not the clinic variable
satisfies the PH assumption? Explain briefly.

Stratified Cox
regression Analysis
time.t: survt (in days) Coef. Std. Err. p > |z| Haz. Ratio

[95% Conf.
Interval]

Prison 0.389 0.169 0.021 1.475 1.059 2.054
Dose �0.035 0.006 0.000 0.965 0.953 0.978

No. of subjects = 238 Log likelihood = �597.714 Stratified by clinic
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4. Consider the two plots of log–log curves below that
compare the log–log survival for the prison variable
ignoring other variables and adjusted for the clinic
and dose variables. Using these curves, what do you
conclude about whether or not the prison variable
satisfies the PH assumption? Explain briefly.

5. How do your conclusions from question 1 compare
with your conclusions from question 4? If the conclu-
sions differ, which conclusion do you prefer? Explain.

6. Describe briefly how you would evaluate the PH
assumption for the variable maximum methadone
dose using observed versus expected plots.

7. State an extended Cox model that would allow you to
assess the PH assumption for the variables clinic,
prison, and dose simultaneously. For this model,
state the null hypothesis for the test of the PH assump-
tion and describe how the likelihood ratio statistic
would be obtained and what its degrees of freedom
would be under the null hypothesis.

8. State at least one drawback to the use of the extended
Cox model approach described in question 7.

9. State an extended Cox model that would allow you to
assess the PH assumption for the variable clinic alone,
assuming that the prison and dose variables already
satisfy the PH assumption. For this model, state the
null hypothesis for the test of the PH assumption, and
describe how the likelihood ratio (LR) statistic would
be obtained. What is the degrees of freedom of the LR
test under the null hypothesis?
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10. Consider the situation described in question 9, where
you wish to use an extended Cox model that would
allow you to assess the PH assumption for the variable
clinic alone, assuming that the assumption is satisfied
for the prison and dose variables. Suppose you use the
following extended Cox model:

h t;Xð Þ ¼ h0ðtÞ exp½b1ðprisonÞ þ b2ðdoseÞ
þb3ðclinicÞ þ d1ðclinicÞg(t)]

where g(t) is defined as follows:

g tð Þ ¼ 1 if t > 365 days

0 if t � 365 days

�

For the abovemodel,what is the formula for the hazard
ratio that compares clinic 1 to clinic 2 when t is greater
than 365 days? when t is less than or equal to 365 days?
In terms of the hazard ratio formulae just described,
what specific departure from the PH assumption is
being tested when the null hypothesis isH0: d1 ¼ 0?

Answers to
Practice
Exercises

1. h(t,X) ¼ h0(t) exp[b1(treatment) þ b2(CT1) þ b3(CT2)
þ b4(CT3) þ b5(PS) þ b6(DD) þ b7(Age) þ b8(PT)]

where CTi denotes the cell type i dummy variable, PS
denotes the performance status variable DD denotes
the disease duration variable, and PT denotes the
prior therapy variable.

2. The three general approaches for assessing the PH
model for the above model are:

(a) graphical, using either log–log plots or observed
versus expected plots;

(b) statistical test;

(c) an extended Cox model containing product terms
involving the variables being assessed with some
function(s) of time.

3. The P(PH) values given in the printout provide good-
ness-of-fit tests for each variable in the fitted model
adjusted for the other variables in the model. The P
(PH) values shown indicate that the large cell type
variables and the performance status variable do not
satisfy the PH assumption, whereas the treatment,
age, disease duration, and prior therapy variables
satisfy the PH assumption, and the adeno and small
cell type variable are of borderline significance.
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4. A strategy for evaluating the PH assumption using
log–log survival curves for variables considered one-
at-a-time is given as follows:

For each variable separately, obtain a plot of log–log
Kaplan–Meier curves for the different categories of
that variable. For the cell type variable, this requires
obtaining a plot of four log–log KM curves, one for
each cell type. (Note that this is not the same as obtain-
ing four separate plots of two log–log curves, where
each plot corresponds to one of the dummy variables
used in the model.) For the variables PS, DD, and Age,
which are interval variables, each variable must be
separately categorized into two or more groups – say,
low versus high values – and KM curves are obtained
for each group. For the variable PT, which is a dichot-
omous variable, two log–log curves are obtained which
compare the “none” versus “some” groups.

For each plot (i.e., one for each variable), those plots
that are noticeably nonparallel indicate variables which
do not satisfy the PH assumption. The remaining vari-
ables are assumed to satisfy the PH assumption.

5. One strategy for evaluating the PH assumption for each
variable adjusted for the others is to use adjusted log–log
survival curves instead ofKM curves separately for each
of the variables in the model. That is, for each variable
separately, a stratified Coxmodel is fit stratifying on the
given variable while adjusting for the other variables.
Those variables that yield adjusted log–log plots that are
noticeably nonparallel are then to be considered as not
satisfying the PH assumption. The remaining variables
are assumed to satisfy the PH assumption.

A variation of the above strategy uses adjusted log–log
curves for only those variables not satisfying the PH
assumption from a one-at-a-time approach, adjusting
for those variables satisfying the PH assumption from
the one-at-a-time approach. This second iteration
would flag a subset of the one-at-a-time flagged vari-
ables for further iteration. At each new iteration, those
variables found to satisfy the assumption get added to
the list of variables previously determined to satisfy
the assumption.

6. For the performance status (PS) variable, observed
plots are obtained by categorizing the variable into
strata (say, two strata: low versus high) and then
obtaining KM survival plots for each stratum.
Expected plots can be obtained by fitting a Cox

198 4. Evaluating the Proportional Hazards Assumption



model containing the (continuous) PS variable and
then obtaining estimated survival curves for values
of the performance status (PS) variable that represent
summary descriptive statistics for the strata previ-
ously identified. For example, if there are two strata,
say, high (PS > 50) and low (PS � 50), then the values
of PS to be used could be the mean ormedian PS score
for persons in the high stratum and the mean or
median PS score for persons in the low stratum.

An alternative method for obtaining expected plots
involves first dichotomizing the PS variable – say, into
high and low groups – and then fitting a Cox model
containing the dichotomized PS variable instead of the
original continuous variable. The expected survival
plots for each group are estimated survival curves
obtained for eachvalue of the dichotomizedPSvariable.

Once observed and expected plots are obtained for each
stratum of the PS variable, they are then compared on
the same graph to determine whether or not
corresponding observed and expected plots are “close.”
If it is determined that, overall, comparisons for each
stratum are close, then it is concluded that the PH
assumption is satisfied for the PHvariable. In determin-
ing how close is close, the researcher should look for
noticeably discrepant observed versus expected plots.

7. The log–log plots that compare high versus low PS
groups (ignoring other variables) are arguably parallel
early in follow-up, and are not comparable later
because survival times for the two groups do not over-
lap after 400 days. These plots do not strongly indicate
that the PH assumption is violated for the variable PS.
This contradicts the conclusion previously obtained
for the PS variable using the P(PH) results.

8. Drawbacks of the log–log approach are:

� How parallel is parallel?

� How to categorize a continuous variable?

� How to evaluate several variables simultaneously?

Recommendations about problems:

� Look for noticeable nonparallelism; otherwise PH
assumption is OK.

� For continuous variables, use a small number of
categories, a meaningful choice of categories, and
a reasonable balance in sample size for categories.
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� With several variables, there are two options:

i. Compare log–log curves from combinations of
categories.

ii. Adjust for predictors already satisfying PH
assumption.

9. The observed and expected plots are relatively close for
low andhigh groups separately, although there is some-
what more discrepancy for the high group than for the
low group. Deciding how close is close is quite subjec-
tive for these plots. Nevertheless, because there are no
major discrepancies for either low or high groups, we
consider the PH assumption satisfied for this variable.

10. h(t,X) ¼ h0(t) exp[b1(PS) þ d(PS)g(t)]

where g(t) is a function of t, such as g(t) ¼ t, or g(t) ¼
log t, or a heaviside function. The PH assumption is
tested using a 1 df Wald or LR statistic for H0: d ¼ 0.

11. h(t,X) ¼ h0(t) exp[b1(treatment) þ b2(CT1) þ b3(CT2)
þ b4(CT3) þ b5(PS) þ b6(DD) þ b7(Age) þ b8(PT)
þ d1(treatment� g(t))þ d2(CT1� g(t))þ d3(CT2� g(t))
þ d4(CT3 � g(t)) þ d5(PS � g(t)) þ d6(DD � g(t))
þ d7(Age � g(t)) þ d8(PT � g(t))]

where g(t) is some function of time, such as g(t) ¼ t, or
g(t) ¼ log t, or a heaviside function. To test the PH
assumption simultaneously for all variables, the null
hypothesis is stated as H0: d1 ¼ d2 ¼ . . . ¼ d8 ¼ 0. The
test statistic is a likelihood-ratio statistic of the form

LR ¼ �2 ln LR � (�2 ln LF)

where R denotes the reduced (PH) model obtained
when all d’s are 0, and F denotes the full model given
above. UnderH0, the LR statistic is approximately chi-
square with 8 df.

12. The question here is somewhat open-ended, leaving the
reader the option to explore additional graphical, GOF,
or extended Cox model approaches for evaluating the
PH assumption for the variables in themodel. The con-
clusions from the GOF statistics provided in question 3
are likely to hold up under further scrutiny, so that a
reasonable conclusion is that cell type andperformance
status variables do not satisfy the PH assumption, with
the remaining variables satisfying the assumption.
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Introduction We begin with an example of the use of the stratified Cox
procedure for a single predictor that does not satisfy the
PH assumption. We then describe the general approach
for fitting a stratified Cox model, including the form of
the (partial) likelihood function used to estimate model
parameters.

We also describe the assumption of no interaction that is
typically incorporated into most computer programs that
carry out the stratified Cox procedure. We show how the
no-interaction assumption can be tested, and what can be
done if interaction is found.

We conclude with a second example of the stratified Cox
procedure in which more than one variable is stratified.

Abbreviated
Outline

The outline below gives the user a preview of the material
to be covered by the presentation. A detailed outline for
review purposes follows the presentation.

I. Preview (page 204)

II. An Example (pages 204–208)

III. The General Stratified Cox (SC) Model
(pages 208–209)

IV. The No-Interaction Assumption and How to Test
It (pages 210–216)

V. A Second Example Involving Several
Stratification Variables (pages 216–221)

VI. A Graphical View of the Stratified Cox Approach
(pages 221–222)

VII. The Stratified Cox Likelihood (pages 223–225)

VIII. Summary (pages 225–227)
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Objectives Upon completing the chapter, the learner should be able to:

1. Recognize a computer printout for a stratified Cox
procedure.

2. State the hazard form of a stratified Cox model for a
given survival analysis scenario and/or a given set of
computer results for such a model.

3. Evaluate the effect of a predictor of interest based on
computer results from a stratified Cox procedure.

4. For a given survival analysis scenario and/or a given set
of computer results involving a stratified Cox model.

� state the no-interaction assumption for the given
model;

� describe and/or carry out a test of the no-interaction
assumption;

� describe and/or carry out an analysis when the
no-interaction assumption is not satisfied.
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Presentation

I. Preview The “stratified Cox model” is a modification of
the Cox proportional hazards (PH) model that
allows for control by “stratification” of a pre-
dictor that does not satisfy the PH assumption.
Predictors that are assumed to satisfy the PH
assumption are included in the model, whereas
the predictor being stratified is not included.

In this presentation, we focus on how stratifi-
cation is carried out by describing the analysis
of computer results and the form of the hazard
function for a stratified Cox model. We first
consider stratifying on a single predictor and
then later consider stratifying on two or more
predictors. Further, we distinguish between the
use of a “no-interaction” version of the stratified
Cox model and an alternative approach that
allows interaction.

II. An Example Consider the computer results shown here for a
Cox PH model containing the three variables,
log WBC, treatment group (Rx), and SEX.
These results derive from a clinical trial of 42
leukemia patients, where the response of inter-
est is days in remission.

From the printout, the P(PH) values for log
WBC and treatment group are nonsignificant.
However, the P(PH) value for SEX is signifi-
cant below the .05 level. These results indicate
that log WBC and treatment group satisfy the
PH assumption, whereas the SEX variable
does not. The same conclusions regarding the
PH assumption about these variables would
also be made using the graphical procedures
described earlier.

Because we have a situation where one of the
predictors does not satisfy the PH assumption,
we carry out a stratified Cox (SC) procedure for
the analysis. Using SC, we can control for the
SEX variable – which does not satisfy the PH
assumption – by stratification while simulta-
neously including in the model the log WBC
and treatment variables – which do satisfy the
PH assumption.

Stratified Cox model:

� modification of Cox PH model
� Stratification of predictor not

satisfying PH
� includes predictors satisfying

PH

FOCUS
computer results

How stratification is
carried out:

hazard ratio
single predictor
vs. ³ 2 predictors
no-interaction vs.
interaction

EXAMPLE

Clinical trial: 42 leukemia patients
Response-days in remission

Coef. Std. Err. P(PH)

log WBC 1.594 0.330 0.828
Rx 1.391 0.457 0.935
Sex 0.263 0.449 0.031

� log WBC and Rx satisfy PH
� Sex does not satisfy PH

(Same conclusions using graphical
approaches)

Stratified Cox (SC):

� control for sex (stratified);
� simultaneously include log WBC

and Rx in the model
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The computer results from a SC procedure are
shown here. These results come from the Stata
package. (See the Computer Appendix for run-
ning aSCprocedure inStata, SAS,SPSS, andR).

The computer results show that the log WBC
and Rx variables are included in the model list-
ing, whereas the SEX variable is not included;
rather, the model stratifies on the SEX variable,
as indicated at the bottom of the output. Note
that the SEX variable is being adjusted by strat-
ification, whereas log WBC is being adjusted by
its inclusion in the model along with Rx.

In the above output, we have also circled some
key information that can be used to assess the
effect of the Rx variable adjusted for both log
WBC and SEX. In particular, we can see that
the hazard ratio for the effect ofRx adjusted for
log WBC and SEX is given by the value 2.537.
This value can be obtained by exponentiating
the coefficient 0.931 of the Rx variable. The
hazard ratio value can be interpreted to mean
that the placebo group (for which Rx ¼ 1) has
2.5 times the hazard for going out of remission
as the treatment group (for which Rx ¼ 0).

Also, we can see from the output that a 95%
confidence interval for the effect of the Rx var-
iable is given by the limits 1.006 to 6.396. This
is a fairly wide range, thus indicating con-
siderable variability in the 2.537 hazard ratio
point estimate. Note that these confidence lim-
its can be obtained by exponentiating the quan-
tity 0.931 plus orminus 1.96 times the standard
error 0.472.

From the above output, a test for the signifi-
cance of the Rx variable adjusted for log WBC
and SEX is given by the Wald statistic P-value
of 0.048. This is a two-tailed P-value, and the
test is (barely) significant at the 0.05 level.

EXAMPLE: (continued)

STATA OUTPUT USING SC:
Stratified Cox regression
Analysis time_t: survt

Coef.

Std.

Err. p > |z|

Haz.

Ratio [95% Conf. Interval]

log WBC 1.390 0.338 0.000 4.016 2.072 7.783

Rx 0.931 0.472 0.048 2.537 1.006 6.396

No. of subjects ¼ 42 Log likelihood ¼ �57.560 Stratified by sex

Appendix A illustrates SC procedures
using Stata, SAS, SPSS, and R

� Log WBC and Rx are included in
SC model.

� SC model is stratified by SEX.

Effect of Rx adjusted for log WBC and
SEX.

� Hazard ratio: 2.537 ¼ e0.931

� Interpretation: Placebo group
(Rx ¼ 1) has 2.5 times the hazard
as the treatment group (Rx ¼ 0)

Stratified Cox regression
Analysis time_t: survt

Coef.

Std.

Err. p > |z|

Haz.

Ratio [95% Conf. Interval]

log WBC 1.390 0.338 0.000 4.016 2.072 7.783

Rx 0.931 0.472 0.048 2.537 1.006 6.396

No. of subjects ¼ 42 Log likelihood ¼ �57.560 Stratified by sex

95% CI for Rx (1.006, 6.396) indicates
considerable variability.
CI formula: exp(0.931 � 1.96 � 0.472)

Wald test: P ¼ 0.048 (two-tailed),
significant at the 0.05 level.
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An alternative test involves a likelihood ratio
(LR) statistic that compares the above model
(full model) with a reducedmodel that does not
contain the Rx variable. The output for the
reducedmodel is shownhere. The log-likelihood
statistic for the reduced model is �2 times
�59.648, which is to be compared with the log-
likelihood statistic of �2 times �57.560 for the
full model.

The LR statistic is therefore 119.296 minus
115.120, which equals 4.179. Under H0, this
statistic has a chi-square distribution with one
degree of freedom and is significant at the 0.05
level. Thus, the LR and Wald tests lead to the
same conclusion.

So far, we have illustrated the results from
a stratified Cox procedure without actually
describing the model form being used. For the
remission data example, we now present the
hazard function form for the stratified Cox
model, as shown here. This hazard function
formula contains a subscript g that indicates
the gth stratum.

Thus, in our remission data example, where we
have stratified on SEX, g takes on one of two
values, so that we have a different baseline
hazard function for males and females.

Notice that the hazard function formula con-
tains the variables Rx and log WBC, but does
not contain the variable SEX. SEX is not
included in the model because it doesn’t satisfy
the PH assumption. So, instead, the SEX vari-
able is controlled by stratification.

Because the variables Rx and log WBC are
included in the model, we can estimate the
effect of each variable adjusted for the other
variable and the SEX variable using standard
exponential hazard ratio expressions. For
example, the estimated hazard ratio for the
effect of Rx, adjusted for log WBC and SEX, is
given by e to the b1 “hat,” where b1 is the coeffi-
cient of the Rx variable.

EXAMPLE: (continued)

LR test: Output for reduced model
Stratified Cox regression
Analysis time _t: survt

Coef.

Std.

Err. p > |z|

Haz.

Ratio [95% Conf. Interval]

log WBC 1.456 0.320 0.000 4.289 2.291 8.03

No. of subjects ¼ 42 Log likelihood ¼ �59.648 Stratified by sex

LR = �2��59.648ð Þ � �2��57:560ð Þ
¼ 119:296� 115:120 ¼ 4:179 P < 0.05ð Þ

LR and Wald give same conclusion.

Hazard function for stratified Cox
model:

hg(t,X)¼ h0g(t)exp[b1Rxþ b2 log WBC]
g ¼ 1,2;

g denotes stratum #.

SC model for males and females:
Females (g ¼ 1):

h1(t,X)¼ h01(t)exp[b1Rxþ b2 logWBC]

Males (g ¼ 2):

h2(t,X)¼ h02(t)exp[b1Rxþ b2 logWBC]

Rx and log WBC in the model
Sex not in the model (stratified)

cHR for effect of Rx adjusted for log
WBC and sex:

eb̂1

where b1 is the coefficient of Rx.
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Nevertheless, because the SEX variable is not
included in the model, it is not possible to
obtain a hazard ratio value for the effect of
SEX adjusted for the other two variables. This
is the price to be paid for stratification on the
SEX variable. Note that a single value for the
hazard ratio for SEX is not appropriate if SEX
doesn’t satisfy the PH assumption, because the
hazard ratio must then vary with time.

Notice also that the hazard functions for males
and females differ only insofar as they have
different baseline hazard functions, namely,
h01(t) for females and h02(t) for males. How-
ever, the coefficients b1 and b2 are the same
for both female and male models.

Because there are different baseline hazard
functions, the fitted stratified Cox model will
yield different estimated survival curves for
females and males. These curves will be
described shortly.

Note, however, that because the coefficients of
Rx and log WBC are the same for females and
males, estimates of hazard ratios, such as e to
the b1 “hat,” are the same for both females and
males. This feature of the stratified Cox model
is called the “no-interaction” assumption. It is
possible to evaluate whether this assumption
is tenable and to modify the analysis if not
tenable. We will discuss this assumption fur-
ther in Section IV.

To obtain estimates of b1 and b2, a (partial)
likelihood function (L) is formed from the
model and the data; this function is then max-
imized using computer iteration. The likeli-
hood function (L) for the stratified Cox (SC)
model is different from the nonstratified Cox
model. For the SC model, L is obtained by mul-
tiplying together likelihood functions for each
stratum. Thus, L is equal to the product of L1

and L2, where L1 and L2 denote the female and
male likelihood functions, respectively, which
are derived from their respective hazard func-
tions h1(t) and h2(t).

EXAMPLE: (continued)

Cannot estimate HR for SEX variable
(SEX doesn’t satisfy PH).

Different baseline hazard functions:

h01(t) for females and h02(t) for males.

Same coefficients b1 and b2 for both
female and male models.

Different

baselines

h01 tð Þ ) Survival curve

for females

h02 tð Þ ) Survival curve

formales

8>><
>>:

Females and males:
same b1 and b2 ) same cHR’s, e.g., eb̂1
No interaction assumption (see
Section IV)

Estimates of b1 and b2

Maximize partial likelihood (L),
where L ¼ L1 � L2

L1 is the likelihood for females derived
from h1(t),
and L2 is the likelihood for males
derived from h2(t).
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As mentioned above, adjusted survival curves
can be obtained for each stratum as shown
here. Here we have shown four survival curves
because we want to compare the survival for
two treatment groups over each of two strata.

If we compare treatment and placebo group
separately by sex, we can see that the treatment
group has consistently better survival prog-
nosis than the placebo group for females and
males separately. This supports our findings
about the hazard ratio for the treatment effect
derived earlier from the computer results for
the stratified Cox model.

III. The General Stratified
Cox (SC) Model

In the previous example, we illustrated the SC
model for one binary predictor not satisfying the
PH assumption. We now describe the general
form of the SC model that allows for stratifica-
tion of several predictors over several strata.

We assume that we have k variables not satisfy-
ing thePHassumptionand p variables satisfying
the PH assumption. The variables not satisfy-
ing the PH assumption we denote as Z1, Z2,. . .,
Zk; the variables satisfying the PH assumption
we denote as X1, X2,. . ., Xp.

To perform the stratified Cox procedure, we
define a single new variable, which we call Z�,
from the Z’s to be used for stratification. We do
this by forming categories of each Zi, including
those Zi that are interval variables. We then
form combinations of categories, and these
combinations are our strata. These strata are
the categories of the new variable Z�.

For example, suppose k is 2, and the two Z’s are
age (an interval variable) and treatment status
(a binary variable). Then we categorize age into,
say, three age groups – young, middle, and old.
We then form six age group–by–treatment-
status combinations, as shown here. These six
combinations represent the different categories
of a single new variable that we stratify on in
our stratified Cox model. We call this new
variable Z�.

EXAMPLE: (continued)

Adjusted Survival Curves for Rx
from Stratified Cox Model
(adjusted for log WBC)

1

0.8

0.6

0.4

0.2

0
0 8 16 24 32

Treatment, female

Treatment, male
Placebo, female

Placebo, male

Days

S

Example: one binary predictor

General: several predictors, several
strata

Z1, Z2,. . ., Zk, do not satisfy PH
X1, X2,. . ., Xp, satisfy PH

Define a single new variable Z�:

1. categorize each Zi

2. form combinations of
categories (strata)

3. the strata are the categories ofZ�

EXAMPLE

Age
Young Middle Old

Treatment
status

Placebo 1 2 3
Treatment 4 5 6

Z� ¼ new variable with six categories stratify on Z�
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In general, the stratification variable Z� will
have k� categories, where k� is the total number
of combinations (or strata) formed after cate-
gorizing each of the Z’s. In the above example,
k� is equal to 6.

We now present the general hazard function
form for the stratified Cox model, as shown
here. This formula contains a subscript g
which indicates the gth stratum. The strata
are defined as the different categories of the
stratification variable Z�, and the number of
strata equals k�.

Note that the variable Z� is not explicitly
included in the model but that the X’s, which
are assumed to satisfy the PH assumption, are
included in the model.

Note also that the baseline hazard function
h0g(t) is allowed to be different for each stra-
tum. However, the coefficients b1, b2,. . ., bp are
the same for each stratum.

As previously described by example, the fitted
SCmodel will yield different estimated survival
curves for each stratum because the baseline
hazard functions are different for each stratum.

However, because the coefficients of the X’s are
the same for each stratum, estimates of hazard
ratios are the same for each stratum. This latter
feature of the SC model is what we previously
have called the “no-interaction” assumption to
be discussed further in Section IV.

To obtain estimates of the regression coeffi-
cients b1, b2,. . ., bp, we maximize a (partial)
likelihood function L that is obtained by multi-
plying together likelihood functions for each
stratum, as shown here. Thus, L is equal to
the product of L1 times L2, and so on, up until
Lk

�, where the subscripted L’s denote the like-
lihood functions for different strata, with each
of these L’s being derived from its corres-
ponding hazard function.

Z� has k� categories where k� ¼
total # of combinations (strata),
e.g., k� ¼ 6 in above example.

The general SC model:
hg(t, X) ¼ h0g(t)exp[b1 X1 þ b2 X2

þ . . . þ bp Xp]
g ¼ 1, 2,. . ., k�, strata defined

from Z�

Z� not included in the model

X1, X2,. . ., Xp included in the model

Differentbaselinehazard functions:
h0g(t), g ¼ 1, 2,. . ., k�

Same coefficients: b1, b2,. . ., bp

Different

baselines

ĥ01 tð Þ ) Ŝ1 tð Þ
ĥ02 tð Þ ) Ŝ2 tð Þ
..
.

ĥ0k tð Þ ) Ŝk tð Þ

8>>><
>>>:

9>>>=
>>>;

Different

survival

curves

cHR same for each stratum

(no-interaction assumption,
Section IV)

(Partial) likelihood function:

L ¼L1 � L2 � . . . � Lk�

Strata: 1 2 . . . k�

Likelihood: L1 L2 . . . Lk�

Hazard: h1(t, X) h2(t, X) . . . hk�(t, X
�)
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IV. The No-Interaction
Assumption and How
to Test It

We previously pointed out that the SC model
contains regression coefficients, denoted as b’s,
that do not vary over the strata. We have called
this property of the model the “no-interaction
assumption.” In this section, we explain what
this assumption means. We also describe how
to evaluate the assumption and what to do if
the assumption is violated.

We return to the SC output previously illu-
strated. Notice that only one set of coefficients,
namely, 1.390 for log WBC and 0.931 for Rx,
are provided, even though there are two strata,
one for females and one formales. These results
assume no interaction of the sex variable with
either log WBC or Rx.

If we allow for interaction, then we would
expect to obtain different coefficients for each
of the (SEX) strata. This would happen if we fit
separate hazard models to the female and male
data, with each model containing the log WBC
and Rx variables. The computer results from
fitting separate models are shown here.

Notice that the coefficient of log WBC is 1.639
for females but is 1.170 for males. Also, the
coefficient for Rx is 1.859 for females but
0.267 for males. These results show different
coefficients for females than for males, partic-
ularly for the Rx variable.

But are corresponding coefficients statistically
different? That is, which model is more appro-
priate statistically, the no-interaction model or
the interaction model? To answer this ques-
tion, we must first look at the hazard function
model for the interaction situation.

Stratified Cox model
hg(t,X) ¼ h0g(t)exp [b1X1 þ b2X2

þ . . . þ bpXp]
b coefficients do not vary over
strata (no-interaction assumption)

� how to evaluate
� what to do if violated

EXAMPLE

No-interaction SC model:
Stratified Cox regression
Analysis time_t: survt

Coef.

Std.

Err. p>|z|

Haz.

Ratio [95% Conf. Interval]

log WBC 1.390 0.338 0.000 4.016 2.072 7.783

Rx 0.931 0.472 0.048 2.537 1.006 6.396

No. of subjects ¼ 42 Log likelihood ¼ �57.560 Stratified by sex

Interaction by fitting separate models:
Cox regression (Females)
Analysis time _t: survt

Column

name Coeff. StErr.

p-

value HR 0.95 CI

p

(PH)

log WBC 1.639 0.519 0.002 5.150 1.862 14.242 0.228

Rx 1.859 0.729 0.011 6.418 1.537 26.790 0.603

No. of subjects ¼ 20 Log likelihood ¼ �22.100

Cox regression (Males)
Analysis time _t: survt

Column

name Coeff. StErr.

p-

value HR 0.95 CI

P

(PH)

log WBC 1.170 0.499 0.019 3.222 1.213 8.562 0.674

Rx 0.267 0.566 0.637 1.306 0.431 3.959 0.539

No. of subjects ¼ 22 Log likelihood ¼ �33.736

Which model is more appropriate
statistically?
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One way to state the hazard model formula
when there is interaction is shown here (r).
Notice that each variable in this model has a
different coefficient for females than for males,
as indicated by the subscript g in the coeffi-
cients b1g and b2g.

In contrast, in the no-interaction model, the
coefficient (b1) of log WBC is the same for
females and for males; also, the coefficient
(b2) ofRx is the same for females and formales.

An alternative way to write the interaction
model is shown here (⋆). This alternative
form contains two product terms, SEX � log
WBC and SEX � Rx, as well as the main effects
of log WBC and Rx. We have coded the SEX so
that 1 denotes female and 0 denotes male.

In this alternative model, note that although the
baseline hazards h0g(t) are different for each
sex, the b� coefficients do not involve the sub-
script g and therefore are the same for each sex.

Nevertheless, this alternative formula (⋆) is
equivalent to the interaction formula (r)
above. We show this by specifying the form
that the model takes for g ¼ 1 (females) and
g ¼ 2 (males).

Notice that the coefficients of log WBC are
different in each formula, namely, b�1 þ b�3

� �
for females versus b�1 for males.

Similarly, the coefficients of Rx are different,
namely, b�2 þ b�4

� �
for females versus b�2 for

males.

The preceding formulae indicate that two seem-
ingly different formulae for the interaction
model – (r) versus (⋆), shown earlier – can be
written in the same format. We show these for-
mulae here separately for females and males.

EXAMPLE: (continued)

Interaction model:
(r) hg (t,X)
¼ h0g (t)exp[b1g log WBC þ b2gRx]
where g ¼ 1 (females), g ¼ 2 (males)

No-interaction model:
hg (t,X)
¼ h0g (t)exp[b1 log WBC þ b2Rx]
where g ¼ 1 (females), g ¼ 2 (males)

Alternative interaction model:

ð⋆Þhg t;Xð Þ ¼ h0g tð Þ exp b�1 log WBC
�

þ b�2Rxþ b�3 SEX� log WBCð Þ
þ b�4� SEX� Rxð Þ�

where SEX =
1 if female

0 if male

�

h0g(t) are different for g ¼ 1, 2
b� coefficients do not involve g

Equivalence of models (r) and (⋆):
g ¼ 1 (females), so that sex ¼ 1:

h1 t;Xð Þ ¼ h01 tð Þ exp b�1 log WBC
� þ b�2 Rx

þb�3 1� logWBCð Þ þ b�4 1� Rxð Þ
i

¼ h01 tð Þ exp b�1 þ b�3
� �

logWBC
h

+ b�2 þ b�4
� �

Rx
i

g ¼ 2 (males), so that sex ¼ 0:

h2 t;Xð Þ ¼ h02 tð Þ exp b�1
�

logWBCþ b�2 Rx

þb�3 0� logWBCð Þ þ b�4 0� Rxð Þ�
¼ h02 tð Þ exp b�1 logWBC + b�2 Rx

h i

Interaction models in same format:

Females (g ¼ 1): h1(t,X)

ðrÞ ¼ h01 tð Þ exp b11 logWBCþ b21Rx½ �
ð⋆Þ ¼ h01 tð Þ exp b�1 þ b�3

� ��
logWBC

þ b�2 þ b�4
� �

Rx
�

Males (g ¼ 2): h2(t,X)

ðrÞ ¼ h02 tð Þ exp b12 logWBCþ b22Rx½ �
ð⋆Þ ¼ h02 tð Þ exp b�1

�
logWBCþb�2Rx

�
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Notice that for females, the coefficient b11 in
model (⋆) must be equivalent to b�1 þ b�3

� �
in

model (r) because both models have the same
format, and both b11 and b�1 þ b�3

� �
are coeffi-

cients of the same variable, logWBC. Similarly,
b21 in model (⋆) is equivalent to b�2 þ b�4

� �
in

model (r) because both are coefficients of the
same variable, Rx.

For males, it follows in an analogous way, that
the coefficient b12 is equivalent to b�1, and, sim-
ilarly, b22 equals b

�
2.

Here we provide computer results obtained
from fitting the alternative interaction model
(⋆). The estimated regression coefficients

b̂
�
1; b̂

�
2; b̂

�
3; , and b̂

�
4, respectively, are circled.

We have indicated above that the sums b̂
�
1 þ b̂

�
3

and b̂
�
2 þ b̂

�
4 are equal to the coefficients b̂11 and

b̂21, respectively, in the original interaction
model for females.

Also, we have indicated that b̂
�
1 and b̂

�
2 are equal

to the coefficients b̂12 and b̂22, respectively, in
the original interaction model for the males.
The numerical equivalences are shown here.
Note again that the coefficients of log WBC
and Rx for females are different from males,
as is to be expected if sex interacts with each
variable.

We have thus seen that the interaction model
can be written in a format that contains prod-
uct terms involving the variable being strati-
fied, SEX, being multiplied by each of the
predictors not being stratified. We show this
model involving product terms again here.
We will use this model to describe a test of the
no-interaction assumption.

EXAMPLE: (continued)

Females g ¼ 1ð Þ :
ðrÞ ð⋆Þ
b11 ¼ b�1 + b�3
b21 = b�2 + b�4

Males g ¼ 2ð Þ :
ðrÞ ð⋆Þ
b12 ¼ b�1
b22 ¼ b�2

Stratified Cox regression
Analysis time _t: survt

Coef.

Std.

Err: p>|z|

Haz.

Ratio

[95% Conf.

Interval]

log WBC 1.170 0.499 0.019 3.222 1.213 8.562

Rx 0.267 0.566 0.637 1.306 0.431 3.959

Sex � log

WBC

0.469 0.720 0.515 1.598 0.390 6.549

Sex � Rx 1.592 0.923 0.084 4.915 0.805 30.003

No. of subjects ¼ 42 Log likelihood ¼ �55.835 Stratified by sex

Females:

log WBC
b11 ¼ 1:639

b̂
�
1 þ b̂

�
3 ¼ 1:170þ 0:469 ¼ 1:639

(

Rx
b21 ¼ 1.859

b̂
�
2 þ b̂

�
4 ¼ 0:267þ 1:592 ¼ 1.859

(

Males:

log WBC b̂12 ¼ 1:170 ¼ b̂
�
1

Rx b̂22 ¼ 0.267 ¼ b̂
�
2

Interaction model:

hg t;Xð Þ ¼ h0g tð Þ exp b�1 logWBC +
�

b�2 Rx
þ b�3 SEX� logWBCð Þ
þb�4 � SEX� Rxð Þ�
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The test is a likelihood ratio (LR) test which
compares log-likelihood statistics for the inter-
action model and the no-interaction model.
That is, the LR test statistic is of the form
�2 ln LR minus �2 ln LF, where R denotes the
reduced model, which in this case is the no-
interaction model, and F denotes the full
model, which is the interaction model.

This LR test statistic has approximately a chi-
square distribution with 2 degrees of freedom
under the null hypothesis that the no-interac-
tion model is correct. The degrees of freedom
here is 2 because there are two product terms
being tested in the interaction model.

The log-likelihood statistic for the reduced
model comes from the computer output for
the no-interaction model and is equal to
�2 times �57.560, or 115.120.

The log-likelihood statistic for the full model
comes from the computer results for the inter-
action model and is equal to �2 times �55.835,
or 111.670.

The LR statistic is therefore 115.120 minus
111.670, which equals 3.45. This value is not
significant at the 0.05 level for 2 degrees of
freedom. Thus, it appears that despite the
numerical difference between corresponding
coefficients in the female and male models,
there is no statistically significant difference.
We can therefore conclude for these data that
the no-interaction model is acceptable (at least
at the 0.05 level).

Using the remission data example, we have
described the no-interaction assumption, have
shown how to evaluate this assumption using
a likelihood ratio test, and have provided the
form of an interaction model that should be
used in case the no-interaction assumption
does not hold. We now describe this process
more generally for any stratified Cox analysis.

EXAMPLE: (continued)

Testing the no-interaction assumption:

LR ¼ �2 ln LR – (�2 ln LF)
R ¼ reduced (no-interaction) model
F ¼ full (interaction) model

LR _� w22 df under H0: no interaction
(2 df because two product terms tested
in interaction model)

No interaction (reduced model):

Output: −2 log L: 115.120

−2 ln LR

Interaction (full model):

Output: −2 log L: 111.670

−2 ln LF

LR ¼ 115.120 � 111.670 ¼ 3.45
(P > 0.05 not significant).
Thus, the no-interaction model is
acceptable.

Remission data example:

� described no-interaction
assumption

� evaluated assumption using LR
test

� provided interaction model if
needed

Now, we generalize this process.
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Recall that the general formof theno-interaction
model for the stratifiedCoxprocedure is given as
shown here. This model allows for several vari-
ables being stratified through the use of a newly
defined variable called Z�, whose strata consist
of combinations of categories of the variables
being stratified.

If, in contrast, we allow for interaction of the Z�

variable with the X’s in the model, we can write
the model as shown here. Notice that in this
interaction model, each regression coefficient
has the subscript g, which denotes the gth stra-
tum and indicates that the regression coeffi-
cients are different for different strata of Z�.

An alternative way to write the interaction
model uses product terms involving the vari-
able Z� with each of the predictors. However,
to write this model correctly, we need to use
k� � 1 dummy variables to distinguish the k�

categories of Z�; also, each of these dummy
variables, which we denote as Z�

1; Z
�
2 ; 	 	 	 Z�

k��1,
needs to be involved in a product term with
each of the X’s.

The hazard model formula alternative model is
shown here. Notice that the first line of the
formula contains the X’s by themselves, the
next line contains products of each Xj with Z�

1,
the third line contains the products with Z�

2,
and the last line contains products with Z�

k��1.
Note also that the subscript g occurs only with
the baseline hazard function h0g(t), and is not
explicitly used in the b coefficients.

No-interaction SC model:

hg(t,X) ¼ h0g(t)exp[b1X1 þ b2X2

þ . . . þ bpXp]
g ¼ 1, 2,. . ., k�, strata defined

from Z�

SC model allowing interaction:

hg(t,X) ¼ h0g(t)exp[b1gX1

þ b2gX2 þ . . . þ bpgXp]
g ¼ 1, 2,. . ., k�, strata defined

from Z�

Alternative SC interaction model:

� uses product terms involving Z�

� define k� � 1 dummy variables
Z�
1; Z�

2 ; . . . ; Z
�
k��1, from Z�

� products of the form Z�
i � Xj,

where i ¼ 1,. . ., k� � 1 and
j ¼ 1,. . ., p.

hg t;Xð Þ ¼ h0g tð Þ exp b1X1 þ 	 	 	 þ bpXp

�
þ b11 Z�

1 � X1

� �þ 	 	 	 þ bp1 Z�
1 � Xp

� �
þ b12 Z�

2 � X1

� �þ 	 	 	 þ bp2 Z�
2 � Xp

� �
þ 	 	 	 þ b1;k��1 Z�

k��1 � X1

� �þ 	 	 	
þbp;k��1 Z�

k��1 � Xp

� ��
g ¼ 1; 2; . . . ; k�; strata defined from Z�
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In our previous example involving the remission
data, the stratification variable (Z�) was the
variable SEX, and k� was equal to 2; thus,
we have only one dummy variable Z�

1, which
uses a (0, 1) coding to indicate sex, and we
have only (p equal to) two predictors: X1 equal
to log WBC and X2 equal to Rx. The interaction
model is then written in either of the forms
shown here.

The latter version of the interaction model is
what we previously presented for the remission
data example. Because the two versions pre-
sented here are equivalent, it follows that
b�1 ¼ b1; b2 ¼ b�2, b11 ¼ b�3, and b21 ¼ b�4.

We have thus seen that the interaction model
can be written in a format that contains product
terms involving dummy variables (i.e., Z�

i ) for
the variable being stratified being multiplied by
each of the predictors (i.e., Xi) not being strati-
fied. We will use this model to describe a test of
the no-interaction assumption.

The test is a likelihood ratio (LR) test which
compares log likelihood statistics for the inter-
action model and the no-interaction model.
That is, the LR test statistic is of the form
�2 ln LR minus �2 ln LF, where R denotes the
reduced model, which in this case is the no-
interaction model, and F denotes the full
model, which is the interaction model.

The no-interaction model differs from the
interaction model in that the latter contains
additional product terms. Thus, one way to
state the null hypothesis of no interaction is
that the coefficients of each of these product
terms are all zero.

The LR test statistic has approximately a chi-
square distribution with p(k� � 1) degrees of
freedom under the null hypothesis. The
degrees of freedom here is p(k� � 1) because
this value gives the number of product terms
that are being tested in the interaction model.

EXAMPLE: (Remission Data)

Z� ¼ sex, k� ¼ 2,

Z�
1 ¼ sex 0; 1ð Þ;

X1 ¼ log WBC, X2 ¼ Rx (p ¼ 2)

hg t;Xð Þ ¼ h0g tð Þ exp b1X1 þ b2X2½
þ b11 Z�

1 � X1

� �
þb21 Z�

1 � X2

� ��
¼ h0g tð Þ exp b�1 logWBC

�
þ b�2RXþ b�3 sex� logWBCð Þ
þb�4 sex� Rxð Þ�

g ¼ 1, 2.

b1 ¼ b�1; b2 ¼ b�2; b11 ¼ b�3; and b21 ¼ b�4

Testing the no-interaction assump-
tion:

LR ¼ �2 ln LR – (�2 ln LF)
R ¼ reduced (no-interaction)

model
F ¼ full (interaction) model

contains product terms

H0 :

b11 ¼ 	 	 	 ¼ bp1 ¼ 0

b12 ¼ 	 	 	 ¼ bp2 ¼ 0

..

.

b1;k��1 ¼ 	 	 	 ¼ bp;k��1 ¼ 0

8>>><
>>>:

LR _� w2p k��1ð Þ df
underH0 : no interaction

p(k� � 1) gives number of product
terms being tested in interaction
model
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Returning to the remission data example, for
which p ¼ 2 and k� ¼ 2, the value of p(k� � 1) is
equal to two times (2 � 1), which equals two.
Thus, to test whether the SEX variable inter-
acts with the log WBC and Rx predictors, the
degrees of freedom for the LR statistic is two,
as previously described.

V. A Second Example
Involving Several
Stratification Variables

The dataset “vets.dat” considers survival times
in days for 137 patients from the Veteran’s
Administration Lung Cancer Trial cited by
Kalbfleisch and Prentice in their text (The Sta-
tistical Analysis of Survival Time Data, Wiley,
pp. 223–224, 1980). The exposure variable of
interest is treatment status. Other variables of
interest as control variables are cell type (four
types, defined in terms of dummy variables),
performance status, disease duration, age, and
prior therapy status. Failure status is defined
by the status variable. A complete list of the
variables is shown here.

Here we provide computer output obtained
from fitting a Cox PH model to these data.
Using the P(PH) information in the last col-
umn, we can see that at least four of the vari-
ables listed have P(PH) values below the 0.100
level. These four variables are labeled in the
output as large cell (0.033), adeno cell (0.081),
small cell (0.078), and Perf. Stat (0.000). Notice
that the three variables, large cell, adeno cell,
and small cell, are dummy variables that dis-
tinguish the four categories of cell type.

Thus, it appears from the P(PH) results that the
variables cell type (defined using dummy vari-
ables) and performance status do not satisfy
the PH assumption.

Based on the conclusions just made about the
PH assumption, we now describe a stratified
Cox analysis that stratifies on the variables, cell
type and performance status.

EXAMPLE: (Remission Data)

Z� ¼ sex, k� ¼ 2,

Z�
1 ¼ sex 0, 1ð Þ

X1 ¼ log WBC, X2 ¼ Rx (p ¼ 2)
p(k� - 1) ¼ 2, so
LR _� w22 dfunder H0: no interaction

EXAMPLE

vets.dat: survival time in days, n ¼ 137

Veteran’s Administration Lung Cancer Trial

Column 1: Treatment (standard¼ 1, test¼ 2)
Column 2: Cell type 1 (large ¼ 1, other ¼ 0)
Column 3: Cell type 2 (adeno¼ 1, other¼ 0)
Column 4: Cell type 3 (small ¼ 1, other ¼ 0)
Column 5: Cell type 4 (squamous ¼ 1,

other ¼ 0)
Column 6: Survival time (days)
Column 7: Performance status

(0 ¼ worst,. . ., 100 ¼ best)
Column 8: Disease duration (months)
Column 9: Age
Column 10: Prior therapy (none ¼ 0,

some ¼ 10)
Column 11: Status (0 ¼ censored, 1 ¼ died)

Cox regression
Analysis time_t: survt

Coef.

Std.

Err. p > |z|

Haz.

Ratio

[95% Conf.

Interval]

P

(PH)

Treatment 0.290 0.207 0.162 1.336 0.890 2.006 0.628

Large cell 0.400 0.283 0.157 1.491 0.857 2.594 0.033

Adeno cell 1.188 0.301 0.000 3.281 1.820 5.915 0.081

Small cell 0.856 0.275 0.002 2.355 1.374 4.037 0.078

Perf. Stat �0.033 0.006 0.000 0.968 0.958 0.978 0.000

Dis. Durat. 0.000 0.009 0.992 1.000 0.982 1.018 0.919

Age �0.009 0.009 0.358 0.991 0.974 1.010 0.198

Pr. Therapy 0.007 0.023 0.755 1.007 0.962 1.054 0.145

No. of subjects ¼ 137 Log likelihood ¼ �475.180

Variables not satisfying PH:

� cell type (3 dummy variables)
� performance status
� prior therapy (possibly)

SC model: stratifies on cell type and
performance status
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Because we are stratifying on two variables, we
need to form a single new categorical variable
Z� whose categories represent combinations of
categories of the two variables. The cell type
variable has four categories by definition. The
performance status variable, however, is an
interval variable ranging between 0 for worst
to 100 for best, so it needs to be categorized.
We categorize this variable into two groups
using a cutpoint of 60, and we denote this
binary variable as PSbin. Thus, the number of
categories for our Z� variable is 4 � 2, or 8; that
is, k� ¼ 8.

In addition to the two stratification variables,
cell type and performance status, there are four
other variables to be considered as predictors in
the stratified Cox model. These are treatment
status, disease duration, age, and prior therapy.

For illustrative purposes here, we use only
treatment status and age as predictors. The
other two variables, disease duration and
prior therapy, are considered in exercises fol-
lowing this presentation.

Here we show computer output from fitting a
stratified Cox model that stratifies on cell type
andperformance status using the eight-category
stratification variable Z�. This model also
includes treatment and age as predictors. These
results consider a no-interactionmodel, because
only one regression coefficient is provided for
the treatment and age predictors. Notice that
the estimated hazard ratio is 1.134 for the effect
of the treatment variable adjusted for age andZ�,
the latter being adjusted by stratification. The p-
value for this adjusted treatment effect is 0.548,
which is highly nonsignificant.

Theno-interactionmodelwehave just described
has the hazard function formula shown here.

To evaluate whether the no-interaction model
is appropriate, we need to define an interaction
model that allows different regression coeffi-
cients for different strata. One way to write
this interaction model is shown here.

EXAMPLE: (continued)

Z� given by combinations of categories:

� cell type (four categories)
� performance status (interval)

change to
� PSbin (two categories)

Z� has k� ¼ 4 � 2 ¼ 8 categories

Four other variables considered as X’s:

� treatment status
� disease duration
� age
� prior therapy

Here, we use treatment status and age
as X’s

Stratified Cox regression
Analysis time_t: survt

Coef.

Std.

Err. p>|z|

Haz.

Ratio

[95% Conf.

Interval]

Treatment 0.125 0.208 0.548 1.134 0.753 1.706

Age �0.001 0.010 0.897 0.999 0.979 1.019

No. of subjects ¼ 137 Log likelihood ¼ �262.020 Stratified by Z�

No-interaction model

cHR ¼ 1:134 P ¼ 0:548ð Þ
Treatment effect (adjusted for age and
Z�) is nonsignificant

No-interaction model:
hg(t,X)
¼ h0g(t)exp[b1 Treatment þ b2 Age]
g ¼ 1, 2,. . ., 8 (¼# of strata defined

from Z�)

Interaction model:
hg(t,X)
¼h0g(t)exp[b1g Treatment þ b2g Age]
g ¼ 1, 2,. . ., 8
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An alternative version of this interaction model
that involves product terms is shown here. This
version uses seven dummy variables denoted
as Z�

1 ; Z
�
2 up through Z�

7 to distinguish the eight
categories of the stratification variable Z�. The
model contains the main effects of treatment
and age plus interaction terms involving pro-
ducts of each of the seven dummy variables
with each of the two predictors.

Yet another version of the interaction model is
to replace the seven dummy variables Z�

1 to Z�
7

by the seven variables listed here. These vari-
ables are three of the binary variables making
up the cell type variable, the binary variable for
performance status, plus three product terms
involving each of the cell type dummy variables
multiplied by the PSbin dummy variable (Z�

4).

The latter interaction model is shown here.
In this model, the variable tr Z�

1 denotes the
product of treatment status with the large cell
dummy Z�

1, the variable tr Z�
2 denotes the prod-

uct of treatment status with the adeno cell var-
iable Z�

2, and so on. Also, the variable tr Z�
1Z

�
4

denotes the triple product of treatment status
times the large cell variable Z�

1 times the PSbin
variable Z�

4, and so on, for the other triple prod-
uct terms involving treatment. Similarly, for
the terms involving age, the variable Age Z�

1

denotes the product of age with Z�
1, and the

variable Age Z�
1Z

�
4 denotes the triple product of

age times Z�
1 times Z�

4.

Note that we are only considering the interac-
tion between the stratified variables and the
predictors. We could also (but do not) consider
the interaction between the two predictors,
treatment, and age.

EXAMPLE: (continued)

Alternative interaction model:

hg t;Xð Þ
¼ h0g tð Þ exp b1 Treatment½
þ b2 Age

þb11 Z�
1 � Treatment

� �þ 	 	 	
þ b17 Z�

7 � Treatment
� �

þb21 Z�
1 � Age

� �þ 	 	 	 þ b27 Z�
7 � Age

� ��
g ¼ 1; 2; . . . ; 8

Another version of interaction model:
Replace Z�

1 ; . . . ;Z
�
7 by

Z�
1 ¼ large cell binaryð Þ

Z�
2 ¼ adeno cell binaryð Þ

Z�
3 ¼ small cell binaryð Þ

Z�
4 ¼ PSbin binaryð Þ

Z�
5 ¼ Z�

1 � Z�
4

Z�
6 ¼ Z�

2 � Z�
4

Z�
7 ¼ Z�

3 � Z�
4

hg t;Xð Þ ¼ h0g tð Þ exp b1 Treatment þ b2 Age½
þ b11 tr Z�

1

� �þ b12 tr Z�
2

� �þ b13 tr Z�
3

� �
þ b14 tr Z�

4

� �þ b15 tr Z�
1Z

�
4

� �
þ b16 tr Z�

2Z
�
4

� �þ b17 tr Z�
3Z

�
4

� �
þb21 AGE Z�

1

� �þ b22 AGE Z�
2

� �
þb23 AGE Z�

3

� �þ b24 AGE Z�
4

� �
þ b25 AGE Z�

1Z
�
4

� �þ b26 AGE Z�
2Z

�
4

� �
þb27 AGE Z�

3Z
�
4

� ��
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Here we provide the computer results from
fitting the interaction model just described.
Notice that the first two variables listed are
the main effects of treatment status and age.
The next seven variables are product terms
involving the interaction of treatment status
with the seven categories of Z�. The final
seven variables are product terms involving
the interaction of age with the seven categories
of Z�. As defined on the previous page, the
seven variables used to define Z� consist of
three dummy variables Z�

1; Z
�
2 and Z�

3 for cell
type, a binary variable Z�

4 for performance sta-
tus and products of Z�

4 with each of Z�
1 ; Z

�
2,

and Z�
3. Note that once the variables Z�

1 ; Z
�
2 Z�

3,
and Z�

4 are specified, the values of the three
product terms are automatically determined.

We can use these results to show that the inter-
action model being fit yields different regres-
sion coefficients for each of the eight
categories defined by the subscript g for the
stratification variable Z�. These eight cate-
gories represent the possible combinations of
the four variables Z�

1 to Z�
4, as shown here.

Consider the hazard function when the vari-
ables Z�

1 through Z�
4 are all equal to zero. This

stratum is defined by the combination of squa-
mous cell type and a binary performance status
value of 0. In this case, all product terms are
equal to zero and the hazard model contains
only the main effect terms treatment and age.
The estimated hazard function for this stratum
uses the coefficients 0.286 for treatment and
0.000 for age, yielding the expression shown
here. Note that age drops out of the expression
because its coefficient is zero to three decimal
places.

Now consider the hazard function when
the variable Z�

1 equals 1 and Z�
2 through Z�

4 are
equal to zero. This stratum is defined by the
combination of large cell type and a PSbin
value of 0. In this case, the only nonzero prod-
uct terms are Age Z�

1 and tr Z�
1, whose coeffi-

cients are b21 and b11, respectively.

EXAMPLE: (continued)

Stratified Cox Regression Analysis on
Variable: Z�

Response: Surv. Time

Coef.

Std.

Err. p > |z|

Haz.

Ratio

[95% Conf.

Interval]

Treatment 0.286 0.664 0.667 1.331 0.362 4.893

Age 0.000 0.030 0.978 0.999 0.942 1.060

tr Z�
1 2.351 1.772 0.184 10.495 0.326 337.989

tr Z�
2 �1.158 0.957 0.226 0.314 0.048 2.047

tr Z�
3 0.582 0.855 0.496 1.790 0.335 9.562

tr Z�
4 �1.033 0.868 0.234 0.356 0.065 1.950

tr Z�
1Z

�
4 �0.794 1.980 0.688 0.452 0.009 21.882

tr Z�
2Z

�
4 2.785 1.316 0.034 16.204 1.229 213.589

tr Z�
3Z

�
4 0.462 1.130 0.683 1.587 0.173 14.534

Age Z�
1 0.078 0.064 0.223 1.081 0.954 1.225

Age Z�
2 �0.047 0.045 0.295 0.954 0.873 1.042

Age Z�
3 �0.059 0.042 0.162 0.943 0.868 1.024

Age Z�
4 0.051 0.048 0.287 1.053 0.958 1.157

Age Z�
1Z

�
4 �0.167 0.082 0.042 0.847 0.721 0.994

Age Z�
2Z

�
4 �0.045 0.068 0.511 0.956 0.838 1.092

Age Z�
3Z

�
4 0.041 0.061 0.499 1.042 0.924 1.175

No. of subjects ¼ 137 Log likelihood ¼ �249.972 Stratified by Z�

Eight possible combinations of Z�
1 to Z�

4 :

g ¼ 1 : Z�
1 ¼ Z�

2 ¼ Z�
3 ¼ Z�

4 ¼ 0

g ¼ 2 : Z�
1 ¼ 1; Z�

2 ¼ Z�
3 ¼ Z�

4 ¼ 0

g ¼ 3 : Z�
2 ¼ 1; Z�

1 ¼ Z�
3 ¼ Z�

4 ¼ 0

g ¼ 4 : Z�
3 ¼ 1; Z�

1 ¼ Z�
2 ¼ Z�

4 ¼ 0

g ¼ 5 : Z�
1 ¼ Z�

2 ¼ Z�
3 ¼ 0; Z�

4 ¼ 1

g ¼ 6 : Z�
1 ¼ 1; Z�

2 ¼ Z�
3 ¼ 0; Z�

4 ¼ 1

g ¼ 7 : Z�
2 ¼ 1; Z�

1 ¼ Z�
3 ¼ 0; Z�

4 ¼ 1

g ¼ 8 : Z�
3 ¼ 1; Z�

1 ¼ Z�
2 ¼ 0; Z�

4 ¼ 1

g ¼ 1 : Z�
1 ¼ Z�

2 ¼ Z�
3 ¼ Z�

4 ¼ 0

(Squamous cell type and PSbin ¼ 0)

All product terms are zero:
h1(t,X)
¼ h01(t)exp[b1 Treatment þ b2 Age],

where b̂1 ¼ 0:286;

b̂2 ¼ 0:000; so that

ĥ1 t;Xð Þ ¼ ĥ01 tð Þ exp 0:283ð ÞTreatment½ �

g ¼ 2 : Z�
1 ¼ 1; Z�

2 ¼ Z�
3 ¼ Z�

4 ¼ 0

Large cell type and PSbin ¼ 0ð Þ
Nonzero product terms Coefficients

Age Z�
1 ¼ Age b21

tr Z�
1 ¼ Treatment b11

Presentation: V. A Second Example Involving Several Stratification Variables 219



The hazard function for this second stratum is
shown here. Notice that the coefficients of the
treatment and age variables are (b1 þ b11) and
(b2 þ b21), respectively. The estimated values of
each of these coefficients are given here.

The corresponding estimated hazard function
for the second stratum (i.e., g ¼ 2) is shown
here. For comparison, we repeat the estimated
hazard function for the first stratum.

The estimated hazard functions for the remain-
ing strata are provided here. We leave it up to
the reader to verify these formulae. Notice that
the coefficients of treatment are all different in
the eight strata, and the coefficients of age also
are all different in the eight strata.

Wehave presented computer results for both the
no-interaction and the interaction models. To
evaluate whether the no-interaction assumption
is satisfied, we need to carry out a likelihood
ratio test to compare these two models.

The null hypothesis being tested is that the no-
interaction model is acceptable. Equivalently,
this null hypothesis can be stated by setting the
coefficients of all product terms in the interac-
tionmodel to zero. That is, the seven coefficients
of product terms involving treatment and the
seven coefficients of the product terms involving
age are set equal to zero as shown here.

Because the null hypothesis involves 14 coeffi-
cients, the degrees of freedom of the LR chi-
square statistic is 14. The test statistic takes the
usual form involving the difference, between log-
likelihood statistics for the reduced and fullmod-
els,where thereducedmodel is theno-interaction
modeland the fullmodel is the interactionmodel.

EXAMPLE: (continued)

h2(t,X)¼ h02(t)exp[(b1þ b11) Treatment
þ (b2 þ b21) Age]

b̂1 ¼ 0:286; b̂2 ¼ 0:000

b̂11 ¼ 2:351; b̂21 ¼ 0:078

Hazard functions for interactionmodel:

g¼1 : Z�
1 ¼Z�

2 ¼Z�
3 ¼Z�

4 ¼0
� �

:

ĥ1 t;Xð Þ¼ ĥ01ðtÞexp½ð0:286ÞTreatment�
g¼2 : Z�

1 ¼1; Z�
2 ¼Z�

3 ¼Z�
4 ¼0

� �
:

ĥ2 t;Xð Þ¼ ĥ02ðtÞexp½ð2:637ÞTreatment

þð0:078ÞAge�
g¼3 : Z�

2 ¼1; Z�
1 ¼Z�

3 ¼Z�
4 ¼0

� �
:

ĥ3 t;Xð Þ¼ ĥ03ðtÞexp½ð�0:872ÞTreatment

þ �0:047ð ÞAge]
g¼4 : Z�

3 ¼1; Z�
1 ¼Z�

2 ¼Z�
4 ¼0

� �
:

ĥ4 t;Xð Þ¼ ĥ04ðtÞexp½ð0:868ÞTreatment

þ �0:059ð ÞAge]
g¼5 : Z�

1 ¼ Z�
2 ¼Z�

3 ¼0; Z�
4 ¼1

� �
:

ĥ5 t;Xð Þ¼ ĥ05ðtÞexp½ð0:747ÞTreatment

þ �0:051ð ÞAge]
g¼6 : Z�

1 ¼1; Z�
2 ¼Z�

3 ¼0; Z�
4 ¼1

� �
:

ĥ6 t;Xð Þ¼ ĥ06ðtÞexp½ð0:810ÞTreatment

þ �0:038ð ÞAge]
g¼7 : Z�

2 ¼1; Z�
1 ¼Z�

3 ¼0; Z�
4 ¼1

� �
:

ĥ7 t;Xð Þ¼ ĥ07ðtÞexp½ð0:880ÞTreatment

þ �0:041ð ÞAge]
g¼8 : Z�

3 ¼1; Z�
1 ¼Z�

2 ¼0; Z�
4 ¼1

� �
:

ĥ8 t;Xð Þ¼ ĥ08ðtÞexp½ð0:297ÞTreatment

þ 0:033ð ÞAge]
LR test to compare no-interaction
model with interaction model:

H0: no-interactionmodelacceptable, i.e.,
Treatment: b11 ¼ b12 ¼ ··· ¼ b17 ¼ 0
and Age: b21 ¼ b22 ¼ ··· ¼ b27 ¼ 0

14 coefficients ) df ¼ 14

LR ¼ �2 ln LR – (2 ln LF)

R ¼ reduced (no-interaction) model

F ¼ full (interaction) model

220 5. The Stratified Cox Procedure



Thus, under the null hypothesis, the LR statistic
is approximately chi-square with 14 degrees of
freedom.

The computer results for the no-interaction and
interaction models give log-likelihood values
of 524.040 and 499.944, respectively. The differ-
ence is 24.096. A chi-square value of 24.096 with
14 degrees of freedom yields a p-value of 0.045,
so that the test gives a significant result at the
0.05 level. This indicates that the no-interaction
model is not acceptable and the interaction
model is preferred.

Note, however, that it may be possible from
further statistical testing to simplify the inter-
action model to have fewer than 14 product
terms. For example, one might test for only
the seven product terms involving treatment
or only the seven product terms involving age.

VI. A Graphical View
of the Stratified Cox
Approach

In this section we examine four log–log survival
plots illustrating the assumptions underlying a
stratified Cox model with or without interac-
tion. Each of the four models considers two
dichotomous predictors: treatment (coded
RX ¼ 1 for placebo and RX ¼ 0 for new treat-
ment) and SEX (coded 0 for females and 1 for
males). The fourmodels are as follows (see left).

a. This model assumes the PH assumption for
both RX and SEX and also assumes no
interaction between RX and SEX. Notice
all four log–log curves are parallel
(PH assumption) and the effect of
treatment is the same for females andmales
(no interaction). The effect of treatment
(controlling for SEX) can be interpreted
as the distance between the log–log curves
from RX ¼ 1 to RX ¼ 0, for males and for
females, separately.

EXAMPLE (continued)

LR _� w214df under H0: no interaction

LR ¼ �2��262:020ð Þ � �2��249:972ð Þ
¼ 524:040� 499:944 ¼ 24:096

P ¼ 0:045 significant at 0.05ð Þ
Conclusion:
Reject H0: interaction model is
preferred.

Might use further testing to simplify
interaction model, e.g., test for seven
products involving treatment or test
for seven products involving age.

a. h(t) ¼ h0(t)exp(b1RX þ b2SEX)
ln(�ln S(t)) ¼ ln(�ln S0(t))

þ b1 RX þ b2SEX

ln(−lnS(t))

males, RX = 1

males, RX = 0

females, RX = 0

females, RX = 1

t
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b. This model assumes the PH assumption
for both RX and SEX and allows for
interaction between these two variables.
All four log–log curves are parallel
(PH assumption) but the effect of treatment
is larger for males than females as the
distance from RX ¼ 1 to RX ¼ 0 is greater
for males.

c. This is a stratified Cox model in which the
PH assumption is not assumed for SEX.
Notice the curves for males and females
are not parallel. However, the curves for
RX are parallel within each stratum of
SEX indicating that the PH assumption is
satisfied for RX. The distance between
the log–log curves from RX ¼ 1 to RX ¼
0 is the same for males and females
indicating no interaction between RX and
SEX.

d. This is a stratified Cox model allowing for
interaction of RX and SEX. The curves for
males and females are not parallel although
the PH assumption is satisfied for RX
within each stratum of SEX.The distance
between the log–log curves from RX ¼ 1 to
RX ¼ 0 is greater for males than females
indicating interaction between RX and SEX.

b. h(t) ¼ h0(t) exp(b1 RX þ b2SEX
þ b3 RX � SEX)

ln(�ln S(t)) ¼ ln(�ln S0(t))
þ b1RXþ b2SEXþ b3RX� SEX

ln(−lnS(t))

males, RX = 1

males, RX = 0

females, RX = 0
females, RX = 1

t

c. h(t) ¼ h0g(t)exp(b1RX)
(g ¼ 1 for males, g ¼ 0 for females)

ln(�ln S(t)) ¼ ln(�ln S0g(t))
þ b1RX

ln(−lnS(t))

males, RX = 1
males, RX = 0

females, RX = 0

females, RX = 1
t

d. h(t) ¼ h0g(t)exp(b1RX
þ b2RX � SEX)

(g ¼ 1 for males, g ¼ 0 for females)

ln(�ln S(t)) ¼ ln(�ln S0g(t))
þ b1RX þ b2RX � SEX

ln(−lnS(t))

males, RX = 1

males, RX = 0

females, RX = 0

females, RX = 1

t
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VII. The Stratified Cox
Likelihood

At the end of the presentation from Chapter 3
(Section VIII), we illustrated the Cox likelihood
using the dataset shown on the left. In this
section, we extend that discussion to illustrate
the likelihood for a stratified Cox model.

To review: The data indicate that Barry got the
event at TIME ¼ 2 years. Gary got the event at
3 years, Harry was censored at 5 years and
Larry got the event at 8 years. Furthermore,
Barry and Larry were smokers while Gary and
Harry were non-smokers.

In Chapter 3, we constructed the Cox likelihood
with one predictor, SMOKE, in the model. The
model and the likelihood are shown on the left.

The likelihood is a product of three terms, one
term for each event time tf (TIME¼ 2, 3, and 8).
The denominator of each term is the sum of the
hazards from the subjects still in the risk set at
time tf, including the censored subject, Harry.
The numerator of each term is the hazard of
the subject who got the event at tf. The reader
may wish to reread Section VIII of Chapter 3.

Now consider a stratified Cox model, in which
the stratified variable is a dichotomous indi-
cator of whether the subject has or does not
have a history of hypertension. The predictor
SMOKE remains in the model (shown at left).

The model allows for a violation of the PH
assumption. However, within each category of
hypertension, the PH assumption is assumed
to hold.

� CoxPHLikelihood (L) described
in Chapter 3, Section VIII

� L now extended for SC model

ID TIME STATUS SMOKE
Barry 2 1 1
Gary 3 1 0
Harry 5 0 0
Larry 8 1 1

TIME ¼ Survival time (in years)
STATUS ¼ 1 for event, 0 for

censorship
SMOKE ¼ 1 for a smoker, 0 for a

non-smoker

Cox PH model: hðtÞ ¼ h0ðtÞeb1SMOKE

Cox PH Likelihood:

L ¼ h0ðtÞeb1
h0ðtÞeb1 þ h0ðtÞe0 þ h0ðtÞe0 þ h0ðtÞeb1

� �

� h0ðtÞe0
h0ðtÞe0 þ h0ðtÞe0 þ h0ðtÞeb1

� �
� h0ðtÞeb1

h0ðtÞeb1
� �

Stratified Cox model:

hgðtÞ ¼ h0gðtÞeb1SMOKE

g¼1 history of hypertension
g¼2 no history of hypertension

PH assumption:

� Violated overall
� Assumed to hold within

categories of stratified variable
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The data are shown on the left. The additional
variable is HT which is the variable we wish to
stratify on. Barry and Harry have a history of
hypertension (coded HT¼1) while Gary and
Larry do not (coded HT¼2).

The stratified Cox likelihood is formulated in
pieces. Each piece represents a stratified cate-
gory. Within each piece, the likelihood is for-
mulated similarly as the likelihood formulated
for a Cox PH model.

The first piece (stratified category) is defined
among observations in which HT¼1. The sec-
ond piece is defined among observations in
which HT¼2.

Here, for convenience, we again show you the
SC model for these data on the left.

For the first stratum (HT¼1), Barry gets an
event at TIME¼2. Barry and Harry are in the
risk set when Barry gets his event. Barry is the
only event from this stratum as Harry is cen-
sored at TIME¼5. Therefore the likelihood
for this piece, L1 (shown at left), contains one
term. That one term has Barry’s hazard in
the numerator. Barry’s and Harry’s hazard are
summed in the denominator.

For the second stratum (HT¼2), Gary gets an
event at TIME¼3. Gary and Larry are in the
risk set when Gary gets his event. Larry gets
an event at TIME¼8 and is the only one in the
risk set at the time of his event. Therefore, the
likelihood for this piece, L2 (shown at left), is a
product of two factors. Each of the two factors
corresponds to an event.

ID TIME STATUS SMOKE HT

Barry 2 1 1 1
Gary 3 1 0 2
Harry 5 0 0 1
Larry 8 1 1 2

HT ¼ History of hypertension
(1¼yes, 2¼no)

Formulate likelihood in pieces:
Data for HT¼1

ID TIME STATUS SMOKE HT

Barry 2 1 1 1
Harry 5 0 0 1

Data for HT¼2

ID TIME STATUS SMOKE HT

Gary 3 1 0 2
Larry 8 1 1 2

Stratified Cox model:

hgðtÞ ¼ h0gðtÞeb1SMOKE

g¼1 history of hypertension
g¼2 no history of hypertension

Among HT¼1
Barry has only event
Barry and Harry at risk at
TIME¼2

L1 ¼ h01e
b1

h01eb1 þ h01e0

Among HT¼2
Gary and Larry both get events
Gary and Larry at risk at
TIME¼3
Larry at risk at TIME¼8

L2 ¼ h02e
0

h02e0 þ h02eb1
� h02e

b1

h02eb1
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The stratified Cox likelihood can be formulated
by taking the product of each piece (L1 and L2).
Each piece was formulated within a stratum.

Notice that the baseline hazard cancels from
the likelihood. As with the Cox PH model, the
stratified likelihood is just determined by the
order of events (not the baseline hazard).

One additional point about this model is that
the b1 in the first piece of the likelihood (L1) is
the same b1 that is in the second piece of the
likelihood (L2). In other words, this is a no
interaction model. The effect of smoking
(expressed as b1) does not depend on hyperten-
sion status.

VIII. Summary Wenowsummarize themost important features
of the stratified Cox (SC)model described in this
presentation.

The SC model is a modification of the Cox PH
model to allow for control by “stratification” of
predictors not satisfying the PH assumption.
Variables that are assumed to satisfy the
assumption are included in the model as pre-
dictors; the stratified variables are not included
in the model.

The computer results for a SC model provides
essentially the same type of output as provided
for a Cox PH model without stratification.
An example of SC output using the remission
data is shown here. The variables included as
predictors in the model are listed in the first
column followed by their estimated coeffi-
cients, standard errors, p-values, hazard ratio
values, and 95% confidence limits. Such infor-
mation cannot be provided for the variables
being stratified, because these latter variables
are not explicitly included in the model.

L ¼ L1 � L2

¼ h01e
b1

h01eb1 þ h01e0

� �
h02e

0

h02e0 þ h02eb1
� h02e

b1

h02eb1

� �

The baseline hazard cancels in L

L ¼ eb1

eb2 þ e0

� �
� e0

e0 þ eb1
� eb1

eb1

� �

L ¼ eb1

eb2 þ e0

� �
� e0

e0 þ eb1
� eb1

eb1

� �

Same b1 in each piece

No interaction model:

Effect of smoking is same for
those with or without hyper-
tension

Stratified Cox (SC) model:

� stratification of predictors not
satisfying PH assumption

� includes predictors satisfying
PH

� does not include stratified
variables

Computer Results

Stratified Cox regression
Analysis time _t: survt

Coef.
Std.
Err. p > |z|

Haz.
Ratio

[95% Conf.
Interval]

log
WBC 1.390 0.338 0.000 4.016 2.072 7.783
RX 0.931 0.472 0.048 2.537 1.006 6.396

No. of Log likelihood Stratified
subjects ¼ 42 ¼ �57.560 by sex

Presentation: VIII. Summary 225



The general hazard function form for the no-
interaction stratified Cox model is shown here.
This formula contains a subscript g that indi-
cates the gth stratum, where the strata are dif-
ferent categories of the stratification variable
Z� and the number of strata equals k�. Notice
that the baseline hazard functions are different
in each stratum.

The variable Z� is defined by first identifying
the Zi variables not satisfying the PH assump-
tion. We then categorize each Z and form com-
binations of categories of each of the Z’s. Each
combination represents a different stratum
making up the variable Z�.

The above model is designated as a “no-
interaction” model because the b’s in the model
are the same for each subscript g. The no-
interaction assumptionmeans that the variables
being stratified are assumed not to interact with
the X’s in the model.

For the no-interaction model, the fitted SC
model will yield different estimated survival
curves for each stratum because the baseline
hazard functions are different for each stratum.

However, because the coefficients of the X’s are
the same for each stratum, estimates of hazard
ratios are the same for each stratum.

Regression coefficients in the SC model are
estimated by maximizing a partial likelihood
function that is obtained by multiplying likeli-
hood functions for each stratum.

In order to evaluate the no-interaction assump-
tion, we must define an interaction model for
comparison. One version of the interaction
model is shown here. This version shows regres-
sion coefficients with different subscripts in dif-
ferent strata; that is, each b coefficient has a
subscript g.

Hazard function for no-interaction
stratified Cox model:

hg (t,X) ¼ h0g(t)exp[b1X1 þ b2X2

þ . . . þ bpXp]
g ¼ 1, 2,. . ., k�, strata defined

from Z�

Z� has k� categories
X1, X2,. . ., Xp satisfy PH

Stratification variable Z�:

� identify Z1, Z2,. . ., Zk not
satisfying PH

� categorize each Z
� form combinations of

categories (strata)
� each combination is a stratum

of Z�

No-interaction model:
Same coefficients b1, b2,. . ., bp for
each g, i.e., Z� does not interact
with the X’s.

Different

baselines

h01 tð Þ ) Ŝ1 tð Þ
h02 tð Þ ) Ŝ2 tð Þ

..

.

h0k tð Þ ) Ŝk� tð Þ

8>>><
>>>:

9>>>=
>>>;

Different

survival

curves

cHR same for each stratum

(Partial) likelihood function:

L ¼ L1 � L2 � . . . � Lk�

Stratified Cox model allowing
interaction:

hg(t,X) ¼ h0g(t)exp[b1gX1 þ b2gX2

þ . . . þ bpgXp]
g¼ 1, 2,. . .,k�, strata defined fromZ�.
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An alternative way to write the interaction
model uses product terms involving the Z� var-
iable with each predictor. Thismodel uses k� �1
dummy variables to distinguish the k� cate-
gories of Z�. Each of these dummy variables is
included as a product term with each of the X’s.

To evaluate the no-interaction assumption,
we can perform a likelihood ratio test that com-
pares the (reduced) no-interaction model to
the (full) interaction model. The null hypo-
thesis is that the no-interaction assumption is
satisfied. The test statistic is given by the dif-
ference between the log-likelihood statistics for
the no-interaction and interactionmodels. This
statistic is approximately chi-square under
the null hypothesis. The degrees of freedom is
p(k� � 1) where p denotes the number of X’s
and k� is the number of categoriesmaking upZ�.

Presentation Complete! This presentation is now complete. We suggest
that the reader review this presentation using
thedetailedoutline that follows.Thenanswer the
practice exercises and the test that follow.

The next Chapter (6) is entitled “Extension
of the Cox PH Model for Time-Dependent
Variables.” There we show how an “extended”
Cox model can be used as an alternative to the
stratified Cox model when one or more pre-
dictors do not satisfy the PH assumption. We
also discuss more generally what is a time-
dependent variable, and show how such a vari-
able can be evaluated using an extended Cox
model.

Alternative stratified Cox inter-
action model:

� uses product terms involving Z�

� define k� � 1 dummy variables
from Z�

� products of the form Z�
i � Xj

Testing the no-interaction assump-
tion:

LR ¼ �2 ln LR � (�2 ln LF)
R ¼ reduced (no-interaction) model
F ¼ full (interaction) model

contains product terms
LR _� w2p k��1ð Þdf under H0: no

interaction

Chapters

1. Introduction to Survival
Analysis

2. Kaplan–Meier Survival Curves
and the Log–Rank Test

3. The Cox Proportional Hazards
Model and Its Characteristics

4. Evaluating the Proportional
Hazards Assumption

ü5. The Stratified Cox Procedure

Next:

6. Extension of the Cox
Proportional Hazards Model
for Time-Dependent Variables
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Detailed
Outline

I. Preview (page 204)

A. Focus on how stratified Cox (SC) procedure is
carried out:

� analysis of computer results from SC
procedure;

� hazard function for SC model;

� stratifying on a single predictor versus two
or more predictors;

� no-interaction versus interaction models.

II. An Example (pages 204–208)

A. Cox PH results for remission data yield P(PH) ¼
0.031 for SEX.

B. SC model used: control for SEX (stratified);
include log WBC and Rx in model.

C. Analysis of Rx effect from stratified Cox results:cHR ¼ 2:537; 95% CI: (1.006,6.396); LR andWald
tests: P < 0.05.

D. Hazard model: hg(t,X) ¼ h0g(t)exp[b1 log WBC
þ b2Rx], g ¼ 1,2

� different baseline hazard functions and
survival curves for females and males;

� same coefficients b1 and b2 for both females
and males (no-interaction assumption);

� obtain estimates by maximizing partial
likelihood L ¼ L1 � L2.

E. Graph of four adjusted survival curves for Rx
(adjusted for log WBC).

III. The General Stratified Cox (SC) Model
(pages 208–209)

A. hg(t,X) ¼ h0g(t)exp[b1X1 þ b2X2 þ . . . þ bpXp],
g ¼ 1, 2,. . .,k�

where the strata are defined from the
stratification variable Z�.

B. Z� defined from Z1,Z2,. . .,Zk variables that do
not satisfy PH:

� categorize each Zi

� form combinations of categories

� each combination is a stratum of Z�

C. Different baseline hazard functions and
survival curves for each stratum.

D. Assumes no interaction: same coefficients
b1,b2,. . .,bp for each g; i.e., Z� does not interact
with the X’s; i.e., estimated HR is same for each
stratum.

E. Obtain estimates by maximizing partial
likelihood L ¼ L1 � L2 � . . . � Lk�, where Li is
likelihood for ith stratum.
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IV. The No-Interaction Assumption and How to
Test It (pages 210–216)

A. Assumes same coefficients b1,b2,. . .,bp for each g.

B. Interaction model:

hg(t,X)¼ h0g(t)exp[b1gX1 þ b2gX2 þ . . . þ bpgXp],

g ¼ 1, 2,. . .,k� strata defined from Z�.
C. Alternative stratified Cox interaction model:

� uses product terms involving Z�

� define k��1 dummy variables
Z�
1 ; Z�

2 ; . . . ; Z
�
k��1 from Z�

� products of the form Z�
i � Xj, where

i ¼ 1,. . ., k� �1; j ¼ 1,. . ., p

� hazard function: g ¼ 1, 2,. . ., k� strata
defined from Z�

hg t;Xð Þ ¼ h0g tð Þ exp b1X1 þ 	 	 	 þ bpXp

� þ b11 Z�
1 � X1

� �
þ 	 	 	 þ bp1 Z�

1 � Xp

� �þ b12 Z�
2 � X1

� �þ 	 	 	 þ bp2 Z�
2 � Xp

� �
þ 	 	 	 þ b1;k��1 Z�

k��1 � X1

� �þ 	 	 	 þbp;k��1 Z�
k��1 � Xp

� ��

D. Testing the no-interaction assumption: use LR
statistic given by LR ¼ �2 ln LR – (�2 ln LF)
where R ¼ reduced (no interaction) model and
F ¼ full (interaction) model
LR _� w2p k��1ð Þdf under H0: no interaction, i.e.,
b11 ¼ b12 ¼ . . . ¼ bp,k��1 ¼ 0

V. A Second Example Involving Several
Stratification Variables (pages 216–221)

A. Dataset “vets.dat” from Veteran’s
Administration Lung Cancer Trial; n ¼ 137;
survival time in days.

B. Variables are: treatment status, cell type (four
types), performance status, disease duration,
age, and prior therapy status.

C. Cox PH results indicate [using P(PH)] that cell
type and performance status do not satisfy PH
assumption.

D. Example stratifies on cell type and performance
status using four categories of cell type and two
categories of performance status, so that Z� has
k� ¼ 8 strata.

E. X’s considered in model are treatment status
and age.

F. Computer results for no-interaction model:
estimated HR for effect of treatment adjusted
for age and Z� is 1.134 (P ¼ 0.548); not
significant.
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G. Hazard function for no-interaction model:

hg(t,X) ¼ h0g(t)exp[b1 Treatment þ b2 Age],
g ¼ 1, 2,. . ., 8

H. Hazard function for interaction model:

hg(t,X) ¼ h0g(t)exp[b1g Treatment þ b2g Age],
g ¼ 1, 2,. . ., 8

I. Alternative version of interaction model:

hg (t,X) ¼ h0g(t)exp[b1 Treatment þ b2 Age
þb11 Z�

1 � Treatment
� �þ 	 	 	 þ b17 Z�

7 � Treatment
� �

þb21 Z�
1 � Age

� �þ 	 	 	 þ b27 Z�
7 � Age

� ��
,

g ¼ 1, 2, . . . 8
where Z�

1 ¼ large cell (binary), Z�
2 ¼ adeno cell

(binary), Z�
3 ¼ small cell (binary), Z�

4 ¼ PSbin
(binary),Z�

5 ¼ Z�
1 � Z�

4 ; Z�
6 ¼ Z�

2 � Z�
4; Z

�
7 ¼ Z�

3 � Z�
4

J. Demonstration that alternative interaction
version (in item I) is equivalent to original
interaction formulation (in item H) using
computer results for the alternative version.

K. Test of no-interaction assumption:
� null hypothesis: b11 ¼ b12 ¼ . . .¼ b17 ¼ 0 and

b21 ¼ b22 ¼ . . . ¼ b27 ¼ 0

� LR _� w214df under H0: no interaction

� LR ¼ 524.040 � 499.944 ¼ 24.096
(P ¼ 0.045)

Conclusion: Reject null hypothesis;
interaction model is preferred.

VI. A Graphical View of the Stratified Cox
Approach (pages 221–222)
Comparison of log–log survival curves

1. Describe interaction of Rx and Sex.

2. Describe violation of PH assumption for Sex.

VII. The Stratified Cox Likelihood (pages 223–225)

VIII. Summary (pages 225–227)
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Practice
Exercises

The following questions derive from the dataset vets.dat
concerning theVeteran’s AdministrationLungCancer Trial
that we previously considered in this chapter. Recall that
survival times are in days and that the study size contains
137 patients. The exposure variable of interest is treatment
status (standard¼ 1, test¼ 2). Other variables of interest as
control variables are cell type (four types, defined in terms
of dummy variables), performance status, disease dura-
tion, age, and prior therapy status. Failure status is defined
by the status variable (0 ¼ censored, 1 ¼ died).

1. Consider the following two edited printouts obtained
from fitting a Cox PH model to these data.

How do the printouts differ in terms of what the
P(PH) information says about which variables do
not satisfy the PH assumption?

2. Based on the above information, if you were going to
stratify on the cell type variable, howwould you define
the strata? Explain.

Cox regression
Analysis time _t:
survt Coef. Std. Err. p > |z| Haz. Ratio [95% Conf. Interval] P(PH)

Treatment 0.290 0.207 0.162 1.336 0.890 2.006 0.628
Large cell 0.400 0.283 0.157 1.491 0.857 2.594 0.033
Adeno cell 1.188 0.301 0.000 3.281 1.820 5.915 0.081
Small cell 0.856 0.275 0.002 2.355 1.374 4.037 0.078
Perf.Stat �0.033 0.006 0.000 0.968 0.958 0.978 0.000
Dis.Durat. 0.000 0.009 0.992 1.000 0.982 1.018 0.919
Age �0.009 0.009 0.358 0.991 0.974 1.010 0.198
Pr.Therapy 0.007 0.023 0.755 1.007 0.962 1.054 0.145

No. of subjects ¼ 137 Log likelihood ¼ �475.180

Cox regression
Analysis time _t:
survt Coef. Std. Err. p > |z| Haz. Ratio [95% Conf. Interval] P(PH)

Treatment 0.298 0.197 0.130 1.347 0.916 1.981 0.739
Small cell 0.392 0.210 0.062 1.481 0.981 2.235 0.382
Perf.Stat �0.033 0.005 0.000 0.968 0.958 0.978 0.000
Dis.Durat. �0.001 0.009 0.887 0.999 0.981 1.017 0.926
Age �0.006 0.009 0.511 0.994 0.976 1.012 0.211
Pr.Therapy �0.003 0.023 0.884 0.997 0.954 1.042 0.146

No. of subjects ¼ 137 Log likelihood ¼ �487.770
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3. Consider a stratified analysis that stratifies on the
variables Z1 ¼ “small cell” and Z2 ¼ “performance
status.” The small cell variable is one of the dummy
variables for cell type defined above. The performance
status variable is dichotomized into high (60 or above)
and low (below 60) and is denoted as PSbin. The
stratification variable which combines categories
from Z1 and Z2 is denoted as SZ� and consists of four
categories. The predictors included (but not stratified)
in the analysis are treatment status, disease duration,
age, and prior therapy. The computer results are as
follows:

Based on these results, describe the point and interval
estimates for the hazard ratio for the treatment effect
adjusted for the other variables, including SZ�. Is this
hazard ratio meaningfully and/or statistically signifi-
cant? Explain.

4. State the form of the hazard function for the model
being fit in question 3. Why does this model assume
no interaction between the stratified variables and the
predictors in the model?

5. State two alternative ways to write the hazard function
for an “interaction model” that allows for the interac-
tion of the stratified variables with the treatment status
variable, but assumes no other type of interaction.

6. State two alternative versions of the hazard function
for an interaction model that allows for the inter-
action of the stratified variables (small cell and perfor-
mance status) with each of the predictors treatment
status, disease duration, age, and prior therapy.

7. For the interaction model described in question 6,
what is the formula for the hazard ratio for the effect
of treatment adjusted for the other variables? Does
this formula give a different hazard ratio for different
strata? Explain.

Stratified Cox
regression
Analysis time _t:
survt Coef. Std. Err. p > |z| Haz. Ratio [95% Conf. Interval]

Treatment 0.090 0.197 0.647 1.095 0.744 1.611
Dis.Durat. 0.000 0.010 0.964 1.000 0.982 1.019
Age 0.002 0.010 0.873 1.002 0.983 1.021
Pr.Therapy �0.010 0.023 0.656 0.990 0.947 1.035

No. of subjects ¼ 137 Log likelihood ¼ �344.848 Stratified by SZ�
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8. State two alternative versions of the null hypothesis
for testing whether the no-interaction assumption is
satisfied for the stratified Cox model. Note that one
of these versions should involve a set of regression
coefficients being set equal to zero.

9. State the form of the likelihood ratio statistic for
evaluating the no-interaction assumption. How is
this statistic distributed under the null hypothesis,
and with what degrees of freedom?

10. Provided below are computer results for fitting the
interactionmodel described in question 6. In this print-
out the variable Z�

1 denotes the small cell variable and
the variable Z�

2 denotes the PSbin variable. The variable
DDZ�

1 denotes the product of Z�
1 with disease duration,

and other product terms are defined similarly.

Use the above computer results to state the form of the
estimated hazard model for each of the four strata of
the stratification variable SZ�. Also, for each strata,
compute the hazard ratio for the treatment effect
adjusted for disease duration, age, and prior therapy.

Stratified Cox
regression
Analysis time _t:
survt Coef. Std. Err. p > |z| Haz. Ratio [95% Conf. Interval]

Treatment 0.381 0.428 0.374 1.464 0.632 3.389
Dis.Durat. 0.015 0.021 0.469 1.015 0.975 1.057
Age 0.000 0.017 0.994 1.000 0.968 1.033
Pr.Therapy 0.023 0.041 0.571 1.023 0.944 1.109
DDZ�

1 �0.029 0.024 0.234 0.971 0.926 1.019
AgeZ�

1 �0.055 0.037 0.135 0.946 0.880 1.018
PTZ�

1 0.043 0.075 0.564 1.044 0.901 1.211
DDZ�

2 0.025 0.032 0.425 1.026 0.964 1.092
AgeZ�

2 0.001 0.024 0.956 1.001 0.956 1.049
PTZ�

2 �0.078 0.054 0.152 0.925 0.831 1.029
DDZ1 Z

�
2 �0.071 0.059 0.225 0.931 0.830 1.045

AgeZ1Z
�
2 0.084 0.049 0.084 1.088 0.989 1.196

PTZ1Z
�
2 �0.005 0.117 0.963 0.995 0.791 1.250

trZ�
1 0.560 0.732 0.444 1.751 0.417 7.351

trZ�
2 �0.591 0.523 0.258 0.554 0.199 1.543

trZ1Z
�
2 �0.324 0.942 0.731 0.723 0.114 4.583

No. of subjects ¼ 137 Log likelihood ¼ �335.591 Stratified by SZ�
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11. Carry out the likelihood ratio test to evaluate the
no-interaction model described in question 4. In car-
rying out this test, make sure to state the null hypoth-
esis in terms of regression coefficients being set equal
to zero in the interaction model fitted in question 10.
Also, determine the p-value for this test and state your
conclusions about significance as well as whichmodel
you prefer, the no-interactionmodel or the interaction
model.

12. The adjusted log–log survival curves for each of the
four strata defined by the stratification variable SZ�

(adjusted for treatment status, disease duration, age,
and prior therapy) are presented below.

6

4

2

0

0 200 400 600 800 Days
−2

Adjusted log–log survival curves by SZ∗Sadj

Using this graph,what can you conclude aboutwhether
the PH assumption is satisfied for the variables, small
cell type and PSbin?

13. Comment on what you think can be learned by graph-
ing adjusted survival curves that compare the two
treatment groups for each of the four strata of SZ�.

Test The following questions consider a dataset from a study by
Caplehorn et al. (“Methadone Dosage and Retention of
Patients in Maintenance Treatment,” Med. J. Aust., 1991).
These data comprise the times in days spent by heroin
addicts from entry to departure from one of two metha-
done clinics. Two other covariates, namely, prison record
and maximum methadone dose, are believed to affect the
survival times. The dataset name is addicts.dat. A listing of
the variables is given below:

Column 1: Subject ID

Column 2: Clinic (1 or 2)
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Column 3: Survival status (0 ¼ censored, 1 ¼
departed from clinic)

Column 4: Survival time in days

Column 5: Prison record (0 ¼ none, 1 ¼ any)

Column 6: Maximum methadone dose (mg/day)

1. The following edited printout was obtained from fitting
a Cox PH model to these data:

Based on the P(PH) information in the above printout,
it appears that clinic does not satisfy the PH assump-
tion; this conclusion is also supported by comparing
log–log curves for the two clinics and noticing strong
nonparallelism. What might we learn from fitting a
stratified Cox (SC) model stratifying on the clinic vari-
able? What is a drawback to using a SC procedure that
stratifies on the clinic variable?

2. The following printout was obtained from fitting a SC
PH model to these data, where the variable being stra-
tified is clinic:

Using the above fitted model, we can obtain the
adjusted curves below that compare the adjusted sur-
vival probabilities for each clinic (i.e., stratified by
clinic) adjusted for the variables, prison and maximum
methadone dose.

Stratified Cox
regression
Analysis time _t:
survt Coef. Std. Err. p > |z| Haz. Ratio [95% Conf. Interval]

Prison 0.389 0.169 0.021 1.475 1.059 2.054
Dose �0.035 0.006 0.000 0.965 0.953 0.978

No. of subjects ¼ 238 Log likelihood ¼ �597.714 Stratified by clinic

Cox regression
Analysis time _t:
survt Coef. Std. Err. p > |z| Haz. Ratio [95% Conf. Interval] P(PH)

Clinic �1.009 0.215 0.000 0.365 0.239 0.556 0.001
Prison 0.327 0.167 0.051 1.386 0.999 1.924 0.332
Dose �0.035 0.006 0.000 0.965 0.953 0.977 0.341

No. of subjects ¼ 238 Log likelihood ¼ �673.403
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Based on these adjusted survival curves, what conclu-
sions can you draw about whether the survival experi-
ence is different between the two clinics? Explain.

3. State the hazard function model being estimated in the
above computer results. Why is this model a no-inter-
action model?

4. Using the above computer results, provide point and
interval estimates for the effect of prison adjusted for
clinic and dose. Is this adjusted prison effect signifi-
cant? Explain.

5. The following computer results consider a SC model
that allows for interaction of the stratified variable
clinic with each of the predictors, prison and dose.
Product terms in the model are denoted as clinpr ¼
clinic � prison and clindos ¼ clinic � dose.

State two alternative versions of the interaction model
being estimated by the above printout, where one of
these versions should involve the product terms used in
the above printout.

6. Using the computer results above, determine the esti-
mated hazard models for each clinic. (Note that the
clinics are coded as 1 or 2.)

Stratified Cox
regression
Analysis time _t:
survt Coef. Std. Err. P > |z| Haz. Ratio [95% Conf. Interval]

prison 1.087 0.539 0.044 2.966 1.032 8.523
dose �0.035 0.020 0.079 0.966 0.929 1.004
clinpr �0.585 0.428 0.172 0.557 0.241 1.290
clindos �0.001 0.015 0.942 0.999 0.971 1.028

No. of subjects ¼ 238 Log likelihood ¼ �596.779 Stratified by clinic
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7. below are the adjusted survival curves for each clinic
based on the interaction model results above. These
curves are adjusted for the prison and dose variables.
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0.6

0.8
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0 300 600 900
0

Adjusted survival curves (stratified by clinic)
Interaction Model

Clinic 2

Clinic 1

Compare the survival curves by clinic obtained for the
interaction model with the corresponding curves previ-
ously shown for the no-interaction model. Do both
graphs indicate the similar conclusions about the clinic
effect? Explain.

8. Carry out a likelihood ratio test to determine whether
the no-interaction model is appropriate. In doing so,
make use of the computer information described
above, state the null hypothesis, state the form of the
likelihood statistic and its distribution under the null
hypothesis, and compute the value of the likelihood
statistic and evaluate its significance. What are your
conclusions?

Answers to
Practice
Exercises

1. The first printout indicates that the variables large
cell, adeno cell, small cell, and performance status do
not satisfy the PH assumption at the 0.10 level. The
second printout considers a different model that does
not contain the large cell and adeno cell variables.
This latter printout indicates that small cell satisfies
the PH assumption, in contrast to the first printout.
The performance status variable, however, does not
satisfy the PH assumption as in the first printout.

2. The cell type variable is defined to have four cate-
gories, as represented by the three dummy variables
in the first printout. The “small cell” variable dic-
hotomizes the cell type variable into the categories
small cell type versus the rest. From the second print-
out, the small cell variable does not appear by itself to
violate the PH assumption. This result conflicts with
the results of the first printout, for which the cell type
variable considered in four categories does not satisfy
the PH assumption at the 0.10 level of significance.
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We therefore think it is more appropriate to use a SC
procedure only if four strata are to be used. A draw-
back to using four strata, however, is that the number
of survival curves to be plotted is larger than for two
strata; consequently, a large number of curves is more
difficult to interpret graphically than when there are
only two curves. Thus, for convenience of interpreta-
tion, we may choose to dichotomize the cell type vari-
able instead of considering four strata. We may also
consider dichotomies other than those defined by the
small cell variable. For instance, we might consider
dichotomizing on either the adeno or large cell vari-
ables instead of the small cell variable. Alternatively,
we may combine categories so as to compare, say,
large and adeno cell types with small and squamous
types. However, a decision to combine categories
should not be just a statistical decision, but should
also be based on biologic considerations.

3. cHRadj ¼ 1:095, 95% CI: (0.744,1.611), two-tailed p-value
is 0.647, not significant. The estimated hazard ratio for
treatment is neither meaningfully nor statistically sig-
nificant. The point estimate is essentially 1, which says
that there is nomeaningful effect of treatment adjusted
for the predictors in the model and for the stratified
predictor SZ�.

4. hg(t,X) ¼ h0g(t)exp[b1 Treatment þ b2DD þ b3 Age þ
b4PT], g ¼ 1,. . ., 4, where the strata are defined from
the stratification variable SZ�, DD ¼ disease duration,
and PT ¼ prior therapy. This model assumes no inter-
action because the coefficient of each predictor in the
model is not subscripted by g, i.e., the regression coef-
ficients are the same for each stratum.

5. Version 1: hg (t,X) ¼ h0g(t)exp[b1g Treatment þ b2 DD
þ b3 Age þ b4PT], g ¼ 1,. . ., 4.

Version 2: hg (t,X) ¼ h0g(t)exp[b1 Treatment þ b2 DD
þ b3Ageþ b4 PT þ b5 Z�

1 � Treatment
� �

þb6 Z�
2 � Treatment

� �þ b7 Z�
1 � Z�

2 � Treatment
� ��

,
where Z�

1 ¼ small cell type (0, 1), Z�
2 ¼ Psbin (0, 1),

and g ¼ 1,. . ., 4.
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6. Version 1: hg(t,X) ¼ h0g(t)exp[b1g Treatment þ b2g DD
þ b3g Age þ b4g PT], g ¼ 1,. . ., 4.

Version 2: hg t;Xð Þ ¼ h0gðtÞ exp½b1 Treatmentþ b2DD

þ b3 Ageþ b4 PT þ b5 Z�
1 � Treatment

� �þ b6 Z�
1 � DD

� �
þ b7 Z�

1 � Age
� �þ b8 Z�

1 � PT
� �þ b9 Z�

2 � Treatment
� �

þ b10 Z�
2 � DD

� �þ b11 Z�
2 � Age

� �þ b12 Z�
2 � PT

� �
þ b13 Z�

1 � Z�
2 � Treatment

� �þ b14 Z�
1 � Z�

2 � DD
� �

þb15 Z�
1 � Z�

2 � Age
� �þ b16 Z�

1 � Z�
2 � PT

� ��
;

g ¼ 1; . . . ; 4:

7. HRg ¼ exp(b1g), using version 1 model form. Yes, this
formula gives different hazard ratios for different
strata because the value of the hazard ratio changes
with the subscript g.

8. H0: No interaction assumption is satisfied.

H0: b11 ¼ b12 ¼ b13 ¼ b14, b21 ¼ b22 ¼ b23 ¼ b24,
b31 ¼ b32 ¼ b33 ¼ b34, b41 ¼ b42 ¼ b43 ¼ b44
from version 1.
H0: b5 ¼ b6 ¼ b7 ¼ b8 ¼ b9 ¼ b10 ¼ b11 ¼ b12
¼ b13 ¼ b14 ¼ b15 ¼ b16 ¼ 0 from version 2.

9. LR ¼ �2 ln LR �(�2 ln LF), where R denotes the
reduced (no-interaction) model and F denotes the full
(interaction) model. Under the null hypothesis, LR is
approximately a chi-square with 12 degrees of freedom.

10. Estimated hazard models for each stratum:

g ¼ 1; Z�
1 ¼ Z�

2 ¼ 0 :

ĥ1,X) ¼ ĥ01(t)exp[(0.381)Treatment þ (0.015)DD þ
(0.000)Age þ (0.023)PT]

g ¼ 2; Z�
1 ¼ 1; Z�

2 ¼ 0 :

ĥ2(t,X) ¼ ĥ02(t)exp[(0.941)Treatment þ (�0.014)DD þ
(�0.055)Age þ (0.066)PT]

g ¼ 3; Z�
1 ¼ 0; Z�

2 ¼ 1 :

ĥ3(t,X) ¼ ĥ03(t)exp[(�0.210)Treatment þ (0.040)DD þ
(0.001)Age þ (�0.055)PT]

g ¼ 4; Z�
1 ¼ 1; Z�

2 ¼ 1 :

ĥ4(t,X) ¼ ĥ04(t)exp[(0.026)Treatment þ (�0.060)DD þ
(0.030)Age þ (�0.017)PT]
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Estimated hazard ratios for treatment effect adjusted
for DD, Age, and PT:

g ¼ 1 : cHR1 ¼ exp 0:381ð Þ ¼ 1:464

g ¼ 2 : cHR2 ¼ exp 0:941ð Þ ¼ 2:563

g ¼ 3 : cHR3 ¼ exp �0:210ð Þ ¼ 0:811

g ¼ 4 : cHR4 ¼ exp 0:026ð Þ ¼ 1:026

11. H0: b5 ¼ b6 ¼ b7 ¼ b8 ¼ b9 ¼ b10 ¼ b11 ¼ b12 ¼ b13
¼ b14 ¼ b15 ¼ b16 ¼ 0

LR ¼ 689.696 � 671.182 ¼ 18.514, which is approxi-
mately chi-square with 12 df.

P ¼ 0.101, which is not significant below the .05 level.
Conclusion: Accept the null hypothesis and conclude
that the no-interaction model is preferable to the
interaction model.

12. The three curves at the bottom of the graph appear to
be quite non-parallel. Thus, the PH assumption is not
satisfied for one or both of the variables, small cell
type and PSbin. Note, however, that because both
these variables have been stratified together, it is
not clear from the graph whether only one of these
variables fails to satisfy the PH assumption.

13. If we graph adjusted survival curves that compare the
two treatment groups for each of the four strata, we
will be able to see graphically how the treatment
effect, if any, varies over time within each strata. The
difficulty with this approach, however, is that eight
adjusted survival curves will be produced, so that if all
eight curves are put on the same graph, it may be
difficult to see what is going on.
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Introduction We begin by defining a time-dependent variable and
providing some examples of such a variable. We also state
the general formula for a Cox model that is extended to
allow time dependent variables, followed by a discussion of
the characteristics of this model, including a description of
the hazard ratio.

In the remainder of the presentation, we give examples of
models with time-dependent variables, including models
that allow for checking the PH assumption for time-
independent variables. In particular, we describe a method
thatuses “heaviside functions” toevaluate thePHassumption
for time-independent variables. We also describe two
computer applications of the extended Cox model, one con-
cerning a study on the treatment of heroin addiction and the
other concerning the Stanford heart transplant study.

Abbreviated
Outline

The outline below gives the user a preview of the material
to be covered by the presentation. A detailed outline for
review purposes follows the presentation.

I. Preview (page 244)

II. Review of the Cox PH Model (pages 244–246)

III. Definition and Examples of Time-Dependent
Variables (pages 246–249)

IV. The Extended Cox Model for Time-Dependent
Variables (pages 249–251)

V. The Hazard Ratio Formula for the Extended Cox
Model (pages 251–253)

VI. Assessing Time-Independent Variables That Do
Not Satisfy the PH Assumption (pages 254–259)

VII. An Application of the Extended Cox Model to An
Epidemiologic Study on the Treatment of Heroin
Addiction (pages 260–264)

VIII. An Application of the Extended CoxModel to the
Analysis of the Stanford Heart Transplant Data
(pages 265–269)

IX. The Extended Cox Likelihood (pages 269–274)

X. Summary (pages 274–277)
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Objectives Upon completing the chapter, the learner should be able to:

1. State or recognize the general form of the Cox model
extended for time-dependent variables.

2. State the specific form of an extended Cox model
appropriate for the analysis, given a survival analysis
scenario involving one or more time-dependent
variables.

3. State the formula for a designated hazard ratio of
interest, given a scenario describing a survival analysis
using an extended Cox model.

4. State the formula for an extended Cox model that
provides a method for checking the PH assumption for
one more of the time-independent variables in the
model, given a scenario describing a survival analysis
involving time-independent variables.

5. State the formula for an extended Cox model that uses
one or more heaviside functions to check the PH
assumption for one more of the time-independent
variables in the model, given a scenario describing a
survival analysis involving time-independent variables.

6. State the formula for the hazard ratio during different
time interval categories specified by heaviside
function(s) that are contained in an extended coxmodel.

7. Carry out an appropriate analysis of the data to
evaluate the effect of one or more of the explanatory
variables in the model(s) being used, given computer
results for a survival analysis involving time-dependent
variables. Such an analysis will involve:

� computing and interpreting any hazard ratio(s)
of interest;

� carrying out and interpreting appropriate test(s)
of hypotheses for effects of interest;

� obtaining confidence intervals for hazard ratios of
interest;

� evaluating interaction and confounding involving
one or more covariates.
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Presentation

I. Preview This presentation describes how the Cox
proportional hazards (PH) model can be
extended to allow time-dependent variables as
predictors. Here, we focus on the model form,
characteristics of this model, the formula for
and interpretation of the hazard ratio, and
examples of the extended Cox model. We also
show how the extended Cox model can be
used to check the PH assumption for time-
independent variables, and we provide com-
puter applications to illustrate different types
of time-dependent variables. Finally, we des-
cribe the extended cox likelihood and how it
contrasts with the Cox PH likelihood function.

II. Review of the Cox
PH Model

The general form of the Cox PHmodel is shown
here. This model gives an expression for the
hazard at time t for an individual with a given
specification of a set of explanatory variables
denoted by the bold X. That is, the bold X
represents a collection (sometimes called a
“vector”) of predictor variables that is being
modeled to predict an individual’s hazard.

The Cox model formula says that the hazard at
time t is the product of two quantities. The first
of these, h0(t), is called the baseline hazard
function. The second quantity is the exponen-
tial expression e to the linear sumof bi Xi, where
the sum is over the p explanatory X variables.

An important feature of this formula, which
concerns the proportional hazards (PH)
assumption, is that the baseline hazard is a
function of t but does not involve the X’s,
whereas the exponential expression involves
the X’s but does not involve t. The X’s here are
called time-independent X’s.

FOCUS

model form
characteristics
hazard ratio
examples of models
checking the PH
assumption
computer
applications

h t;Xð Þ ¼ h0 tð Þ exp
Xp
i¼1

biXi

" #

X ¼ (X1, X2, . . ., Xp)

Explanatory/predictor variables

h0 tð Þ � exp
Xp
i¼1

biXi

" #

Baseline hazard Exponential

Involves t but
not X’s

Involves X’s but
not t (X’s are
time-
independent)
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It is possible, nevertheless, to consider X’s
that do involve t. Such X’s are called time-
dependent variables. If time-dependent vari-
ables are considered, the Cox model form may
still be used, but such amodel no longer satisfies
the PH assumption and is called the extended
Cox model. We will discuss time-dependent
variables and the corresponding extended Cox
model beginning in the next section.

From the Cox PH model, we can obtain a
general formula, shown here, for estimating a
hazard ratio that compares two specifications
of the X’s, defined as X* and X.

The (PH) assumption underlying the Cox PH
model is that the hazard ratio comparing any
two specifications of X predictors is constant
over time. Equivalently, this means that the
hazard for one individual is proportional to the
hazard for any other individual, where the pro-
portionality constant is independent of time.

An example of when the PH assumption is not
met is given by any study situation in which the
hazards for two or more groups cross when
graphed against time. However, even if the
hazard functions do not cross, it is possible
that the PH assumption is not met.

As described in more detail in Chapter 4, there
are three general approaches for assessing the
PH assumption. These are

� a graphical approach;

� the use of time-dependent variables in an
extended Cox model; and

� the use of a goodness-of-fit test.

When time-dependent variables are used to
assess the PH assumption for a time-
independent variable, the Cox model is
extended to contain product (i.e., interaction)
terms involving the time-independent variable
being assessed and some function of time.

X’s involving t: time-dependent

Requires extended Cox model
(no PH)

Hazard ratio formula:

cHR ¼ exp
Xp
i¼1

b̂i X
�
i � Xi

� �" #

where X� ¼ X�
1; X

�
2; . . . ;X

�
p

� �
and

X ¼ (X1, X2, . . ., Xp) denote the two
sets of X’s.

PH assumption:

ĥ t;X�ð Þ
ĥ t;Xð Þ ¼ ŷ a constant over tð Þ

i.e:; ĥ t;X�ð Þ ¼ ŷĥ t;Xð Þ

Hazards cross ) PH not met

Hazards don’t cross 6) PH met

Three approaches:

� graphical
� time-dependent variables
� goodness-of-fit test

Time-dependent covariates used to
assess PH for time-indep. X’s

+
Extend Cox model: add product
term(s) involving function of t
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For example, if the PH assumption is being
assessed for sex, a Cox model might be
extended to include the variable sex� t in addi-
tion to sex. If the coefficient of the product
term turns out to be non-significant, we can
conclude that the PH assumption is satisfied
for sex provided that the variable sex � t is an
appropriate choice of time-dependent variable.

There are two options to consider if the PH
assumption is not satisfied for one or more of
the predictors in the model. In Chapter 5, we
described the option of using a stratified Cox
(SC) model, which stratifies on the predictor(s)
not satisfying the PH assumption, while
keeping in the model those predictors that
satisfy the PH assumption. In this chapter, we
describe the other option, which involves using
time-dependent variables.

Note that a given studymay consider predictors
that are inherently defined as time-dependent,
as we will illustrate in the next section. Thus,
in addition to considering time-dependent
variables as an option for analyzing a time-
independent variable not satisfying the PH
assumption, we also discuss predictors which
are inherently defined as time-dependent.

III. Definition and
Examples of Time-
Dependent Variables

A time-dependent variable is defined as
any variable whose value for a given subject
may differ over time (t). In contrast, a time-
independent variable is a variable whose value
for a given subject remains constant over time.

As a simple example, the variable RACE is a
time-independent variable, whereas the vari-
able RACE� time is a time-dependent variable.

EXAMPLE

h(t,X) ¼ h0(t) exp[b1sex þ b2(sex � t)]
H0: b2 ¼ 0 ) PH assumption satisfied

Options when PH assumption not
satisfied:

� Use a stratified Cox (SC) model.
� Use time-dependent variables.

Time-dependent variables may be:

� inherently time-dependent
� defined to analyze a time-

independent predictor not
satisfying the PH assumption.

Definition:

Time-
dependent

Time-
independent

Value of variable
differs over time

Value of variable
is constant over
time

Example:
Race � t Race
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The variable RACE � time is an example of
what is called a “defined” time-dependent vari-
able. Most defined variables are of the form of
the product of a time-independent variable
(e.g., RACE) multiplied by time or some func-
tion of time. Note that after RACE is deter-
mined for a given subject, all the values of the
RACE � time variable are completely defined
over a specified time interval of study.

A second example of a defined variable is given
by E � (log t � 3), where E denotes, say, a (0,1)
exposure status variable determined at one’s
entry into the study. Notice that here we have
used a function of time, log t � 3, rather than
time t alone.

Yet another example of a defined variable,
which also involves a function of time, is
given by E � g(t), where g(t) is defined to take
on the value 1 if t is greater than or equal to
some specified value of t, called t0, and takes on
the value 0 if t is less than t0.

The function g(t) is called a “heaviside” func-
tion. Note that whenever t is greater than or
equal to t0, g(t) equals 1, so E � g(t) = E; how-
ever, whenever t is less than t0, g(t) = 0, so the
value of E� g(t) is always 0.Wewill later return
to illustrate how heaviside functions may be
used as one method for the analysis when a
time-independent variable like E does not sat-
isfy the proportional hazards assumption.

Another type of time-dependent variable is
called an “internal” variable. Examples of
such a variable include exposure level E at
time t, employment status (EMP) at time t,
smoking status (SMK) at time t, and obesity
level (OBS) at time t.

All these examples consider variables whose
values may change over time for any subject
under study; moreover, for internal variables,
the reason for a change in value depends on
“internal” characteristics or behavior specific
to the individual.

EXAMPLE OF DEFINED VARIABLES

Defined variable: RACE � t

Time-independent
Race ¼ 1 ) Race � t ¼ t
Race ¼ 0 ) Race � t ¼ 0 (at any t)

E� log t� 3ð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Function of t
[E denotes a (0,1) exposure variable].

E� g tð Þ where gðtÞ ¼ 1 if t � t0
0 if t < t0

�

Heaviside function

t � t0 : E� g tð Þ
1

¼ E

t < t0 : E� g tð Þ
0

¼ 0

Heaviside functions used when PH
assumptions not met.

Internal variable:

EXAMPLES OF INTERNAL

VARIABLES

E(t), EMP(t), SMK(t), OBS(t),

Values change because of “inter-
nal” characteristics or behavior of
the individual.

Presentation: III. Definition and Examples of Time-Dependent Variables 247



In contrast, a variable is called an “ancillary”
variable if its value changes primarily because
of “external” characteristics of the environ-
ment that may affect several individuals simul-
taneously. An example of an ancillary variable
is air pollution index at time t for a particular
geographical area. Another example is employ-
ment status (EMP) at time t, if the primary
reason for whether someone is employed or
not depends more on general economic cir-
cumstances than on individual characteristics.

As another example, which may be part inter-
nal and part ancillary, we consider heart trans-
plant status (HT) at time t for a person
identified to have a serious heart condition,
making him or her eligible for a transplant.
The value of this variable HT at time t is 1 if
the person has already received a transplant at
some time, say t0, prior to time t. The value of
HT is 0 at time t if the person has not yet
received a transplant by time t.

Note that once a person receives a transplant,
at time t0, the value of HT remains at 1 for all
subsequent times. Thus, for a person receiving
a transplant, the value of HT is 0 up to the time
of transplant, and then remains at 1 thereafter.
In contrast, a person who never receives a
transplant has HT equal to 0 for all times dur-
ing the period he or she is in the study.

The variable “heart transplant status,” HT(t),
can be considered essentially an internal vari-
able, because individual traits of an eligible
transplant recipient are important determinants
of the decision to carry out transplant surgery.
Nevertheless, the availability of a donor heart
prior to tissue and other matching with an eligi-
ble recipient can be considered an “ancillary”
characteristic external to the recipient.

“Ancillary” variable:
Value changes because of “external”
characteristics.

EXAMPLES OF ANCILLARY

VARIABLES

Air pollution index at time t; EMP(t)

ANOTHER EXAMPLE

Heart transplant status at time t:

HT tð Þ¼ 1 if received transplant at some time t0� t

0 if did not receive transplant by time t

(

Transplant

Heart transplant status = HT(t)

Internal:
Status determined
from individual
traits

Ancillary:
Status determined
from external
availability of a
donor

HT(t): 0000...0 111111111

t0
t

T

T

HT(t):
No transplant HT(t): 0000...00000

t
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The primary reason for distinguishing among
defined, internal, or ancillary variables is that
the computer commands required to define the
variables for use in an extended Cox model are
somewhat different for the different variable
types, depending on the computer program
used. Nevertheless, the form of the extended
Cox model is the same regardless of variable
type, and the procedures for obtaining esti-
mates of regression coefficients and other
parameters, as well as for carrying out statisti-
cal inferences, are also the same.

IV. The Extended Cox
Model for Time-
Dependent Variables

Given a survival analysis situation involving
both time-independent and time-dependent
predictor variables, we can write the extended
Cox model that incorporates both types as
shown here at the left. As with the Cox PH
model, the extended model contains a baseline
hazard function h0(t) which is multiplied by
an exponential function. However, in the
extended model, the exponential part contains
both time-independent predictors, as denoted
by the Xi variables, and time-dependent predic-
tors, as denoted by the Xj(t) variables. The
entire collection of predictors at time t is
denoted by the bold X(t).

As a simple example of an extended Cox model,
we show here a model with one time-indepen-
dent variable and one time-dependent variable.
The time-independent variable is exposure sta-
tus E, say a (0,1) variable, and the time-depen-
dent variable is the product term E � t.

As with the simpler Cox PH model, the regres-
sion coefficients in the extended Cox model are
estimated using a maximum likelihood (ML)
procedure. ML estimates are obtained by max-
imizing a (partial) likelihood function L. How-
ever, the computations for the extended Cox
model are more complicated than for the Cox
PHmodel, because the risk sets used to form the
likelihood function are more complicated with
time-dependent variables. The extended Cox
likelihood is described later in this chapter.

Computer commands differ for
defined vs. internal vs. ancillary.

But, the form of extended Cox
model and procedures for analysis
are the same regardless of variable
type.

h t;X tð Þð Þ¼ h0 tð Þexp
Xp1
i¼1

biXi

"

þ
Xp2
j¼1

djXj tð Þ
#

X tð Þ¼ X1; X2; . . . Xp1 ;
�
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Time�independent

X1 tð Þ; X2 tð Þ; . . .Xp2 tð Þ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Time�dependent

EXAMPLE

h(t,X(t)) ¼ h0(t)exp[bE þ d(E � t)],
p1 ¼ 1, p2 ¼ 1,
X(t) ¼ (X1 ¼ E, X1(t) ¼ E � t)

Estimating regression
coefficients:
ML procedure:
Maximize (partial) L.
Risk sets more complicated than
for PH model.
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Computer packages that include programs for
fitting the extended Cox model include Stata,
SAS, SPSS, and R. See the Computer Appendix
at the end of this text for a comparison of the
Stata, SAS, SPSS, and R procedures applied to
the same dataset.

Methods for making statistical inferences are
essentially the same as for the PHmodel. That is,
onecanuseWaldand/or likelihoodratio (LR) tests
and large sample confidence interval methods.

An important assumption of the extended Cox
model is that the effect of a time-dependent
variable Xj(t) on the survival probability at
time t depends on the value of this variable at
that same time t, and not on the value at an
earlier or later time.

Note that even though the values of the variable
Xj(t) may change over time, the hazard model
provides only one coefficient for each time-
dependent variable in the model. Thus, at
time t, there is only one value of the variable
Xj(t) that has an effect on the hazard, that value
being measured at time t.

It is possible, nevertheless, to modify the defi-
nition of the time-dependent variable to allow
for a “lag-time” effect.

To illustrate the idea of a lag-time effect,
suppose, for example, that employment status,
measured weekly and denoted as EMP(t), is
the time-dependent variable being considered.
Then, an extended Cox model that does
not consider lag-time assumes that the effect
of employment status on the probability of
survival at week t depends on the observed
value of this variable at the same week t, and
not, for example, at an earlier week.

However, to allow for, say, a time-lag of one
week, the employment status variable may be
modified so that the hazard model at time
t is predicted by the employment status at
week t� 1. Thus, the variableEMP(t) is replaced
in the model by the variable EMP(t � 1).

Computer programs for the
extended Cox model:

Stata Stcoxð Þ
SAS PHREGð Þ
SPSS COXREGð Þ
R

9>>=
>>;

Computer

Appendix

Statistical inferences:
Wald and/or LR tests
Large sample confidence intervals

Assumption of the model:
The hazard at time t depends on
the value of Xj(t) at that same time.

h t;X tð Þð Þ ¼ h0 tð Þ exp
Xp1
i¼1

biXi

"

þ
Xp2
j¼1

djXj tð Þ
#

One coefficient
"
for XjðtÞ

Can modify for lag-time effect

Lag-time effect:

EXAMPLE

EMP(t) ¼ employment status at week t

Model without lag-time:
h(t,X(t)) ¼ h0(t)exp[dEMP(t)]

Same week

Model with 1-week lag-time:
h(t,X(t)) ¼ h0(t)exp[d*EMP(t � 1)]

One-week earlier
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More generally, the extended Cox model may
be alternatively written to allow for a lag-time
modification of any time-dependent variable of
interest. If we let Lj denote the lag-time speci-
fied for time-dependent variable j, then the
general “lag-time extended model” can be writ-
ten as shown here. Note that the variable Xj(t)
in the earlier version of the extended model is
now replaced by the variable Xj(t � Lj).

V. The Hazard Ratio
Formula for the
Extended Cox Model

We now describe the formula for the hazard
ratio that derives from the extended Cox
model. The most important feature of this for-
mula is that the proportional hazards assump-
tion is no longer satisfied when using the
extended Cox model.

The general hazard ratio formula for the
extended Cox model is shown here. This for-
mula describes the ratio of hazards at a partic-
ular time t, and requires the specification of
two sets of predictors at time t. These two sets
are denoted as bold X*(t) and bold X(t).

The two sets of predictors, X*(t) and X(t), iden-
tify two specifications at time t for the combined
set of predictors containing both time-indepen-
dent and time-dependent variables. The individ-
ual components for each set of predictors are
shown here.

General lag-time extendedmodel:

h t;X tð Þð Þ ¼ h0 tð Þ exp
Xp1
i¼1

biXi

"

þ
Xp2
j¼1

djXj t� Lj
� �#

Xjðt� LjÞ replaces XjðtÞ

PH assumption is not satisfied for
the extended Cox model.

cHR tð Þ ¼ ĥ t;X� tð Þð Þ
ĥ t;X tð Þð Þ

¼ exp
Xp1
i¼1

b̂i X
�
i � Xi

� 	"

þ
Xp2
j¼1

dj X�
j tð Þ � Xj tð Þ

h i#

Two sets of predictors:

X� tð Þ ¼ X�
1;X

�
2; . . . ;X

�
p1
; X�

1 tð Þ;
�

X�
2 tð Þ; . . . ;X�

p2
tð Þ
�

X tð Þ ¼ X1;X2; . . . ;Xp1 ; X1 tð Þ;�
X2 tð Þ; . . . ;Xp2 tð Þ�
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As a simple example, suppose the model con-
tains only one time-independent predictor,
namely, exposure status E, a (0,1) variable,
and one time-dependent predictor, namely, E
� t. Then, to compare exposed persons, for
whom E = 1, with unexposed persons, for
whom E = 0, at time t, the bold X*(t) set of
predictors has as its two components E = 1
and E � t = t; the bold X(t) set has as its two
components E = 0 and E � t = 0.

If we now calculate the estimated hazard ratio
that compares exposed to unexposed persons
at time t, we obtain the formula shown here;
that is, HR “hat” equals the exponential of b
“hat” plus d “hat” times t. This formula says
that the hazard ratio is a function of time; in
particular, if d “hat” is positive, then the hazard
ratio increases with increasing time. Thus, the
hazard ratio in this example is certainly not
constant, so that the PH assumption is not
satisfied for this model.

More generally, because the general hazard
ratio formula involves differences in the values
of the time-dependent variables at time t, this
hazard ratio is a function of time. Thus, in gen-
eral, the extended Cox model does not satisfy
the PH assumption if any dj is not equal to zero.

Note that, in the hazard ratio formula, the coef-
ficient dj “hat” of the difference in values of the
jth time-dependent variable is itself not time-
dependent. Thus, this coefficient represents
the “overall” effect of the corresponding time-
dependent variable, considering all times at
which this variable has been measured in the
study.

EXAMPLE

h(t,X(t)) ¼ h0(t) exp[bE þ d(E � t)]

E ¼ 1 if exposed

0 if unexposed

�

X� tð Þ ¼ E ¼ 1;E� t ¼ tð Þ
X tð Þ ¼ E ¼ 0;E� t ¼ 0ð Þ

cHRðtÞ¼ ĥ t;E¼ 1ð Þ
ĥ t;E¼ 0ð Þ

¼ exp b̂ 1�0ð Þþ d̂ ð1� tÞ�ð0� tÞð Þ
h i

¼ exp b̂þ d̂t
h i

d̂0 ) cHRðtÞ " as t "
PH assumption not satisfied

HR(t) = exp
p1

i=1

ˆ i X i − X i

+
p2

j=1

ˆ j X j (t ) − X j (t )

A function of time

β

δ

In general, PH assumption not
satisfied for extended Cox model.

d̂j is not time-dependent.

d̂j represents “overall” effect of
Xj(t).
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As another example to illustrate the formula
for the hazard ratio, consider an extended Cox
model containing only one variable, say a
weekly measure of chemical exposure status
at time t. Suppose this variable, denoted as
E(t), can take one of two values, 0 or 1, depend-
ing on whether a person is unexposed or
exposed, respectively, at a given weekly
measurement.

As defined, the variable E(t) can take on differ-
ent patterns of values for different subjects. For
example, for a 5-week period, subject A’s values
may be 01011, whereas subject B’s values may
be 11010.

Note that in this example, we do not consider
two separate groups of subjects, with one group
always exposed and the other group always
unexposed throughout the study. This latter sit-
uation would require a (0,1) time-independent
variable for exposure, whereas our example
involves a time-dependent exposure variable.

The extended Cox model that includes only the
variable E(t) is shown here. In this model, the
values of the exposure variable may change
over time for different subjects, but there is
only one coefficient, d, corresponding to the
one variable in the model. Thus, d represents
the overall effect on survival time of the time-
dependent variable E(t).

Notice, also, that the hazard ratio formula,
which compares an exposed person to an unex-
posed person at time t, yields the expression
e to the d “hat.”

Although this result is a fixed number, the PH
assumption is not satisfied. The fixed number
gives the hazard ratio at a given time, assuming
that the exposure status at that time is 1 in the
numerator and is 0 denominator. Thus, the
hazard ratio is time-dependent, because expo-
sure status is time-dependent, even though the
formula yields a single fixed number.

EXAMPLE

E(t) ¼ chemical exposure status at
time t (weekly)

¼ 0 if unexposed at time t
1 if exposed at time t

�

h(t,X(t)) ¼ h0(t) exp[dE(t)]

One coefficient

d represents the overall effect of E(t).

cHR tð Þ ¼ ĥ t;E tð Þ ¼ 1ð Þ
ĥ t;E tð Þ ¼ 0ð Þ

¼ exp d̂ 1� 0½ �
h i

¼ ed̂; a fixed number

But, PH is not satisfied:cHR tð Þ is time-dependent because E(t)
is time-dependent.
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VI. Assessing Time-
Independent Variables
That Do Not Satisfy
the PH Assumption

We now discuss how to use an extended Cox
model to check the PH assumption for time-
independent variables and to assess the effect
of a variable that does not satisfy the PH
assumption.

As described previously (see Chapter 4), there
are threemethods commonly used to assess the
PH assumption: (1) graphical, using, say,
log–log survival curves; (2) using an extended
Cox model; and (3) using a goodness-of-fit
(GOF) test. We have previously (in Chapter 4)
discussed items 1 and 3, but only briefly
described item 2, which we focus on here.

If the dataset for our study contains several,
say p, time-independent variables, we might
wish to fit a Cox PH model containing each of
these variables, as shown here.

However, to assess whether such a PHmodel is
appropriate, we can extend this model by
defining several product terms involving each
time-independent variable with some function
of time. That is, if the ith time-independent
variable is denoted as Xi, then we can define
the ith product term as Xi � gi(t) where gi(t) is
some function of time for the ith variable.

The extended Cox model that simultaneously
considers all time-independent variables of
interest is shown here.

Use an extended Cox model to

� check PH assumption;
� assess effect of variable not

satisfying PH assumption.

Three methods for checking PH
assumption:

1. graphical
2. extended Cox model
3. GOF test

Cox PH model for p time-indepen-
dent X’s:

h t;Xð Þ ¼ h0 tð Þ exp
Xp
i¼1

biXi

" #

Extended Cox model:
Add product terms of the form:
Xi � gi(t)

h t;X tð Þð Þ ¼ h0 tð Þ exp
Xp
i¼1

biXi

"

þ
Xp
i¼1

diXigi tð Þ
#
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In using this extended model, the crucial
decision is the form that the functions gi(t)
should take. The simplest form for gi(t) is that
all gi(t) are identically 0 at any time; this is
another way of stating the original PH model,
containing no time-dependent terms.

Another choice for the gi(t) is to let gi(t) = t. This
implies that for each Xi in the model as a main
effect, there is a corresponding time-dependent
variable in the model of the form Xi � t. The
extended Cox model in this case takes the form
shown here.

Suppose, however, we wish to focus on a par-
ticular time-independent variable, say, variable
XL. Then gi(t) = t for i = L, but equals 0 for all
other i. The corresponding extended Coxmodel
would then contain only one product term
XL � t, as shown here.

Another choice for the gi(t) is the log of t, rather
than simply t, so that the corresponding time-
dependent variables will be of the form Xi � ln t.

And yet another choice would be to let gi(t) be a
“heaviside function” of the form gi(t) = 1 when
t is at or above some specified time, say t0, and
gi(t) = 0 when t is below t0. We will discuss this
choice in more detail shortly.

Given a particular choice of the gi(t), the
corresponding extended Cox model, shown
here again in general form, may then be used
to check the PH assumption for the time-inde-
pendent variables in the model. Also, we can
use this extended Cox model to obtain a hazard
ratio formula that considers the effects of vari-
ables not satisfying the PH assumption.

To check the PH assumption using a statistical
test, we consider the null hypothesis that all the
d terms, which are coefficients of the Xigi(t)
product terms in the model, are zero.

EXAMPLE

gi(t) ¼ 0 for all i implies no time-
dependent variable involving Xi, i.e.,

h t;X tð Þð Þ ¼ h0 tð Þ exp
Xp
i¼1

biXi

" #

EXAMPLE 2

gi(t) ¼ t ) Xig(t) ¼ Xi � t

h t;X tð Þð Þ¼ h0 tð Þexp
Xp
i¼1

biXiþ
Xp
i¼1

di Xi� tð Þ
" #

EXAMPLE 3: one variable at a time

XL only ) gL tð Þ ¼ t;
gi tð Þ ¼ 0 for other i

�

h t;X tð Þð Þ¼h0 tð Þexp
Xp
i¼1

i 6¼L

biXiþdL XL� tð Þ

2
666664

3
777775

EXAMPLE 4

gi(t) ¼ ln t ) Xig(t) ¼ Xi �ln t

h t;X tð Þð Þ¼ h0 tð Þexp
Xp
i¼1

biXiþ
Xp
i¼1

di Xi� ln tð Þ
" #

EXAMPLE 5: Heaviside function

gi tð Þ ¼ 0 if t � t0
1 if t >� t0

�

Extended Cox model:

h t;X tð Þð Þ ¼ h0 tð Þ exp
Xp
i¼1

biXi

"

þ
Xp
i¼1

diXigi tð Þ
#

� Check PH assumption.
� Obtain hazard ratio when PH

assumption not satisfied.
H0: d1 ¼ d2 ¼ . . . ¼ dp ¼ 0
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Under this null hypothesis, the model reduces
to the PH model.

This test can be carried out using a likelihood
ratio (LR) test which computes the difference
between the log likelihood statistic, �2 ln L, for
the PHmodel and the log likelihood statistic for
the extended Cox model. The test statistic thus
obtained has approximately a chi-square distri-
bution with p degrees of freedomunder the null
hypothesis, where p denotes the number of
parameters being set equal to zero under H0.

As an example of this test, suppose we again
consider an extended Cox model that contains
the product term E � t in addition to the main
effect of E, where E denotes a (0,1) time-inde-
pendent exposure variable.

For this model, a test for whether or not the PH
assumption is satisfied is equivalent to testing
the null hypothesis that d = 0. Under this
hypothesis, the reduced model is given by the
PH model containing the main effect E only.
The likelihood ratio statistic, shown here as the
difference between log-likelihood statistics for
the full (i.e., extended model) and the reduced
(i.e., PH) model, will have an approximate chi-
square distribution with one degree of freedom
in large samples.

Note that to carry out the computations for this
test, two different types of models, a PH model
and an extended Cox model, need to be fit.
Nevertheless, some computer packages such
as SAS and Stata use the same computer pro-
gram to fit both models.

If the result of the test for the PH assumption is
significant, then the extended Coxmodel is pre-
ferred to the PH model. Thus, the hazard ratio
expression obtained for the effect of an expo-
sure variable of interest is time-dependent. That
is, the effect of the exposure on the outcome
cannot be summarized by a single HR value,
but can only be expressed as a function of time.

UnderH0, the model reduces to PH
model:

h t;Xð Þ ¼ h0 tð Þ exp
Xp
i¼1

biXi

" #

LR ¼� 2 ln LPH model

� �2 ln Lext: Cox modelð Þ
_	 w2p underH0

EXAMPLE

h(t,X(t)) ¼ h0(t)exp[bE þ d(E � t)]
H0: d ¼ 0 (i.e., PH assumption is

satisfied)

Reduced model:
h(t,X) ¼ h0(t)exp[bE]

LR ¼ �2 ln LR� (�2 ln LF)

_	 w2 with 1 df under H0

F ¼ full (extended), R ¼ reduced (PH)

SAS: PHREG fits both PH and
extended Cox models.

Stata: Stcox fits both PH and
extended Cox models.

If PH test significant: Extended
Cox model is preferred; HR is
time-dependent.
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We again consider the previous example, with
the extended Cox model shown here. For this
model, the estimated hazard ratio for the effect
of exposure is given by the expression e to the
quantity b “hat” plus d “hat” times t. Thus,
depending on whether d “hat” is positive or
negative, the estimated hazard ratio will
increase or decrease exponentially as
t increases. The graph shown here gives a
sketch of how the hazard ratio varies with
time if d “hat” is positive.

We now provide a description of the use of a
“heaviside” function. When such a function is
used, the hazard ratio formula yields constant
hazard ratios for different time intervals, as
illustrated in the accompanying graph.

Recall that a heaviside function is of the form g
(t), which takes on the value 1 if t is greater
than or equal to some specified value of t,
called t0, and takes on the value 0 if t is less
than t0. An extended Coxmodel which contains
a single heaviside function is shown here.

Note that if t� t0, g(t) = 1, so the value ofE� g(t)
= E; the corresponding hazard function is of the
formh0(t)� e to the quantity (bþ d) timesE, and
the estimated hazard ratio for the effect ofE has
the form e to the sum of b “hat” plus d “hat.”

If t< t0, g(t) = 0, the corresponding hazard ratio
is simplified to e to the b “hat.”

Thus, we have shown that the use of a single
heaviside function results in an extended Cox
model which gives two hazard ratio values,
each value being constant over a fixed time
interval.

EXAMPLE

h(t,X(t)) ¼ h0(t)exp[bE þ d(E � t)]

cHR ¼ exp b̂þ d̂t
h i

t

HR

δ>0

Heaviside function:

t0 t

HR

g tð Þ ¼ 1 if t � t0
0 if t � t0

�

h(t, X(t)) ¼ h0(t)exp[bE þ dEg(t)]

t � t0: g(t) ¼ 1 ) E � g(t) ¼ E

h(t, X) ¼ h0(t)exp[(b þ d)E]

cHR ¼ exp b̂þ d̂
h i

t < t0: g(t) ¼ 0 ) E � g(t) ¼ 0

h(t,X) ¼ h0(t)exp[bE]

cHR ¼ exp b̂
h i

A single heaviside function in the
model

h(t,X)

¼ h0(t) exp[bE þ d(E � g(t))]

yields two hazard ratios:

t � t0 : cHR ¼ exp b̂þ d̂
h i

t � t0 : cHR ¼ exp b̂
h i
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There is actually an equivalent way to write this
model that uses two heaviside functions in the
same model. This alternative model is shown
here. The two heaviside functions are called
g1(t) and g2(t). Each of these functions are in
the model as part of a product term with the
exposure variable E. Note that this model does
not contain a main effect term for exposure.

For this alternative model, as for the earlier
model with only one heaviside function, two
different hazard ratios are obtained for differ-
ent time intervals. To obtain the first hazard
ratio, we consider the form that the model
takes when t � t0. In this case, the value of
g1(t) is 1 and the value of g2(t) is 0, so the expo-
nential part of the model simplifies to d1 � E;
the corresponding formula for the estimated
hazard ratio is then e to the d1 “hat.”

When t < t0, the value of g1(t) is 0 and the value
of g2(t) is 1. Then, the exponential part of the
model becomes d2 � E, and the corresponding
hazard ratio formula is e to the d2 “hat.”

Thus, using the alternative model, again shown
here, we obtain two distinct hazard ratio
values. Mathematically, these are the same
values as obtained from the original model
containing only one heaviside function. In
other words, d1 “hat” in the alternative model
equals b “hat” plus d “hat” in the original model
(containing one heaviside function), and
d2 “hat” in the alternative model equals b
“hat” in the original model.

Alternative model with two heavi-
side functions:

h(t,X) ¼ h0(t)exp[d1(E � g1(t))

þ d2(E � g2(t))]

g1 tð Þ ¼ 1 if t � t0

0 if t � t0

�

g2 tð Þ ¼ 1 if t � t0

0 if t � t0

�

Note:Maineffect forEnot inmodel.

Two HR’s from the alternative
model:

t � t0 : g1 tð Þ ¼ 1; g2 tð Þ ¼ 0

h t;Xð Þ ¼ h0 tð Þ exp½d1 E � 1ð Þ
þd2 E � 0ð Þ�

¼ h0 tð Þexp½d1E�
so that cHR ¼ exp d̂1

� �

t > t0 : g1 tð Þ ¼ 0; g2 tð Þ ¼ 1

h t;Xð Þ ¼ h0 tð Þexp½d1 E� 0ð Þ
þ d2 E� 1ð Þ�

¼ h0 tð Þexp½d2E�
so that cHR ¼ exp d̂2

� �

Alternative model:

h(t,X(t)) ¼ h0(t)exp[d1(E � g1(t))

þ d2(E � g2(t))]

Original model:

h(t,X(t))

¼ h0(t)exp[bE þ d(E � g(t))]

t � t0 : cHR ¼ exp d̂1
� �

¼ exp b̂þ d̂
� �

t � t0 : cHR ¼ exp d̂2
� �

¼ exp b̂
� �
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We have thus seen that heaviside functions can
be used to provide estimated hazard ratios that
remain constant within each of two separate
time intervals of follow-up. We can also extend
the use of heaviside functions to provide sev-
eral distinct hazard ratios that remain constant
within several time intervals.

Suppose, for instance, that we wish to separate
the data into four separate time intervals, and
for each interval, we wish to obtain a different
hazard ratio estimate as illustrated in the
graph shown here.

We canobtain four different hazard ratios using
an extended Coxmodel containing amain effect
of exposure and three heaviside functions in the
model as products with exposure. Or, we can
use a model containing no main effect exposure
term, but with product terms involving expo-
sure with four heaviside functions.

To illustrate the latter model, suppose, as
shown on the graph, that the first time interval
goes from time 0 to 0.5 of a year; the second
time interval goes from 0.5 to 1 year; the third
time interval goes from 1 year to a year and a
half; and the fourth time interval goes from a
year and a half onward.

Then, an appropriate extended Cox model
containing the four heaviside functions g1(t),
g2(t), g3(t), and g4(t) is shown here. This model
assumes that there are four different hazard
ratios identified by three cutpoints at half a
year, one year, and one and a half years. The
formulae for the four hazard ratios are given by
separately exponentiating each of the four esti-
mated coefficients, as shown below:

4 cHR0s

0 � t < 0:5 : cHR ¼ exp d̂1
� �

0:5 � t < 1:0 : cHR ¼ exp d̂2
� �

1:0 � t < 1:5 : cHR ¼ exp d̂3
� �

t � 1:5 : cHR ¼ exp d̂4
� �

8>>>>>><
>>>>>>:

Heaviside functions:

� two cHR’s constant within two
time intervals

� extension: several cHR’s constant
within several time intervals

Four time intervals:

HR

0 .5 1.0 1.5 t (years)

ExtendedCoxmodel contains either

� E, E � g1(t), E � g2(t), E � g3(t)
or

� E � g1(t), E � g2(t), E � g3(t),
E � g4(t)

1 2 3 4

0 0.5 1.0 1.5 t (years)

h(t,X(t))

¼ h0(t)exp[d1Eg1(t) þ d2Eg2(t)
þ d3Eg3(t) þ d4Eg4(t)]

where

g1 tð Þ ¼ 1 if 0� t< 0:5 year

0 if otherwise

�

g2 tð Þ ¼ 1 if 0:5 year � t< 1:0 year

0 if otherwise

�

g3 tð Þ ¼ 1 if 1:0 year � t< 1:5 years

0 if otherwise

�

g4 tð Þ ¼ 1 if t� 1:5 years

0 if otherwise

�
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VII. An Application of the
Extended Cox Model
to An Epidemiologic
Study on the
Treatment of Heroin
Addiction

A 1991 Australian study by Caplehorn et al.,
compared retention in two methadone treat-
ment clinics for heroin addicts. A patient’s sur-
vival time (T) was determined as the time in
days until the patient dropped out of the clinic
or was censored at the end of the study clinic.
The two clinics differed according to their over-
all treatment policies.

A listing of some of the variables in the dataset
for this study is shown here. The dataset name
is called “ADDICTS,” and survival analysis pro-
grams in the Stata package are used in the
analysis. Note that the survival time variable
is listed in column 4 and the survival status
variable, which indicates whether a patient
departed from the clinic or was censored, is
listed in column 3. The primary exposure vari-
able of interest is the clinic variable, which is
coded as 1 or 2. Two other variables of interest
are prison record status, listed in column 5 and
coded as 0 if none and 1 if any, and maximum
methadone dose, in milligrams per day, which
is listed in column 6. These latter two variables
are considered as covariates.

One of the first models considered in the
analysis of the addicts dataset was a Cox PH
model containing the three variables, clinic,
prison record, and dose. An edited printout of
the results for this model is shown here. What
stands out from this printout is that the P(PH)
value for the clinic variable is zero to three
significant places, which indicates that the
clinic variable does not satisfy the proportional
hazard assumption.

Since the P(PH) values for the other two vari-
ables in the model are highly nonsignificant,
this suggests that these two variables, namely,
prison and dose, can remain in the model.

EXAMPLE

1991 Australian study (Caplehorn
et al.) of heroin addicts
� two methadone treatment clinics
� T ¼ days remaining in treatment

(¼ days until drop out of clinic)
� clinics differ in treatment policies

Dataset name: ADDICTS
Column 1: Subject ID
Column 2: Clinic (1 or 2)

E

Column 3: Survival status (0 ¼
censored, 1 ¼ departed clinic)

Column 4: Survival time in days
Column 5: Prison Record

covariates(0 ¼ none, 1 ¼ any)

Column 6: Maximum Methadone
Dose (mg/day)

h(t,X) ¼ h0(t) exp[b1(clinic)
þ b2(prison) þ b3(dose)]

Coef.
Std.
Err. p > |z|

Haz.
Ratio

P
(PH)

Clinic �1.009 0.215 0.000 0.365 0.001
Prison 0.327 0.167 0.051 1.386 0.332
Dose �0.035 0.006 0.000 0.965 0.347

P(PH) for the variables prison and
dose are nonsignificant ) remain in
model.
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Further evidence of the PH assumption not
being satisfied for the clinic variable can be
seen from a graph of adjusted survival curves
stratified by clinic, where the prison and dose
variables have been kept in the model. Notice
that the two curves are much closer together at
earlier times, roughly less than 1 year (i.e., 365
days), but the two curves diverge greatly after
1 year. This indicates that the hazard ratio for
the clinic variable will be much closer to one at
early times but quite different fromone later on.

The above graph, nevertheless, provides impor-
tant results regarding the comparison of the
two clinics. The curve for clinic 2 consistently
lies above the curve for clinic 1, indicating that
clinic 2 does better than clinic 1 in retaining its
patients in methadone treatment. Further,
because the two curves diverge after about a
year, it appears that clinic 2 is vastly superior to
clinic 1 after one year but only slightly better
than clinic 1 prior to one year.

Unfortunately, because the clinic variable has
been stratified in the analysis, we cannot use
this analysis to obtain a hazard ratio expres-
sion for the effect of clinic, adjusted for the
effects of prison and dose. We can only obtain
such an expression for the hazard ratio if the
clinic variable is in the model.

Nevertheless, we can obtain a hazard ratio using
an alternative analysis with an extended Cox
model that contains a heaviside function, g(t),
together with the clinic variable, as shown here.
Based on the graphical results shown earlier, a
logical choice for the cutpoint of the heaviside
function is one year (i.e., 365 days). The corres-
pondingmodel then provides two hazard ratios:
one that is constant above 365 days and the
other that is constant below 365 days.

Note that in the extended Cox model here, we
have coded the clinic variable as 1 if clinic 1
and 0 if clinic 2, whereas previously we had
coded clinic 2 as 2. The reason for this change
in coding, as illustrated by computer output
below, is to obtain hazard ratio estimates that
are greater than unity.

EXAMPLE: (continued)

Adjusted Survival Curves
Stratified by Clinic

(prison and dose in the model)

Clinic 2

Clinic 1

1

.8

.6

.4

.2

0
0 200 400 600 800 1000 1200

Days

S

Results:

� Curve for clinic 2 consistently lies
above curve for clinic 1.

� Curves diverge, with clinic
2 being vastly superior after one
year.

Stratifying by clinic: cannot obtain
hazard ratio for clinic

Hazard ratio for clinic requires clinic
in the model.

Extended Cox model:

h(t,X(t)) ¼ h0(t)exp[b1(clinic)
þ b2(prison) þ b3(dose)
þ d(clinic) g(t)]

where

gðtÞ ¼ 1 if t � 365 days

0 if t < 365 days

�

and

clinic ¼ 1 if clinic 1

0 if clinic 2

�
None

Previously

clinic ¼ 2 for

clinic 2

t � 365 days: HR ¼ exp b̂1 þ d̂
� �

t < 365 days: HR ¼ exp b̂1
� �
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An equivalent way to write the model is to use
two heaviside functions, g1(t) and g2(t), as
shown here. This latter model contains product
terms involving clinic with each heaviside
function, and there is no main effect of clinic.

Corresponding to the abovemodel, the effect of
clinic is described by two hazard ratios, one for
time less than 365 days and the other for
greater than 365 days. These hazard ratios are
obtained by separately exponentiating the
coefficients of each product term, yielding e to
the d1 “hat” and e to the d2 “hat,” respectively.

A printout of results using the above model
with two heaviside functions is provided here.
The results show a borderline nonsignificant
hazard ratio (P = 0.072) of 1.6 for the effect of
clinic when time is less than 365 days in con-
trast to a highly significant (P = 0.000 to three
decimal places) hazard ratio of 6.2 when time
exceeds 365 days.

Note that the estimated hazard ratio of 1.583
from the printout is computed by exponentiat-
ing the estimated coefficient 0.460 of the prod-
uct term “clinic � g1” and that the estimated
hazard ratio of 6.223 is computed by exponen-
tiating the estimated coefficient 1.828 of the
product term “clinic � g2”.

Note also that the 95% confidence interval
for the clinic effect prior to 365 days (that is,
for the product term “clinic � g1(t)”) is given
by the limits 0.960 and 2.611, whereas the
corresponding confidence interval after 365
days (that is, for the product term “clinic �
g2(t)”) is given by the limits 2.921 and 13.259.
The latter interval is quite wide, showing a lack
of precision when t exceeds 365 days; however,
when t precedes 365 days, the interval includes
the null hazard ratio of 1, suggesting a chance
effect for this time period.

The results we have just shown support the
observations obtained from the graph of
adjusted survival curves. That is, these results
suggest a large difference in clinic survival
timesafter1year incontrast toasmalldifference
in clinic survival times prior to 1 year,with clinic
2 always doing better than clinic 1 at any time.

EXAMPLE: (continued)

h(t,X(t)) ¼ h0(t) exp[b2(prison)
þ b3(dose) þ b1(clinic)g1(t)
þ d2(clinic)g2(t)]

where

g1ðtÞ ¼
1 if t > 365 days

0 if t � 365 days

(

and

g2ðtÞ ¼
1 if t � 365 days

0 if t > 365 days

(

t < 365 days: cHR ¼ expðd̂1Þ
t � 365 days: cHR ¼ expðd̂2Þ

Coef.

Std.

Err. p > |z|

Haz.

Ratio

[95% Conf.

Interval]

Prison 0.378 0.168 0.025 1.459 1.049 2.029

Dose �0.036 0.006 0.000 0.965 0.953 0.977

Clinic � g1 0.460 0.255 0.072 1.583 0.960 2.611

Clinic � g2 1.828 0.386 0.000 6.223 2.921 13.259

t < 365 days: cHR ¼ e0:460 ¼ 1:583

t � 365 days: ½ cHR ¼ e1:828 ¼ 6:223

95% confidence intervals for clinic
effect:

t < 365 days: (0.960, 2.611)
t ≥ 365 days: (2.921, 13.259)

( ) )(

0 1 5 10 15

HR

1 year

1.0
.8
.6
.4
.2
0
0 200 400 600 800 1000 1200

Days

Adjusted Survival Curves

Clinic 2
Clinic 1

S
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There is, nevertheless, at least one other
approach to the analysis using time-dependent
variables that we now describe. This approach
considers our earlier graphical observation
that the survival curves for each clinic continue
to diverge from one another even after 1 year.
In other words, it is reasonable to consider an
extended Cox model that allows for such a
divergence, rather than a model that assumes
the hazard ratios are constant before and after
1 year.

One way to define an extended Cox model that
provides for diverging survival curves is shown
here. This model includes, in addition to the
clinic variable by itself, a time-dependent vari-
able defined as the product of the clinic vari-
able with time (i.e., clinic� t). By including this
product term, we are able to estimate the effect
of clinic on survival time, and thus the hazard
ratio, for any specified time t.

To demonstrate how the hazard ratio changes
over time for this model, we consider what the
model and corresponding estimated hazard
ratio expression are for different specified
values of t.

For example, if we are interested in the effect of
clinic on survival on day 91, so that t = 91, the
exponential part of the model simplifies to
terms for the prison and dose variables plus
b1 times the clinic variable plus d times the
clinic variable times 91: the corresponding esti-
mated hazard ratio for the clinic effect is then
e to the power b1 “hat” plus d “hat” times t = 91.

At 274 days, the exponential part of the model
contains the prison, dose, and clinic main
effect terms as before, plus d times the clinic
variable times 274: the corresponding hazard
ratio for the clinic effect is then e to b1 “hat”
plus 274 d “hat”.

The formulae for the estimated hazard ratio for
other specified days are shown here. Notice
that the estimated hazard ratio appears to be
increase over the length of the follow-up period.
Thus, if d “hat” is a positive number, then the
estimated hazard ratios will increase over time.

EXAMPLE: (continued)

One other analysis:
Use an extended Cox model that
provides for diverging survival curves

h(t,X(t)) ¼ h0(t)exp[b1(clinic)
þ b2(prison) þ b3(dose)
þ d(clinic � t)]

cHR ¼ exp b̂1 þ d̂t
� �

cHR changes over time.

t ¼ 91 days

h(t,X(t)) ¼ h0(t)exp[b1(clinic)
þ b2(prison) þ b3 (dose)
þ d(clinic)(91)]

So

cHR ¼ exp b̂1 þ 91d̂
� �

t ¼ 274:

h(t,X(t)) ¼ h0(t)exp[b1(clinic)
þ b2(prison) þ b3(dose)
þ d(clinic)(274)]

cHR ¼ exp b̂1 þ 274d̂
� �

t ¼ 458.5:

cHR ¼ exp b̂1 þ 458:5d̂
� �

t ¼ 639:

cHR ¼ exp b̂1 þ 639d̂
� �

t ¼ 821.5:

cHR ¼ exp b̂1 þ 821:5d̂
� �

d̂ > 0 ) cHR as time
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We now show edited results obtained from
fitting the extended Cox model we have just
been describing, which contains the product
of clinic with time. The covariance estimate
shown at the bottom of the table will be used
below to compute confidence intervals.

From these results, the estimated coefficient of
the clinic variable is b1 “hat” equals �0.0183,
and the estimated coefficient d “hat” obtained
for the product term equals 0.003. For the
model being fit, the hazard ratio depends on
the values of both b1 “hat” and d “hat.”

On the left, the effect of the variable clinic is
described by five increasing hazard ratio esti-
mates corresponding to each of five different
values of t. These values, which range between
1.292 at 91.5 days to 11.544 at 821.5 days, indi-
cate how the effect of clinic diverges over time
for the fitted model.

We can also obtain 95% confidence intervals
for each of these hazard ratios using the large
sample formula shown here. The variance
expression in the formula is computed using
the variances and covariances which can be
obtained from the computer results given
above. In particular, the variances are (0.347)2

and (0.001)2 for b1 “hat” and d “hat,” respec-
tively; the covariance value is �0.000259.

A table showing the estimated hazard ratios
and their corresponding 95% confidence inter-
vals for the clinic effect is given here. Note that
all confidence intervals are quite wide.

EXAMPLE: (continued)

Computer results for extended Cox
model involving T(t):

Coef.

Std.

Err. P>|z|

Haz.

Ratio

[95% Conf.

Interval]

prison 0.390 0.169 0.021 1.476 1.060 2.056

dose �0.035 0.006 0.000 0.965 0.953 0.978

clinic –0.0183 0.347 0.958 0.982 0.497 1.939

clinic � t 0.003 0.001 0.001 1.003 1.001 1.005

dcov b̂1; d̂
� �

¼ �:000259 Log likelihood ¼ �667.642

b̂1 ¼ �0:0183 d̂ ¼ 0:003

cHRdepends on b̂1 and d̂ :

t ¼ 91:5: cHR ¼ exp b̂1 þ d̂t
� �

¼ 1:292

t ¼ 274: cHR ¼ exp b̂1 þ d̂t
� �

¼ 2:233

t ¼ 458:5: cHR ¼ exp b̂1 þ d̂t
� �

¼ 3:862

t ¼ 639: cHR ¼ exp b̂1 þ d̂t
� �

¼ 6:677

t ¼ 821:5: cHR ¼ exp b̂1 þ d̂t
� �

¼ 11:544

exp b̂1 þ d̂t
 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dvar b̂1 þ d̂t

� �r� �

Var b̂1þ d̂t
� �

¼ s2b1 þ t2s2
d̂
þ2t dcov b̂1; d̂

� �

0.347ð Þ2 0:001ð Þ2 �:000259ð Þ

Time (days) cHR 95% CI

91.5 1.292 (0.741, 2.250)
274 2.233 (1.470, 3.391)
458.5 3.862 (2.298, 6.491)
639 6.677 (3.102, 14.372)
821.5 11.544 (3.976, 33.513)
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VIII. An Application of the
Extended Cox Model
to the Analysis of the
Stanford Heart
Transplant Data

We now consider another application of the
extended Cox model which involves the use of
an internally defined time-dependent variable.
In a 1977 report (Crowley and Hu, J. Amer. Stat-
ist. Assoc.) on the Stanford Heart Transplant
Study, patients identified as being eligible for a
heart transplant were followed until death or
censorship. Sixty-five of these patients received
transplants at some point during follow-up,
whereas thirty-eight patients did not receive a
transplant. There were, thus, a total of n = 103
patients. The goal of the study was to assess
whether patients receiving transplants survived
longer than patients not receiving transplants.

One approach to the analysis of these data was
to separate the dataset into two separate groups,
namely, the 65 heart transplant patients and the
38 patients not receiving transplants, and then
to compare survival times for these groups.

A problem with this approach, however, is that
those patients who received transplants had to
wait from the time they were identified as eligi-
ble for a transplant until a suitable transplant
donor was found. During this “wait-time”
period, they were at risk for dying, yet they did
not have the transplant. Thus, the wait-time
accrued by transplant patients contributes
information about the survival of nontrans-
plant patients. Yet, this wait-time information
would be ignored if the total survival time for
each patient were used in the analysis.

Another problem with this approach is that two
covariates of interest, namely, tissue mismatch
score and age at transplant, were considered as
prognostic indicators of survival only for
patients who received transplants. Note that
age at eligibilitywas not considered an important
prognostic factor for the nontransplant group.

EXAMPLE

Patients identified as eligible for heart
transplant:
T ¼ time until death or censorship
65 patients receive transplants
38 patients do not receive transplants
n ¼ 103 patients

Goal: Do patients receiving
transplants survive longer than
patients not receiving transplants?

One approach:
Compare two separate groups: 65
transplants vs. 38 nontransplants

Problem:

Wait-time

Eligibility

Censored
or death

Received
transplant

Total survival time

Time

Note: Wait-time contributes to
survival time for nontransplants.

Covariates:

Tissue mismatch score

Age at transplant



prognostic only

for transplants

Age at eligibility: not considered
prognostic for nontransplants
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Because of the problems just described, which
concern the wait-time of transplants and the
effects of prognostic factors attributable to
transplants only, an alternative approach to
the analysis is recommended. This alternative
involves the use of time-dependent variables in
an extended Cox model.

The exposure variable of interest in this
extended Cox model is heart transplant status
at time t, denoted by HT(t). This variable is
defined to take on the value 0 at time t if the
patient has not received a transplant at this
time, that is, if t is less than the wait-time for
receiving a transplant. The value of this vari-
able is 1 at time t if the patient has received a
transplant prior to or at time t, that is, if t is
equal to or greater than the wait-time.

Thus, for a patient who did not receive a trans-
plant during the study, the value ofHT(t) is 0 at
all times. For a patient receiving a transplant,
the value of HT(t) is 0 at the start of eligibility
and continues to be 0 until the time at which
the patient receives the transplant; then, the
value of HT(t) changes to 1 and remains 1
throughout the remainder of follow-up.

Note that the variable HT(t) has the property
that the wait-time for transplant patients con-
tributes to the survival experience of nontrans-
plant patients. In other words, this variable
treats a transplant patient as a nontransplant
patient prior to receiving the transplant.

In addition to the exposure variable HT(t), two
other time-dependent variables are included in
our extended Cox model for the transplant
data. These variables are covariates to be
adjusted for in the assessment of the effect of
the HT(t) variable.

EXAMPLE: (continued)

Problems:
� wait-time of transplant recipients
� prognostic factors for transplants

only
Alternative approach:
Uses an extended Cox model

Exposure variable:
Heart transplant status at time t,
defined as

HTðtÞ¼
0 if did not receive transplant

by time t, i.e., if t<wait-time

1 if received transplant prior

to time t, i.e., if t�wait-time

8>><
>>:

T

T

No transplant

Transplant

Time of transplant

HT(t)
0000...00000

t

t

HT(t)
0000...0111111111

Wait-time for transplants contributes
to survival for nontransplants.

In addition to HT(t), two time-
dependent covariates included in
model.
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These covariates are denoted as TMS(t) and
AGE(t) and they are defined as follows: TMS(t)
equals 0 if t is less than the wait-time for a
transplant but changes to the “tissue mismatch
score” (TMS) at the time of the transplant if t is
equal to or greater than the wait-time. Simi-
larly, AGE(t) equals 0 if t is less than the wait-
time but changes to AGE at time of transplant
if t is equal to or greater than the wait-time.

The extended Cox model for the transplant
data is shown here. The model contains the
three time-dependent variables HT(t), TMS(t)
and AGE(t) as described above.

For this model, since HT(t) is the exposure
variable of interest, the focus of the analysis
concerns assessing the effect of this variable
adjusted for the two covariates. Note, how-
ever, that because the HT(t) variable is time-
dependent by definition, this variable does not
satisfy the PH assumption, so that any hazard
ratio estimate obtained for this variable is
technically time-dependent.

A summary of computer results for the fit of
the above extended Cox model is shown here.
These results indicate that the exposure vari-
able HT(t) is significant below the one percent
significance level (i.e., the two-sided p-value is
0.008). Thus, transplant status appears to be
significantly associated with survival.

To evaluate the strength of the association, note
that e to the coefficient of HT(t) equals 0.0417.
Since 1 over 0.0417 is 23.98, it appears that
there is a 24-fold increase in the hazard of non-
transplant patients to transplant patients. The
preceding interpretation of the value 0.0417 as
a hazard ratio estimate is not appropriate, how-
ever, as we shall now discuss further.

EXAMPLE: (continued)

Covariates:

TMSðtÞ ¼
0 if t < wait-time

TMS if t � wait-time

(

AGEðtÞ ¼
0 if t < wait-time

AGE if t � wait-time

(

h(t,X(t)) ¼ h0(t)exp[d1HT(t)
þ d2TMS(t) þ d3AGE(t)]

Focus:
Asscesing the effect of HT(t) adjusted
for TMS(t) and AGE(t)

Note: HT(t) does not satisfy PH
assumption.

Variable Coef.
Std.
Err. P>|z|

Haz.
Ratio

HT(t) �3.1718 1.1861 0.008 0.0417
TMS(t) 0.4442 0.2802 0.112 1.5593
AGE(t) 0.0552 0.0226 0.014 1.0567

cHR ¼ e�3:1718 ¼ 0:0417 ¼ 1

23:98

cHR ¼ ĥ transplantsð Þ
ĥ nontransplantsð Þ �

1

24
?

Not appropriate!
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First, note that the value of 23.98 inappropri-
ately suggests that the hazard ratio is compar-
ing two separate groups of patients. However,
the exposure variable in this analysis is not a
time-independent variable that distinguishes
between two separate groups. In contrast, the
exposure variable is time-dependent, and uses
the wait-time information on transplants as
contributing to the survival experience of non-
transplants.

Since the exposure variable is time-dependent,
an alternative interpretation of the hazard ratio
estimate is that, at any given time t, the hazard
for a person who has not yet received a trans-
plant (but may receive one later) is approxi-
mately 24 times the hazard for a person who
already has received a transplant by that time.

Actually, we suggest that a more appropriate
hazard ratio expression is required to account
for a transplant’s TMS and AGE score. Such an
expression would compare, at time t, the values
of each of the three time-dependent variables
in the model. For a person who received a
transplant, these values are 1 for HT(t) and
TMS and AGE for the two covariates. For a
person who has not received a transplant, the
values of all three variables are 0.

Using this approach to compute the hazard
ratio, the X*(t) vector, which specifies the pre-
dictors for a patient iwho received a transplant
at time t, has the values 1, TMSi and AGEi for
patient i; the X(t) vector, which specifies the
predictors at time t for a patient who has not
received a transplant at time t, has values of
0 for all three predictors.

The hazard ratio formula then reduces to e to
the sum of d1 “hat” plus d2 “hat” times TMSi

plus d3 “hat” times AGEi, where the d “hat’s” are
the estimated coefficients of the three time-
dependent variables. Substituting the numeri-
cal values for these coefficients in the formula
gives the exponential expression circled here.

EXAMPLE (continued)

23.98 is inappropriate as a cHR:
� does not compare two separate

groups
� exposure variable is not time-

independent
� wait-time on transplants

contributes to survival on
nontransplants

Alternative interpretation:
At time t,
h(“not yet received transplant”)
� 24 hˆ (“already received transplant”)

More appropriate:

Hazard ratio formula should account
for TMS and AGE.

Transplant? HT(t) TMS(t) AGE(t)

Yes 1 TMS AGE
No 0 0 0

i denotes ith transplant patient

X*(t) ¼ (HT(t) ¼ 1, TMS(t) ¼ TMSi, AGE(t) ¼ AGEi)

X(t) ¼ (HT(t) ¼ 0, TMS(t) ¼ 0, AGE(t) ¼ 0)

cHRðtÞ ¼ exp d̂1 1� 0ð Þ þ d̂2 TMSi � 0ð Þ
h

þd̂3 AGEi � 0ð Þ
i

¼ exp d̂1 þ d̂2 TMSi þ d̂3 AGEi

h i

¼ exp½�3:1718þ 0:4442 TMSi

þ0:0552 AGEi�
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The resulting formula for the hazard ratio is
time-dependent in that its value depends on the
TMS and AGE values of the ith patient at the
time of transplant. That is, different patients
can have different values for TMS and AGE at
time of transplant. Note that in the dataset,
TMS ranged between 0 and 3.05 and AGE
ranged between 12 and 64.

We end our discussion of the Stanford Heart
Transplant Study at this point. For further
insight into the analysis of this dataset, we
refer the reader to the 1977 paper by Crowley
and Hu (J. Amer. Statist. Assoc.).

IX. The Extended Cox
Likelihood

At the end of the presentation from Chapter 3
(Section VIII), we illustrated the Cox likelihood
using the dataset shown on the left. In this sec-
tion, we extend that discussion to illustrate the
Cox likelihood with a time-dependent variable.

To review: The data indicate that Barry got the
event at TIME = 2 years. Gary got the event at
3 years, Harry was censored at 5 years and
Larry got the event at 8 years. Furthermore,
Barry and Larry were smokers while Gary and
Harry were non-smokers.

In Chapter 3, we constructed the Cox likelihood
with one predictor, SMOKE, in the model. The
model and the likelihood are shown on the left.

The likelihood is a product of three terms, one
term for each event time tf (TIME = 2, 3, and 8).
The denominator of each term is the sum of the
hazards from the subjects still in the risk set at
time tf, including the censored subject, Harry.
The numerator of each term is the hazard of
the subject who got the event at tf. The reader
may wish to reread Section VIII of Chapter 3.

Now consider an extended Cox model, which
contains the predictor SMOKE and a time-
dependent variable SMOKE � TIME. For this
model, it is not only the baseline hazard that
may change over time but also the value of the
predictor variables. This can be illustrated by
examining Larry’s hazard at each event time.

EXAMPLE: (continued)

cHRðtÞ is time-dependent, i.e., its value
at time t depends on TMSi and AGEi at
time t

TMS range: (0–3.05)
AGE range: (12–64)

� CoxPH likelilhood (L) described
in Chapter 3, Section VIII

� L now extended for extended
Cox model

ID TIME STATUS SMOKE

Barry 2 1 1
Gary 3 1 0
Harry 5 0 0
Larry 8 1 1

TIME ¼ Survival time (in years)

STATUS ¼ 1 for event, 0 for censorship

SMOKE¼ 1 for a smoker, 0 for a nonsmoker

Cox PH model: h(t)¼h0(t)e
b1SMOKE

Cox PH Likelihood:

L¼ h0ðtÞeb1
h0ðtÞeb1 þh0ðtÞe0þh0ðtÞe0þh0ðtÞeb1

" #

� h0ðtÞe0
h0ðtÞe0þh0ðtÞe0þh0ðtÞeb1

" #
� h0ðtÞeb1

h0ðtÞeb1

" #

Cox extended model:

hðtÞ ¼ h0ðtÞeb1SMOKEþb2SMOKE�TIME

Time-dependent covariate
(its value changes over time)
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Larry, a smoker, got the event at TIME = 8.
However at TIME = 2, 3, and 8, the covariate
SMOKE�TIME changes values, thus impact-
ing Larry’s hazard at each event time (see left).
Understanding how the expression for an indi-
vidual’s hazard changes over time is the key
addition toward understanding how the Cox
extended likelihood differs from the Cox PH
likelihood.

The extended Cox model for these data is
shown again on the left.

The extend cox likehood (L) for these data is
shown on the left. This likehood is constructed
in a similar mannar as the likehood for the Cox
PHmodel. Yhe difference is that the expression
for the subject’s hazard is allowed to vary over
time.

Just as with the Cox PH likelihood shown on
the previous page, the extended Cox likelihood
is also a product of three terms, corresponding
to the three event times (L ¼ L1�L2�L3). Barry
got the event first at t = 2, then Gary at t = 3, and
finally Larry at t = 8. Harry, who was censored
at t = 5, was still at risk when Barry and Garry
got the event. Therefore, Harry’s hazard is still
in the denominator of L1 and L2.

The inclusion of the time-varying covariate
SMOKE�TIME does not change the expres-
sion for the hazard for the nonsmokers (Gary
and Harry) since SMOKE is coded 0 for non-
smokers. However, for smokers (Barry and
Larry), the expression for the hazard changes
with time. Notice how Larry’s hazard changes
in the denominator of L1, L2, and L3.

The baseline hazard cancels in the extended
Cox likelihood as it does with the Cox PH like-
lihood. Thus, the form of the baseline hazard
need not be specified, as it plays no role in the
estimation of the regression parameters.

Larry got the event at TIME ¼ 8

Larry’s hazard at each event time

TIME Larry’s Hazard

2 h0ðtÞeb1þ2b2

3 h0ðtÞeb1þ3b2

8 h0ðtÞeb1þ8b2

Cox extended model:

hðtÞ ¼h0ðtÞeb1SMOKEþb2SMOKE�TIME

L ¼ h0ðtÞeb1þ2b2

h0ðtÞeb1þ2b2 þ h0ðtÞe0 þ h0ðtÞe0 þ h0ðtÞeb1þ2b2

� �

� h0ðtÞe0
h0ðtÞe0 þ h0ðtÞe0 þ h0ðtÞeb1þ3b2

� �

� h0ðtÞeb1þ8b2

h0ðtÞeb1þ8b2

� �

Likelihood is product of three terms:

L = L1 × L2 × L3

Barry Gary Larry
(t = 2) (t = 3) (t = 8)

SMOKE � TIME ¼ 0 for nonsmokers

SMOKE � TIME changes over time for
smokers

Larry’s hazard changes over L1, L2, L3.

h0(t) cancels in L

L ¼ eb1þ2b2

eb1þ2b2 þ e0 þ e0 þ eb1þ2b2

� �

� e0

e0 þ e0 þ eb1þ3b2

� �

� eb1þ8b2

eb1þ8b2

� �
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A word of caution for those planning to run a
model with a time-varying covariate: It is incor-
rect to create a product term with TIME in the
data step by multiplying each individual’s
value for SMOKE with their survival time.
In other words, SMOKE�TIME should not
be coded like the typical interaction term.
In fact, if SMOKE�TIME was coded as it is
on the left, then SMOKE�TIME would be a
time-independent variable. Larry’s value for
SMOKE�TIME is incorrectly coded at a con-
stant value of 8 even though Larry’s value for
SMOKE�TIME changes in the likelihood over
L1, L2, and L3.

If the incorrectly coded time independent
SMOKE�TIME was included in a Cox model,
it would not be surprising if the coefficient
estimate was highly significant even if the PH
assumption was not violated. It would be
expected that a product term with each indivi-
dual’s survival time would predict the outcome
(their survival time), but it would not be mean-
ingful. Nevertheless, this is a commonmistake.

To obtain a correctly defined SMOKE�TIME
time-dependent variable, computer packages
typically allow the variable to be defined within
the analytic procedure.

Alternatively, the (start, stop) or counting pro-
cess (CP) data layout can be used, to explicitly
define a time-dependent variable in the data.

The CP data format was introduced in Chapter
1. This data layout provides a straightforward
approach for expressing a time-dependent
covariate by allowing multiple observations to
correspond to the same individual. With this
format, an individual‘s total at-risk follow-up
time is sub-divided into smaller time intervals
providing a way for values of variables to
change from time interval-to-interval for the
same individual.

Caution: Incorrect Coding of SMOKE
�TIME

ID
Barry
Gary
Harry
Larry

TIME
2
3
5
8

STATUS
1
1
0
1

SMOKE
1
0
0
1

Coded as time-independent,
not time-dependent

SMOKE
× TIME

2
0
0
8

Incorrectly coded SMOKE�TIME
� Time independent
� Probably highly significant
� Survival time should predict

survival time
� But not meaningful

Correctly coding SMOKE�TIME
� Time dependent
� Computer packages typically

allow definition in the analytic
procedure

Alternatively can code using CP
format

� CP format introduced in
Chapter 1

� Multiple observations per
subject

� Time intervals at risk
subdivided

� Covariate value can change
from interval to interval for the
same subject
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The data layout on the left illustrates the CP
approach with the (start, stop) time intervals
defined by each event time (t=2, t=3, and t=8)
from Barry, Gary, and Larry.

If we look at the final three observations, we
can see that Larry’s total time at risk is subdi-
vided into three time intervals. Larry got the
event at t=8 (STOP=8 and STATUS=1). The two
previous observations indicate that Larry did
not get an event (STATUS=0) over the time
intervals (0, 2) or (2, 3). Over the last three
observations, the time-dependent variable
SMOKE�TIME changes values for Larry
from 2 to 3 to 8.

An alternative CP data layout is shown below
on the left. Since Gary and Harry are non-
smokers and the coding for nonsmokers is
SMOKE=0, their values for the SMOKE�TIME
variable stays at zero throughout their time
at risk. Therefore, it is not necessary to have
multiple observations for Gary and Harry
(although it is not incorrect to do so).

There are two main reasons why a time-varying
covariate might be included in a Cox model: (1)
To account for a violation of the proportional
hazards assumption (usually formulated as a
product term with some function of time) and
(2) The covariate may actually change its values
over time regardless of the PH assumption.

CP format with time-dependent
variable SMOKE � TIME:

ID START STOP STATUS SMOKE

SMOKE

�
TIME

Barry 0 2 1 1 2

Gary 0 2 0 0 0

Gary 2 3 1 0 0

Harry 0 2 0 0 0

Harry 2 3 0 0 0

Harry 3 5 0 0 0

Larry 0 2 0 1 2

Larry 2 3 0 1 3

Larry 3 8 1 1 8

Coded as time dependent

START ¼ Beginning of interval
(in months)

STOP ¼ End of interval
(in months)

STATUS ¼ 1 for event, 0 for
censorship

Alternative CP format:
Gary and Harry do not need
multiple observations since
SMOKE � TIME does not vary
for them (same info as above)

ID START STOP STATUS SMOKE

SMOKE

�
TIME

Barry 0 2 1 1 2

Gary 0 3 1 0 0

Harry 0 5 0 0 0

Larry 0 2 0 1 2

Larry 2 3 0 1 3

Larry 3 8 1 1 8

2 reasons to include time-varying
covariate:
1) To account for PH violation
2) The values actually change over

time regardless of the PH
assumption
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The use of the SMOKE�TIME variable in the
last example was of the first type (to account
for a PH violation). An example of the second
type could be the changing of an individual’s
dosage level of medication over time as illu-
strated in the next example.

The data on the left contains one observation
for Jane who had an event at 49 months
(MONTHS=49 and STATUS=1). Her dose of
medication at the beginning of follow-up was
60 milligrams (DOSE1=60 and TIME1=0). At
the 12th month of follow-up, her dose was
changed to 120 milligrams (DOSE2=120 and
TIME2=12). At the 30th month of follow-up,
her dose was changed to 150 mg (DOSE3=120
and TIME3=30).

The same information can be expressed using
the counting process data layout. On the left,
the data is transposed to contain three observa-
tions for Jane allowing DOSE to be represented
as a time-dependent variable. For the first
time interval (START=0, STOP=12), Jane’s
dose was 60 mg. For the second time interval
(12–30 months), Jane’s dose was 120 milli-
grams. For the third time interval (30–49
months), Jane’s dose was 150 milligrams. The
data indicates that Jane had an event at 49
months (STOP=49 and STATUS=1).

The counting process data layout is further
discussed in Chapter 8 on recurrent events.
With recurrent event data, subjects may
remain at risk for subsequent events after get-
ting an event.

SMOKE�TIME
defined to account for PH
violation

DOSE changes at 3 time points for
Jane

I M S

D O T D T D T D T

N A O I O I O I

T T S M S M S M

H U E E E E E E

S S 1 1 2 2 3 3

Jane 49 1 60 0 120 12 150 30

MONTHS ¼ Survival time
(in months)

STATUS ¼ 1 for event, 0
for censorship

Same info as above using CP format

(3 observations instead of 1)

ID START STOP STATUS DOSE

Jane 0 12 0 60

Jane 12 30 0 120

Jane 30 49 1 150

START ¼ Beginning of interval
(in months)

STOP ¼ End of interval
(in months)

STATUS ¼ 1 for event, 0
for censorship

DOSE ¼ Dose in milligrams

Multiple observations per subject:
revisited in Chapter 8 (recurrent
events)
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When a time-dependent variable is defined
within the Cox analytic procedure, the variable
is defined internally such that the user may not
see the time-dependent variable in the dataset.
However, the dataset on the left will provide a
clearer idea of the correct definition of SMOKE
� TIME. The dataset contains multiple obser-
vations per subject. Barry was at risk at t =
2 and got the event at that time. Gary was at
risk at t = 2 and t = 3. Gary didn’t get the event
at t = 2 but did get the event at t = 3. Harry was
at risk at t = 2, t = 3, t = 5 and didn’t get the
event. Larry was at risk at t = 2, t = 3, t = 5, t =
8 and got the event at t = 8. Notice how the
SMOKE � TIME variable changes values for
Larry over time.

Survival analysis datasets containing multiple
observations per subject are further discussed
in Chapter 8 on recurrent events. With recur-
rent event data, subjects may remain at risk for
subsequent events after getting an event.

X. Summary A summary of this presentation on time-
dependent variables is now provided. We began
by reviewing the main features of the Cox PH
model. We then defined a time-dependent vari-
able and illustrated three types of these
variables–defined, internal, and ancillary.

Next, we gave the form of the “extended Cox
model,” shown here again, which allows for
time-dependent as well as time-independent
variables.

We then described various characteristics of
this extended Cox model, including the for-
mula for the hazard ratio. The latter formula
is time-dependent so that the PH assumption is
not satisfied.

Coding SMOKE � TIME as time-
dependent

Multiple Observations per Subject

ID TIME STATUS SMOKE

SMOKE

� TIME

Barry 2 1 1 2

Gary 2 0 0 0

Gary 3 1 0 0

Harry 2 0 0 0

Harry 3 0 0 0

Harry 5 0 0 0

Larry 2 0 1 2

Larry 3 0 1 3

Larry 5 0 1 5

Larry 8 1 1 8

Coded as time-dependent

Multiple observations per subject:
revisited in Chapter 8 (recurrent
events)

Review Cox PH model.

Define time-dependent variable:
defined, internal, ancillary.

Extended Cox model:

h t;XðtÞð Þ ¼ h0ðtÞ exp
Xp1
i¼1

bi Xi

"

þ
Xp2
j¼1

dj XjðtÞ

cHRðtÞ ¼ exp
Xp1
i¼1

b̂i X
�
i � Xi

� 	"

þ
Xp2
j¼1

d̂j X�
j tð Þ � XjðtÞ

h i

Function of time
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We also showed how to use time-dependent
variables to assess the PH assumption for
time-independent variables. A general formula
for an extended Cox model that simultaneously
considers all time-independent variables of
interest is shown here.

The functions gi(t) denote functions of time
for the ith variable that are to be determined
by the investigator. Examples of such functions
are gi(t) = t, log t, or a heaviside function.

The use of heaviside functions were described
and illustrated. Such functions allow for the
hazard ratio to be constant within different
time intervals.

For two time intervals, the model can take either
one of two equivalent forms as shown here. The
firstmodelcontainsamaineffectof exposureand
only one heaviside function. The second model
contains two heaviside functions without amain
effect of exposure. Bothmodels yield two distinct
and equivalent values for the hazard ratio.

We illustrated the use of time-dependent
variables through two examples. The first exam-
ple considered thecomparisonof twomethadone
maintenance clinics for heroin addicts. The data-
set file was called addicts. In this example, the
clinic variable, which was a dichotomous expo-
sure variable, did not satisfy the PH assumption.

Model for assessing PH
assumption:

h t;XðtÞð Þ ¼ h0ðtÞ exp
Xp
i¼1

bi Xi

"

þ
Xp
i¼1

di XigiðtÞ

Examples of gi(t):
t, log t, heaviside function

Heaviside functions:

HR

t

h(t,X(t)) ¼ h0(t) exp[bE þ dEg(t)]

where

gðtÞ ¼ 1 if t � t0

0 if t < t0

(

h(t,X(t))
¼ h0(t)exp[b1Eg1(t) þ b2Eg2(t)]

where

g1ðtÞ ¼
1 if t � t0

0 if < t0

(

g2ðtÞ ¼
1 if t < t0

0 if t � t0

(

EXAMPLE 1

1991 Australian study of heroin
addicts
� two methadone maintenance

clinics
� addicts dataset file
� clinic variable did not satisfy PH

assumption
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Adjusted survival curves stratified by clinic
showed clinic 2 to have consistently higher
survival probabilities than clinic 1, with a
more pronounced difference in clinics after
one year of follow-up. However, this stratifica-
tion did not allow us to obtain a hazard ratio
estimate for clinic. Such an estimate was pos-
sible using an extended Cox model containing
interaction terms involving clinic with time.

Two extended Cox models were considered.
The first used heaviside functions to obtain
two distinct hazard ratios, one for the first
year of follow-up and the other for greater
than one year of follow-up. The model is
shown here.

The second extended Cox model used a time-
dependent variable that allowed for the two
survival curves to diverge over time. This
model is shown here.

Both models yielded hazard ratio estimates
that agreed reasonably well with the graph of
adjusted survival curves stratified by clinic.

The second example considered results
obtained in the Stanford Heart Transplant
Study. The goal of the study was to assess
whether patients receiving transplants survived
longer than patients not receiving transplants.

The analysis of these data involved an extended
Cox model containing three time-dependent
variables. One of these, the exposure variable,
and calledHT(t), was an indicator of transplant
status at time t. The other two variables,
TMS(t) and AGE(t), gave tissue mismatch
scores and age for transplant patients when
time t occurred after receiving a transplant.
The value of each of these variables was 0 at
times prior to receiving a transplant.

EXAMPLE: (continued)

Adjusted Survival Curves 
Stratified by Clinic

Clinic 1
Clinic 2

0
0

0.2
0.4
0.6
0.8
1.0

200 400 600 800 1000 1200
Days

S

Two distinct HR’s:
h(t,X(t)) = h0(t) exp[b2(prison)

+ b3(dose) + d1(clinic)g1(t)
+ d2(clinic)g2(t)]

Heaviside functions

Diverging HR’s:
h(t,X(t)) = h0(t) exp[b2(prison)

+ b3(dose) + b1(clinic)
+ d(clinic� t)]

EXAMPLE 2: Stanford Heart

Transplant Study

Goals:Dopatients receiving transplants
survive longer than patients not
receiving transplants?
h(t,X(t))¼h0(t) exp[d1HT(t)þ d2TMS(t)

þ d3AGE(t)]

Exposure variable
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The results from fitting the above extended
Cox model yielded a highly significant effect
of the exposure variable, thus indicating that
survival prognosis was better for transplants
than for nontransplants.

From these data, we first presented an inappro-
priate formula for the estimated hazard ratio.
This formula used the exponential of the coef-
ficient of the exposure variable, which gave an
estimate of 1 over 23.98. A more appropriate
formula considered the values of the covariates
TMS(t) and AGE(t) at time t. Using the latter,
the hazard ratio estimate varied with the tissue
mismatch scores and age of each transplant
patient.

Chapters This presentation is now complete. We suggest
that the reader review the detailed outline that
follows and then answer the practice exercises
and test that follow the outline.

A key property of Cox models is that the distri-
bution of the outcome, survival time, is unspec-
ified. In the next chapter, parametric models
are presented in which the underlying distribu-
tion of the outcome is specified. The exponen-
tial, Weibull, and log-logistic models are
examples of parametric models.

EXAMPLE: (continued)

Results: HT(t) highly significant, i.e.,
transplants have better prognosis than
nontransplants.
Hazard ratio estimate problematic:

cHR ¼ ed̂1 ¼ 1

23:98

More appropriate formula:

cHR ¼ exp½�3:1718þ 0:4442 TMSi

þ0:0552 AGEi�

1. Introduction to Survival
Analysis

2. Kaplan–Meier Curves and
the Log–Rank Test

3. The Cox Proportional
Hazards Model

4. Evaluating the Proportional
Hazards Assumption

5. The Stratified Cox Procedure
ü 6. Extension of the Cox

Proportional Hazards Model
for Time-Dependent
Variables

Next:

7. Parametric models
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Detailed
Outline

I. Preview (page 244)

II. Review of the Cox PH Model (pages 244–246)

A. The formula for the Cox PH model:

h t;Xð Þ ¼ h0ðtÞ exp
Xp
i¼1

bi Xi

" #

B. Formula for hazard ratio comparing two indi-
viduals:

X� ¼ X�
1;X

�
2; . . . ;X

�
p

� �
and X ¼ X1;X2; . . . ;Xp

� �
:

h t;X�ð Þ
h t;Xð Þ ¼ exp

Xp
i¼1

bi X
�
i � Xi

� �" #

C. The meaning of the PH assumption:

� Hazard ratio formula shows that the hazard
ratio is independent of time:

h t;X�ð Þ
h t;Xð Þ ¼ y

� Hazard ratio for two X’s are proportional:

h t;X�ð Þ ¼ yh t;Xð Þ
D. Three methods for checking the PH assump-

tion:

i. Graphical: Compare ln–ln survival curves
or observed versus predicted curves

ii. Time-dependent covariates: Use product
(i.e., interaction) terms of the form X� g(t).

iii. Goodness-of-fit test: Use a large sample Z
statistic.

E. Options when the PH assumption is not met:

i. Use a stratified Cox procedure.

ii. Use an extended Cox model containing a
time-dependent variable of the formX� g(t).

III. Definition and Examples of Time-Dependent
Variables (pages 246–249)

A. Definition: any variable whose values differ
over time

B. Examples of defined, internal, and ancillary
time-dependent variables

278 6. Extension of the Cox Proportional Hazards Model



IV. The Extended Cox Model for Time-Dependent
Variables (pages 249–251)

A. h t;XðtÞð Þ ¼ h0ðtÞ exp
Xp1
i¼1

bi Xi þ
Xp2
j¼1

dj XjðtÞ
" #

where X(t) = (X1, X2,. . ., Xp1
, X1(t), X2(t),. . .,

Xp2
(t)) denotes the entire collection of predic-

tors at time t, Xi denotes the ith time-
independent variable, and Xj(t) denotes the jth
time-dependent variable.

B. ML procedure used to estimate regression coef-
ficients.

C. List of computer programs for the extended Cox
model.

D. Model assumes that the hazard at time
t depends on the value of Xj(t) at the same time.

E. Can modify model for lag-time effect.

V. The Hazard Ratio Formula for the Extended Cox
Model (pages 251–253)

A.

HRðtÞ ¼ exp
Xp1
i¼1

bi X
�
i � Xi

� 	"

þ
Xp2
j¼1

dj X�
j ðtÞ � XjðtÞ

h i#

B. Because HR(t) is a function of time, the PH
assumption is not satisfied.

C. The estimated coefficient of Xj(t) is time-inde-
pendent, and represents an “overall” effect of
Xj(t).

VI. Assessing Time-Independent Variables That Do
Not Satisfy the PH Assumption (pages 254–259)

A. General formula for assessing PH assumption:

h t;XðtÞð Þ ¼ h0ðtÞ exp
Xp
i¼1

biXi þ
Xp
i¼1

diXigiðtÞ
" #

B. gi(t) is a function of time corresponding to Xi

C. Test H0: d1 = d2 = . . . = dp = 0

D. Heaviside function:

gðtÞ ¼ 1 if t � t0

0 if t < t0

(
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E. The model with a single heaviside function:

h t;XðtÞð Þ ¼ h0ðtÞ exp bEþ dEg ðtÞ½ �

F. The model with two heaviside functions:

h t;XðtÞð Þ ¼ h0ðtÞ exp d1 Eg1ðtÞ þ d2 Eg2ðtÞ½ �

where

g1ðtÞ ¼
1 if t � t0

0 if t < t0

(
and g2ðtÞ ¼

1 if t < t0

0 if t � t0

(

G. The hazard ratios:

t � t0 : cHR ¼ exp b̂þ d̂
h i

¼ exp d̂1
h i

t < t0 : cHR ¼ exp b̂
h i

¼ exp d̂2
h i

H. Several heaviside functions: examples given
with four time-intervals:

� Extended Cox model contains either
{E, E � g1(t), E � g2(t), E � g3(t)} or
{E � g1(t), E � g2(t), E � g3(t), E � g4(t)}

� The model using four product terms and no
main effect of E:

h t;XðtÞð Þ ¼ h0ðtÞ exp d1 Eg1ðtÞ þ d2 Eg2ðtÞ½
þd3 Eg3ðtÞ þ d4 Eg4ðtÞ�

where

giðtÞ ¼
1 if t is within interval i

0 if otherwise

(

VII. An Application of the Extended Cox Model to
An Epidemiologic Study on the Treatment of
Heroin Addiction (pages 260–264)

A. 1991 Australian study of heroin addicts

� two methadone maintenance clinics

� addicts dataset file

� clinic variable did not satisfy PH assump-
tion

B. Clinic 2 has consistently higher retention pro-
babilities than clinic 1, with amore pronounced
difference in clinics after 1 year of treatment.

C. Two extended Cox models were considered:

� Use heaviside functions to obtain two dis-
tinct hazard ratios, one for less than 1 year
and the other for greater than 1 year.

� Use a time-dependent variable that allows for
the two survival curves to diverge over time.
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VIII. An Application of the Extended Cox Model to
the Analysis of the Stanford Heart Transplant
Data (pages 265–269)

A. The goal of the study was to assess whether
patients receiving transplants survived longer
than patients not receiving transplants.

B. We described an extended Cox model contain-
ing three time-dependent variables:

h(t,X(t))¼ h0(t)exp[d1HT(t) þ d2TMS(t) þ d3AGE(t)]

C. The exposure variable, calledHT(t), was an indi-
cator of transplant status at time t. The other two
variables, TMS(t) and AGE(t), gave tissue mis-
match scores and age for transplant patients
when time toccurred after receiving a transplant.

D. The results yielded a highly significant effect of
the exposure variable.

E. The use of a hazard ratio estimate for this data
was problematical.

� An inappropriate formula is the exponential of
the coefficient ofHT(t), which yields 1/23.98.

� An alternative formula considers the values
of the covariates TMS(t) and AGE(t) at time t.

IX. The Extended Cox Likelihood (pages 269–274)

A. Review of PH likelihood (Chapter 3).

B. Barry, Gary, Larry, example of Cox likelihood.

X. Summary (pages 274–277)

Practice
Exercises

The following dataset called “anderson.dat” consists of
remission survival times on 42 leukemia patients, half of
whom receive a new therapy and the other half of whom
get a standard therapy (Freireich et al., Blood, 1963). The
exposure variable of interest is treatment status (Rx = 0 if
new treatment, Rx = 1 if standard treatment). Two other
variables for control are log white blood cell count (i.e., log
WBC) and sex. Failure status is defined by the relapse
variable (0 if censored, 1 if failure). The dataset is listed
as follows:

Subj Surv Relapse Sex log WBC Rx

1 35 0 1 1.45 0
2 34 0 1 1.47 0
3 32 0 1 2.2 0
4 32 0 1 2.53 0
5 25 0 1 1.78 0
6 23 1 1 2.57 0

(Continued on next page)

Practice Exercises 281



The following edited printout gives computer results for
fitting a Cox PHmodel containing the three predictives Rx,
log WBC, and Sex.

Subj Surv Relapse Sex log WBC Rx

7 22 1 1 2.32 0
8 20 0 1 2.01 0
9 19 0 0 2.05 0

10 17 0 0 2.16 0
11 16 1 1 3.6 0
12 13 1 0 2.88 0
13 11 0 0 2.6 0
14 10 0 0 2.7 0
15 10 1 0 2.96 0
16 9 0 0 2.8 0
17 7 1 0 4.43 0
18 6 0 0 3.2 0
19 6 1 0 2.31 0
20 6 1 1 4.06 0
21 6 1 0 3.28 0
22 23 1 1 1.97 1
23 22 1 0 2.73 1
24 17 1 0 2.95 1
25 15 1 0 2.3 1
26 12 1 0 1.5 1
27 12 1 0 3.06 1
28 11 1 0 3.49 1
29 11 1 0 2.12 1
30 8 1 0 3.52 1
31 8 1 0 3.05 1
32 8 1 0 2.32 1
33 8 1 1 3.26 1
34 5 1 1 3.49 1
35 5 1 0 3.97 1
36 4 1 1 4.36 1
37 4 1 1 2.42 1
38 3 1 1 4.01 1
39 2 1 1 4.91 1
40 2 1 1 4.48 1
41 1 1 1 2.8 1
42 1 1 1 5 1

Cox regression
Analysis time_t: survt Coef. Std. Err. p > ǀzǀ Haz. Ratio

[95% Conf.
Interval] P(PH)

Sex 0.263 0.449 0.558 1.301 0.539 3.139 0.042
log WBC 1.594 0.330 0.000 4.922 2.578 9.397 0.714
Rx 1.391 0.457 0.002 4.018 1.642 9.834 0.500

No. of subjects ¼ 42 Log likelihood ¼ �72.109

(Continued)
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1. Which of the variables in the model fitted above are
time-independent and which are time-dependent?

2. Based on this printout, is the PH assumption satisfied
for the model being fit? Explain briefly.

3. Suppose you want to use an extended Cox model to
assess the PH assumption for all three variables in the
abovemodel. State the general form of an extended Cox
model that will allow for this assessment.

4. Suppose you wish to assess the PH assumption for the
Sex variable using a heaviside function approach
designed to yield a constant hazard ratio for less than
15 weeks of follow-up and a constant hazard ratio for
15 weeks or more of follow-up. State two equivalent
alternative extended Cox models that will carry out
this approach, one model containing one heaviside
function and the other model containing two heaviside
functions.

5. The following is an edited printout of the results
obtained by fitting an extended Cox model containing
two heaviside functions:

Time-Dependent Cox Regression Analysis

Using the above computer results, carry out a test of
hypothesis, estimate the hazard ratio, and obtain 95%
confidence interval for the treatment effect adjusted for
log WBC and the time-dependent Sex variables. What
conclusions do you draw about the treatment effect?

6. We now consider an alternative approach to
controlling for Sex using an extended Cox model. We
define an interaction term between sex and time that
allows for diverging survival curves over time.

For the situation just described, write down the
extended Cox model, which contains Rx, log WBC, and
Sex as main effects plus the product term Sex � time.

Analysis
time_t: survt Coef. Std. Err. p > ǀzǀ Haz. Ratio

[95% Conf.
Interval]

log WBC 1.567 0.333 0.000 4.794 2.498 9.202
Rx 1.341 0.466 0.004 3.822 1.533 9.526
0–15 wks 0.358 0.483 0.459 1.430 0.555 3.682
15þ wks �0.182 0.992 0.855 0.834 0.119 5.831

No. of subjects ¼ 42 Log likelihood ¼ �71.980
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7. Using the model described in question 6, express the
hazard ratio for the effect of Sex adjusted forRx and log
WBC at 8 and 16 weeks.

8. The following is an edited printout of computer results
obtained by fitting the model described in question 6.

Time-Dependent Cox Regression Analysis

Based on the above results, describe the hazard ratio
estimate for the treatment effect adjusted for the other
variables in the model, and summarize the results of
the significance test and interval estimate for this haz-
ard ratio. How do these results compare with the
results previously obtained when a heaviside function
approach was used? What does this comparison sug-
gest about the drawbacks of using an extended Cox
model to adjust for variables not satisfying the PH
assumption?

9. The following gives an edited printout of computer
results using a stratified Cox procedure that stratifies
on the Sex variable but keeps Rx and log WBC in the
model.

Stratified Cox regression

Compare the results of the above printout with previ-
ously provided results regarding the hazard ratio for
the effect ofRx. Is there any way to determine which set
of results is more appropriate? Explain.

Analysis
time_t: survt Coef. Std. Err. p > ǀzǀ Haz. Ratio

[95% Conf.
Interval]

log WBC 1.390 0.338 0.000 4.016 2.072 7.783
Rx 0.931 0.472 0.048 2.537 1.006 6.396

No. of subjects ¼ 42 Log likelihood ¼ �57.560 Stratified by sex

Analysis
time_t: survt Coef. Std. Err. p > ǀzǀ Haz. Ratio

[95% Conf.
Interval]

Sex 1.820 1.012 0.072 6.174 0.849 44.896
log WBC 1.464 0.336 0.000 4.322 2.236 8.351
Rx 1.093 0.479 0.022 2.984 1.167 7.626
Sex � Time �0.345 0.199 0.083 0.708 0.479 1.046

No. of subjects ¼ 42 Log likelihood ¼ �70.416
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Test The following questions consider the analysis of
data from a clinical trial concerning gastric carcinoma,
in which 90 patients were randomized to either chemo-
therapy (coded as 2) alone or to a combination of
chemotherapy and radiation (coded as 1). See Stablein
et al., “Analysis of Survival Data with Nonproportional
Hazard Functions,” Controlled Clinical Trials, vol. 2,
pp. 149–159 (1981).

1. A plot of the log–log Kaplan–Meier curves for each
treatment group is shown below. Based on this plot,
what would you conclude about the PH assumption
regarding the treatment group variable? Explain.

2. The following is an edited printout of computer results
obtained when fitting the PH model containing only
the treatment group variable. Based on these results,
what would you conclude about the PH assumption
regarding the treatment group variable? Explain.

3. The following printout shows the results from using a
heaviside function approach with an extended Cox
model to fit these data. The model used product terms
of the treatment variable (Tx) with each of three heavi-
side functions. The first product term (called Time1)
involves a heaviside function for the period from 0 to
250 days, the second product term (i.e., Time2) involves
the period from 250 to 500 days, and the third product
term (i.e., Time3) involves the open-ended period from
500 days and beyond.

Cox
regression
Analysis
time_t: survt Coef. Std. Err. p > ǀzǀ Haz. Ratio

[95% Conf.
Interval] P(PH)

Tx �0.267 0.233 0.253 0.766 0.485 1.21 0

No. of subjects 90 Log likelihood ¼ �282.744
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Time-Dependent Cox Regression Analysis

Write down the hazard function formula for the extended
Cox model being used, making sure to explicitly define the
heaviside functions involved.
4. Based on the printout, describe the hazard ratios in

each of the three time intervals, evaluate each hazard
ratio for significance, and draw conclusions about the
extent of the treatment effect in each of the three time
intervals considered.

5. Inspection of the printout provided in question 3 indi-
cates that the treatment effect in the second and third
intervals appears quite similar. Consequently, another
analysis was considered that uses only two intervals,
from 0 to 250 days versus 250 days and beyond. Write
down the hazard function formula for the extended Cox
model that considers this situation (i.e., containing two
heaviside functions). Also, write down an equivalent
alternative hazard function formula which contains
the main effect of treatment group plus one heaviside
function variable.

6. For the situation described in question 5, the computer
results are provided below. Based on these results,
describe the hazard ratios for the treatment effect
below and above 250 days, summarize the inference
results for each hazard ratio, and draw conclusions
about the treatment effect within each time interval.

Time-Dependent Cox Regression Analysis

Analysis time_t: survt
Column name Coeff StErr p-value HR 0.95 CI

Time1 �1.511 0.461 0.001 0.221 0.089 0.545
Time2 0.427 0.315 0.176 1.532 0.826 2.842

No. of subjects ¼ 90 Log likelihood ¼ �275.764

Analysis
time_t: survt Coef. Std. Err. p > ǀzǀ Haz. Ratio

[95% Conf.
Interval]

Time1 �1.511 0.461 0.001 0.221 0.089 0.545
Time2 0.488 0.450 0.278 1.629 0.675 3.934
Time3 0.365 0.444 0.411 1.441 0.604 3.440

No. of subjects ¼ 90 Log likelihood ¼ �275.745
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Answers to
Practice
Exercises

1. All three variables in the model are time-independent
variables.

2. The computer results indicate that the Sex variables do
not satisfy the PH assumption because the P(PH) value
is 0.042, which is significant at the 0.05 level.

3. h t;XðtÞð Þ ¼ h0ðtÞ exp½b1ðsexÞ þ b2ðlog WBCÞ þ b3 Rxð Þ
þ d1ðsexÞg1ðtÞ þ d2ðlog WBCÞg2ðtÞ
þ d3ðRxÞg3ðtÞ�

where the gi(t) are functions of time.

4. Model 1 (one heaviside function)

h t;XðtÞð Þ ¼ h0ðtÞ exp½b1ðsexÞ þ b2ðlog WBCÞ þ b3 Rxð Þ
þ d1ðsexÞg1ðtÞ�

where

g1ðtÞ ¼
1 if 0 � t < 15 weeks

0 if t � 15 weeks

(

Model 2 (two heaviside functions):

h t;XðtÞð Þ ¼ h0ðtÞexp½b2ðlog WBCÞ þ b3 Rxð Þ + d1ðsexÞg1ðtÞ
þ d2ðsexÞg2ðtÞ�
where

g1ðtÞ ¼
1 if 0 � t < 15 weeks

0 if t � 15 weeks

(

and

g2ðtÞ ¼
0 if t � 15 weeks

1 if 0 � t < 15 weeks

(

5. The estimated hazard ratio for the effect of Rx is 3.822;
this estimate is adjusted for log WBC and for the Sex
variable considered as two time-dependent variables
involving heaviside functions. The Wald test for signifi-
cance of Rx has a p-value of 0.004, which is highly
significant. The 95% confidence interval for the treat-
ment effect ranges between 1.533 and 9.526, which is
quite wide, indicating considerable unreliability of the
3.822 point estimate. Nevertheless, the results estimate
a statistically significant treatment effect of around 3.8.

6. h(t,X(t)) = h0(t)exp[b1(sex) þ b2(log WBC) þ b3(Rx) þ
d1(sex � t)]
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7. The hazard ratio for the effect of Sex in each time
interval, controlling for Rx and log WBC is given as
follows:

t ¼ 8 weeks cHR ¼ exp b̂1 þ 8d̂1
h i

t ¼ 16 weeks cHR ¼ exp b̂1 þ 16d̂1
h i

8. Using the model containing Sex, log WBC, Rx, and Sex
� Time, the estimated hazard ratio for the treatment
effect is given by 2.984, with a p-value of 0.022 and a
95% confidence interval ranging between 1.167 and
7.626. The point estimate of 2.984 is quite different
from the point estimate of 3.822 for the heaviside func-
tion model, although the confidence intervals for both
models are wide enough to include both estimates. The
discrepancy between point estimates demonstrates
that when a time-dependent variable approach is to
be used to account for a variable not satisfying the PH
assumption, different results may be obtained from
different choices of time-dependent variables.

9. The stratified Cox analysis yields a hazard ratio of 2.537
with a p-value of 0.048 and a 95% CI ranging between
1.006 and 6.396. The point estimate is much closer to
the 2.984 for the model containing the Sex � Time
product term than to the 3.822 for the model contain-
ing two heaviside functions. One way to choose
between models would be to compare goodness-of-fit
test statistics for each model; another way is to com-
pare graphs of the adjusted survival curves for each
model and determine by eye which set of survival
curves fits the data better.
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Introduction The Cox model is the most widely used survival model
in the health sciences, but it is not the only model
available. In this chapter we present a class of survival
models, called parametric models, in which the distri-
bution of the outcome (i.e., the time to event) is specified
in terms of unknown parameters. Many parametric models
are acceleration failure time models in which survival
time is modeled as a function of predictor variables.
We examine the assumptions that underlie accelerated
failure time models and compare the acceleration factor
as an alternative measure of association to the hazard
ratio. We present examples of the exponential, Weibull,
and log-logistic models and give a brief description of
other parametric approaches. The parametric likelihood
is constructed and described in relation to left, right, and
interval-censored data. Binary regression is presented as
an alternative approach for modeling interval-censored
outcomes. The chapter concludes with a discussion of
frailty models.

Abbreviated
Outline

The outline below gives the user a preview of the material
covered by the presentation. A detailed outline for review
purposes follows the presentation.

I. Overview (pages 292–294)

II. Probability Density Function in Relation to
the Hazard and Survival Function
(pages 294–295)

III. Exponential Example (pages 295–297)

IV. Accelerated Failure Time Assumption
(pages 298–300)

V. Exponential Example Revisited (pages 300–304)

VI. Weibull Example (pages 304–309)

VII. Log-Logistic Example (pages 309–314)

VIII. A More General Form of the AFT Model
(pages 314–316)

IX. Other Parametric Models (pages 316–318)

X. The Parametric Likelihood (pages 318–321)

XI. Interval-Censored Data (pages 321–326)

XII. Frailty Models (pages 326–340)

XIII. Summary (pages 341–344)
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Objectives Upon completing this chapter, the learner should be able to:

1. State or recognize the form of a parametric survival
model and contrast it with a Cox model.

2. State common distributions used for parametric
survival models.

3. Contrast an AFT model with a PH model.

4. Interpret output from an exponential survival model.

5. Interpret output from a Weibull survival model.

6. Interpret output from a log-logistic survival model.

7. State or recognize the formulation of a parametric
likelihood.

8. State or recognize right-censored, left-censored, and
interval-censored data.

9. State or recognize the form of a frailty model and the
purpose of including a frailty component.

10. Interpret the output obtained from a frailty model.
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Presentation

I. Overview In this chapter we present parametric survival
models and the assumptions that underlie
these models. Specifically we examine the
accelerated failure time (AFT) assumption
and contrast it to the proportional hazards
(PH) assumption. We present examples of
several parametric models, including the
exponential model, the Weibull model, and the
log-logistic model. The parametric likelihood
is discussed and how it accommodates left-,
right-, and interval-censored data. We also con-
sider models that include a frailty component
to account for unobserved heterogeneity.

Linear regression, logistic regression, and
Poisson regression are examples of parametric
models that are commonly used in the health
sciences. With these models, the outcome is
assumed to follow some distribution such
as the normal, binomial, or Poisson distri-
bution. Typically, what is actually meant is
that the outcome follows some family of
distributions of similar form with unknown
parameters. It is only when the value of the
parameter(s) is known that the exact distri-
bution is fully specified. For example, if one
distribution is normal with a mean of 3 and
another distribution is normal with a mean
of 7, the distributions are of the same family
(i.e., normal) but they are not exactly the same
distribution. For parametric regression mod-
els, the data are typically used to estimate the
values of the parameters that fully specify that
distribution.

A parametric survival model is one in which
survival time (the outcome) is assumed to fol-
low a known distribution. Examples of distribu-
tions that are commonly used for survival time
are: the Weibull, the exponential (a special
case of the Weibull), the log-logistic, the log-
normal, and the generalized gamma, which
are supported by SAS, Stata, and R software.

parametric models
exponential example
AFT vs. PH
Weibull example
log-logistic example
other approaches
parametric likelihood
interval-censoring
frailty models

FOCUS

Parametric Modeling

� Outcome assumed to follow
some family of distributions

� Exact distribution is unknown
if parameters are unknown

� Data used to estimate
parameters

� Examples of parametricmodels:
○ Linear regression
○ Logistic regression
○ Poisson regression

Distributions commonly used for
parametric survival models:

� Weibull
� Exponential
� Log-logistic
� Lognormal
� Generalized gamma
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The Cox proportional hazards model, by
contrast, is not a fully parametric model.
Rather it is a semi-parametric model because
even if the regression parameters (the betas) are
known, the distribution of the outcome remains
unknown. The baseline survival (or hazard)
function is not specified in a Cox model.

A key reason why the Cox model is widely
popular is that it does not rely on distributional
assumptions for the outcome. Although the
baseline survival function is not estimated with
a Cox model, computer packages such as SAS,
Stata, SPSS, and R can output Cox-adjusted
survival estimates (see Computer Appendix) by
using a complicated algorithm that generalizes
the Kaplan–Meier (KM) approach while
making use of estimated regression coefficients
obtained from a Cox model (Kalbfleisch and
Prentice, 1980). Also, an estimation of the base-
line hazard is not necessary for the estimation
of a hazard ratio because the baseline hazard
cancels in the calculation.

In theory, as time ranges from 0 to infinity, the
survival function can be graphed as a smooth
curve from S(0)¼ 1 to S(1)¼ 0 (see Chapter 1).
Kaplan–Meier and Cox-adjusted survival esti-
mates use empirical nondistributional methods
that typically graph as step functions, particu-
larly if the sample size is small. If in the data,
for example, an event occurred at 3 weeks and
the next event occurred at 7 weeks, then the
estimated survival curve would be flat between
3 and 7 weeks using these nondistributional
approaches. Moreover, if the study ends with
subjects still remaining at risk, then the esti-
mated survival function would not go all the
way down to zero.

Cox model widely popular:

� No reliance on assumed
distribution

� Computer packages can output
Cox-adjusted survival estimates
using algorithm that
generalizes KM

� Baseline not necessary for
estimation of hazard ratio

1.0

0 3 7

Step function (nondistributional
estimates)

t

S(t)
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Survival estimates obtained from parametric
survival models typically yield plots more con-
sistent with a theoretical survival curve. If the
investigator is comfortable with the underlying
distributional assumption, then parameters
can be estimated that completely specify the
survival and hazard functions. This simplicity
and completeness are the main appeals of
using a parametric approach.

II. Probability Density
Function in Relation
to the Hazard and
Survival Function

For parametric survivalmodels, time is assumed
to follow some distribution whose probability
density function f(t) can be expressed in terms
ofunknownparameters.Onceaprobability den-
sity function is specified for survival time, the
corresponding survival and hazard functions
can be determined. The survival function S(t) ¼
P(T> t) can be ascertained from the probability
density function by integrating over the proba-
bility density function from time t to infinity.
The hazard can then be found by dividing the
negative derivative of the survival function by
the survival function (see left).

The survival function can also be expressed in
terms of the hazard function (see Chapter 1) by
exponentiating the negative of the cumulative
hazard function. The cumulative hazard func-
tion is the integral of the hazard function
between integration limits of 0 and t.

Finally, the probability density function can be
expressed as the product of the hazard and the
survival functions, f(t) ¼ h(t)S(t).

The key point is that specifying any one of
the probability density function, survival
function, or hazard function allows the
other two functions to be ascertained by
using the formulas shown on the left.

Appeal of Parametric Survival
Models

� More consistentwith theoretical
S(t) than nondistributional
approaches

� Simplicity
� Completeness — h(t) and S(t)

specified

Probability density function known
+

Survival and hazard functions

f(t) ¼ dF(t)/dt where

F(t) ¼ Pr(T�t)

S(t) ¼ P(T > t) ¼
Z1

t

f ðuÞdu

hðtÞ ¼ �d½SðtÞ�=dt
SðtÞ

Survival in terms of hazard

SðtÞ ¼ exp �
Z t

0

hðuÞdu
0
@

1
A

Cumulative hazard:
Rt
0

hðuÞdu

f(t) ¼ h(t)S(t)

Key Point

Specifying one of f(t), S(t), or h(t)
specifies all three functions
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On the left is a table containing the survival
and hazard functions for three of the more
commonly used distributions for survival
models: the exponential, Weibull, and log-
logistic distributions.

The exponential is a one-parameter distribu-
tion with a constant hazard l. The Weibull
and log-logistic distributions have two para-
meters l and p. Notice that the Weibull distri-
bution reduces to the exponential if p ¼ 1. The
probability density function for these distribu-
tions can be found by multiplying h(t) and S(t).
As an example, the Weibull probability density
function is shown on the left.

Typically for parametric survival models, the
parameter l is reparameterized in terms of
predictor variables and regression parameters
and the parameter p (sometimes called the
shape parameter) is held fixed. This is illu-
strated in the examples to come.

III. Exponential Example The first example we consider is the exponen-
tial model, which is the simplest parametric
survival model in that the hazard is constant
over time (i.e., h(t)¼ l). Themodel is applied to
the remission data (Freireich et al., 1963), in
which 42 leukemia patients were followed until
remission or censorship. Twenty-one patients
received an experimental treatment (coded
TRT ¼ 1) and the other 21 received a placebo
(codedTRT¼ 0).Thedata are listed inChapter 1.
The variable TRT is just a reverse coding of
the variable RX presented in Chapter 3.

Survival and Hazard Functions for
Selected Distributions

Distribution S(t) h(t)

Exponential exp(�lt) l
Weibull exp(�ltp) lptp�1

Log-logistic
1

1þ ltp
lptp�1

1þ ltp

f (t) ¼ h (t)S (t)

For example, Weibull:
f(t) ¼ lptp�1 exp(�ltp)
because h(t) ¼ lptp�1 and
S(t) ¼ exp(�ltp)

Typically in parametric models:

� l reparameterized for
regression

� p held fixed

Simplest parametric survival model:
Hazard function: h(t) ¼ l

(where l is a constant)

EXAMPLE

Remission data (n ¼ 42)

21 patients given treatment (TRT ¼ 1)
21 patients given placebo (TRT ¼ 0)
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For simplicity, we demonstrate an exponential
model that has TRT as the only predictor. We
state the model in terms of the hazard by repar-
ameterizing l as exp(b0 þ b1TRT). With this
model, the hazard for subjects in the treated
group is exp(b0 þ b1) and the hazard for the
placebo group is exp(b0). The hazard ratio com-
paring the treatment and placebo (see left side)
is the ratio of the hazards exp(b1). The expo-
nential model is a proportional hazards model.

The assumption that the hazard is constant for
each pattern of covariates is a much stronger
assumption than the PH assumption. If the
hazards are constant, then of course the ratio
of the hazards is constant. However, the haz-
ard ratio being constant does not necessar-
ily mean that each hazard is constant. In a
Cox PH model the baseline hazard is not
assumed constant. In fact, the form of the base-
line hazard is not even specified.

Output from running the exponential model is
shown on the left. The model was run using
Stata software. The parameter estimates are
listed under the column called Coef. The
parameter estimate for the coefficient of TRT
(b1) is �1.527. The estimate of the intercept
(called cons in the output) is �2.159. The stan-
dard errors (Std. Err.), Wald test statistics (z),
and p-values for the Wald test are also
provided. The output indicates that the z test
statistic for TRT is statistically significant with
a p-value<0.005 (rounds to 0.00 in the output).

The regression coefficients are estimated using
maximum likelihood estimation (MLE), and
are asymptotically normally distributed.

h(t) ¼ l ¼ exp(b0 þ b1 TRT)

TRT ¼ 1: h(t) ¼ exp(b0 þ b1)
TRT ¼ 0: h(t) ¼ exp(b0)

HR(TRT ¼ 1 vs. TRT ¼ 0)

¼ exp b0 þ b1ð Þ
expðb0Þ

¼ exp b1ð Þ

Constant Hazards
) Proportional Hazards

Proportional Hazards
n) Constant Hazards

Exponential Model — Hazards are
constant

Cox PH Model — Hazards are pro-
portional not necessarily constant

Remission Data

Exponential regression
log hazard form

_t Coef.
Std.
Err. z P>|z|

trt �1.527 .398 �3.83 0.00
_cons �2.159 .218 �9.90 0.00
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The estimated hazards for TRT ¼ 1 and TRT ¼
0 are shown on the left. The estimated hazard
ratio of 0.22 is obtained by exponentiating
the estimated coefficient (�1.527) of the TRT
variable. A 95% confidence interval can be
calculated exp[�1.527 � 1.96(0.398)] yielding
a CI of (0.10, 0.47). These results suggest that
the experimental treatment delays remission.

Up to this point in the book, the key assump-
tion for survival models has been the pro-
portional hazard assumption. However,
parametric survival models need not be PH
models. Many parametric models are accel-
eration failure time (AFT) models rather
than PHmodels. The exponential and Weibull
distributions can accommodate both the PH
and AFT assumptions.

On the left is Stata output from the AFT form of
the exponential model with TRT as the only
predictor. Stata can output both the PH or
AFT form of an exponential or Weibull model
(see Computer Appendix). SAS only runs the
AFT form of parametric models and SPSS does
not yet provide commands to run parametric
models.

The interpretation of parameters differs for
AFT and PH models. The AFT assumption is
applicable for a comparison of survival times
whereas the PH assumption is applicable for a
comparison of hazards. In the following sec-
tions, we discuss the AFT assumption and
then revisit this example and discuss the AFT
form of this model.

TRT ¼ 1: ĥ(t) ¼ exp(�2.159
þ (�1.527)) ¼ 0.025

TRT ¼ 0: ĥ(t) ¼ exp(�2.159)
¼ 0.115

cHR ðTRT ¼ 1 vs :0Þ ¼ expð�1:527Þ
¼ 0:22

95%CI ¼ exp½�1:527� 1:96ð0:398Þ�
¼ ð0:10; 0:47Þ

Results: suggest treatment lowers
hazard

Parametric models

� Need not be PH models
� Many are AFT models

Exponential and Weibull

� Accommodate PH and AFT
assumptions

Remission Data

Exponential regression accelerated
failure-time form

_t Coef. Std. Err. z p > |z|

trt 1.527 .398 3.83 0.00
_cons 2.159 .218 9.90 0.00

AFT vs. PH

� Different interpretation of
parameters

� AFT applies to comparison of
survival times

� PH applies to comparison of
hazards
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IV. Accelerated Failure
Time Assumption

The underlying assumption for AFT models is
that the effect of covariates is multiplicative
(proportional) with respect to survival time,
whereas for PHmodels the underlying assump-
tion is that the effect of covariates is multipli-
cative with respect to the hazard.

To illustrate the idea underlying the AFT
assumption, consider the lifespan of dogs. It
is often said that dogs grow older seven times
faster than humans. So a 10-year-old dog is in
some way equivalent to a 70-year-old human.
In AFT terminology we might say the probabil-
ity of a dog surviving past 10 years equals the
probability of a human surviving past 70 years.
Similarly, we might say the probability of a dog
surviving past 6 years equals the probability
of a human surviving past 42 years because
42 equals 6 times 7. More generally we can
say SD(t) ¼ SH(7t), where SD(t) and SH(t) are
the survival functions for dogs and humans,
respectively. In this framework dogs can be
viewed, on average, as accelerating through
life 7 times faster than humans. Or from the
other perspective, the lifespan of humans, on
average, is stretched out 7 times longer than
the lifespan of dogs.AFTmodels describe this
“stretching out” or contraction of survival
time as a function of predictor variables.

For a second illustration of the accelerated fail-
ure time assumption consider a comparison of
survival functions among smokers S1(t) and
non-smokers S2(t). The AFT assumption can
be expressed as S2(t) ¼ S1(gt) for t � 0, where
g is a constant called the acceleration factor
comparing smokers to nonsmokers. In a
regression framework the acceleration factor
g could be parameterized as exp(a) where a is
a parameter to be estimated from the data.
With this parameterization, the AFT assump-
tion can be expressed as S2(t) ¼ S1(exp(a)t) or
equivalently: S2(exp(�a)t) ¼ S1(t) for t � 0.

AFT — Multiplicative effect with
survival time
PH — Multiplicative effect with
hazard

AFT models:
Describe “stretching out” or
contraction of survival time

Second Illustration

S1 (t) — Survival function for
smokers

S2 (t) — Survival function for
nonsmokers

AFT assumption:
S2(t) ¼ S1(gt) for t � 0
g is the acceleration factor

If g ¼ exp(b)
S2(t) ¼ S1([exp(a)]t)

or
S2([exp(�a)]t) ¼ S1(t)
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Suppose exp(a)¼ 0.75; then the probability of a
nonsmoker surviving 80 years equals the prob-
ability of a smoker surviving 80(0.75) or 60
years. Similarly, the probability of a non-
smoker surviving 40 years equals the probabil-
ity of a smoker surviving 30 years. More
generally, the probability of a nonsmoker sur-
viving t years equals the probability of a
smoker surviving 0.75 times t years (i.e., S2(t)
¼ S1(0.75t)).

The AFT assumption can also be expressed in
terms of random variables for survival time
rather than the survival function. If T2 is a
random variable (following some distribution)
representing the survival time for nonsmokers
and T1 is a random variable representing the
survival time for smokers, then the AFT
assumption can be expressed as T1 ¼ g T2.

The acceleration factor is the key measure of
association obtained in an AFTmodel. It allows
the investigator to evaluate the effect of predic-
tor variables on survival time just as the hazard
ratio allows the evaluation of predictor vari-
ables on the hazard.

The acceleration factor describes the “stretch-
ing out” or contraction of survival functions
when comparing one group to another. More
precisely, the acceleration factor is a ratio
of survival times corresponding to any
fixed value of S(t). For example, if the acceler-
ation factor comparing subjects in Group 2 vs.
Group 1 is g ¼ 2.0, then the median survival
time (value of t when S(t) ¼ 0.5) for Group 2 is
double the median survival time for Group 1.
Moreover, the time it takes for S(t) to equal 0.2
or 0.83 or 0.98 is double for Group 2 compared
to Group 1 for the same value of S(t). In gen-
eral, the acceleration factor is a ratio of survival
times corresponding to any quantile of survival
time (S(t) ¼ q).

Suppose exp(a) ¼ 0.75
then
S2(80) ¼ S1(60)
S2(40) ¼ S1(30)

More generally
S2(t) ¼ S1(0.75t)

T1 — Survival time for smokers
T2 — Survival time for nonsmokers

AFT assumption in terms of ran-
dom variables:

T1 ¼ gT2

Acceleration factor
Measure of association
on survival time

Hazard ratio
Measure of association on the
hazard

Acceleration factor (g)

� Describes stretching or
contraction of S(t)

� Ratio of times to any fixed
value of S(t)

Suppose g ¼ 2.0
(Group 2 vs. Group 1)

� Time to S(t) ¼ 0.50 (median) is
double for Group 2

� Time to S(t)¼ 0.20 is double for
Group 2

� Time to S(t)¼ 0.83 is double for
Group 2

� Time to S(t)¼ 0.98 is double for
Group 2

� Time to S(t) ¼ q is double for
Group 2 (generalization)
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This idea is graphically illustrated by
examining the survival curves for Group 1
(G ¼ 1) and Group 2 (G ¼ 2) shown on the
left. For any fixed value of S(t), the distance of
the horizontal line from the S(t) axis to the
survival curve for G ¼ 2 is double the distance
to the survival curve for G ¼ 1. Notice the
median survival time (as well as the 25th and
75th percentiles) is double for G ¼ 2. For AFT
models, this ratio of survival times is
assumed constant for all fixed values of S(t).

V. Exponential Example
Revisited

We return to the exponential example applied
to the remission data with treatment status
(TRT) as the only predictor. In Section III,
results from the PH form of the exponential
model were discussed. In this section we
discuss the AFT form of the model.

The exponential survival and hazard functions
are shown on the left. Recall that the exponen-
tial hazard is constant and can be reparameter-
ized as a PH model, h(t) ¼ l ¼ exp(b0 þ b1
TRT). In this section we show how S(t) can be
reparameterized as an AFT model.

Survival curves for Group 1 (G ¼ 1)
and Group 2 (G ¼ 2)

Horizontal lines are twice as long
to G ¼ 2 compared to G ¼ 1
because g ¼ 2

Remission data (n ¼ 42)

21patientsgiventreatment (TRT¼1)
21 patients given placebo (TRT¼ 0)

Previously discussed PH form of
model
Now discuss AFT form of model

Exponential survival and hazard
functions:

S(t) ¼ exp(�lt)
h(t) ¼ l

Recall for PH model:

h(t) ¼ l ¼ exp(b0 þ b1 TRT)
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The underlying AFT assumption, for compar-
ing the two levels of the TRT covariate, is that
the ratio of times to any fixed value of S(t) ¼ q
is constant for any probability q. We develop
the AFT model with the survival function by
solving for t in terms of S(t). We then scale
t in terms of the predictors.

The exponential survival function is S(t) ¼ exp
(�lt). By solving for t, we can obtain a formula
for t in terms of S(t). Taking the natural log,
multiplying by negative 1, and then multiply-
ing by the reciprocal of l, yields the expression
for t shown on the left. By reparameterizing
1/l ¼ exp(a0 þ a1TRT), or equivalently l ¼
exp[�(a0 þ a1TRT)], it can be seen how the
predictor variable TRT is used to scale the
time to any fixed value of S(t) (see left). For
example, to find an expression for the median
survival time tm, substitute S(t) ¼ 0.5 (see left).

The expression for t is restated on the left in
terms of any fixed probability S(t) ¼ q. The
acceleration factor g is found by taking the
ratio of the times to S(t) ¼ q for TRT ¼ 1 and
TRT ¼ 0. After canceling, g reduces to exp(a1).

Thus, the exponential hazard function for the
remission data involving a single (0,1) TRT
predictor satisfies the AFT model assumption
shown at the left.

The formula for l as the AFT model form
is compared at the left with the (different)
formula for l in the PH model form.

AFT assumption
(comparing 2 levels of TRT)

� Ratio of times is constant for all
fixed S(t)

Strategy for developing the model:

� Solve for t in terms of S(t)
� Scale t in terms of the predictors

Let S(t) ¼ q
t ¼ [�ln(q)] � exp(a0 þ a1TRT)

Acceleration Factor:
g(TRT ¼ 1 vs. TRT ¼ 0)

g ¼ ½� lnðqÞ� expða0 þ a1Þ
½� lnðqÞ� expða0Þ

¼ expða1Þ

STRT¼0(t) ¼ STRT¼1(gt)
where g ¼ exp(a1)

AFT :
1

l
¼ exp a0 þ a1TRTð Þ

PH : l ¼ expðb0 + b1TRT)
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On the left is Stata output from the AFT form of
the exponential model with TRT as the only
predictor. The estimate of the coefficient for
TRT is 1.527 with a standard error of 0.398.
An estimate of the acceleration factor for treat-
ment is ĝ ¼ expð1:527Þ ¼ 4:60. A 95% confi-
dence interval for g is calculated as exp[1.527
� 1.96(0.398)] yielding a CI of (2.11, 10.05).

The parameter estimates can be used to esti-
mate the time t̂ to any value of S(t) ¼ q. The
table on the left lists the estimated time (in
weeks) for the first, second (median), and
third quartiles of S(t) using the expression for
t̂ shown above for both the treated and placebo
groups. In this example, survival time is the
time to remission for leukemia patients.

The ratio of survival times for each row in the
table comparing TRT ¼ 1 vs. TRT ¼ 0 is 4.60,
which not coincidently is the estimate of the
acceleration factor (see left). The estimated
acceleration factor suggests that the experi-
mental treatment is effective for delaying
remission by stretching survival time by a fac-
tor of 4.60. Although the hazard ratio is a
more familiar measure of association for
health scientists, the acceleration factor has
an intuitive appeal, particularly for describing
the efficacy of a treatment on survival.

Remission Data

Exponential regression accelerated
failure-time form

_t Coef. Std. Err. z P>|z|

trt 1.527 .398 3.83 0.00
_cons 2.159 .218 9.90 0.00

ĝ ¼ expð1:527Þ ¼ 4:60

95% CI: exp[1.527 � 1.96(0.398)] ¼
(2.11, 10.05)

t ¼ [�ln(q)] � exp(a0 þ a1TRT)
t̂ ¼ [�ln(q)]

� exp(2.159 þ 1.527(TRT))

Estimated Survival Times by S(t)
Quartiles for TRT ¼ 1 and
TRT ¼ 0 (Exponential Model)

S(t) ¼ q t̂TRT¼0 t̂TRT¼1

0.25 12.0 55.3
0.50 6.0 27.6
0.75 2.5 11.5

ĝ ¼ 4:60 (for TRT ¼ 1 vs. TRT ¼ 0)

Ratio of survival times:

55:3

12:0
¼ 27:6

6:0
¼ 11:5

2:5
¼ 4:60

Effect of treatment:

� Stretches survival by a factor of
4.6

� Interpretation of g has intuitive
appeal
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Recall from Section III that the hazard ratio
for the effect of treatment was estimated
at exp(�1.527) ¼ 0.22 using the PH form of
the exponential model. This result illustrates
a key property of the exponential model: the
corresponding acceleration factor and hazards
ratio (e.g., TRT¼ 1 vs. TRT¼ 0) are reciprocals
of each other. This property is unique to the
exponential model. What can be generalized,
however, is that an acceleration factor
greater than one for the effect of an expo-
sure implies that being exposed (i.e., TRT ¼
1) is beneficial to survival whereas a hazard
ratio greater than one implies being exposed
is harmful to survival (and vice versa).

Although the exponential PH and AFT models
focus on different underlying assumptions,
they are in fact the same model. The only
difference is in their parameterization. The
resulting estimates for the survival function,
hazard function, and median survival do
not differ between these models (see Practice
Exercises 6 and 7).

HR and g are reciprocals in expo-
nential models:

cHRðTRT ¼ 1 vs. 0) ¼ expð�1:527Þ
¼ 0:22

ĝðTRT ¼ 1 vs. 0) ¼ expð1:527Þ
¼ 4:60

In general
g > 1 ) exposure benefits
survival
HR > 1 ) exposure harmful to
survival

g > 1 ) exposure harmful to
survival
HR < 1 ) exposure benefits
survival

g ¼ HR ¼ 1 ) no effect from
exposure

Exponential PH and AFT models:

� Same model
� Different parameterization
� Same estimates for

○ Survival function
○ Hazard function
○ Median survival
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For those who have experience with Poisson
regression, there is a close connection between
the exponential and Poisson models. Both dis-
tributions assume an underlying constant
rate. In fact, if the data are structured such
that all the cases and the total time at risk are
aggregated for each pattern of covariates (e.g.,
TRT ¼ 1 and TRT ¼ 0) and the log of the
corresponding person-time at risk is used as
an offset, then a Poissonmodel will yield equiv-
alent parameter estimates as the exponential
PH model. The difference is that the random
outcome for the Poisson model is the count of
events over a fixed amount of time at risk and
the random outcome for the exponential model
is the time (at risk) to event.

We continue with the remission data example
and present the more general Weibull model,
which includes the exponential model as a spe-
cial case. In the next section we also show a
graphical approach for evaluating the appro-
priateness of the Weibull (and thus also the
exponential) model.

VI. Weibull Example The Weibull model is the most widely used
parametric survival model. Its hazard function
is h(t) ¼ lptp�1, where p and l > 0. As with the
exponential model, l will be reparameterized
with regression coefficients. The additional
parameter p is called a shape parameter and
determines the shape of the hazard function.
If p > 1 then the hazard increases as time
increases. If p ¼ 1 then the hazard is constant
and the Weibull model reduces to the exponen-
tial model (h(t) ¼ l). If p < 1 then the hazard
decreases over time. The addition of this shape
parameter gives the Weibull model greater
flexibility than the exponential model, yet the
hazard function remains relatively simple (basi-
cally a scaling of t raised to some fixed power).

For those experienced with Poisson
regression:

Exponential and Poisson models

� Assume a constant rate
� Different data structure

○ Poisson — aggregate counts
○ Exponential — individual

level
� Use different outcomes

○ Poisson — number of cases
○ Exponential — time to event

� Yield equivalent parameter
estimates
○ With same data and same

covariates in the model

Exponential model is special case
of Weibull model

Weibull Model:

Hazard function: h(t) ¼ lptp�1

(where p > 0 and l > 0)

p is a shape parameter

� p > 1 hazard increases over
time

� p ¼ 1 constant hazard
(exponential model)

� p < 1 hazard decreases over
time

Additional shape parameter offers
greater flexibility
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The Weibull model has the property that if the
AFT assumption holds then the PH assump-
tion also holds (and vice versa). This property
is unique to the Weibull model (Cox and
Oakes, 1984) and holds if p does not vary over
different levels of covariates. The PH assump-
tion allows for the estimation of a hazard ratio
enabling a comparison of rates among differ-
ent populations. The AFT assumption allows
for the estimation of an acceleration factor,
which can describe the direct effect of an expo-
sure on survival time.

The Weibull model also has another key prop-
erty: the log(–log) of S(t) is linear with the log
of time. This allows a graphical evaluation of
the appropriateness of a Weibull model by plot-
ting the log negative log of the Kaplan–Meier
survival estimates against the log of time.

To see this linear relationship: start with the
Weibull survival function S(t)¼ exp(�ltp), take
the log of S(t), multiply by negative one, and
take the log again (see left). For the Weibull
distribution, the ln[�ln(S(t))] is a linear func-
tion of ln(t) with slope p and intercept p ln(l).
If the slope equals one then t follows an expo-
nential distribution.

We again return to the remission data and
evaluate the appropriateness of the Weibull
assumption for the treated (TRT ¼ 1) and pla-
cebo (TRT ¼ 0) groups. On the left is the plot
of the log negative log Kaplan-Meier survival
estimates against the log of time for TRT ¼ 1
and TRT ¼ 0. Both plots look reasonably
straight suggesting that the Weibull assump-
tion is reasonable. Furthermore, the lines
appear to have the same slope (i.e., are parallel,
same p) suggesting that the PH (and thus the
AFT) assumptions hold. If this common slope
equals one (i.e., p ¼ 1), then survival time fol-
lows an exponential distribution. The Weibull
model output containing the parameter esti-
mates includes a statistical test for the hypo-
thesis p ¼ 1 or equivalently for ln(p) ¼ 0 (for
testing the exponential assumption). This is
examined later in this section.

Unique property for Weibull model
AFT ) PH and PH ) AFT

Holds if p is fixed

HR vs. AFT

Hazard ratio)Comparisonof rates

Acceleration factor ) Effect on
survival

Useful Weibull property:

� ln[�ln S(t)] is linear with ln(t)
� Enables graphical evaluation

using KM survival estimates

Linearity of ln(t)

Remission data: evaluate Weibull
assumption forTRT¼1andTRT¼0

ln[�ln Ŝ (t)] plotted against ln(t)
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On the left is a summary of five possible
results from an examination of the log negative
log Kaplan-Meier survival estimates plotted
against the log of time for two or more levels
of covariates. The key points are that straight
lines support the Weibull assumption and
parallel curves support the PH assumption.
If the plots are parallel but not straight then the
PH assumption holds but not the Weibull.
Assessing whether the curves are parallel is a
familiar approach for evaluating the PH
assumption in a Cox model (see Chapter 4
and Computer Appendix). An interesting sce-
nario occurs if the lines are straight but not
parallel. In this situation the Weibull assump-
tion is supported but the PH and AFT assump-
tions are violated. If the lines are not parallel,
then p is not constant across levels of covari-
ates. In Section IX of this chapter, we present a
method for modeling the shape parameter p as
a function of predictor variables, but typically
p is assumed fixed.

An examination of the plot on the previous
page suggests that theWeibull and PH assump-
tions are reasonable for treatment (TRT). First
the PH form of the model is presented and then
the AFT form.

The Weibull hazard function is h(t) ¼ lptp�1.
AWeibull PHmodel is defined by reparameter-
izing lambda l as exp(b0þ b1 TRT). The hazard
ratio is obtained by substituting TRT ¼ 1 and
TRT ¼ 0 into the hazard functions (see left).
After canceling we obtain the familiar result
exp(b1). Note that this result depends on p hav-
ing the same value for TRT ¼ 1 and TRT ¼ 0,
otherwise time (t) would not cancel in the
expression for the HR (i.e., PH assumption
not satisfied).

Summary of possible results
for plot of ln[�ln Ŝ(t)] against ln(t)

1. Parallel straight lines)Weibull,
PH, and AFT assumptions hold

2. Parallel straight lines with slope
of 1)Exponential. PH and AFT

3. Parallel but not straight lines)
PH but not Weibull, not AFT
(can use Cox model)

4. Not parallel and not straight )
Not Weibull, PH violated

5. Not parallel but straight lines)
Weibull holds, but PH and AFT
violated, different p

Previous plot suggests Weibull and
PH assumption reasonable for TRT

Weibull PH model:

h(t) ¼ lptp�1

where l ¼ exp(b0 þ b1 TRT).

Hazard ratio (TRT¼ 1 vs. TRT ¼ 0)

HR ¼ exp b0 þ b1ð Þpt p�1

exp b0ð Þpt p�1

¼ exp b1ð Þ
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On the left is stata output from running the PH
form of the Weibull model. There are para-
meter estimates for the coefficient of TRT, the
intercept (called _cons), and for three forms of
the shape parameter: p, 1/p, and log(p). The
estimate for p is 1.366 suggesting an increase
in the hazard as survival time increases (because
p̂ > 1). A statistical test for H0: log(p) ¼ 0 yields
a p-value of 0.034. At a significance level of 0.05
we would reject the null and decide p is not
equal to 1, suggesting that the exponential
model is not appropriate.

An estimated hazard ratio of 0.18 is obtained
by exponentiating the estimated coefficient
(�1.731) of the TRT variable. The 95% confi-
dence interval for this HR is calculated to be
(0.08, 0.40) indicating a significant preventive
effect of treatment. These results are similar to
those obtained from the exponential model in
which the estimated hazard ratio was 0.22.

It can be instructive to compare the Cox and
Weibull PH models. The Cox PH model with
treatment as the only predictor is stated as h0(t)
exp(b1TRT). There is one parameter to esti-
mate (b1) and the distribution of the baseline
hazard (h0(t)) remains unspecified.

With some manipulation, the Weibull PH
model can also be expressed as a product of a
baseline hazard and exp(b1 TRT) (see left).
There are three parameters to estimate b0, b1,
and p that fully specify the hazard.

Remission Data

Weibull regression log relative-
hazard form

_t Coef.
Std.
Err. z p > |z|

trt �1.731 .413 �4.19 0.000
_cons �3.071 .558 �5.50 0.000

/ln_p .312 .147 2.12 0.034

p 1.366 .201
1/p .732 .109

Weibull PH

cHR(TRT ¼ 1 vs. 0) ¼ exp(�1.731)
¼ 0.18

95%CI¼ exp[�1.731� 1.96(0.413)]
¼ (0.08, 0.40)

Weibull: cHR ¼ 0:18
Exponential: cHR ¼ 0:22
Suggests preventive effect of TRT

Comparing Cox and Weibull PH
models
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An AFT model can also be formulated with the
Weibull distribution. We develop the AFT
parameterization similarly to that done with
the exponential model, by solving for t in
terms of a fixed S(t). TheWeibull survival func-
tion is S(t) ¼ exp(�ltp). Taking the natural log,
multiplying by negative 1, raising to the power
1/p, and then multiplying by the reciprocal of
l1/p, yields the expression for t shown on the
left. By reparameterizing 1/l1/p ¼ exp(a0 þ
a1TRT), it can be shown that a1, the coefficient
of the predictor variable TRT, is used to scale
the time to any fixed value of S(t) (see left).

The expression for t is restated on the left in
terms of any fixed probability S(t) ¼ q. For
example, to find an expression for the median
survival time tm, substitute q ¼ 0.5 (see left).

The acceleration factor g is obtained as the
ratio of the times to S(t) ¼ q for TRT ¼ 1 and
for TRT ¼ 0. After canceling, g reduces to exp
(a1), where a1 is the coefficient of the TRT
variable. As with the PH form of the model,
this result depends on p not varying by treat-
ment status; otherwise g would depend on q.

Output from running a Weibull AFT model is
shown on the left. The estimates for each form
of the shape parameter (p, 1/p, and ln(p)) are
the same as obtained from the previously
shown PH form of the model.

The estimated acceleration factor of 3.55 is
obtained by exponentiating the estimated
coefficient (1.267) of the TRT variable. The
95% confidence interval for g is calculated to
be (1.93, 6.53). There results are shown at the
top of the following page.

Let S(t) ¼ q

t ¼ [�ln(q)]1/p � exp(a0 þ a1TRT)

Median survival time (q ¼ 0.5)

tm ¼ [�ln(0.5)]1/p

� exp(a0 þ a1TRT)

Acceleration factor, g (TRT ¼ 1 vs.
TRT ¼ 0)

g ¼ ½� lnðqÞ�1=p expða0 þ a1Þ
½� lnðqÞ�1=p expða0Þ

¼ expða1Þ

Remission Data

Weibull regression accelerated
failure-time form

_t Coef. Std. Err. z P>|z|

trt 1.267 .311 4.08 0.000
_cons 2.248 .166 13.55 0.000

/ln_p .312 .147 2.12 0.034

p 1.366 .201
1/p .732 .109
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These results suggest that the median (or any
other quantile of) survival time is increased by
a factor of 3.55 for those receiving the treat-
ment compared to the placebo. Recall that the
acceleration factor was estimated at 4.60 using
the exponential model. However, the exponen-
tial model uses a much stronger assumption:
that the hazards are constant.

Corresponding coefficients obtained from the
PH and AFT forms of the Weibull models are
related as follows: bj ¼ �aj p for the jth covari-
ate. This can most easily be seen by formulat-
ing the parameterization equivalently in terms
of ln(l) for both the PH and AFT forms of the
model as shown on the left.

This relationship is illustrated utilizing the
coefficient estimates we obtained for TRT:
�1.731 ¼ (�1.267)(1.366). Note for the expo-
nential model in which p ¼ 1, the PH and AFT
coefficients are related, b ¼ �a.

In the next example the log-logistic model is
presented. In contrast to the Weibull, the haz-
ard function for the log-logistic distribution
allows for some nonmonotonic behavior in
the hazard function.

VII. Log-Logistic Example The log-logistic distribution accommodates an
AFT model but not a PH model. Its hazard
function is shown on the left. The shape
parameter is p(>0).

Weibull AFT:

ĝ TRT ¼ 1 vs. 0ð Þ ¼ expð1:267Þ
¼ 3:55

95% CI ¼ exp[1.267 � 1.96(0.311)]
¼ (1.93, 6.53)

Weibull: ĝ ¼ 3:55
Exponential: ĝ ¼ 4:60 (assumes

h(t) ¼ l)

Relating Weibull AFT and
PH coefficients

AFT: l1/p ¼ exp[�(a0 þ a1TRT)]
(1/p)ln l ¼ �(a0 þ a1TRT)

ln l ¼ �p (a0 þ a1TRT)

PH: l ¼ exp(b0 þ b1TRT)
ln l ¼ b0 þ b1TRT

Relationship of coefficients:

bj ¼ �aj p so that
b ¼ �a for exponential (p ¼ 1)

Relating estimates for TRT
(PH vs. AFT)

�1.731 ¼ (�1.267)(1.366)

Next: log-logistic model

� Hazard may be nonmonotonic

Weibull model

� Hazard does not change
direction

Log-logistic hazard: h(t) ¼ lptp�1

1þ ltp
(where p > 0 and l > 0)
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If p � 1 then the hazard decreases over time.
If p > 1, however, the hazard increases to a
maximum point and then decreases over time.
In this case (p > 1), the hazard function is said
to be unimodal.

Unlike the Weibull model, a log-logistic AFT
model is not a PH model. However, the log-
logistic AFT model is a proportional odds
(PO) model. A proportional odds survival
model is a model in which the survival
odds ratio is assumed to remain constant
over time. This is analogous to a proportional
hazard model where the hazard ratio is
assumed constant over time.

The survival odds is theoddsof survivingbeyond
time t (i.e., S(t)/(1� S(t)). This is the probability
of not getting the event by time t divided by the
probability of getting the event by time t.

The failure odds is the odds of getting the
event by time t (i.e., (1 � S(t))/S(t)), which is
the reciprocal of the survival odds (see left).

The log-logistic survival function (S(t)) and
failure function (1� S(t)) are shown on the left.

The failure odds simplifies in a log-logistic
model to ltp (see left).

A log-logistic proportional odds model can be
formulated by reparameterizing l in terms of
predictor variables and regression parameters.
We come back to this point later in this section.

A survival odds ratio (SOR) is defined as the
ratio of survival odds for two groups of sub-
jects, as shown on the left.

An SOR satisfies a PO assumption provided the
SOR does not depend on time.

Also, if the SOR does not depend on time, then
the failure odds ratio (FOR ¼ 1/SOR) also does
not depend on time.

Shape of hazard function:

p � 1 hazard decreases over time
p > 1 hazard first increases and

then decreases over time
(unimodal)

Log-logistic modeling assumptions:

Survival odds

SðtÞ
ð1� SðtÞÞ ¼

PðT > tÞ
PðT � tÞ

Failure odds by time t

ð1� SðtÞÞ
SðtÞ ¼ PðT � tÞ

PðT > tÞ

Log-logistic survival and failure
functions

S(t) ¼ 1

1þ lt p
1� S(t) ¼ lt p

1þ lt p

Failure odds

1� SðtÞ
SðtÞ ¼

lt p
1þlt p

� �
1

1þlt p

� � ¼ lt p

Log-logistic PO model:

� Reparameterize l in terms of
Xs and bs

SOR =
S1ðtÞ=ð1� S1ðtÞÞ
S2ðtÞ=ð1� S2ðtÞÞ

� SOR satisfies PO if SOR
constant over time

� SOR constant

m
FOR ¼ 1/SOR constant
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The log of the failure odds is ln(ltp), which can
be rewritten as ln(l) þ p[ln(t)]. In other words,
the log odds of failure is a linear function of
the log of timewith slope p and intercept ln(l).
This is a useful result enabling a graphical
evaluation for the appropriateness of the log-
logistic distribution.

The log-logistic assumption can be graphically
evaluated by plotting ln(1 � Ŝ(t))/(Ŝ(t)) against
ln(t) where Ŝ(t) are the Kaplan–Meier sur-
vival estimates. If survival time follows a log-
logistic distribution, then the resulting plots
should be a straight line of slope p.

We could alternatively plot the log of the
survival odds, ln(Ŝ(t))/(1 � Ŝ(t)), against ln(t).
If the log-logistic assumption is correct
the resulting plots should be a straight line of
slope �p.

We next consider a different variable from the
remission data: a dichotomous variable for
white blood cell count (WBCCAT) coded
medium ¼ 1 and high ¼ 2.

On the left is the plot of the log odds of
survival (obtained from the Kaplan–Meier sur-
vival estimates) against the log of time com-
paring medium (WBCCAT ¼ 1) and high
(WBCCAT ¼ 2) blood cell counts. The points
for WBCCAT ¼ 1 lie above the points for
WBCCAT ¼ 2 indicating that the survival odds
are higher for those with a medium white blood
cell count compared to high. The lines look rea-
sonably straight and parallel, at least until the
estimated odds of survival approaches zero.

If we accept the proposition that the lines look
straight, then the log-logistic assumption is
reasonable. Because the lines look parallel,
the proportional odds (PO) assumption is also
reasonable. If the PO assumption holds in a
log-logistic model then the AFT assumption
also holds.

Log Odds Is Linear with ln(t)

Evaluate log-logistic assumption
graphically

� Plot ln ð1�ŜðtÞÞ
ŜðtÞ

h i
against ln(t)

� If log-logistic, then plot is linear
with slope ¼ p

Alternatively

� Plot ln ððŜðtÞÞ
1�ŜðtÞð Þ

� �
against ln(t)

� If log-logistic, then plot is linear
with slope ¼ �p

Remission Data

WBCCAT: white blood cell count
variable medium ¼ 1 vs. high ¼ 2

ln ŜðtÞ
1�ŜðtÞð Þ

� �
plotted against ln(t).
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The key points from above are:

a. straight lines support the log-logistic
assumption,

b. parallel curves support the PO assump-
tion, and

c. If the log-logistic and PO assumptions
hold, then the AFT assumption also
holds.

The graphical evaluation for the log-logistic
assumption is analogous to the graphical anal-
ysis of the Weibull assumption presented in
the last section, except here the PO assumption
rather than the PH assumption is evaluated by
checking for parallel lines.

Next we consider an AFT log-logistic model
with white blood cell count as the only predic-
tor comparing WBCCAT ¼ 2 (high count) and
WBCCAT ¼ 1 (medium count).

We develop the AFT parameterization by solv-
ing for t in terms of a fixed S(t). Starting with
the expression for S(t), taking reciprocals, sub-
tracting 1, raising to the power 1/p, and then
multiplying by the reciprocal of l1/p, yields the
expression for t shown on the left. By repara-
meterizing 1/l1/p ¼ exp(a0 þ a1 WBCCAT), we
allow a1, the coefficient of the predictor vari-
able WBCCAT, to be used for the multiplicative
scaling of time to any fixed value of S(t)
(see left).

The expression for t is restated on the left in
terms of any fixed probability S(t) ¼ q. For
example, to find an expression for the median
survival time tm, substitute q ¼ 0.5 (see left).

Log-logistic and Weibull graphical
approach analogous

� Check PH for Weibull
� Check PO for log-logistic

AFT log-logistic model

S(t) ¼ 1

1þ ltp
¼ 1

1þ l1=pt
� �

p

solve for t to obtain

t ¼ 1

SðtÞ � 1

� �1=p
� 1

l1=p

let
1

l1=p
¼ exp a0 þ a1WBCCATð Þ

t ¼ 1

SðtÞ � 1

� �1=p

� expða0 þ a1WBCCATÞ
%

Scaling of t

Let S(t) � q

t ¼ [q�1 � 1]1/p

� exp(a0 þ a1 WBCCAT)
Median survival time (q ¼ 0.5):
tm ¼ [2 � 1]1/p

� exp(a0 þ a1 WBCCAT)
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The acceleration factor g is found by taking the
ratio of the times to S(t) ¼ q for WBCCAT ¼ 2
and for WBCCAT ¼ 1. After canceling, g
reduces to exp(a1), where a1 is the coefficient
of the WBCCAT variable in the AFT model.

The output from running the AFT log-logistic
model is shown on the left. The coefficient esti-
mate for WBCCAT is �0.871, which is statisti-
cally significant with a p-value of 0.003 (far
right column of output).

Stata provides estimates of the reciprocal of
p (gamma ¼ 1/p) rather than for p. The esti-
mate for gamma is 0.459. Therefore, the esti-
mate for p is 1/(0.459) ¼ 2.18.

An estimate of the acceleration factor ĝ com-
paring WBCCAT ¼ 2 to WBCCAT ¼ 1 is found
by exponentiating the estimate �0.871 of a1 to
obtain 0.42. The 95% confidence interval for g
is calculated to be (0.23, 0.75).

These results suggest that the time for going
out of remission is “accelerated” for patients
with a high white blood cell count compared
to those with a medium count by an estimated
factor of 0.42. In terms of the survival functions
estimated from this model, Ŝ1(t) ¼ Ŝ2(0.42t)
where Ŝ1(t) and Ŝ2(t) are the respective survival
functions for patients with medium and high
blood cell counts.

The proportional odds form of the log-logistic
model can also be formulated by reparameter-
izing l. Recall that the log-logistic failure odds
is ltp.

By setting l ¼ exp(b0 þ b1 WBCCAT), a (failure)
odds ratio comparingWBCCAT¼ 2 toWBCCAT
¼ 1 can be calculated (see left). After canceling,
the odds ratio reduces to exp(b1).

Acceleration factor,
g (WBCCAT ¼ 2 vs. WBCCAT ¼ 1)

¼ ½q�1 � 1�1=p exp a0 þ 2a1ð Þ
½q�1 � 1�1=p exp a0 þ 1a1ð Þ

¼ expða1Þ

Log-logistic regression accelerated
failure-time form

_t Coef.
Std.
Err. z P>|z|

wbccat �.871 .296 �2.94 0.003
_cons 3.495 .498 7.09 0.000

ln_gam �.779 .164 �4.73 0.000

gamma .459 0.756

p ¼ 1/(0.459) ¼ 2.18

WBCCAT ¼ 2 vs. WBCCAT ¼ 1
(log-logistic):

ĝ ¼ expð�0:871Þ ¼ 0:42

95% CI for g ¼ exp½�0:871

� 1:96ð0:296Þ�
¼ ð0:23; 0:75Þ

Failure odds

1� SðtÞ
SðtÞ ¼

lt p
1þlt p

� �
1

1þlt p

� � ¼ lt p

where l ¼ exp(b0 þ b1 WBCCAT)

OR (WBCCAT¼ 2 vs.WBCCAT¼ 1)

¼ t p exp b0 þ 2b1ð Þ
t p exp b0 þ 1b1ð Þ ¼ exp b1ð Þ
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The corresponding coefficients for log-logistic
PO and AFT models are related by bj ¼ �aj
p for the jth covariate. This result is obtained
using a similar argument to that presented for
the Weibull example in the previous section.

The estimate for a1 in the AFT model is �0.871
and the estimate for p is 2.18. Therefore, an
estimate for b1 can be found by multiplying
�(�0.871) times 2.18 yielding 1.90. An estimate
of the odds ratio is found by exponentiating
this estimate, exp(1.90) ¼ 6.69. (Unfortunately,
neither Stata nor SAS estimates the propor-
tional odds form of the model.)

VIII. A More General Form
of the AFT Model

On the left is a summary of the models
discussed in the previous sections. These
models were formulated by reparameterizing
the survival (and hazard) functions in terms of
regression parameters and predictor variables.

An advantage for stating the models in this
form is that the interpretation and relation-
ships between parameters are specific to each
distribution.

However, there are more general ways these
models could be stated. The Cox PH model is
a more general way of stating the proportional
hazards model. In this section we discuss a
more general formulation of the AFT model.

Comparing AFT and PO
(log-logistic)
Relationship of coefficients:

bj ¼ � aj p

Since â ¼ �0:871 and p̂ ¼ 2:18
Then,

b̂1 ¼ �ð�0:871Þð2:18Þ ¼ 1:90

and

cOR ¼ expð1:90Þ ¼ 6:69

Exponential: S(t) ¼ exp(�lt)

� AFT Form:
1

l¼ exp(a0 þ a1 TRT)

� PH Form: l
¼ exp(b0 þ b1 TRT)

Weibull: S(t) ¼ exp(�ltp)

� AFT Form:
1

l1=p¼ exp(a0 þ a1 TRT)

� PH Form: l
¼ exp(b0 þ b1 TRT)

Log-logistic: S(t) ¼ 1

1þ lt p

� AFT Form:
1

l1=p¼ exp(a0 þ a1 WBCCAT)

� PO Form: l
¼ exp(b0 þ b1 WBCCAT)
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Consider an AFT model with one predictor
(TRT) in which T represents a random variable
for survival time. The model can be expressed
on the log scale as shown on the left, where E is
random error following some distribution.

Some distributions have an additional para-
meter (s) scaling E. The model including this
additional parameter can be expressed as
shown on the left, where the random error E is
multiplied by a scale parameter s.

If E follows a standard normal distribution and
ln(T) ¼ a0 þ a1TRT þ sE, then ln(T) would
follow a normal distribution with mean m ¼
a0 þ a1TRT and standard deviation s. For this
situation, the model would look like a standard
linear regression. The key difference between
fitting this survival model and a standard linear
regression is the inclusion of censored obser-
vations in the data.

In general, for other then the normal distribu-
tion, the mean of ln(T) is not necessarily a0 þ
a1TRT and its standard deviation is not s. In
other words, it should not be assumed that the
mean of E is 0 and the standard deviation is 1.
The interpretation of the parameters depends
on the underlying distribution.

Sometimes the model is parameterized using
s ¼ 1/p. The model can then be restated by
replacing sE with (1/p) E.

The AFT model is additive on the log scale
but a multiplicative model with respect to T.

In particular, the model can be expressed in
terms of T by exponentiating ln(T), as shown
on the left.

General Form of AFT Model
(One Predictor)

If E 	 N(0, 1), then

ln(T) 	 N(m ¼ a0 þ a1TRT, sd ¼ s)

Similar to linear regression (except
for inclusion of censorships)

In general,

mln(T) 6¼ (a0 þ a1TRT), sd 6¼ s

Interpretation of parameters de-
pends on distribution

Let s ¼ 1

p
, then

lnðTÞ ¼ a0 þ a1TRTþ 1

p
2

Additive model in terms of ln(T)
but

multiplicative model in terms of T

T ¼ exp a0 þ a1TRTþ 1

p
E

� �

¼ exp½ða0 þ a1TRTÞ� � exp
1

p
E

� �
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The model may also be expressed by collapsing
the intercept into a baseline random term T0

(see left). In this setting, T0 is a random vari-
able representing the survival time of the pla-
cebo group (TRT ¼ 0).

Thus, the AFT model has a form analogous to
the a Cox PHmodel, although the baseline term
T0 is a random variable rather than a constant.

In summary, an AFT model may be expressed
by reparameterizing a specific distribution, or
may bemore generally expressed either in terms
of a random variable T (for survival time), or ln
(T). If T follows a Weibull distribution then ln
(T) follows a distribution called the extreme
minimum value distribution (see table on left).
Similarly, if T follows a log-logistic or lognormal
distribution then ln(T) follows a logistic or
normal distribution, respectively. The logistic
and normal distributions are similarly shaped,
and are both symmetric about their mean.

IX. Other Parametric
Models

In the previous sections we presented examples
of the exponential, Weibull, and log-logistic
models. In this section we briefly discuss
some other parametric survival models.

The generalized gammamodel is a parametric
survival model that is supported by both SAS
and Stata software. The hazard and survival
function for this model is complicated and can
only be expressed in terms of integrals. The
generalized gamma distribution has three para-
meters allowing for great flexibility in its shape.
The Weibull and lognormal distributions are
special cases of the generalized gamma distri-
bution (see Practice Exercises 12 to 14).

The lognormal model also has a relatively
complicated hazard and survival function that
can only be expressed in terms of integrals. The
shape of the lognormal distribution is very sim-
ilar to the log-logistic distribution and yields
similar model results. A difference is that
although the lognormal model accommodates
an accelerated failure time model, it is not a
proportional odds model.

Collapse a0 into baseline term

T0 ¼ expða0Þ exp 1

p
E

� �

so that T ¼ T0 exp(a1 TRT) where
T0 is a random variable for TRT¼ 0

AFT model may be expressed in
terms of T or ln(T)

Comparing Distributions: T and
ln(T)

T ln(T)

Exponential Extreme minimum
value

Weibull Extreme minimum
value

Log-logistic Logistic
Lognormal Normal

Generalized Gamma Model

� Supported by SAS and Stata
� S(t), h(t) expressed in terms of

integrals
� Contains three parameters
� Weibull, lognormal are special

cases

Lognormal Model

Similar to log-logistic
Difference:

Log-logistic: AFT and PO
Lognormal: AFT but not PO
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Parametric models need not be AFT models.
The Gompertz model is a parametric propor-
tional hazards model but not an AFT model.
The model can be expressed in a form similar
to that of a Cox PH model except that the
baseline hazard is specified as the hazard of
a Gompertz distribution containing a shape
parameter g (see left).

If g> 0 then the hazard exponentially increases
over time. If g < 0 then the hazard exponen-
tially decreases over time. If g ¼ 0 then the
hazard is constant and reduces to the exponen-
tial model.

The AFT model is amultiplicative model (i.e.,
a multiplicative scaling of failure time). It
becomes an additive model on the log scale
(see left side).

An alternative parametric model is to define an
additive failure time model in terms of T,
rather than ln(T). Consider the model: T ¼
a0 þ a1 TRT þ E. Now T, rather than ln(T), is
expressed as a linear function of the regression
parameters. SAS supports such an additive fail-
ure time model (see Computer Appendix).

Many parametric models contain an extra
shape (or ancillary) parameter beyond the
regression parameters. For example, the Wei-
bull and log-logistic models contain a shape
parameter p. Typically, this parameter is con-
sidered fixed, unaffected by changes in the
values of predictor variables.

Gompertz Model

� PH model but not AFT
� One predictor (TRT) in model:

h(t) ¼ [exp(gt)] � exp(b0 þ b1 TRT)

%parametrically specified

h0(t) ¼ exp (gt)

g > 0 hazard exponentially
increases with t

g < 0 hazard exponentially
decreases with t

g ¼ 0 constant hazard
(exponential model)

AFT model: multiplicative

T ¼ exp(a0 þ a1 TRT þ E)
¼ exp(a0)� exp(a1 TRT)� exp(E)

but

additive on log scale:
ln(T) ¼ a0 þ a1 TRT þ E

Modeling the Shape Parameter
(e.g., Weibull and log-logistic)

Typical Weibull model

h(t) ¼ lptp�1

where l ¼ exp(b0 þ b1 TRT)
p unaffected by predictors
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An alternative approach is to model the shape
parameter in terms of predictor variables and
regression coefficients. In the Weibull model
shown on the left, both l and p are modeled
as functions of treatment status (TRT). If d1 is
not equal to zero, then the value of p differs by
TRT. For that situation, the PH (and thus the
AFT) assumption is violated because tp�1 will
not cancel in the hazard ratio for TRT (see
Practice Exercises 15 to 17).

Choosing the most appropriate parametric
model can be difficult. We have provided
graphical approaches for evaluating the appro-
priateness of the exponential, Weibull, and log-
logistic models. Akaike’s information crite-
rion (AIC) provides an approach for compar-
ing the fit of models with different underlying
distributions, making use of the �2 log likeli-
hood statistic (described in Practice Exercises
11 and 14).

X. The Parametric
Likelihood

The likelihood for any parametric model is
a function of the observed data and the
model’s unknown parameters. The form of the
likelihood is based on the probability density
function f(t) of the outcome variable. A compli-
cation of survival data is the possible inclusion
of censored observations (i.e., observations
in which the exact time of the outcome is
unobserved). We consider three types of
censored observations: right-censored, left-
censored, and interval-censored.

Right-censored. Suppose a subject is lost to
follow-up after 10 years of observation. The
time of event is not observed because it hap-
pened after the 10th year. This subject is right-
censoredat 10 years because the eventhappened
to the right of 10 on the time line (i.e., t > 10).

Left-censored. Suppose a subject had an event
before the 10th year but the exact time of the
event is unknown. This subject is left-censored
at 10 years (i.e., t < 10).

Interval-censored. Suppose a subject had an
event between the 8th and 10th year (exact
time unknown). This subject is interval-
censored (i.e., 8 < t < 10).

Alternative Weibull model
models the ancillary parameter p

h(t) ¼ lptp�1

where l ¼ exp(b0 þ b1 TRT)
p ¼ exp(d0 þ d1 TRT)

Not a PH or AFT model if d1 6¼ 0
but still a Weibull model

Choosing appropriate model

� Evaluate graphically
○ Exponential
○ Weibull
○ Log-logistic

� Akaike’s information criterion
○ Compares model fit
○ Uses �2 log likelihood

� Function of observed data and
unknown parameters

� Based on outcome distribution
f(t)

� Censoring complicates survival
data
○ Right-censored
○ Left-censored
○ Interval-censored

Examples of Censored Subjects
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The table on the left illustrates how the likeli-
hood is formulated for data on five subjects.
We assume a probability density function f(t)
for the outcome. Barry gets the event at time
t ¼ 2. His contribution to the likelihood is f(2).
Gary is right-censored at t ¼ 8. The probability
that Gary gets the event after t ¼ 8 is found by
integrating f(t) from 8 to infinity. This is Gary’s
contribution to the likelihood. Harry gets the
event at time t ¼ 6. His contribution to the
likelihood is f(6). Carrie is left-censored at t ¼
2. Her contribution to the likelihood is
obtained by integrating f(t) from zero to 2.
Finally, Larry is interval-censored between t ¼
4 and t¼ 8. His contribution to the likelihood is
found by integrating f(t) from 4 to 8.

The full likelihood (L) is found by taking the
product of each subject’s independent contri-
bution to the likelihood. The likelihood for this
example is shown on the left.

The formulation of this likelihood uses the
assumption of no competing risks. In other
words, we assume that no competing event
will prohibit any subject from eventually get-
ting the event of interest (see Chapter 9). Death
from all causes is the classic example of an
outcome that in reality has no competing risk.
For other outcomes, the no competing risk
assumption is more of a theoretical construct.

Another assumption is that individual contri-
butions to the likelihood are independent. This
assumption allows the full likelihood to be for-
mulated as the product of each individual’s
contribution.

Formulating the Likelihood

Barry, Gary, Larry, . . ., Outcome
Distribution f(t)

Subject

Event

Time

Likelihood

Contribution

Barry t ¼ 2 f(2)

Gary t > 8

(right-censored)

R1
8

f ðtÞdt

Harry t ¼ 6 f(6)

Carrie t < 2

(left-censored)

R2
0

f ðtÞdt

Larry 4 < t < 8

(interval-censored)

R8
4

f ðtÞdt

Likelihood (L)

Product of individual contributions

L ¼ f ð2Þx
Z1

8

f ðtÞdt� f ð6Þ

�
Z 2

0

f ðtÞdt�
Z 8

0

f ðtÞdt

(Barry � Gary � Harry
� Carrie � Larry)

Assumptions for formulating L

� No competing risks
○ Competing event does not

prohibit event of interest
○ Death of all causes is classic

example of no competing
risk

� Subjects independent
○ Allows L to be formulated as

product of subjects’
contributions
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A third assumption is that each subjects
follow-up time is continuous without gaps (i.e.,
once subjects are out of the study, they do not
return). If gaps are allowed, the likelihood canbe
modified to accommodate such a scenario.

In the last example, we did not specify the
probability density f(t), nor did we specify any
covariates. We revisit this example, assuming
f(t) is Weibull with one predictor SMOKE in
the model (coded 1 for smokers and 0 for
nonsmokers).

The Weibull hazard and survival functions are
shown on the left. The probability density func-
tion f(t) is the product of the hazard and sur-
vival functions. The parameterization will use
the proportional hazards (PH) form of the
Weibull model: l ¼ b0 þ b1 SMOKE.

On the left is the data layout for running para-
metric models containing right-, left-, and
interval censored data in a form suitable for
using the SAS procedure PROC LIFETEST
(version 8.2). There are two time variables
LOWERand UPPER. Barry got the event at
t ¼ 2, so both LOWER and UPPER get the
value 2. Gary was right-censored at 8 (t < 8)
so LOWER gets the value 8 and UPPER is set to
missing. Carrie is left-censored at 2 (t > 2) so
LOWER is set to missing and UPPER gets the
value 2. Larry was interval-censored with
LOWER ¼ 4 and UPPER ¼ 8. Barry and Larry
are smokers whereas Gary, Harry, and Carrie
are nonsmokers.

� Follow-up time continuous
○ No gaps in follow-up

Revisit example with Barry, Gary,
Larry, . . .
f(t) is Weibull
SMOKE is only predictor

1 ¼ Smoker
0 ¼ Nonsmoker

Weibull: h(t) ¼ lpt p�1,
S(t) = exp(�ltp)

f(t) ¼ h(t)S(t)
f(t) ¼ lpt p�1 exp(�lt p)

where l ¼ exp(b0 + b1 SMOKE)
(PH form of the model)

Data Layout for Right-, Left-, and
Interval-Censoring Using SAS

ID LOWER UPPER SMOKE

Barry 2 2 1
Gary 8 - 0
Harry 6 6 0
Carrie - 2 0
Larry 4 8 1

Right-censored: UPPER missing
Left-censored: LOWER missing
Interval-censored: LOWER <
UPPER
Not censored: LOWER ¼ UPPER
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The full likelihood using the Weibull distribu-
tion can now be formulated as a product of
each individual’s contribution (shown on the
left). We have used a small dataset (five sub-
jects) for ease of illustration but the process
can be generalized for any number of subjects.

Once the likelihood is formulated, the question
becomes: which values of the regression para-
meters would maximize L? The process of max-
imizing the likelihood is typically carried out
by setting the partial derivative of the natural
log of L to zero and then solving the system of
equations (called the score equations). The
parameter estimates (e.g., p̂; b̂0, b̂1) that maxi-
mize L are the maximum likelihood estimates.

XI. Interval-CensoredData One advantage of a parametric model com-
pared to a Cox model is that the parametric
likelihood easily accommodates right-, left-, or
interval-censored data. The Cox likelihood, by
contrast, easily handles right-censored data
but does not directly accommodate left- or
interval-censored data.

Weibull Likelihood (L)

Product of individual contributions

L ¼ f ð2Þ �
Z1

8

f ðtÞdt� f ð6Þ �
Z2

0

f ðtÞdt

�
Z8

4

f ðtÞdt

L ¼ exp b0 þ b1ð Þpð2Þp�1 exp � exp b0 þ b1ð Þ2pð Þ

�
Z1

8

exp b0ð ÞpðtÞp�1 exp � exp b0ð Þtpð Þdt

� exp b0ð Þpð6Þp�1 exp � exp b0ð Þ6pð Þ

�
Z2

0

exp b0ð ÞpðtÞp�1 exp � exp b0ð Þtpð Þdt

�
Z8

4

exp b0 þ b1ð ÞpðtÞp�1

� expð� expðb0 þ b1ÞtpÞdt

Obtaining maximum likelihood
estimates

Solve system of equations:

@ LnðLÞ
@ bj

¼ 0 j ¼ 1; 2; . . . ;N

where N ¼ # of parameters

Parametric likelihood

� Handles right-, left-, or interval-
censored data

Cox likelihood

� Designed to handle right-
censored data.
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Sometimes the design of a study is such that all
the data are interval-censored. For example,
consider a study in which healthcare workers
examine subjects once a year, checking for a
nonsymptomatic outcome. If an event was first
detected in the beginning of the third year, then
the exact time of the outcome occurred some-
time between the second and third years. In
this framework left-censoring can be consid-
ered a special case of interval-censoring with
zero as the lower boundary of the interval.

A parametric model can easily be fitted using
the methods described in the previous section.
Once a distribution for the outcome, f(t), is
specified, each subject’s contribution to the
likelihood is obtained by integrating f(t) over
the interval in which he or she had the event.

A binary regression (e.g., logistic regression)
is an alternative approach that may be consid-
ered if all the data are interval-censored. With
this method, the outcome variable can be
coded zero if the subject survives the interval
and coded one if the subject gets the event
during the interval. This approach is particu-
larly useful if there are an ample number of
events in each interval and the analyst prefers
not to specify a distribution f(t) for continuous
survival time.

For illustration, consider a small dataset con-
taining three subjects. Subject 1 gets the event
in the first interval of follow-up, subject 2 gets
the event in the third interval, and subject 3 gets
the event in the second interval of follow-up.

Interval-censored study design

� Check for nonsymptomatic
outcome once a year

� If outcome newly detected,
exact time occurred during
previous year

� Left-censoring special case of
interval-censoring
○ Zero the lower boundary of

the interval

Parametric model can be fitted

� f(t) specified
� Contribution to likelihood for

each subject
○ Integrate f(t) over event

interval

Binary regression

� Alternative approach for
interval-censored data

� Outcome coded
○ 0 if subject survives interval
○ 1 if subject gets event during

interval
� Useful approach if

○ Ample number of events in
each interval

○ Prefer not to specify f(t)

Information on Three Subjects

Subject 1: Gets event in first
interval

Subject 2: Survives first interval
Survives second
interval Gets event in
third interval

Subject 3: Survives first interval
Gets event in second
interval
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The data layout is shown on the left. Each obser-
vation represents one interval of follow-up time
allowing multiple observations per subject.
EVENT is the dichotomous outcome variable.
Subject 1 had the event in the first interval
(EVENT ¼ 1) and thus has one observation.
Subject 2 has three observations because she
survived the first two intervals (EVENT ¼ 0)
but got the event in the third interval. D1 is a
dummy variable coded 1 if the observation
represents the first interval and 0 otherwise.
Similarly, D2 is coded 1 for the second interval
and D3 is coded 1 for the third interval.

TRT is the predictor of interest, coded 1 for
the new treatment and 0 for the placebo.
TRT could be coded as a time-independent
or time-dependent variable. In this example,
TRT is time-independent because TRT does
not change values over different intervals
corresponding to the same subject.

A logistic model (shown at left) containing the
three dummy variables and TRT can be formu-
lated with the data in this form.

Care must be taken with the interpretation of
the parameters: b1 is the log odds of the event
occurring in the first interval among the pla-
cebo group; b2 is the log odds of the event
occurring in the second interval conditioned
on survival of the first interval among the pla-
cebo group; b3 is the log odds of the event
occurring in the third interval conditioned on
survival of the first and second intervals among
the placebo group; and b4 is the log odds ratio
for TRT.

Data Layout for Binary Regression

SUBJECT EVENT D1 D2 D3 TRT

1 1 1 0 0 1

2 0 1 0 0 0

2 0 0 1 0 0

2 1 0 0 1 0

3 0 1 0 0 1

3 1 0 1 0 1

EVENT: dichotomous outcome
coded 1 if event, 0 for no event dur-
ing the interval

D1, D2, D3: dummy variables for
intervals 1, 2, and 3 coded 1 if in the
corresponding interval, 0 otherwise

TRT: Treatment coded 1 for new
treatment, 0 for placebo

Logistic Model

Logit P(Y ¼ 1) ¼ b1D1 þ b2D2

þ b3D3 þ b4TRT

where P(Y ¼ 1) is the probability
of event for a given interval
conditioned on survival of previous
intervals

Interpretation of Parameters

b1: Log odds of event in 1st
interval among TRT ¼ 0

b2: Log odds of event in 2nd
interval given survival of 1st
interval among TRT ¼ 0

b3: Log odds of event in 3rd
interval given survival of first
two intervals among TRT ¼ 0

b4: Log odds ratio for TRT
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The dummy variables play a similar role to that
of the intercept in a conventional regression,
providing a baseline outcome measure for
the case in which all predictors are zero (e.g.,
TRT¼ 0). In general, the baseline measuremay
differ for each interval, which is the reason that
the model contains 3 dummy variables rather
than 1 intercept.

The odds ratio comparing TRT ¼ 1 to TRT ¼ 0
is obtained by exponentiating b4. This model
uses the proportional odds (PO) assumption
in that the odds ratio is assumed constant over
time (or at least constant at the end of each
interval). This assumption can be tested by
including interaction (product) terms with
TRT and two of the dummy variables in the
model. A statistically significant product term
would suggest a violation of the PO assump-
tion. However, if there are sparse data
corresponding to particular intervals, it will
not be practical to carry out such a test on
those intervals.

Logistic regression is not the only type of
binary regression that may be considered for
interval-censored data. An alternative binary
model (shown on the left) uses the comple-
mentary log–log link function rather than
the logit link function that is used for the
more familiar logistic regression.

A model using a complementary log–log link
function expresses the log negative log survival
probability as a linear function of regression
parameters. By contrast, a model using a logit
link function expresses the log odds of failure
(i.e., getting the event) as a linear function of
regression parameters.

D1, D2, D3 play similar role as inter-
cept

� Baseline measure when
covariates are zero

� 3 parameters rather than 1
intercept
○ Baseline measure may differ

for each interval

Odds Ratio (TRT ¼ 1 vs. TRT ¼ 0)
¼ exp(b4)

Model uses PO assumption

� OR constant over time
� PO assumption can be tested

○ Include interaction terms
with TRT and dummy
variables

○ Significant interaction
suggests PO violation

○ Need ample data to
practically carry out test

Alternative Binary Model

log(�log(1 � P(Y ¼ 1)))
¼ b1D1 þ b2D2 þ b3D3 þ b4TRT

where 1 � P(Y ¼ 1) is the probabil-
ity of surviving a given interval
conditioned on survival of previous
intervals

Complementary log–log link
� Log–log survival modeled as

linear function of regression
parameters

Logit link
� Log odds of failure modeled as

linear function of regression
parameters
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The complementary log–log binary model is
a proportional hazards model. The hazard
ratio comparing TRT ¼ 1 to TRT ¼ 0 is
obtained by exponentiating b4.

Recall we can use log–log survival curves to
evaluate the PH assumption for a Cox model.
If the effects are additive (e.g., parallel for TRT
¼ 1 and TRT ¼ 0) then the PH assumption is
assumed to hold. The underlying idea is similar
for the complementary log–log link function in
that additive effects are assumed on the log–log
scale (e.g., comparing TRT ¼ 1 to TRT ¼ 0).

In theory, the time-to-event variable in survival
analyses is thought of as a continuous variable.
In practice, however, the time variable is typi-
cally an interval of time. For example, if time is
measured in months and an event occurs in
month 7 then the event is recorded as having
occurred in a specific interval lasting a month.

Discrete survival analysis is a survival analy-
sis in which the outcome variable is discrete,
both in theory and in practice. For example,
consider a study in which women who stop
using oral contraception are followed until
pregnancy. The outcome is defined as the num-
ber of menstrual cycles until pregnancy. The
number of cycles rather than the time to preg-
nancy is used because the cycle length varies
among women and a woman ovulates only
once per menstrual cycle (i.e., one opportunity
per cycle to become pregnant). The number of
cycles is a discrete outcome. A fraction of a
cycle does not make sense.

Complementary log–log model is
PH model

� HR (TRT ¼ 1 vs. TRT ¼ 0)
¼ exp(b4)

� HR constant over time

Log–log survival curves:
parallel ⟹ additive effects

⟹ PH

Complementary log–log link:
additive effects on log–log scale

⟹PH

In theory
� Survival time is continuous

In practice
� Survival time measured in

intervals
○ If event occurred in month 7

then event occurred in an
interval of time

Discrete survival analysis

� Discrete time
� for example, number of

menstrual cycles to pregnancy
rather than time to pregnancy
○ Fraction of cycle does not

make sense
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Binary regression, as described in this section,
can be applied for discrete survival outcomes
in a similar manner to that described for
interval-censored outcomes. With this method,
subjects can be conceptualized as surviving
discrete units of time analogously as subjects
surviving continuous intervals of time.

XII. Frailty Models In this section we consider the inclusion of
frailty to a survival model. Frailty is a random
component designed to account for variability
due to unobserved individual-level factors that
is otherwise unaccounted for by the other pre-
dictors in the model.

Consider a survival model with a continuous
age variable and dichotomous smoking status
variable as the only predictors. Under this
model the survival function for a 33-year-old
smoker might be conceptualized in different
ways. One way is as the survival function for
an individual 33-year-old smoker. The second
way is as some kind of averaging over a theoret-
ical large population of 33-year-old smokers.

Now suppose a “frailty” component is included
in themodel. Under this model, we can concep-
tualize survival functions specific to each indi-
vidual. If Jake and Blake are both 33-year-old
smokers, not only might their observed failure
times be different, but under this model their
individual survival functions could also be
different. Jake may be more “frail” than Blake
due to unobserved factors accounting for indi-
vidual level differences in his hazard and sur-
vival functions. These unobserved factors may
contribute an extra layer of heterogeneity,
leading to greater variability in survival times
than might be expected under the model (e.g.,
Weibull) without the frailty component.

Analyzing discrete survival data

� Can use binary regression
� Analogous to interval-censored

data
○ Discrete outcome —

subjects survive discrete
units of time

○ Interval outcomes —
subjects survive intervals of
time

Frailty

� Random component
� Accounts for extra variability

from unobserved factors

Conceptualize S(t) two ways:

� For an individual
� Averaging over a theoretical

large population

With Frailty Component

Jake and Blake
1. May have different S(t) due to

unobserved factors
2. Extra source of variability in

outcome (e.g., more variation
than expected under Weibull)

Without Frailty Component

Jake and Blake
1. Have same S(t)
2. May have different event times

because event time is random,
following some distribution
(e.g., Weibull)
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The frailty a is an unobserved multiplicative
effect on the hazard function assumed to fol-
low some distribution g(a) with a > 0 and the
mean of a equal to 1. The variance of a is a
parameter y (theta) that is typically estimated
from the data.

An individual’s hazard function conditional on
the frailty can be expressed as a multiplied by
h(t). Using the relationship between the sur-
vival and hazard functions, the corresponding
conditional survival function can be expressed
as S(t) raised to the a power.

Individuals with a > 1 have an increased haz-
ard and decreased probability of survival com-
pared to those of average frailty (a ¼ 1).
Similarly, individuals with a < 1 have a
decreased hazard and increased probability of
survival compared to those of average frailty.

With frailty models, we distinguish the individ-
ual level or conditional survival function
S(t|a) discussed above, from the population
level or unconditional survival function
SU(t), which represents a population average.
Once the frailty distribution g(a) is chosen, the
unconditional survival function is found by
integrating over the conditional survival func-
tion S(t|a) times g(a), with respect to a. The
corresponding unconditional hazard hU(t) can
then be found using the relationship between
the survival and hazard functions (see left).

The frailty component a (a > 0)

� Unobserved multiplicative
effect on hazard

� Follows distribution g(a) with
m ¼ E(a) ¼ 1

� Var(a) ¼ y, parameter to be
estimated

Hazard and survival conditioned
on frailty

h(t|a) ¼ ah(t)
S(t|a) ¼ S(t)a

a > 1

� Increased hazard: ah(t) > h(t)
� Decreased survival: S(t)a < S(t)

a < 1

� Decreased hazard: ah(t) < h(t)
� Increases survival: S(t)a > S(t)

a ¼ 1 (average frailty): ah(t) ¼ h(t)

Survival functions
(with frailty models)

1. Conditional, S(t|a), individual
level

2. Unconditional, SU(t),
population level

Unconditional survival function
SU(t)

SUðtÞ ¼ R1
0

SðtjaÞg af gda

hUðtÞ ¼ �d½SUðtÞ�=dt
SUðtÞ
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Any distribution for a > 0 with a mean of 1
can theoretically be used for the distribution
of the frailty. Stata supports two distributions:
the gamma distribution and the inverse-
Gaussian distribution for the frailty. With
the mean fixed at 1, both these distributions
are parameterized in terms of the variance y
and typically yield similar results.

To illustrate the use of a frailty model, we apply
the data from the Veteran’s Administration
Lung Cancer Trial described in Chapter 5. The
exposure of interest is treatment status TX
(standard ¼ 1, test ¼ 2). The control variables
are performance status (PERF), disease dura-
tion (DD), AGE, and prior therapy (PRIORTX),
whose coding is shown on the left. The out-
come is time to death (in days).

Output from running a Weibull PH model
without frailty using Stata software is shown
on the left (Model 1). The model can be
expressed: h(t) ¼ lptp�1 where

l ¼ exp b0 þ b1 TXþ b2PERFþ b3DDð
þb4 AGEþ b5 PRIORTXÞ:

The estimate of the hazard ratio comparing
TX ¼ 2 vs. TX ¼ 1 is exp(0.137) ¼ 1.15
controlling for performance status, disease
duration, age, and prior therapy. The estimate
for the shape parameter is 0.982 suggesting a
slightly decreasing hazard over time.

Frailty distribution g(a), a > 0,
E(a) ¼ 1

Stata offers choices for g(a)
1. Gamma
2. Inverse-Gaussian
Both distributions parameterized
in terms of y, where Var(a) ¼ y

EXAMPLE

Vet Lung Cancer Trial
Predictors:
TX(dichotomous:1¼ standard,2¼ test)
PERF (continuous: 0 ¼ worst,
100 ¼ best)

DD (disease duration in months)
AGE (in years)
PRIORTX (dichotomous: 0 ¼ none,
10 ¼ some)

Model 1. No Frailty

Weibull regression (PH form)
Log likelihood ¼ �206.20418

_t Coef. Std. Err. z p> |z|

tx .137 .181 0.76 0.450
perf �.034 .005 �6.43 0.000
dd .003 .007 0.32 0.746
age �.001 .009 �0.09 0.927
priortx �.013 .022 �0.57 0.566
_cons �2.758 .742 �3.72 0.000

/ln_p �.018 .065 �0.27 0.786

p .982 .064
1/p 1.02 .066
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Model 2 (output on left) is the same Weibull
model as Model 1 except that a frailty compo-
nent has been included. The frailty in Model
2 is assumed to follow a gamma distribution
with mean 1 and variance equal to theta (y).
The estimate of theta is 0.861 (bottom row of
output). A variance of zero (theta ¼ 0) would
indicate that the frailty component does not
contribute to the model. A likelihood ratio test
for the hypothesis theta ¼ 0 is shown directly
below the parameter estimates and indicates a
chi-square value of 12.18 with 1 degree of free-
dom yielding a highly significant p-value of
0.000 (rounded to three decimals).

Notice how all the parameter estimates are
altered with the inclusion of the frailty. The
estimate for the shape parameter is now 1.54,
quite different from the estimate 0.982 obtained
from Model 1. The inclusion of frailty not only
has an impact on the parameter estimates but
also complicates their interpretation.

Before discussing in detail how the inclusion of
frailty influences the interpretation of the para-
meters, we overview some of the key points
(listed on the left) that differentiate Model 2
(containing the frailty) and Model 1.

Model 2 contains one additional parameter,
the variance of the frailty. However, the actual
values of each subject’s frailty are not esti-
mated. The regression coefficients and Weibull
shape parameter also differ in their interpreta-
tions for Model 2 compared to Model 1. We
now elaborate on these points.

EXAMPLE: (continued)

Model 2. With Frailty

Weibull regression (PH form)
Gamma frailty
Log likelihood ¼ �200.11338

_t Coef. Std. Err. z P>|z|

tx .105 .291 0.36 0.719
perf �.061 .012 �5.00 0.000
dd �.006 .017 �0.44 0.663
age �.013 .015 �0.87 0.385
priortx �.006 .035 �0.18 0.859
_cons �2.256 1.100 �2.05 0.040

/ln_p .435 .141 3.09 0.002
/ln_the �.150 .382 �0.39 0.695

p 1.54 .217
1/p .647 .091
theta .861 .329

Likelihood ratio test of theta ¼ 0:
chibar2(01) ¼ 12.18
Prob>¼chibar2¼0.000

Comparing Model 2 with Model 1

� There is one additional
parameter to estimate in
Model 2

� The actual values of
individuals’ frailty are not
estimated in Model 2

� The coefficients for the
predictor variables in Models 1
and 2 have different estimates
and interpretation

� The estimate of the shape
parameter is <1.0 for Model 1
and >1.0 for Model 2
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For Model 2 we can express the Weibull model
with a gamma distributed frailty in terms of the
individual level hazard for the jth subject.

If aj denotes the frailty for the jth subject, then
that subject’s hazard hj (t|aj) can be expressed
as aj multiplied by h(t), where h(t) is the
Weibull hazard function parameterized in
terms of the predictor variables and their
regression coefficients (see left).

The values for each aj are not estimable because
there is a level of frailty associated with each
data point. If we tried to estimate each subject’s
frailty, then there would be more parameters to
estimate than observations in the dataset and
the model would be overparameterized.

Rather, the variance of the frailty is estimated.
The gamma distribution is a two-parameter
distribution. Because the mean is set at 1, we
need only estimate its variance to fully specify
the frailty distribution.

The estimated coefficient for TX using Model
2 is 0.105. By exponentiating, we obtain exp
(0.105) ¼ 1.11. This is the estimated hazard
ratio for two individuals having the same
frailty in which one takes the test treatment
and the other takes the standard treatment
controlling for the other co-variates in the
model. Thus, for two individuals with the
same frailty, we can use the coefficient esti-
mates from Model 2 to estimate the ratio of
conditional hazards.

Model 2

Hazard for jth individual:

hj(t|aj) ¼ ajh(t) j ¼ 1, 2,. . ., n

where h(t) ¼ lptp�1

with l ¼ exp b0 þ b1 TXð
þ b2 PERFþ b3 DD

+ b4 AGE þ b5 PRIORTXÞ
and where a 	 gamma (m ¼ 1,
variance ¼ y)

aj not estimable
� An aj associated with each

subject
� Too many parameters

Rather, var[g(a)] is estimated
� Gamma is 2-parameter

distribution
○ Mean set at 1.0
○ y ¼ Var(a) is estimated

Interpreting coefficients inModel 2

cHR ¼ exp b̂1
� �

¼ 1:11

Estimates HR comparing two indi-
viduals
� With same a
� One with TX ¼ 2, other with

TX ¼ 1
� With same levels of other

predictors
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To clarify, recall that the individual level or
conditional hazard function can be expressed
as a multiplied by h(t). Suppose h1(t|a1) and
h2(t|a2) are the conditional hazard functions
for individuals who use the standard and test
treatments, respectively, at the mean levels of
the other covariates. If the ratio of h2(t) and
h1(t) equals exp(b1), then the ratio of h2(t|a2)
and h1(t|a1) equals exp(b1) only if the indivi-
duals have the same level of frailty (i.e., a1 ¼
a2; see left).

Another way to interpret the exponentiated
coefficient for TRT, exp(b1), is as a ratio of
conditional hazards from the same individual.
This measure can be used to estimate an effect
for an individual taking the test treatment
instead of the standard treatment.

A somewhat striking difference in the output
fromModel 1 andModel 2 is the estimate of the
shape parameter. The hazard estimated from
Model 1 (without the frailty) is estimated to
decrease over time because p̂ < 1. By contrast,
the estimated individual level hazard from
Model 2 is estimated to increase over time
because p̂ > 1. However, the interpretation of
the shape parameter in Model 2 has an addi-
tional complication that should be considered
beforemaking direct comparisonswithModel 1.
For frailty models, we have to distinguish
between the individual level and population
level hazards.

Although the estimated individual level or con-
ditional hazard from Model 2 is estimated to
increase over time, the estimated population
level or unconditional hazard does not strictly
increase. The unconditional hazard first
increases but then decreases to zero, resulting
in a unimodal shape due to the effect of the
frailty, as we will now explain.

Recall: h(t|a) ¼ ah(t)

TX ¼ 1: h1(t|a1) ¼ a1h1(t)
TX ¼ 2: h2(t|a2) ¼ a2h1(t)

If
h2ðtÞ
h1ðtÞ ¼ exp b1ð Þ

then
na1h1ðtÞ
na2h2ðtÞ

¼ exp b1ð Þ

only if a1 ¼ a2

Another interpretation for exp(b1)

� Ratio of conditional hazards
from the same individual

� Effect for individual taking test
rather than standard treatment

Model 1 ( p̂¼ 0.982)
Decreasing hazard for individual
and population because (p̂< 1)

Model 2 ( p̂¼ 1.54)
Complication:

Individual level hazard
vs

Population level hazard

For Model 2
Conditional hazard increases

but
unconditional hazard unimodal
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On the left is a plot (from Model 2) of the
estimated unconditional hazard for those on
standard treatment (TX ¼ 1) with mean values
for the other covariates. The graph is unimo-
dal, with the hazard first increasing and then
decreasing over time. So each individual has an
estimated increasing hazard (p̂ ¼ 1.54), yet the
hazard averaged over the population is unim-
odal, rather than increasing. How can this be?

The answer is that the population is comprised
of individuals with different levels of frailty.
The more frail individuals (a > 1) have a
greater hazard and are more likely to get the
event earlier. Consequently, over time, the “at
risk group” has an increasing proportion of less
frail individuals (a > 1), decreasing the popula-
tion average, or unconditional, hazard.

To clarify the above explanation, consider the
graph on the left in which the hazards for four
individuals increase linearly over time until
their event occurs. The two individuals with
the highest hazards failed between times t1
and t2 and the other two failed after t2. Conse-
quently, the average hazard (h2) of the two
individuals still at risk at t2 is less than the
average hazard (h1) of the four individuals at
risk at t1. Thus the average hazard of the “at
risk” population decreased from t1 to t2 (i.e.,
h2 < h1) because the individuals surviving past
t2 were less frail than the two individuals who
failed earlier.

This property, in which the unconditional haz-
ard eventually decreases over time because the
“at risk group” has an increasing proportion of
less frail individuals, is called the frailty effect.

Estimated unconditional hazard
Model 2 (TX ¼ 1, mean level for
other covariates, p̂ ¼ 1.54)

Four increasing individual level
hazards, but average hazard de-
creases from t1 to t2

Frailty Effect

hU(t) eventually decreases
because

“at risk group” becoming less frail
over time
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The unconditional hazard function hU(t), with
gamma frailty is shown on the left.

If y ¼ 0, then hU(t) reduces to h(t) indicating
that there is no frailty.

An examination of the expression for hU(t)
gives further insight into how we obtained an
estimated unconditional hazard of unimodal
shape. S(t) and h(t) represent the survival and
hazard functions ignoring the frailty, which for
Model 2 corresponds to a Weibull distribution.
If t ¼ 0 then hU(t) ¼ h(t), which for Model
2 yields an estimated increasing hazard. As
t gets larger, and if y > 0, the denominator
gets larger (because ln[S(t)] is negative) until
eventually hU(t) approaches zero. So hU(t) is
increasing at t ¼ 0 but eventually decreases to
zero, which means at some point in time, hU(t)
changes direction.

A consequence of the frailty effect is the need to
distinguish between the ratio of individual
level hazards and the ratio of population level
hazards. For the population level hazards, the
PH assumption is violated when a gamma (or
inverse-Gaussian) distributed frailty is added
to a PH model. To see this for gamma frailty,
let hU1(t) and hU2(t) be the unconditional haz-
ard functions representing the standard and
test treatments, respectively, at the mean levels
of the other covariates. The ratio of these
hazards is shown on the left.

Unconditional hazard hU(t) with
gamma frailty

hUðtÞ ¼ hðtÞ
1� y ln½SðtÞ�

If y ¼ 0 then hU(t) ¼ h(t)
(no frailty)

For Model 2:

� h(t) and S(t) are Weibull
� At t ¼ 0

○ hU(t) ¼ h(t) (increasing)
� As t gets large

○ If y > 0 then hU(t) ! 0
� So hU(t) increases and then

decreases (unimodal)

Population level hazards (with
gamma frailty)

hU1ðtÞ ¼ h1ðtÞ
1� y ln½S1ðtÞ� for TX ¼ 1

hU2ðtÞ ¼ h2ðtÞ
1� y ln½S2ðtÞ� for TX ¼ 2

Ratio of unconditional hazards
(not PH)

hU2ðtÞ
hU1ðtÞ ¼

h2ðtÞ
h1ðtÞ �

1� y ln½S1ðtÞ�
1� y ln½S2ðtÞ�
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If the ratio of h2(t) and h1(t) equals exp(b1),
then the ratio of the unconditional hazards
equals exp(b1) times the ratio of 1 � y ln[S1(t)]
and 1� y ln[S2(t)]. This latter ratio is a function
of time and only cancels when t equals zero.
Therefore the ratio of the unconditional
hazards is not constant over time, thus violat-
ing the PH assumption.

Generally, survival plots are estimated over a
population average (e.g., Kaplan–Meier).
When considering PH models without frailty,
we do not need to distinguish between the con-
ditional and unconditional survival functions.
However, this distinction needs to be consid-
ered with frailty models.

Suppose we plot Kaplan–Meier log–log survival
estimates evaluating the PH assumption for
treatment (TX ¼ 2 vs. TX ¼ 1), and the plots
start out parallel but then begin to converge
over time. One interpretation is that the effect
of the treatment weakens over time. For this
interpretation, a PH model is not appropriate.
Another interpretation is that the effect of the
treatment remains constant over time but the
plots converge due to unobserved heterogene-
ity in the population. For this interpretation, a
PH model with frailty would be appropriate.

Recall, from Section VI of this chapter, that a
Weibull PH model is also an AFT model. The
only difference is in the way the model is para-
meterized. We next present the AFT form of
Model 2.

� Generally averaged over
population
○ An important consideration

for frailty models

Suppose ln[�ln Ŝ (t)] curves for TX
start parallel but then converge over
time:

1. It may be effect of TX weakens
over time⇓
PH model not appropriate

2. It may be effect of TX is
constant over time but
unobserved heterogeneity is in
population⇓
PH model with frailty is
appropriate

Model 2 (Weibull with frailty)

� Used PH parameterization
� Can equivalently use AFT

parameterization
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Before stating the model, we show the uncon-
ditional survival function using gamma frailty.
Recall that the unconditional survival function
is obtained by integrating over the frailty, as
shown on the left.

Model 3 (the AFT form of Model 2) is presented
in terms of the unconditional survival function
SU(t). The unconditional survival function is a
function of S(t), which represents the Weibull
survival function. The Weibull survival func-
tion, in turn, is parameterized in terms of the
shape parameter p and regression coefficients
using AFT parameterization (see left).

The output for Model 3, shown on the left, is
similar to that obtained from Model 2. The
estimates for theta and p are identical to those
obtained from Model 2. The difference is that
the regression coefficients obtained with
Model 3 use AFT parameterization, i.e., multi-
ply by �p ¼ �1.54 to get the PH coefficient
estimates in Model 2.

An estimated acceleration factor of 0.93 com-
paring two individuals with the same level of
frailty, for the effect of treatment (TX ¼ 2 vs.
TX ¼ 1) and controlling for the other covari-
ates, is obtained by exponentiating the esti-
mated coefficient (�0.068) of the TX variable.

Unconditional survival function
SU(t) with gamma frailty g(a)

SU(tÞ ¼
Z1

0

SðtjaÞg ðaÞd a

¼ ½1� y ln SðtÞ½ ��1=y

Model 3 (Weibull AFT with gamma
frailty)

SUðtÞ ¼ ½1� y In S(t)��1=y

where S(t) ¼ exp(�ltp) (Weibull)
and

1

l1=p
¼ exp a0 þ a1TXð
þ a2 PERFþ a3 DD

þa4 AGEþ a5 PRIORTXÞ

Model 3 Output

Weibull regression (AFT form)
Gamma frailty
Log likelihood ¼ �200.11338

_t Coef. Std. Err. z P > |z|

tx �.068 .190 �0.36 0.721

perf .040 .005 8.37 0.000

dd .004 .009 0.44 0.661

age .008 .009 0.89 0.376

priortx .004 .023 0.18 0.860

_cons 1.460 .752 1.94 0.052

/ln_p .435 .141 3.09 0.002

/ln_the �.150 .382 �0.39 0.695

p 1.54 .217

1/p .647 .091

theta .861 .329

Likelihood ratio test of theta ¼ 0:

chibar2(01) ¼ 12.18

Prob>¼chibar2 ¼ 0.000

ĝ TX = 2 vs. 1ð Þ ¼ expð�0:068Þ
¼ 0:93

Comparing individuals with same a
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Another interpretation for this estimate is that
an individual taking the test treatment instead
of the standard treatment reduces her median
survival time (i.e., contracts her individual level
survival function) by an estimated factor of
0.93. This estimate suggests a slight harmful
effect from the test treatment compared to the
standard treatment. However, the estimated
coefficient for TX is not significant, with a p-
value of 0.721.

A key difference between the PH and AFT
formulations of this model is that if the
AFT assumption holds at the individual
level, then it will also hold at the population
level using the gamma (or inverse-Gaussian)
distributed frailty.

To see this for gammafrailty, letSU1(t) andSU2(t)
be the unconditional survival functions repre-
senting the standard and test treatments respec-
tively, at the mean levels of the other covariates.

Also let g represent the individual level acceler-
ation factor for treatment; that is, S1(t) ¼
S2(gt). Then SU1(t) ¼ SU2(gt) (see left).

Thus, for models with gamma frailty, if the
AFT assumption holds at the individual level
then it also holds at the population level.

Interpreting ĝ

� Taking test treatment reduces
individual’s median survival
time by factor of 0.93

� Suggests slightly harmful effect
� â1 is not significant (p ¼ 0.721)

PH assumption
Individual level PH n) Population
level PH

AFT assumption
Individual level AFT ) Population
level AFT

Population level survival (with
gamma frailty)

SU1(t) ¼[[1 � y In S1(t)]
�1/y

SU2(t) ¼[[1 � y In S2(t)]
�1/y

If S1(t) ¼ S2(gt)
then

SU1ðtÞ ¼ ½1� y In S1 tð Þ½ ��1=y

¼ ½1� y In S2 gtð Þ½ ��1=y

¼ SU2 gtð Þ

Thus,
Individual level AFT

) Population level AFT
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The coefficient estimates obtained from Model
3 can therefore be used at the population level
as well as the individual level. So another inter-
pretation for the estimated acceleration factor
for treatment is that the test treatment reduces
the median survival time in the population by
an estimated factor of 0.93.

Model 2 and Model 3 are the same model but
use different parameterizations. The models
provide identical estimates for the hazard and
survival functions.

Recall that the estimated unconditional hazard
function obtained from this frailty model is of
unimodal shape. Alternatively, a log-logistic
(or lognormal) model, which accommodates a
unimodal-shaped hazard function, could have
been run without the frailty (see Practice Exer-
cises 8 to 11 for comparison).

The likelihood for Model 3 can be formulated
using the unconditional probability density
function fU(t) which is the product of the
unconditional hazard and survival functions.
The likelihood is constructed in a similar man-
ner to that described previously in this chapter
except that fU(t) is used for the likelihood
rather than f(t) (see Section X). The main dif-
ference is that there is one additional parame-
ter to estimate, the variance of the frailty.

Coefficient estimates fromModel 3

� Applies to individual or
population

� Interpretation of exp(â1) ¼ 0.93
○ Median survival time for

individual reduced by factor
of 0.93

○ Median survival time
reduced in population by
factor of 0.93

Models 2 and 3:
Same model, different
parameterization
Same estimates for
S(t), SU(t), h(t), hU(t)

Models 2 and 3: Weibull with
gamma frailty
� Unimodal unconditional

hazard

Log-logistic model
� Accommodates unimodal

hazard without a frailty
component

Parametric likelihood with frailty
� Uses fU(t), where fU(t) ¼ hU(t)

SU(t)
� Formulated similarly to that

described in Section X with
fU(t) replacing f(t)

� Additional parameter y
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Another type of frailty model is the shared
frailty model. With this model, clusters of sub-
jects are assumed to share the same frailty. For
example, subjects from the same family may be
similar with respect to some unobserved
genetic or environmental factors. Allowing
family members to share the same frailty is
designed to account for such similarities.

By contrast, the frailty described previous to
this point (unshared frailty) has been assumed
to be distributed independently among subjects.

Adding shared frailty to a survival model plays
an analogous role to that of adding a random
effect to a linear regression as a way to account
for correlation between clusters of observa-
tions (Kleinbaum and Klein 2010). The esti-
mate for the variance parameter y in a shared
frailty model can be thought of as a measure of
the degree of correlation, where y ¼ 0 indicates
no within-cluster correlation.

For a shared frailty model, the conditional
hazard function for the jth subject from the
kth cluster can be expressed as ak multiplied
by hjk(t) where hjk(t) depends on the subject’s
covariates Xjk. Notice that the frailty ak is sub-
scripted by k, but not by j. This indicates that
subjects from the same cluster share the same
frailty. If, for example, subjects are clustered by
family, then subjects from the same family are
assumed to have the same frailty.

Shared Frailty

� Clusters share same frailty
� For example, subjects from

same family may share
unobserved factors
○ Shared frailty designed to

account for such similarities

Unshared Frailty

� The type of frailty we have
described previous to this point

� Frailty distributed
independently among subjects

Shared Frailty Models

� Similar to random effect
regression models

� Accounts for within-cluster
correlation

� y is a measure of the degree of
correlation

Hazard conditional on shared
frailty (for jth subject in kth cluster)

hjk(t|ak) ¼ akhjk(t)
where

hjk(t) ¼ h(t|Xjk)

for j ¼ 1, 2,. . ., nk

and total nk subjects in kth cluster

If family is the cluster variable,
then

subjects of same family have same
ak
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The frailty in a shared frailty model or
unshared frailty model is fundamentally the
same, a random effect to account for a source
of variation due to unobservable, or latent, fac-
tors. However, the data to which the shared
and unshared frailty is applied are different,
affecting differences in interpretation and
methods of estimation.

For unshared frailty models, a subject’s sur-
vival is assumed to be independent of the sur-
vival of other subjects in the study population.
For shared frailty models, however, the frailty
accounts for dependence among subjects who
share the same frailty. Shared frailty provides
an approach to account for correlation in the
data due to unobservable factors common
within clusters of subjects.

The formulation of the likelihood is more com-
plicated for shared frailty models than it is
for unshared frailty models. To construct the
shared frailty likelihood, the unconditional
contribution for each cluster of subjects is
formulated separately by integrating out the
frailty from the product of each subject’s con-
ditional contribution. The full likelihood is
then formulated as the product of the contri-
butions from each cluster (see Gutierrez 2002
for details).

Shared and unshared frailty

� Fundamentally the same
○ Accounts for variation due

to unobservable factors
� Difference in data to which

they are applied
○ Affects interpretation and

methods of estimation

Unshared frailty models
� Subjects assumed independent

Shared frailty models
� Accounts for dependence

among subjects who share
frailty

Likelihood for shared frailty models

� More complicated than for
unshared frailty models

� Unconditional contribution of
each cluster formulated
separately by integrating out
g(a)

� Full likelihood formed as
product of unconditional
contribution from each cluster
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Up to this point we have discussed frailty in
terms of parametric models. Stata (version 8)
allows shared frailty to be included in a Cox
model in order to account for within-group
correlation. The conditional hazard function
for the jth subject from the kth cluster can be
expressed as ak multiplied by the baseline haz-
ard h0(t) multiplied by exp(bXjk). The frailty
component is assumed to follow some distribu-
tion even though the distribution is unspecified
for the rest of the model. Stata only allows a
gamma distribution for the frailty to be
included with a Cox model.

If a gamma-distributed frailty component is
added to the Cox model, then the PH assump-
tion is not satisfied for the unconditional
hazards. In this framework, the frailty in a
Cox model can be thought of as a source of
random error that causes violation of the PH
assumption at the population level. Conse-
quently, care must be taken in the interpreta-
tion of the coefficient estimates. They can only
be used to obtain estimates for hazard ratios
conditioned on the same level of frailty.

Shared frailty models can also be applied to
recurrent event data. It is reasonable to expect
that multiple events occurring over follow-up
from the same individual would be correlated.
To handle within-subject correlation, clusters
are formed, each containing observations from
the same subject. In this setting, it is not the
case that different subjects share the same
frailty. Rather, multiple observations repre-
senting the same subject share the same frailty.

Survival analyses on recurrent events are
the focus of the next chapter (Chapter 8) of
this text. An example of a Weibull model with
shared frailty applied to recurrent event data
is presented in the next chapter.

Shared frailty in Cox model

� Provided by Stata
○ Only gamma distributed

shared frailty available
� Accounts for within-group

correlation

Cox shared frailty model

hij(t|aj) ¼ akh0(t) exp(bXjk)
for j ¼ 1, 2,. . ., nk

total of nk subjects in kth cluster

PH violation of hU(t) in Cox model

� if gamma-distributed frailty
included

� Interpreting coefficient
estimates
○ Only used for HR estimates

among those who share
same a

Recurrent events

� Multiple events from same
subject

� Events from same subject may
be correlated

� Clusters are formed
representing each subject
○ Different subjects do not

share frailty
○ Observations from same

subject share frailty

Recurrent events:

� Topic of next chapter
(Chapter 8)
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XIII. Summary In this chapter we presented parametric survival
models as an alternative to the Cox model. They
are called parametric models because the dis-
tribution of the time-to-event variable is speci-
fied in terms of unknown parameters, which are
estimated from the data. Distributions that
are commonly utilized are the exponential, the
Weibull, the log-logistic, the lognormal, and the
generalized gamma.

More precisely, for parametric survival models,
it is the probability density function f(t) of the
distribution that is specified in terms of the
parameters. Once f(t) is specified, the corres-
ponding survival and hazard functions S(t) and
h(t) can also be determined. Moreover, specify-
ing any one of the probability density function,
survival function, or hazard function allows
the other two functions to be determined.

The proportional hazards (PH) assumption is
the underlying assumption for a Cox PHmodel.
However, parametric survival models need not
be proportional hazards models. Many para-
metric models are acceleration failure time
(AFT)models rather than proportional hazards
models.

The acceleration factor (g) is the key measure
of association obtained in an AFT model.
It describes the “stretching out” or contraction
of survival functions when comparing one
group to another. If S1(t) and S2(t) are the
survival functions for Group 1 and Group 2,
respectively, then the AFT assumption can be
expressed as S2(t) ¼ S1(gt).

We presented detailed examples of the expo-
nential, Weibull, and log-logistic model using
the remission dataset.

Parametric Models

� Assume distribution for
survival time

� Distribution specified in terms
of parameters

� Parameters estimated from data

fðtÞ specified)corresponding SðtÞ;
hðtÞ also determined

Moreover,
Specifying one of f(t), S(t), or h
(t) determines all three
functions

Parametric models

� Need not be PH models
� Many are AFT models

Acceleration factor (g)

� Key measure of association in
AFT models

� Describes stretching or
contraction of S(t)

AFT assumption

S2ðtÞ ¼ S1ðgtÞ
" "

Group 2 Group 1

Detailed examples presented:

� Exponential model
� Weibull model
� Log-logistic model

Presentation: XIII. Summary 341



The underlying assumption for an exponential
model, a special case of the Weibull model, is
that the hazard function is constant over time
(i.e., h(t) ¼ l). The Weibull model is unique
in that if the PH assumption holds then the
AFT assumption also holds (and vice versa).
The log-logistic model does not satisfy the PH
assumption. However, if the AFT assumption
holds in a log-logistic model, then the pro-
portional odds (PO) assumption also holds
(and vice versa).

The idea underlying the proportional odds
assumption is that the survival (or failure)
odds ratio comparing two specifications of
covariates remains constant over time.

We presented graphical approaches for evalu-
ating the appropriateness of the exponential,
Weibull, and log-logistic model by plotting a
function of the Kaplan–Meier survival esti-
mates Ŝ(t) against the log of time and then
checking for linearity.

For evaluation of the exponential and Weibull
assumptions, the ln[�ln Ŝ(t)] is plotted against
ln(t) and for evaluation of the log-logistic
assumption the log odds of Ŝ(t) is plotted
against ln(t).

We briefly discussed other parametric models
such as the generalized gamma, lognormal,
and Gompertz models and showed additional
parametric approaches such asmodeling ancil-
lary (shape) parameters as a function of pre-
dictor variables.

Exponential Model

� h(t) = l (constant hazard)
� Special case of Weibull model

Weibull Model

� AFT , PH

Log-logistic Model

� Not a PH model
� AFT , PO

PO assumption

OR ¼ Sðt; x
Þ=½1� Sðt; x
Þ�
Sðt; xÞ=½1� Sðt; xÞ�

OR is constant over time

Graphical Evaluation

Weibull and Exponential

� Plot ln½�ln ŜðtÞ� against lnðtÞ

Log-logistic:

� Plot ln
ŜðtÞ

ð1� ŜðtÞÞ

" #
against lnðtÞ:

Check for linearity

Presented other parametric models

� Generalized gamma model
� Lognormal model
� Gompertz model
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The parametric likelihood was developed and
includes adiscussionof left-, right-, and interval-
censored data. If a subject has an event at time t,
then that subject’s contribution to the like-
lihood is f(t). On the other hand, if a subject is
censored (i.e., exact time of event unknown),
then the subject’s contribution to the likelihood
is found by integrating over f(t). The integra-
tion limits are determined by the time and type
of censorship (see left).

Assuming independence among subjects, the
full likelihood can be formulated as a product
of each subject’s contribution.

We showed how binary regression could be
applied to interval-censored data by defining
a dichotomous outcome variable indicating
subjects’ survival or failure over each interval
of their follow-up. The data layout for this type
of analysis allows multiple observations per
subject, representing intervals of survival prior
to failure (or censorship).

Binary regression can also be used for discrete
survival analysis in which the “time-to-event”
variable is considered discrete rather than
continuous. The data layout is similar to that
for interval-censored data except subjects are
conceptualized as surviving discrete units of
time rather than continuous intervals of time.

Contributions to Likelihood

If event at t, contributes f(t)

If censored, integrate over f(t)

Zt1
0

f ðtÞdt : left� censored at t1

Z1

t1

f ðtÞdt : right� censored at t1

Zt2
t1

f ðtÞdt :interval� censored

from t1 to t2

Full likelihood (L)

L ¼
YN
j¼1

Lj j ¼ 1; 2; . . . ;N

where Lj is the contribution from
jth subject and N ¼ # of subject’s

Binary regression for interval-
censored data

� Follow-up divided into
intervals
○ Allows for multiple

observations per subject
� Binary outcome variable

defined
○ Indicates survival or failure

over each interval

Binary regression for discrete sur-
vival analysis

� Analogous to interval-censored
data
○ Discrete outcome–subjects

survive discrete units of
time

○ Interval outcomes–subjects
survive intervals of time
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We concluded with a discussion of frailty
models. The frailty a is a multiplicative random
effect on the hazard designed to account for
individual-level unobserved factors that add
an extra layer of variability beyond what has
already been specified in the model. The frailty
is generally assumed to follow a distribution
with mean equal to 1 and is typically para-
meterized in terms of the variance y which is
estimated from the data.

Chapters The presentation is now complete. The reader
can review the detailed outline that follows and
then answer the practice exercises and test.

In the next chapter (8) entitled “Recurrent Event
Survival Analysis,” we consider approaches for
analyzing data in which individuals may have
more than one event over the course of their
follow-up.

Frailty, a

hðtjaÞ ¼ ahðtÞ

%
multiplicative from effect on h(t)
mean = 1, varience = y

y estimated from data

1. Introduction to Survival
Analysis

2. Kaplan–Meier Curves and the
Log-Rank Test

3. The Cox Proportional Hazard
Model

4. Evaluating the Proportional
Hazards Assumption

5. The Stratified Cox Procedure
6. Extension of the Cox

Proportional Hazards Model
for Time-Dependent
Covariates

ü7. Parametric Survival Models

Next:

8. Recurrent Event Survival
Analysis
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Detailed
Outline

I. Overview (pages 292–294)

A. Parametric Survival Models

i. Outcome assumed to follow specified
distribution

ii. Weibull, exponential (a special case of the
Weibull), log-logistic, lognormal, and
generalized gamma are supported with
popular software (SAS and Stata)

iii. Contrasts with Cox model in which baseline
hazard and survival functions are not
specified

II. Probability Density Function in Relation to the
Hazard and Survival Function (pages 294–295)

A. If any one of the hazard h(t), survival S(t), or
probability density f(t) functions is known then
the other two functions can be determined.

B. If f(t) is specified, then S tð Þ ¼ R1
t

f uð Þdu
C. If S(t) is specified, then

h(t) ¼ (�d[S(t)]/dt)/S(t) and
f(t) ¼ (�d[S(t)])/dt

D. If h(t) is specified, then S tð Þ ¼ exp � Rt
0

h uð Þdu
� �

and f(t) ¼ h(t)S(t)

III. Exponential Example (pages 295–297)

A. Hazard is constant (i.e., not a function of time)
in an exponential model

i. Stronger assumption than the PH
assumption that the HR is constant

B. Exponential PH model (one predictor X1)

i. In terms of the hazard: h(t) ¼ l where
l ¼ exp(b0 þ b1X1)

ii. Hazard ratio: HR (X1 ¼ 1 vs. X1 ¼ 0) ¼
exp(b1)

IV. Accelerated Failure Time Assumption
(pages 298–300)

A. Underlying assumptions

i. AFT — effect of covariates is multiplicative
with respect to survival time

ii. PH — effect of covariates is multiplicative
with respect to the hazard
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B. The acceleration factor (g) is the key measure of
association in an AFT

i. Acceleration factor is a ratio of survival
times corresponding to any fixed value of
S(t); that is, tA/tB where A and B denote two
individuals for which S(tA) ¼ S(tB)

ii. S2(t)¼ S1(gt), survival function for Group 1,
S1(t) is stretched (or contracted) by a factor
of g compared to survival function for
Group 2, S2(t)

C. AFT illustration

i. Dogs are said to grow older 7 times faster
than humans, SD(t) ¼ SH(7t)

V. Exponential Example Revisited (pages 300–304)

A. Exponential AFT model (one predictor X1)

i. In terms of survival: S(t) ¼ exp(�lt) where
l ¼ exp[�(a0 þ a1 X1)]

ii. In terms of time:
t ¼ [�ln(S(t)] � exp(a0 þ a1X1)

iii. Acceleration factor (X1 ¼ 1 vs. X1 ¼ 0),
g ¼ exp(a1)

B. An exponential PHmodel is an exponential AFT
model (but uses different parameterization)

i. bj ¼ �aj, where bj and �aj are PH and AFT
parameterization for the jth covariate

ii. a > 1 for (X1 ¼ 1 vs. X1 ¼ 0) implies effect of
X1 ¼ 1 is beneficial to survival

iii. HR > 1 for (X1 ¼ 1 vs. X1 ¼ 0) implies effect
of X1 ¼ 1 is harmful to survival

C. Exponential model is a special case of a Weibull
model

i. Graphical approach for evaluating
appropriateness of exponential model is
described in the section on the Weibull
example

VI. Weibull Example (pages 304–309)

A. PH form of theWeibull model (one predictor X1)

i. In terms of the hazard: h(t) ¼ lptp�1 where
l ¼ exp(b0 þ b1X1)

ii. Hazard ratio: HR (X1 ¼ 1 vs. X1 ¼ 0) ¼
exp(b1)
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iii. Weibull hazard is monotonic with its
direction determined by the value of the
shape parameter p

a. p > 1 hazard increases over time

b. p ¼ 1 constant hazard (exponential
model)

c. p < 1 hazard decreases over time

A. Graphical approach for evaluating
appropriateness of Weibull model

i. Plot the log negative log of the
Kaplan–Meier survival estimates against
the log of time for each pattern of covariates

a. If Weibull assumption is correct then
plots should be straight lines of slope p

b. If exponential assumption is correct
then plots should be straight lines with
slope equal to one (p ¼ 1)

c. If plots are parallel straight lines then
Weibull PH and AFT assumptions are
reasonable

B. AFT formof theWeibullmodel (onepredictorX1)

i. In terms of survival:
S(t) ¼ exp(�ltp) ¼ exp[�(l1/pt)p] where
l1/p ¼ exp[�(a0 þ a1X1)]

ii. In terms of time:
t ¼ [�ln(S(t)]1/p � exp(a0 þ a1X1)

iii. Acceleration factor (X1 ¼ 1 vs. X1 ¼ 0),
g ¼ exp(a1)

C. A Weibull PH model is a Weibull AFT model
(but uses different parameterization)

i. Unique property of Weibull model
(exponential is special case, p ¼ 1)

ii. bj ¼ �aj p where bj and aj are PH and AFT
parameterization, respectively, for the jth
covariate

VII. Log-Logistic Example (pages 309–314)

A. Log-logistic hazard function:
h(t) ¼ lptp�1/(1 þ ltp).
i. p � 1 hazard decreases over time

ii. p > 1 hazard first increases and then
decreases over time (unimodal)
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B. Graphical approach for evaluating
appropriateness of log-logistic model

i. Plot the log of the survival odds (using KM
estimates) against the log of time for each
pattern of covariates

a. if log-logistic assumption is correct then
plots should be straight line of slope �p

b. If plots are parallel straight lines then
log-logistic proportional odds (PO) and
AFT assumptions are reasonable

C. Log-logistic AFT model (one predictor X1):

i. In terms of survival:
S(t) ¼ 1/(1þltP) ¼ 1/(1þ(lt1/Pt)P) where
l1/p ¼ exp(�(a0 þ a1X1))

ii. In terms of time:

t =
1

S tð Þ � 1

� �1=p
� exp a0 þ a1X1ð Þ

iii. Acceleration factor (X1 ¼ 1 vs. X1 ¼ 0),
g ¼ exp(a1)

D. Log-logistic proportional odds (PO) model (one
predictor X1)

i. In terms of survival: S(t)¼ 1/(1 þ ltp) where
l ¼ exp(b0 þ b1X1)

ii. Odds of an event (failure odds) by time t:
(1 � S(t))/S(t) ¼ ltp

iii. Odds of surviving event (survival odds)
beyond t: S(t)/(1 � S(t)) ¼ 1/ltp

iv. Failure odds ratio:
HR (X1 ¼ 1 vs. X1 ¼ 0) ¼ exp(b1)
a. PO assumption is that the odds ratio is

constant over time

v. Survival odds ratio:
HR (X1 ¼ 1 vs. X1 ¼ 0) ¼ exp(�b1)
a. Survival odds ratio is reciprocal of

failure odds ratio

E. A log-logistic AFT model is a log-logistic
PO model (but uses different parameterization)

i. Log-logistic model is not a proportional
hazards (PH) model

ii. bj ¼ �ajp where bj and aj are PO and AFT
parameterization for the jth covariate

a. Shape parameter with Stata is
parameterized as gamma ¼ 1/p
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VIII. A More General Form of the AFT Model
(pages 314–316)

A. General form with one predictor (X1):
ln(T) ¼ a0 þ a1X1 þ E

B. Include additional parameter, s:
ln(T) ¼ a0 þ a1X1 þ sE

C. Let s ¼ 1/p ) ln(T) ¼ a0 þ a1X1 þ (1/p) E
D. Additive in terms of ln(T) but multiplicative in

terms of T:

T ¼ exp a0 þ a1 X1 þ 1

p
E

� �

¼ exp a0 þ a1 X1½ � � exp
1

p
E

� �

E. Collapse a0 into baseline term,let

T0 ¼ exp a0ð Þ exp 1
p 2

� �
:

so T ¼ exp(a1X1) � T0

IX. Other Parametric Models (pages 316–318)

A. Generalized gamma model

i. Additional shape parameters give flexibility
in distribution shape

ii. Weibull and lognormal are special cases

B. Lognormal model

i. ln(T) follows a normal distribution

ii. Accommodates AFT model

C. Gompertz model

i. PH model, not AFT model

D. Modeling failure time as an additive model

i. Additive model with one predictor:
T ¼ a0 þ a1TRT þ E (no log link)

E. Modeling ancillary parameters

i. Typically shape parameter p is considered a
fixed constant

ii. Can reparameterize shape parameter in
terms of predictor variables and regression
coefficients

X. The Parametric Likelihood (pages 318–321)

A. Product of each subject contribution (assuming
independence)

B. Subject’s contribution uses probability density
function f(t)

i. Subject contributes f(t) if event is observed
at time t
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ii. Integrate over f(t) if subject is censored

a. Integrate from 0 to t if subject is left-
censored at t

b. Integrate from t to infinity if subject is
right-censored at t

c. Integrate over interval of censorship if
subject is interval-censored

XI. Interval-Censored Data (pages 321–326)

A. Binary regression is alternative approach if data
are interval-censored

B. Binary outcome variable represents survival
or failure over each subinterval of subject’s
follow-up

C. Specify a link function when using binary
regression

i. Logit link for logistic regression

ii. Complementary log–log link is an
alternative to logistic regression

D. Discrete survival analysis

i. Time-to-event variable is discrete

ii. Binary regression can be applied in a
similar manner to that of interval-censored
data

XII. Frailty Models (pages 326–340)

A. The frailty a is an unobserved multiplicative
effect on the hazard function

i. Hazard, conditioned on the frailty,
h(t|a) ¼ ah(t)

ii. Survival, conditioned on the frailty,
S(t|a) ¼ S(t)a

B. Frailty assumed to follow some distribution
g(a) of mean 1 and variance y
i. The variance y is a parameter estimated by

the data

ii. Gamma distribution offered by Stata and
R software

C. Designed to account for unobserved individual-
level factors that influence survival

i. Distinction is made between the individual-
level and population-level hazards. PH
assumption may hold on individual level
but not on population level
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D. Shared frailty models allow individuals to share
the same frailty

i. Play similar role as adding a random effect
to a linear regression

ii. Can account for within-group correlation.

XIII. Summary (pages 341–344)

Practice
Exercises

Answer questions 1 to 5 as true or false (circle T or F)

T F 1. The acceleration factor comparing exposed and
unexposed subjects, (E ¼ 1 vs. E ¼ 0), is a ratio of
their median survival times (time to S(t)¼ 0.5), or
more generally the ratio of their times to any fixed
value of S(t) ¼ q.

T F 2. Let S0(t) be the survival function for unexposed
subjects (E ¼ 0) and let S1(t) be the survival func-
tion for exposed subjects (E ¼ 1). If S0(t) ¼ S1(3t)
then the median survival time for the unexposed
subjects is 3 times longer than the median sur-
vival time for the exposed subjects.

T F 3. The Cox proportional hazards model is a para-
metric model.

T F 4. if the acceleration failure time (AFT) assumption
holds in a Weibull model then the proportional
hazards assumption also holds.

T F 5. The hazard is assumed constant in a log-logistic
model.

Questions 6 and 7 make use of the output (copied below)
presented in Sections III and V containing an example of
the exponential model. This example used the remission
data with treatment status (coded TRT ¼ 1 for the experi-
mental treatment and TRT ¼ 0 for the placebo). The expo-
nential survival and hazard functions are, respectively,
S(t) ¼ exp(�lt) and h(t) ¼ l where l ¼ exp[�(a0 þ a1TRT)]
for the AFT parameterization and l ¼ exp(b0 þ b1TRT) for
the PH parameterization. The output for both the AFT and
PH forms of the model are presented.

Exponential regression log
relative-hazard form
� ¼ exp(b0 þ b1TRT)

_t Coef. Std. Err. z p>|z|

trt �1.527 .398 3.83 0.00
_cons �2.159 .218 �9.90 0.00

Exponential regression
accelerated failure-time form
� ¼ exp[�(a0 þ a1TRT)]

_t Coef. Std. Err. z p>|z|

trt 1.527 .398 3.83 0.00
_cons 2.159 .218 9.90 0.00
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6. In this chapter it was shown in an exponential model
that the time to event is t ¼ [� log(S(t)] � (1/l) given a
fixed value of S(t). Use the output from the AFT form
of the model to estimate the median survival time
(in weeks) for the treated group (TRT ¼ 1) and the
placebo group (TRT ¼ 0).

7. Use the output from the PH form of the model to
estimate the median survival time for the treated
group (TRT ¼ 1) and the placebo group (TRT ¼ 0).
Notice the answers from Questions 6 and 7 are the
same, illustrating that the AFT and PH forms of the
exponential model are just different parameterizations
of the same model.

Questions 8 to 11 refer to a log-logistic AFT model using
the data from the Veteran’s Administration Lung Cancer
Trial. The exposure of interest is treatment status TX (stan-
dard ¼ 1, test ¼ 2). The control variables are performance
status (PERF), disease duration (DD), AGE, and prior ther-
apy (PRIORTX). These predictors are used in the section
on frailty models. The outcome is time to death (in days).
The output is shown below.

Log-logistic regression — accelerated failure-time form

8. State the AFT log-logistic model in terms of S(t) (note
gamma ¼ 1/p).

9. Estimate the acceleration factor g with a 95% confi-
dence interval comparing the test and standard treat-
ment (TX ¼ 2 vs. TX ¼ 1). Interpret your answer.

Log likelihood ¼ �200.196
LR chi2(5) ¼ 61.31
Prob > chi2 ¼ 0.0000

_t Coef. Std. Err. z p>|z|

tx �.054087 .1863349 �0.29 0.772
perf .0401825 .0046188 8.70 0.000
dd .0042271 .0095831 0.44 0.659
age .0086776 .0092693 0.94 0.349
priortx .0032806 .0225789 0.15 0.884
_cons 1.347464 .6964462 1.93 0.053

/ln_gam �.4831864 .0743015 �6.50 0.000

gamma .6168149 .0458303
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10. The AFT log-logistic model is also a proportional odds
model. Use the output to estimate the odds ratio (odds
of death) comparing the test and standard treatment.
Also estimate the survival odds ratio comparing the
test and standard treatment.

11. The Akaike Information Criterion (AIC) is a method
designed to compare the fit of different models. For
this question, three models are compared using the
same 5 predictors:

1. A Weibull model without frailty (presented as
Model 1 in the section on frailty models);

2. A Weibull model containing a frailty component
(presented as Model 2 in the section on frailty
models); and

3. The log-logistic model presented above.

Below is a table containing the log likelihood statistic for
each model.

The goal for this question is to calculate the AIC statistic
for each model and select the model based on this crite-
rion. The AIC statistic is calculated as:�2 log likelihood
þ 2p (where p is the number of parameters in the model).
A smaller AIC statistic suggests a better fit. The addition of
2 times p can be thought of as a penalty if nonpredictive
parameters are added to the model. Each model contains
the 5 predictors, an intercept, and a shape parameter.
Model 2 contains an additional variance parameter (theta)
because a frailty component is included in the model. The
log likelihood was unchanged when a frailty component
was added to the log-logistic model (not shown in table).

Note that if we are just comparingModels 1 and 2 we could
use the likelihood ratio test because Model 1 is nested
(contained) in Model 2. The likelihood ratio test is consid-
ered a superior method to the AIC for comparing models
but cannot be used to compare the log-logistic model to the
other two, because that model uses a different distribution.

Which of the three models should be selected based on
the AIC?

Model Frailty
Number of
parameters Log likelihood

1. Weibull No 7 �206.204
2. Weibull Yes 8 �200.193
3. Log-logistic No 7 �200.196
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Questions 12 to 14 refer to a generalized gamma model
using the Veterans’ data with the same five predictor vari-
ables that were used in themodel for Questions 8 to 10. The
generalized gamma distribution contains two shape para-
meters (kappa and sigma) that allow great flexibility in the
shape of the hazard. If kappa ¼ 1, the model reduces to a
Weibull distribution with p ¼ 1/sigma. If kappa ¼ 0 the
model reduces to a lognormal distribution. The output is
shown below.

Gamma regression — accelerated failure-time form

12. Estimate the acceleration factor g with a 95% confi-
dence interval comparing the test and standard treat-
ment (TX ¼ 2 vs. TX ¼ 1).

13. Use the output to test the null hypothesis that a log-
normal distribution is appropriate for this model.

14. A lognormal model was run with the same five pre-
dictors (output not shown) and yielded very similar
parameter estimates to those obtained from the
generalized gamma model shown above. The value
of the log likelihood for the lognormal model was
�201.210. Compare the AIC of the generalized gamma
model, the lognormalmodel, and the log-logisticmodel
from Question 11 and select a model based on that
criterion. Note: each model contains an intercept and
five predictors. The generalized gamma distribution
contains two additional shape parameters and the log-
logistic and lognormal distributions each contain one
additional shapeparameter (seeQuestion 11 for further
details on the AIC).

Log likelihood ¼ �200.626
LR chi2(5) ¼ 52.86
Prob > chi2 ¼ 0.0000

_t Coef. Std. Err. z p>|z|

tx �.131 .1908 �0.69 0.491
perf .039 .0051 7.77 0.000
dd .0004 .0097 0.04 0.965
age .008 .0095 0.89 0.376
priortx .004 .0229 0.17 0.864
_cons 1.665 .7725 2.16 0.031

/ln_sig .0859 .0654 1.31 0.189
/kappa .2376 .2193 1.08 0.279

sigma 1.0898 .0714
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Questions 15 to 17 refer to a Weibull model using the
remission data with treatment as the only predictor
(coded TRT ¼ 1 for the test treatment and TRT ¼ 0 for
the placebo). In this model both l and p are modeled as
functions of the predictor TRT. The model can be stated in
terms of the hazard function: h(t) ¼ lptp� 1 where l ¼ exp
(b0 þ b1 TRT) and p ¼ exp(d0 þ d1 TRT). Typically, the
shape parameter in a Weibull model is assumed constant
(i.e., d1 ¼ 0) across levels of covariates. This model is
discussed in the section of this chapter called “Other Para-
metric Models.” The output obtained using Stata is shown
below.

Weibull regression — log relative-hazard form

15. Even though l is parameterized similarly to that in a
PH Weibull model, this model is not a PH model
because the shape parameter p varies across treat-
ment groups. Show the PH assumption is violated
in this model by estimating the hazard ratios for
TRT ¼ 0 vs. TRT ¼ 1 after 10 weeks and after 20 weeks
of follow-up.

16. Perform a statistical test on the hypothesis d1 ¼ 0 (the
coefficient for the treatment term for ln(p)). Note:
if we assume d1 ¼ 0, then the model reduces to the
example of theWeibull PHmodel presented in Section
VI of this chapter.

17. Consider the plot of the log negative log of the
Kaplan–Meier survival estimates against the log of
time for TRT ¼ 1 and TRT ¼ 0. How should the
graph look if d1 ¼ 0?

Log likelihood ¼ �47.063396
LR chi2(1) ¼ 1.69
Prob > chi2 ¼ 0.1941

_t Coef. Std. Err. z p>|z|

_t
trt �1.682 1.374 �1.22 0.221
_cons �3.083 .646 �4.77 0.000

ln_p
trt �.012 .328 �0.04 0.970
_cons .315 .174 1.82 0.069
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Test Answer the following true or false questions (circle T
or F).

T F 1. The accelerated failure time model and propor-
tional hazards model are both additive models.

T F 2. If the survival function is known then the hazard
function can be ascertained (and vice versa).

T F 3. If survival time follows a Weibull distribution
then a plot of the ln[�ln S(t)] against ln(t) should
be a straight line.

T F 4. If the acceleration failure time (AFT) assumption
holds in a log-logistic model then the propor-
tional hazards assumption also holds.

T F 5. If the acceleration factor for the effect of an expo-
sure (exposed vs. unexposed) is greater than one,
then the exposure is harmful to survival.

T F 6. Let S0(t) be the survival function for unexposed
subjects (E ¼ 0) and let S1(t) be the survival
function for exposed subjects (E ¼ 1). If g is the
acceleration factor comparing E ¼ 1 vs. E ¼
0 then S0(t) ¼ S1(gt).

T F 7. Frailty models are designed to provide an
approach to account for unobserved individual-
level characteristics.

T F 8. If you include a gamma distributed frailty com-
ponent to the model, then you will see an addi-
tional parameter estimate for the variance of the
frailty in the model output.

T F 9. If survival time T follows a Weibull distribution,
then ln(T) also follows a Weibull distribution.

T F 10. If a subject is lost to follow-up after 5 years, then
the subject is left-censored.

Questions 11 to 17 refer to a Weibull model run with the
“addicts” dataset. The predictor of interest is CLINIC
(coded 1 or 2) for twomethadone clinics for heroin addicts.
Covariates include DOSE (continuous) for methadone
dose (mg/day), PRISON (coded 1 if patient has a prison
record and 0 if not), and a prison–dose product term
(called PRISDOSE). The outcome is time (in days) until
the person dropped out of the clinic or was censored. The
Weibull survival and hazard functions are, respectively,
S(t) ¼ exp(�ltp) and h(t) ¼ lptp � 1 where l1/p ¼ exp[�(a0
þ a1CLINIC þ a2PRISON þ a3DOSE þ a4PRISDOSE)] for
the AFT parameterization and l ¼ exp[b0 þ b1CLINIC þ
b2PRISON þ b3DOSE þ b4PRISDOSE] for the PH parame-
terization. The Stata output for both the AFT and PH forms
of the model are presented as follows:
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11. Estimate the acceleration factor with a 95% confidence
interval comparing CLINIC ¼ 2 vs. CLINIC ¼ 1. Inter-
pret this result.

12. Estimate the hazard ratio with a 95% confidence
interval comparing CLINIC ¼ 2 vs. CLINIC ¼ 1. Inter-
pret this result.

13. Estimate the coefficient for CLINIC in the PHWeibull
model using the results reported in the output from
the AFT form of the model. Hint: the coefficients for
a Weibull PH and AFT model are related bj ¼ �ajp for
the jth covariate.

14. Is the product term PRISDOSE included in the model
to account for potential interaction or potential con-
founding of the effect of CLINIC on survival?

15. Use the output to estimate the median survival time
for a patient from CLINIC¼ 2 who has a prison record
and receives a methadone dose of 50 mg/day. Hint:
use the relationship that t ¼ [�ln S(t)]1/p � (1/l1/p) for
a Weibull model.

16. Use the output to estimate the median survival time
for a patient from CLINIC¼ 1 who has a prison record
and receives a methadone dose of 50 mg/day.

17. What is the ratio of your answers from Questions
15 and 16 and how does this ratio relate to the accel-
eration factor?

Weibull regression
log relative-hazard form

Log likelihood ¼ �260.74854

_t Coef.
Std.
Err. z

P >
|z|

clinic �.957 .213 �4.49 0.000
prison �.198 .765 �0.26 0.795
dose �.037 .008 �4.63 0.000
prisdose .009 .013 0.69 0.491
_cons �5.450 .702 �7.76 0.000

/ln.p .315 .068 4.67 0.000

p 1.370467
1/p .729678

Weibull regression
accelerated failure-time form

Log likelihood ¼ �260.74854

_t Coef.
Std.
Err. z

P >
|z|

clinic .698 .158 4.42 0.000
prison .145 .558 0.26 0.795
dose .027 .006 4.60 0.000
prisdose �.006 .009 �0.69 0.492
_cons 3.977 .376 10.58 0.000

/ln_p .315 .068 4.67 0.000

p 1.370467
1/p .729678
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Questions 18 and 19 refer to the Weibull model (in AFT
form) that was used for the previous set of questions
(Questions 11 to 17). The only difference is that a frailty
component is now included in the model. A gamma distri-
bution of mean 1 and variance theta is assumed for the
frailty. The output shown on in the following contains one
additional parameter estimate (for theta).

Weibull regression
accelerated failure-time form
Gamma frailty

18. Did the addition of the frailty component change any
of the other parameter estimates (besides theta)? Did
it change the log likelihood?

19. A likelihood ratio test for the hypothesis H0: theta ¼
0 yields a p-value of 1.0 (bottom of the output). The
parameter estimate for theta is essentially zero. What
does it mean if theta ¼ 0?

Log likelihood ¼ �260.74854

_t Coef. Std. Err. z P > |z|

clinic .698 .158 4.42 0.000
prison .145 .558 0.26 0.795
dose .027 .006 4.60 0.000
prisdose �.006 .009 �0.69 0.492
_cons 3.977 .376 10.58 0.000

/ln_p .315 .068 4.67 0.000

p 1.370467
1/p .729678
theta .00000002 .0000262

Likelihood ratio test of theta¼0:
chibar2(01) ¼ 0.00
Prob>¼chibar2 ¼ 1.000
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Answers to
Practice
Exercises

1. T

2. F: Themedian survival time for the unexposed is 1/3 of
the median survival time for the exposed.

3. F: The Cox model is a semiparametric model. The
distribution of survival time is unspecified in a Cox
model.

4. T

5. F: The hazard is assumed constant in an exponential
model.

6. t ¼ [�log(S(t)] � (1/l), where S(t) ¼ 0.5, and 1/l ¼ exp
(a0 þ a1 TRT).
For TRT ¼ 0: estimated median survival ¼ [�ln(0.5)]
exp(2.159) ¼ 6.0 weeks.
For TRT ¼ 1: estimated median survival ¼ [�ln(0.5)]
exp(2.159 þ 1.527) ¼ 27.6 weeks.

7. t ¼ [�log(S(t)] (1/l), where S(t) ¼ 0.5, and
l ¼ exp(b0 þ b1 TRT) ) 1/l ¼ exp[�(b0 þ b1TRT)].
For TRT ¼ 0: estimated median survival ¼ [�ln(0.5)]
exp[�(�2.159)] ¼ 6.0 weeks.
For TRT ¼ 1: estimated median survival ¼ [�ln(0.5)]
exp[�(�2.159 � 1.527)] ¼ 27.6 weeks.

8. S(t) ¼ 1/(1 þ ltp) where l1/p ¼ exp[�(a0 þ a1 TX þ
a2 PERF þ a3DD þ a4AGE þ a5PRIORTX)].

9. g ¼ exp a0 þ a1 2ð Þ þ a2 PERFþ a3 DDþ a4 AGEþ a5 PRIORTX½ �
exp a0 þ a1 1ð Þ þ a2 PERFþ a3 DDþ a4 AGEþ a5 PRIORTX½ �

¼ exp a1ð Þ
ĝ ¼ exp �0:054087ð Þ ¼ 0:95

95% CI ¼ exp �0:054087� 1:96 0:1863349ð Þ½ � ¼ 0:66; 1:36ð Þ
The point estimate along with the 95% CI suggests a
null result.

10. The coefficients for a log-logistic proportional odds
(PO) and AFT model are related b1 ¼ �a1 p ¼ �b1/
gamma, where b1 is the coefficient for TX in a PO
model.
OR ¼ exp(�a1/gamma)
estimated OR ¼ exp(�0.054087/0.6168149) ¼ 0.92
estimated survival OR¼ 1/[exp(�0.054087/0.6168149)]
¼ 1.09.
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11. The AIC statistic is calculated as�2 log likelihoodþ2p
(where p is the number of parameters in the model). A
smaller AIC statistic suggests a better fit. The AIC
statistic is shown below for each of the three models.

Based on the AIC, the log-logistic model is selected
yielding the smallest AIC statistic at 414.392.

12. g ¼ exp a0 þ a1 2ð Þ þ a2 PERF þ a3DDþ a4 AGEþ a5 PRIORTX½ �
exp a0 þ a1 1ð Þ þ a2 PERF þ a3 DDþ a4 AGEþ a5 PRIORTX½ �

¼ exp a1ð Þ
ĝ ¼ exp �0:131ð Þ ¼ 0:88

95% CI ¼ exp �0:131� 1:96 0:1908ð Þð½ � ¼ 0:60; 1:28ð Þ
13. The generalized gamma distribution reduces to a log-

normal distribution if kappa ¼ 0.

H0 : kappa ¼ 0

Wald test statistic: z ¼ 0:2376

0:2193
¼ 1:08 from outputð Þ

p-value: 0.279 from outputð Þ
Conclusion: p-value not significant at a significance
level of 0.05. Not enough evidence to reject H0. The
lognormal distribution may be appropriate.

14. The AIC statistic is shown below for the generalized
gamma, lognormal, and log-logistic models.

As in Question 11, the log-logistic model is selected
yielding the smallest AIC at 414.392.

Model
Number of
parameters

Log
likelihood AIC

Generalized Gamma 8 �200.626 417.252
Lognormal 7 �201.210 416.420
Log-logistic 7 200.196 414.392

Model Frailty
Number of
parameters

Log
likelihood AIC

1. Weibull No 7 �206.204 426.408
2. Weibull Yes 8 �200.193 416.386
3. Log-logistic No 7 �200.196 414.392
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15. h(t) ¼ lptp�1 where l ¼ exp(b0 þ b1TRT) and p ¼ exp
(d0 þ d1TRT)
let l0¼ exp[b0þ b1(0)], l1¼ exp[b0þ b1(1)]let p0¼ exp
[d0 þ d1(0)], p1 ¼ exp[d0 þ d1(1)]l̂0 ¼0.0458, l̂1 ¼
0.0085, p̂0 ¼1.3703, p̂1 ¼ 1.3539 (calculated using out-
put)

HR TRT ¼ 0 vs. TRT ¼ 1ð Þ ¼ l0p0tp0�1

l1p1tp1�1

cHR as a function of tð Þ ¼ 0:0458ð Þ 1:3703ð Þt0:3703
0:0085ð Þ 1:3539ð Þt0:3539

cHR t ¼ 10ð Þ ¼ 0:0458ð Þ 1:3703ð Þ 100:3703ð Þ
0:0085ð Þ 1:3539ð Þ 100:3539ð Þ ¼ 5:66

cHR t ¼ 20ð Þ ¼ 0:0458ð Þ 1:3703ð Þ 200:3703ð Þ
0:0085ð Þ 1:3539ð Þ 200:3539ð Þ ¼ 5:73

The estimated hazard ratios for RX at 10 weeks and at
20 weeks are different, demonstrating that the
hazards are not constrained to be proportional in
this model. However, the estimated hazard ratios are
just slightly different, suggesting that the PH assump-
tion is probably reasonable.

16. H0: d1 ¼ 0

Wald test statistic : z ¼ �0:0123083

0:328174
¼ �0:04 from outputð Þ

p-value: 0.970 (from output)

Conclusion: p-value is not significant. No evidence to
reject H0. The PH assumption is reasonable.

17. If the Weibull assumption is met, then the plots
should be straight lines with slope p. If d1 ¼ 0, then
the slope p is the same for TRT ¼ 1 and TRT ¼ 0 and
the lines are parallel.
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Introduction This chapter considers outcome events that may occur
more than once over the follow-up time for a given subject.
Such events are called “recurrent events.” Modeling this
type of data can be carried out using a Cox PH model with
the data layout constructed so that each subject has a line
of data corresponding to each recurrent event. A variation
of this approach uses a stratified Cox PH model, which
stratifies on the order in which recurrent events occur.
Regardless of which approach is used, the researcher
should consider adjusting the variances of estimated
model coefficients for the likely correlation among recur-
rent events on the same subject. Such adjusted variance
estimates are called “robust variance estimates.” A para-
metric approach for analyzing recurrent event data that
includes a frailty component (introduced in Chapter 7) is
also described and illustrated.

Abbreviated
Outline

The outline below gives the user a preview of the material
to be covered by the presentation. A detailed outline for
review purposes follows the presentation.

I. Overview (page 366)

II. Examples of Recurrent Event Data
(pages 366–368)

III. Counting Process Example (pages 368–369)

IV. General Data Layout: Counting Process
Approach (pages 370–371)

V. The Counting Process Model and Method
(pages 372–376)

VI. Robust Estimation (pages 376–378)

VII. Results for CP Example (pages 378–379)

VIII. Other Approaches Stratified Cox (pages 379–385)

IX. Bladder Cancer Study Example (Continued)
(pages 385–389)

X. A Parametric Approach Using Shared Frailty
(pages 389–391)

XI. A Second Example (pages 391–395)

XII. Survival Curves with Recurrent Events
(pages 395–398)

XIII. Summary (pages 398–401)
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Objectives Upon completing this chapter, the learner should be able to:

1. State or recognize examples of recurrent event data.

2. State or recognize the form of the data layout used for
the counting process approach for analyzing correlated
data.

3. Given recurrent event data, outline the steps needed to
analyze such data using the counting process
approach.

4. State or recognize the form of the data layout used for
the Stratified Cox (SC) approaches for analyzing
correlated data.

5. Given recurrent event data, outline the steps needed to
analyze such data using the SC approaches.
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Presentation

I. Overview In this chapter we consider outcome events that
may occur more than once over the follow-
up time for a given subject. Such events are
called “recurrent events.” We focus on the
Counting Process (CP) approach for analysis
of such data that uses the Cox PH model, but
we also describe alternative approaches that use
a Stratified Cox (SC) PH model and a frailty
model.

II. Examples of Recurrent
Event Data

Up to this point, we have assumed that the event
of interest can occur only once for a given
subject. However, in many research scenarios
in which the event of interest is not death, a
subject may experience an event several times
over follow-up. Examples of recurrent event
data include:

1. Multiple episodes of relapses from
remission comparing different treatments
for leukemia patients.

2. Recurrent heart attacks of coronary
patients being treated for heart disease.

3. Recurrence of bladder cancer tumors in a
cohort of patients randomized to one of two
treatment groups.

4. Multiple events of deteriorating visual
acuity in patients with baseline macular
degeneration, where each recurrent event is
considered a more clinically advanced stage
of a previous event.

For each of the above examples, the event of
interest differs, but nevertheless may occur
more than once per subject. A logical objective
for such data is to assess the relationship of
relevant predictors to the rate in which events
are occurring, allowing for multiple events per
subject.

Outcome occurs more
than once per subject:

RECURRENT
EVENTS

(Counting Process and
Other Approaches)

Focus

1. Multiple relapses from
remission – leukemia patients

2. Repeated heart attacks –
coronary patients

3. Recurrence of tumors – bladder
cancer patients

4. Deteriorating episodes of visual
acuity – macular degeneration
patients

Objective

Assess relationship of predictors
to rate of occurrence, allowing for
multiple events per subject
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In the leukemia example above, we might ask
whether persons in one treatment group are
experiencing relapse episodes at a higher rate
than persons in a different treatment group.

If the recurrent event is a heart attack, we
might ask, for example, whether smokers are
experiencing heart attack episodes at a higher
rate than nonsmokers.

For either of the above two examples, we are
treating all events as if they were the same
type. That is, the occurrence of an event on a
given subject identifies the same disease with-
out considering more specific qualifiers such
as severity or stage of disease. We also are not
taking into account the order in which the
events occurred.

For example, we may wish to treat all heart
attacks, whether on the same or different sub-
jects, as identical types of events, and we don’t
wish to identify whether a given heart attack
episode was the first, or the second, or the third
event that occurred on a given subject.

The third example, which considers recurrence
of bladder cancer tumors, can be considered
similarly. That is, we may be interested in asses-
sing the “overall” tumor recurrence rate without
distinguishing either the order or type of tumor.

The fourth example, dealingwithmaculardegen-
eration events, however, differs from the other
examples. The recurrent events on the same sub-
ject differ in that a second or higher event indi-
cates a more severe degenerative condition than
its preceding event.

Consequently, the investigator in this scenario
may wish to do separate analyses for each
ordered event in addition to or instead of treat-
ing all recurrent events as identical.

LEUKEMIA EXAMPLE

Do treatment groups differ in rates of
relapse from remission?

HEARTATTACK EXAMPLE

Do smokers have a higher heart attack
rate than nonsmokers?

LEUKEMIA AND HEARTATTACK

EXAMPLES

All events are of the same type
The order of events is not important
Heart attacks: Treat as identical
events;
Don’t distinguish among 1st, 2nd, 3rd,
etc. attack

BLADDER CANCER EXAMPLE

Compare overall tumor recurrence
rate without considering order or type
of tumor

MACULAR DEGENERATION OF

VISUAL ACUITY EXAMPLE

A second or higher event is more
severe than its preceding event

Order of event is important
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We have thus made an important distinction to
be considered in the analysis of recurrent event
data. If all recurrent events on the same sub-
ject are treated as identical, then the analysis
required of such data is different than what is
required if either recurrent events involve dif-
ferent disease categories and/or the order that
events reoccur is considered important.

The approach to analysis typically used when
recurrent events are treated as identical is
called the Counting Process Approach
(Andersen et al., 1993).

When recurrent events involve different dis-
ease categories and/or the order of events is
considered important, a number of alternative
approaches to analysis have been proposed
that involve using stratified Cox (SC) models.

In this chapter, we focus on the Counting
Process (CP) approach, but also describe the
other stratified Cox approaches (in a later
section).

III. Counting Process
Example

To illustrate the counting process approach,
we consider data on two hypothetical subjects
(Table 8.1), Al and Hal, from a randomized
trial that compares two treatments for bladder
cancer tumors.

Al gets recurrent bladder cancer tumors at
months 3,9, and 21, and is without a bladder
cancer tumor at month 23, after which he is
no longer followed. Al received the treatment
coded as 1.

Hal gets recurrent bladder cancer tumors at
months 3, 15, and 25, after which he is no
longer followed. Hal received the treatment
coded as 0.

Table 8.1. 2 Hypothetical Subjects
Bladder Cancer Tumor Events

Time
interval

Event
indicator

Treatment
group

Al 0 to 3 1 1
3 to 9 1 1
9 to 21 1 1

21 to 23 0 1

Hal 0 to 3 1 0
3 to 15 1 0

15 to 25 1 0

Use a different analysis depending
on whether

a. recurrent events are treated as
identical

b. recurrent events involve
different disease categories
and/or the order of events is
important

Recurrent events identical
+

Counting Process Approach
(Andersen et al., 1993)

Recurrent events: different disease
categories or event order important

+
Stratified Cox (SC) Model
Approaches
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Al has experienced 3 events of the same type
(i.e., recurrent bladder tumors) over a follow-up
period of 23 months. Hal has also experienced 3
events of the same type over a follow-up period
of 25 months.

The three events experienced by Al occurred at
different survival times (from the start of initial
follow-up) from the three events experienced
by Hal.

Also, Al had an additional 2 months of follow-
up after his last recurrent event during which
time no additional event occurred. In contrast,
Hal had no additional event-free follow-up
time after his last recurrent event.

In Table 8.2, we show for these 2 subjects, how
the data would be set up for computer analyses
using the counting process approach. Each
subject contributes a line of data for each
time interval corresponding to each recurrent
event and any additional event-free follow-up
interval. We previously introduced this format
as the Counting Process (CP) data layout in
section VI of Chapter 1.

A distinguishing feature of the data layout for
the counting process approach is that each line
of data for a given subject lists the start time
and stop time for each interval of follow-up.
This contrasts with the standard layout for
data with no recurrent events, which lists only
the stop (survival) time.

Note that if a third subject, Sal, failed without
further events or follow-up occurring, then Sal
contributes only one line of data, as shown at
the left. Similarly, only one line of data is con-
tributed by a (fourth) subject, Mal, who was
censored without having failed at any time
during follow-up.

Counting process: Start and Stop
times

Standard layout: only Stop
(survival) times (no recurrent
events)

Subj
Interval
Number

Time
Start

Time
Stop

Event
Status

Treatment
Group

Sal 1 0 17 1 0
Mal 1 0 12 0 1

Table 8.2. Example of Data Layout for
Counting Process Approach

Subj
Interval
Number

Time
Start

Time
Stop

Event
Status

Treatment
Group

Al 1 0 3 1 1
Al 2 3 9 1 1
Al 3 9 21 1 1
Al 4 21 23 0 1
Hal 1 0 3 1 0
Hal 2 3 15 1 0
Hal 3 15 25 1 0

Al Hal

No. recurrent
events

3 3

Follow-up time 23 months 25 months
Event times

from start of
follow-up

3, 9, 21 3, 15, 25

Additional
months of
follow-up
after last
event

2 months 0 months
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IV. General Data Layout:
Counting Process
Approach

The general data layout for the counting pro-
cess approach is presented in Table 8.3 for a
dataset involving N subjects.

The ith subjecthas ri recurrent events. dij denotes
the event status (1¼ failure, 0¼ censored) for the
ith subject in the jth time interval. tij0 and tij1
denote the start and stop times, respectively, for
the ith subject in the jth interval. Xijk denotes the
value of the kth predictor for the ith subject in
the jth interval.

Subjects are not restricted to have the same
number of time intervals (e.g., r1 does not
have to equal r2) or the same number of recur-
rent events. If the last time interval for a given
subject ends in censorship (dij ¼ 0), then the
number of recurrent events for this subject is
ri� 1; previous time intervals, however, usually
end with a failure (dij ¼ 1).

Also, start and stop times may be different for
different subjects. (See the previous section’s
example involving two subjects.)

Aswith any survival data, the covariates (i.e., Xs)
may be time-independent or time-dependent for
a given subject. For example, if one of the Xs is
“gender” (1 ¼ female, 0 ¼ male), the values of
this variable will be all 1s or all 0s over all time
intervals observed for a given subject. If another
X variable is, say, a measure of daily stress level,
the values of this variable are likely to vary over
the time intervals for a given subject.

The second column (“Interval j”) in the data
layout is not needed for the CP analysis, but is
required for other approaches described later.

N subjects

ri time intervals for subject i

dij event staus (0 or 1) for subject

i in interval j

tij0 start time for subject i in

interval j

tij1 stop time for subject i in

interval j

Xijk value of kth predictor for

subject i in interval j

i ¼ 1; 2; . . . ;N; j ¼ 1; 2; . . . ; ni;
k ¼ 1; 2; . . . ; p

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

Table 8.3. General Data Layout: CP
Approach

I
S n
u t s
b e t S
j r a t S Predictors
e v t a t
c a u r o
t l s t p

i j dij tij0 tij1 Xij1 . . . Xijp

1 1 d11 t110 t111 X111 . . .X11p

1 2 d12 t120 t121 X121 . . .X12p

· · · · · · ·
· · · · · · ·
· · · · · · ·
1 r1 d1r1 t1r10 t1r11 X1r11

. . . X1r1p

· · · · · · ·

i 1 di1 ti10 ti11 Xi11 . . . Xi1p

i 2 di2 ti20 ti21 Xi21 . . . Xi2p

· · · · · · ·
· · · · · · ·
· · · · · · ·
i ri diri tiri0 tiri1 Xiri1

. . . Xirip

· · · · · · ·

N 1 dN1 tN10 tN11 XN11 . . . XN1p

N 2 dN2 tN20 tN21 XN21 . . . XN2p

· · · · · · ·
· · · · · · ·
· · · · · · ·
N rN dNrN

tNrN0
tNrN1

XNrN1
. . . XNrNp

9 = ;
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To illustrate the above general data layout,
we present in Table 8.4 the data for the first
26 subjects from a study of recurrent bladder
cancer tumors (Byar, 1980 and Wei, Lin, and
Weissfeld, 1989). The entire dataset contained
86 patients, each followed for a variable amount
of time up to 64 months.

The repeated event being analyzed is the recur-
rence of bladder cancer tumors after trans-
urethral surgical excision. Each recurrence of
new tumors was treated by removal at each
examination.

About 25% of the 86 subjects experienced four
events.

The exposure variable of interest is drug treat-
ment status (tx, 0¼ placebo, 1¼ treatment with
thiotepa). The covariates listed here are initial
number of tumors (num) and initial size of
tumors (size) in centimeters. The paper by
Wei, Lin, and Weissfeld actually focuses on a
differentmethod of analysis (called “marginal”),
which requires a different data layout than
shown here. We later describe the “marginal”
approach and its corresponding layout.

In these data, it can be seen that 16 of these
subjects (id #s 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 17, 18,
20, 21, 22, 23) hadno recurrent events, 4 subjects
had 2 recurrent events (id #s 10, 12, 19, 24),
4 subjects (id #s 13, 14, 16, 25) had 3 recurrent
events, and 2 subjects (id #s 15, 26) had 4 recur-
rent events.

Moreover, 9 subjects (id #s 6, 9, 10, 12, 14, 18,
20, 25, 26) were observed for an additional
event-free time interval after their last event.
Of these, 4 subjects (id #s 6, 9, 18, 20) experi-
enced only one event (i.e., no recurrent events).

Table 8.4 First 26 Subjects: Bladder
Cancer Study

id int event start stop tx num size

1 1 0 0 0 0 1 1
2 1 0 0 1 0 1 3
3 1 0 0 4 0 2 1
4 1 0 0 7 0 1 1
5 1 0 0 10 0 5 1
6 1 1 0 6 0 4 1
6 2 0 6 10 0 4 1
7 1 0 0 14 0 1 1
8 1 0 0 18 0 1 1
9 1 1 0 5 0 1 3
9 2 0 5 18 0 1 3

10 1 1 0 12 0 1 1
10 2 1 12 16 0 1 1
10 3 0 16 18 0 1 1
11 1 0 0 23 0 3 3
12 1 1 0 10 0 1 3
12 2 1 10 15 0 1 3
12 3 0 15 23 0 1 3
13 1 1 0 3 0 1 1
13 2 1 3 16 0 1 1
13 3 1 16 23 0 1 1
14 1 1 0 3 0 3 1
14 2 1 3 9 0 3 1
14 3 1 9 21 0 3 1
14 4 0 21 23 0 3 1
15 1 1 0 7 0 2 3
15 2 1 7 10 0 2 3
15 3 1 10 16 0 2 3
15 4 1 16 24 0 2 3
16 1 1 0 3 0 1 1
16 2 1 3 15 0 1 1
16 3 1 15 25 0 1 1
17 1 0 0 26 0 1 2
18 1 1 0 1 0 8 1
18 2 0 1 26 0 8 1
19 1 1 0 2 0 1 4
19 2 1 2 26 0 1 4
20 1 1 0 25 0 1 2
20 2 0 25 28 0 1 2
21 1 0 0 29 0 1 4
22 1 0 0 29 0 1 2
23 1 0 0 29 0 4 1
24 1 1 0 28 0 1 6
24 2 1 28 30 0 1 6
25 1 1 0 2 0 1 5
25 2 1 2 17 0 1 5
25 3 1 17 22 0 1 5
25 4 0 22 30 0 1 5
26 1 1 0 3 0 2 1
26 2 1 3 6 0 2 1
26 3 1 6 8 0 2 1
26 4 1 8 12 0 2 1
26 5 0 12 30 0 2 1
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V. The Counting Process
Model and Method

The model typically used to carry out the
Counting Process approach is the standard
CoxPHmodel, once again shownhere at the left.

As usual, the PH assumption needs to be evalu-
ated for any time-independent variable. A stra-
tified Cox model or an extended Cox model
would need to be used if one or more time-
independent variables did not satisfy the PH
assumption. Also, an extended Cox model
would be required if inherently time-dependent
variables were considered.

The primary difference in the way the Cox
model is used for analyzing recurrent event
data versus nonrecurrent (one time interval
per subject) data is the way several time inter-
vals on the same subject are treated in the for-
mation of the likelihood function maximized
for the Cox model used.

To keep things simple, we assume that the data
involve only time-independent variables satis-
fying the PH assumption. For recurrent sur-
vival data, a subject with more than one time
interval remains in the risk set until his or her
last interval, after which the subject is removed
from the risk set. In contrast, for nonrecurrent
event data, each subject is removed from the
risk set at the time of failure or censorship.

Nevertheless, for subjects with two or more
intervals, the different lines of data contributed
by the same subject are treated in the analysis
as if they were independent contributions from
different subjects, even though there are several
outcomes on the same subject.

In contrast, for the standard Cox PH model
approach for nonrecurrent survival data, dif-
ferent lines of data are treated as independent
because they come from different subjects.

Cox PH Model

h(t, X) = h0(t)exp[SbiXi]

Need to

Assess PH assumption for Xi

Consider stratified Cox or extended
Cox if PH assumption not
satisfied

Use extended Cox for time-
dependent variables

Recurrent event
data

Nonrecurrent
event data

(Likelihood function formed differently)

Subjects with > 1
time interval
remain in the
risk set until last
interval is
completed

Subjects removed
from risk set at
time of failure or
censorship

Different lines of
data are treated
as independent
even though
several
outcomes on the
same subject

Different lines of
data are treated
as independent
because they
come from
different
subjects
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For the bladder cancer study described in
Table 8.4, the basic Cox PH model fit to these
data takes the form shown at the left.

The primary (exposure) variable of interest in
this model is the treatment variable tx. The
variables num and size are considered as
potential con-founders. All three variables are
time-independent variables.

This is a no-interaction model because it does
not contain product terms of the form tx �
num or tx � size. An interaction model involv-
ing such product terms could also be consid-
ered, but we only present the no-interaction
model for illustrative purposes.

Table 8.5 at the left provides ordered failure
times and corresponding risk set information
that would result if the first 26 subjects that we
described in Table 8.4 comprised the entire
dataset. (Recall that there are 86 subjects in
the complete dataset.)

Because we consider 26 subjects, the number in
the risk set at ordered failure time t(0) is n0 ¼ 26.
As these subjects fail (i.e., develop a bladder
cancer tumor) or are censored over follow-up,
the number in the risk set will decrease from the
fth to the f þ 1th ordered failure time provided
that no subject who fails at time t(f) either has a
recurrent event at a later time or has additional
follow-up time until later censorship. In other
words, a subject who has additional follow-up
time after having failed at t(f) does not drop out
of the risk set after t(f).

Cox PH Model for CP Approach:
Bladder Cancer Study

h(t, X) = h0(t)exp[b tx þ g1 num
þ g2 size]

where

tx ¼ 1 if thiotepa, 0 if placebo
num ¼ initial # of tumors
size ¼ initial size of tumors

No-interaction Model

Interaction model would involve
product terms

tx � num and/or tx � size

Table 8.5. Ordered Failure Time and
Risk Set Information for First 26 Subjects
in Bladder Cancer Study

Ordered
failure
times t(f)

# in
risk
set
nf

#
failed
mf

#
censored

in
[t(f), t(fþ1))

Subject
ID #s for
outcomes

in
[t(f), t(fþ1))

0 26 � 1 1
1 25 1 1 2, 18
2 24 2 0 19, 25
3 24 4 1 3, 13, 14,

16, 26
5 23 1 0 9
6 23 2 0 6, 26
7 23 1 1 4, 15
8 22 1 0 26
9 22 1 0 14

10 22 2 2 5, 6, 12, 15
12 20 2 1 7, 10, 26
15 19 2 0 12, 16
16 19 3 0 10, 13, 15
17 19 1 3 8, 9, 10, 25
21 16 1 0 14
22 16 1 0 25
23 16 1 3 11, 12, 13,

14
24 12 1 0 15
25 11 2 0 16, 20
26 10 1 2 17, 18, 19
28 7 1 4 20, 21, 22,

23, 24
30 3 1 2 24, 25, 26

32 21
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For example, at month t(f) ¼ 2, subject #s 19
and 25 fail, but the number in the risk set at
that time (nf ¼ 24) does not decrease (by 2)
going into the next failure time because each
of these subjects has later recurrent events. In
particular, subject #19 has a recurrent event at
month t(f) ¼ 26 and subject #25 has two recur-
rent events at months t(f) ¼ 17 and t(f) ¼ 22 and
has additional follow-up time until censored
month 30.

As another example from Table 8.5, subject #s
3, 13, 14, 16, 26 contribute information at
ordered failure time t(f) ¼ 3, but the number
in the risk set only drops from 24 to 23 even
though the last four of these subjects all fail at
t(f) ¼ 3. Subject #3 is censored at month 4 (see
Table 8.4), so this subject is removed from the
risk set after failure time t(f) ¼ 3. However,
subjects 13, 14, 16, and 26 all have recurrent
events after t(f) ¼ 3, so they are not removed
from the risk set after t(f) ¼ 3.

Subject #26 appears in the last column 5 times.
This subject contributes5 (start, stop) time inter-
vals, fails at months 3, 6, 8, and 12, and is also
followed until month 30, when he is censored.

Table 8.7. Focus on Subject #s 3, 13, 14,
16, 26 from Table 8.5

t(f) n(f) m(f) q(f) Subject ID #s

0 26 � 1 1
1 25 1 1 2, 18
2 24 2 0 19, 25
3 24 4 1 3, 13, 14, 16, 26
5 23 1 0 9
6 23 2 0 6, 26
7 23 1 1 4, 15
8 22 1 0 26
9 22 1 0 14

10 22 2 2 5, 6, 12, 15
12 20 2 1 7, 10, 26
15 19 2 0 12, 16
16 19 3 0 10, 13, 15
17 19 1 3 8, 9, 10, 25
21 16 1 0 14
22 16 1 0 25
23 16 1 3 11, 12, 13, 14
24 12 1 0 15
25 11 2 0 16, 20
26 10 1 2 17, 18, 19
28 7 1 4 20, 21, 22, 23, 24
30 3 1 2 24, 25, 26

Table 8.6. Focus on Subject #s 19 and 25
from Table 8.5

t(f) n(f) m(f) q(f) Subject ID #s

0 26 � 1 1
1 25 1 1 2, 18
2 24 2 0 19, 25
3 24 4 1 3, 13, 14, 16, 26

�
�
�

17 19 1 3 8, 9, 10, 25
21 16 1 0 14
22 16 1 0 25
23 16 1 3 11, 12, 13, 14
24 12 1 0 15
25 11 2 0 16, 20
26 10 1 2 17, 18, 19
28 7 1 4 20, 21, 22, 23, 24
30 3 1 2 24, 25, 26
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Another situation, which is not illustrated in
these data, involves “gaps” in a subject’s fol-
low-up time. A subject may leave the risk set
(e.g., lost to follow-up) at, say, time ¼ 10 and
then re-enter the risk set again and be followed
from, say, time ¼ 25 to time ¼ 50. This subject
has a follow-up gap during the period from
time ¼ 10 to time ¼ 25.

The (partial) likelihood function (L) used to fit
the no-interaction Cox PH model is expressed
in typical fashion as the product of individual
likelihoods contributed by each ordered failure
time and corresponding risk set information in
Table 8.5. There are 22 such terms in this prod-
uct because there are 22 ordered failure times
listed in Table 8.5.

Each individual likelihood Lf essentially gives
the conditional probability of failing at time
t(f), given survival (i.e., remaining in the risk
set) at t(f).

If there is only one failure at the jth ordered
failure time, Lf is expressed as shown at the left
for the above no-interaction model. In this
expression tx(f), num(f), and size(f) denote the
values of the variables tx, num, and size for the
subject failing at month t(f).

The terms txs(f), nums(f), and sizes(f) denote the
values of the variables tx, num, and size for the
subject s in the risk set R(t(f)). Recall that R(t(f))
consists of all subjects remaining at risk at
failure time t(f).

For example, subject #25 from Table 8.4 failed
for the third time at month 22, which is the f ¼
15th ordered failure time listed in Table 8.5. It
can be seen that nf ¼ 16 of the initial 26 subjects
are still at risk at the beginning of month 22.
The risk set at this time includes subject #25
and several other subjects (#s 12, 13, 14, 15, 16,
18, 19, 26) who already had at least one failure
prior to month 22.

“Gaps” in follow-up time:

0 10 gap 25 50
lost re-enter

No Interaction Cox PH Model

h(t,X) ¼ h0(t)exp[b tx þ g1 num
þ g2 size]

Partial likelihood function:

L ¼ L1 � L2 � � � � � L22

Lf ¼ individual likelihood at t(j)
¼ Pr[failing at t(f) | survival up to

t(f)]
f ¼ 1, 2, . . ., 22

Lf ¼
exp btx fð Þ þ g1num fð Þ þ g2size fð Þ

� �
P

s in R t fð Þð Þ
exp btxs fð Þ þ g1nums fð Þ þ g2sizes fð Þ

� �

tx(f), num(f), and size(f) values of tx,
num, and size at t(f)

txs(f), nums(f), and sizes(f) values of tx,
num, and size for subject s in R(t(f))

Data for Subject #25

id int event start stop tx num size

25 1 1 0 2 0 1 5
25 2 1 2 17 0 1 5
25 3 1 17 22 0 1 5
25 4 0 22 30 0 1 5

f ¼ 15th ordered failure time
n15 ¼ 16 subjects in risk set at
t(15) ¼ 22:

R(t(15) ¼ 22) ¼ {subject #s 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26}
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The corresponding likelihood L15 at t(15) ¼ 22
is shown at the left. Subject #25’s values
tx25(15) ¼ 0, num25(15) ¼ 1, and size25(15) ¼ 5,
have been inserted into the numerator of the
formula. The denominator will contain a sum
of 16 terms, one for each subject in the risk set
at t(15) ¼ 22.

The overall partial likelihood L will be formu-
lated internally by the computer program once
the data layout is in the correct form and the
program code used involves the (start, stop)
formulation.

VI. Robust Estimation As illustrated for subject #14 at the left, each
subject contributes a line of data for each time
interval corresponding to each recurrent event
and any additional event-free follow-up interval.

We have also pointed out that the Cox model
analysis described up to this point treats differ-
ent lines of data contributed by the same sub-
ject as if they were independent contributions
from different subjects.

Nevertheless, it makes sense to view the dif-
ferent intervals contributed by a given subject
as representing correlated observations on the
same subject that must be accounted for in the
analysis.

A widely used technique for adjusting for the
correlation among outcomes on the same sub-
ject is called robust estimation (also referred
to as empirical estimation). This technique
essentially involves adjusting the estimated
variances of regression coefficients obtained
for a fitted model to account for misspecifi-
cation of the correlation structure assumed
(see Zeger and Liang, 1986 and Kleinbaum
and Klein, 2010).

L15 ¼
exp b 0ð Þ þ g1 1ð Þ þ g2 5ð Þð ÞP

s in R t 15ð Þð Þ
exp btxs 15ð Þ þ g1nums 15ð Þ þ g1sizes 15ð Þ

� �

Computer program formulates
partial likelihood L
(See Computer Appendix)

Data for Subject #14

id int event start stop tx num size

14 1 1 0 3 0 3 1
14 2 1 3 9 0 3 1
14 3 1 9 21 0 3 1
14 4 0 21 23 0 3 1

Up to this point:
the 4 lines of data for subject #14 are
treated as independent observations

Nevertheless,

� Observations of the same
subject are correlated

� Makes sense to adjust for such
correlation in the analysis

Robust (Empirical) Estimation

� Adjusts

dVar b̂k
� �

where

b̂k
is an estimated regression
coefficient

� accounts for misspecification of
assumed correlation structure
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In the CP approach, the assumed correlation
structure is independence; that is, the Cox PH
model that is fit assumes that different out-
comes on the same subject are independent.
Therefore the goal of robust estimation for the
CP approach is to obtain variance estimators
that adjust for correlation within subjects when
previously no such correlation was assumed.

This is the same goal for other approaches for
analyzing recurrent event data that we describe
later in this chapter.

Note that the estimated regression coefficients
themselves are not adjusted; only the estimated
variances of these coefficients are adjusted.

The robust (i.e., empirical) estimator of the
variance of an estimated regression coefficient
therefore allows tests of hypotheses and confi-
dence intervals about model parameters that
account for correlation within subjects.

We briefly describe the formula for the robust
variance estimator below. This formula is in
matrix form and involves terms that derive
from the set of “score” equations that are used
to solve for ML estimates of the regression
coefficients. This information may be of inter-
est to the more mathematically inclined reader
with some background in methods for the
analysis of correlated data (Kleinbaum and
Klein, 2010).

However, the information below is not essen-
tial for an understanding of how to obtain
robust estimators using computer packages.
(See Computer Appendix.)

CP approach: assumes
independence

Goal of robust estimation: adjust
for correlation within subjects

Same goal for other approaches for
analyzing recurrent event data

Do not adjust

b̂k
Only adjust

dVar b̂k
� �

Robust (Empirical) Variance

allows
tests of hypotheses and
confidence intervals

that account for correlated data

Matrix formula:

derived from ML estimation

Formula not essential for using
computer packages
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The robust estimator for recurrent event data
was derived by Lin and Wei (1989) as an exten-
sion similar to the “information sandwich esti-
mator” proposed by Zeger and Liang (1986) for
generalized linear models. SAS and Stata use
variations of this estimator that give slightly
different estimates.

The general form of this estimator can be most
conveniently written in matrix notation as
shown at the left. In this formula, the variance
expression denotes the information matrix
form of estimated variances and covariances
obtained from (partial) ML estimation of the
Cox model being fit. The R̂S expression in the
middle of the formula denotes the matrix of
score residuals obtained from ML estimation.

The robust estimation formula described above
applies to the CP approach as well as other
approaches for analyzing recurrent event data
described later in this chapter.

VII. Results for CP
Example

We now describe the results from using the CP
approach on the Bladder Cancer Study data
involving all 85 subjects.

Table 8.8 gives edited output from fitting the
no-interaction Cox PH model involving the
three predictors tx, num, and size. A likelihood
ratio chunk test for interaction terms tx� num
and tx� sizewas nonsignificant, thus support-
ing the no-interaction model shown here. The
PH assumption was assumed satisfied for all
three variables.

Table 8.9 provides the covariance matrix
obtained from robust estimation of the var-
iances of the estimated regression coefficients
of tx, num, and size. The values on the dia-
gonal of this matrix give robust estimates of
these variances and the off-diagonal values
give covariances.

Table 8.9. Robust Covariance Matrix,
CP Approach on Bladder Cancer Data

tx num size

tx 0.05848 �0.00270 �0.00051
num �0.00270 0.00324 0.00124
size �0.00051 0.00124 0.00522

Extension (Lin and Wei, 1989) of
information sandwich estimator
(Zeger and Liang, 1986)

Matrix formula

R̂ b̂
� �

¼ dVar b̂
� �

R̂0
SR̂S

h idVar b̂
� �

where

dVar b̂
� �

is the information matrix, and
R̂S

is matrix of score residuals

Formula applies to other appro-
aches for analyzing recurrent
event data

Table 8.8. Edited SAS Output from CP
Approach on Bladder Cancer Data (N ¼
85 Subjects) Without Robust Variances

Var DF

Parameter

Estimate

Std

Error Chisq P ĤR

tx 1 �0.4071 0.2001 4.140 0.042 0.667

num 1 0.1607 0.0480 11.198 0.001 1.174

size 1 �0.0401 0.0703 0.326 0.568 0.961

�2 LOG L ¼ 920.159
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Because the exposure variable of interest in
this study is tx, the most important value in
this matrix is 0.05848. The square root of this
value is 0.2418, which gives the robust stan-
dard error of the estimated coefficient of the tx
variable. Notice that this robust estimator is
similar but somewhat different from the non-
robust estimator of 0.2001 shown in Table 8.8.

We now summarize the CP results for the
effect of the exposure variable tx on recurrent
event survival controlling for num and size.
The hazard ratio estimate of 0.667 indicates
that the hazard for the placebo is 1.5 times
the hazard for the treatment.

Using robust estimation, the Wald statistic for
this hazard ratio is borderline nonsignificant
(P ¼ .09). Using the nonrobust estimator, the
Wald statistic is borderline significant (P¼ .04).
Both theseP-values, however, are for a two-sided
alternative. For a one-sided alternative, both
P-values would be significant at the .05 level.
The 95% confidence interval using the robust
variance estimator is quite wide in any case.

VIII. Other Approaches
Stratified Cox

We now describe three other approaches
for analyzing recurrent event data, each of
which uses a Stratified Cox (SC) PH model.
They are called Stratified CP, Gap Time, and
Marginal. These approaches are often used to
distinguish the order in which recurrent events
occur.

The “strata” variable for each approach treats
the time interval number as a categorical
variable.

Robust standard error for tx
¼ square-root (.05848) ¼ 0.2418

Nonrobust standard error for tx
¼ 0.2001

Summary of Results from
CP Approach

Hazard Ratio tx: exp(�0.407) ¼ 0.667
(¼ 1/1.5)

Wald Chi-Square tx: robust nonrobust
2.83 4.14

P-value tx: .09 .04
(H0: no effect of tx, HA: two sided)

95% CI for HR tx (robust):
(0.414, 1.069)

HA: one-sided, both p-values < .05

We return to the analysis of these
data when we discuss other app-
roaches for analysis of recurrent
event data.

3 stratified Cox (SC) approaches:

Stratified CP

Gap Time

(Prentice,
Williams and
Peterson, 1981)

Marginal (Wei, Lin, and
Weissfeld, 1989)

Goal: distinguish order of recur-
rent events

Strata variable: time interval #
treated as
categorical
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For example, if themaximumnumberof failures
that occur on any given subject in the dataset is,
say, 4, then time interval #1 is assigned to stra-
tum 1, time interval #2 to stratum 2, and so on.

Both Stratified CP and Gap Time approaches
focus on survival time between two events.
However, Stratified CP uses the actual times
of the two events from study entry, whereas
Gap Time starts survival time at 0 for the ear-
lier event and stops at the later event.

The Marginal approach, in contrast to each
conditional approach, focuses on total survival
time from study entry until the occurrence of a
specific (e.g., kth) event; this approach is sug-
gested when recurrent events are viewed to be
of different types.

The stratified CP approach uses the exact
same (start, stop) data layout format used for
the CP approach, except that for Stratified CP,
an SC model is used rather than a standard
(unstratified) PH model. The strata variable
here is int in this listing.

The Gap Time approach also uses a (start,
stop) data layout, but the start value is always
0 and the stop value is the time interval length
since the previous event. The model here is also
a SC model.

The Marginal approach uses the standard
(nonrecurrent event) data layout instead of
the (start, stop) layout, as illustrated below.

Example:
maximum of 4 failures per subject

+
Strata ¼ 1 for time interval # 1
variable 2 for time interval # 2

3 for time interval # 3
4 for time interval # 4

Time between two events:

Stratified CP
0 50 ! 80
entry

Gap Time
0 ! 30

ev1 ev2

Marginal

� Total survival time from study
entry until kth event

� Recurrent events of different
types

Stratified CP for Subject 10

id int event start stop tx num size

10 1 1 0 12 0 1 1
10 2 1 12 16 0 1 1
10 3 0 16 18 0 1 1

Gap Time for Subject 10

(stop ¼ Interval Length Since Previous Event)
id int event start stop tx num size

10 1 1 0 12 0 1 1
10 2 1 0 4 0 1 1
10 3 0 0 2 0 1 1

Marginal approach
Standard (nonrecurrent event)
layout, i.e., without (start, stop)
columns
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The Marginal approach layout, shown at the
left, contains four lines of data in contrast to
the three lines of data that would appear for
subject #10 using the CP, Stratified CP, and
Gap Time approaches

The reason why there are 4 lines of data here is
that, for the Marginal approach, each subject
is considered to be at risk for all failures that
might occur, regardless of the number of
events a subject actually experienced.

Because themaximumnumber of failures being
considered in the bladder cancer data is 4 (e.g.,
for subject #s 15 and 26), subject #10, who failed
only twice, will have two additional lines of
data corresponding to the two additional fail-
ures that could have possibly occurred for this
subject.

The three alternative SC approaches (Strati-
fied CP, Gap Time, andMarginal) fundamen-
tally differ in the way the risk set is determined
for strata corresponding to events after the first
event.

With Gap Time, the time until the first event
does not influence the composition of the risk
set for a second or later event. In other words,
the clock for determining who is at risk gets
reset to 0 after each event occurs.

In contrast, with Stratified CP, the time until
the first event affects the composition of the
risk set for later events.

With the Marginal approach, the risk set for
the kth event (k ¼ 1, 2, . . .) identifies those at
risk for the kth event since entry into the study.

Marginal Approach for Subject 10

id int event stime tx num size

10 1 1 12 0 1 1
10 2 1 16 0 1 1
10 3 0 18 0 1 1
10 4 0 18 0 1 1

Marginal approach
Each subject at risk for all
failures that might occur

# actual failures� #possible failures

Bladder cancer data:

Maximum # (possible) failures ¼ 4

So, subject 10 (as well as all other
subjects) gets 4 lines of data

Fundamental Difference Among the
3 SC Approaches

Risk set differs for strata after first
event

Gap Time: time until 1st event
does not influence risk set for later
events (i.e., clock reset to 0 after
event occurs)

Stratified CP: time until 1st event
influences risk set for later events

Marginal: risk set determined
from time since study entry
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Suppose, for example, that Molly (M), Holly
(H), and Polly (P) are the only three subjects
in the dataset shown at the left. Molly receives
the treatment (tx ¼ 1) whereas Holly and Polly
receive the placebo (tx ¼ 0). All three have
recurrent events at different times. Also, Polly
experiences three events whereas Molly and
Holly experience two.

The table at the left shows how the risk set
changes over time for strata 1 and 2 if the
Stratified CP approach is used. For stratum
2, there are no subjects in the risk set until
t ¼ 20, when Polly gets the earliest first event
and so becomes at risk for a second event.
Holly enters the risk set at t ¼ 30. So at t ¼ 50,
when the earliest second event occurs, the risk
set contains Holly and Polly. Molly is not at risk
for getting her second event until t ¼ 100. The
risk set at t ¼ 60 contains only Polly because
Holly has already had her second event at
t ¼ 50. And the risk set at t ¼ 105 contains
only Molly because both Holly and Polly have
already had their second event by t ¼ 105.

The next table shows how the risk set changes
over time if the Gap Time approach is used.
Notice that the data for stratum 1 are identical
to those for Stratified CP. For stratum 2, how-
ever, all three subjects are at risk for the second
event at t ¼ 0 and at t ¼ 5, when Molly gets
her second event 5 days after the first occurs.
The risk set at t ¼ 20 contains Holly and Polly
because Molly has already had her second
event by t ¼ 20. And the risk set at t ¼ 40
contains only Polly because both Molly and
Holly have already had their second event by
t ¼ 40.

EXAMPLE

Days

ID Status Stratum Start Stop tx

M 1 1 0 100 1
M 1 2 100 105 1
H 1 1 0 30 0
H 1 2 30 50 0
P 1 1 0 20 0
P 1 2 20 60 0
P 1 3 60 85 0

Stratified CP

Stratum 1 Stratum 2

t(f) nf R(t(f)) t(f) nf R(t(f))

0 3 {M, H, P} 20 1 {P}
20 3 {M, H, P} 30 2 {H, P}
30 2 {M, H} 50 2 {H, P}
100 1 {M} 60 1 {P}

105 1 {M}

Gap Time

Stratum 1 Stratum 2

t(f) nf R(t(f)) t(f) nf R(t(f))

0 3 {M, H, P} 0 3 {M, H, P}
20 3 {M, H, P} 5 3 {M, H, P}
30 2 {M, H} 20 2 {H, P}
100 1 {M} 40 1 {P}
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We next consider the Marginal approach. For
stratum 1, the data are identical again to those
for Stratified CP. For stratum 2, however,
all three subjects are at risk for the second
event at t ¼ 0 and at t ¼ 50, when Holly gets
her second event. The risk set at t¼ 60 contains
Molly and Polly because Holly has already had
her second event at t ¼ 50. And the risk set at
t ¼ 105 contains only Molly because both Holly
and Polly have already had their second event
by t ¼ 60.

Because Polly experienced three events, there
is also a third stratum for this example, which
we describe for the marginal approach only.

Using the marginal approach, all three subjects
are considered at risk for the third event when
they enter the study (t ¼ 0), even though Molly
and Holly actually experience only two events.
At t¼ 85, when Polly has her third event, Holly,
whose follow-up ended at t¼ 50, is no longer in
the risk set; which still includes Molly because
Molly’s follow-up continues until t ¼ 105.

The basic idea behind the Marginal approach
is that it allows each failure to be considered as
a separate process. Consequently, theMarginal
approach not only allows the investigator to
consider the ordering of failures as separate
events (i.e., strata) of interest, but also allows
the different failures to represent different types
of events that may occur on the same subject.

All three alternative approaches, although dif-
fering in the form of data layout and the way
the risk set is determined, nevertheless use a
stratified Cox PH model to carry out the analy-
sis. This allows a standard program that fits a
SC model (e.g., SAS’s PHREG) to perform the
analysis.

The models used for the three alternative SC
approaches are therefore of the same form. For
example, we show on the left the no-interaction
SC model appropriate for the bladder cancer
data we have been illustrating.

Marginal

Stratum 1 Stratum 2

t(f) nf R(t(f)) t(f) nf R(t(f))

0 3 {M, H, P} 0 3 {M, H, P}
20 3 {M, H, P} 50 3 {M, H, P}
30 2 {M, H} 60 2 {M, P}

100 3 {M} 105 1 {M}

Stratum 3 for Marginal approach
follows

Marginal
Stratum 3

t(f) nf R(t(f))

0 3 {M, H, P}
85 2 {M, P}

Note: H censored by t ¼ 85

Basic idea (Marginal approach):

Each failure considered a separate
process

Allows stratifying on

� Failure order
� Different failure type (e.g.,

stage 1 vs. stage 2 cancer)

Stratified Cox PH (SC) Model for
all 3 alternative approaches

Use standard computer program
for SC (e.g., SAS’s PHREG, Stata’s
stcox, SPSS’s coxreg, R’s Coxph)

No-interactionSCmodel forbladder
cancer data

hg(t,X) ¼ h0g(t)exp[b tx þ g1 num
þ g2 size]

where g ¼ 1, 2, 3, 4
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As described previously in Chapter 5 on the
stratified Cox procedure, a no-interaction stra-
tified Cox model is not appropriate if there
is interaction between the stratified variables
and the predictor variables put into the
model. Thus, it is necessary to assess whether
an interaction version of the SC model is more
appropriate, as typically carried out using a
likelihood ratio test.

For the bladder cancer data, we show at the left
two equivalent versions of the SC interaction
model. The first version separates the data into
4 separate models, one for each stratum.

The second version contains product terms
involving the stratified variable with each of
the 3 predictors in the model. Because there
are 4 strata, the stratified variable is defined
using 3 dummy variables Z�

1;Z
�
2, and Z�

3.

The null hypotheses for the LR test that com-
pares the interaction with the no-interaction
SC model is shown at the left for each version.
The df for the LR test is 9.

Two types of SC models:

No-interaction versus interaction
model

Typically compared using LR test

Version 1: Interaction SC Model

hg(t,X) ¼ h0g(t) exp[bg tx
þ g1g num þ g2g size]

g ¼ 1, 2, 3, 4

Version 2: Interaction SC Model

hg t,Xð Þ ¼ h0gðtÞexp b tx½ þ g1 num

þ g2 sizeþ d11 Z�
1 � tx

� �
þ d12 Z�

2 � tx
� �þ d13 Z�

3 � tx
� �

þ d21 Z�
1 � num

� �þ d22 Z�
2 � num

� �
þ d23 Z�

3 � num
� �þ d31 Z�

1 � size
� �

þd32 Z�
2 � size

� �þ d33 Z�
3 � size

� ��
where Z�

1; Z�
2, and Z�

3 are 3 dummy
variables for the 4 strata.

H0 (Version 1)

b1 ¼ b2 ¼ b3 ¼ b4 � b;
g11 ¼ g12 ¼ g13 ¼ g14 � g1;
g21 ¼ g22 ¼ g23 ¼ g24 � g2

H0 (Version 2)

d11 ¼ d12 ¼ d13 ¼ d21 ¼ d22
¼ d23 ¼ d31 ¼ d32 ¼ d33
¼ 0
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Even if the no-interaction SC model is found
more appropriate from the likelihood ratio
test, the investigator may still wish to use the
interaction SC model in order to obtain and
evaluate different hazard ratios for each stra-
tum. In other words, if the no-interaction
model is used, it is not possible to separate
out the effects of predictors (e.g., tx) within
each stratum, and only an overall effect of a
predictor on survival can be estimated.

For each of the SC alternative approaches, as
for the CP approach, it is recommended to use
robust estimation to adjust the variances of
the estimated regression coefficients for the
correlation of observations on the same sub-
ject. The general form for the robust estimator
is the same as in the CP approach, but will give
different numerical results because of the dif-
ferent data layouts used in each method.

IX. Bladder Cancer Study
Example (Continued)

We now present and compare SAS results from
using all four methods we have described – CP,
Stratified CP, Gap Time, and Marginal – for
analyzing the recurrent event data from the
bladder cancer study.

Table 8.10 gives the regression coefficients for
the tx variable and their corresponding hazard
ratios (i.e., exp(b̂) for the no-interaction Cox
PH models using these four approaches). The
model used for the CP approach is a standard
Cox PH model whereas the other three models
are SC models that stratify on the event order.

From this table, we can see that the hazard
ratio for the effect of the exposure variable
tx differs somewhat for each of the four
approaches, with the Marginal model giving a
much different result from that obtained from
the other three approaches.

Table 8.10. Estimated bs and HRs for tx
from Bladder Cancer Data

Model b̂ ĤR ¼ exp(b̂)

CP �0.407 0.666 (¼1/1.50)
SCP �0.334 0.716 (¼1/1.40)
GT �0.270 0.763 (¼1/1.31)
M �0.580 0.560 (¼1/1.79)

CP ¼ Counting Process,
SCP ¼ Stratified CP
GT ¼ Gap Time, M ¼ Marginal

Interaction SC model may be used
regardless of LR test result

� Allows separate HRs for tx for
each stratum

� if no-interaction SC, then only
an overall effect of tx can be
estimated

Recommend using

robust estimation

R̂ b̂
� �

¼ dVar b̂
� �

R̂0
SR̂S

h idVar b̂
� �

to adjust for correlation of observa-
tions on the same subject

HR for M: 0.560 (¼1/1.79)
differs from
HRs for CP: 0.666 (¼1/1.50),

SCP: 0.716 (¼1/1.40),
GT: 0.763 (¼1/1.31)
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Table 8.11 provides, again for the exposure
variable tx only, the regression coefficients,
robust standard errors, nonrobust standard
errors, and corresponding Wald Statistic P-
values obtained from using the no-interaction
model with each approach.

The nonrobust and robust standard errors and
P-values differ to some extent for each of the
different approaches. There is also no clear
pattern to suggest that the nonrobust results
will always be either higher or lower than the
corresponding robust results.

The P-values shown in Table 8.11 are com-
puted using the standard Wald test Z or chi-
square statistic, the latter having a chi-square
distribution with 1 df under the null hypothesis
that there is no effect of tx.

Table 8.12 presents, again for the exposure
variable tx only, the estimated regression coef-
ficients and robust standard errors for both the
interaction and the no-interaction SC models
for the three approaches (other than the CP
approach) that use a SC model.

Notice that for each of the three SC modeling
approaches, the estimated bs and corres-
ponding standard errors are different over the
four strata as well as for the no-interaction
model. For example, using the Stratified CP
approach, the estimated coefficients are�0.518,
� 0.459, � 0.117, � 0.041, and � 0.334 for
strata 1 through 4 and the no-interaction
model, respectively.

SE(NR) differs from SE(R)
P(NR) differs from P(R)

but no clear pattern

for example,
CP: P(NR) ¼ .042 < P(R) ¼ .092
SCP: P(NR) ¼ .122 > P(R) ¼ .090
GT: P(NR) ¼ .195 ¼ P(R) ¼ .194

Wald test statistic(s):

Z ¼ b̂=SEðb̂Þ , Z2 ¼ ½b̂=SEðb̂Þ	2

 N 0, 1ð Þ under H0: b ¼ 0 
 w21 df

Table 8.11 Estimated bs, SE(b)s, and P-
Values for tx from No-Interaction Model
for Bladder Cancer Data

Model b̂ SE(NR) SE(R) P(NR) P(R)

CP �0.407 0.200 0.242 .042 .092
SCP �0.334 0.216 0.197 .122 .090
GT �0.270 0.208 00.208 .195 .194
M �0.580 0.201 0.303 .004 .056

CP ¼ Counting Process, SCP ¼ Stratified CP,
GT ¼ Gap Time, M ¼ Marginal,
NR¼Nonrobust, R¼Robust, P¼Wald P-value

Table 8.12 Estimated bs and Robust
SE(b)s for tx from Interaction SC Model
for Bladder Cancer Data

Interaction SC Model

Model

Str1
b̂1

(SE)

Str2
b̂2

(SE)

Str3
b̂3

(SE)

Str4
b̂4

(SE)

No
Interaction

b̂
(SE)

CP — — — — �.407
(.242)

SCP �.518 �.459 .117 �.041 �.334
(.308) (.441) (.466) (.515) (.197)

GT �.518 �.259 .221 �.195 �.270
(.308) (.402) (.620) (.628) (.208)

M �.518 �.619 �.700 �.651 �.580
(.308) (.364) (.415) (.490) (.303)

CP ¼ Counting Process, SCP ¼ Stratified CP
GT ¼ Gap Time, M ¼ Marginal
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Such differing results over the different strata
should be expected because they result from
fitting an interaction SC model, which by defi-
nition allows for different regression coeffi-
cients over the strata.

Notice also that for stratum 1, the estimated b
and its standard error are identical (�0.518
and 0.308, resp.) for the Stratified CP, Gap
Time, and Marginal approaches. This is as
expected because, as illustrated for subject
#10 at the left, the survival time information
for first stratum is the same for stratum 1 for
the three SC approaches and does not start to
differ until stratum 2.

Although the data layout for the marginal
approach does not require (start,stop) columns,
the start time for the first stratum (and all other
strata) is 0 and the stop time is given in the stime
column. In otherwords, for stratum1 on subject
#10, the stop time is 0 and the start time is 12,
which is the same as for the Stratified CP and
Gap Time data for this subject.

So, based on all the information we have
provided above concerning the analysis of the
bladder cancer study,

1. Which of the four recurrent event analysis
approaches is best?

2. What do we conclude about the estimated
effect of tx controlling for num and size?

Version 1: Interaction SC Model

hg(t,X) ¼ h0g(t)exp[bgtx
þ g1g num þ g2g size]

g ¼ 1, 2, 3, 4

Note: subscript g allows for differ-
ent regression coefficients for each
stratum

Stratified CP for Subject 10

id int event start stop tx num size

10 1 1 0 12 0 1 1

Gap Time for Subject 10

id int event start stop tx num size

10 1 1 0 12 0 1 1

Marginal Approach for Subject 10

id int event stime tx num size

10 1 1 12 0 1 1

Note: int ¼ stratum #

Marginal approach

start time ¼ 0 always
stop time ¼ stime

Subject # 10: (start, stop) ¼ (0, 12)

Bladder Cancer Study

1. Which approach is best?
2. Conclusion about tx?
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The answer to question 1 is probably best
phrased as, “It depends!” Nevertheless, if the
investigator does not want to distinguish
between recurrent events on the same subject
and wishes an overall conclusion about the
effect of tx, then the CP approach seems quite
appropriate, as for this study.

If, however, the investigator wants to distin-
guish the effects of tx according to the order
that the event occurs (i.e., by stratum #), then
one of the three SC approaches should be pre-
ferred. So, which one?

The Stratified CP approach is preferred if the
study goal is to use time of occurrence of each
recurrent event from entry into the study to
assess a subject’s risk for an event of a specific
order (i.e., as defined by a stratum #) to occur.

The Gap Time approach would be preferred if
the time interval of interest is the time (reset
from 0) from the previous event to the next
recurrent event rather than time from study
entry until each recurrent event.

Finally, the Marginal approach is recom-
mended if the investigator wants to consider
the events occurring at different orders as dif-
ferent types of events, for example different
disease conditions.

We (the authors) consider the choice between
the Stratified CP and Marginal approaches
to be quite subtle. We prefer Stratified CP,
provided the different strata do not clearly rep-
resent different event types. If, however, the
strata clearly indicate separate event processes,
we would recommend the Marginal approach.

Overall, based on the above discussion, we
think that the CP approach is an acceptable
method to use for analyzing the bladder cancer
data. If we had to choose one of the three SC
approaches as an alternative, we would choose
the Stratified CP approach, particularly
because the order of recurrent events that
define the strata doesn’t clearly distinguish
separate disease processes.

Which of the 4 approaches is best?
It depends!

CP: Don’t want to distinguish
recurrent event order

Want overall effect

If event order important:

Choose from the 3 SC approaches.

Stratified CP: time of recurrent
event from entry
into the study

Gap Time: Use time from
previous event to
next recurrent event

Marginal: Consider strata as
representing different
event types

Stratified CP versus Marginal
(subtle choice)

Recommend: Choose Stratified
CP unless strata
represent different
event types

What do we conclude about tx?

Conclusions based on results from
CP and Stratified CP approaches
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Table 8.13 summarizes the results for the CP
and Stratified CP approaches with regard to
the effect of the treatment variable (tx),
adjusted for the control variables num and
size. We report results only for the no-interac-
tion models, because the interaction SC model
for the Stratified CP approach was found
(using LR test) to be not significantly different
from the no-interaction model.

The results are quite similar for the two different
approaches. There appears to be a small effect
of tx on survival from bladder cancer: cHR CPð Þ ¼
0:667 ¼ 1=1:50; cHR C1ð Þ ¼ 0:716 ¼ 1=1:40. This
effect is borderline nonsignificant (2-sided
tests): P(CP) ¼ .09 ¼ P(SCP). 95% confidence
intervals around the hazard ratios are quite
wide, indicating an imprecise estimate of effect.

Overall, therefore, these results indicate that
there is no strong evidence that tx is effective
(after controlling for num and size) based on
recurrent event survival analyses of the bladder
cancer data.

X. A Parametric Approach
Using Shared Frailty

In the previous section we compared results
obtained from using four analytic approaches
on the recurrent event data from the bladder
cancer study. Each of these approaches used a
Cox model. Robust standard errors were
included to adjust for the correlation among
outcomes from the same subject.

In this section we present a parametric
approach for analyzing recurrent event data
that includes a frailty component. Specifically,
a Weibull PH model with a gamma distributed
shared frailty component is shown using the
Bladder Cancer dataset. The data layout is the
same as described for the counting process
approach. It is recommended that the reader
first review Chapter 7, particularly the sections
on Weibull models (Section VI) and frailty
models (Section XII).

Table 8.13. Comparison of Results
Obtained from No-Interaction Models
Across Two Methods for Bladder Cancer
Data

Counting
process

Stratified
CP

Parameter
estimate

�0.407 �0.334

Robust
standard
error

0.2418 0.1971

Wald chi-square 2.8338 2.8777
p-value 0.0923 0.0898
Hazard ratio 0.667 0.716
95% confidence

interval
(0.414,

1.069)
(0.486,

1.053)

Compared 4 approaches in previ-
ous section

� Each used a Cox model
� Robust standard errors

∘ Adjusts for correlation from
same subject

We now present a parametric
approach

� Weibull PH model
� Gamma shared frailty

component
� Bladder Cancer dataset

∘ Data layout for the counting
process approach

Can review Chapter 7
Weibull model (Section VI)
Frailty models (Section XII)
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We define the model in terms of the hazard of
any (recurrent) outcome on the ith subject con-
ditional on his or her frailty ai. The frailty is a
multiplicative random effect on the hazard
function h(t|Xi), assumed to follow a gamma
distribution of mean 1 and variance theta y.
We assume h(t|Xi) follows a Weibull distribu-
tion (shown at left).

The frailty is included in the model to account
for variability due tounobserved subject-specific
factors that are otherwise unaccounted for by
the other predictors in the model. These unob-
served subject-specific factors can be a source
of within-subject correlation. We use the term
shared frailty to indicate that observations
are clustered by subject and each cluster (i.e.,
subject) shares the same level of frailty.

In the previous sections, we have used robust
variance estimators to adjust the standard
errors of the coefficient estimates to account
for within-subject correlation. Shared frailty is
not only an adjustment, but also is built into
the model and can have an impact on the esti-
mated coefficients as well as their standard
errors.

The model output (obtained using Stata
version 10) is shown on the left. The inclusion
of frailty in a model (shared or unshared) leads
to one additional parameter estimate in the
output (theta, the variance of the frailty). A like-
lihood ratio test for theta ¼ 0 yields a statisti-
cally significant p-value of 0.003 (bottom of
output) suggesting that the frailty component
contributes to the model and that there is
within-subject correlation.

The estimate for theWeibull shape parameter p
is 0.888 suggesting a slightly decreasing hazard
over time because p̂< 1. However, the Wald
test for ln(p) ¼ 0 (or equivalently p ¼ 1) yields
a non-significant p-value of 0.184.

Hazard conditioned on frailty ak

hi(t|a,Xi) ¼ aih(t|Xi)

where a 
 gamma(m ¼ 1, var ¼ y)
and where h(t|Xi) ¼ li pt

p�1

(Weibull) with lfk ¼ exp(b0 þ
b1txi þ b2numi þ b3sizei)

Including shared frailty

� Accounts for unobserved
factors
∘ Subject specific
∘ Source of correlation
∘ Observations clustered by

subject

Robust standard errors

� Adjusts standard errors
� Does not affect coefficient

estimates

Shared frailty

� Built into model
� Can affect coefficient estimates

and their standard errors

Weibull regression (PH form)
Gamma shared frailty
Log likelihood ¼ �184.73658

_t Coef. Std. Err. z P > |z|

tx �.458 .268 �1.71 0.011
num .184 .072 2.55 0.327
size �.031 .091 �0.34 0.730
_cons �2.952 .417 �7.07 0.000

/ln_p �.119 .090 �1.33 0.184
/ln_the �.725 .516 �1.40 0.160

p .888 .080
1/p 1.13 .101
theta .484 .250

Likelihood ratio test of theta ¼ 0:
chibar(01) ¼ 7.34
Prob > ¼ chibar2 ¼ 0.003
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An estimated hazard ratio of 0.633 for the effect
of treatment comparing two individuals with
the same level of frailty and controlling for the
other covariates is obtained by exponentiat-
ing the estimated coefficient (�0.458) for tx.
The estimated hazard ratio and 95% confi-
dence intervals are similar to the corresponding
results obtained using a counting processes
approachwith a Coxmodel and robust standard
errors (see left).

Another interpretation for the estimated hazard
ratio from the frailty model involves the com-
parison of an individual to himself. In other
words, this hazard ratio describes the effect on
an individual’s hazard (i.e., conditional hazard)
if that individual had used the treatment rather
than the placebo.

XI. A Second Example Wenow illustrate the analysis of recurrent event
survival data using a new example. We con-
sider a subset of data from the Age-Related
Eye Disease Study (AREDS), a long-term multi-
center, prospective study sponsored by the U.S.
National Eye Institute of the clinical course of
age-related macular degeneration (AMD) (see
AREDS Research Group, 2003).

In addition to collecting natural history data,
AREDS included a clinical trial to evaluate the
effect of high doses of antioxidants and zinc on
the progression of AMD. The data subset we
consider consists of 43 patients who experi-
enced ocular events while followed for their
baseline condition, macular degeneration.

Comparing Hazard Ratios

Weibull with frailty model

cHR txð Þ ¼ exp �0:458ð Þ ¼ 0:633

95%CI ¼ exp �0:458� 1:96 0:268ð Þ½ 	
¼ 0:374; 1:070ð Þ

Counting processes approach with
Cox model

cHR txð Þ : exp �0:407ð Þ ¼ 0:667

95% CI for HR tx (robust): (0.414,
1.069)

Interpretations of HR from frailty
model

� Compares 2 individuals with
same a

� Compares individual with
himself
∘ What is effect if individual

had used treatment rather
than placebo?

Age-Related Eye Disease
Study (AREDS)

Outcome

Age-related macular
degeneration (AMD)

Clinical trial
Evaluate effect of treatment
with high doses of antioxidants
and zinc on progression of AMD

n ¼ 43 (subset of data analyzed
here)
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The exposure variable of interest was treat-
ment group (tx), which was coded as 1 for
patients randomly allocated to an oral combi-
nation of antioxidants, zinc, and vitamin C ver-
sus 0 for patients allocated to a placebo.
Patients were followed for 8 years.

Each patient could possibly experience two
events. The first event was defined as the sud-
den decrease in visual acuity score below 50
measured at scheduled appointment times.
Visual acuity score was defined as the number
of letters read on a standardized visual acuity
chart at a distance of 4 m, where the higher the
score, the better the vision.

The second event was considered a successive
stage of the first event and defined as a clini-
cally advanced and severe stage of macular
degeneration. Thus, the subject had to experi-
ence the first event before he or she could expe-
rience the second event.

We now describe the results of using the four
approaches for analyzing recurrent event sur-
vival with these data. In each analysis, two cov-
ariates age and sexwere controlled, so that each
model contained the variables tx, age, and sex.

The counting process (CP) model is shown
here at the left together with both the no-inter-
action and interaction SC models used for the
three stratified Cox (SC) approaches.

Exposure

tx ¼ 1 if treatment, 0 if placebo

8 years of follow-up

Two possible events

First event: visual acuity score
<50 (i.e., poor
vision)

Second event: clinically
advanced severe stage of
macular degeneration

4 approaches for analyzing
recurrent event survival data
carried out on macular
degeneration data

Each model contains tx, age,
and sex.

CP model

h(t,X) ¼ h0(t)exp[b tx þ g1 age
þ g2 sex]

No-interaction SC model

hg(t,X) ¼ h0g(t)exp[b tx þ g1 age
þ g2 sex]

where g ¼ 1, 2

Interaction SC model:

hg(t,X) ¼ h0g(t)exp[bg tx þ g1g
age
þ g2g sex]

where g ¼ 1, 2

392 8. Recurrent Event Survival Analysis



In Table 8.14, we compare the coefficient esti-
mates and their robust standard errors for the
treatment variable (tx) fromall four approaches.
This table shows results for both the “interac-
tion” and “nointeraction” stratified Cox models
for the three approaches other than the counting
process approach.

Notice that the estimated coefficients for b1
and their corresponding standard errors are
identical for the three SC approaches. This
will always be the case for the first stratum
regardless of the data set being considered.

The estimated coefficients for b2 are, as
expected, somewhat different for the three SC
approaches. We return to these results shortly.

LR tests for comparing the “no-interaction”
with the “interaction” SC models were signifi-
cant (P < .0001) for all three SC approaches
(details not shown), indicating that an inter-
action model was more appropriate than a
no-interaction model for each approach.

In Table 8.15, we summarize the statistical
inference results for the effect of the treatment
variable (tx) for the Stratified CP and
Marginal approaches only.

We have not included the CP results here
because the two events being considered are of
very different types, particularly regarding
severity of illness, whereas the CP approach
treats both events as identical replications. We
have not considered the Gap Time approach
because the investigators weremore likely inter-
ested in survival time from baseline entry into
the study than the survival time “gap” from the
first to second event.

Because we previously pointed out that the
interaction SC model was found to be signi-
ficant when compared to the corresponding
no-interaction SC model, we focus here on the
treatment (tx) effect for each stratum (i.e.,
event) separately.

Table 8.15. Comparison of Results for
the Treatment Variable (tx) Obtained
for Stratified CP and Marginal
Approaches (Macular Degeneration
Data)

Stratified CP Marginal

Estimate b̂1 �0.0555 �0.0555

b̂2 �0.9551 �0.8615

b̂ �0.306 �0.2989

Robust SE(b̂1) 0.2857 0.2857

std. SE(b̂2) 0.4434 0.4653

error SE(b̂) 0.2534 0.2902

Wald H0:b1 ¼ 0 0.0378 0.0378

chi- H0:b2 ¼ 0 4.6395 3.4281

square H0:b ¼ 0 1.4569 1.0609

P-value H0:b1 ¼ 0 0.8458 0.8478

H0:b2 ¼ 0 0.0312 0.0641

H0:b ¼ 0 0.2274 0.3030

Hazard exp(b̂1) 0.946 0.946

ratio exp(b̂2) 0.385 0.423

exp(b̂) 0.736 0.742

95% Conf. exp(b̂1) (0.540, 1.656) (0.540, 1.656)

interval exp(b̂2) (0.161, 0.918) (0.170, 1.052)

exp(b̂) (0.448, 1.210) (0.420, 1.310)

Table 8.14 Comparison of Parameter
Estimates and Robust Standard
Errors for Treatment Variable (tx)
Controlling for Age and Sex (Macular
Degeneration Data)

“Interaction” Cox
stratified model

“No-
interaction”
SC model

Model Stratum 1 Stratum
2

b̂1 (SE) b̂2 (SE) b̂3 (SE)
Counting

process
n/a n/a �0.174

(0.104)
SCP �0.055 �0.955 �0.306

(0.286) (0.443) (0.253)
GT �0.055 �1.185 �0.339

(0.286) (0.555) (0.245)
Marginal �0.055 �0.861 �0.299

(0.286) (0.465) (0.290)

Interaction SC models are pre-
ferred (based on LR test results)
to use of no-interaction SC
model
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Based on the Wald statistics and corresponding
P-values for testing the effect of the treatment
on survival to the first event (i.e., H0: b1 ¼ 0),
both the Stratified CP and Marginal appro-
aches give the identical result that the esti-
mated treatment effect ðcHR ¼ 0:946 ¼ 1=1:06Þ is
neither meaningful nor significant (P ¼ 0.85).

For the second event, indicating a clinically
severe stage of macular degeneration, the
Wald statistic P-value for the Stratified CP
approach is 0.03, which is significant at the
.05 level, whereas the corresponding P-value
for the Marginal approach is 0.06, border-
line nonsignificant at the .05 level.

The estimated HR for the effect of the treatment
is ðcHR ¼ 0:385 ¼ 1=2:60Þ using the Stratified CP
approach and its 95% confidence interval is
quite wide but does not contain the null value
of 1. For the Marginal approach, the estimated
HR is cHR ¼ 0:423 ¼ 1=2:36, also with a wide
confidence interval, but includes 1.

Thus, based on the above results, there appears
to be no effect of treating patients with high
doses of antioxidants and zinc on reducing
visual acuity score below 50 (i.e., the first event)
based on either Stratified CP or Marginal
approaches to the analysis.

However, there is evidence of a clinically
moderate and statistically significant effect of
the treatment on protection (i.e., not failing)
from the second more severe event of macular
degeneration. This conclusion is more sup-
ported from the Stratified CP analysis than
from the Marginal analysis.

Despite similar conclusions from both appro-
aches, it still remains to compare the two
approaches for these data. In fact, if the results
from each approach had been very different, it
would be important to make a choice between
these approaches.

First event:

SCP Marginal

dHR 0.946 0.946
p-value 0.85 0.85

Second event:

SCP Marginal

dHR 0.385 0.423
p-value 0.03 0.06
95% CI (0.16, 0.92) (0.17, 1.05)

Conclusions regarding 1st event:

� No treatment effect
� Same for Stratified CP and

Marginal approaches

Conclusions regarding 2nd event:

� Clinically moderate and
statistically significant
treatment effect

� Similar for Stratified CP
and Marginal approaches,
but more support from
Stratified CP approach

Comparison of Stratified CP
with Marginal Approach

What if results had been
different?
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Nevertheless, we authors find it difficult to
make such a decision, even for this example.
The Stratified CP approach would seem
appropriate if the investigators assumed that
the second event cannot occur without the first
event previously occurring. If so, it would be
important to consider survival time to the sec-
ond event only for (i.e., conditional on) those
subjects who experience a first event.

On the other hand, the Marginal approach
would seem appropriate if each subject is con-
sidered to be at risk for the second event
whether or not the subject experiences the
first event. The second event is therefore con-
sidered separate from (i.e., unconditional of)
the first event, so that survival times to the
second event need to be included for all sub-
jects, as in the Marginal approach.

For the macular degeneration data example, we
find the Marginal approach persuasive. How-
ever, in general, the choice among all four
approaches is not often clear-cut and requires
careful consideration of the different interpreta-
tions that can be drawn from each approach.

XII. Survival Curves with
Recurrent Events

An important goal of most survival analyses,
whether or not a regression model (e.g., Cox
PH) is involved, is to plot and interpret/compare
survival curves for different groups. We have
previously described the Kaplan–Meier (KM)
approach for plotting empirical survival curves
(Chapter 2) and we have also described how to
obtain adjusted survival curves for Cox PH
models (Chapters 3 and 4).

This previous discussion only considered sur-
vival data for the occurrence of one (nonre-
current) event. So, how does one obtain
survival plots when there are recurrent events?

Recommend Stratified CP if

Can assume 2nd event cannot
occur without 1st event
previously occurring

+
Should consider survival time to

2nd event conditional on
experiencing 1st event

Recommend Marginal if

Can assume each subject at risk
for 2nd event whether or not
1st event previously occurred

+
2nd event considered a separate

event, that is, unconditional
of the 1st event

+
Should consider survival times

to 2nd event for all subjects

Macular degeneration data:
recommend Marginal approach

In general: carefully consider
interpretation of each approach

Goal: Plot and Interpret
Survival Curves

Types of survival curves:

KM (empirical): Chapter 2
Adjusted (CoxPH):Chapters 3 and 4

Previously: 1 (nonrecurrent) event
Now:
Survival plotswith recurrent events?
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The answer is that survival plots with recurrent
events only make sense when the focus is on
one ordered event at a time. That is, we can plot
a survival curve for survival to a first event,
survival to a second event, and so on.

For survival to a first event, the survival curve
describes the probability that a subject’s time
to occurrence of a first event will exceed a spe-
cified time. Such a plot essentially ignores any
recurrent events that a subject may have after a
first event.

For survival to a second event, the survival
curve describes the probability that a subject’s
time to occurrence of a second event will
exceed a specified time.

There are two possible versions for such a plot.

Stratified: use survival time from time of first
event until occurrence of second event, thus
restricting the dataset to only those subjects
who experienced a first event.

Marginal: use survival time from study entry
to occurrence of second event, ignoring
whether a first event occurred.

Similarly, for survival to the kth event, the
survival curve describes the probability that a
subject’s time to occurrence of the kth event
will exceed a specified time.

As with survival to the second event, there are
two possible versions, Stratified or Marginal,
for such a plot, as stated on the left.

Focus ononeorderedevent at a time

S1(t): 1st event
S2(t): 2nd event

. . .
Sk(t): kth event

Survival to a 1st event

S1(t) ¼ Pr(T1 > t)

where
T1¼ survival time up to occurrence

of 1st event
(ignores later recurrent events)

Survival to a 2nd event

S2(t) ¼ Pr(T2 > t)

where
T2¼ survival time up to occurrence

of 2nd event

Two versions

Stratified:
T2c ¼ time from 1st event to 2nd

event, restricting data to 1st
event subjects

Marginal:
T2m ¼ time from study entry to 2nd

event, ignoring 1st event

Survival to a kth event (k � 2)

Sk(t) ¼ Pr(Tk > t)

where
Tk¼ survival time up to occurrence

of kth event

Two versions

Stratified:
Tkc ¼ time from the k � 1st to kth

event, restricting data to
subjects with k � 1 events

Marginal:
Tkm ¼ time from study entry to kth

event, ignoring previous
events

396 8. Recurrent Event Survival Analysis



We now illustrate such survival plots for recur-
rent event data by returning to the small data-
set previously described for three subjects
Molly (M), Holly (H), and Polly (P), shown
again on the left.

The survival plot for survival to the first event
S1(t) is derived from the stratum 1 data layout
for any of the three alternative SC analysis
approaches. Recall that mf and qf denote the
number of failures and censored observations
at time t(f). The survival probabilities in the last
column use the KM product limit formula.

The Stratified survival plot for survival to the
second event is derived from the stratum 2 data
layout for the Gap Time approach. We denote
this survival curve as S2c(t). Notice that the
survival probabilities here are identical to
those in the previous table; however, the failure
times t(f) in each table are different.

The Marginal survival plot for survival to the
second event is derived from the stratum 2 data
layout for the Marginal approach. We denote
this survival curve as S2m(t). Again, the last
column here is identical to those in the previ-
ous two tables, but, once again, the failure
times t(f) in each table are different.

The survival plots that correspond to the above
threedata layouts are shown inFigures 8.1 to8.3.

Figure 8.1 shows survival probabilities for the
first event, ignoring later events. The risk set at
time zero contains all three subjects. The plot
drops from S1(t) ¼ 1 to S1(t) ¼ 0.67 at t ¼ 20,
drops again to S1(t) ¼ 0.33 at t ¼ 30 and falls to
S1(t) ¼ 0 at t ¼ 100 when the latest first event
occurs.

EXAMPLE

Days

ID Status Stratum Start Stop tx

M 1 1 0 100 1
M 1 2 100 105 1
H 1 1 0 30 0
H 1 2 30 50 0
P 1 1 0 20 0
P 1 2 20 60 0
P 1 3 60 85 0

Deriving S1(t): Stratum 1

t(f) nf mf qf R(t(f)) S1(t(f))

0 3 0 0 {M, H, P} 1.00
20 3 1 0 {M, H, P} 0.67
30 2 1 0 {M, H} 0.33
100 1 1 0 {M} 0.00

Deriving S2c(t): Stratum 2
(Stratified GT)

t(f) nf mf qf R(t(f)} S2c(t(f))

0 3 0 0 {M, H, P} 1.00
5 3 1 0 {M, H, P} 0.67
20 2 1 0 {M, P} 0.33
450 1 1 0 {M} 0.00

Deriving S2m(t): Stratum 2 (Marginal)

t(f) nf mf qf R(t(f)} S2m(t(f))

0 3 0 0 {M, H, P} 1.00
20 3 1 0 {M, H, P} 0.67
30 2 1 0 {H, P} 0.33
100 1 1 0 {P} 0.00

Survival Plots for Molly, Holly and
Polly Recurrent Event Data (n ¼ 3)

1.0

.8

.6

.4

.2

20 40 60 80 100

Figure 8.1. S1(t): Survival to 1st Event
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Figure 8.2 shows Stratified GT survival prob-
abilities for the second event using survival
time from the first event to the second
event. Because all three subjects had a first
event, the risk set at time zero once again con-
tains all three subjects. Also, the survival prob-
abilities of 1, 0.67, 0.33, and 0 are the same as
in Figure 8.1. Nevertheless, this plot differs
from the previous plot because the survival
probabilities are plotted at different survival
times (t ¼ 5, 20, 40 in Figure 8.2 instead of t ¼
20, 30, 100 in Figure 8.1)

Figure 8.3 shows Marginal survival probabil-
ities for the second event using survival time
from study entry to the second event, ignor-
ing the first event. The survival probabilities
of 1, 0.67, 0.33, and 0 are once again the same
as in Figures 8.1 and 8.2. Nevertheless, this plot
differs from the previous two plots because the
survival probabilities are plotted at different
survival times (t ¼ 50, 60, 105 in Figure 8.3).

XIII. Summary We have described four approaches for analyz-
ing recurrent event survival data.

These approaches differ in how the risk set is
determined and in data layout. All four
approaches involve using a standard computer
program that fits a Cox PH model, with the
latter three approaches requiring a stratified
Cox model, stratified by the different events
that occur.

The approach to analysis typically used when
recurrent events are treated as identical is
called the CP Approach.

4 approaches for recurrent event
data
Counting process (CP),
Stratified CP, Gap Time,
Marginal

The 4 approaches

� Differ in how risk set is
determined

� Differ in data layout
� All involve standard Cox model

program
� Latter three approaches use a

SC model

Identical recurrent events
+

CP approach

1.0

.8

.6

.4

.2

20 40 60 80 100

Figure 8.3. S2m(t): Survival to 2nd Event
(Marginal)

1.0

.8

.6

.4

.2

20 40 60 80 100

Figure 8.2. S2c(t): Survival to 2nd Event
(Stratified GT)
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When recurrent events involve different disease
categories and/or the order of events is consid-
ered important, the analysis requires choosing
among the three alternative SC approaches.

The data layout for the counting process
approach requires each subject to have a line
of data for each recurrent event and lists the
start time and stop time of the interval of fol-
low-up. This contrasts with the standard layout
for data with no recurrent events, which lists
only the stop (survival) time on a single line of
data for each subject.

The Stratified CP approach uses the exact
same (start, stop) data layout format used for
the CP approach, except that for Stratified CP,
the model used is a SC PH model rather than
an unstratified PH model.

The Gap Time approach also uses a (start,
stop) data layout, but the start value is always
0 and the stop value is the time interval length
since the previous event. The model here is also
a SC model.

The Marginal approach uses the standard
(nonrecurrent event) data layout instead of
the (start, stop) layout. The basic idea behind
the Marginal approach is that it allows each
failure to be considered as a separate process.

For each of the SC alternative approaches, as for
the CP approach, it is recommended to use
robust estimation to adjust the variances of
the estimated regression coefficients for the cor-
relation of observations on the same subject.

We considered two applications of the different
approaches described above. First, we com-
pared results from using all four methods to
analyze data from a study of bladder cancer
involving 86 patients, each followed for a vari-
able time up to 64 months.

Recurrent events: different disease
categories or event order important

+
Stratified Cox (SC) approaches

CP approach: Start and Stop times

Standard layout: only Stop (sur-
vival) times (no recurrent events)

Stratified CP: same Start and Stop
Times as CP, but
uses SC model

Gap Time: Start and Stop
Times

Start ¼ 0 always
Stop ¼ time since

previous
event

SC model

Marginal approach:

Standard layout (nonrecurrent
event), that is, without (Start,
Stop) columns

Each failure is a separate process

Recommend using robust estima-
tion to adjust for correlation of
observations on the same subject.

Application 1: Bladder Cancer
study

n ¼ 86
64 months of
follow-up
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The repeated event analyzed was the recurrence
of a bladder cancer tumor after transurethral
surgical excision. Each recurrence of new
tumorswas treated by removal at each examina-
tion. About 25% of the 86 subjects experienced
four events.

The exposure variable of interest was drug
treatment status (tx, 0¼ placebo, 1¼ treatment
with thiotepa), There were two covariates:
initial number of tumors (num) and initial
size of tumors (size).

Results for the CP approach, which was con-
sidered appropriate for these data, indicated
that there was no strong evidence that tx is
effective after controlling for num and size.

An alternative approach for analyzing recur-
rent event data was also described using a
parametric model containing a frailty compo-
nent (see Chapter 7). Specifically, a Weibull PH
model with a gamma distributed frailty was fit
using the bladder cancer dataset. The resulting
estimated HR and confidence interval were
quite similar to the counting process results.

The second application considered a subset of
data (n ¼ 43) from a clinical trial to evaluate
the effect of high doses of antioxidants and
zinc on the progression of age-related macular
degeneration (AMD). Patients were followed
for 8 years.

The exposure variable of interest was treat-
ment group (tx). Covariates considered were
age and sex.

Each patient could possibly experience two
events. The first event was defined as the sud-
den decrease in visual acuity score below 50.
The second event was considered a successive
stage of the first event and defined as a clini-
cally advanced and severe stage of macular
degeneration.

Repeated event: recurrence of
bladder cancer
tumor; up to
4 events

tx ¼ 1 if thiotepa, 0 if placebo
num ¼ initial # of tumors
size ¼ initial size of tumors

CP results: no strong evidence for tx
(dHR ¼ 0.67, P ¼ .09,
95% CI: 0.414, 1.069)

Alternative parametric approach

� Weibull PH model
� Gamma shared frailty

component
� Bladder cancer dataset
� Similar HR and confidence

interval as for counting process
approach

Application 2: Clinical trial

n ¼ 43
8 years of follow-up
High doses of antioxidants and zinc
Age-related macular degeneration

Exposure: tx ¼ 1 if treatment,
0 if placebo

Covariates: age, sex

Two possible events:

1st event: visual acuity score <50
(i.e., poor vision)

2nd event: clinically advanced
severe stage of macular
degeneration
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Because the two events were of very different
types and because survival from baseline was of
primary interest,we focusedon the results for the
Stratified CP andMarginal approaches only.

An interaction SCmodel was more appropriate
than a no-interactionmodel for each approach,
thus requiring separate results for the two
events under study.

The results for the first event indicated no
effect of the treatment on reducing visual acu-
ity score below 50 (i.e., the first event) from
either Stratified CP or Marginal approaches
to the analysis.

However, there was evidence of a clinically
moderate and statistically significant effect of
the treatment on the second more severe event
of macular degeneration.

The choice between the Stratified CP and
marginal approaches for these data was not
clear-cut, although the Marginal approach
was perhaps more appropriate because the
two events were of very different types.

In general, however, the choice among all
four approaches requires careful consideration
of the different interpretations that can be
drawn from each approach.

Survival plots with recurrent events are derived
one ordered event at a time. For plotting sur-
vival to a kth event where k � 2, one can use
either a Stratified or Marginal plot, which
typically differ.

FocusonStratifiedCP vs.Marginal
(events were of different types)

Interaction SC model ü
No-interaction SC model �

Conclusions regarding 1st event

� No treatment effect
� Same for Stratified CP and

Marginal approaches

Conclusions regarding 2nd event

� Clinically moderate and
statistically significant
treatment effect

Macular degeneration data: prefer
Marginal approach (but not clear-
cut)

In general: carefully consider inter-
pretation of each approach

Survival plots: one ordered event at
a time Two versions for survival to
kth event:
Stratified: only subjects with k � 1

events
Marginal: ignores previous events
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Detailed
Outline

I. Overview (page 366)

A. Focus: outcome events that may occur more
than once over the follow-up time for a given
subject, that is, “recurrent events.”

B. Counting Process (CP) approach uses the Cox
PH model.

C. Alternative approaches that use a Stratified Cox
(SC) PH model and a frailty model.

II. Examples of Recurrent Event Data
(pages 366–368)

A. 1. Multiple relapses from remission: leukemia
patients.

2. Repeated heart attacks: coronary patients.

3. Recurrence of tumors: bladder cancer
patients.

4. Deteriorating episodes of visual acuity:
macular degeneration patients.

B. Objective of each example: to assess relation-
ship of predictors to rate of occurrence, allow-
ing for multiple events per subject.

C. Different analysis required depending on
whether:

1. Recurrent events are treated as identical
(counting process approach), or

2. Recurrent events involve different disease
categories and/or the order of events is
important (stratified Cox approaches).

III. Counting Process Example (pages 368–369)

A. Data on two hypothetical subjects from a ran-
domized trial that compares two treatments for
bladder cancer tumors.

B. Data set-up for Counting Process (CP)
approach:

1. Each subject contributes a line of data for
each time interval corresponding to each
recurrent event and any additional event-
free follow-up interval.

2. Each line of data for a given subject lists the
start time and stop time for each interval of
follow-up.
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IV. General Data Layout: Counting Process
Approach (pages 370–371)

A. ri time intervals for subject i.
dij event status (0 or 1) for subject i in interval j.
tij0 start time for subject i in interval j.
tij1 stop time for subject i in interval j.
Xijk valueofkthpredictor for subject i in interval j.
i ¼ 1, 2,. . ., N; j ¼ 1, 2, . . ., ri; k ¼ 1, 2, . . ., p.

B. Layout for subject i:

C. Bladder Cancer Study example:

1. Data layout provided for the first 26 subjects
(86 subjects total) from a 64-month study of
recurrent bladder cancer tumors.

2. The exposure variable: drug treatment status
(tx, 0¼ placebo, 1¼ treatment with thiotepa).

3. Covariates: initial number of tumors (num)
and initial size of tumors (size).

4. Up to 4 events per subject.

V. The Counting Process Model and Method
(pages 372–376)

A. The model typically used to carry out the Count-
ing Process (CP) approach is the standard Cox
PHmodel: h(t,X) ¼ h0(t) exp[S biXi].

B. For recurrent event survival data, the (partial)
likelihood function is formed differently than
for nonrecurrent event survival data:

1. A subject who continues to be followed after
having failed at t(f) does not drop out of the
risk set after t(f) and remains in the risk set
until his or her last interval of follow-up, after
which the subject is removed from the risk set.

2. Different lines of data contributed by the
same subject are treated in the analysis as if
they were independent contributions from
different subjects.

i j dij tij0 tij1 Xij1 Xijp

i 1 di1 ti10 ti11 X111 Xi1p

i 2 di2 ti20 ti21 X121 Xi2p

· · · · · · ·
· · · · · · ·
· · · · · · ·
i ri diri tiri0 tiri1 Xiri1 Xirip
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C. For the bladder cancer data, the Cox PH Model
for CP approach is given by

h(t, X) ¼ h0(t)exp[b tx þ g1 num þ g2 size].

D. The overall partial likelihood L from using
the CP approach will be automatically deter-
mined by the computer program used once
the data layout is in the correct CP form and
the program code used involves the (start, stop)
formulation.

VI. Robust Estimation (pages 376–378)

A. In the CP approach, the different intervals con-
tributed by a given subject represent correlated
observations on the same subject that must be
accounted for in the analysis.

B. A widely used technique for adjusting for the
correlation among outcomes on the same sub-
ject is called robust estimation.

C. The goal of robust estimation for the CP
approach is to obtain variance estimators that
adjust for correlation within subjects when pre-
viously no such correlation was assumed.

D. The robust estimator of the variance of an
estimated regression coefficient allows tests of
hypotheses and confidence interval estimation
about model parameters to account for correla-
tion within subjects.

E. The general form of the robust estimator can
be most conveniently written in matrix nota-
tion; this formula is incorporated into the com-
puter program and is automatically calculated
by the program with appropriate coding.

VII. Results for CP Example (pages 378–379)

A. Edited output is provided from fitting the no-
interaction Cox PH model involving the three
predictors tx, num, and size.

B. A likelihood ratio chunk test for interaction terms
tx � num and tx� size was nonsignificant.

C. The PH assumption was assumed satisfied for
all three variables.

D. The robust estimator of 0.2418 for the standard
deviation of tx was similar though somewhat
different from the corresponding nonrobust
estimator of 0.2001.

E. There was not strong evidence that tx is effec-
tive after controlling for num and size (dHR ¼
0.67, two-sided P ¼ .09, 95% CI: 0.414, 1.069).
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F. However, for a one-sided alternative, the p-values
using both robust and nonrobust standard errors
were significant at the .05 level.

G. The 95% confidence interval using the robust
variance estimator is quite wide.

VIII. Other Approaches Stratified Cox
(pages 379–385)

A. The “strata” variable for each of the three SC
approaches treats the time interval number for
each event occurring on a given subject as a
stratified variable.

B. Three alternative approaches involving SC
models need to be considered if the investigator
wants to distinguish the order in which recur-
rent events occur.

C. These approaches all differ from what is called
competing risk survival analysis in that the
latter allows each subject to experience only
one of several different types of events over
follow-up.

D. Stratified CP approach:

1. Same Start and Stop Times as CP.

2. SC model.

E. Gap Time approach:

1. Start and Stop Times, but Start ¼ 0 always
and Stop ¼ time since previous event.

2. SC model.

F. Marginal approach:

1. Uses standard layout (nonrecurrent event);
no (Start, Stop) columns.

2. Treats each failure is a separate process.

3. Each subject at risk for all failures thatmight
occur, so that # actual failures < # possible
failures.

4. SC model.

G. Must decide between two types of SC models:

1. No-interaction SC versus interaction SC.

2. Bladder cancer example:
No-interaction model: hg(t, X) ¼
h0g(t)exp[b tx þ g1 num þ g2 size] where g ¼
1, 2, 3, 4.
Interaction model: hg(t,X) ¼ h0g(t)exp[bgtx
þ g1gnum þ g2gsize]. where g ¼ 1, 2, 3, 4.

H. Recommend using robust estimation to adjust
for correlation of observations on the same
subject.
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IX. Bladder Cancer Study Example (Continued)
(pages 385–389)

A. Results from using all four methods – CP, Stra-
tified CP, Gap Time, and Marginal – on the
bladder cancer data were compared.

B. The hazard ratio for the effect of tx based on a
no-interaction model differed somewhat for
each of the four approaches, with the marginal
model being most different:

M: 0.560 CP: 0.666 SCP: 0.716 GT: 0.763

C. The nonrobust and robust standard errors and
P-values differed to some extent for each of the
different approaches.

D. Using an interaction SC model, the estimated
bs and corresponding standard errors are dif-
ferent over the four strata (i.e., four events) for
each model separately.

E. The estimated b’s and corresponding standard
errors for the three alternative SC models are
identical, as expected (always for first events).

F. Which of the four recurrent event analysis
approaches is best?

1. Recommend CP approach if do not want to
distinguish between recurrent events on the
same subject and desire overall conclusion
about the effect of tx.

2. Recommend one of the three SC approaches
if want to distinguish the effect of tx accord-
ing to the order in which the event occurs.

3. The choice between the Stratified CP and
Marginal is difficult, but prefer Stratified
CP because the strata do not clearly repre-
sent different event types.

G. Overall, regardless of the approach used, there
was no strong evidence that tx is effective after
controlling for num and size.

X. A Parametric Approach Using Shared Frailty
(pages 389–391)

A. Alternative approach using a parametric model
containing a frailty component (see Chapter 7).

B. Weibull PH model with a gamma distributed
frailty was fit using the bladder cancer dataset.

C. Estimated HR and confidence interval were
quite similar to the counting process results.

D. Estimated frailty component was significant
(P ¼ 0.003).
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XI. A Second Example (pages 391–395)

A. Clinical trial (n ¼ 43, 8-year study) on effect of
using high doses of antioxidants and zinc (i.e.,
tx ¼ 1 if yes, 0 if no) to prevent age-related
macular degeneration.

B. Covariates: age and sex.

C. Two possible events:

1. First event: visual acuity score<50 (i.e., poor
vision).

2. Second event: clinically advanced stage of
macular degeneration.

D. Focus on Stratified CP vs. Marginal because
events are of different types.

E. Interaction SC model significant when com-
pared to no-interaction SC model.

F. Conclusions regarding 1st event:

1. No treatment effect (HR ¼ 0.946, P ¼ 0.85).

2. Same for Stratified CP and Marginal
approaches.

G. Conclusions regarding 2nd event.

1. Stratified CP: dHR ¼ 0.385 ¼ 1/2.60, two-
sided P ¼ 0.03.

2. Marginal: dHR ¼ 0.423 ¼ 1/2.36, two-sided
P ¼ 0.06).

3. Overall, clinically moderate and statistically
significant treatment effect.

H. Marginal approach preferred because 1st and
2nd events are different types.

XII. Survival Curves with Recurrent Events
(pages 395–398)

A. Survival plots with recurrent events only make
sense when the focus is on one ordered event at
a time.

B. For survival from a 1st event, the survival curve
is given by S1(t) ¼ Pr (T1 > t) where T1 ¼ sur-
vival time up to occurrence of the 1st event
(ignores later recurrent events).

C. For survival from the kth event, the survival
curve is given by Sk(t) ¼ Pr (Tk > t) where Tk ¼
survival time up to occurrence of the kth event).
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D. Two versions for Sk(t):

i. Skc(t) Stratified: Tkc¼ time from the (k-1)st
to kth event, restricting data to subjects
with k-1 events.

ii. Skm(t) Marginal: Tkm ¼ time from study
entry to kth event, ignoring previous events.

E. Illustration of survival plots for recurrent event
data using a small dataset involving three sub-
jects Molly (M), Holly (H), and Polly (P).

XIII. Summary (pages 398–401)

A. Four approaches for analyzing recurrent event
survival data: the counting process (CP),
Stratified CP, Gap Time, and Marginal
approaches.

B. Data layouts differ for each approach.

C. CP approach uses Cox PH model; other
approaches use Cox SC model.

D. Choice of approach depends in general on care-
fully considering the interpretation of each
approach.

E. Should use robust estimation to adjust for
correlation of observations on the same subject.

Practice
Exercises

Answer questions 1 to 15 as true or false (circle T or F).

T F 1. A recurrent event is an event (i.e., failure) that can
occur more than once over the follow-up on a
given subject.

T F 2. The Counting Process (CP) approach is appro-
priate if a given subject can experience more than
one different type of event over follow-up.

T F 3. In the data layout for the CP approach, a subject
who has additional follow-up time after having
failed at time t(f) does not drop out of the risk set
after t(f).

T F 4. The CP approach requires the use of a stratified
Cox (SC) PH model.

T F 5. Using the CP approach, if exactly two subjects fail
at month t(f) ¼ 10, but both these subjects have
later recurrent events, then the number in the risk
set at the next ordered failure time does not
decrease because of these two failures.
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T F 6. The goal of robust estimation for the CP
approach is to adjust estimated regression coeffi-
cients to account for the correlation of observa-
tions within subjects when previously no such
correlation was assumed.

T F 7. Robust estimation is recommended for the CP
approach but not for the alternative SC
approaches for analyzing recurrent event survival
data.

T F 8. The p-value obtained from using a robust stan-
dard error will always be larger than the
corresponding p-value from using a nonrobust
standard error.

T F 9. The Marginal approach uses the exact same
(start, stop) data layout format used for the CP
approach, except that for theMarginal approach,
the model used is a stratified Cox PH model vari-
able rather than a standard (unstratified) PH
model.

T F 10. Suppose the maximum number of failures occur-
ring for a given subject is five in a dataset to be
analyzed using the Marginal approach. Then a
subject who failed only twice will contribute five
lines of data corresponding to his or her two fail-
ures and the three additional failures that could
have possibly occurred for this subject.

T F 11. Suppose the maximum number of failures occur-
ring for a given subject is five in a dataset to be
analyzed using the Stratified CP approach. Then
an interaction SC model used to carry out this
analysis will have the following general model
form: hg(t, X) ¼ h0g(t) exp[b1gX1 þ b2gX2 þ � � � þ
bpgXp], g ¼ 1,2,3,4,5.

T F 12. Suppose a no-interaction SC model using the
Stratified CP approach is found (using a likeli-
hood ratio test) not statistically different from a
corresponding interaction SC model. Then if the
no-interaction model is used, it will not be possi-
ble to separate out the effects of predictors within
each stratum representing the recurring events on
a given subject.

T F 13. In choosing between the Stratified CP and the
Marginal approaches, the Marginal approach
would be preferred provided the different strata
clearly represent different event types.
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T F 14. When using an interaction SC model to analyze
recurrent event data, the estimated regression
coefficients and corresponding standard errors
for the first stratum always will be identical for
the Stratified CP, Gap Time, and Marginal
approaches.

T F 15. The choice among the CP, Stratified CP, Gap
Time, and Marginal approaches depends upon
whether a no-interaction SC or an interaction SC
model is more appropriate for one’s data.

16. Suppose that Allie (A), Sally (S), and Callie (C) are the
only three subjects in the dataset shown below. All
three subjects have two recurrent events that occur
at different times.

ID Status Stratum Start Stop tx

A 1 1 0 70 1
A 1 2 70 90 1
S 1 1 0 20 0
S 1 2 20 30 0
C 1 1 0 10 1
C 1 2 10 40 1

Fill in the following data layout describing survival (in
weeks) to the first event (stratum 1). Recall that mf

and qf denote the number of failures and censored
observations at time t(f). The survival probabilities in
the last column use the KM product limit formula.

t(f) nf mf qf R(t(f)) S1(t(f))

0 3 0 0 {A, S, C} 1.00
10 - - - - -
- - - - - -
- - - - - -

17. Plot the survival curve that corresponds to the data
layout obtained for Question 16.

1.0
.8
.6
.4
.2

20 40 60 80 100
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18. Fill in the following data layout describing survival (in
weeks) from the first to second event using the Gap
Time approach:

t(f) nf mf qf R(t(f)) S2(t(f))

0 3 0 0 {A, S, C} 1.00
10 - - - - -
- - - - - -
- - - - - -

19. Plot the survival curve that corresponds to the data
layout obtained for Question 18.

1.0
.8
.6
.4
.2

20 40 60 80 100

20. Fill in the following data layout describing survival (in
weeks) to the second event using the Marginal
approach:

t(f) nf mf qf R(t(f)) S2(t(f))

0 3 0 0 {A, S, C} 1.00
30 - - - - -
- - - - - -
- - - - - -

21. Plot the survival curve that corresponds to the data
layout obtained for Question 20.

1.0
.8
.6
.4
.2

20 40 60 80 100

22. To what extent do the three plots obtained in Ques-
tions 17, 19, and 21 differ? Explain briefly.
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Test 1. Suppose that Bonnie (B) and Lonnie (L) are th only two
subjects in the dataset shown below, wher both sub-
jects have two recurrent events that occur ar different
times.

a. Fill in the empty cells in the following data layout
describing survival time (say, in weeks) to the first
event (stratum 1):

b. Why will the layout given in part a be the same
regardless of whether rhe analysis approach is the
Counting Process (CP), Stratified CP, Gap Time, or
Marginal approaches?

c. Fill in the empty cells in the following data layout
describing survival time (say, in weeks) from the
first to the second event (stratum 2) using the
Stratified CP approach:

d. Fill in the empty cells in the following data layout
describing survival time (say, in weeks) from the
first to the second event (stratum 2) using the Gap
Time approach:

t(f) nf mf qf R(t(f))

0 2 0 0 {B, L}

12

20

t(f) nf mf qf R(t(f))

0 2 0 0 {B, L}

3

4

ID Status Stratum Start Stop

B 1 1 0 12

B 1 2 12 16

L 1 1 0 20

L 1 2 20 23

t(f) nf mf qf R(t(f))

0 0 0 0 -

16

23
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e. Fill in the empty cells in the following data layout
describiing survival time (say, in weeks) from the
first to the second event (stratum 2) using the
Marginal approach:

f. For the Stratified CP approach described in part c,
determine which of the following choices is correct.
Circle the number corresponding to the one and
only one correct choice.

i. Lonnie is in the risk set when Bonnie gets her
second event.

ii. Bonnie is in the risk set when Lonnie gets her
second event.

iii. Neither is in the risk set for the other’s second
event.

g. For the Gap Time approach described in part d,
determine which of the following choices is correct.
Circle the number corresponding to the one and
only one correct choice.

i. Lonnie is in the risk set when Bonnie gets her
second event.

ii. Bonnie is in the risk set when Lonnie gets her
second event.

ii. Neither is in the risk set for the other’s second
event.

h. For the Marginal approach described in part e,
determine which of the following choices is correct.
Circle the number corresponding to the one and
only one correct choice.

i. Lonnie is in the risk set when Bonnie gets her
second event.

ii. Bonnie is in the risk set when Lonnie gets her
second event.

iii. Neither is in the risk set for the other’s second
event.

t(f) nf mf qf R(t(f))

0 2 0 0 {B, L}

16

23
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2. The dataset shown below in the counting process lay-
out comes from a clinical trial involving 36 heart attack
patients between 40 and 50 years of age with implanted
defibrillators who were randomized to one of two treat-
ment groups (tx, ¼ 1 if treatment A, ¼ 0 if treatment B)
to reduce their risk for future heart attacks over a 4-
month period. The event of interest was experiencing a
“high energy shock” from the defibrillator. The out-
come is time (in days) until an event occurs. The covari-
ate of interest was Smoking History (1 ¼ ever smoked,
0 ¼ never smoked). Questions about the analysis of this
dataset follow.

Col 1 ¼ id, Col 2 ¼ event, Col 3 ¼ start, Col 4 ¼ stop,
Col 5 ¼ tx, Col 6 ¼ smoking

01 1 0 39 0 0 12 1 0 39 0 1
01 1 39 66 0 0 12 1 39 80 0 1
01 1 66 97 0 0 12 0 80 107 0 1
02 1 0 34 0 1 13 1 0 36 0 1
02 1 34 65 0 1 13 1 36 64 0 1
02 1 65 100 0 1 13 1 64 95 0 1
03 1 0 36 0 0 14 1 0 46 0 1
03 1 36 67 0 0 14 1 46 77 0 1
03 1 67 96 0 0 14 0 77 111 0 1
04 1 0 40 0 0 15 1 0 61 0 1
04 1 40 80 0 0 15 1 61 79 0 1
04 0 80 111 0 0 15 0 79 111 0 1
05 1 0 45 0 0 16 1 0 57 0 1
05 1 45 68 0 0 16 0 57 79 0 1
05 . 68 . 0 0 16 . 79 . 0 1
06 1 0 33 0 1 17 1 0 37 0 1
06 1 33 66 0 1 17 1 37 76 0 1
06 1 66 96 0 1 17 0 76 113 0 1
07 1 0 34 0 1 18 1 0 58 0 1
07 1 34 67 0 1 18 1 58 67 0 1
07 1 67 93 0 1 18 0 67 109 0 1
08 1 0 39 0 1 19 1 0 58 1 1
08 1 39 72 0 1 19 1 58 63 1 1
08 1 72 102 0 1 19 1 63 106 1 1
09 1 0 39 0 1 20 1 0 45 1 0
09 1 39 79 0 1 20 1 45 72 1 0
09 0 79 109 0 1 20 1 72 106 1 0
10 1 0 36 0 0 21 1 0 48 1 0
10 1 36 65 0 0 21 1 48 81 1 0
10 1 65 96 0 0 21 1 81 112 1 0
11 1 0 39 0 0 22 1 0 38 1 1
11 1 39 78 0 0 22 1 38 64 1 1
11 1 78 108 0 0 22 1 64 97 1 1

(Continued on next page)
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23 1 0 51 1 1 30 1 0 57 1 0
23 1 51 69 1 1 30 1 57 78 1 0
23 0 69 98 1 1 30 1 78 99 1 0
24 1 0 43 1 1 31 1 0 44 1 1
24 1 43 67 1 1 31 1 44 74 1 1
24 0 67 111 1 1 31 1 74 96 1 1
25 1 0 46 1 0 32 1 0 38 1 1
25 1 46 66 1 0 32 1 38 71 1 1
25 1 66 110 1 0 32 1 71 105 1 1
26 1 0 33 1 1 33 1 0 38 1 1
26 1 33 68 1 1 33 1 38 64 1 1
26 1 68 96 1 1 33 1 64 97 1 1
27 1 0 51 1 1 34 1 0 38 1 1
27 1 51 97 1 1 34 1 38 63 1 1
27 0 97 115 1 1 34 1 63 99 1 1
28 1 0 37 1 0 35 1 0 49 1 1
28 1 37 79 1 0 35 1 49 70 1 1
28 1 79 93 1 0 35 0 70 107 1 1
29 1 0 41 1 1 36 1 0 34 1 1
29 1 41 73 1 1 36 1 34 81 1 1
29 0 73 111 1 1 36 1 81 97 1 1

Table T.1 below provides the results for the treatment
variable (tx) from no-interaction models over all four
recurrent event analysis approaches. Each model was
fit using either a Cox PH model (CP approach) or a
Stratified Cox (SC) PH model (Stratified CP, Gap
Time, Marginal approaches) that controlled for the
covariate smoking.

Table T.1. Comparison of Results for the Treatment Variable (tx)
Obtained from No-Interaction Modelsa Across Four Methods
(Defibrillator Study)

Model CP
Stratified

CP Gap Time Marginal

Parameter
estimateb

0.0839 0.0046 �0.0018 �0.0043

Robust standard
error

0.1036 0.2548 0.1775 0.2579

Chi-square 0.6555 0.0003 0.0001 0.0003
p-value 0.4182 0.9856 0.9918 0.9866
Hazard ratio 1.087 1.005 0.998 0.996
95% confidence

interval
(0.888, 1.332) (0.610, 1.655) (0.705, 1.413) (0.601, 1.651)

a No-interaction SC model fitted with PROC PHREG for the Stratified CP,
Gap Time and Marginal methods; no-interaction standard Cox PH model
fitted for CP approach.
b Estimated coefficient of tx variable.
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2. a. State the hazard function formula for the no-
interaction model used to fit the CP approach.

b. Based on the CP approach, what do you conclude
about the effect of treatment (tx)? Explain briefly
using the results in Table T.1.

c. State the hazard function formulas for the no-inter-
action and interaction SC models corresponding to
the use of the Marginal approach for fitting these
data.

d. Table T.1 gives results for “no-interaction” SC mod-
els because likelihood ratio (LR) tests comparing a
“no-interaction” with an “interaction” SC model
were not significant. Describe the (LR) test used
for the marginal model (full and reduced models,
null hypothesis, test statistic, distribution of test
statistic under the null).

e. How can you criticize the use of a no-interaction SC
model for any of the SC approaches, despite the
finding that the above likelihood ratio test was not
significant?

f. Based on the study description given earlier, why
does it make sense to recommend the CP approach
over the other alternative approaches?

g. Under what circumstances/assumptions would you
recommend using the Marginal approach instead
of the CP approach?

Table T.2 below provides ordered failure times and
corresponding risk set information that result for the 36
subjects in the above Defibrillator Study dataset using the
Counting Process (CP) data layout format.

Table T.2. Ordered Failure Times and Risk Set Information for
Defibrillator Study (CP)

Ordered
failure
times t(f)

# in
risk
set nf

#
failed
mf

# censored
in [t(f),
t(fþ1))

Subject ID #s for
outcomes in [t(f),

t(fþ1))

0 36 0 0 —
33 36 2 0 6, 26
34 36 3 0 2, 7, 36
36 36 3 0 3, 10, 13
37 36 2 0 17, 28
38 36 4 0 22, 32, 33, 34
39 36 5 0 1, 8, 9, 11, 12
40 36 1 0 4
41 36 1 0 29
43 36 1 0 24
44 36 1 0 31

(Continued on next page)
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Table T.2. (Continued)

Ordered
failure
times t(f)

# in
risk
set nf

#
failed
mf

# censored
in [t(f),
t(fþ1))

Subject ID #s for
outcomes in [t(f),

t(fþ1))

45 36 2 0 5, 20
46 36 2 0 14, 25
48 36 1 0 21
49 36 1 0 35
51 36 2 0 23, 27
57 36 2 0 16, 30
58 36 2 0 18, 19
61 36 1 0 15
63 36 2 0 19, 34
64 36 3 0 13, 22, 33
65 36 2 0 2, 10
66 36 3 0 1, 6, 25
67 36 4 0 3, 7, 18, 24
68 36 2 0 5, 26
69 35 1 0 23
70 35 1 0 35
71 35 1 0 32
72 35 2 0 8, 20
73 35 1 0 29
74 35 1 0 31
76 35 1 0 17
77 35 1 0 14
78 35 2 0 11, 30
79 35 3 1 9, 15, 16, 28
80 34 2 0 4, 12
81 34 2 0 21, 36
93 34 2 0 7, 28
95 32 1 0 13
96 31 5 0 3, 6, 10, 26, 31
97 26 5 0 1, 22, 27, 33, 36
98 22 0 1 23
99 21 2 0 30, 34
100 19 1 0 2
102 18 1 0 8
105 17 1 0 32
106 16 2 0 19, 20
107 14 1 1 12, 35
108 12 1 0 11
109 11 0 2 9, 18
110 9 1 0 25
111 8 0 5 4, 14, 15, 24, 29
112 3 1 0 21
113 2 0 1 17
115 1 0 1 27
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h. In Table T.2, why does the number in the risk set
(nf) remain unchanged through failure time (i.e.,
day) 68, even though 50 events occur up to that
time?

i. Why does the number in the risk set change from 31
to 26 when going from time 96 to 97?

j. Why is the number of failures (mf) equal to 3 and the
number of censored subjects equal to 1 in the inter-
val between failure times 79 and 80?

k. What 5 subjects were censored in the interval
between failure times 111 and 112?

l. Describe the event history for subject #5, including
his or her effect on changes in the risk set.

Based on the CP data layout of Table T.2, the following
table (T.3) of survival probabilities has been calculated.

Table T.3. Survival Probabilities for Defibrillator Study Data Based
on CP Layout

t(f) nf mf qf S(t(f)) ¼ S(t(f�1))Pr(T > t(f)|T � t(f))

0 36 0 0 1.0
33 36 2 0 1 � 34/36 ¼ .94
34 36 3 0 .94 � 33/36 ¼ .87
36 36 3 0 .87 � 33/36 ¼ .79
37 36 2 0 .79 � 34/36 ¼ .75
38 36 4 0 .75 � 32/36 ¼ .67
39 36 5 0 .67 � 31/36 ¼ .57
40 36 1 0 .57 � 35/36 ¼ .56
41 36 1 0 .56 � 35/36 ¼ .54
43 36 1 0 .54 � 35/36 ¼ .53
44 36 1 0 .53 � 35/36 ¼ .51
45 36 2 0 .51 � 34/36 ¼ .48
46 36 2 0 .48 � 34/36 ¼ .46
48 36 1 0 .46 � 35/36 ¼ .44
49 36 1 0 .44 � 35/36 ¼ .43
51 36 2 0 .43 � 34/36 ¼ .41
57 36 2 0 .41 � 34/36 ¼ .39
58 36 2 0 .39 � 34/36 ¼ .36
61 36 1 0 .36 � 35/36 ¼ .35
63 36 2 0 .35 � 34/36 ¼ .33
64 36 3 0 .33 � 33/36 ¼ .31
65 36 2 0 .31 � 34/36 ¼ .29
66 36 3 0 .29 � 33/36 ¼ .27
67 36 4 0 .27 � 32/36 ¼ .24
68 36 2 0 .24 � 34/36 ¼ .22
69 35 1 0 .22 � 34/35 ¼ .22
70 35 1 0 .22 � 34/35 ¼ .21
71 35 1 0 .21 � 34/35 ¼ .20
72 35 2 0 .20 � 33/35 ¼ .19
73 35 1 0 .19 � 34/35 ¼ .19
74 35 1 0 .19 � 34/35 ¼ .18
76 35 1 0 .18 � 34/35 ¼ .18
77 35 1 0 .18 � 34/35 ¼ .17
78 35 2 0 .17 � 33/35 ¼ .16

(Continued on next page)
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Suppose the survival probabilities shown in Table T.3
are plotted on the y-axis versus corresponding ordered
failure times on the x-axis.
m. What is being plotted by such a curve? (Circle one

or more choices.)

i. Pr(T1 > t) where T1 ¼ time to first event from
study entry.

ii. Pr(T> t) where T¼ time from any event to the
next recurrent event.

iii. Pr(T > t) where T ¼ time to any event from
study entry.

iv. Pr(not failing prior to time t).

v. None of the above.

n. Can you criticize the use of the product limit for-
mula for S(t(f)) in Table T.3? Explain briefly.

Table T.3. (Continued)

t(f) nf mf qf S(t(f)) ¼ S(t(f�1))Pr(T > t(f)|T � t(f))

79 35 3 1 .16 � 31/35 ¼ .14
80 34 2 0 .14 � 32/34 ¼ .13
81 34 2 0 .13 � 32/34 ¼ .13
95 32 1 0 .13 � 31/32 ¼ .12
96 31 5 0 .12 � 26/31 ¼ .10
97 26 5 0 .10 � 21/26 ¼ .08
98 22 0 1 .08 � 22/22 ¼ .08
99 21 2 0 .08 � 19/21 ¼ .07
100 19 1 0 .07 � 18/19 ¼ .07
102 18 1 0 .07 � 17/18 ¼ .06
105 17 1 0 .06 � 16/17 ¼ .06
106 16 2 0 .06 � 14/16 ¼ .05
107 14 1 1 .05 � 13/14 ¼ .05
108 12 1 0 .05 � 21/26 ¼ .05
109 11 0 2 .05 � 11/11 ¼ .05
110 9 1 0 .05 � 8/9 ¼ .04
111 8 0 5 .04 � 8/8 ¼ .04
112 3 1 0 .04 � 2/3 ¼ .03
113 2 0 1 .03 � 2/2 ¼ .03
115 1 0 1 .03 � 1/1 ¼ .03
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o. Use Table T.2 to complete the data layouts for plot-
ting the following survival curves.

i. S1(t)¼ Pr(T1> t) where T1¼ time to first event
from study entry

t(f) nf mf qf S(t(f)) ¼ S(t(f�1)) � Pr(T1 > t|T1 � t)

0 36 0 0 1.00
33 36 2 0 0.94
34 34 3 0 0.86
36 31 3 0 0.78
37 28 2 0 0.72
38 26 4 0 0.61
39 22 5 0 0.47
40 17 1 0 0.44
41 16 1 0 0.42
43 15 1 0 0.39
44 14 1 0 0.36
45 13 2 0 0.31
46 11 2 0 0.25
48 9 1 0 0.22
49 8 1 0 0.19
51 - - - -
57 - - - -
58 - - - -
61 - - - -

ii. Gap Time S2c(t) ¼ Pr(T2c > t) where T2c ¼
time to second event from first event.

t(f) nf mf qf S(t(f)) ¼ S(t(f�1)) � Pr(T1 > t|T1 � t)

0 36 0 0 1.00
5 36 1 0 0.97
9 35 1 0 0.94

18 34 2 0 0.89
20 32 1 0 0.86
21 31 2 1 0.81
23 28 1 0 0.78
24 27 1 0 0.75
25 26 1 0 0.72
26 25 2 0 0.66
27 23 2 0 0.60
28 21 1 0 0.58
29 20 1 0 0.55
30 19 1 0 0.52

(Continued on next page)
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t(f) nf mf qf S(t(f)) ¼ S(t(f�1)) � Pr(T1 > t|T1 � t)

31 18 3 0 0.43
32 15 1 0 0.40
33 14 5 0 0.26
35 9 1 0 0.23
39 8 2 0 0.17
40 - - - -
41 - - - -
42 - - - -
46 - - - -
47 - - - -

iii. Marginal S2m(t) ¼ Pr(T2m > t) where T2m ¼
time to second event from study entry.

t(f) nf mf qf S(t(f)) ¼ S(t(f� 1)) � Pr(T1 > t|T1 � t)

0 36 0 0 1.00
63 36 2 0 0.94
64 34 3 0 0.86
65 31 2 0 0.81
66 29 3 0 0.72
67 26 4 0 0.61
68 22 2 0 0.56
69 20 1 0 0.53
70 19 1 0 0.50
71 18 1 0 0.47
72 17 2 0 0.42
73 15 1 0 0.39
74 14 1 0 0.36
76 13 1 0 0.33
77 12 1 0 0.31
78 11 2 0 0.25
79 - - - -
80 - - - -
81 - - - -
97 - - - -

p. The survival curves corresponding to each of the
data layouts (a, b, c) described in Question 14 will
be different. Why?

(Continued)
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Answers to
Practice
Exercises

1. T

2. F: The Marginal approach is appropriate if events are
of different types.

3. T

4. F: The Marginal, Stratified CP, and Gap Time
approaches all require a SC model, whereas the CP
approach requires a standard PH model.

5. T

6. F: Robust estimation adjusts the standard errors of
regression coefficients.

7. F: Robust estimation is recommended for all four
approaches, not just the CP approach.

8. F: The P-value from robust estimation may be either
larger or smaller than the corresponding P-value from
nonrobust estimation.

9. F: Replace the word Marginal with Stratified CP or
Gap Time. The Marginal approach does not use
(Start, Stop) columns in its layout.

10. T

11. T

12. T

13. T

14. T

15. F: The choice among the CP, Stratified CP, Gap
Time, andMarginal approaches depends on carefully
considering the interpretation of each approach.

16. t(f) nf mf qf R(t(f)} S1(t(f))

0 3 0 0 {A, S, C} 1.00
10 3 1 0 {A, S, C} 0.67
20 2 1 0 {A, S} 0.33
70 1 1 0 {A} 0.00
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17. S1(t)

1.0
.8
.6
.4
.2

20 40 60 80 100

18. t(f) nf mf qf R(t(f)} S2(t(f)) Gap Time

0 3 0 0 {A, S, C} 1.00
10 3 1 0 {A, S, C} 0.67
20 2 1 0 {A, C} 0.33
30 1 1 0 {C} 0.00

19. S2c(t) Gap Time

1.0
.8
.6
.4
.2

20 40 60 80 100

20. t(f) nf mf qf R(t(f)} S2(t(f)) Marginal

0 3 0 0 {A, S, C} 1.00
30 3 1 0 {A, S, C} 0.67
40 2 1 0 {A, C} 0.33
90 1 1 0 {A} 0.00

21. S2m(t) Marginal

20

1.0

0.2
.4
.6
.8

40 60 80 100

22. All three plots differ because the risk sets for each plot
are defined differently inasmuch as the failure times
are different for each plot.
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Introduction This chapter considers survival data in which each subject
can experience only one of several different types of events
over follow-up. This situation contrasts with the topic of
the preceding chapter in which subjects could experience
more than one event of a given type. When only one of
several different types of event can occur, we refer to the
probabilities of these events as “competing risks,” which
explains the title of this chapter.

Modeling competing risks survival data can be carried out
using a Cox model, a parametric survival model, or models
that use the cumulative incidence (rather than survival).
In this chapter, we mainly consider the Cox model because
of its wide popularity and also because of the availability of
computer programs that use the Cox model for analysis
of competing risks.

The typical (“cause-specific”) approach for analyzing com-
peting risks data is to perform a survival analysis for each
event type separately, where the other (competing) event
types are treated as censored categories. There are two
primary drawbacks to the above method. One problem is
that the above method requires the assumption that com-
peting risks are independent. The second problem is that
the generalized Kaplan–Meier (KM)-based product-limit
survival curve obtained from fitting separate Cox models
for each event type has questionable interpretation when
there are competing risks.

Unfortunately, if the independence assumption is incorrect,
there is no direct methodology available for analyzing com-
peting risks simultaneously. The only “indirect” method for
addressing this problem involves carrying out a “sensitivity
analysis” that treats subjects with events from competing
risks as all being event-free or as all experiencing the event
of interest. An example of this “sensitivity” approach is
provided.
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The primary alternative summary curve to the KM-based
survival curve is the “cumulative incidence curve (CIC),”
which estimates the “marginal probability” of an event
(both terms are defined in this chapter). This CIC is not
estimated using a product-limit formulation, and its
computation is not included in mainstream statistical
packages. Moreover, the independence of competing risks
is still required when a proportional hazard model is used
to obtain hazard ratio estimates for individual competing
risks as an intermediate step in the computation of a CIC.
Nevertheless, the CIC has a meaningful interpretation in
terms of treatment utility regardless of whether competing
risks are independent. A variation of the CIC, called the
“conditional probability curve (CPC),” provides a risk
probability conditional on an individual not experiencing
any of the other competing risks by time t.

An equivalent approach to the cause-specific method for
analyzing competing risks is called the Lunn–McNeil (LM)
approach. The LM approach allows only one model to
be fit rather than separate models for each event type
and, moreover, allows flexibility to perform statistical
inferences about simpler versions of the LM model. This
approach has added appeal in that competing events are
not considered as simply being censored. Nevertheless, as
with the cause-specific approach, the LM method assumes
the independence of competing risks.
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Abbreviated
Outline

The outline below gives the user a preview of the material
covered by the presentation. A detailed outline for review
purposes follows the presentation.

I. Overview (page 430)

II. Examples of Competing Risks Data
(pages 430–432)

III. Byar Data (pages 433–434)

IV. Method 1: Separate Models for Different
Event Types (pages 434–437)

V. The Independence Assumption (pages 437–443)

VI. Cumulative Incidence Curves (CIC)
(pages 444–453)

VII. Conditional Probability Curves (CPC)
(pages 453–455)

VIII. Method 2—The Lunn-McNeil (LM) Approach
(pages 455–461)

IX. Method 2a: Alternative Lunn–McNeil (LMalt)
Approach (pages 461–464)

X. Method 1 (Separate Models) versus
Method 2 (LM Approach) (pages 465–468)

XI. Summary (pages 468–473)
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Objectives Upon completing this chapter, the learner should be able to:

1. State or recognize examples of competing risks
survival data.

2. Given competing risks data, outline the steps needed
to analyze such data using separate Cox models.

3. Given computer output from the analysis of
competing risk data, carry out an analysis to assess
the effects of explanatory variables on one or more of
the competing risks.

4. State or describe the independence assumption
typically required in the analysis of competing
risks data.

5. Describe how to carry out and/or interpret a
“sensitivity analysis” to assess the independence
assumption about competing risks.

6. State why a survival function obtained from
competing risk data using the Cox model has a
questionable interpretation.

7. State or describe the “cumulative incidence” approach
for analyzing competing risks data.

8. Given competing risk data, describe how to calculate a
CIC and/or a CPC curve.

9. Given competing risks data, outline the steps needed
to analyze such data using the Lunn–McNeil method.

10. Given computer output from fitting either a LM or
LMalt model, carry out an analysis to assess the effect
of explanatory variables on one or more of the
competing risks.
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Presentation

I. Overview In this chapter, we consider survival data in
which each subject can experience only one
of different types of events over follow-up.
The probabilities of these events are typically
referred to as competing risks. We describe
how to use the Cox PH model to analyze such
data, the drawbacks to this approach, and some
approaches for addressing these drawbacks.

II. Examples of Competing
Risks Data

Competing risks occur when there are at least
two possible ways that a person can fail, but
only one such failure type can actually occur.
For example,

1. A person can die from lung cancer or from a
stroke, but not from both (although he can
have both lung cancer and atherosclerosis
before he dies);

2. Patients with advanced-stage cancer may
die after surgery before their hospital stay
is long enough for them to get a hospital
infection;

3. Soldiers in war may die during combat or
may die by (e.g., traffic) accident;

4. In a clinical trial, patientswithnonmetastatic
limbsarcomaundergoing chemotherapyand
surgery might develop a local recurrence,
lung metastasis, or other metastasis after
follow-up.

For each of the above examples, the possible
events of interest differ, but only one such
event can occur per subject. Note, however, if
at least one of the possible event types does not
involve death, it is also possible that such events
can recur over follow-up. Thus, although the
analysis of recurrent events that also involves
competing risks may be required, this more
complex topic is beyond the scope of this chapter
(see Tai et al., 2001).

FOCUS Different types of
events: A B C . . .
(competing risks)
are possible, but only
one of these can
occur per subject

1. Dying from either lung cancer
or stroke

2. Advanced cancer patients
either dying from surgery or
getting hospital infection

3. Soldiers dying in accident or in
combat

4. Limb sarcoma patients
developing local recurrence,
lung metastasis, or other
metastasis over follow-up

Each example above allows only
one event out of several possible
events to occur per subject

If event not death, then recurrent
events are possible

Competing risksþ recurrent events
beyond scope of this chapter
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A logical objective for competing risks data is
to assess the relationship of relevant predictors
to the failure rate or corresponding survival
probability of any one of the possible events
allowing for the competing risks of the other
ways to fail.

We might also want to compare the failure
rates (e.g., using a hazard ratio) for two or
more possible events, controlling for relevant
predictors.

In the lung cancer versus stroke example
above, we might ask whether the lung cancer
death rate in “exposed” persons is different
from the lung cancer rate in “unexposed” per-
sons, allowing for the possibility that subjects
could have died from a stroke instead.

We might also want to know if the lung cancer
death rate differs from the stroke death rate
controlling for predictors of interest.

In the second example, the competing risks are
death from surgery versus development of a
hospital infection. For infection control inves-
tigators, the hospital infection event is of pri-
mary interest. Nevertheless, the occurrence of
death from surgery reduces the burden of hos-
pital infection control required. Thus, the esti-
mation of hospital infection rates are
complicated by the competing risk of death
from surgery.

The third example involves competing risks of
death from either combat or accident in a com-
pany of soldiers. Here, primary interest con-
cerns the hazard ratio for combat death
comparing two exposure groups. Suppose the
entire company dies at time t in a helicopter
accident on their way to a combat area.
Because no one died in combat by time t, the
survival probability of not dying in combat is
one, even though no combat took place.

Objective: assess

X1, X2,. . ., Xp ) Failure rate
(survival probability)

for any one event allowing for
competing risks from other possi-
ble events

Another objective
Compare hazard rate for event A
with hazard rate for event B

Lung Cancer vs. Stroke (1)

HRLC(E vs. not E) ¼ 1?
(allowing for competing risk from
stroke)

HR(LC vs. Stroke) ¼ 1?
(controlling for predictors)

Surgery Death vs. Hospital
Infection (2)

HRHOSPINF(E vs. not E)¼ 1? (allow-
ing for competing risk fromsurgery)

Note: death from surgery reduces
number of hospital infections to be
treated

Accidental Death vs. Combat
Death (3)

HRCOMBAT (E vs. not E) (allowing
competing risk of accidental death)

Suppose entire company dies at
accident time t before entering combat

+
SCOMBAT(t) ¼ P(TCOMBAT > t) ¼ 1

where TCOMBAT¼ time to combat death
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However, if we define the outcome of interest
as death from either combat or accident, the
“event free” survival probability is zero after
the accident occurred (at time t).

Moreover, the KM survival probability for
combat death at time t is undefined because
no one was at risk for a combat death at time t.

This example points out that when there are
competing risks, the interpretation of a sur-
vival curve may be difficult or questionable
(more on this issue later).

In the fourth example involving limb sarcoma
patients, the competing risks are the three fail-
ure types shown at the left.

In this study, the investigators wanted hazard
ratios for each failure type, allowing for com-
peting risks from the other two failure types.

It was also of interest to compare the failure
rates for lung metastasis versus local recur-
rence (or any other two of the three failure
types), controlling for relevant predictors.

Because none of the failure types involves
death, recurrent events are possible for any of
the three failure types. If, however, the infor-
mation on only the first failure is targeted, the
classical competing risk methodology described
in this chapter can be applied.

However,

TCþA ¼ combat or accidental death

+
“event free” SCþA(t) ¼ P(TCþA > t) ¼ 0

Moreover,

SKM(TCOMBAT > t)

is undefined because the risk set is
empty at time t

Competing Risks Data Survival
Curve Interpretation?

Limb sarcoma patients (4)

Competing risks
1¼ local recurrence, 2¼ lungmeta-
stasis, or 3 ¼ other metastasis

HRc(E vs. not E), c ¼ 1, 2, 3 (allow-
ing for competing risk from other
two failure types)

HR(Lung Metastasis vs. Local
Recurrence)? Controlling for
Predictors

No failure types involve death

+
Recurrent events possible

But can use classical competing
risk methods if focus on only first
failure
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III. Byar Data We now introduce an example of competing
risks survival analysis of data from a rando-
mized clinical trial (Byar and Green, 1980)
comparing treatments for prostate cancer. We
henceforth refer to this as the Byar data.
Patients with Stages III (local extension
beyond the prostate gland) and IV (distant
metastases, elevated acid phosphatase, or
both) prostate cancer were randomized to
receive either a placebo or one of three
dose levels of the active treatment diethylstil-
bestrol (DES).

In this study, patients could die from prostate
cancer, cardiovascular disease, or other
causes. Covariate information was also col-
lected to account for the possible influence of
predictors on survival. These data have been
analyzed extensively (Byar and Corle, 1977,
Kay, 1986, and Lunn and McNeil, 1995).
Some grouping of the predictors was consid-
ered to be clinically meaningful.

Key risk factors related to the primary outcome
of interest (cancer deaths) and the appropriate
grouping is shown at the left.

Primary interest was to assess the effect of
treatment (Rx) adjusted for relevant risk fac-
tors in the presence of the competing risks.
Notice from the table that the Rx variable is
grouped into a binary variable by coding sub-
jects receiving the placebo or 0.2 mg of DES as
0 and coding subjects receiving 1.0 or 5.0 mg of
DES as 1.

� Randomized clinical trial
� Compare treatments for Stage

III and IV prostate cancer
� Rx status: placebo or one of

3 dose levels of DES

Competing risks: deaths from

Cancer (main focus)
CVD
Other

Covariate information collected

Some predictors grouped

Predictors Value Category

Treatment (Rx) 0 Placebo, 0.2 mg
DES

1 1.0,5 mg DES
Age at diagnosis 0 �74 years
Diagnosis (Age) 1 75–79 years

2 �80 years
Standardizeda 0 �100
weight (Wt) 1 80–99

2 >80
Performance 0 Normal
status (PF) 1 Limitation of

activity
History of 0 No
CVD (Hx) 1 Yes

Hemoglobin (Hg) 0 � 12 g/100 ml
1 9.0–11.9 g/100 ml
2 <9 g/100 ml

Size of the 0 <30 cm2

primary 1 �30 cm2

lesion (SZ)
Gleeson 0 �10
Scoreþ(SG) 1 >10

a weight (kg) – height (cm) þ 200
þ index of tumor invasiveness/
aggressiveness
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From a clinical perspective, these three
competing risks can be considered to be inde-
pendent (e.g., failure from heart disease and/
or other causes of death is unrelated to risk of
failure from prostate cancer). We discuss this
“independence assumption” in more detail in a
subsequent section of this chapter.

We now describe the approach typically used
to analyze competing risks data. This approach
assumes that competing risks are indepen-
dent. We illustrate this approach using the
Byar data.

IV. Method 1: Separate
Models for Different
Event Types

The typical approach for analyzing competing
risks data uses the Cox (PH) model to sepa-
rately estimate hazards and corresponding
hazard ratios for each failure type, treating
the other (competing) failure types as censored
in addition to those who are censored from loss
to follow-up or withdrawal. We refer to this
approach as Method 1 because we later
describe an alternative approach (Method 2)
that requires only a single model to be fit.

If only one failure type is of primary interest,
then the analysis might be restricted to esti-
mating hazards or hazard ratios for that type
only (but still treating the competing failure
types as censored).

To describe this method mathematically, we
define the cause-specific hazard function
shown at the left. The random variable Tc

denotes the time-to-failure from event type c.
Thus, hc(t) gives the instantaneous failure rate
at time t for event type c, given not failing from
event c by time t.

Using a Cox PH model that considers predic-
tors X ¼ (X1, X2,. . ., Xp), the cause-specific
hazard model for event type c has the form
shown at the left. Note that bic, the regression
coefficient for the ith predictor, is subscripted
by c to indicate that the effects of the predictors
may be different for different event types.

Independence assumption (dis-
cussed later)
Next

Analysis of competing risks
survival data

Assume independent competing
risks

� Use Cox (PH) model
� Estimate separate hazards or

HRs for each failure type
� Other (competing) failure types

are treated as censored
� Persons lost to follow-up or

withdrawal are also censored

If only one failure type of interest

+
Estimate only one hazard or HR

Cause-specific hazard function

hc(t) ¼ lim
Dt!0

P t � Tc < tþ DtjTc � tð Þ=Dt

where Tc ¼ time-to-failure from
event c
c ¼ 1, 2, . . ., C (# of event types)

Cox PH cause-specific model
(event-type c):

hc t,Xð Þ ¼ h0cðtÞ exp
Xp
i¼1

bicXi

" #
;

c ¼ 1; . . . ;C

bic allows effect of Xi to differ by
event-type
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We illustrate the above model using the Byar
data involving the three competing risks and
the eight predictors.

A no-interaction cause-specific model for
Cancer death (Ca) is shown at the left. From
this model, the hazard ratio for the effect of Rx
controlling for the other variables is exp[b1Ca].

Because Cancer is the event-type of interest,
the two competing event-types,CVD andOther,
need to be treated as censored in addition to
usual censored observations (i.e., for persons
who are either lost to follow-up or withdraw
from the study).

Similarly, if CVD is the event-type of interest,
the cause-specific no-interaction hazard model
and the hazard ratio formula for the effect of
treatment is shown at the left, and the event
types Cancer and Other would be treated as
censored.

And finally, ifOther is the event-type of interest,
the cause-specific no-interaction hazard model
and the hazard ratio formula for the effect of
treatment is shown at the left, and the event
types Cancer and CVD would be treated as
censored.

Edited output for each of the above three
cause-specific models is now presented.

First, we show the results for the event type
Cancer, treating CVD and Other as censored

Byar Data Example

Competing Risks:Cancer, CVD, Other

Cause-specific model: Cancer
No-interaction model:

hCa(t, X) ¼ h0Ca(t)exp[b1CaRx þ b2CaAge
þ b3CaWt þ b4CaPF þ b5CaHx
þ b6CaHG þ b7CaSZ þ b8CaSG]

HRCa(RX ¼ 1 vs. RX ¼ 0) ¼ exp[b1Ca]

CVD and Other deaths are censored

Cause-specific model: CVD

hCVD(t,X) ¼ h0CVD(t)exp[b1CVDRx þ b2CVDAge
þ b3CVDWt þ b4CVDPF þ b5CVDHx
þ b6CVDHG þ b7CVDSZ þ b8CVDSG]

HRCVD(RX ¼ 1 vs. RX ¼ 0) ¼ exp[b1CVD]

Cancer and Other are censored

Cause-specific model: Other

HOTH(t,X) ¼ h0OTH(t)exp[b1OTHRx þ b2OTHAge

þ b3OTHWt þ b4OTHPF þ b5OTHHx

þ b6OTHHG þ b7OTHSZ þ b8OTHSG]

Cancer and CVD are censored

Table 9.1. Edited Output for Cancer
with CVD and Other Censored

Var DF Coef
Std.
Err. p > |z|

Haz.
Ratio

Rx 1 �0.550 0.170 0.001 0.577
Age 1 0.005 0.142 0.970 1.005
Wt 1 0.187 0.138 0.173 1.206
PF 1 0.253 0.262 0.334 1.288
Hx 1 �0.094 0.179 0.599 0.910
HG 1 0.467 0.177 0.008 1.596
SZ 1 1.154 0.203 0.000 3.170
SG 1 1.343 0.202 0.000 3.830

Log likelihood ¼ � 771.174
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From this output, the adjusted cHR for the effect
of Rx is 0.577 (¼1/1.73).

The P-value for a two-tailed Wald test is 0.001;
thus Rx has a significant positive effect on sur-
vival for Cancer death with competing risks
from CVD and Other deaths.

Also, the 95% confidence interval for this HR is
(0.413, 0.807) ¼ (1/2.43, 1/1.24).

We next provide edited output when the event-
type is CVD, treating Cancer and Other as
censored.

Here, the adjusted cHR for the effect ofRx is1.425.

The P-value for a two-tailed Wald test is 0.042;
thus, Rx has a significant (P< .05) but negative
effect on survival for CVD death with compet-
ing risks from Cancer and Other deaths.

The 95% confidence interval for this HR is
(1.013, 2.004).

Last, we provide edited output when the event-
type is Other, treating Cancer and CVD as
censored.

cHRCa RX ¼ 1 vs. RX ¼ 0ð Þ
¼ expð�0:550Þ ¼ 0:577

Wald ChiSq ¼ (�.550/.170)2

¼ 10.345 (P ¼ 0.001)

Signif. below .01 level

95% CI for exp[b1Ca]:
exp[�0.550 � 1.96(0.170)]

¼ (0.413, 0.807)

cHRCVD RX ¼ 1 vs. RX ¼ 0ð Þ
¼ expð0:354Þ ¼ 1:425

Wald ChiSq ¼ (.354/.174)2

¼ 4.220 (P ¼ 0.042)
Signif. at .05 level

95% CI for exp[b1CVD]:
exp.[0.354 � 1.96(0.174)]
¼ (1.013, 2.004)

Table 9.2. Edited Output for CVD with
Cancer and Other Censored

Var DF Coef
Std.
Err. p > |z|

Haz.
Ratio

Rx 1 0.354 0.174 0.042 1.425
Age 1 0.337 0.134 0.012 1.401
Wt 1 0.041 0.150 0.783 1.042
PF 1 0.475 0.270 0.079 1.608
Hx 1 1.141 0.187 0.000 3.131
HG 1 0.018 0.202 0.929 1.018
SZ 1 �0.222 0.364 0.542 0.801
SG 1 �0.023 0.186 0.900 0.977

Log likelihood ¼ �763.001

Table 9.3. Edited Output for Other with
Cancer and CVD Censored

Var DF Coef
Std.
Err. p > |z|

Haz.
Ratio

Rx 1 �0.578 0.279 0.038 0.561
Age 1 0.770 0.204 0.000 2.159
Wt 1 0.532 0.227 0.019 1.702
PF 1 0.541 0.422 0.200 1.718
Hx 1 0.023 0.285 0.935 1.023
HG 1 0.357 0.296 0.228 1.428
SZ 1 0.715 0.423 0.091 2.045
SG 1 �0.454 0.298 0.127 0.635

Log likelihood ¼ �297.741
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Here. the adjusted ĤR for the effect of Rx is
0.561 (¼ 1/ 1.78).

The P-value for a two-tailed Wald test is .038;
thus, Rx has a significant (P < .05) protective
effect on survival for Other deaths with com-
peting risks from Cancer and CVD deaths.

The 95% confidence interval for this HR is
(0.325,0.969), which is somewhat imprecise.

We have thus completed a competing risk
analysis af the Byar data assuming that a no-
interaction Cox PH model is appropriate. We
haven’t actually checked the PH assumption
for any of the variables in the model nor have
we assessed whether there is significant inter-
action between Rx and the other variables
being controlled. Typically, these situations
should be explored to ensure a more appropri-
ate analysis.

V. The Independence
Assumption

At the beginning of this text in Chapter 1, we
introduced the concept of censoring as a major
concern for the analysis of survival data. We
distinguished between right- and left-censoring
and indicated our focus in the text would be on
right-censoring, which occurs more often.

We also introduced in Chapter 1 an important
assumption about censoring that is typically
assumed for all approaches/models for analyz-
ing survival data described up to this point,
including data with competing risks. This
assumption is often stated as follows: censor-
ing is independent.

In addition, we distinguished (in Chapter 1)
“independent” censoring from two other
assumptions: “random” censoring and “non-
informative” censoring, but emphasized the
importance of the independence assumption.

ĤROTH(RX ¼ 1 vs. RX ¼ 0)
¼ exp(�0.580)¼ 0.560

Wald ChiSq ¼ (�.578/.279)2

¼4.29 (P¼0.038)
Signif. at .05 level

95% CI for exp[b1OTH):
exp[�0.578þ�1 .96(0.279)]
¼(0.325, 0.969)

Not assessed in the above analysis:

PH assumption

Interaction of Rx with control vari-
ables

Censoring: a major concern in
survival analysis

Right-censoring vs. left-censoring
#

� more often
� our focus

Typical assumption:
Censoring is Independent

� Required for all approaches/
models described to this point

� Relevant for competing risks

Two other (different) assumptions
Random censoring
Non-informative censoring
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InChapter1,wedefined independentcensoring
in a context that assumed the absence of
competing risks as follows:

Within any subgroup of interest, subjects who are
censored at time t should be representative of all
subjects in that subgroup who remained at risk at
time t with respect to their survival experience.

Non-independent censoring unfortunately can
lead to biased results in a survival analysis.
A bias can result if people who get censored are
more likely to fail than those not censored. Thus,
the estimated survival probability at any time
tmay over-estimate the true survival probability
at time t if a large proportion of those with
unknown status (i.e., censored) actually failed.

When the survival analysis problem involves
competing risks, the requirement of indepen-
dent censoring has the additional complication
that there aredifferent types of censoring that are
possible. That is, when focusing on the cause-
specific hazard for event-type A, say, competing
risksother thanAarealso consideredas censored
in addition to standard censorship from lost-
to-follow-up, withdrawal or ending of the study.

For example, in the Byar data set, there were
three competing risks of interest, Cancer, CVD,
orOther deaths. What, then, must we assume if
censoring in this study were independent?

Suppose censoring is independent and we
focus on cause-specific deaths for Cancer,
then any subject (e.g., Harry) in the risk set at
time t with a given set (G) of covariates who is
censored at time t is presumed to have the
same failure rate as any noncensored subject
in the risk set with the same set of covariates
regardless of whether the reason for censoring
is either a CVD or Other death, withdrawal
from study, or lost-to-follow-up.

On the other hand, suppose censoring were
not independent, then if Harry was censored
at time t because he died from CVD or Other
causes at time t, Harry’s (unknown) failure rate
at time t for dying of Cancer would differ from
the Cancer failure rate for noncensored sub-
jects at time t (who didn’t previously die of
Cancer, CVD, or Other causes prior to time t).

Independent censoring:

Chapter 1 context: no competing risks

h(t | G, Ce) ¼ h(t | G, NCe) where

G denotes any subgroup of subjects
at risk at time t

h(t | G, Ce) denotes hazard for cen-
sored subjects in subgroup G

h(t |G,NCe) denoteshazard fornon-
censored subjects in subgroup G

Bias possible:
Ŝ(t) may over-estimate S(t)

if
largeproportionof subjects censored

at time t actually fail after time t

Independent censoring with
competing risks

+
Different types of censoring:

� failure from competing risks
� lost-to-follow-up
� withdrawal
� end of study

EXAMPLE (Byar data)

3 competing risks:
Cancer, CVD, or Other deaths

Independent censoring?

Suppose censoring is independent
and Harry censored at time t

+
hCa(t | G, Ce) ¼ hCa(t | G, NCe)

Suppose censoring is not
independent and Harry died from
CVD or Other Cause at time t

+
hCa(t | G, Ce) 6¼ hCa(t | G, NCe)
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The important message at this point when
analyzing competing risks survival data is that
it is typically assumed that censoring is inde-
pendent regardless of the different ways that
censoring can occur, including failure from
competing risks other than the cause-specific
event-type of interest. A synonymous expres-
sion is to say that competing risks are inde-
pendent, which we henceforth adopt in our
remaining discussion of this topic.

So, if we typically require that competing risks
are independent, (1) how can we determine
whether this assumption is satisfied and (2) how
can we proceed with the analysis to consider the
possibility that the assumption is not satisfied?

Unfortunately, the answer to the first question is
that we can never explicitly prove that compet-
ing risks are or are not independent for a given
dataset. For example, in the Byar dataset, we
cannot determine for certain whether a subject
who died from, say, CVD at time t would have
died from Cancer if he hadn’t died from CVD.

In otherwords, dying fromCancer at time t is an
unobservable outcome for a subject who died
from CVD at or before time t. More generally,
failure from a competing risk at time t is unob-
servable for a subject who has already failed
from a different competing risk up to time t.

Because we can never fully determine whether
competing risks are independent, how can we
proceed with the analysis of competing risks
survival data? The answer is that there are sev-
eral alternative strategies, but no one strategy
that is always best.

Important assumption for
competing risks

Censoring is independent
regardless of different types of cen-
soring possible

Synonym: Competing risks are
independent

Questions about independence
assumption

1. How can we determine whether
this assumption is satisfied?

2. How can we proceed with the
analysis to consider the
possibility that the assumption
is not satisfied?

Answer to 1:
We can never explicitly prove the
assumption is satisfied for given
data.

For example, Byar data: Cancer
death
Then can’t determine would have
died from Cancer if hadn’t died
from CVD.

CVD death
+

Cancer death unobservable

In general
Failure from competing risk A

+
Failure from competing risk B

unobservable

Answer to 2:
Alternative strategies available

but no strategy is always best
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One strategy is to decide on clinical/biological/
other groundswithout any data analysis that the
independence assumption is satisfied and then
carry out the analysis assuming independence.

For example, suppose the two competing risks
are Cancer deaths and CVD deaths. Then you
may decide that the assumption of indepen-
dent competing risks is reasonable if at any
time t, subjects who were censored because of
CVD death were no more or less likely to have
died from Cancer.

A second strategy is to measure those variables
that are common risk factors for competing
risks being considered and then include those
variables in the survival model. For example,
with Cancer and CVD, perhaps including age
and smoking status in the survival model might
remove common effects on competing risks.

A criticism of each of the above strategies is
that they both rely on assumptions that cannot
be verified with the observed data.

Another strategy (3) that can be used is a sensi-
tivity analysis. As with Strategies 1 and 2, a sen-
sitivity analysis cannot explicitly demonstrate
whether the independence assumption is satis-
fied. However, this strategy allows the estima-
tion of parameters by considering “worst-case”
violations of the independence assumption.

Thus, using a sensitivity analysis, the investigator
can determine extreme ranges for the estimated
parameters in one’s model under violation of the
independence assumption.

If such “worst-case” results do not meaningfully
differ from results obtained under the indepen-
dence assumption, then the investigator may
conclude that at most a small bias can result
from an analysis that assumes independence.

Strategy 1
Decide assumption satisfied on
clinical/biological/other grounds

EXAMPLE OF STRATEGY

1—CANCER VS. CVD

Decide independence if subjects who
were censored because of CVD death
were no more or less likely to have
died from Cancer.

Strategy 2
Include common risk factors for
competing risks in survivalmodel

EXAMPLE OF STRATEGY

2—CANCER VS. CVD

Include age smoking in model to
remove the common effects of these
variables on competing risks.

Criticism of Strategies 1 and 2
Assumptions cannot be verified
with observed data

Strategy 3
Use a sensitivity analysis

� Considers “worst-case”
violations of the independence
assumption

Sensitivity analysis

� Determines extreme ranges for
estimated parameters of one’s
model

If “worst-case” not meaningfully
different from independence

then
at most a small bias when
assuming independence
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If, on the other hand, the sensitivity analysis
provides results that meaningfully differ from
results obtained under the independence
assumption, the investigator learns only the
extremes to which the results could be biased
without adjusting for the actual bias.

We now illustrate how a sensitivity analysis can
be carried out using the Byar data, where we
focus on the cause-specific survival for Cancer
deaths, treating CVD and Other deaths as cen-
sored in addition to usual censoring.

The following two worst-case situations are
considered. (1) All subjects that are censored
because of CVD or Other deaths are assumed
to die of cancer instead. (2) All subjects that are
censored because of CVD or Other deaths sur-
vive as long as the largest survival time
observed in the study.

Table 9.4 and Table 9.5 give edited output for
the above two scenarios followed by a repeat of
the output previously shown (Table 9.1) under
the independence assumption.

To carry out worst-case scenario (1), the Status
variable (indicating whether a subject failed
or was censored) was changed in the dataset
from 0 to 1 for each subject that had a CVD or
Other death.

For worst-case scenario (2), the longest survival
time observed in the study was 76 weeks. Thus,
the survival time for each subject that had a
CVD orOther death was changed in the dataset
from the actual time of death to 76 weeks.

To evaluate the results of the sensitivity analy-
sis, we need to compare the output inTable 9.1,
which assumes that competing risks are inde-
pendent, with output for worst-case situations
provided in Table 9.4 and Table 9.5. We focus
this comparison on the estimated coefficient of
the Rx variable.

If “worst-case” meaningfully
different from independence

then
only extreme of bias but not
actual bias is determined

EXAMPLE BYAR DATA

Cause-specific focus: Cancer
Censored: CVD deaths. Other deaths,

usual censoring

Worst-case situations:

1. CVD orOther deaths are assumed to
die of cancer instead

2. CVD or Other deaths assumed to
survive as long as the largest survival
time observed in the study

Table 9.5. Edited Output for Cancer
Worst-Case (2)

Var DF Coef Std.Err. p > |z|
Haz.
Ratio

Rx 1 �0.411 0.169 0.015 0.663
Age 1 �0.118 0.139 0.394 0.888
Wt 1 0.086 0.138 0.532 1.090
PF 1 0.125 0.254 0.622 1.133
Hx 1 �0.266 0.179 0.138 0.767
HG 1 0.314 0.169 0.063 1.369
SZ 1 0.825 0.197 0.000 2.282
SG 1 1.293 0.201 0.000 3.644

Log likelihood ¼ �839.631

Table 9.4. Edited Output for Cancer
Worst-Case (1)

var DF Coef Std.Err. p > |z|
Haz.
Ratio

Rx 1 �0.185 0.110 0.092 0.831
Age 1 0.286 0.087 0.001 1.332
Wt 1 0.198 0.093 0.032 1.219
PF 1 0.402 0.170 0.018 1.495
Hx 1 0.437 0.112 0.000 1.548
HG 1 0.292 0.120 0.015 1.339
SZ 1 0.672 0.159 0.000 1.958
SG 1 0.399 0.115 0.001 1.491

Log likelihood ¼ �1892.091
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The first line of output corresponding to the Rx
variable is shown at the left for both worst-case
scenarios together with the output obtained
from assuming independent competing risks.

These results for the RX variable show consid-
erable differences among all three scenarios.
In particular, the three estimated hazard ratios
are 0.831 (¼ 1/1.20), 0.663 (¼1/1.51), and .577
(¼1/1.73). Also, the P-values for the signifi-
cance of the effect of Rx (0.092, 0.015, .001)
lead to different conclusions about the effect
of Rx.

Note that the HR obtained from assuming
independence does not lie between the HRs
from the two worst-case scenarios. This should
not be surprising because both worst-case
scenarios assume non-independence.

These results suggest that if the competing
risks were not independent, then the conclu-
sions about the effect of Rx could be somewhat
different.

Var DF Coef Std. Err. p > |z| Haz. Ratio
Worst-Case (1):
Rx 1 �0.185 0.110 0.092 0.831
Worst-Case (2):
Rx 1 �0.411 0.169 0.015 0.663
Independent competing risks:
Rx 1 �0.550 0.171 0.001 0.577

WC(1) WC(2) Independent

dHRs 0.831 0.663 0.577
P-values 0.092 0.015 0.001

(N.S.) (<.05) (< <.01)

Independence Nonindependence
_______x_______ [ __________ ] ___

.577 .663 .831

If
competing risks not independent

then
conclusions about the effect ofRx
could be very different

Table 9.1 (Repeated). Edited Output for
Cancer with CVD and Other censored
(Assumes Competing Risks Independent)

Var DF Coef Std.Err. P>|z|
Haz.
Ratio

Rx 1 �0.550 0.170 0.001 0.577
Age 1 0.005 0.142 0.970 1.005
Wt 1 0.187 0.138 0.173 1.206
PF 1 0.253 0.262 0.334 1.288
Hx 1 �0.094 0.179 0.599 0.910
HG 1 0.467 0.177 0.008 1.596
SZ 1 1.154 0.203 0.000 3.170
SG 1 1.343 0.202 0.000 3.830

Log likelihood ¼ �771.174
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However, these results do not demonstrate
whether the independence assumption is satis-
fied, nor do they provide estimates of the
unbiased hazard ratios and corresponding
Wald tests under violation of the independent
assumption.

Worst-case (1) gives more departure from inde-
pendence than worst-case (2). It can also be
argued that worst-case (1) is more realistic
and thus should be emphasized more than
worst-case (2), because subjects who were cen-
sored because of CVD or Other deaths would
not be expected to survive the entire study if
they hadn’t died.

The previous observation suggests that the
investigator can vary the approach used to
either carry out or interpret such a sensitivity
analysis. For example, an alternative approach
would be to modify worst-case (1) by randomly
selecting a subset of 50% (or 25%) of subjects
censored with CVD or Other deaths and then
assuming that everyone in this subset dies of
Cancer instead.

In any case, the main point here is that a sensi-
tivity analysis of the type we have illustrated is
one of several strategies that can be used to
address concern about the independence
assumption. Such a sensitivity analysis allows
the investigator to evaluate how badly biased
the results could get if the independence
assumption is not satisfied.

Nevertheless, as mentioned earlier, there is no
method currently available that can directly
assess the independence assumption nor guar-
antee correct estimates when the independence
assumption is violated. Consequently, the typi-
cal survival analysis assumes that the indepen-
dence assumption is satisfied when there are
competing risks, even if this is not the case.

But,

� Have not demonstrated
whether independence
assumption satisfied

� Have not obtained correct
results under violation of
independence assumption

Worst-case (1)
More departure from indepen-

dence
More realistic
More emphasis

than

Worst-case (2)

Sensitivity analysis: approaches can
vary for example,

� Randomly select subset of 50%
(or 25%) of subjects censored
with CVD or Other deaths

� Assume everyone in subset dies
of Cancer

Main point:

Sensitivity analysis is one of sev-
eral strategies to address concern
about independence assumption

Evaluates how badly biased the
results can get if independence
not satisfied

Nevertheless

� No method to directly assess
independence assumption

� Typical analysis assumes
independence assumption is
satisfied
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VI. Cumulative Incidence
Curves (CIC)

We have previously discussed (Chapter I and
beyond) the use of survival curves to provide
summary information over time of the survival
experience of (suh) groups of interest. The
Kaplan-Meier (KM) approach (Chapter 2), also
called the product-limit approach, is a widely
used empirical method for estimating survival
culves. A generalized version of KM can be used
with a regression (e.g., Cox) model to estimate
adjusted survival curves (Chapter 3) that account
for covariates. Up to now, such survival curves
have been described only for the situation when
there is only one event- type of interest.

When competing risks are being considered,
the KM survival curve may not be as informa-
tive as with only one risk.

Consider the following hypothetical scenario:
a 5-month follow-up of 100 subjects with (say,
prostate) cancer. Suppose that at 3 months
from start of follow-up, 99 of the 100 subjects
die from CVD. And at 5 months, the 1 remain-
ing subject dies from prostate cancer.

The goal of the study is to determine the cause-
specific survival experience for cancermortality,
where a CVD death is considered as censored.

Table 9.6 summarizes the survival experience in
this hypothetical study. The first five columns
of this table show the ordered failure-time
interval number (f), the time of failure (tf), the
number in the risk set (nf), the number who fail
(mf), and the number who are censored at each
failure time (qf), assuming that a subject who
died of CVD at a given time is censored at that
time. The last column shows the KM survival
probabilities SCa(tf) for cause-specific cancer at
each failure time.

Survival curves S(t):
provide summary information over
time of survival experience

KM: empirical approach for esti-
mating survival curves

Adjusted survival curves: general-
ized version of KM using a regres-
sion model to adjust for covariates

Up to now: One event-type of
interest (no competing
risks)

Competing risks:KMmay not be as
informative as when only one risk

Hypothetical Study

� n ¼ 100 subjects
� All subjects with prostate cancer

Survt (months) # Died Cause

3 99 CVD
5 1 Cancer

Study goal: cause-specific cancer
survival
Censored: CVD deaths

Table 9.6. Hypothetical Survival Data

f tf nf mf qf SCa(tf) $ KM

0 0 100 0 0 1
1 3 100 0 99 1
2 5 1 1 – 0
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From this table, we see that there is only one
subject in the risk set at 5 months, and that this
subject fails at month 5. The conditional prob-
ability of surviving past 5 months given sur-
vival up to 5 months is (1 � 1)/1 ¼ 0, so that
the KM survival probability at 5 months is 0.

Thus, use of the KMCa curve in the presence
of competing risks (for CVD), suggests that
the 5-month risk for cancer death is 1; that is,
1�SCa (t¼ 5).Nevertheless, because 99 patients
died of CVD instead of cancer, the proportion of
the initial 100 subjects who died of cancer is .01,
a very small “risk” in contrast to the KM-based
“risk” of 1.

A natural question at this point is, howmany of
the 99 patients who died of CVD at 3 months
would have died of cancer by 5 months instead
if they hadn’t died of CVD?

Unfortunately, we cannot ever answer this
question because those dying of CVD cannot
be observed further once they have died.

Butwe can consider a sensitivity-type of analysis
to see whatmight happen under certain alterna-
tive scenarios. Suppose, for example, that all
99 subjects who died of CVD at 3 months
would have died of cancer at 5 months if they
hadn’t died of CVD. Also assume as before that
the 100th subject survived up to 5 months but
then immediately died. The survival experience
for this situation is shown in Table 9.7. Notice
that the KM survival probability at month 5 is 0,
which is the same value as obtained in the
original dataset.

Risk set at tf ¼ 5: 1 subject

Pr(T > 5 | T � 5) ¼ (1 � 1)/2 ¼ 0

KMCa: SCa (t ¼ 5)

¼ S t ¼ 4ð Þ � Pr T > 5jT � 5ð Þ
¼ 1 � 0

¼ 0

KMCa ¼ 0 ) RiskCa (T � 5)
¼ 1 � 0 ¼ 1

Nevertheless,

1 cancer death

100 initial subjects
¼ 0:01 smallð Þ

Question:
How many of the 99 CVD deaths
would have died of cancer at t¼ 5
if they hadn’t died ofCVDat t¼ 3?

Cannot answer: unobservable

Table 9.7. Hypothetical Survival Data
Sensitivity Analysis A (99 CVD Deaths of
Cancer at t ¼ 5)

f tf nf mf qf SCa(tf)$KM

0 0 100 0 0 1
1 3 100 0 0 1
2 5 100 100 0 0
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The reason why Tables 9.6 and 9.7 give the
same 5-month survival probability (¼0) is that
the KM method assumes independent censor-
ing. For the original data (Table 9.6), indepen-
dent censoring requires that those who were
censored at month 3 were as likely to have died
from cancer atmonth 5 as those whowere in the
risk set at month 5. Because the one person in
the risk set atmonth5 actually died fromcancer,
then the KM method assumes that all 99 CVD
deaths being viewed as censored would have
been cancer deaths at month 5, which is what
is represented in Table 9.7.

Now let’s consider a different version (B) of a
sensitivity analysis. Suppose that all 99 sub-
jects who died of CVD at 3 months would not
have died of cancer at 5 months if they hadn’t
died of CVD. Also assume as before that the
100th subject survived up to 5 months but
then immediately died. The survival experience
for this situation is shown in Table 9.8.

The KM survival probability at month 5 is 0.99
(i.e., close to 1), which is very different from the
value of 0 obtained in the original dataset
(Table 9.6).

If we then focus on 1 � S(t) instead of S(t),
sensitivity analysis B suggests that the 5-month
risk for cancer death is 0.01 (i.e., 1 � 0.99).

We thus see that the KM-based risk of 1 com-
puted from the actual data (Table 9.6) is quite
different from the KM-based risk of .01 com-
puted in Table 9.8, where the latter derives
from a sensitivity analysis that does not use
the actual data. Note, however, that a “risk”
of .01 for cancer death can be derived directly
from the actual data by treating the CVD
deaths as cancer survivors. That is, .01 is the
proportion of all subjects who actually devel-
oped cancer regardless of whether they died
from CVD. This proportion is an example of
what is called a marginal probability.

KM method assumes non-
informative (i.e., independent) cen-
soring

+
Pr(T > 5|censored at month 3)

¼
Pr(T> 5|survived to month 5)¼ 0

+
99 CVDs deaths would have
been cancer deaths at month 5

Table 9.8. Hypothetical Survival Data
Sensitivity Analysis B (99 CVD Deaths of
survive past t ¼ 5)

f tf nf mf qf SCa(tf)$KM

0 0 100 0 0 1
1 3 100 0 0 1
2 5 100 1 99 0.99

Table 9.8: SCa(t ¼ 5) ¼ 0.99
different from

Table 9.6: SCa(t ¼ 5) ¼ 0

Focus on 1 � S(t) ¼ Risk:
RiskCa(T � 5) ¼ 1 � 0.99 ¼ 0.01

Table 9.6: RiskCa(T � 5) ¼ 1
derived from the data

Table 9.8: RiskCa(T � 5) ¼ 0.01
derived from sensitivity analysis

but also derived directly from
data as a marginal probability
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So which of these two “risk” estimates (1 vs. 01)
is more informative? Actually, they are both
informative in different ways.

The “risk” of .01 is informative from the stand-
point of treatment utility for cancer because in
these data, the proportion of cancer patients
needing treatment is quite small when allowing
for competing risks.

On the other hand, the “risk” of 1, correspon-
ding to the survival probability of 0, is informa-
tive from an etiologic standpoint providing
competing risks are independent; for example,
cancer patients who don’t die of CVD would be
expected to die from their cancer by 5 months;
that is, cancer survival is unlikely after 5months.

The main point of the above illustration is
that when there are competing risks, the KM
survival curve may not be very informative
because it is based on an independence assum-
ption about competing risks that cannot be
verified.

This has led to alternative approaches to KM
for competing risk data. One such alternative,
called theCumulative Incidence Curve (CIC),
involves the use of marginal probabilities
as introduced above. (Kalbfleisch and Prentice,
1980).

In the simplest case, if there is only one risk,
the CIC is (1 - KM). With competing risks,
however, the CIC is derived from a cause-
specific hazard function, provides estimates
of the “marginal probability” of an event in
the presence of competing events, and does
not require the assumption that competing
risks are independent.

Which is more informative,

RiskCa(T � 5) ¼ 1 or 0.01?

Answer: both informative

“Risk” of .01 considers treatment
utility

for example, proportionof cancer
patients needing treatment

“Risk” of 1 considers etiology,
providing competing risks are
independent

for example, cancer survival is
unlikely after 5 months

Main point

KM survival curve may not be very
informative

� Requires independence
assumption about competing
risks

� Independence assumption
cannot be verified

Alternative to KM: Cumulative
Incidence Curve (CIC) uses
marginal probabilities

Only one risk: CIC ¼ 1 � KM

CIC with competing risk

� Derived from cause-specific
hazard function

� Estimates marginal
probability when competing
risks are present

� Does not require independence
assumption
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Such marginal probabilities are relevant to
clinicians in cost-effectiveness analyses in which
risk probabilities are used to assess treatment
utility. For example, the 0.01 (5-month)marginal
probability for cancer derived from the hypothet-
ical data in Table 9.6 illustrates small treatment
utility for cancer.

How does one construct a CIC? We first esti-
mate the hazard at ordered time points tf when
the event of interest occurs. This hazard esti-
mate is simply the number of events that occur
at tf divided by the number at risk at tf (analo-
gous to the KM estimate). We can write this as

ĥc(tf) ¼ mcf/nf where the mcf denotes the num-
ber of events for risk c at time tf and nf is the
number of subjects at that time. Thus, at any
particular time, mcf/nf is the estimated propor-
tion of subjects failing from risk c.

To be able to fail at time tf, the subject needs to be
“around to fail”, i.e., he must have survived the
previous timewhen a failure occurred. The prob-
ability of surviving the previous time tf-1 is
denoted S(tf-1), where S(t) denotes the overall
survival curve rather than the cause-specific sur-
vival curve Sc(t). Wemust consider “overall” sur-
vival here, since the subject must have survived
all other competing events.

The probability (i.e., incidence) of failing from
event-type c at time tf is then simply the pro-
bability of surviving the previous time period
multiplied by ĥc(tf).

The cumulative incidence (CICc) for event-
type c at time tf is then the cumulative sum up
to time tf (i.e., from f0¼1 to f0¼f) of these inci-
dence values over all event-type c failure times.

Although, as previously mentioned, the CIC is
equal to 1 � KM when there are no competing
risks, formula 4 for CICc(tf) differs from 1 -KMc

when there are competing risks. In particular,
the CIC formula (4) uses the overall survival
function S(t) that counts events from competing
risks in addition to the event-type of interest as
failures. In contrast, the formula for 1 � KMc

uses the event-type-specific survival function
Sc(t), which treats failures from competing risks
as censored observations; this formula has been
called the censor method (Arriagada et al.,1992).

Marginal probabilities:

� useful to assess treatment utility
in cost-effectiveness analyses

� example: 0.01 ¼ 5-month
marginal probability for
Cancer (Table 9.6)

Steps to construct CIC:

1. Estimate hazard at ordered
failure times tf for event-type
(c) of interest:

ĥcðtfÞ ¼ mcf=nf

where
mcf ¼ # of events for event-type

c at time tf
nf¼ # of subjects at risk at time tj

2. Estimate
S(tf�1) ¼ overall survival

probability of
surviving previous
time (tf�1)

overall ) subject survives all
other competing
events

3. Compute estimated incidence
of failing from event-type c at
time tf:

ÎcðtfÞ ¼ Ŝðtf�1Þ � ĥcðtfÞ

4.

CICcðtfÞ ¼
Xf

f0¼1

Îcðtf0 Þ ¼
Xf

f0¼1

Ŝðtf0�1Þĥcðtf0 Þ

CIC ¼ 1 � KM$ no competing risks

but

CICc(tf) 6¼ 1 � KMc $ competing risks

since

1�KMc ¼
Xf

f0¼1

Ŝcðtf0�1Þĥcðtf0 Þ
(censor method)
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We illustrate the calculation of a CIC through
an example.

Consider another hypothetical study involving
24 individuals receiving radiotherapy (XRT)
for the treatment of head and neck cancer.
Patients may either die of the disease (cancer),
other causes or still be alive at the time of
analysis.

The data are shown on the left.

The calculations required for the cumulative
incidence curve CICca for the event-type
“death from cancer (i.e., ca)” are shown in
Table 9.9.

From the table, we can see that the highest CIC
probability of 0.536 is reached when t¼ 20.3
weeks when the last observed event occurred.
Thus, the cumulative risk (i.e., marginal prob-
ability) for a Cancer death by week 20 is about
53.6% when allowing for the presence of com-
peting risks for CVD and Other Deaths.

Because the CIC curve describes “cumulative
incidence”, a plot of the curve starts at 0 when
t¼0 and is a nondecreasing function up until
the latest time of individual follow-up (t¼24.4).
We show on the left the graphs of both the
CICca and 1 � KMca. Notice that 1 � KMca

overestimates the probability of failure for the
event-type “death from cancer (ca).”

Table 9.9. CIC calculation Hypothetical
data

tf nf mf ĥca(tf) Ŝ (tf�1) Îca(tf) CICca(tf)

0 24 0 0 - 0 0

0.7 24 1 0.042 1.000 0.042 0.042

1.5 23 0 0 0.958 0 0.042

2.8 22 0 0 0.916 0 0.042

3.0 21 1 0.048 0.875 0.042 0.083

3.2 20 0 0 0.833 0 0.083

3.8 19 0 0 0.833 0 0.083

4.7 18 0 0 0.789 0 0.083

4.9 17 1 0.059 0.745 0.044 0.127

6 16 2 0.125 0.702 0.088 0.215

6.9 14 1 0.071 0.614 0.044 0.259

7.0 13 0 0 0.570 0 0.259

7.6 12 0 0 0.526 0 0.259

10 11 1 0.091 0.526 0.048 0.307

10.8 7 1 0.143 0.383 0.055 0.361

11.0 6 0 0 0.328 0 0.361

11.2 5 0 0 0.328 0 0.361

15 4 0 0 0.262 0 0.361

17.1 3 1 0.333 0.262 0.087 0.449

20.3 2 1 0.5 0.175 0.087 0.536

24.4 1 0 0 0.087 0 0.536

Example of CIC calculation

� n ¼ 24 subjects
� all subjects receive treatment

XRT for head and neck
cancer

Survival time in (months)

Died of disease: 0.7, 3, 4.9, 6, 6, 6.9,
10, 10.8, 17.1, 20.3

Died of other causes: 1.5, 2.8, 3.8,
4.7, 7, 10, 10, 11.2

Censored: 3.2, 7.6, 10, 11, 15, 24.4

0.9
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0.6
0.5
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tio
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dy

in
g

0.4
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0
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Hypothetical study: CICca vs. 1-KMca

18 24

CICca

1-KMca
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Thus, as the example illustrates, the “marginal
probability” estimated by the CIC does not use
a product-limit (i.e., KM) formulation. More-
over, the computation of a CIC is currently not
included in mainstream commercially available
statistical packages.

As mentioned earlier, the assumption of inde-
pendent competing risks is not required for the
calculation of the CIC, in contrast to the KM
survival curve, which requires this assumption.

Nevertheless, the CIC does require that the
overall hazard is the sum of the individual
hazards for all the risk types (Kalbfleisch and
Prentice, 1980). The latter assumption will
be satisfied, however, whenever competing
risks are mutually exclusive and events are
nonrecurrent, i.e., one and only one event can
occur at any one time and only once over time.

Gray (1988) developed a test to compare two or
more CICs. This test is analogous to the log-
rank test. The independence assumption is not
required. However, this test does not adjust for
covariates.

The plot shown on the left gives theCICs for the
two treatments for the Byar data that we origi-
nally introduced in Section III of this chapter.

CIC Summary

� Gives marginal probability.
� Does not use product limit

formulation
� Not included in mainstream

commercially avilable
statistical packages (e.g., SAS,
STATA, SPSS)

Independence of competing risks
not required for CIC approach.

Nevertheless, CIC requires

hðtÞ ¼ hc1ðtÞ þ hc2ðtÞ þ . . .þ hckðtÞ
where

h tð Þ ¼ overall hazard

hc tð Þ ¼ hazard for event type c

Note: Satisfied if

� Mutually exclusive event types
� Nonrecurrent events

Comparing CIC’s for two or more
groups:

� Statistical test available (Gray,
1989)

� Analogous to log-rank test
� No independence assumption
� Does not adjust for covariates
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Using Gray’s test to compare the two CICs
shown in the plot, we find the two curves to
be significantly different (P¼0.01).

So far, we have described the CIC without
considering (Cox PH) models that account for
covariates. However, when a PH model is
used to obtain hazard ratio estimates for indi-
vidual competing risks as an intermediate step
in the computation of a CIC, the indepen-
dence of competing risks is required. In any
case, the CIC has a meaningful interpretation
in terms of treatment utility regardless of
whether competing risks are independent.

Fine and Gray (1999) provide methodology for
modeling the CIC with covariates using a pro-
portional hazards assumption. They refer to
the CIC curves as subdistribution functions.
Software is available that allows for such
models to be fitted (Accord, 1997).

The CIC models developed by Fine and Gray
are analogous to the Cox PHmodel but, for any
failure type, they model a hazard function
(also called a sub-distribution hazard) derived
from a CIC. The results from fitting these
models have a similar interpretation regarding
the effects of predictors in the model as can be
derived from the (standard) Cox PH model
approach for competing risks data.

The (sub-distribution) hazard function for
event-type c used in the Fine and Gray method
is defined by hc,CIC(t) on the left. This function,
based on the CIC, gives the hazard rate for
a cause-specific event at time t based on the
risk set that remains at time t after accounting
for all previously occurring event-types (i.e.,
including competing risks).

In the above hazard formula, the expression
defined by B to the right of the conditioning
symbol (|) in the formula conditions on a sub-
ject’s surviving from event-type c past time t or
on a subject’s failing from a different event-type
(e.g., c0) at or before time t; this accounts for the
occurrence of all event-types prior to time t.

Gray’s test results: w2¼ 6.6, df ¼ 1
P-value: 0.01

PH model used to obtain CIC
+

Independence of competing risks
required
(but CIC meaningful for treatment
utility)

Modeling CICwith covariates using
PH model: Fine and Gray (1999)

(CIC also called subdistribution
function)

Software available (Accord, 1997)

Fine and Gray model analogous to
Cox PH model:

� use a hazard function defined
from a CIC

� effects of predictors (e.g., HRs)
have similar interpretation

Sub-distribution hazard function
(for event-type c):

hc;CICðtÞ ¼ limD!0
Prðt < Tc < tþ Dt Bj Þ

Dt

Where B = {Tc > t or Tc¢ £ t, c¢ ¹ c

either
survival > t from event-type c

or

failure £ t from a different event-type (c¢)
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An equivalent mathematical expression for
hc,CIC(t) is shown on the left, where dCICc(t)/dt
is the derivative of the CIC function for event-
type c at time t.

This expression for hc,CIC(t) is analogous to a
similar expression shown on the left for the
hazard function h(t) when there are no com-
peting risks (see Chapter 7, Section II). In the
latter case, h(t) is equal to the probability
density function f(t) divided by the survival
function S(t) shown on the left.

To clarify the analogy further, the term in
dCICc(t)/dt in the numerator of the formula
for hc,CIC(t) corresponds to the density function
f(t) in the numerator of h(t). Note that f(t)
is equal to dF(t)/dt, where F(t) is cumulative
distribution function F(t); in other words, the
derivative of CICc(t) in hc,CIC(t) corresponds to
the derivative of F(t), which is f(t) in the expres-
sion for h(t).

Also, when there are no competing risks, S(t)
equals 1 � F(t), which is analogous to the
denominator 1 � CICc(t) of hc,CIC(t). Strictly
speaking, however, 1 � CICc(t) is not directly
equivalent to a survival curve for event-type c,
since the formula CICc(t) treats the occurrence
of events from other event-types as failures
rather than as censored observations.

The CIC model developed by Fine and Gray is
shown on the left. This model is analogous to
a Cox model, except that the model considers
the subdistribution hazard function hc,CIC(t)
instead of the hazard function h(t).

The model shown here satisfies the PH assump-
tion for the subpopulation hazard being mod-
eled, i.e., the general HR formula is essentially
the same as for the Cox model, except that the
b’s in the Cox PHmodel are now replaced by g’s
in the Fine and Gray model.

The Fine and Gray model can be extended to
allow for variables not satisfying the PH,
including time-dependent variables.

Equivalent formula for hc,CIC(t):

hc;CICðtÞ ¼ dCICcðtÞ=dt
1� CICcðtÞ
analogous to

Hazard when no competing risks:

hðtÞ ¼ fðtÞ
SðtÞ

where f(t) ¼ probability density function

¼ lim
Dt!0

Pr½t � T < tþ Dt�
Dt

The analogy:

Competing Risks No Competing Risks

hc,CIC(t) h(t)

dCICc(t)/dt f(t) ¼ dF(t)/dt
where
F(t) ¼ Pr(T � t)

1�CICc(t) S(t) ¼ 1 � F(t)

Note: 1 � CICc(t) is not strictly a survival
curve since the formula for CICc(t) uses
overall survival S(t) in its calculation
rather than survival from event-type c,
i.e., Sc(t)

Fine and Gray’s CIC model:

hc;CICðtÞ ¼ h0c;CICðexpÞ½
Xp
i¼1

giXi�

PH assumption satisfied in above
model:

HRc;CICðX	;XÞ ¼ exp½
Xp
i¼1

giðX	
i �XiÞ

analogous to

HRCoxPHðX	;XÞ ¼ exp½
Xp
i¼1

biðX	
i �XiÞ

Can use “extended” Fine and
Gray model to account for time-
dependent variables.
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For the Byar data, the fitted Fine and Gray CIC
model that focuses on cancer deaths as the
event type of interest is shown in Table 9.10
below which we have repeated in Table 9.1,
which uses the standard competing risks Cox
PH model approach.

Although corresponding coefficient estimates
and standard errors are different in the two
outputs, both outputs are reasonably similar.

For example, the estimated coefficient of Rx is
�0.414 in Table 9.10 vs. �0.550 in Table 9.1.
The corresponding hazard ratio estimates (eb̂)
are 0.661 (¼1/1.513) and 0.577 (¼1/1.733),
respectively, so that the strength of the associ-
ation is slightly weaker using the Fine and Gray
approach for these data, although both hazard
ratios are highly significant.

VII. Conditional
Probability Curves
(CPC)

Another approach to competing risks is called
the cumulative conditional probability or
CPC. CPCs provide a third summary measure,
in addition to (1 - KM) and CIC, of the risk of
failure of an event in the presence of competing
risks. Put simply, the CPCc is the probability of
experiencing an event c by time t, given that an
individual has not experienced any of the other
competing risks by time t.

Fine and Gray CIC
(Table 9.10)

Standard Cox PH
(Table 9.1)

b̂Rx : �0.414 �0.550

ĤRRx : 0.661 ¼ ð 1
1:513Þ 0.577 ¼ ð 1

1:733Þ
P-value : 0.008 0.001

A third measure of failure risk: CPC
(Other measures: 1-KM and CIC)

CPCc ¼ Pr(Tc� t | T�t)

where Tc¼ time until event c occurs
T ¼ time until any compet-

ing risk event occurs

Table 9.1. (Repeated). Edited Output for
Cancer with CVD and Other Censored
(Standard Cox PH approach)

Var DF Coef Std.Err. p > |z|
Haz.
Ratio

Rx 1 �0.550 0.170 0.001 0.577
Age 1 0.005 0.142 0.970 1.005
Wt 1 0.187 0.138 0.173 1.206
PF 1 0.253 0.262 0.334 1.288
Hx 1 �0.094 0.179 0.599 0.910
HG 1 0.467 0.177 0.008 1.596
SZ 1 1.154 0.203 0.000 3.170
SG 1 1.343 0.202 0.000 3.830

Log likelihood ¼ �771.174

Table 9.10. Edited Output for Cancer
with CVD and Other censored Byar data
(Fine and Gray CIC approach)

Var DF Coef Std.Err. P>|z|
Haz.
Ratio

Rx 1 �0.414 0.171 0.008 0.661
Age 1 �0.112 0.145 0.221 0.894
Wt 1 0.088 0.146 0.274 1.092
PF 1 0.126 0.260 0.313 1.135
Hx 1 �0.256 0.182 0.080 0.774
HG 1 0.321 0.191 0.046 1.379
SZ 1 0.841 0.207 0.001 2.318
SG 1 1.299 0.198 0.001 3.665

�2 LOG L ¼ 1662.766546
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For event-type c, the CPC is defined by CICc

divided by (1 - CICc0), where CICc0 is the cumu-
lative incidence of failure from risks other than
risk c (i.e., all other risks considered together).

Graphs of CPC curves can be obtained from
CIC curves and have been studied by Pepe-
Mori (1993) and Lunn (1998). Pepe-Mori pro-
vide a test to compare two CPC curves. Lunn
(1998) extended this test to g-groups and allow
for strata.

We illustrate the calculation of a CPC using the
previously described hypothetical study data
involving 24 individuals receiving radiotherapy
(XRT) for the treatment of head and neck can-
cer (ca). For these data, the calculations for the
CICca were given in previous Table 9.9, below
which was shown the graph of the CICca curve.

Table 9.11 on the left gives the calculation of
the CPC for the event-type “death from can-
cer”. A graph of the CPCca curve is shown
below the table.

From the CPCca curve, we can see, for example,
that at 10 months, the probability of dying from
cancer given that no other type of event has
occurred is 0.455. Similarly, at 20.3 months,
the probability of dying of cancer given that no
other type of event has occurred is 0.860.

Table 9.11 CPC calculation—
Hypothetical data

tf nf CICca(tf) CICoth(tf)

CPCc

¼ CICc/(1�CICc0)

0 24 0 0 0

0.7 24 0.042 0 0.042

1.5 23 0.042 0.042 0.043

2.8 22 0.042 0.083 0.045

3.0 21 0.083 0.083 0.091

3.2 20 0.083 0.083 0.091

3.8 19 0.083 0.127 0.095

4.7 18 0.083 0.171 0.101

4.9 17 0.127 0.171 0.153

6 16 0.215 0.171 0.259

6.9 14 0.259 0.171 0.312

7.0 13 0.259 0.215 0.330

7.6 12 0.259 0.215 0.330

10 11 0.307 0.311 0.445

10.8 7 0.361 0.311 0.524

11.0 6 0.361 0.311 0.524

11.2 5 0.361 0.376 0.579

15 4 0.361 0.376 0.579

17.1 3 0.449 0.376 0.719

20.3 2 0.536 0.376 0.860

24.4 1 0.536 0.376 0.860

CPCc ¼ CICc/(1-CICc0)

where CICc0 ¼ CIC from risks other
than c

GraphsofCPC’s obtained fromCIC’s

Tests to compare CPC’s:
Pepe and Mori (1993) �2 curves
Lunn (1998) �g curves

Example of CPC calculation

� n ¼ 24 subjects
� all subjects receive treatment

XRT for head and neck cancer
� CICca previously calculated

(Table 9.9)

24181280

1.0
Cumulative Conditional Probability Curve
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Returning to the Byar dataset originally
introduced in Section III of this chapter, the
plot shown here gives the CPC curves compar-
ing the two DES treatments. These curves give
the probability of an event (death) from pros-
tate cancer at any particular time given that the
patient is alive at this time to experience the
event.

(Note: the Fine and Gray approach has not
been extended to model the CPCs in a regres-
sion framework.)

The Pepe-Mori test shows a significant differ-
ence between these two CPC curves.

VIII. Method 2—The
Lunn-McNeil (LM)
Approach

We have previously (Section IV) described an
approach (called Method 1) for analyzing com-
peting risks data that uses the Cox (PH) model
to separatelyestimate hazards and correspon-
ding hazard ratios for each failure type,
treating the other(competing) failure types as
censored in addition?to those not failing from
any event-type.

We now describe Method 2, called the Lunn-
McNeil (LM) approach, that allows only one
Cox PH model to be fit rather than separate
models for each event-type (i,e., Method I
above). This approach, depending on the vari-
ables put in the model, can give identical
results to those obtained from separatemodels.
Moreover, the LM approach allows flexihility
to perform statistical inferences about various
features of the competing risk models that can
not be conveniently assessed using Method 1.

Example: Byar Data

Cumulative Conditional Probability

0 12 24 36 48 60
Months
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Placebo, 0.2mg DES

1.0, 5.0mg DES

Test for equality: p-value ¼ .01 (Pepe-Mori)

Method I: separate estimates for
each failure type, treating the com-
peting failure types as censored

Method 2: LM Approach

� Uses a single Cox (PH) model
� Gives identical results as

obtained from Method 1
� Allows flexibility to perform

statistical inferences not
available from Method 1
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To carry out the LM approach, the data layout
must be augmented. If there are C competing
risks, the original data must be duplicated
C times, one row for each failure type as
shown in Table 9.12 for the ith subject with
survival time ti in the table. Also, C dummy
variables D1, D2, D3,. . ., DC are created as
shown in the table. The value of the status
variable ec, with c going from 1 to C, equals 1
if event type c occurs at time c, and equals 0 if
otherwise. The Xs in the table denote the pre-
dictors of interest and, as shown in the table,
are identical in each row of the table.

The dummy variables D1, D2, D3,. . .,DC are
indicators that distinguish the C competing
risks (i.e., event-types).

Thus, the dummy variable Dc equals 1 for
event-type c and 0 otherwise.

For example, for event type 1, the Ds are D1¼ 1,
D2 ¼ 0, D3 ¼ 0, . . ., DC ¼ 0; for event-type 2, the
Ds are D1 ¼ 0, D2 ¼ 1, D3 ¼ 0, . . ., DC ¼ 0; and
for event-type 3, the Ds are D1 ¼ 0, D2 ¼ 0, D3 ¼
1, . . ., DC ¼ 0.

Table 9.13 shows observations for subject #s 1,
14, 16, and 503 from the Byar dataset. The CA,
CVD, and OTH columns denote the C ¼ 3
dummy variables D1, D2, and D3, respectively.
The last three columns, labeled Rx, Age, and
Wt give values for three of the eight predictors.

In this table, there are three lines of data for each
subject, which correspond to the three compet-
ing risks, Cancer death, CVD death, and Other
death, respectively. The survival time (Stime)
for subject 1 is 72, for subject 14 is 49, for subject
16 is 3, and for subject 503 is 41.

Definition
Dc equals 1 for event-type c and

0 otherwise, c ¼ 1, 2, . . ., C

for example,

Event-type 1: D1 ¼ 1, D2 ¼ 0,
D3 ¼ 0, . . ., DC ¼ 0

Event-type 2: D1 ¼ 0, D2 ¼ 1,
D3 ¼ 0, . . ., DC ¼ 0

Event-type 3: D1 ¼ 0, D2 ¼ 0,
D3 ¼ 1, . . ., DC ¼ 0

Table 9.13. Augmented Data for Sub-
jects 1, 14, 16, and 503 from Byar Data
Using LM Approach
Subj Stime Status CA CVD OTH Rx Age Wt

1 72 0 1 0 0 0 1 2

1 72 0 0 1 0 0 1 2

1 72 0 0 0 1 0 1 2

14 49 1 1 0 0 0 0 0

14 49 0 0 1 0 0 0 0

14 49 0 0 0 1 0 0 0

16 3 0 1 0 0 1 2 1

16 3 1 0 1 0 1 2 1

16 3 0 0 0 1 1 2 1

503 41 0 1 0 0 0 1 0

503 41 0 0 1 0 0 1 0

503 41 1 0 0 1 0 1 0

Table 9.12. Augmented Data for ith Sub-
ject at Time ti Using LM Approach
Subj Stime Status D1 D2 D3 . . . DC X1 . . . Xp

i ti e1 1 0 0 . . . 0 Xi1 . . . Xip

i ti e2 0 1 0 . . . 0 Xi1 . . . Xip

i ti e3 0 0 1 . . . 0 Xi1 . . . Xip

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

. . .

. . .

. . .

. . .

. . .

. . .
i ti eC 0 0 0 . . . 1 Xi1 . . . Xip

D1, D2, D3,. . ., DC: indicators for event-types
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From the Status and Event (i.e., CA, CVD,
OTH) columns, we can see that subject 1 was
censored, subject 14 died of Cancer, subject 16
died of CVD, and subject 503 died from Other
causes.

For subject 1, the values for the predictors Rx,
Age, and Wt, were 0, 1, and 2, respectively.
These values appear identically in the last
three columns of the three rows for this sub-
ject. Similarly, for subject 16, the predictor
values for Rx, Age, and Wt, are 1, 2, and 1,
respectively.

To use the LM approach with augmented data
to obtain identical results from fitting separate
models (Method 1), an interaction version of a
stratified Cox PH model is required. A general
form for this model based on the notation used
for the column heading variables in Table 9.12
is shown at the left.

Recall that the X1, X2,. . ., Xp denote the p pre-
dictors of interest. D2, D3,. . ., DC are C � 1
dummy variables that distinguish the C event-
types. Note that event-type 1 (g ¼ 1) is the
referent group, so variable D1 is omitted from
the model. Thus, the first row in the exponen-
tial formula contains the Xs, the second row
contains product terms involving D2 with each
of the Xs, and so on, with the last (Cth) row
containing product terms of DC with each of
the Xs. The strata (g ¼ 1, . . ., C) are the C event-
types.

For event-type 1 (g ¼ 1), the above stratified
Cox model simplifies to the expression shown
at the left. Note that because g ¼ 1, the values
of the dummy variables D2, D3,. . ., DC are all 0.

Subject 1: Censored
Subject 14: died of Cancer
Subject 16: died of CVD
Subject 503: died from OTH

Rx Age Wt
Subject 1 0 1 2
Subject 16 1 2 1

General Stratified Cox LM Model

g ¼ 1, 2,. . ., C

h	g t;Xð Þ ¼ h	0g tð Þ
� exp b1X1 þ b2X2 þ 
 
 
 þ bpXp

h
þ d21D2X1 þ d22D2X2 þ 
 
 
 þ d2pD2Xp

þ d31D3X1 þ d32D3X2 þ 
 
 
 þ d3pD3Xp

þ 
 
 

þdC1DCX1 þ dC2DCX2 þ 
 
 
 þ dCpDCXp

�

1st row: predictors X1, X2,. . ., Xp

2nd row: product terms
D2X1, D2X2,. . ., D2Xp

Cth row: product terms
DCX1, DCX2,. . ., DCXp

LM Hazard Model for
Event–Type 1

h	1 t;Xð Þ ¼ h	01 tð Þ
� exp b1X1 þ b2X2 þ 
 
 
 þ bpXp

h i

D2 ¼ D3 ¼ 
 
 
 ¼ DC ¼ 0ð Þ
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Thus, for g ¼ 1, if X1 is a (0,1) variable, the
other Xs are covariates, and there are no prod-
uct terms XjX1 in the model, the formula for
the HR for the effect of X1 adjusted for the
covariates is exp[b1]. The more general expo-
nential formula described in Chapter 3 would
need to be used instead to obtain adjusted HRs
if there are interaction terms in the model of
the form XjX1.

For any g greater than 1, the general hazard
model simplifies to a hazard function formula
that contains only those product terms involv-
ing the subscript g, because Dg ¼ 1 and Dg0 ¼
0 for g0 not equal to g.

With a little algebra we can combine coeffi-
cients of the same predictor to rewrite this
hazard model as shown here.

Thus, for g > 1, if X1 is a (0,1) variable, the other
Xs are covariates, and there are no product
terms XjX1 in the model, the formula for the
HR for the effect of X1 adjusted for the covari-
ates is exp[b1þ dg1]. This HR expression would
again need to bemodified if themodel contains
product terms of the form XjX1.

We now illustrate the above general LM model
formation using the Byar data.

Recall that usingMethod 1, the separate models
approach, the Cox hazard formula used to fit a
separatemodel forCancerdeaths, treatingCVD
andOther deaths as censored is repeated here.

Also shown is the formula for the hazard ratio
for the effect of the Rx variable, adjusted for
other variables in the model.

No product terms in model:

HRg¼1(X1 ¼ 1 vs. X1 ¼ 0) ¼ exp[b1]

Product terms XjX1 in model:

HRg¼1(X1 ¼ 1 vs. X1 ¼ 0)
¼ exp[b1 þ SbjXj]

LM Hazard Model for
Event-Type g (> 1)

h	g t;Xð Þ ¼ h	0g tð Þ
� exp b1X1 þ b2X2 þ 
 
 
 þ bpXp

h

þdg1X1 þ dg2X2 þ 
 
 
 þ dgpXp

�
¼ h	0g tð Þ exp b1 þ dg1

� �
X1 þ b2 þ dg2

� �
X2

�
þ 
 
 
 þ bp þ dgp

� �
Xp

i

No product terms XjX1 in the
model and g > 1:

HRg(X1 ¼ 1 vs. X1 ¼ 0)
¼ exp[(b1 þ dg1)]

Product terms XjX1 in the model
and g > 1:

HRg(X1 ¼ 1 vs. X1 ¼ 0)
¼ exp[(b1 þ dg1)

þ S(bj þ dgjXj)]

EXAMPLE OF LM MODEL FOR

BYAR DATA

Separate models approach (Method 1):
Cause-specific model: Cancer
CVD and Other deaths censored

No-interaction model

hCa(t,X) ¼ h0Ca(t)exp[b1CaRx
þ b2CaAge þ b3CaWt þ
b4CaPF þ b5CaHx þ b6CaHG

þ b7CaSZ þ b8CaSG]

HRCa(RX ¼ 1 vs. RX ¼ 0) ¼ exp[b1Ca]
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Using the general LM data layout given in
Table 9.11, the stratified Cox LM model for
the Byar data that incorporates C ¼ 3 event-
types is shown at the left. The strata, denoted
by g ¼ 1, 2, 3, identify the three event-types as
Cancer, CVD, and Other, respectively.

Notice that in the exponential part of the model,
there are 3 rows of terms that correspond to the
3 event-types of interest. The first row contains
p ¼ 8 predictors Rx, Age, Wt, PF, HX, HG, SZ,
SG. The second row contains product terms of
the dummy variable D2 (the CVD indicator)
with each of the 8 predictors. Similarly, the
third row contains product terms of D3 (the
Other indicator) with each of the predictors.

From the above model, it follows that the haz-
ard ratio formulas for the effects of Rx corres-
ponding to each event-type are as shown at the
left. Notice that for CVD and Other deaths,
the coefficient dg1 of the product term DgRx,
g ¼ 2, 3, is added to the coefficient b1 of Rx in
the exponential term.

Table 9.14 shows edited output obtained from
fitting the above LM model.

The first eight rows of output in this table are
identical to the corresponding eight rows of out-
put in the previously shown Table 9.1 obtained
from Method 1, which fits a separate model for
Cancer deaths only. This equivalence results
because the first eight rows of the LM output
correspond to the reduced version of the LM
model when D2 ¼ D3 ¼ 0, which identifies
Cancer as the event of interest.

However, the remaining 16 rows of LM output
are not identical to the corresponding 8 rows
of Table 9.2 (for CVD) and 8 rows of Table 9.3
(for Other). Note that the remaining 16 coeffi-
cients in the LM output identify the dgj co-
efficients in the LM model rather than the
sum (b1 þ dgj) required for computing the HR
when g ¼ 2 and 3.

LM SC Model for Byar Data

g ¼ 1, 2, 3

h	g t;Xð Þ ¼ h0g tð Þ
� exp b1RXþ b2Ageþ 
 
 
 þ b8SG½
þ d21D2Rxþ d22D2Ageþ 
 
 
 þ d28D2SG

þd31D3Rxþ d32D3Ageþ 
 
 
 þ d38D3SG�
1st row: predictors

Rx, Age, Wt, PF,. . ., SG
2nd row: products

D2Rx, D2Age, . . ., D2SG
3rd row: products

D3Rx, D2Age, . . ., D3SG
D2 ¼ CVD and D3 ¼ OTH are (0,1)
dummy variables that distinguish
the 3 event-types

HRCa(Rx ¼ 1 vs. Rx ¼ 0) ¼ exp[b1]
HRCVD(Rx ¼ 1 vs. Rx ¼ 0)

¼ exp[(b1 þ d21)]
HROTH(Rx ¼ 1 vs. Rx ¼ 0)

¼ exp[(b1 þ d31)]

Table 9.14. Edited Output for LMModel
(Interaction SC)-Byar Data

Var DF Coef
Std.
Err. p > |z|

Haz.
Ratio

Rx 1 �0.550 0.170 0.001 0.577
Age 1 0.005 0.142 0.970 1.005
Wt 1 0.187 0.138 0.173 1.206
PF 1 0.253 0.262 0.334 1.288
Hx 1 �0.094 0.179 0.599 0.910
HG 1 0.467 0.177 0.008 1.596
SZ 1 1.154 0.203 0.000 3.170
SG 1 1.343 0.202 0.000 3.830
RxCVD 1 0.905 0.244 0.000 2.471
AgeCVD 1 0.332 0.196 0.089 1.394
WtCVD 1 �0.146 0.203 0.472 0.864
PFCVD 1 0.222 0.377 0.556 1.248
HxCVD 1 1.236 0.259 0.000 3.441
HGCVD 1 �0.449 0.268 0.094 0.638
SZCVD 1 �1.375 0.417 0.001 0.253
SGCVD 1 �1.366 0.275 0.000 0.255
RxOth 1 �0.028 0.327 0.932 0.972
AgeOth 1 0.764 0.248 0.002 2.147
WtOth 1 0.344 0.265 0.194 1.411
PFOth 1 0.288 0.497 0.562 1.334
HxOth 1 0.117 0.337 0.727 1.125
HGOth 1 �0.111 0.345 0.748 0.895
SZOth 1 �0.439 0.470 0.350 0.645
SGOth 1 �1.797 0.360 0.000 0.166

log likelihood ¼ �1831.92
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From Table 9.14, the adjusted cHR for the effect
of Rx when the event-type is Cancer can be
read directly off the output as 0.577. Also, the
Wald statistic for testing H0: b1 ¼ 0 is highly
significant (P ¼ .001). The corresponding 95%
confidence interval for this HR has the limits
(0.413, 0.807).

These results are identical to those obtained for
the adjusted cHR, the Wald test, and interval
estimate obtained in Table 9.1 using Method 1
to assess the effect of Rx on survival for cancer
death.

Using Table 9.14 to obtain adjusted cHR for the
Rx effect when the event-type is CVD orOther,
we must exponentiate the sum ðb̂1 þ d̂g1Þ for
g ¼ 2 and 3, respectively.

These results are shown at the left, and they
are identical to those obtained in Tables 9.2
and 9.3 using Method 1.

Note, however, that using the LM model to
obtain Wald test statistics and 95% confidence
intervals for the HRs for CVD and Other, the
mathematical formulas (shown at left for the
Wald tests) require obtaining standard errors
of the sums ðb̂1 þ d̂g1Þ for g ¼ 2 and 3, whereas
the output in Table 9.14 gives only individual
standard errors of b̂1; d̂11 and d̂21.

SAS ans STATA provide special syntax to spec-
ify the computer code for such computations:
SAS’s PHREG allows a “Contrast” statement;
STATA allows a “lincom” command.

cHRCa Rx ¼ 1 vs. Rx ¼ 0ð Þ
¼ exp �0:550½ � ¼ 0:577

¼ 1=1:733ð Þ
Wald ChiSq ¼ (� .550/.171)2

¼ 10.345(P ¼ 0.001)

95% CI for exp[b1Ca]:
exp[-0.550 � 1.96(0.171)]
¼ (0.413, 0.807)

LM results for Cancer identical to
Method 1 results for Cancer

cHRCVD Rx ¼ 1 vs. Rx ¼ 0ð Þ
¼ exp b̂1 þ d̂11

� �

¼ exp �0:550þ 0:905ð Þ
¼ exp 0:355ð Þ ¼ 1:426

cHROTH Rx ¼ 1 vs. Rx ¼ 0ð Þ
¼ exp b̂1 þ d̂21

� �

¼ exp �0:550� 0:028ð Þ
¼ exp �0:578ð Þ ¼ 0:561

LM results for CVD and Other
identical to Method 1 results for
CVD and Other

Wald test statistics for CVD and
Other

WaldCVD ¼ b̂1 þ d̂11
SEb̂1þd̂21

" #2

WaldOTH ¼ b̂1 þ d̂11
SEb̂1þd̂21

" #2

Computer packages provide for
computation of the above formulas

SAS: Contrast statement

STATA: lincom command
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Nevertheless, there is an alternative version of
the LM model that avoids the need for special
syntax. This alternative formulation, which we
call the LMalt model, results in output that is
identical to the output from the separatemodels
(Method 1) approach for analyzing competing
risk data as given in Tables 9.1 through 9.3.

IX. Method 2a:
Alternative
Lunn–McNeil (LMalt)
Approach

The data layout required to fit the LMalt model
is the same as shown earlier in Table 9.12.
However, the variables listed in the columns
of this table, namely, the dummy variables D1,
D2,. . ., DC and the predictor variables X1, X2,. . .,
Xp, serve as basic variables that are trans-
formed into product terms that define the
LMalt model.

The primary difference in the two formulas
is that the first row of the exponential term in
the LMalt model contains product terms D1X1,
D1X2,. . ., D1Xp with coefficients denoted
d011,. . .,d01p whereas the first row in the LM
model contains the predictors X1, X2, . . ., Xp

without product terms and coefficients
denoted b1, . . ., bp.

The general form of the LMalt model is shown
at the left. We have used a superscript prime (0)
to distinguish the hazard model formula for
the LMalt model from the corresponding
formula for the LM model given earlier.

Alternative LM formulation
(LMalt model)

Output identical to Method 1
(Tables 9.1, 9.2, 9.3)

� Uses same data layout as
Table 9.12

� Column headings:
∘ Dummy variables
D1, D2,. . ., DC

∘ Predictor variables
X1, X2,. . ., Xp

� Above variables are
transformed into product
terms

1st row of LMalt model:
product terms

D1 X1, D1 X2,. . ., D1Xp

coefficients d011,. . .,d01p

1st row of LM model
predictors X1, X2, . . ., Xp

coefficients b1,. . ., bp

General Stratified Cox
LMalt Model

g ¼ 1,. . ., C

h0g t;Xð Þ ¼ h00gðtÞ
� exp d011D1X1 þ d012

�
D1X2 þ 
 
 
 þ d01pD1Xp

þ d021 D2X1 þ d022D2X2 þ 
 
 
 þ d02pD2Xp

þ d031D3X1 þ d032D3X2 þ 
 
 
 þ d03pD3Xp

þ 
 
 

þd0C1DCX1 þ d0C2DCX2 þ 
 
 
 þ d0CpDCXp

i
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Because the LMalt model and the LMmodel are
different hazard models, their estimated
regression coefficients will not be identical.
Nevertheless, when used on the same dataset,
the estimated HRs of interest and their
corresponding test statistics and interval esti-
mates are identical even though the formulas
used to compute these statistics are different
for the two models.

For g ¼ 1 (i.e., event-type 1), the LMalt model
simplifies to the expression shown at the left.
Note that because g ¼ 1, the values of the
dummy variables are D1 ¼ 1, and D2 ¼ D3 ¼
. . .¼ DC ¼ 0.

Thus, for g ¼ 1, if X1 is a (0,1) variable, the
other Xs are covariates, and there are no prod-
uct terms of the form XjX1 in the model, the
formula for the HR for the effect of X1 adjusted
for the covariates is exp[d011].

Recall that for the LM model, the correspon-
ding HR formula also involved the coefficient
of the X1 variable, denoted as b1.

For any g greater than 1, the general hazard
model simplifies to a hazard function formula
that contains only those product terms involv-
ing the subscript g, because Dg ¼ 1 and Dg0 ¼ 0
for g0 6¼ g.

Thus, for g > 1, if X1 is a (0,1) variable, the
other Xs are covariates, and there are no pro-
ducts Xj X1 in model, the formula for the HR
for the effect of X1 adjusted for the covariates is
exp½d0g1�.

Recall that for the LM model, the exponential
in the HR formula involved the sum (b1 þ dg1).

� LMalt and LM models are
different

� Estimated regression
coefficients will not be identical

� Estimated HRs, test statistics,
and interval estimates are
identical

� Computational formulas are
different

LMalt Hazard Model for
Event-Type 1

h01 t;Xð Þ ¼ h001ðtÞ
� exp d011X1 þ d012X2 þ 
 
 
 þ d01pXp

h i

D1 ¼ 1; D2 ¼ D3 ¼ 
 
 
 ¼ DC ¼ 0ð Þ
HRg¼1 X1 ¼ 1 vs. X1 ¼ 0ð Þ ¼ exp d011

� �
(no products Xj Xi in model)

LM HR ¼ exp[b1]

LMalt Hazard Model for
Event-Type g (> 1)

h01 t;Xð Þ ¼ h00gðtÞ
� exp d0g1X1 þ d0g2X2 þ 
 
 
 þ d0gpXp

h i

Dg ¼ 1 and Dg0 ¼ 0 for g’ 6¼ g
� �
HRg X1 ¼ 1 vs. X1 ¼ 0ð Þ ¼ exp d0g1

h i

(no products XjX1 in model)

LM HR ¼ exp[b1 þ dg1]
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Thus for g > 1, statistical inferences about HRs
using the LMalt model only require use of the
standard error for d̂0g1 that is directly provided
in the output.

In contrast, the LM model requires computing
the more complicated standard error of the
sum ðb̂1 þ d̂g1Þ.

We now illustrate the above general LMalt

model formation using the Byar data.

The stratified Cox (SC) LMalt model that incor-
porates the C ¼ 3 event-types is shown at the
left. The strata, denoted by g ¼ 1, 2, 3, identify
the three event-types, Cancer, CVD, and
Other.

Notice that in the exponential part of the
model, the first row contains product terms of
the dummy variable D1 (the CA indicator) with
each of the 8 predictors Rx, Age, Wt, PF, HX,
HG, SZ, SG. Recall that in the LM version of
this model, the first row contained main effects
of the predictors instead of product terms.

The second and third rows, as in the LMmodel,
contain product terms of the dummy variable
D2 (the CVD indicator) and D3 (the OTH
indicator), respectively, with each of the 8 -
predictors.

From the above model, it follows that the HR
formulas for the effects of Rx corresponding to
each event-type are of the form expðd0g1Þ, where
d0g1is the coefficient of the product term DgRx
in the LMalt model.

Statistical inferences (i.e., Wald
test, 95% CI)

LMaltmodel: need standard error for
d̂0g1 (directly provided by output)

LM model: standard error of
ðb̂1 þ d̂g1Þ. (more complicated
computation)

Next: Byar data example of LMalt

model

LMalt SC Model for Byar Data

g ¼ 1, 2, 3

h0g t,Xð Þ ¼ h00g(t)

� exp d011D1Rxþ 
 
 
 þ d018D1SG
�

þ d021D2Rxþ 
 
 
 þ d028D2SG

+ d031D3Rxþ 
 
 
 þ d038D3SG
�

D1 ¼ CA, D2 ¼ CVD, and D3 ¼OTH
are (0,1) dummy variables for the 3
event-types

1st row: products
D1Rx, D1Age, . . ., D1SG
(LM predictors, Rx, Age,. . ., SG)

2nd row: products
D2Rx, D2Age, . . ., D2SG

3rd row: products
D3Rx, D3Age, . . ., D3SG

HRCa Rx = 1 vs. Rx ¼ 0ð Þ ¼ exp d011
� �

HRCVD Rx = 1 vs. Rx ¼ 0ð Þ
¼ exp d021

� �
HROTH Rx ¼ 1 vs. Rx ¼ 0ð Þ

¼ exp d031
� �
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Consequently, Wald test statistics (shown at
the left) and confidence intervals for these
HRs use standard errors that are directly
obtained from the standard error column
from the output obtained for the LMalt model.

Thus, the LMalt model allows the user to per-
form statistical inference procedures using the
information directly provided in the computer
output, whereas the LM model requires addi-
tional computer code to carry out more com-
plicated computations.

Table 9.15 shows edited output obtained from
fitting the above LMalt model.

The first eight rows of output in this table are
identical to the eight rows of output in the
previously shown Table 9.1 obtained from
Method 1, which fits a separate model for
Cancer deaths only, treating CVD and Other
deaths as censored.

The next eight rows in the table are identical
to the eight rows of output in the previous
Table 9.2, which fits a separate model for
CVD deaths only, treating Cancer and Other
deaths as censored.

The last eight rows in the table are identical
to the eight rows of output in the previous
Table 9.3, which fits a separate model for
Other deaths only, treating Cancer and CVD
deaths as censored.

Thus, the output in Table 9.15 using the single
LMalt model gives identical results to what is
obtained from fitting 3 separate models in
Tables 9.1, 9.2, and 9.3.

Waldg ¼
d̂0g1
SEd̂0g1

" #2

g ¼ 1 (CA), 2 (CVD), 3 (OTH)

Statistical inference information

LMalt model: directly provided by
output

LMmodel: not directly provided by
output (requires additional com-
puter code)

Table 9.15. Edited Output for
SC LMalt Model—Byar Data

Var DF Coef
Std.
Err. p > |z|

Haz.
Ratio

RxCa 1 �0.550 0.170 0.001 0.577
AgeCa 1 0.005 0.142 0.970 1.005
WtCa 1 0.187 0.138 0.173 1.206
PFCa 1 0.253 0.262 0.334 1.288
HxCa 1 �0.094 0.179 0.599 0.910
HGCa 1 0.467 0.177 0.008 1.596
SZCa 1 1.154 0.203 0.000 3.170
SGCa 1 1.343 0.202 0.000 3.830

RxCVD 1 0.354 0.174 0.042 1.429
AgeCVD 1 0.337 0.134 0.012 1.401
WtCVD 1 0.041 0.150 0.783 1.042
PFCVD 1 0.475 0.270 0.079 1.608
HxCVD 1 1.141 0.187 0.000 3.131
HGCVD 1 0.018 0.202 0.929 1.018
SZCVD 1 �0.222 0.364 0.542 0.801
SGCVD 1 �0.023 0.186 0.900 0.977

RxOth 1 �0.578 0.279 0.038 0.561
AgeOth 1 0.770 0.204 0.000 2.159
WtOth 1 0.532 0.227 0.019 1.702
PFOth 1 0.541 0.422 0.200 1.718
HxOth 1 0.023 0.285 0.935 1.023
HGOth 1 0.357 0.296 0.228 1.428
SZOth 1 0.715 0.423 0.091 2.045
SGOth 1 �0.454 0.298 0.127 0.635

log likelihood ¼ � 1831.916

Table 9.15 (LMalt) output
identical to

Tables 9.1, 9.2, 9.3 (Method 1)
output combined

464 9. Competing Risks Survival Analysis



X. Method 1 (Separate
Models) versus
Method 2
(LM Approach)

The reader may have the following question at
this point: Why bother with the LM or LMalt

models as long as you can get the same results
from fitting three separate models using
Method 1? The answer is that the LM or LMalt

model formulation allows for performing
statistical inferences about various features of
the competing risk models that cannot be con-
veniently assessed when fitting three separate
models using Method 1.

We illustrate such “extra” inference-making
using the LM model previously described for
the Byar data example. This model is shown
again at the left. Equivalent inferences can be
made using the LMalt model (see Exercises at
end of this chapter).

One inference question to consider for the Byar
data is whether a no-interaction SC LM model
is more appropriate than the interaction SC
LM model defined above.

The no-interaction SC model is shown here at
the left.

This model assumes that the hazard ratio for
the effect of a single predictor (say, binary) Xi

adjusted for the other variables in the model is
the same for each event-type of interest.

For example, in the above no-interaction SC
LM model the hazard ratio for the effect of Rx
is exp[b1] for each g, where b1 is the coefficient
of Rx.

Why bother with LM or LMalt

models when you can simply fit
3 separate models?

Answer: Can perform statistical
inferences that cannot be done
when fitting 3 separate models

LM Model for Byar Data

g ¼ 1, 2, 3

h	g t;Xð Þ¼ h	0g tð Þ
�exp b1RXþb2Ageþ

 
þb8SG½
þd21D2Rxþd22D2Ageþ


þd28D2SG

þd31D3Rxþd32D3Ageþ

 
þd38D3SG�

Inference question: Byar data

No-interaction SC LM model
versus

interaction SC LM model

No-interaction SC model

g = 1, 2; 3

h	g t;Xð Þ ¼ h	0g tð Þ
� exp b1RXþ b2Ageþ 
 
 
 þ b8SG½ �

Assumes

HRCA Xið Þ ¼ HRCVD Xið Þ
¼ HROTH Xið Þ
� HR Xið Þ for anyXi variable

for example, Rx ¼ 0 vs Rx ¼ 1:

HRCA Rxð Þ ¼ HRCVD Rxð Þ
¼ HROTH Rxð Þ
¼ exp b1½ �
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To carry out the comparison of the interaction
with the no-interaction SC LMmodels, the null
hypothesis being tested is that the coefficients
of the 16 product terms (dgj) in the interaction
SC model are equal to zero.

This null hypothesis is conveniently tested
using the LM model with a likelihood ratio
test statistic obtained by subtracting �2 log L
statistics from the twomodels being compared.
The degrees of freedom being tested is 16, the
number of dgj coefficients being set equal to
zero under H0.

Table 9.16 gives the output resulting from the
no-interaction SC LMmodel for the Byar data-
set. In this table, there is one coefficient
corresponding to each of the eight predictors
in the model, as should be the case for a no-
interaction SC model. Nevertheless, baseline
hazard functions h	0g tð Þ are allowed to be differ-
ent for different g even if the coefficients are
the same for different g.

From Table 9.16, we find that the log-likelihood
statistic for the reduced (no-interaction SC)
model is �1892.091. From Table 9.14 (or 9.15),
the log-likelihood statistic for the full (interac-
tion SC) model is�1831.916.

The likelihood ratio test statistic (LR) is then
calculated to be 120.35, as shown at the left.
This statistic has an approximate chi-square dis-
tribution with 16 degrees of freedom under H0.

The P-value is less than .001, which indicates a
highly significant test result, thus supporting
use of the full-interaction SC model.

H0: all dgj ¼ 0,
g ¼ 2, 3; j ¼ 1, 2, . . ., 8

where dgj is coefficient of DgXj in
the interaction SC LM model

Likelihood Ratio Test

LR ¼� 2 log LR � �2 log LFð Þ
approx w216 under H0

R ¼ no interaction SC reducedð Þ
model

F ¼ interaction SC fullð Þ model

Table 9.16. Edited Output – No-
Interaction SC LM Model–Byar Data

Var DF Coef
Std.
Err. p > |z|

Haz.
Ratio

Rx 1 �0.185 0.110 0.092 0.831
Age 1 0.287 0.087 0.001 1.332
Wt 1 0.198 0.093 0.032 1.219
PF 1 0.402 0.170 0.018 1.495
Hx 1 0.437 0.112 0.000 1.548
HG 1 0.292 0.120 0.015 1.339
SZ 1 0.672 0.159 0.000 1.958
SG 1 0.399 0.115 0.001 1.491

log likelihood ¼ �1892.091

Table 9.16: Log likelihoodR

¼ �1892.091
Table 9.14: Log likelihoodF

¼ �1831.916

LR ¼ �2 log LR � �2 log LFð Þ
¼ �2 �1892:091ð Þ

� �2 �1831:916ð Þð Þ
¼ 120:35 approx w216 under H0

P < 0.001ð Þ

Reject H0: interaction SC model
more appropriate than
no-interaction SC model
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For the Byar dataset, the decision to reject the
no-interaction SC model makes sense when
considering that two of the competing risks
are Cancer deaths and CVD deaths. Because
Cancer and CVD are clinically very different
diseases, one would expect the effect of any of
the predictors, particularly Rx, on time to failure
to bedifferent for these different disease entities.

Suppose, however, the competing risks for a
different study had been, say, two stages of
breast cancer. Then it is plausible that the
effect from comparing two treatment regimens
might be the same for each stage. That is, a no-
interaction SC LM model may be (clinically)
reasonable depending on the (clinical) similar-
ity between competing risks.

Returning again to the Byar data example,
another variation of the LM model is shown
at the left and denoted LMU. This is a Cox PH
model applied to the augmented data of Table
9.12 that is not stratified on the competing
risks (i.e., there is no subscript g in the model
definition). We have used a superscript bullet
(�) to distinguish the LMU model from the LM
and LMalt models.

The LMU model includes the two event-type
dummy variables CVD and OTH in the
model, rather than stratifying on these vari-
ables. As for the LM model, the fit of the LMU

model is based on the augmented dataset given
in Table 9.12.

Because the LMU model is an unstratified Cox
PH model, we would want to use the methods
of Chapter 4 to assess whether the PH assump-
tion is satisfied for the CVD andOTH variables
(as well as the other variables). If the PH
assumption is found wanting, then the (strati-
fied Cox) LM model should be used instead.

Cancer and CVD very different
clinically

+
HRCa(Rx ¼ 1 vs. 0)

6¼ HRCVD(Rx ¼ 1 vs. 0)

DIFFERENT STUDY EXAMPLE

Competing risks: Stage 1 vs. Stage 2
Breast Cancer

+
HRstg1 (Rx ¼ 0 vs. 1)
¼ HRstg2 (Rx ¼ 0 vs. 1)

+
No-interaction SC Cox reasonable
depending on similarity of competing
risks

Unstratified LM model (LMU):

h	 t;Xð Þ ¼ h	0 tð Þ
� exp g1CVDþ g2OTH½

þ b�1Rxþ b�2Ageþ 
 
 
 þ b�8SG
þ d�21D2Rxþ d�22D2Ageþ 
 
 
 þ d�28D2SG

þ d�31D3Rxþ d�32D3Ageþ 
 
 
 þ d�38D3SG
�

LMU model: CVD and OTH
included in model

LM model: CVD and OTH not
included in model

(Both LMU and LM models use
augmented dataset)

LMU model: need to check PH
assumption (Chapter 4)

PH assumption not satisfied
+

Use LM instead of LMU model
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If the PH assumption is satisfied, hazard ratios
for the effects of various predictors in the LMU

model can be determined using the standard
exponential formula described in Chapter 3 for
the Cox PH model.

In particular, to obtain the hazard ratio for the
effect of Rx on Cancer survival, we would spec-
ify CVD ¼ OTH ¼ 0 in the model and then
exponentiate the coefficient of the Rx variable
in the model, as shown at the left.

Similar HR expressions (but involving g1 and
g2 also) are obtained for the effect of Rx when
CVD deaths and Other deaths are the event-
types of interest.

At this point, we omit further description of
results from fitting the LMU model to the
Byar dataset. The essential point here is that
the use of a single LM-type model with aug-
mented data allows greater flexibility for the
analysis than can be achieved when using
Method 1 to fit separate hazard models for
each event-type of interest.

XI. Summary

This chapter has considered survival data in
which each subject can experience only one of
several different types of events over follow-up.
The different events are called competing risks.

Wehavedescribedhowtomodel competing risks
survival data using a Cox PH model. The typical
approach for analyzing competing risks data is
to performa survival analysis for each event-type
separately, where the other (competing) event-
types are treated as censored categories.

PH assumption satisfied
+

Determine HRs using exponential
formula (Chapter 3)

Cancer survival (CVD¼OTH¼ 0):

HRCa Rx ¼ 1 vs. Rx ¼ 0ð Þ ¼ exp b�1
� �

CVD survival (CVD ¼ 1, OTH ¼ 0):

HRCVD Rx ¼ 1 vs. Rx ¼ 0ð Þ
¼ exp g1þb�1 þ d�21

� �
Other survival (CVD¼ 0,OTH¼ 1):

HROTH Rx ¼ 1 vs. Rx ¼ 0ð Þ
¼ exp g2þb�1 þ d�31

� �

Essential point

Use of single LM-type model offers
greater flexibility for the analysis
than allowed using Method 1

Competing Risks

Each subject can experience only
one of several different types of
events over follow-up

Typical approach

� Cox PH model
� Separate model for each event-

type
� Other (competing) event-types

treated as censored
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There are two primary drawbacks to the above
method. One problem is the requirement that
competing risks be independent. This assump-
tion will not be satisfied if those subjects cen-
sored from competing risks do not have the
same risk for failing as subjects who are not
censored from the cause-specific event of inter-
est at that same time.

A second drawback is that the estimated
product-limit survival curve obtained from fit-
ting separate Cox models for each event-type
has questionable interpretation when there are
competing risks.

Regarding the independence assumption,
several alternative strategies for addressing
this issue are described, although no single
strategy is always best.

A popular strategy is a sensitivity analysis,
which allows the estimation of parameters by
considering worst-case violations of the inde-
pendence assumption. For example, subjects
censored from competing risks might be trea-
ted in the analysis as either all being event-free
or all experiencing the event of interest.

Unfortunately, the independence assumption
is not easily verifiable. Consequently, the typi-
cal competing risks analysis assumes that the
independence assumption is satisfied even if
this is not the case.

To avoid a questionable interpretation of the
KM survival curve, the primary alternative to
using KM is the Cumulative Incidence Curve
(CIC), which estimates themarginal probabil-
ity of an event. Marginal probabilities are rele-
vant for assessing treatment utility whether
competing risks are independent.

Drawbacks

1. Require independent competing
risks that is, censored subjects
have same risk as non-censored
subjects in risk set

2. Product-limit (e.g., KM) curve
has questionable interpretation

Several alternative strategies
regarding independence assump-
tion:No single strategy is always best

Sensitivity analysis: worst-case vio-
lations of independence assumption

For example, subjects censored
from competing risks treated in
analysis as if

� All event-free
� All experience event of interest
� Independence assumption not

easily verifiable
� Typical analysis assumes

independence assumption is
satisfied

CIC Alternative to KM

� Derived from cause-specific
hazard function

� Estimates marginal
probability when competing
risks are present

� Does not require independence
assumption

� Useful to assess treatment
utility in cost-effectiveness
analyses

Presentation: XI. Summary 469



The formula for the calculating theCIC is shown
at the left. The hc(tf) in the formula is the
estimated hazard at survival time tf for the
event-type (c) of interest. The term S(tf�1)
denotes the overall survival probability of previ-
ous time (tf�1),where “overall survival” indicates
a subject that survives all competing events.

As the formula indicates, the CIC is not
estimated using a product-limit formulation.
Also, its computation is not included in main-
stream commercially available standard statisti-
cal packages.

If a proportional hazard model is used to
obtain hazard ratio estimates for individual
competing risks as an intermediate step in the
computation of a CIC, the assumption of inde-
pendent competing risks is still required.

Recent work of Fine and Gray (1999) provides
methodology for modeling theCICwith covari-
ates using a proportional hazards assumption.
Software is available for this method (Gebski,
1997, Tai et al., 2001), although not in standard
commercial packages.

An alternative to the CIC is the Conditional
Probability Curve (CPC). For risk type c,
CPCc is the probability of experiencing an
event c by time t, given that an individual has
not experienced any of the other competing risks
by time t.

The CPC can be computed from the CIC
through the formula CPCc ¼ CICc/(1 � CICc0),
where CICc0 is the cumulative incidence of
failure from risks other than risk c (i.e., all
other risks considered together).

CIC t fð Þ
� � ¼ Xf

f0¼1

Îc tf0ð Þ

¼
Xf

f0¼1

Ŝ tf0�1ð Þĥc tf0ð Þ

ĥc(tf)¼ estimated hazard at ordered
failure time tf for the event-type (c)

S(tf�1) ¼ overall survival probabil-
ity of previous time (tf�1)

CIC

� Does not use product limit
formulation

� Not included in mainstream
commercially available
statistical packages (e.g., SAS,
STATA, SPSS, R)

PH model used to obtain CIC
+

Independence of competing risks
required

Modeling CICwith covariates using
PH model: Fine and Gray (1999)

Software available (Gebski, 1997)
Fine and Gray model analogous to
Cox PH model

Alternative to CIC

CPCc ¼ Pr(Tc � t |T � t)

where Tc ¼ time until event c
occurs

T ¼ time until any
competing risk event
occurs

CPCc ¼ CICc/(1 � CICc0)

where CICc0 ¼ CIC from risks other
than c
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Pepe–Mori provide a test to compare two
CPC curves. Lunn (1998) extended this test to
g-groups and allows for strata.

We have also described an alternative approach,
called the Lunn–McNeil (LM) approach, for
analyzing competing risks data. The LM
approach allows only one model to be fit rather
than separate models for each event-type
(Method 1). This method is equivalent to using
Method 1. The LM model also allows the flexi-
bility to perform statistical inferences to deter-
mine whether a simpler version of an initial LM
model is more appropriate.

To carry out the LM approach, the data layout
must be augmented. If there are C competing
risks, the original data must be duplicated C
times, one row for each failure type.

Touse theLM approachwith augmented data to
obtain identical results from fitting separate
models (Method 1), an interaction version of
a stratified Cox (SC) PH model is required.
Ageneral form for thismodel is shownat the left.

The LM model can be used to obtain Wald test
statistics and 95% confidence intervals for
HRs separately for each competing risk. These
statistics require obtaining standard errors of
the sums of estimated regression coefficients
(e.g., b̂1 þ d̂g1). Such computations require
special syntax available in standard computer
packages such as SAS, STATA, SPSS, and R.

Tests to compare CPCs:

Pepe and Mori (1993) – 2 curves
Lunn (1998) – g curves

Method 2: LM Approach

� Uses a single Cox (PH) model
� Gives identical results as

obtained from Method 1
� Allows flexibility to perform

statistical inferences not
available from Method 1

Augmented Data for ith Subject at Time t
Using LM Approach

Subj Stime Status D1 D2 D3. . .DC X1. . .Xp

i ti e1 1 0 0 . . . 0 Xi1 . . . Xip

i ti e2 0 1 0 . . . 0 Xi1 . . . Xip

i ti e3 0 0 1 . . . 0 Xi1 . . . Xip

i ti eC 0 0 0 . . . 1 Xi1 . . . Xip

g ¼ 1, 2, . . ., C

h	g t;Xð Þ ¼ h	0g tð Þ
� exp b1X1 þ b2X2 þ 
 
 
 þ bpXp

h

þ d21D2X1 þ d22D2X2 þ 
 
 
 þ d2pD2Xp

þ d31D3X1 þ d32D3X2 þ 
 
 
 þ d3pD3Xp

þ 
 
 

þdC1DCX1 þ dC2DCX2 þ 
 
 
 þ dCpDCXp

�

LM model: need standard error of

b̂1 þ d̂g1
� �

(special syntax required for com-
putation)
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Nevertheless, there is an alternative formation
of the LM model that avoids the need for spe-
cial syntax. This alternative formulation, called
the LMalt model, yields output that is identical
to the output from the separate models
(Method 1) approach for analyzing competing
risk data.

The primary difference in the two formulas is
that the first row of the exponential term in the
LMalt model contains product terms D1X1,
D1X2, . . ., D1Xp1 with coefficients denoted
d011; . . . ; d01p whereas the first row in the LM
model contains the predictors X1, X2, . . ., Xp

without product terms and coefficients
denoted b1, . . ., bp.

Using the LMalt model, Wald test statistics
(shown at the left) and confidence intervals
use standard errors that are directly obtained
from the standard error column from the out-
put obtained for the LMalt model.

Thus, the LMalt model allows the user to per-
form statistical inference procedures using the
information directly provided in the computer
output, whereas the LM model requires addi-
tional computer code to carry out more com-
plicated computations.

An advantage of using either the LM or LMalt

approach instead of fitting separate models
(Method 1) is the flexibility to perform statisti-
cal inferences that consider simpler versions of
an interaction SC LM model.

Alternative LM formulation: LMalt

model

LMalt yields output identical to
Method 1

1st row of LMalt model
+

Product terms D1X1, D1X2, . . .,
D1Xp Coefficients d011; . . . ; d01p

1st row of LM model
+

Predictors X1, X2, . . ., Xp

Coefficients b1, . . ., bp

LMalt model: Waldg ¼ d0g1
SEd̂0g1

" #2

directly obtained from output

Statistical inference information

LMalt model: directly provided by
output

LMmodel: not directly provided by
output (requires additional com-
puter code)

Advantage of LM (Method 2) over
method 1:
LM offers flexibility for statistical
inferences to consider simpler
models
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For example, one inference question to consider
is whether a no-interaction SC LM model is
more appropriate than an interaction SC
model. A different question is whether an
unstratified LM model is more appropriate
than a stratified LM model. These questions
can be conveniently addressed using a single
(i.e., LM) model instead of fitting separate mod-
els (Method 1).

Overall, in this chapter, we have shown that
competing risks data can be analyzed using
standard computer packages provided it can be
assumed that competing risks are independent.

For example,
No-interaction SC LM model

versus
interaction SC LM model

Unstratified LM model
versus

SC LM model

Overall,

� Can use standard computer
packages

� Independence assumption
required
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Detailed
Outline

I. Overview (page 430)

A. Focus: competing risks – analysis of survival
data in which each subject can experience only
one of different types of events over follow-up.

B. Analysis using Cox PH model.

C. Drawbacks to typical approach that uses Cox
model.

D. Alternative approaches for analysis.

II. Examples of Competing Risks Data
(pages 430–432)

A. Dying from either lung cancer or stroke.

1. Assess whether lung cancer death rate in
exposed” persons is different from lung can-
cer death rate in “unexposed,” allowing for
competing risks.

2. Also, compare lung cancer with stroke death
rates controlling for predictors.

B. Advanced cancer patients either dying from
surgery or getting hospital infection.

1. If focus on hospital infection failure, then
death from surgery reduces burden of hos-
pital infection control required.

C. Soldiers dying in accident or in combat.

1. Focus on combat deaths.

2. If entire company dies from accident on way
to combat, then KM survival probability for
combat death is undefined.

3. Example illustrates that interpretation of
KM curve may be questionable when there
are competing risks.

D. Limb sarcoma patients developing local recur-
rence, lung metastasis, or other metastasis.

1. None of failure types involves death, so
recurrent events are possible.

2. Can avoid problem of recurrent events if
focus only on time to first failure.

3. Analysis of recurrent events and competing
risks in same data not addressed.

III. Byar Data (pages 433–434)

A. Randomized clinical trial comparing treat-
ments for prostate cancer.

B. Three competing risks: deaths from prostate
cancer; CVD, or other causes.
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C. Covariates other than treatment are Age,
Weight (Wt), Performance Status (PF), History
of CVD (Hx), Hemoglobin (Hg), Lesion size
(SZ), and Gleeson score (SG).

D. Competing risks considered independent, for
example, death from CVD independent of
death from death from cancer.

IV. Method 1: Separate Models for Different Event
Types (pages 434–437)

A. Use Cox (PH) model to estimate separate
hazards and HRs for each failure type, where
other competing risks are treated as censored in
addition to usual reasons for censoring: loss to
follow-up, withdrawal from study, or end of
study.

B. Cause-specific hazard function:
hc(t) ¼ limDt!0P(t � Tc < t þ Dt|Tc � t)/Dt
where Tc ¼ time-to-failure from event c, c ¼ 1,
2, . . ., C (# of event types).

C. Cox PH cause-specific model (event-type c):

hc t;Xð Þ ¼ h0c tð Þ exp
Xp
i¼1

bicXi

" #

where c ¼ 1,. . ., C, and bic allows effect of Xi to
differ by event-type.

D. Byar data example: Cancer, CVD, Other Deaths
are C ¼ 3 competing risks.

1. Cause-specific (no-interaction) model for
Cancer:

hCa t;Xð Þ ¼ h0Ca tð Þ exp b1CaRxþ b2CaAge½
þ b3CaWtþ b4CaPFþ b5CaHx

þ b6CaHGþ b7CaSZþ b8CaSG�
where CVD andOther deaths treated as cen-
sored observations

HRCa(RX ¼ 1 vs. RX ¼ 0) ¼ exp[b1Ca]

2. Separate cause-specific (no-interaction)
models for CVD and Other.

3. Edited output presented for each cause-spe-
cific model:

a. Cause-specific Cancer results for RX
(with CVD and Other censored):

cHRCa RX¼ 1 vs. Rx¼ 0ð Þ¼ 0:575 P¼ 0:001ð Þ
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b. Cause-specific CVD results for RX (with
Cancer and Other censored):

cHRCVD RX¼ 1 vs. Rx¼ 0ð Þ¼ 1:429 P¼ 0:040ð Þ
c. Cause-specific Other results for RX

(with Cancer and CVD censored):

cHROTH RX¼ 1 vs. Rx¼ 0ð Þ¼ 0:560 P¼ 0:038ð Þ
V. The Independence Assumption (pages 437–443)

A. Independent censoring: h(t) for censored sub-
jects at time t is the same as for non-censored
subjects in the same subgroup at time t

1. Typical (chapter 1) context: no competing
risks;

2. Informative censoring can lead to bias
results.

B. (Independent) censoringwith competing risks.
Censored subjects in the risk set at time t with a
given set of covariates have the same failure rate
as non-censored subjects in the risk set at time
t with the same set of covariates regardless of
whether the reason for censoring is a competing
risk, withdrawal from study, or loss to follow-up.

1. Non-independent censoring: Subjects in the
risk set at time t who are censored from a
competing risk do not have the same failure
rate as non-censored subjects in the risk set
at time t.

2. Synonym:Competingrisksare independent.

C. Assessing the independence assumption.

1. No method available to directly assess the
independence assumption nor guarantee
unbiased estimates if independence
assumption is violated.

2. Consequently, the typical analysis of com-
peting risks assumes that the independence
assumption is satisfied, even if not.

3. Strategies for considering independence
assumption

a. Decide that assumption holds on clini-
cal/biological/other grounds:

b. Include in your model variables that are
common risk factors for competing
risks.
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c. Use a frailty model containing a random
effect that accounts for competing risks.

d. Perform a sensitivity analysis by consid-
ering worst-case violations of indepen-
dence assumption.

e. All of above strategies rely on assump-
tions that cannot be verified from
observed data.

4. Example of sensitivity analysis using Byar
data.
a. Treat all subjects that die of competing

risks CVD and Other as Cancer deaths.
b. Treat all subjects that die of competing

risks CVD and Other as surviving as long
as the largest survival time in the study.

c. Results suggest that if competing risks are
not independent, then conclusions about
the effect of Rx could be very different.

d. Alternative sensitivity approach: ran-
domly select a subset (e.g., 50%) of sub-
jects who have CVD or Other deaths and
assume everyone in subset dies of Cancer.

VI. Cumulative Incidence Curves (CIC)
(pages 444–453)

A. Hypothetical study: n ¼ 100 subjects, all sub-
jects with prostate cancer

Survt (months) # Died Cause

3 99 CVD
5 1 Cancer

Study goal: cause-specific Cancer survival
Censored: CVD deaths
KMCa: SCa(t ¼ 5) ¼ 0 and RiskCa(T � 5) ¼ 1

B. How many of 99 deaths from CVD would have
died from Cancer if not dying from CVD?
1. No answer is possible because those with

CVD deaths cannot be observed further.
2. Sensitivity analysis A: 99 CVD deaths die of

Cancer at t ¼ 5.
a. KMCa: SCa(t¼ 5)¼ 0 andRiskCa(T� 5)¼ 1

because KM assumes independent cen-
soring; that is, those censored at t ¼ 3
were as likely to die from cancer at t ¼ 5
as those who were in the risk set at t ¼ 5.

b. Same KM result as obtained for actual
data.
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3. Sensitivity analysis B: 99 CVD deaths
survive past t ¼ 5.
a. KMCa: SCa(t ¼ 5) ¼ 0.99 and

RiskCa (T� 5) ¼ 0.01.
b. Different KM result than actual data.
c. Can be derived directly from actual data

as a marginal probability.
4. Main point: KM survival curve may not be

very informative.
C. Cumulative Incidence Curve (CIC): alternative

to KM for competing risks.
1. Derived fromcause-specific hazard function.
2. Estimates marginal probability.
3. Does not require independence assumption.
4. Has a meaningful interpretation in terms

of treatment utility.
5. CIC formula:

CICðtfÞ ¼
Xf

f0¼1

Îc tf0ð Þ ¼
Xf

f0¼1

Ŝ tf0�1ð Þĥc tf0ð Þ

6. Calculation of CIC for another hypothetical
dataset.

7. Tests have been developed (Pepe and Mori,
1992) for comparing the equality of CICs
for two or more groups: analogous to log
rank test.

8. When a PH model is used to obtain hazard
ratio estimates in the computation of a
CIC, the independence of competing risks
is required.

9. Fine and Gray (1999) provide methodology
for modeling the CIC (also called subdis-
tribution function) with covariates using
a proportional hazards assumption: analo-
gous to fitting Cox PH model.

10. Example of Fine andGray output compared
with Cox PH output for Byar data.

VII. Conditional Probability Curves (CPC)
(pages 453–455)

A. CPCc ¼ Pr(Tc � t|T � t) where Tc ¼ time until
event c occurs, T ¼ time until any competing
risk event occurs.

B. Formula in termsofCIC:CPCc¼CICc/(1�CICc0)
where CICc0 ¼ CIC from risks other than c.

C. Graphs of CPCs can be derived from graphs of
CICs.

D. Tests to compare CPCs: Pepe and Mori (1993) –
2 curves; Lunn (1998) – g curves.
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VIII. Method 2—The Lunn-McNeil (LM) Approach
(pages 455–461)
A. Allows only one Cox PH model to be fit rather

than fitting separate modes for each event type
(Method 1).

B. LM uses an augmented data layout.
1. for ith subject at time ti, layout has C rows of

data, where C ¼ # event-types.
2. Dummy variables D1, D2,. . ., DC are created

to distinguish the C event-types.
3. The Status variable, ec, c ¼ 1,. . ., C, equals 1

for event-type c and 0 otherwise.
4. Predictors are denoted by X1,. . ., Xp.
5. Example of data layout for Byar dataset.

C. General form of LM model (interaction SC
model).

h	g t;Xð Þ
g¼1;2;...;C

¼ h	0gðtÞexp b1X1 þ b2X2 þ 
 
 
 þ bpXp

h

þ d21D2X1 þ d22D2X2 þ 
 
 
 þ d2pD2Xp

þ d31D3X1 þ d32D3X2 þ 
 
 
 þ d3pD3Xp

þ 
 
 

þ dC1DCX1 þ dC2DCX2 þ 
 
 
 þ dCpDCXp

�
1. LM model for event-type g ¼ 1:

a. h	1 t,Xð Þ ¼ h	01 tð Þ
� exp b1X1 þ b2X2 þ 
 
 
 þ bpXp

h i
b. D2 ¼ D3 ¼ . . . ¼ DC ¼ 0

c. HRg¼1(X1 ¼ 1 vs. X1 ¼ 0) ¼ exp[b1]
2. LM model for event-type g (> 1):

a. h	g t,Xð Þ ¼ h	0g tð Þ
� exp b1 þ dg1

� �
X1 þ b2 þ dg2

� �
X2

�
þ 
 
 
 þ bp þ dgp

� �
Xp

i
b. HRg(X1 ¼ 1 vs. X1 ¼ 0 ¼ exp[(b1 þ dg1)]

D. LM model for Byar data.

1. h	g t;Xð Þ ¼ h	0gðtÞ
� exp b1 Rx + b2Ageþ 
 
 
 þ b8SG½
þ d21D2Rxþ d22D2Ageþ 
 
 
 þ d28D2SG

þd31D3Rxþ d32D3Ageþ 
 
 
 þ d38D3SG�
g ¼ 1; 2; 3

2. D2 ¼ CVD and D3 ¼ OTH are (0,1) dummy
variables for 3 event-types.
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3. HRCa(Rx ¼ 1 vs. Rx ¼ 0) ¼ exp[b1]
HRCVD(Rx ¼ 1 vs. Rx ¼ 0) ¼ exp[b1 þ d21]
HROTH(Rx ¼ 1 vs. Rx ¼ 0) ¼ exp[b1 þ d31]

4. Mathematical formulas for Wald tests and
confidence intervals require standard errors
for sums b̂1 þ d̂g1

� �
for g ¼ 2 and 3; requires

special syntax for computer.

5. Output provided and compared to output
from Method 1.

IX. Method 2a: Alternative Lunn–McNeil (LMalt)
Approach (pages 461–464)

A. An alternative LM formulation that gives iden-
tical output to that obtained from Method 1
(separate models approach).

B. Same data layout as for LM model, but only
product terms in LMalt model.

C. General form of LMalt (interaction SC) model:

g ¼ 1; . . . ;C

h0g t,Xð Þ ¼ h00g tð Þ
� exp d011D1X1 þ d012D1X2 þ 
 
 
 þ d01pD1Xp

�
þ d021D2X1 þ d022D2X2 þ 
 
 
 þ d02pD2Xp

þ 
 
 

þ d0C1DCX1 þ d0C2DCX2 þ 
 
 
 þ d0CpD2Xp

�
D. Hazard ratio formula involves only coefficients

of product terms for all g:

HRg X1 ¼ 1 vs. X1 ¼ 0ð Þ ¼ exp d0g1
� �

; g ¼ 1, 2, 3

a. Statistical inference information directly
provided by LMalt output.

E. Example of output for LMalt model using Byar
data.

X. Method 1 (Separate Models) versus
Method 2 (LM Approach) (pages 465–468)

A. LM andLMaltmodels allow flexibility to perform
statistical inferences about features of competing
risks model not conveniently available using
separate models (Method 1) approach.

B. LM and LMalt models can assess whether a no-
interaction SC model is more appropriate than
the initial interaction SC LM model.
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C. Example of comparison of no-interaction with
interaction SC model using Byar data.

D. LM and LMalt models can assess whether an
unstratified LM model (called LMU) is more
appropriate than a stratified LM model.

E. Example of LMU model involving Byar data.

XI. Summary (pages 468–473)

A. Competing risks survival data can be analyzed
using Cox PH models and standard computer
packages.

B. There are two alternative methods that use a
Cox PH model formulation.
1. Fit separate models for each cause-specific

event type, treating the remaining event
types as censored.

2. Use the Lunn–McNeil (LM) approach to fit
a single model that incorporates the analysis
for each cause-specific event.

C. Each of the above approaches requires that
competing risks be independent (i.e., indepen-
dent censoring).

D. Without the independence assumption, methods
for competing risks analysis are unavailable.

E. The Cumulative Incidence Curve (CIC) or the
Conditional Probability Curve (CPC) are
alternatives to the KM curve, when use of a
KM curve has questionable interpretation.

Practice
Exercises

Answer questions 1 to 15 as true or false (circle T or F).

T F 1. A competing risk is an event-type (i.e., failure
status) that can occur simultaneously with
another event of interest on the same subject.

T F 2. An example of competing risks survival data is
a study in which patients receiving radiother-
apy for head and neck cancer may either die
from their cancer or from some other cause of
death.

T F 3. if all competing risks in a given study are dif-
ferent causes of death, then it is possible to
have both competing risks and recurrent
events in the same study.
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T F 4. Suppose patients with advanced-stage cancer
may die after surgery before their hospital stay
is long enough to get a hospital infection. then
such deaths from surgery reduce the hospital’s
burden of infection control.

T F 5. The typical approach for analyzing competing
risks using a Cox PH model involves fitting
separate models for each competing risk ignor-
ing the other competing risks.

T F 6. Suppose that a cause-specific risk of interest is
development of lung metastasis, and a compet-
ing risk is local recurrence of a lung tumor. Then
a patient who develops a local recurrence is
treated as a failure in a competing risk analysis.

T F 7. When there are no competing risks, then any
study subject in the risk set at a given time has
the same risk for failing as any other subject in
the risk set with the same values for covariate
predictors at time t.

T F 8. If, when analyzing competing risks survival
data, it is assumed that censoring is indepen-
dent, then a subject in the risk set at time t is as
likely to fail from any competing risk as to be
lost to follow-up.

T F 9. When a sensitivity analysis indicates that a
worst-case scenario gives meaningfully differ-
ent results from an analysis that assumes inde-
pendence of competing risks, then there is
evidence that the independence assumption is
violated.

T F 10. The typical competing risk analysis assumes
that competing risks are independent even if
this assumption is not true.

T F 11. The Cumulative Incidence Curve (CIC) pro-
vides risk estimates for the occurrence of a
cause-specific event in the presence of compet-
ing risks.

T F 12. CIC ¼ 1 � KM, where KM denotes the Kaplan–
Meier curve.

T F 13. A CIC for a cause-specific event that ignores
the control of covariates does not require the
assumption of independent competing risks.

T F 14. A Cumulative Probability Curve (CPC) gives
the probability of experiencing an event c by
time t, given that an individual has experienced
any of the other competing risks by time t.
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T F 15. If CICc ¼ .4, then CPC ¼ .4/.6 ¼ .667.
T F 16. The Lunn–McNeil (LM) approach fits a single

stratified Cox model using an augmented data-
set to obtain the same results as obtained by
fitting separate Cox models for each cause-
specific competing risk.

T F 17. An advantage of the Lunn–McNeil (LM)
approach over the approach that fits separate
Cox models is that the LM approach allows for
testing whether a no-interaction SC model
might be preferable to an interaction SC
model.

T F 18. Given the LM model stratified on two cause-
specific events, Cancer and CVD:

h	g t,Xð Þ ¼ h	0g tð Þ exp b1Rxþ b2Age½
þ d1 D� Rxð Þ þ d2 D� Ageð Þ�;

g ¼ 1; 2 where

D ¼ 0 if Ca and ¼ 1 if CVD
then

HRCVD(Rx ¼ 1 vs. Rx ¼ 0) ¼ exp[b1 þ d1]
T F 19. Given the LMalt model for two cause-specific

events, Cancer and CVD:

h0g t,Xð Þ ¼ h00g tð Þ � exp d011D1Rxþ d012D1Age½
þ d021D2Rxþ d022D2Age�;

g ¼ 1; 2 where

D1 ¼ 1 if Ca or 0 if CVD, and
D2 ¼ 0 if Ca or 1 if CVD,
then

HRCVD(Rx ¼ 1 vs. Rx ¼ 0Þ ¼ exp½d021�
T F 20. The LMU model that would result if the LM

model of Question 18 were changed to an
unstratified Cox PH model can be written as
follows.

h� t,Xð Þ ¼ h�0 tð Þ exp b�1Rxþ b�2Ageþ d�21 D� Rxð Þ�
þ d�22 D� Ageð Þ�
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Consider a hypothetical study of the effect of a bone
marrow transplant for leukemia on leukemia-free survival,
where transplant failures can be of one of two types:
relapse of leukemia and nonrelapse death (without prior
relapse of leukemia). Suppose that in hospital A, 100
patients undergo such a transplant and that within the
first 4 years post-transplant, 60 die without relapse by
year 2 and 20 relapse during year 4. Suppose that in hospi-
tal B, 100 patients undergo such a transplant but post-
transplant, there are 20 non-relapse deaths by year 1, 15
relapses during year 2, 40 non-relapse deaths between
years 3 and 4, and 5 relapses during year 4.
21. What are the competing risks in this study?

22. What is the proportion of initial patients in hospitals A
and B, respectively, that have leukemia relapse by 4
years?

The following tables provide the Kaplan–Meier curves for
relapse of leukemia for each study.

23. How have both tables treated the competing risk for
nonrelapse death in the calculation of the KM prob-
abilities?

24. Why are the KM probabilities different at 4 years for
each hospital?

Hospital B

tj nj mj qj S(tj)

0 100 0 20 1
1 80 0 0 1
2 80 15 0 0.8125
3 65 0 40 0.8125
4 25 5 20 0.65

Hospital A

tj nj mj qj S(tj)

0 100 0 60 1
2 40 0 0 1
4 40 20 20 .5
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25. Compute the CIC curves for each hospital using the
following tables.

26. Why are the CIC probabilities the same at 4 years?

Consider a hypothetical study to assess the effect of a new
hospital infection control strategy for patients who
undergo heart transplant surgery in a given hospital. The
exposure variable of interest is a binary variable Group
(G): G ¼ 0 for those patients receiving heart transplants
from 1992 through 1995 when the previous hospital con-
trol strategy was used; G ¼ 1 for those patients receiving
heart transplants from 1996 through 1999 when the new
hospital infection control strategy was adopted. The pri-
mary event of interest is getting a hospital infection after
surgery. A competing risk is death during recovery from
surgery without getting a hospital infection. Control vari-
ables being considered are tissue mismatch score (TMS) at
transplant and AGE at transplant. The outcome variable of
interest is time (DAYS after surgery) until a patient devel-
oped a hospital infection.
27. State a cause-specific no-interaction Cox PH model

for assessing the effect of group status (G) on time
until a hospital infection event.

28. When fitting the model given in Question 27, which
patients should be considered censored?

29. Describe or provide a table that would show how the
data on the ith patient should be augmented for input
into a Lunn–McNeil (LM) model for this analysis.

Hospital B

tf nf mf ĥca(tf) Ŝ (tf�1) Îca(tf) CIC(tf)

0 100 0 0 – – –
1 80 0 0 1 0 0
2 80 15 – – – –
3 65 0 – – – –
4 25 5 – – – –

Hospital A

tf nf mf ĥca(tf) Ŝ (tf�1) Îca(tf) CIC(tf)

0 100 0 0 – – –
2 40 0 0 1 0 0
4 40 20 – – – –
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30. State a LMmodel that can be used with an augmented
dataset that will provide identical results to those
obtained from using the model of Question 27.

31. For the LMmodel of Question 30, what is the formula
for the hazard ratio for the group effect G, controlling
for TMS and AGE.

32. Describe how you would test whether a no-interaction
SC LM model would be more appropriate than an
interaction SC LM model.

33. State a LMalt model that can be used with an aug-
mented dataset that will provide identical results to
those obtained from using the model of Question 27.

34. For the LMalt model of Question 33, what is the for-
mula for the hazard ratio for the group effect G,
controlling for TMS and AGE?

Test The dataset shown below describes a hypothetical study of
recurrent bladder cancer. The entire dataset contained 53
patients, each with local bladder cancer tumors who are
followed for up to 30 months after transurethral surgical
excision. Three competing risks being considered are local
recurrence of bladder cancer tumor (event ¼ 1), bladder
metastasis (event ¼ 2), or other metastasis (event ¼ 3).
The variable time denotes survival time up to the occur-
rence of one of the three events or censorship from loss to
follow-up, withdrawal, or end of study. The exposure vari-
able of interest is drug treatment status (tx, 0 ¼ placebo,
1 ¼ treatment A), The covariates listed here are initial
number of tumors (num) and initial size of tumors (size)
in centimeters.

id event time tx num size

1 1 8 1 1 1
2 0 1 0 1 3
3 0 4 1 2 1
4 0 7 0 1 1
5 0 10 1 5 1
6 2 6 0 4 1
7 0 10 1 4 1
8 0 14 0 1 1
9 0 18 1 1 1
10 3 5 0 1 3
11 0 18 1 1 3
12 1 12 0 1 1
13 2 16 1 1 1
14 0 18 0 1 1
15 0 23 1 3 3

(Continued on next page)
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1. Suppose you wish to use these data to determine
the effect of tx on survival time for the cause-specific
event of a local recurrence of bladder cancer. State a
no-interaction Cox PH model for assessing this rela-
tionship that adjusts for the covariates num and size.

id event time tx num size

16 3 10 0 1 3
17 1 15 1 1 3
18 0 23 0 1 3
19 2 3 1 1 1
20 3 16 0 1 1
21 1 23 1 1 1
22 1 3 0 3 1
23 2 9 1 3 1
24 2 21 0 3 1
25 0 23 1 3 1
26 3 7 0 2 3
27 3 10 1 2 3
28 1 16 0 2 3
29 1 24 1 2 3
30 1 3 0 1 1
31 2 15 1 1 1
32 2 25 0 1 1
33 0 26 1 1 2
34 1 1 0 8 1
35 0 26 1 8 1
36 1 2 0 1 4
37 1 26 1 1 4
38 1 25 0 1 2
39 0 28 1 1 2
40 0 29 0 1 4
41 0 29 1 1 2
42 0 29 0 4 1
43 3 28 1 1 6
44 1 30 0 1 6
45 2 2 1 1 5
46 1 17 0 1 5
47 1 22 1 1 5
48 0 30 0 1 5
49 3 3 1 2 1
50 2 6 0 2 1
51 3 8 1 2 1
52 3 12 0 2 1
53 0 30 1 2 1

(Continued)
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2. When fitting the model given in Question 1, which
subjects are considered censored?

3. How would you modify your answers to Questions 1
and 2 if you were interested in the effect of tx on
survival time for the cause-specific event of finding
metastatic bladder cancer?

4. For the model considered in Question 1, briefly
describe how to carry out a sensitivity analysis to deter-
mine how badly the results from fitting this model
might be biased if the assumption of independent com-
peting risks is violated.

5. The following two tables provide information neces-
sary for calculating CIC curves for local recurrence of
bladder cancer (event ¼ 1) separately for each treat-
ment group. The CIC formula used for both tables is
given by the expression

CIC1 tfð Þ ¼
Xf

f0¼1

Î1 t0fð Þ ¼
Xf

f0¼1

Ŝ tf0 � 1ð Þĥ1 tf0ð Þ

where ĥ1(tf) ¼ m1f/nf, m1f is the number of local recur-
rent failures at time tf and S(tf�1) is the overall (event-
free) survival probability for failure from either of the
two competing risks at time tf�1.

tx ¼ 1 (Treatment A)

tf nf d1f ĥ1(tf) Ŝ(tf�1) Î1(tf) CIC1(tf)

0 27 0 0 — — —
2 27 0 0 1 0 0
3 26 0 0 .9630 0 0
4 24 0 0 .8889 0 0
8 23 1 .0435 .8889 .0387 .0387
9 21 0 0 .8116 0 .0387

10 20 0 0 .7729 0 .0387
15 17 1 .0588 .7343 .0432 .0819
16 15 0 0 .6479 0 .0819
18 14 0 0 .6047 0 .0819
22 12 1 .0833 .6047 .0504 .1323
23 11 1 .0910 .5543 .0504 .1827
24 8 1 .1250 .5039 .0630 .2457
26 7 1 .1429 .4409 .0630 .3087
28 4 0 0 .3779 0 .3087
29 2 0 0 .2835 0 .3087
30 1 0 0 .2835 0 .3087
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a. Verify the CIC1 calculation provided at failure time
tf ¼ 8 for persons in the treatment group (tx ¼ 1);
that is, use the original data to compute ĥ1(tf),
Ŝ(tf�1), Î1(tf), and CIC1(tf), assuming that the cal-
culations made up to this failure time are correct.

b. Verify the CIC1 calculation provided at failure time
tf ¼ 25 for persons in the placebo group (tx ¼ 0).

c. Interpret the CIC1 values obtained for both the
treatment and placebo groups at tf ¼ 30.

d. How can you calculate the CPC1 values for both
treatment and placebo groups at tf ¼ 30?

tx ¼ 1 (Placebo)

tf nf d1f ĥ1(tf) Ŝ(tf�1) Î1(tf) CIC1(tf)

0 26 0 0 — — —
1 26 1 .0400 1 .0400 .0400
2 24 1 .0417 .9615 .0400 .0800
3 23 2 .0870 .9215 .0801 .1601
5 21 0 0 .8413 0 .1601
6 20 0 0 .8013 0 .1601
7 18 0 0 .7212 0 .1601

10 16 0 0 .6811 0 .1601
12 15 1 .0667 .6385 .0426 .2027
14 13 0 0 .6835 0 .2027
16 12 1 .0833 .5534 .0461 .2488
17 10 1 .1000 .4612 .0461 .2949
18 9 0 0 .4150 0 .2949
21 8 0 0 .4150 0 .2949
23 7 0 0 .3632 0 .2949
25 6 1 .1667 .3632 .0605 .3554
29 4 0 0 .2421 0 .3554
30 2 1 0 .2421 0 .3554
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6. The following output was obtained using separate
models for each of the 3 event-types.

a. What is the effect of treatment on survival from
having a local recurrence of bladder cancer, and
is it significant?

b. What is the effect of treatment on survival from
developing metastatic bladder cancer, and is it sig-
nificant?

c. What is the effect of treatment on survival from
other metastatic cancer, and is it significant?

Event ¼ 1

Var DF Coef Std.Err. p > |z| Haz.ratio

tx 1 �0.6258 0.5445 0.2504 0.535
num 1 0.0243 0.1900 0.8983 1.025
size 1 0.0184 0.1668 0.9120 1.125

Event ¼ 2

Var DF Coef Std.Err. p > |z| Haz.ratio

tx 1 �0.0127 0.6761 0.9851 0.987
num 1 �0.1095 0.2281 0.6312 0.896
size 1 �0.6475 0.3898 0.0966 0.523

Event ¼ 3

Var DF Coef Std.Err. p > |z| Haz.ratio

tx 1 �0.3796 0.6770 0.5750 0.684
num 1 �0.1052 0.3135 0.7372 0.900
size 1 �0.0238 0.2177 0.9128 0.976

490 9. Competing Risks Survival Analysis



7. Below is the output from fitting a LM model to the
bladder cancer data.

a. State the hazard model formula for the LM model
used for the above output.

b. Determine the estimated hazard ratios for the
effect of each of the 3 cause-specific events based
on the above output.

c. Verify that the estimated hazard ratios computed
in Part b are identical to the hazard ratios com-
puted in Question 6.

8. Below is the output from fitting a LMalt model to the
bladder cancer data.

a. State the hazard model formula for the LMalt

model used for the above output.
b. Determine the estimated hazard ratios for the

effect of each of the 3 cause-specific events based
on the above output.

c. Verify that the estimated hazard ratios computed
in Part b are identical to the hazard ratios com-
puted in Questions 6 and 7.

Var DF Coef Std.Err. p > |z| Haz.ratio

txd1 1 �0.6258 0.5445 0.2504 0.535
txd2 1 �0.0127 0.6761 0.9851 0.987
txd3 1 �0.3796 0.6770 0.5750 0.684
numd1 1 0.0243 0.1900 0.8983 1.025
numd2 1 �0.1095 0.2281 0.6312 0.896
numd3 1 �0.1052 0.3135 0.7372 0.900
sized1 1 0.0184 0.1668 0.9120 1.125
sized2 1 �0.6475 0.3898 0.0966 0.523
sized3 1 �0.0238 0.2177 0.9128 0.976

Var DF Coef Std.Err. p > |z| Haz.ratio

txd2 1 0.6132 0.8681 0.4800 1.846
txd3 1 0.2463 0.8688 0.7768 1.279
numd2 1 �0.1337 0.2968 0.6523 0.875
numd2 1 �0.1295 0.3666 0.7240 0.879
sized2 1 �0.6660 0.4239 0.1162 0.514
sized3 1 �0.0423 0.2742 0.8775 0.959
tx 1 �0.6258 0.5445 0.2504 0.535
num 1 0.0243 0.1900 0.8983 1.025
size 1 0.0184 0.1668 0.9120 1.125
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9. State the formula for a no-interaction SC LMmodel for
these data.

10. Describe how you would test whether a no-interaction
SC LM model would be more appropriate than an
interaction SC LM model.

Answers to
Practice
Exercises

1. F: Only one competing risk event can occur at a given
time.

2. T

3. F: You can die only once.

4. T

5. F: Competing risks must be treated as censored obser-
vations, rather than ignored.

6. F: A patient who develops a local recurrence will be
treated as censored.

7. F: The statement would be true providing censoring is
independent.

8. T

9. F: A sensitivity analysis can never provide explicit
evidence about whether the independence assump-
tion is satisfied; it can only suggest how biased the
results might be if the assumption is not satisfied.

10. T

11. T

12. F: The formula is correct only if there is one risk. See
Section V in the text for the general formula.

13. T

14. F: The correct statement should be: CPC gives the
probability of experiencing an event c by time t,
given that an individual has not experienced any of
the other competing risks by time t.
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15. F: the correct formula for CPC is:
CPCc ¼ CICc/(1 � CICc0) where CICc ¼ .4 and CICc0 ¼
CIC from risks other than c, where the latter is not
necessarily equal to .4.

16. T

17. T

18. T

19. T.

20. F: The correct LMU model is

h� t,Xð Þ ¼ h�0 tð Þ exp g1Dþ b�1Rxþ b�2Ageþ d�21 D� Rxð Þ�
þd�22 D� Ageð Þ�

21. The competing risks are (1) relapse of leukemia and
(2) nonrelapse death.

22. 20/100 ¼ 0.2.

23. Both tables have treated the competing risks as if they
were censored observations.

24. The KM probabilities are different for the two hospi-
tals because the competing risks contribute a different
pattern of censorship in the two hospitals.

25. The CIC curves for each hospital are calculated as
follows.

Hospital A

tf nf mf ĥca(tf) Ŝ(tf�1) Îca(tf) CIC(tf)

0 100 0 0 — — —
2 40 0 0 1 0 0
4 40 20 0.5 0.4 0.20 0.20

Hospital B

tf nf mf ĥca(tf) Ŝ(tf�1) Îca(tf) CIC(tf)

0 100 0 0 — — —
1 80 0 0 1 0 0
2 80 15 0.1875 0.8 0.15 0.15
3 65 0 0 0.65 0 0.15
4 25 5 0.20 0.25 0.05 0.20
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26. The CIC probabilities are the same at 4 years because
they give marginal probabilities that are not influ-
enced by the pattern of censorship of the competing
risks that are treated as censored. In hospital B, for
example, the marginal probability of 0.15 at year 2 is
given by the proportion of the initial risk set of 100
subjects that had a relapse of leukemia by year 2,
regardless of the number of nonrelapse deaths prior
to year 2. Similarly for hospital B, the marginal prob-
ability of .20 at year 4 adds to the marginal probability
at year 2 the proportion of the initial risk set of 100
subjects that had a relapse between year 2 and year 4,
regardless of the number of nonrelapse deaths that
occurred between year 2 and 4.

27. hHI(t,X) ¼ h0(t) exp[b1HIG þ b2HITMS þ b3HIAGE]
where HI denotes a hospital infection event

28. Patients who die after surgery without developing a
hospital infection are censored. Also censored are any
patients who are either lost to follow-up or withdraw
from the study, although such patients are unlikely.

29. Augmented Data for LM Approach

where e1i ¼ 1 if the ith subject develops a hospital
infection, 0 otherwise

e2i ¼ 1 if ith subject dies after surgery,
0 otherwise

D1 ¼ indicator for hospital infection event
D2 ¼ indicator for death after surgery event

30. h	g t;Xð Þ
g¼1; 2

¼ h	0g tð Þ exp b1 Gþ b2 TMSþ b3 AGE½

þd21D2Gþ d22D2TMSþ d23D00
2AGE�

31. HRHI(RX ¼ 1 vs. RX ¼ 0) ¼ exp[b1]

Subj Stime Status D1 D2 G TMS AGE

i ti e1i 1 0 Gi TMSi AGEi

i ti e2i 0 0 Gi TMSi AGEi
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32. Carry out a likelihood ratio test to compare the follow-
ing two models. Full (SC Interaction LM) model:

h	g t;Xð Þ
g¼1; 2

¼ h	0g tð Þ exp b1 Gþ b2 TMSþ b3 AGE½

þd21D2Gþ d22D2TMSþ d23D2AGE�
Reduced (no-interaction SC LM) model:

h	g t;Xð Þ
g¼1; 2

¼ h	0g tð Þ exp b1 Gþ b2 TMSþ b3 AGE½ �

LR test statistic ¼ �2 ln LR � (�2 ln LF) is distributed
w23 under H0: no-interaction model

33. h0g t;Xð Þ
g¼1; 2

¼ h00g tð Þ exp d011 D1Gþ d012 D1TMSþ d013 D1AGE½
þd021D2Gþ d022D2TMS +d023D2AGE

�
34. HRHI RX ¼ 1 vs. Rx ¼ 0ð Þ ¼ exp d011

� �
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Introduction In this chapter, we consider issues involvedwhen designing
studies with time-to-event outcomes. This includes deter-
mining the expected number of events to occur over the
study period, the total number of subjects to be recruited
into the study, the power of the study, the time period over
which to accrue the study subjects, the time period
over which enrolled subjects will be followed, and how to
adjust sample size requirements to allow for subjects who
might be lost to follow-up and/or who might switch thera-
pies from the one they were originally allocated during the
study period.

Our primary focus will consider prospective randomized
trials of two groups (control and treatment) with equal
allocation into each group. We will also consider how to
modify sample size and/or power calculations when there
is unequal allocation into the two groups.

Abbreviated
Outline

The outline below gives the user a preview of the material
to be covered by the presentation. A detailed outline for
review purposes follows the presentation.

I. Introduction: Background to Statistical Decisions
(pages 500–501)

II. Design Considerations: Time-to-Event Outcomes
(pages 502–503)

III. Determining the Required Number of Events
(NEV) (pages 504–505)

IV. Determining the Required Total Number of
Participants (N) (pages 505–511)

V. Other Design Issues (pages 511–514)

VI. Summary (pages 514–517)
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Objectives Upon completing this chapter, the learner should be able to:

1. Define and illustrate the following terms: significance
level, type I error, type II error, power, effect size, accrual
period, follow-up period, loss to follow-up, crossover
subject, drop-in, drop-out.

2. Given a, b, and D for a planned time-to-event study in a
clinical to compare two treatments, determine the
number of events required for the study.

3. Given a, b, D, and either the hazard rate, survival
probability, or median survival time expected for the
control group in a clinical trial to compare two
treatments, determine the study size required for an
allocation ratio of 1:1 between treatment and control
groups.

4. For the same situation as in objective 3, determine the
study size required for an allocation ratio of R:1 for a
specified R, where R ¼ N1/N0, Ni is the study size in the
i-th group, and N is the total study size.

5. For the same situation as in objective 4, describe and/or
illustrate how to adjust the study size to account for
possible loss to follow-up.

6. For the same situation as in objective 4, describe and/or
illustrate how to adjust the study size to account for
subjects who crossover from treatment to control
group or from control to treatment group.
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Presentation

I. Introduction:
Background to
Statistical Decisions

The preceding chapters have been focused on
developing a methodological and statistical
framework for analysis of time to event or sur-
vival problems. In this chapter, we concentrate
on the issues which are needed when designing
studies with time to event outcomes.

These issues typically include questions such
as: how many subjects should be recruited into
the study; over what period should the study
accrue the subjects; forwhat period after accrual
should the subjects be followed-up for an event;
what is the consequence of subjects switching
therapies from the one they were originally allo-
cated during the study period? Addressing these
issues is key to designing a study which has
sound scientific/statistical principles and adds
to the credibility of the final results among the
scientific community.

Before we develop these issues, we need to
review the key statistical concepts of statistical
power and level of significance.

Most survival studies are designed to compare
the time to event of two or more groups. We
typically beginwith the assumption that the sur-
vival experience is the same in these groups. This
assumption is called the null hypothesis (H0).

We then seek (through the study) to determine
whether there is sufficient evidence to demon-
strate that the survival experience in the groups
is different. This is termed the alternative
hypothesis (HA).

The amount of evidence found against the null
hypothesis is determined by the P-value (e.g.
from a logrank or proportional hazards tests).
If the P-value is small enough, we conclude
that there is statistically sufficient evidence to
conclude that the groups are different.

How many subjects?
Accrual period for recruitment?
Follow-up period after accrual?
What to do if subjects switch therapies?

Previous chapters: analysis
This chapter: design issuesFocus

Review: “power” and
“level of significance”

Most survival studies:

� Compare two or more groups
� H0: survival experience is the

same in groups being
compared

� HA: survival experience is
different in groups being
compared

P-value:

� Gives evidence against H0

� P small ) statistical
significance
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How small is small enough? Traditionally a P-
value less than 0.05 is regarded as providing
sufficient evidence against the null hypothesis
of no difference between the two groups.

This threshold value, referred to as the level of
significance, is denoted by a. For a specified
value of a, we are saying that there is a proba-
bility of a that we may decide to reject the null
hypothesis when in fact the null hypothesis is
correct. In statistical terms, this type of error is
referred to as a Type I error.

Theother error in statistical decisionmaking is to
declare that there is insufficient evidence to say
the groups are different (associatedwithP-values
> 0.05) when in fact they are actually different,
This is referred to statistically as a Type II error.

The power of the study is 1- probability of a
Type II error, also denoted 1-b, where b is the
probability of a Type II error.

The power will typically increase as the sample
size increases, i.e., the more information we
gather, the more likely we will declare the two
groups being compared as different when they
truly are different.

The final quantity to consider is the strength of
evidence of interest, typically referred to as the
effect size, and denoted as D. This measure (D)
can be either in the form of a difference or ratio
of hazard rates, survival probabilities, or
median survival times. If the effect size is large
(e.g. a 60% increase in disease free survival at 5
years), then fewer subjects would be required to
make a decision that the groups are different.

Examples of three types of effect sizes that are
all ratio measures are shown at the left. We
typically define D to be greater than 1 in order
to reflect a “positive” effect. For example, in a)
at the left, a reduction in event rates indicates a
positive effect, so the numerator in the ratio
formula for D contains l0 rather than l1.

At this point, we have identified three crucial
inputs required for sample size calculation: the
level of significance (a), the power (1-b) and the
effect size (D).

How small?
Traditionally:

P < 0.05 ) Evidence vs. H0

i.e., Reject H0ð Þ

a ¼ level of significance:

Pr Reject H0jH0

� � ¼ Pr Type I Errorð Þ ¼ a

Pr Do not reject H0jHAð Þ
¼ Pr Type II Errorð Þ ¼ b

Power ¼ Pr Reject H0jHAð Þ
¼ 1� Pr Type I errorð Þ ¼ 1� b

Sample size
(information)

Power
(declare HA)

Strength of evidence, i.e., effect
size (D):

� Different ways to quantify D:

D ¼ y1 � y0 or y1=y0where
1. yi are hazard rates
2. yi are survival probabilities
3. yi are mean survival times
� D large ) smaller sample size

required

EXAMPLES: RATIO MEASURES OF

EFFECT SIZE

a) Reduction in annual event rate from

10% to 5%: D ¼ l0/l1 ¼ 10/5 ¼ 2
b) Increase in3-yearsurvival from74%to

86%: D¼ (S1/S0)¼ 0.86/0.74¼ 1.16 or
D¼ (lnS0/lnS1)¼ ln(0.74)/ln(0.86)¼ 2

c) Increase in median survival from 7
to 14months: D¼ (m1/m0)¼ 14/7¼ 2

Sample size (N) related to
a, 1 � b, and D
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II. Design Considerations:
Time-to-Event
Outcomes

Our discussion of design and sample size
considerations in survival analysis studies will
primarily focus on prospective randomized
trials of two groups (control and intervention)
with equal allocation into each group. We will
also consider how tomodify sample size and/or
power calculations when there is unequal allo-
cation into the two groups.

Consider a study where we plan to accrue sub-
jects for a period of A (days,months, years) time
units, and then observe or follow them up for a
further F time units. This defines the total study
period to have A þ F time units.

The diagrams on the left show how subjects
who experience an event or are censored are
represented in the total study time A þ F. The
top diagram illustrates a subject experiencing
the event T units after recruitment into the
study.

The bottom diagram illustrates a subject not
experiencing the event (i.e., censored) after
recruitment into the study.

For each subject, we require information on
whether or not the event of interest had
occurred, the time from recruitment into the
study to either the time that the event occurs or
the time of censoring, and the treatment group
to which the subject was allocated.

A key design issue for clinical trials already
mentioned is the effect size of interest for
comparing the two treatments. This difference
should be both plausible and clinically worth-
while. Other issues include the need for suffi-
cient funds to support the study, adequate
resources to carry out the study (number of
institutions participating, etc.), and sufficient
number of patients with the disease who
would be prepared to participate in the pro-
posed study.

Primary focus:

� Prospective randomized trials
� Comparing two groups
� Equal allocation
� Unequal allocation

Assume:
A ¼ accrual period
F ¼ follow-up period

A + F ¼ total study period

entry

accural follow-up
Observed event

A

T

A+F0

event

entry

accural follow-up

Censored event

A A+F0

Information on each subject:

� Occurrence of event (yes or no)?
� Time to event or censoring
� Treatment group allocation

Design issues:

� Effect size of interest (plausible
and clinically relevant)

� Sufficient funds
� Adequate resources
� Sufficient # of patients

available to participate
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When planning a clinical trial involving time-
to-event outcomes, it is important to distin-
guish the study size required from the number
of events required.

The study size refers to the total number of
subjects chosen to participate in the study,
including those who get the event and those
who do not get the event.

The number of events refers to those study
participants who actually get the event during
the study period.

When determining sample size and/or power in
such studies, we typically first determine the
expected (or required) number of events
(NEV), after which we then determine the study
size required (N). Thismeans that a, b andD are
needed todetermineNEV,which thengets “extra-
polated” toN by dividing by (a guestimate of) the
probability that a studyparticipant gets an event.
(Details on “extrapolation” in Section IV.)

Note that the recruitment of study participants
(rather than only those participants who
become cases) is what actually happens in
practice, since events do not start occurring
until after the study begins.

Nevertheless, the study size required can be
determined without waiting for events to start
occurring, as we will show in Section IV, by
making certain assumptions about study dura-
tion (i.e., accrual and follow-up periods) and the
(hazard or survival) distribution of event times.

The study duration must be determined to be
sufficiently long to observe the expected num-
ber of events. If the accrual and follow-up per-
iods as well as expected number of events are
determined in advance, it is possible to project
a sufficiently long study duration.

Study size (N) versus # of Events
(NEV)

N ¼ total # of study participants
� includes thosewhoget event and

those who do not get the event

NEV ¼ # of participants who get
event during study period

Process for determining N in time-
to-event studies:
Step 1: Determine NEV using a,

1�b, D
Step 2: Determine N from NEV

by extrapolation using
N ¼ NEV/pEV

where
pEV ¼ Pr(study participant gets

event)

In practice:
recruit study participants (N)

rather than
events (NEV)- occur after study

begins

Section IV (page ):
determining N from NEV using
assumptions on

study duration
and distribution of event times

Study duration

� long enough to observe NEV

� specify in advance:
accrual and follow-up periods,
and NEV
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III. Determining The
Required Number of
Events (NEV)

For convenience, we describe how to determine
the required number of events by making the
assumptions shown at the left.

If we assume proportional hazards, then the
effect size can be calculated based on any of the
three survival attributes: event rates (li), survival
probabilities (Si) or median survival times (mi).

For a given effect size (D), level of significance
a, and power (1�b), the number of events
required for both groups combined is given
(Freedman 1982) by equation (1) on the left.

The power corresponding to a specified number
of events can be obtained using equation (2).
Note that Pr(Z < zEV) is the cumulative pro-
bability below the value zEV of the standard
normal distribution.

As an example, suppose we are interested in the
increase in median survival time defined by the
effect size D (¼ m1/m0) ¼ 14/7 ¼ 2. Suppose
further we set the level of significance at 5%,
so z1�a/2 ¼ 1.96, and we desire 80% power, so
z1�b ¼ 0.84, where the z values are obtained
from the standard normal distribution.

The number of events required using equation
(1) is given by the calculation shown at the left;
thus, 71 events are required.

Suppose we commence the study and find that
the event rate is occurring much faster than
anticipated, and we have observed 100 events.
Then the power of our study using equation (2)
is given by the calculation shown at the left.
Thus with 100 events, our study has 92%
power to detect a increase in median survival
time from 7 months to 14 months.

Assumptions:
1. N1¼N0 i.e., equal study sizes in

each group
2. HA is two tailed
3. N1 and N0 large enough to use

normal approximation, i.e., Z�
N(0,1)

4. Proportional hazards satisfied,
i.e., l1/l0 constant over time

Assumption 4 (PH satisfied) allows
ratio measures of effect size mea-
sures of any type:

D ¼ l1=l0; D ¼ S1=S0; or D ¼ m1=m0

NEV ¼
z1�a=2þz1�b

� �
Dþ1ð Þ

ðD�1Þ

0
@

1
A

2

� � � � � � ð1Þ

Power¼ Pr Z< zEVð Þ � � � � � � � � � � � � � � � ð2Þ

where zEV ¼ ffiffiffiffiffiffiffiffiffi
NEV

p D� 1

Dþ 1

� �
� z1�a=2

	 


EXAMPLE

D (¼ m1/m0) ¼ 14/7 ¼ 2
a ¼ 0.05, z1�a/2 ¼ 1.96, b ¼ 0.20,
z1�b ¼ 0.84

NEV ¼ 1:96þ0:84ð Þ 2þ1ð Þ
2�1ð Þ

� �2

¼ 70:56� 71

Power: Pr(Z < zEV) where

zEV ¼
ffiffiffiffiffiffiffiffi
100

p 2� 1

2þ 1

� �
� 1:96

	 

¼ 1:373

so that

Pr Z < 1.373ð Þ ¼ 0:92
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Formula (1) can be modified to allow for
unequal group sizes.

Unequal group sizes may be considered when
one treatment is more expensive than the other
or to gain more experience with a new inter-
vention.

We let R denote the ratio N1/N0, where Ni

denote the number of subjects (with and with-
out events) in the i-th treatment group, i¼0, 1,
so that N¼ N1þN0 gives the total sample size
for the study.

The modified formula for the required number
of events (NEV) is modified to equation (3) on
the left.

Here, we illustrate calculations using formula
(3) for R¼2. Note that the value obtained for
NEV (i.e., 98) when R ¼ 2 is somewhat higher
than the value previously obtained (i.e., 71)
when we used equal sample sizes (i.e., R¼1).

IV. Determining the
Required Total
Number of
Participants (N)

To calculate the number of participants
required in designing a clinical study, some
additional pieces of information are required
(see left diagram);
1. the accrual period, A;
2. the follow-up period, F, after the last

subject has been entered onto the study;
3. the median follow-up time MF ¼ A/2 þ F
4. X denotes the time point at study entry for

any subject entering between time 0 and
time A

5. Aþ F�X denotes themaximum follow-up
since study entry for a subject entering at
time X

6. the distribution of the time(s) to event T:
specify either

the survivor functions Si(t), i¼1,2, for each
group

or assume
constant event rates li, so that Si(t) ¼ e�lt

(exponential distribution).

Unequal group sizes:

� Requires modifying formula (1)
� One treatment is more

expensive than the other
� Gain more experience with a

new intervention

R ¼ N1/N0 where
N ¼ N1 þ N0, Ni¼# of events in

group i, i¼0, 1

NEV ¼
z1�a=2þz1�b

� �
RDþ1ð Þffiffiffiffi

R
p

D�1ð Þ

0
@

1
A

2

ð3Þ

EXAMPLE: R¼2

NEV ¼ 1:96þ 0:84ð Þ 2 2ð Þ þ 1ð Þffiffiffi
2

p
2� 1ð Þ

 !2

¼ 98

A+F

accrual period follow-up (F)

X A+F0 A

A 

A+F-X

entry

time of entry into study
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A general formula for the total sample size
(subjects with and without events) is derived
by assuming that the number of events needed
(NEV) is the product of the total sample size (N)
times the probability (pEV) that a subject will
get an event since study entry.

Since we are assuming two treatment groups,
we can use basic conditional probability rules
to express pEV as the sum of the two compo-
nents shown at the left.

The term pEVi denotes the probability of an
event occurring given a subject is in treatment
group i, i¼0,1. The term wi denotes the proba-
bility of being in treatment group i.

If the allocation ratio for subjects into the two
treatment groups is determined in advance to
be R ¼ N1/N0, where Ni is the total sample size
in group i, then wi, which is effectively a
weight, denotes the proportion of the total
sample size in group i (i.e., Ni/N).

With algebra, we can divide both the numera-
tor and denominator of wi by N0 to express the
weights (wi) in terms of R, as shown on the left.

We can thus write the formula for total sample
size (N) in terms of the number of events (NEV)
and the allocation ratio R.

As a special case, if the allocation ratio is R¼1,
i.e., N1 ¼N0, then the denominator in the for-
mula for N simplifies to the arithmetic average
of the pEVi.

An alternative formula for the total sample size
can be obtained if we can express the event
probabilities (pEVi) in terms of survival curve
parameters.

We first write pEVi as 1 minus the probability of
no event occurring since study entry, that is,
one minus the probability of surviving since
study entry.

The latter survival probability can be approxi-
mated as the probability that a subject survi-
ves past the median follow-up time (i.e., MF ¼
A/2 þ F) for all subjects.

Determining N (cont’d)

Relating number of events to total
sample size:

NEV = N� pEV
where

N¼ total sample size
pEV ¼ Pr(event occurs since

study entry)

pEV ¼ Pr EVji = 1ð ÞPr i = 1ð Þ
þ Pr EVji ¼ 0ð ÞPr i ¼ 0ð Þ

¼ w1 pEV1 þ w0 pEV0

where

pEVi ¼ Pr EVjið Þ andwi ¼ Pr ið Þ; i = 0,1

If R ¼ N1/N0 and N1þN0¼N
where Ni is the sample size in
group, i¼0,1 then

wi ¼ Ni/N, i ¼ 0; 1

Algebra:

w1 ¼ N1/ N1 þ N0ð Þ ¼ R/ Rþ 1ð Þ
w0 ¼ N0/ N1 þ N0ð Þ ¼ 1/ Rþ 1ð Þ

N =
NEV

R

R + 1
pEV1 þ

1

R + 1
pEV0

Special Case:R = 1

N ¼ NEV

pEV1 þ pEV0ð Þ=2

Alternative formula:
Express (pEVI) in terms of
parameters of Si(t)

pEVi¼1�Pr no event since study entryj ið Þ
¼1�Pr surviving since study entryj ið Þ
�1�Si MFð Þ

where
Si(t) ¼ survival function at time

t for group i
MF ¼ A/2 þ F ¼ median follow-

up time
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Thus, a general formula for the total sample
size can be given in terms of the survival
model assumed by the investigators, as shown
on the left.

In particular, if the survival function is expo-
nential, the formula can be further specified as
shown here.

As an example, suppose the accrual period is
2 years, and the follow-up period is 4 years, so
that the median follow-up time (MF) is 5. Sup-
pose further that R¼1, a¼.05, b¼.10, the con-
trol group hazard rate (l0) is 0.10 and the effect
size (D ¼ l0/l1) is 2, i.e., we consider a reduc-
tion in hazard rates from 0.10/year to 0.05/year.

Substituting this information into the sample
size formula, we obtain a total required sample
size of 308 subjects, which will yield approxi-
mately 95 events, with an approximate overall
event probability of 0.31. Note that the latter
probability estimate is calculated using the
denominator in the sample size formula.

We now describe an alternative approach for
derivinga total sample size formula that assumes
an exponential survival curve, but doesn’t use the
median follow-up time (MF) to approximate the
calculation of survival probabilities.

Parametric survival distributions other than
exponential are always possible for survival
data. Nevertheless, by assuming an exponential
function, we typically obtain reasonable sample
size estimates. This makes sense because of the
wide applicability of the Cox model, whose
parametric component has exponential form.

Recall that we previously provided a formula
for the total sample size (shown again here)
that involved the number of events required
(NEV), the allocation ratio (R), and the prob-
abilities (pEVi) of an event occurring in each
treatment group.

We now describe how to calculate event prob-
abilities (pEVi) in terms of exponential survival
parameters.

Total Sample Size: Formula 1

N =
NEV

R

R + 1
1� S1 MFð Þf g þ 1

R + 1
1� S0 MFð Þf g

Special case: Si(t) ¼ exp(�lit), i¼0,1

N ¼ NEV

R

R + 1
1� e�l1MF
� �þ 1

R + 1
1� e�l0MF
� �

EXAMPLE

A¼2, F¼4, so MF¼A/2 þ F ¼ 5
R¼1
a¼0.05, b¼0.10
l0 ¼ 0.10, D ¼ l0/l1 ¼ 2

N ¼ 1:96þ 1:282ð Þ 2þ 1ð Þ= 2� 1ð Þ½ �2
1

1þ 1
1� e�2 0:05ð Þ 5ð Þ
n o

þ 1

1þ 1
1� e� 0:05ð Þ 5ð Þ
n o

307.8
307.0
595.94 ==

NEV

PEV

Alternative approach for
computing N:
1. Assumes exponential survival

Si tð Þ ¼ exp �litð Þ; i ¼ 0; 1

2. Does not use Si(MF)

Exponential survival function:
typically yields reasonable sample
size estimates

(note: Cox model has exponential
component)

N ¼ NEV

R

R + 1
pEV1 þ

1

Rþ 1
pEV0

Next: calculating pEVi, i¼0,1.
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We first write the probability that a subject
entering treatment group i at time X gets the
event as the product of probabilities. This fol-
lows from the basic probability rule that the
joint probability of two events A and B equals
the conditional probability of A given B times
the probability of B.

We can simplify the above formula if we
assume that the time X at which any subject
enters the study has the uniform distribution
over the accrual period.

The probability of an event is equal to 1 minus
the probability of no event, which is 1 minus the
probability of surviving since entry. Thus, we
can rewrite the right hand side of above formula
as shown here. Note that AþF�X gives the sur-
vival time for a subject entering at time X and
surviving to the end of the study (at time AþF).

Recognizing that a subject’s entry time X
ranges between 0 and A, we can now integrate
over this range to obtain pEVi, the probability
that any subject entering treatment group i at
time X gets the event since study entry. This
integral formula is shown at the left.

Letting u denote AþF�X, and noting that u will
range from F to AþF as X ranges between A
and 0, we can further rewrite this integral as
shown here.

We can further simplify this formula if we are
willing to assume that the survival curve fol-
lows an exponential distribution.

We can then carry out the integration and
corresponding algebra to obtain an expression
for pEVi that involves the constant hazard rate li
for treatment group i, the accrual period A, and
the follow-up period F as shown on the left.

Pr(A and B) = Pr(A|B) Pr(B)

Pri(EV and entry at X)
= Pri(EV | entry at X)Pr(entry at X)

Assume uniform distribution for
each i:

X � U 0;A½ � ) Pr entry at Xð Þ ¼ 1=A

so that

Pri EV and entry at Xð Þ ¼ 1

A
Pri EVjentry at Xð Þ

1

A
Pri EVjentry at Xð Þ

¼ 1

A
½1� Pri No EVjentry at Xð Þ�

¼ 1

A
½1� Pri Survive past Aþ F�Xjentry at Xð Þ�

Integration formula for pevi:

pEVi ¼
1

A
½
ðA

0

1� S Aþ F� Xð Þ½ � dx:

Let u ¼ AþF�X, so

X ¼ A ) u ¼ F and X ¼ 0 ) u ¼ Aþ F

Then,

pEVi ¼ 1� 1

A

ðAþF

F

S uð Þdu

Further simplification:

Assume S tð Þ ¼ exp �ltð Þ

pEVi ¼ 1� 1

A

ðAþF

F

exp �liuð Þdu

¼ 1� 1

liA
� exp �liuð Þ½ �AþF

F

¼ 1� 1

liA
exp �liFð Þ � exp �li Aþ Fð Þð Þ½ �
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We then obtain the general formula shown at
the left for the required number of total parti-
cipants (N) in terms of the total expected events
(NEV), exponential hazard rates (li) in each
group, effect size (D ¼ (l1/l0), allocation ratio
R, accrual period (A), and follow-up period (F).

We again consider the same example we previ-
ously used with Formula 1, but now applied to
Formula 2. Recall that here we consider a
reduction in hazard rates from 0.10/year to
0.05/year, so that the effect size (D) is 2. The
allocation ratio is assumed to be 1:1, i.e., R¼ 1.

We previously found for this example that the
number of events required (NEV) was 94.595.

Substituting the above information into for-
mula for pEVi, find that pEV1 ¼ 0.2207 and
pEV0 ¼ 0.3925.

We then substitute these values for pEVi into
Formula 2, as shown at the left to obtain a total
sample size (N) of 309, which is essentially the
same as the 308 obtained from Formula 1.

As a second example, suppose we wish to
determine the sample size for a clinical trial
looking at a molecular targeted therapy (inter-
vention group) for patients with metastatic
colorectal cancer.

Total Sample Size: Formula 2

N ¼ NEV

R

Rþ 1
pEV1 þ

1

Rþ 1
pEV0

where
pEVi ¼ 1� 1

liA
e�liF � e�li AþFð Þ
h i

li ¼ constant hazard for group i
R ¼ allocation ratio,
A ¼ accrual period,
F ¼ follow-up period

EXAMPLE

A¼2, F¼4
R¼1
a¼0.05, b¼0.10
l0 ¼ 0.10, D ¼ l0/l1 ¼ 2
NEV ¼ 94.595

pEV1 ¼ 1� 1

0:05ð Þ 2ð Þ e� 0:05ð Þ 4ð Þ - e� 0:05ð Þ 2þ4ð Þ
h i

¼ 1� 0:7791 ¼ 0:2207

pEV0 ¼ 1� 1

0:10ð Þ 2ð Þ e� 0:10ð Þ 4ð Þ � e� 0:10ð Þ 2þ4ð Þ
h i

¼ 1� 0:6075 ¼ 0:3925

N ¼ 94:595
1
2
0:2207ð Þ þ 1

2
0:3925ð Þ

¼ 94:595

0:3066
¼ 308:52 � 309

SECOND EXAMPLE

Patients with metastatic colorectal
cancer

Intervention group: molecular
targeted therapy
vs.

Control group standard therapy
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The study aim is to increase the median time to
disease progression survival from 6 months in
the control group to 10 months in the interven-
tion group. Assume a 15-month accrual period
and a 12-month follow-up period, 90% power
and a 5% significance level. Also subjects are to
be allocated in a 1:2 ratio (2 subjects in the
intervention for each control), i.e., R¼2.

Note that in this example, we are given the
desired increase in median survival times (mi)
from control to intervention group, but not the
corresponding set of hazard rates (li) for these
two groups, which we need to use in our sam-
ple size formula.

Nevertheless, we can determine the values for
li from their corresponding median survival
times mi by setting the exponential survival
probability Si(mi) ¼ exp(�limi) equal to 0.5
for group i, and then solving for li, as shown
at the left. Note that the value of any survival
function at its median survival time is, by defi-
nition, always equal to 0.5.

Thus, substituting the values of m0¼6 and
m1¼10 in the above formula for li, we obtain
the values l0 ¼ 0.116 and l1 ¼ 0.069, as shown
at the left.

Consequently, the effect size (D¼ l0/l1) needed
for our sample size formula is 0.1155/0.0693,
which equals 1.667.

To determine the sample size required for this
study, we first compute the required number of
events (NEV), as shown on the left.

Thus, we require 222 total events.

We now use our Formula 2 (shown again here)
to compute the sample sizes required in each
treatment group.

SECOND EXAMPLE: (continued)

Study aim: median survival time (mi)
improves from m0 ¼ 6 to
m1 ¼ 10

A¼15 mos., F¼12 mos.
a¼0.05, b¼0.10
R¼2

We are given m0 ¼ 6 and m1 ¼ 10
but

we need corresponding l0 and l1

Si mið Þ ¼ expð�limiÞ ¼ 0:5; i ¼ 0; 1

+
�limi ¼ ln 0:5 ¼ � ln 2

+
li ¼ ln 2=mi

l0 ¼ ln 2/6 ¼ 0.1155

l1 ¼ ln 2/10 ¼ 0.0693

D ¼ l0/l1 ¼ 0.1155/0.0693 ¼ 1.667.

NEV ¼ z1�a=2 þ z1�b
� �

RDþ1ð Þffiffiffiffi
R

p
D� 1ð Þ

 !2

¼ 1:96þ 1:28ð Þ 2 1:667ð Þ þ 1ð Þffiffiffi
2

p
1:667� 1ð Þ

 !2

¼ 221:6; where rounds to

222 required events

Next: Computing N1 and N0 using
Formula 2

N ¼ NEV

R

Rþ 1
pEV1 þ

1

Rþ 1
pEV0

where

pEVi ¼ 1� 1

liA
e�liF � e�li AþFð Þ
h i
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The computation of pEVi, i¼0,1 is shown on the
left.

We obtain pEV1 ¼ 0.7293

and

pEV0 ¼ 0.8812.

We now substitute NEV¼221.6, pEV1 ¼ 0.7293,
pEV0 ¼ 0.8812, and R¼2 into the formula for N
as shown at the left.

We obtain a total required sample size (N)
of 285.

Now, given N and R, we can solve for N1 and N0

using the formula shown at the left.

Since R ¼2, so that N1¼2N0, it follows that
N1¼190 and N0¼ 95 subjects are required in
groups 1 and 0 respectively.

V. Other Design Issues Other issues to consider in the design of time-
to-event studies are shown at the left.

We have seen the accrual period (A) and length
of follow-up period (F) contribute in the expres-
sions for the probability of an event as well as to
total sample size. In any design, there needs to
be a balance between the choices of accrual and
follow-up periods. The cost of accruing subjects
into a study is, in general, far greater than the
cost of follow-up.

SECOND EXAMPLE: (continued)

pEV1

¼ 1� 1

0:0693ð Þ 15ð Þ e� 0:0693ð Þ 12ð Þ � e� 0:0693ð Þ 15þ12ð Þ
h i

¼ 1� 0:2707 ¼ 0:7293

pEV0

¼ 1� 1

0:1155ð Þ 15ð Þ e� 0:1155ð Þ 12ð Þ � e� 0:1155ð Þ 15þ12ð Þ
h i

¼ 1� 0:1188 ¼ 0:8812

N ¼ 221:6
2

2þ 1
0:7293ð Þ þ 1

2þ 1
0:8812ð Þ

¼ 284:12 � 285

N1 ¼ [R/(Rþ1)]N and N0 ¼ N1/2

R¼2 and N ¼ 285 )N1 ¼ 190 and
N0 ¼ 95

� Choosing accrual and follow-
up times;

� Adjusting for loss to follow-up;
� Adjusting for cross-over (drop-

in/drop-out)

Accrual and follow-up times:
A ¼ accrual period
F ¼ follow-up period

� Need balance between the
choices of accrual and follow-
up periods

� Cost of Accrual >>
Cost of follow-up
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Thetableon the left illustrates,using thecolorectal
cancer example, how the study size required
(N) varies depending on the duration periods
of accrual and follow-up. This table indicates
that a longer follow-up time has a larger
impact on sample size than a longer accrual
time.

For example, for an accrual period of 12months,
the sample size needed is reduced from 206 sub-
jects to 186 subjects as the follow-up period is
increased from 12 to 18 months. However, for a
follow-up period of 12 months, the sample size
needed is reduced from 206 subjects to only 196
subjects as the accrual period is increased from
12 to 18 months.

In large scale clinical trials, it is usually difficult
to retain complete follow-uponall subjects. Inev-
itably, a proportion of subjects will leave the
study before experiencing an event. Some rea-
sons include personal circumstances (moving to
another district/city/state/country), experiencing
unacceptable toxicity from the therapy, loss of
interest, or receiving a newer therapy.

As more subjects leave the study, the number of
events will be reduced and the power of the
studywill be compromised. This can be partially
adjusted for by increasing the sample size in an
attempt to maintain the number of events.

We can adjust for loss to follow-up in sample
size calculations if we have an estimate from
previous studies of the proportion of subjects
expected to be lost to follow-up (plof). We
also need the study size required with full
follow-up (N).

Then the adjusted sample size (NLOFadj) that
accounts for the loss to follow-up is obtained
by dividing N by (1 � plof).

For example, in a study of 270 subjects, it is
observed during the study that 25% of subjects
are lost to follow-up. To ensure that the study
power is maintained, the sample size would
need to be increased to 360 subjects.

Impact of accrual and follow-up
times on the study size
Colorectalexample:NEV¼161,

a¼0.05,
1�b¼0.90

Study time N

Accrual follow-up

12 12 206

12 15 194

12 18 186

15 12 200

15 18 184

18 12 196

18 15 188

18 18 182

Loss to follow-up

Subjects leave study before experi-
encing event
Reasons:
� personal circumstances
� experiencing unacceptable

toxicity
� loss of interest
� receiving newer therapy

Follow-up losses Þ NEV

Þ Power

Adjusting for loss to follow-up:
Need
plof ¼ proportion of subjects

expected to be lost to
follow-up

N ¼ study size with full follow-up

Then

NLOFadj ¼ N= 1� plofð Þ

EXAMPLE

N ¼ 270; plof ¼ 0:25
+

NLOFadj ¼ 270= 1 � 0:25ð Þ ¼ 360
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In randomized controlled trials, the analysis
is typically based on the Intention-to-Treat
(ITT) principle. This principle states that sub-
jects will be analyzed to the treatment group
to which they were originally assigned at the
time of randomization.

Not adhering to the ITT principle would break
the randomization to some extent, which could
potentially lead to a confounded adjusted
estimate.

Another approach to the analysis is to adjust
for cross-over from one treatment group to
another.

If a subject changes groups during the trial,
from either treatment (T) to control (C) or
from control to treatment, we say that this
subject is a “cross-over”. A change from T to C
is called a “drop-out” and a change from C to
T is a “drop-in.”

Let N denote the originally calculated sample
size prior to considering the possibility of cross-
overs. Also, let dc and dt be the potential pro-
portion of subjects who drop into the control
and intervention groups; these are guestimates.

Then it can be shown that for an intention-
to-treat analysis, to maintain the study power,
the total study size should be adjusted to give a
sample size inflation factor. This adjustment
formula (NITTadj) is shown at the left.

The table at the left gives the sample size infla-
tion required for different levels of drop-
ins/drop-outs originally assigned at the time of
randomization. Thus, subjects which receive
the opposite treatment to which they were ran-
domized will (in general) dilute the effect seen
by the intervention due to this cross-over.

Cross-over (drop-in/drop-out)
adjustments
One approach: Intention-to-treat
(ITT) principle-
subjects analyzed according to the
originally assigned treatment group

Another analysis approach: Adjust
for crossovers

Crossover: a subject who changes
from T to C or from C to T during
the trial
where
C ¼ control group,
T ¼ treatment group
T to C ) drop-out
C to T ) drop-in
N ¼ original total sample size (w/o

adjusting for cross-overs)
dc¼ proportion of (drop-outs) from

T to C
dt ¼ proportion of (drop-ins) from

C to T

Sample-size formula adjusted
for ITT:

NITTadj ¼
N

1� dc � dtð Þ2

Sample Size Inflation factor
Drop-in rate

Drop-out rate 0% 1% 5% 10% 15% 20%
0% 1 1.02 1.11 1.23 1.38 1.56
1% 1.02 1.04 1.13 1.26 1.42 1.60
5% 1.11 1.13 1.23 1.38 1.56 1.78
10% 1.23 1.26 1.38 1.56 1.78 2.04
15% 1.38 1.42 1.56 1.78 2.04 2.37
20% 1.56 1.60 1.78 2.04 2.37 2.78

No ITT Þ randomization Þ confounding
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As an example,we consider a study investigating
the impact of exercise on time to disease pro-
gression in colorectal cancer patients, rando-
mized to an exercise regimen.

Thosepatientswho stop exercising aredropping
out of the exercise arm (into the control arm).
Those who commence an exercise program are
dropping into the exercise arm (out of the
control arm).

Suppose the study size originally required 600
subjects, with 5% expected to drop out of the
intervention arm, and 15% expected to drop
into the intervention arm. Then, using ITT, the
sample size (see the table on the left) needs to
be increased to 936 subjects.

VI. Summary A summary of this presentation is nowprovided.
We have addressed several issues, which are
listed on the left.

We began by reviewing key statistical concepts,
including describing the terms null hypothesis
(H0), alternative hypothesis (HA), P-value, Type I
error (a), Type II error (b), Power ¼ 1�b, and
effect size (D).

The effect size (D) can be either in the form of
difference or ratio of hazard rates, survival
probabilities, or median survival times.

Weconsider randomized trials inwhich subjects
are accrued for a period of A (days, months,
years) timeunits, and then followed for a further
period of F time units. For each subject, we
obtain information on whether or not the event
of interest had occurred, the time from study
entry (X) to the occurrence of the event or cen-
soring, and the treatment group allocation.

EXAMPLE

Exercise
regimen

? 
Disease progression in

colorectal cancer patients

Patients who stop exercise: drop-outs
Patients who start exercise: drop-ins

N ¼ 600; dc ¼ 0:05; dt ¼ 0:15

+
NITTadj ¼ 600= 1 � 0:05 � 0:15ð Þ2

¼ 600 � 1:56 ¼ 936

Issues:

� How many events to expect?
� How many subjects?
� Impact of length of accrual and

follow-up periods?
� Adjusting for loss of follow-up?
� What to do if subjects switch

therapies?

Key statistical concepts:

H0, HA, P-value,
Type I error (a), Type II error (b),
Power ¼ 1�b, effect size (D).

D can be y1 � y0 or y1/y0 where yi
are hazard rates (li), survival
probabilities (Si), or mean
survival times (mi)

A+F

accrual period follow-up (F)

X A+F0 A

A

A + F - X

time of entry into study
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When determining the sample size and/or
power, we typically first determine the expected
(i.e., required) number of events (NEV), after
which we then determine the study size
required (N).

The parameters a, b, and D are needed to deter-
mine NEV, which then gets “extrapolated” to N
by dividing by (a guestimate of) the probability
that a study participant gets an event (pEV).

Given a, b, andD, the required number of events
(NEV) for a trial involving equal study sizes in
two groups is given by formula (1) shown at the
left. This formula assumes that the sample sizes
(N1 and N0) in each group are large enough to
use a normal approximation. The formula also
assumes that the PH assumption is satisfied,
i.e., D is constant over time.

The power corresponding to a specified num-
ber of events (NEV) can be obtained using for-
mula (2), where P(Z < zEV) is the cumulative
probability below the value zEV of the standard
normal distribution.

The formula for NEV can be modified for
unequal sample sizes as shown at the left.

There are two approaches to determining the
total sample size N and the corresponding
sample sizes N1 and N0 in groups 1 and 0,
respectively, for R¼N1/N0 where N1þN0 ¼N.
Both formulae are determined by extrapolating
from NEV to N by dividing by (a guestimate of)
the probability that a study participant gets an
event (pEV).

Process for Determining N

Step 1: Determine NEV using a,
1�b, D

Step 2: Determine N¼ NEV/pEV

where
pEV ¼ Pr(study participant gets

event)

Formula for NEV:

NEV¼
z1�a=2þz1�b

� �
Dþ1ð Þ

D�1ð Þ

0
@

1
A

2

� � � � � �ð1Þ

Assumes: N1 ¼ N0, both large,
PH assumption

Power ¼ Pr Z < zEVð Þ � � � � � � � � � � � � ð2Þ

where

zEV ¼ ffiffiffiffiffiffiffiffiffi
NEV

p D� 1

Dþ 1

� �
� z1�a=2

	 


Unequal allocations: R¼N1/N0

where N1 6¼N0

NEV ¼
z1�a=2þz1�b

� �
RDþ1ð Þffiffiffiffi

R
p

D�1ð Þ

0
@

1
A

2

� � � ð3Þ

Formulae for N: Two versions

Both versions assume
R¼N1/N0 where N¼N1þN0

and extrapolate from NEV to N
using N ¼ NEV/pEV

where pEV ¼ Pr(event occurs)
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The formula shown at the left computes pEV
making use of the median follow-up time (MF)
for all study subjects, where MF ¼ A/2þ F, with
A denoting the accrual period and F denoting
the follow-up period for the study.

The second formula shown here computes pEV
making use of guestimates of the two para-
meters being compared to define the effect size
of interest. These twoparameters canbehazards
(li, i¼0,1), survival probabilities (Si, i ¼ 0,1) or
median survival times (mi, i¼0,1) for eachgroup.

Even if the parameters being guestimated
are Si, or mi, rather than li, one can transform
the guestimate into a corresponding value for
li if an exponential survival distribution is
assumed. In particular, if the guestimates are
median survival times (mi), it follows that
li ¼ln 2/mi.

To obtain N1 and N0, from N and R, the for-
mulae shown at the left can be used.

Three other issues were also considered as
shown at the left.

There needs to be a balance between the lengths
of accrual and follow-up periods. The cost
of accruing subjects into a study is, in general,
far greater than the cost of follow-up. In partic-
ular, a longer follow-up time has a larger impact
on sample size than a longer accrual time
(illustrated by example).

We can adjust for possible loss to follow-up in
sample size calculations if we have an estimate
from previous studies of the proportion of sub-
jects expected to be lost to follow-up (plof).

The adjusted sample size (NLOFadj) that accounts
for the loss to follow-up is obtained by dividingN
by (1-plof).

Formula using MF ¼ A/2 þ F (i.e.,
median FU time)

N ¼ NEV

R

Rþ 1
1� S1 MFð Þf g þ 1

Rþ 1
1� S0 MFð Þf g

Special case: Si(t) ¼ exp(�lit), i¼0,1

N ¼ NEV

R

Rþ 1
1� e�l1MF
� �þ 1

Rþ 1
1� e�l0MF
� �

Formula assuming exponential
survival Si(t) ¼ exp(�lit), i¼0,1,
and guestimates li, Si or mi.

N ¼ NEV

R

Rþ 1
pEV1 þ

1

Rþ 1
pEV0

where
pEVi ¼ 1� 1

liA
e�liF � e�li AþFð Þ
h i

li ¼ constant hazard for group i
R ¼ allocation ratio,
A ¼ accrual period,
F ¼ follow-up period

N1 ¼ [R/(Rþ1)]N and N0 ¼ N1/2

Other issues:

� Choosing accrual and follow-
up times;

� Adjusting for loss to follow-up;
� Adjusting for cross-over (drop-

in/drop-out)

Accrual versus follow-up periods:
A ¼ accrual period, F ¼ follow-up
period

� Need balance between lengths
of accrual and follow-up periods

� Cost of Accrual >> Cost of
follow-up

Adjusting for loss to follow-up:
Need
plof ¼ proportion of subjects

expected to be lost to follow-up
N ¼ study size with full follow-up

NLOFadj ¼ N= 1� plofð Þ
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The typical approach to analysis when study
subjects drop-in or drop-out of study groups
originally assigned is the Intention-to-Treat
principle (ITT): analyze subjects according to
their original treatment group allocation.

Another approach to this problem involves
adjusting the sample size for potential cross-
overs. An adjustment formula can be derived
by defining dc and dt as the potential propor-
tion of subjects who drop into the control and
intervention groups, respectively.

Then it can be shown that for an intention-
to-treat analysis, to maintain the study power,
the total study size should be adjusted to give a
sample size inflation factor. This adjustment
formula (NITTadj) is shown at the left.

Cross-over (drop-in or drop-out)
problems:

Typical approach to analysis uses
the ITT principle:

subjects analyzed according to the
originally assigned treatment group

Another analysis approach:
Adjust for crossovers

N ¼ original total sample size
(w/o adjusting for cross-overs)

dc ¼ proportion of (drop-outs)
from T to C

dt ¼ proportion of (drop-ins) from
C to T

Sample-size formula adjusted
for ITT:

NITTadj ¼
N

1� dc � dtð Þ2
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Detailed
Outline

I. Introduction: Background to Statistical
Decisions (pages 500–501)

A. Issues addressed in this chapter

1. How many subjects?

2. Accrual period for recruitment?

3. Follow-up period after accrual?

4. What to do if subjects switch therapies?

B. Review of statistical concepts

1. List of concepts: H0, HA, P-value, Type I
error (a), Type II error (b), Power ¼ 1�b,
effect size (D).

2. D can be y1 � y0 or y1/y0 where yi are hazard
rates (li), survival probabilities (Si), or mean
survival times (mi)

II. Design Considerations: Time-to-Event Out-
comes (pages 502–503)

A. Randomized trials scheduling: Subjects are

1. accrued for a period of A (days, months,
years) time units

2. followed for a further period of F time units.

3. observed as to whether or not the event or
censoring occurred over follow-up from
study entry (X)

4. randomly allocated into treatment groups

B. Study Size (N) versus Number of Events (NEV)

1. N¼ total # of study participants

2. NEV¼ # of participants who get event during
the study period

3. Process for determining N in time-to-event
studies:

Step i: Determine NEV using a, 1�b, D
Step ii: Determine N from NEV using

extrapolation formula

N ¼ NEV=pEV where

pEV ¼ Pr study participant gets eventð Þ
4. In practice: determine N first, since NEV

occurs after study begins

5. Determine N fromNEV using assumptions on

i. study duration

ii. distribution of event times.

III. Determining the Required Number of Events
(NEV) (pages 504–505)

A. Formula for NEV (Assumes: N1 ¼N0, both large,
PH assumption):

NEV ¼ z1�a=2 þ z1�b
� �

Dþ 1ð Þ
D� 1ð Þ

� �2

� � � � � � � � � � � � ð1Þ
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B. Formula for Power, given NEV, a, and D:

Power ¼ PrðZ < zEVÞ � � � � � � � � � � � � � � � � � � � � � � � � ð2Þ
where zEV ¼ ffiffiffiffiffiffiffiffiffi

NEV

p D�1
Dþ1

� �
� z1�a=2

h i
and Z�N(0,1)

C. Formula for NEV (Allows for unequal sample
sizes N1 and N0 where N ¼ N1 þ N0 and
R ¼ N1/N0):

NEV ¼ z1�a=2 þ z1�b
� �

RDþ 1ð Þffiffiffiffi
R

p
D� 1ð Þ

 !2

� � � � � � � � � � � � ð3Þ

D. Examples for a ¼ 0.05, 1�b ¼ 0.80,
D (¼ m1/m2) ¼ 2: R¼1 ) NEV¼71;
R¼2 ) NEV¼98

IV. Determining the Required Total Number of Par-
ticipants (N) (pages 505–511)

A. Two versions, each assume:

1. R¼N1/N0 where N ¼ N1þN0

2. N is extrapolated from NEV to N using
N ¼ NEV/pEV where pEV ¼ Pr(event occurs).

B. Version 1: Uses MF ¼ A/2 þ F (i.e., median FU
time)

1. Any survival distribution:

N ¼ NEV

R

Rþ 1
1� S1 MFð Þf g þ 1

Rþ 1
1� S0 MFð Þf g

2. Special case: assumes exponential survival
Si(t) ¼ exp(�lit), i¼0,1:

N ¼ NEV

R

Rþ 1
1� e�l1MF
� �þ 1

Rþ 1
1� e�l0MF
� �

C. Version 2: Uses guestimates for hazard func-
tions li, i¼0,1 and assumes exponential survival
Si(t)¼ exp(�lit), where li¼ constant hazard for
group i¼0,1.

N ¼ NEV

R

Rþ 1
pEV1 þ

1

Rþ 1
pEV0

where

pEVi ¼ 1� 1

liA
e�liF � e�li AþFð Þ
h i

D. Formula for obtaining N1 and N0 fromN and R:
N1 ¼ [R/(Rþ1)]N and N0 ¼ N1/2.
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E. Example using A¼2, F¼4. a¼0.05, b¼0.10,
D ¼ l0/l1 ¼ 2, R¼1.

1. Version 1: MF ¼ 5, N � 308

2. Version 2: l0 ¼ 0.10, l1 ¼ 0.05,
pEV1 ¼ 0.2207, pEV0 ¼ 0.3925, N � 309

F. Second Example: A¼15, F¼12, a¼0.05, b¼0.10,
m0 ¼ 6, m1 ¼ 10, R¼2.

1. Using version 2, must change mi to li using
the relationship li ¼ ln 2/mi.

2. m0 ¼ 6 ) l0 ¼ 0.1155; m1 ¼ 10 )
l1 ¼ 0.0693.

3. Computed NEV � 222.

4. Using version 2, computed pEV1¼0.7293,
pev0¼0.8812, and N � 285.

5. Obtaining N1 and N0 fromN and R: N1¼190,
N0¼95.

V. Other Design Issues (pages 511–514)

A. Three issues:

� Choosing accrual and follow-up times

� Adjusting for loss to follow-up

� Adjusting for cross-over (drop-in and/or
drop-out)

B. Accrual versus follow-up times

1. Need balance

2. Cost of accrual >> Cost of follow-up

3. (Colorectal cancer) Example: longer follow-
up time has > impact on sample size than
longer accrual time.

C. Adjusting for loss to follow-up.

1. Formula: NLOFadj ¼ N/(1�plof) where
plof ¼ proportion of subjects expected to be
lost to follow-up.

2. Example: N¼270, plof ¼ 0.25 NLOFadj ¼ 360.
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D. Adjusting for crossovers (drop-in/drop-out).

1. Typical analysis approach: Intention- to-
Treat (ITT); analyze what you randomize

2. Can adjust sample size to allow for cross-
overs.

a. Formula: NITTadj ¼ N/(1 � dc � dt)
2,

where
N ¼ original total sample size

dc ¼ proportion of (drop-outs) from T
to C

dt¼ proportion of (drop-ins) from C to T

b. Table of sample size inflation factors for
different combinations of dc and dt.

i. Subjects receiving opposite treat-
ment from randomized allocation
“dilute” effect of intervention unless
adjusted for.

c. Example (Exercise regimen effect on
colorectal cancer?): N¼600, dc ¼ 0.05,
dt ¼ 0.15 ) NITTadj ¼ 936.

VI. Summary (pages 514–517)

Practice
Exercises

Answer questions 1–10 as true or false (circle T or F)

T F 1. In a randomized trial comparing 2 groups, the
null hypothesis (H0) assumes that the survival
experience in the groups is different.

T F 2. The effect size is typically determined in the form
of a difference of hazard rates.

T F 3. Suppose that a time-to-event study is designed to
determine if there is reduction in annual hazard
rates from 5% to 2.5%. Then the effect size of
interest defined in terms of a ratio measure is 2.

T F 4. The P-value is the probability that the null
hypothesis is true given the observed study data.

T F 5. Consider a two-group randomized clinical trial,
in which the randomization process is not sys-
tematically flawed. Then the use of a P-value to
compare the distributions of a known risk factor
(e.g., gender) in each group is uninformative.

T F 6. When determining sample size for a time-to-
event study, one typically first determines the
expected (i.e., required) number of events (NEV)
prior to determining the study size required (N).
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T F 7. When carrying out a time-to-event study, one
typically recruits the study participants prior to
observing the number of events that actually
occur.

T F 8. A formula for the total sample size (N) for a time-
to-event study can be derived by multiplying the
required number of events (NEV) by the probabil-
ity (pEV) that a study subject will get an event
since study entry, i.e., N ¼ NEV � pEV.

T F 9. Suppose the allocation ratio (R ¼ N1/N0) for sub-
jects into two treatment groups is 1/2, and it is
determined that the total study size (N) required
is 300. Then N1 ¼ 100 and N0 ¼ 200.

T F 10. Suppose that it is determined that the total study
size required (N) is 300 without considering the
possibility of loss to follow-up during the study.
If, nevertheless, the investigators expect that 20%
of study subjects would be lost to follow-up, Then
to adjust for possible loss to follow-up, the sam-
ple size should be increased to 1500 subjects.

Consider a randomized trial in which the accrual period
(A) is 2 years and the follow-up period (F) is 3 years.
Suppose further that the allocation ratio (R) is 2, a¼.05,
b¼.20, and the study aim is to increase the median survival
time (mi) in the control group from 1.5 years to 2.2 years in
the intervention group.

11. Assuming an exponential survival rate in both groups,
transform the given median survival times (mi) to
corresponding hazard rates (li).

12. Based on your answer to question 11, what is D?
13. Determine the number of events (NEV) required for

the study.

14. Determine the probability of getting an event (pEVi)
for each group, i¼0,1.

15. Determine the total sample size (N) required for this
study.

16. Determine the sample sizes in each group (i.e., N0

and N1).

17. Based on your answer to question 14, how would
you adjust your total sample size to consider loss-to-
follow-up of 25%?

18. Based on your answer to question 17, determine the
sample sizes required in each group (i.e., N0 and N1).

19. Based on your answer to question 17, how would you
adjust your total sample size to consider cross-over
percentages of dc ¼ .05 and dt ¼0.10?

20. Based on your answer to question 17, determine the
sample sizes required in each group (i.e., N0 and N1).
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Test Consider a randomized trial in which the accrual period (A)
is 2 years and the follow-up period (F) is 2 years. Suppose
further that the allocation ratio (R) is 2, a¼.05, b¼.10, and
the study aim is to reduce hazard rate (li) in the control
group from 10% to 5% in the intervention group.

1. Use Formula 1 (see detailed outline) to determine the
required number of events (NEV), total study size (N),
and sample sizes required in each group (i.e., N0 andN1).

2. Use Formula 2 (see detailed outline) to determine the
required number of events (NEV), total study size (N),
and sample sizes required in each group (i.e., N0 andN1).

3. Howdo the total sample sizes (N) obtained inquestions 1
and 2 compare?

4. Based on your answer to question 2, how would you
adjust your total sample size to consider loss-to-follow-
up of 25%?

5. Based on your answer to question 4, determine the
sample sizes required in each group (i.e., N0 and N1).

6. Based on your answer to question 4, how would you
adjust your total sample size to consider cross-over
proportions of dc ¼ .05 and dt ¼ 0.10?

7. Based on your answer to question 6, determine the
sample sizes required in each group (i.e., N0 and N1).

8. Using the total study size (N) calculated in question 6,
these study subjects will need to be recruited at an
accrual rate of r¼N/A per year, where A¼2. If this
accrual rate is not feasible, i.e., you couldn’t find r
subjects per year, how can you adjust your sample
size to make your study feasible?

Answers to
Practice
Exercises

1. F: H0 assumes that the survival experience in the two
groups is the same.

2. F: The effect size can be either in the form of a differ-
ence or ratio of hazard rates, survival probabilities, or
median survival times.

1. T

2. F: The P-value is the probability of obtaining a result
as or more extreme than the result obtained in one’s
study given that the that the null hypothesis is true.

3. T

4. T

7. T

8. F: N ¼ NEV/pEV.

9. T
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10. F: The sample size should be increased to 375 sub-
jects.

11. Using the formula li ¼ ln 2/mi, i¼0,1, we obtain
m0 ¼ 1.5 ) l0 ¼ 0.4621; m1 ¼ 2.2 ) l1 ¼ 0.3151.

12. D ¼ l0//l1 ¼ 0.4621/0.3151 ¼ 1.467.

13. NEV ¼ 1:96þ 0:84ð Þ 2 1:467ð Þ þ 1ð Þffiffiffi
2

p
1:467� 1ð Þ

 !2

¼ 129:91, which

rounds to 130 required events.

14. Using Formula 2, we obtain

pEV1 ¼ 1� 1

0:3151ð Þ 2ð Þ e� 0:3151ð Þ 3ð Þ � e� 0:3151ð Þ 2þ3ð Þ
h i

¼ 1� 0:2883 ¼ 0:7117

pEV0 ¼ 1� 1

0:4621ð Þ 2ð Þ e� 0:4621ð Þ 3ð Þ � e� 0:4621ð Þ 2þ3ð Þ
h i

¼ 1� 0:1632 ¼ 0:8368

15. N ¼ 130

2

2 + 1
0:7117ð Þ þ 1

2þ 1
0:8368ð Þ

¼ 172:55 � 173

16. N1 ¼ [2/(2þ1)]173 ¼ 115.33 � 115 and
N0 ¼ 115.33/2 ¼ 57.67 � 58

17. NLOFadj ¼ 173/(1 � 0.25) ¼ 230.67 � 231

18. N1 ¼ [2/(2þ1)]231 ¼ 154 and N0 ¼ 154/2 ¼ 77

19. NITTadj ¼ 231/(1 � 0.05 �0.10)2 ¼ 319.72 � 320

20. N1¼ [2/(2þ1)]320¼ 213.33� 213 and N0¼ 213.33/2¼
106.665 � 107

524 10. Design Issues for Randomized Trials



Computer

Appendix:

Survival

Analysis

on the

Computer

D.G. Kleinbaum and M.Klein, Survival Analysis: A Self-Learning Text, Third Edition,
Statistics for Biology and Health, DOI 10.1007/978-1-4419-6646-9,
# Springer Science+Business Media, LLC 2012

525



In this appendix, we provide examples of computer
programs for carrying out the survival analyses described
in this text. This appendix does not give an exhaustive
survey of all computer packages currently available, but
rather is intended to describe the similarities and differ-
ences among four of the most widely used packages. The
software packages that we describe are Stata (version
10.0), SAS (version 9.2), SPSS (PASW 18), and R. A com-
plete description of these packages is beyond the scope of
this appendix. Readers are referred to the built-in help
functions for each program for further information.

Datasets
Most of the computer syntax and output presented in this
appendix are obtained from running step-by-step survival
analyses on the “addicts” dataset. The other dataset that is
utilized in this appendix is the “bladder cancer” dataset for
analyses of recurrent events. The “addicts” and “bladder
cancer” data are described below and can be downloaded
from our website at http://www.sph.emory.edu/dkleinb/
surv3.htm. On this website, we also provide many of the
other datasets that have been used in the examples and
exercises throughout this text. The data on our website are
provided in five forms (1) as Stata datasets (with a .dta
extension), (2) as SAS datasets (with a .sas7bdat exten-
sion), (3) as SPSS datasets (with a .sav extension), (4) as
R datasets (with an .rda extension), and (5) as text datasets
(with a .dat extension).

Addicts Dataset (addicts.dat)
In a 1991 Australian study by Caplehorn et al., two metha-
done treatment clinics for heroin addicts were compared
to assess patient time remaining under methadone treat-
ment. A patient’s survival time was determined as the time
(in days) until the person dropped out of the clinic or was
censored. The two clinics differed according to its live-in
policies for patients. The variables are defined as follows:

ID – Patient ID
SURVT – The time (in days) until the patient dropped out

of the clinic or was censored
STATUS – Indicates whether the patient dropped out of the

clinic (coded 1) or was censored (coded 0)
CLINIC – Indicates which methadone treatment clinic the

patient attended (coded 1 or 2)
PRISON – Indicates whether the patient had a prison

record (coded 1) or not (coded 0)
DOSE – A continuous variable for the patient’s maximum

methadone dose (mg/day)
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Bladder Cancer Dataset (bladder.dat)
The bladder cancer dataset contains recurrent event out-
come information for eighty-six cancer patients followed
for the recurrence of bladder cancer tumor after transure-
thral surgical excision (Byar andGreen 1980). The exposure
of interest is the effect of the drug treatment of thiotepa.
Control variables are the initial number and initial size of
tumors. The data layout is suitable for a counting processes
approach. The variables are defined as follows:

ID – Patient ID (may have multiple observations for the
same subject)

EVENT – Indicates whether the patient had a tumor
(coded 1) or not (coded 0)

INTERVAL – A counting number representing the order of
the time interval for a given subject (coded 1 for the
subject’s first time interval, coded 2 for a subject’s
second time interval, etc.)

START – The starting time (in months) for each interval
STOP – The time of event (in months) or censorship for

each interval
TX – Treatment status (coded 1 for treatment with thiotepa

and 0 for the placebo)
NUM – The initial number of tumors
SIZE – The initial size (in centimeters) of the tumor

Software
What follows is a detailed explanation of the code and
output necessary to perform the type of survival analyses
described in this text. The rest of this appendix is divided
into four broad sections, one for each of the following
software packages:

A. Stata

B. SAS

C. SPSS

D. R Software

Each of these sections is self-contained, allowing the
reader to focus on the particular statistical package of his
or her interest.

A. Stata
Analyses using Stata are obtained by typing the appropri-
ate statistical commands in the Stata Commandwindow or
in the Stata Do-file Editor window. The key commands
used to perform the survival analyses are listed below.
These commands are case sensitive and lower-case letters
should be used.
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stset – Declares data inmemory to be survival data. Used to
define the “time-to-event” variable, the “status” variable,
and other relevant survival variables. Other Stata Com-
mands beginning with st utilize these defined variables.

sts list – Produces Kaplan-Meier (KM) or Cox-adjusted
survival estimates in the output window. The default is
KM survival estimates.

sts graph – Produces plots of Kaplan-Meier (KM) survival
estimates. This command can also be used to produce
Cox-adjusted survival plots.

sts generate – Creates a variable in the working dataset
that contains Kaplan-Meier or Cox adjusted survival
estimates.

sts test – Used to perform statistical tests for the equality of
survival functions across strata.

stphplot – Produces plots of log-log survival against the log
of time for the assessment of the proportional hazards
(PH) assumption. The user can request KM log-log sur-
vival plots or Cox adjusted log-log survival plots.

stcoxkm – Produces KM survival plots and Cox adjusted
survival plots on the same graph.

stcox – Used to run a Cox proportional hazard model, a
stratified Cox model, or an extended Cox model (i.e.,
containing time varying covariates).

stphtest – Performs statistical tests on the PH assumption
based on Schoenfeld residuals. Use of this command
requires that a Cox model be previously run with the
command stcox and the schoenfeld() option.

streg – Used to run parametric survival models.

Four windows will appear when Stata is opened. These win-
dows are labeled Stata Command, Stata Results, Review,
and Variables. The user can click on File ! Open to select
a working dataset for analysis. Once a dataset is selected,
the names of its variables appear in the Variables window.
Commands are entered in the Stata Commandwindow. The
output generated by commands appears in the Results win-
dow after the return key is pressed. The Review window
preserves a history of all the commands executed during
the Stata session. The commands in the Review window
canbe saved, copied, or editedas theuser desires. Command
can also be run from the Review window by double-clicking
on the command. Commands can also be saved in a file by
clicking on the log button on the Stata tool bar.

Alternatively, commands can be typed, or pasted into the
Do-file Editor. The Do-file Editor window is activated by
clicking on Window ! Do-file Editor or by simply clicking
on the Do-file Editor button on the Stata tool bar. Com-
mands are executed from the Do-file Editor by clicking on
Tools ! Do. The advantage of running commands from
the Do-file Editor is that commands need not be entered
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and executed one at a time as they do from the Stata
Command window. The Do-file Editor serves a similar
function as the program editor in SAS. In fact, by typing
#delim in the Do-file Editor window, the semicolon
becomes the delimiter for completing Stata statements
(as in SAS) rather than the default carriage return.

The survival analyses demonstrated in Stata are as follows:

1. Estimating survival functions (unadjusted) and
comparing them across strata

2. Assessing the PH assumption using graphical
approaches

3. Running a Cox PH model

4. Running a stratified Cox model

5. Assessing the PH assumption with a statistical test

6. Obtaining Cox adjusted survival curves

7. Running an extended Cox model

8. Running parametric models

9. Running frailty models

10. Modeling recurrent events

The first step is to activate the addicts dataset by clicking
on File ! Open and selecting the Stata dataset, addicts.
dta. Once this is accomplished, you will see the command
use “addicts.dta”, clear in the Review window and
Results window. This indicates that the addicts dataset is
activated in Stata’s memory.

To perform survival analyses, you must indicate which
variable is the “time-to-event” variable and which variable
is the “status” variable. Rather than program this in every
survival analysis command, Stata provides a way to pro-
gram it once with the stset command. All survival com-
mands beginning with st utilize the survival variables
defined by stset as long as the dataset remains in active
memory. The code to define the survival variables for the
addicts data is as follows:

stset survt, failure(status==1) id(id)

Following the word stset comes the name of the “time-to-
event” variable. Options for Stata Commands follow a
comma. The first option used is to define the variable and
value that indicates an event (or failure) rather than a
censorship. Without this option, Stata assumes that all
observations had an event (i.e., no censorships). Notice
that two equal signs are used to express equality. A single
equal sign is used to designate assignment. The next option
defines the id variable as the variable, ID. This is unneces-
sary with the addicts dataset since each observation
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represents a different patient (cluster). However if there
were multiple observations and multiple events for a single
subject (cluster), Stata can provide robust variance esti-
mates appropriate for clustered data.

The stset command will add four new variables to the
dataset. Stata interprets these variables as follows:

_t – The “time-to-event” variable

_d – The “status variable” (coded 1 for an event and 0 for
a censorship)

_t0 – The beginning “time variable.” All observations start
at time 0 by default

_st – Indicates which variables are used in the analysis. All
observations are used (coded 1) by default

To see the first 10 observations printed in the output
window, enter the command:

list in 1/10

The command stdes provides descriptive information
(output below) of survival time.

stdes

The commands strate and stir can be used to obtain inci-
dent rate comparisons for different categories of specified
variables. The strate command lists the incident rates by
CLINIC while the stir command gives rate ratios and rate
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differences. Type the following commands one at a time
(output omitted):

strate clinic
stir clinic

For the survival analyses that follow, it is assumed that the
command stset has been run for the addicts dataset, as
demonstrated on the previous page.

1. ESTIMATING SURVIVAL FUNCTIONS
(UNADJUSTED) AND COMPARING
THEM ACROSS STRATA

To obtain Kaplan-Meier survival estimates use the com-
mand sts list. The code and output follow:

sts list

If we wish to stratify by CLINIC and compare the survival
estimates side-to-side for specified time points, we use the
by() and compare() option. The code and output follow:
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sts list, by(clinic) compare at (0 20 to 1080)

Notice that the survival rate for CLINIC=2 is higher than
CLINIC=1. Other survival times could have been requested
using the compare() option.

To graph the Kaplan-Meier survival function (against
time), use the code:

sts graph
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The code and output that provide a graph of the Kaplan-
Meier survival function stratified by CLINIC follow:

sts graph, by(clinic)

Kaplan-Meier survival estimates, by clinic

analysis time
0 500 1000

0.00

0.25

0.50

0.75

1.00

clinic 1

clinic 2

The failure option graphs the failure function (the cumu-
lative risk) rather than the survival (zero to one rather than
one to zero). The code follows (output omitted):

sts graph, by(clinic) failure

The code to run the log rank test on the variable CLINIC
(and output) follows:

sts test clinic
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The Wilcoxon, Tarone-Ware, Peto, and Flemington-
Harrington tests can also be requested. These tests are
variations of the log rank test that weight each observation
differently. The Wilcoxon test weights the jth failure time
by ni (the number still at risk). The Tarone-Ware test
weights the jth failure time by

ffiffiffiffi
nj

p
. The Peto test weights

the jth failure time by the survival estimate, ~sðtjÞ calculated
over all groups combined. This survival estimate, ~sðtjÞ, is
similar but not exactly equal to the Kaplan-Meier survival
estimate. The Flemington-Harington test uses the Kaplan-
Meier survival estimate, ŝðtÞ, over all groups to calculate its
weights for the jth failure time, ŝðtj�1Þp½1� ŝðtj�1Þ�q, so it
takes two arguments (p and q). The code follows (output
omitted):

sts test clinic, wilcoxon
sts test clinic, tware
sts test clinic, peto
sts test clinic, fh(1,3)

Notice that the default test for the sts test command is the
log rank test. The choice of which weighting of the test
statistic to use (e.g., log rank or Wilcoxon) depends on
which test is believed to provide the greatest statistical
power, which in turn depends on how it is believed the
null hypothesis is violated. However, one should make an
a priori decision on which statistical test to use rather than
fish for a desired p-value.

A stratified log rank test for CLINIC (stratified by PRISON)
can be run with the strata option. With the stratified
approach, the observed minus expected number of events
are summed over all failure times for each group within
each stratum and then summed over all strata. The code
follows (output omitted):

sts test clinic, strata(prison)

The sts generate command can be used to create a new
variable in the working dataset containing the KM survival
estimates. The following code defines a new variable called
SKM (the variable name is the user’s choice) that contains
KM survival estimates stratified by CLINIC:

sts generate skm=s, by(clinic)

The ltable command produces life tables. Life tables are an
alternative approach to Kaplan-Meier that are particularly
useful if you do not have individual-level data. The code
and output that follows provide life table survival esti-
mates, stratified by CLINIC, at the time points (in days)
specified by the interval() option:
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ltable survt status, by(clinic) interval(60 150 200 280 365 730 1095)

2. ASSESSING THE PH ASSUMPTION USING
GRAPHICAL APPROACHES

Three graphical approaches for the assessment of the PH
assumption for the variable CLINIC are demonstrated:

1) Log-log Kaplan-Meier survival estimates (stratified by
CLINIC) plotted against time (or against the log of
time)

2) Log-log Cox adjusted survival estimates (stratified by
CLINIC) plotted against time

3) Kaplan-Meier survival estimates and Cox adjusted
survival estimates plotted on the same graph.

All three approaches are somewhat subjective yet hopefully
informative. The first two approaches are based on whether
the log log survival curves are parallel for different levels of
CLINIC. The third approach is to determine if the Cox
adjusted survival curve (not stratified) is close to the KM
curve. In other words, are predicted values from the PH
model (fromCox) close to the “observed” values using KM?

The first two approaches use the stphplot command
while the third approach uses the stcoxkm command.
The code and output for the log-log Kaplan-Meier survival
plots follow:
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stphplot, by(clinic) nonegative
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−5.0845

1.38907

The left side of the graph seems jumpy for CLINIC=1 but it
only represents a few events. It also looks like there is some
separation between the plots at the later times (right side).
The nonegative option in the code requests log(-log)
curves rather than the default -log(-log) curves. The choice
is arbitrary. Without the option, the curves would go down-
ward rather than upward (left-to-right).

Stata (as well as SAS) plot log(survival time) rather than
survival time on the horizontal axis by default. As far as
checking the parallel assumption, it does not matter if log
(survival time) or survival time is on the horizontal axis.
However, if the log log survival curves look like straight
lines with log(survival time) on the horizontal axis, then
there is evidence that the “time-to-event” variable follows a
Weibull distribution. If the slope of the line equals one,
then there is evidence that the survival time variable
(SURVT) follows an exponential distribution – a special
case of the Weibull distribution. For these situations, a
parametric survival model can be used.

It may be visually more informative to graph the log log
survival curves against survival time (rather than log sur-
vival time). The nolntime option can be used to put sur-
vival time on the horizontal axis. The code and output
follows:
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stphplot, by(clinic) nonegative nolntime
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The graph suggests that the curves begin to diverge over
time.

The stphplot command can also be used to obtain log-log
Cox adjusted survival estimates. The code follows:

stphplot, strata(clinic) adjust(prison dose) nonegative nolntime

The log-log curves are adjusted for PRISON and DOSE
using a stratified COX model on the variable CLINIC. The
mean values of PRISON and DOSE are used for the adjust-
ment. The output follows:
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The Cox adjusted curves look very similar to the KM
curves.
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The stcoxkm command is used to compare Kaplan-Meier
survival estimates and Cox adjusted survival estimates
plotted on the same graph. The code and output follow:

stcoxkm, by(clinic)
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The KM and adjusted survival curves are very close
together for CLINIC=1 and less so for CLINIC=2. These
graphical approaches suggest that there is some violation
with the PH assumption. The predicted values are Cox
adjusted for CLINIC, and therefore assume the PH
assumption. Notice that the predicted survival curves
are not parallel by CLINIC even though we are adjusting
for CLINIC. It is the log-log survival curves, rather than
the survival curves, that are forced to be parallel by Cox
adjustment.

The same graphical analyses can be performed with
PRISON and DOSE. However, DOSE would have to be
categorized since it is a continuous variable.

3. RUNNING A COX PH MODEL
For a Cox PHmodel, the key assumption is that the hazard
is proportional across different patterns of covariates. The
first model that is demonstrated contains all three covari-
ates: PRISON, DOSE, and CLINIC. In this model, we are
assuming the same baseline hazard for all possible pat-
terns of these covariates. In other words, we are accepting
the PH assumption for each covariate (perhaps incor-
rectly). The code and output follow:
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stcox prison clinic dose, nohr

The output indicates that it took five iterations for the log
likelihood to converge at �673.40242. The iteration history
typically appears at the top of Stata model output; how-
ever, the iteration history will subsequently be omitted.
The final table lists the regression coefficients, their stan-
dard errors, aWald test statistic (z) for each covariate, with
corresponding p-value, and 95% confidence interval.

The nohr option in the stcox command requests the
regression coefficients rather than the default exponen-
tiated coefficients (hazard ratios). If you want the expo-
nentiated coefficients, omit the nohr option. The code and
output follow:

stcox prison clinic dose
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This table contains the hazard ratios, its standard errors,
and corresponding confidence intervals. Notice that you
do not need to supply the “time-to event” variable or the
status variable when using the stcox command. The stcox
command uses the information supplied from the stset
command. A Cox model can also be run using the cox
command, which does not rely on the stset command
having previously been run. The code follows:

cox survt prison clinic dose, dead(status)

Notice that with the cox command, we have to list the
variable SURVT. The dead() option is used to indicate
that the variable STATUS distinguishes events from cen-
sorship. The variable used with the dead() option needs to
be coded nonzero for events and zero for censorships. The
output from the cox command follows:

The output is identical to that obtained from the stcox
command except that the regression coefficients are
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given by default. The hr option for the cox command
supplies the exponentiated coefficients.

Notice with the output that the default method of handling
ties (i.e., when multiple events happen at the same time) is
the Breslow method. If you wish to use more exact meth-
ods, you can use the exactp option (for the exact partial
likelihood) or the exactm option (for the exact marginal
likelihood) in the stcox or cox command. The exact meth-
ods are computationally more intensive and typically have
a slight impact on the parameter estimates. However, if
there are a lot of events that occur at the same time, then
exact methods are preferred. The code and output follow:

stcox prison clinic dose, nohr exactm

Alternatively, you could use Efron method of handling ties.
This is the method that the R statistical package uses as its
default. The code follows (output omitted):

stcox prison clinic dose, nohr efron

Suppose youare interested in runningaCoxmodelwith two
interaction terms with PRISON. The generate command
can be used to define new variables. The variables CLIN_PR
and CLIN_DO are product terms that are defined from
CLINIC� PRISON and CLINIC�DOSE. The code follows:

generate clin_pr=clinic*prison
generate clin_do=clinic*dose

Type describe or list to see that the new variables are in
the working dataset.
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The following code runs the Cox model with the two
interaction terms:

stcox prison clinic dose clin_pr clin_do, nohr

The lrtest command can be used to perform likelihood
ratio tests. For example, to perform a likelihood ratio test
on the two interaction terms, CLIN_PR and CLIN_DO, in
the preceding model, we can save the –2 log likelihood
statistic of the full model in the computer’s memory by
typing the following command:

lrtest, saving(0)

Now, the reduced model (without the interaction terms)
can be run (output omitted) by typing:

stcox prison clinic dose

After the reduced model is run, the following command
provides the results of the likelihood ratio test comparing
the full model (with the interaction terms) to the reduced
model:
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lrtest

The resulting output follows:

The p-value of 0.1648 is not significant at the alpha = 0.05
level.

4. RUNNING A STRATIFIED COX MODEL
If the proportional hazard assumption is not met for the
variable CLINIC, but is met for the variables PRISON and
DOSE, then a stratified Cox analysis can be performed.
The stcox command can be used to run a stratified Cox
model. The following code (with output) runs a Cox model
stratified on CLINIC:

stcox prison dose, strata(clinic)

The strata() option allows up to five stratified variables.

A stratified Cox model can be run including the two inter-
action terms. Recall that the generate command created
these variables in the previous section. This model allows
for the effect of PRISON and DOSE to differ for different
values of CLINIC. The code and output follow:
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stcox prison dose clin_pr clin_do, strata(clinic) nohr

Suppose we wish to estimate the hazard ratio for
PRISON=1 vs. PRISON=0 for CLINIC=2. This hazard
ratio can be estimated by exponentiating the coefficient
for prison plus 2 times the coefficient for the clinic-prison
interaction term. This expression is obtained by substitut-
ing the appropriate values into the hazard in both the
numerator (for PRISON=1) and denominator (for
PRISON=0) (see below):

HR ¼ h0ðtÞ exp½1b1 þ b2DOSE þ ð2Þð1Þb3 þ b4CLIN DO�
h0ðtÞ exp½0b1 þ b2DOSE þ ð2Þð0Þb3 þ b4CLIN DO�

¼ expðb1 þ 2b3Þ:

The lincom command can be used to exponentiate linear
combinations of parameters. Run this command directly
after running the model to estimate the HR for PRISON
where CLINIC=2. The code and output follow:

lincom prisonþ2*clin_pr, hr
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Models can also be run on a subsetted portion of the data
using the if statement. The following code (with output)
runs a Cox model on the data where CLINIC=2:

stcox prison dose if clinic==2

The hazard ratio estimates for PRISON=1 vs. PRISON=0
(for CLINIC=2) are exactly the same using the stratified
Cox approach with product terms and the subsetted data
approach (0.9210324).

5. ASSESSING THE PH ASSUMPTION
WITH A STATISTICAL TEST

The stphtest command can be used to perform a statistical
test. A statistical test gives objective criteria for assessing
the PH assumption compared to using the graphical
approach. This does not mean that this statistical test is
better than the graphical approach. It is just more objec-
tive. In fact, the graphical approach is generally more
informative for descriptively characterizing the form of a
PH violation.

The command stphtest outputs a PH global test for all the
covariates simultaneously and can also be used to obtain a
test for each covariate separately with the detail option. To
run these tests, you must obtain Schoenfeld residuals for
the global test and scaled Schoenfeld residuals for separate
tests with each covariate. The idea behind the PH test is
that if the PH assumption is satisfied, then the residuals
should not be correlated with survival time (or ranked
survival time). On the other hand, if the residuals tend to
be positive for subjects who become events at a relatively
early time and negative for subjects who become events at
a relatively late time (or vice versa), then there is evidence
that the hazard ratio is not constant over time (i.e., PH
assumption is violated).
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Before the stphtest can be implemented, the stcox
commandneeds to be run to obtain the Schoenfeld residuals
(with the schoenfeld() option) and the scaled Schoenfeld
residuals (with the scaledsch() option). The names of newly
defined variables are in the parentheses: schoen* creates
SCHOEN1, SCHOEN2, and SCHOEN3 while scaled* cre-
ates SCALED1, SCALED2, and SCALED3. These variables
contain the residuals for PRISON, DOSE, and CLINIC,
respectively (the order that the variables were entered in
the model). The user is free to type any variable name in
the parentheses. The Schoenfeld residuals are used for the
global test while the scaled Schoenfeld residuals are used for
the testing of the PH assumption for individual variables:

stcox prison dose clinic, schoenfeld(schoen*) scaledsch(scaled*)

Once the residuals are defined, the stphtest command can
be run. The code and output follow:

stphtest, rank detail

The tests suggest that the PH assumption is violated for
CLINIC with the p-value at 0.0012. The tests do not suggest
violation of the PH assumption for PRISON or DOSE.

The plot() option of the stphtest command can be used to
produce a plot of the scaled Schoenfeld residuals for
CLINIC against survival time ranking. If the PH assump-
tion ismet, the fitted curve should look horizontal since the
scaled Schoenfeld residuals would be independent of sur-
vival time. The code and graph follow:
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stphtest, rank plot(clinic)
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The fitted curve slopes slightly downward (not horizontal).

6. OBTAINING COX ADJUSTED SURVIVAL CURVES
Adjusted survival curves can be obtained with the sts
graph command. Adjusted survival curves depend on the
pattern of covariates. For example, the adjusted survival
estimates for a subject with PRISON=1, CLINIC=1, and
DOSE=40 are generally different than for a subject with
PRISON=0, CLINIC=2, and DOSE=70. The sts graph com-
mand produces adjusted baseline survival curves. The fol-
lowing code produces an adjusted survival plot with
PRISON=0, CLINIC=0, and DOSE=0 (output omitted):

sts graph, adjustfor(prison dose clinic)

It is probably of more interest to create adjusted plots for
reasonable patterns of covariates (CLINIC=0 is not even a
valid value). Suppose we are interested in graphing the
adjusted survival curve for PRISON=0, CLINIC=2, and
DOSE=70. We can create new variables with the generate
command that can be used with the sts graph command:

generate clinic2=clinic-2
generate dose70=dose-70

These variables (PRISON, CLINIC2, and DOSE70) pro-
duce the desired pattern of covariate when each is set to
zero. The following code produces the desired results:

sts graph, adjustfor(prison dose70 clinic2)
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Survivor function
adjusted for prison dose70 clinic2

analysis time
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Adjusted stratified Cox survival curves can be obtained
with the strata() option. The following code creates two
survival curves stratified by clinic (CLINIC=1, PRISON=0,
and DOSE=70) and (CLINIC=2, PRISON=0, and
DOSE=70):

sts graph, strata(clinic) adjustfor(prison dose70)

Survivor functions, by clinic
adjusted for prison dose70

analysis time
0 500 1000

0.00

0.25

0.50

0.75

1.00

clinic 1

clinic 2

The adjusted curves suggest that there is a strong effect
from CLINIC on survival.
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Suppose the interest is in comparing adjusted survival
plots of PRISON=1 to PRISON=0 stratified by CLINIC.
In this setting, the sts graph command cannot be used
directly since we cannot simultaneously define both levels
of prison (PRISON=1 and PRISON=0) as the baseline level
(recall sts graph plots only the baseline survival function).
However, survival estimates can be obtained using the sts
generate command twice, once where PRISON=0 is
defined as baseline and once where PRISON=1 is defined
as baseline. The following code creates variables contain-
ing the desired adjusted survival estimates:

generate prison1=prison-1
sts generate scox0=s, strata(clinic) adjustfor(prison dose70)
sts generate scox1=s, strata(clinic) adjustfor(prison1 dose70)

The variables SCOX1 and SCOX0 contain the survival esti-
mates for PRISON=1 and PRISON=0, respectively, adjust-
ing for dose and stratifying by clinic. The graph command
is used to plot these estimates. If you are using a higher
version of Stata than Stata 7.0 (e.g., Stata 8.0), then you
should replace the graph command with the graph7 com-
mand. The code and output follow:

Graph7 scox0 scox1 survt, twoway symbol([clinic] [clinic]) xlabel(365,730,1095)

symbols

subsetted by clinic==1
survival time in days

365 730 1095

.009935

1

O for prison=0, X for prison=1

We can also graph PRISON=1 and PRISON=0 subsetting
the data where CLINIC=1. The option twoway requests a
two-way scatter plot. The options symbol, xlabel, and title
request the symbols, axis labels, and title, respectively:
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graph7 scox0 scox1 survt if clinic==1, twoway symbol(ox) xlabel(365,730,1095)
t1(“ symbols O for prison=0, X for prison=1”) title(“subsetted by clinic==1”)
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.009935

1095730365

 S(t+0), adjusted S(t+0), adjusted

survival time in days

7. RUNNING AN EXTENDED COX MODEL
If the PH assumption is not satisfied, a possible strategy is
to run a stratified Cox model. Another strategy is to run a
Cox model with time-varying covariates (an extended Cox
model). The challenge of running an extended Coxmodel is
to choose the appropriate function of survival time to
include in the model.

Suppose we want to include a time dependent covariate
DOSE times the log of time. This product term could be
appropriate if the hazard ratio comparing any two levels of
DOSE monotonically increases (or decreases) over time.
The tvc option( ) of the stcox command can be used to
declare DOSE a time varying covariate that will be multi-
plied by a function of time. The specification of that func-
tion of time is stated in the texp option with the variable _t
representing time. The code and output for a model con-
taining the time varying covariate, DOSE x ln(_t), follow:
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stcox prison clinic dose, tvc(dose) texp(ln(_t)) nohr

The parameter estimate for the time-dependent covariate,
DOSE x ln(_t), is 0.0085751; however, it is not statistically
significant with a Wald test p-value of 0.184.

A heaviside function can also be used. The following code
runs a model with a time-dependent variable equal to
CLINIC if time is greater than or equal to 365 days and
0 otherwise.

stcox prison dose clinic, tvc(clinic) texp(_t>=365) nohr

Stata recognizes the expression (_t>=365) as taking the
value 1 if survival time is �365 days and 0 otherwise. The
output follows:
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Unfortunately, the texp option can only be used once in the
stcox command. This makes it more difficult to run the
equivalentmodel with two heaviside functions. However, it
can be accomplished using the stsplit command, which
adds extra observations to the working dataset. The follow-
ing code creates a variable called V1 and adds new obser-
vations to the dataset:

stsplit v1, at(365)

After the above stsplit command is executed, any subject
followed more than 365 days is represented by two obser-
vations rather than one. For example, the first subject
(ID=1) had an event on the 428th day; the first observation
for that subject shows no event between 0 and 365 days
while the second observation shows an event on the 428th

day. The newly defined variable v1 has the value 365 for
observations with survival time exceeding or equal to 365
and 0 otherwise. The following code lists the first ten
observations for the requested variables (output follows):
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list id _t0 _t _d clinic v1 in 1/10

With the data in this form, two heaviside functions can
actually be defined in the data using the following code:

generate hv2=clinic*(v1/365)
generate hv1=clinic*(1-(v1/365))

The following code and output list a sample of the observa-
tions (in 159/167) with the observation number sup-
pressed (the noobs option):

list id _t0 _t clinic v1 hv1 hv2 in 159/167, noobs

With the two heaviside functions defined in the split data, a
time dependent model using these functions can be run
with the following code (the output follows):
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stcox prison dose hv1 hv2, nohr

The stsplit command is complicated but it offers a power-
ful approach for manipulating the data to accommodate
time varying analyses.

If you wish to return the data to its previous form, drop the
variables that were created from the split and then use the
stjoin command:

drop v1 hv1 hv2
stjoin

It is possible to split the data at every single failure time,
but this uses a large amount of memory. However, if there
is only one time varying covariate in the model, the sim-
plest way to run an extended Cox model is by using the tvc
and texp options with the stcox command.

One should not confuse an individual’s survival time vari-
able (the outcome variable) with the variable used to define
the time dependent variable (_t in Stata). The individual’s
survival time variable is a time independent variable. The
time of the individual’s event (or censorship) does not
change. A time-dependent variable, on the other hand, is
defined so that it can change its values over time.

8. RUNNING PARAMETRIC MODELS
The Cox PH model is the most widely used model in sur-
vival analysis. A key reason why it is so popular is that the
distribution of the survival time variable need not be spe-
cified. However, if it is believed that survival time follows a
particular distribution, then that information can be uti-
lized in a parametric modeling of survival data.
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Many parametric models are accelerated failure time
(AFT) models. Whereas the key assumption of a PH
model is that hazard ratios are constant over time, the
key assumption for an AFT model is that survival time
accelerates (or decelerates) by a constant factor when com-
paring different levels of covariates.

The most common distribution for parametric modeling of
survival data is the Weibull distribution. The Weibull dis-
tribution has the desirable property that if the AFT
assumption holds, then the PH assumption also holds.
The exponential distribution is a special case of the Wei-
bull distribution. The key property for the exponential
distribution is that the hazard is constant over time (not
just the hazard ratio). The Weibull and exponential model
can be run as a PH model (the default) or an AFT model.

A graphical method for checking the validity of a Weibull
assumption is to examine Kaplan-Meier log-log survival
curves against log survival time. This is accomplished
with the sts graph command (see Section 2 of this appen-
dix). If the plots are straight lines, then there is evidence
that the distribution of survival times follows a Weibull
distribution. If the slope of the line equals one, then the
evidence suggests that survival time follows an exponential
distribution.

The streg command is used to run parametric models.
Even though the log log survival curves obtained using
the addicts dataset are not straight lines, the data will be
used for illustration. First, a parametric model using the
exponential distribution will be demonstrated. The code
and output follow:

streg prison dose clinic, dist(exponential) nohr
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The distribution is specified with the dist() option. The
stcurv command can be used following the streg com-
mand to obtain fitted survival, hazard, or cumulative haz-
ard curves. The following code obtains the estimated
hazard function for PRISON=0, DOSE=40, and CLINIC=1:

stcurv, hazard at (prison=0 dose=40 clinic=1)

pr
is

on
=

0 
do

se
=

40
 c

lin
ic

=
1

H
az

ar
d 

fu
nc

tio
n

Exponential regression
analysis time

2 1076

−.996726

1.00327

The graph illustrates the fact that the hazard is constant over
time if survival time follows an exponential distribution.

Next, a Weibull distribution is run using the streg com-
mand:

streg prison dose clinic, dist(weibull) nohr
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Notice that the Weibull output has a parameter p that the
exponential distribution does not have. The hazard func-
tion for a Weibull distribution is lptp�1. If p = 1, then the
Weibull distribution is also an exponential distribution
(h (t) = l). Hazard ratio parameters are given by default
for the Weibull distribution. If you want the parameteriza-
tion for an AFT model, then use the time option.

The code and output for a Weibull AFT model follow:

streg prison dose clinic, dist(weibull) time

The relationship between the hazard ratio parameter bj
and the AFT parameter aj is bj ¼ �ajp. For example, using
the coefficient estimates for PRISON in the Weibull PH
and AFT models yields the relationship 0.3144 =
(�0.2295)(1.37).

The stcurv can again be used following the streg com-
mand to obtain fitted survival, hazard, or cumulative haz-
ard curves. The following code obtains the estimated
hazard function for PRISON=0, DOSE=40, and CLINIC=1:

stcurv, hazard at (prison=0 dose=40 clinic=1)
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Weibull regression
analysis time

2 1076

.000634

.006504

The plot of the hazard is monotonically increasing. With a
Weibull distribution, the hazard is constrained such that it
cannot increase and then decrease. This is not the case
with the log logistic distribution as demonstrated in the
next example. The log logistic model is not a PH model, so
the default model for the streg command is an AFT model.
The code and output follow:

streg prison dose clinic, dist(loglogistic)

Note that Stata calls the shape parameter gamma for a
log-logistic model. The code to produce the graph of the
hazard function for PRISON=0, DOSE=40, and CLINIC=1
follows:

stcurv, hazard at (prison=0 dose=40 clinic=1)
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Log-logistic regression
analysis time
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.000809

.007292

The hazard function (in contrast to the Weibull hazard
function) first increases and then decreases.

The corresponding survival curve for the log logistic distri-
bution can also be obtained with the stcurve command:

stcurv, survival at (prison=0 dose=40 clinic=1)

pr
is

on
=

0 
do

se
=

40
 c

lin
ic

=
1

S
ur
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l

Log-logistic regression
analysis time

2 1076

.064154

.999677

If the AFT assumption holds for a log logistic model, then
the proportional odds assumption holds for the survival
function (although the PH assumption would not hold).
The proportional odds assumption can be evaluated by
plotting of the log odds of survival (using KM estimates)
against the log of survival time. If the plots are straight
lines for each pattern of covariates, then the log-logistic
distribution is reasonable. If the straight lines are also
parallel, then the proportional odds and AFT assumptions
also hold. The following code will plot the estimated log
odds of survival against the log of time by CLINIC (output
omitted):
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sts generate skm=s, by(clinic)
generate logodds=ln(skm/(1-skm))
generate logt=ln(survt)
graph7 logodds logt, twoway symbol([clinic] [clinic])

Another context for thinking about the proportional odds
assumption is that the odds ratio estimated by a logistic
regression does not depend on the length of the follow-up.
For example, if a follow-up study was extended from 3 to 5
years, then the underlying odds ratio comparing two pat-
terns of covariates would not change. If the proportional
odds assumption is not true, then the odds ratio is specific
to the length of follow-up.

Both the log-logistic and Weibull models contain an extra
shape parameter that is typically assumed constant. This
assumption is necessary for the PH or AFT assumption to
hold for these models. Stata provides a way of modeling
the shape parameter as a function of predictor variables by
use of the ancillary option in the streg command (see
Chapter 7 under the heading “Other Parametric Models”).
The following code runs a log-logistic model in which the
shape parameter gamma is modeled as a function of
CLINIC while l is modeled as a function of PRISON and
DOSE:

streg prison dose, dist(loglogistic) ancillary(clinic)

The output follows:
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Notice there is a parameter estimate for CLINIC as well as
an intercept (_cons) under the heading ln_gam (the log of
gamma). With this model, the estimate for gamma
depends on whether CLINIC=1 or CLINIC=2. There is no
easy interpretation for the predictor variables in this type
of model, which is why it is not commonly used. However,
for any specified value of PRISON, DOSE, and CLINIC, the
hazard and survival functions can be estimated by substi-
tuting the parameter estimates into the expressions for the
log-logistic hazard and survival functions.

Other distributions supported by streg are the generalized
gamma, the lognormal, and the Gompertz distributions.

9. RUNNING FRAILTY MODELS
Frailty models contain an extra random component
designed to account for individual-level differences in the
hazard otherwise unaccounted for by the model. The
frailty, a, is a multiplicative effect on the hazard assumed
to follow some distribution. The hazard function condi-
tional on the frailty can be expressed as h(t|a) ¼ a[h(t)].

Stata offers two choices for the distribution of the frailty:
the gamma and the inverse-Gaussian, both of mean 1 and
variance theta. The variance (theta) is a parameter esti-
mated by the model. If theta = 0, then there is no frailty.

For the first example, a Weibull PH model is run with
PRISON, DOSE, and CLINIC as predictors. A gamma dis-
tribution is assumed for the frailty component. The models
in this section were run using Stata 8.0. The code follows:

streg dose prison clinic, dist(weibull) frailty(gamma) nohr

The frailty() option requests that a frailty model be run.
The output follows:
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Notice that there is one additional parameter (theta) com-
pared to the model run in the previous section. The esti-
mate for theta is 2.09 times 10–7 or 0.000000209 which is
essentially zero. A likelihood ratio test for the inclusion of
theta is provided at the bottom of the output and yields a
chi-square value of 0.00 and a p-value of 1.000. The frailty
has no effect on the model and need not be included.

The next model will be the same as the previous except that
CLINIC will not be included. One might expect a frailty
component to play a larger role if an important covariate,
such as CLINIC, is not included in the model. The code and
output follow:
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streg dose prison, dist(weibull) frailty(gamma) nohr

The variance (theta) of the frailty is estimated at
0.0578602. Although this estimate is not exactly zero as in
the previous example, the p-value for the likelihood ratio
test for theta is nonsignificant at 0.432. So the addition of
frailty did not account for CLINIC being omitted from the
model.

Next, the same model is run except that the inverse-Gauss-
ian distribution is used for the frailty rather than the
gamma distribution. The code and output follow:
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streg dose prison, dist(weibull) frailty(invgaussian) nohr

The p-value for the likelihood ratio test for theta is 0.443 (at
the bottom of the output). The results in this example are
very similar whether assuming the inverse-Gaussian or the
gamma distribution for the frailty component.

An example of shared frailty applied to recurrent event
data is shown in the next section.

10. MODELING RECURRENT EVENTS
The modeling of recurrent events is illustrated with the
bladder cancer dataset (bladder.dta) described at the
start of this appendix. Recurrent events are represented
in the data with multiple observations for subjects having
multiple events. The data layout for the bladder cancer
dataset is suitable for a counting process approach with
time intervals defined for each observation (see Chapter 8).
The following code prints the 12th–20th observation, which
contains information for four subjects. The code and out-
put follow:
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list in 12/20

There are three observations for ID=10, one observation
for ID=11, three observations for ID=12, and two observa-
tions for ID=13. The variables START and STOP represent
the time interval for the risk period specific to that obser-
vation. The variable EVENT indicates whether an event
(coded 1) occurred. The first three observations indicate
that the subject with ID=10 had an event at 12 months,
another event at 16 months, and was censored at 18
months.

Before using Stata’s survival commands, the stset com-
mand must be used to define the key survival variables.
The code follows:

stset stop, failure(event==1) id(id) time0(start) exit(time.)

We have previously used the stset command on the
“addicts” dataset, but more options from stset are included
here. The id() option defines the subject variable (i.e., the
cluster variable), the time0() option defines the variable
that begins the time interval, and the exit(time .) option
tells Stata that there is no imposed limit on the length of
follow-up time for a given subject (e.g., subjects are not out
of the risk set after their first event). With the stset com-
mand, Stata creates the variables _t0, _t, and _d, which
Stata automatically recognizes as survival variables repre-
senting the time interval and event status. Actually, the
time0() option could have been omitted from this stset
command and by default Stata would have created the
starting time variable, _t0, in the correct counting process
format as long as the id() option was used (otherwise _t0
would default to zero). The following code (and output)
lists the 12th–20th observation with the newly created vari-
ables:
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list id _t0 _t _d tx in 12/20

A Cox model with recurrent events using the counting
process approach can now be run with the stcox com-
mand. The predictors are treatment status (TX), initial
number of tumors (NUM), and the initial size of tumors
(SIZE). The robust option requests robust standard errors
for the coefficient estimates. Omit the nohr option if you
want the exponentiated coefficients. The code and output
follow:

stcox tx num size, nohr robust

The interpretation of these parameter estimates is dis-
cussed in Chapter 8
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A stratified Coxmodel can also be run using the data in this
format with the variable INTERVAL as the stratified vari-
able. The stratified variable indicates whether subjects
were at risk for their 1st, 2nd, 3rd, or 4th event. This
approach is called a Stratified CP approach in Chap.
8 and is used if the investigator wants to distinguish the
order in which recurrent events occur. The code and out-
put follow:

stcox tx num size, nohr robust strata(interval)

Interaction terms between the treatment variable (TX) and
the stratified variable could be created to examine whether
the effect of treatment differed for the 1st, 2nd, 3rd, or 4th

event. (Note that in this dataset, subjects have a maximum
of 4 events).

Another stratified approach (called Gap Time) is a slight
variation of the Stratified CP approach. The difference is in
the way the time intervals for the recurrent events are
defined. There is no difference in the time intervals when
subjects are at risk for their first event. However, with the
Gap Time approach, the starting time at risk gets reset to
zero for each subsequent event. The following code creates
data suitable for running a Gap Time recurrent event
model.

generate stop2 =_t - _t0
stset stop2, failure(event==1) exit(time .)
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The generate command defines a new variable called
STOP2 representing the length of the time interval for
each observation. The stset command is used with
STOP2 as the outcome variable (_t). By default, Stata sets
the variable _t0 to zero. The following code (and output)
lists the 12th through 20th observations for selected vari-
ables.

list id _t0 _t _d tx in 12/20

Notice that the id() option was not used with the stset
command for the Gap Time approach. This means that
Stata does not know that multiple observations correspond
to the same subject. However, the cluster() option can be
used directly in the stcox command to request that the
analysis be clustered by ID (i.e., by subject). The following
code runs a stratified Cox model using the Gap Time
approach with the cluster() and robust options. The
code and output follow:

stcox tx num size, nohr robust strata(interval) cluster(id)
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The results using the Gap Time approach vary slightly
from that obtained using the Stratified CP approach.

Next, we demonstrate how a shared frailty model can be
applied to recurrent event data. Frailty is included in recur-
rent event analyses to account for variability due to unob-
served subject-specific factors that may lead to within-
subject correlation.

Before running the model, we rerun the stset command
shown earlier in this section to get the data back to the
form suitable for a counting process approach. The code
follows:

stset stop, failure(event==1) id(id) time0(start) exit(time .)

Next a parametric Weibull model is run with a gamma-
distributed shared frailty component using the streg com-
mand. We use the same three predictors for comparability
with the other models presented in this section. The code
follows:

streg tx num size, dist(weibull) frailty(gamma) shared(id) nohr

The dist() option requests the distribution for the para-
metric model. The frailty() option requests the distribu-
tion for the frailty and the shared() option defines the
cluster variable, ID. For this model, observations from the
same subject share the same frailty. The output follows:
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The model output is discussed in Chapter 8.

The counting process data layout with multiple observa-
tions per subject need not only apply to recurrent event
data, but can also be used for a more conventional survival
analyses in which each subject is limited to one event. A
subject with four observations may be censored for the
first three observations before getting the event in the
time interval represented by the fourth observation. This
data layout is particularly suitable for representing time-
varying exposures, which may change values over different
intervals of time (see the stsplit command in Section 7 of
this appendix).

B. SAS
Analyses are carried out in SAS by using the appropriate
SAS procedure on a SAS dataset. The key SAS procedures
for performing survival analyses are:

PROC LIFETEST – This procedure is used to obtain
Kaplan-Meier survival estimates and plots. It can also
be used to output life table estimates and plots. It will
generate output for the log rank and Wilcoxon test sta-
tistics if stratifying by a covariate. A new SAS dataset
containing survival estimates can be requested.

PROC PHREG – This procedure is used to run the Cox
proportional hazards model, a stratified Cox model, and
an extended Cox model with time-varying covariates. It
can also be used to create a SAS dataset containing
adjusted survival estimates. These adjusted survival esti-
mates can then be plotted using PROC GPLOT.

PROC LIFEREG – This procedure is used to run para-
metric accelerated failure time AFT models.

Analyses on the “addicts” dataset will be used to illustrate
these procedures. The “addicts” dataset was obtained from
a 1991 Australian study by Caplehorn et al. and contains
information on 238 heroin addicts. The study compared
two methadone treatment clinics to assess patient time
remaining under methadone treatment. The two clinics
differed according to its live-in policies for patients.
A patient’s survival time was determined as the time (in
days) until the person dropped out of the clinic or was
censored. The variables are defined at the start of this
appendix.
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All of the SAS programming code will be written in capital
letters for readability. However, SAS is not case sensitive.
If a program is written with lower-case letters, SAS reads
them as upper case. The number of spaces between
words (if more than one) has no effect on the program.
Each SAS programming statement ends with a semicolon.

The addicts dataset is stored as a permanent SAS dataset
called addicts.sas7bdat. A LIBNAME statement is needed
to indicate the path to the location of the SAS dataset. In
our examples, we assume the file is located on the C drive.
The LIBNAME statement includes a reference name as
well as the path. We call the reference name REF. The
code is as follows:

The user is free to define his/her own reference name.
The path to the location of the file is given between the
quotation marks. The general form of the code is:

PROC CONTENTS, PROC PRINT, PROC UNIVARIATE,
PROC FREQ, and PROC MEANS can be used to list or
describe the data. SAS code can be run in one batch or
highlighted and submitted one procedure at a time. Code
can be submitted by clicking on the submit button on the
toolbar in the Editor window. The code for using these
procedures follows (output omitted):

PROC CONTENTS DATA=REF.ADDICTS;RUN;
PROC PRINT DATA=REF.ADDICTS;RUN;
PROC UNIVARIATE DATA=REF.ADDICTS;VAR SURVT;RUN;
PROC FREQ DATA=REF.ADDICTS;TABLES CLINIC PRISON;RUN;
PROCMEANS DATA=REF.ADDICTS;VAR SURVT;CLAS CLINIC;RUN;

Notice that each SAS statement ends with a semicolon.
If each procedure is submitted one at a time, then each
procedure must end with a RUN statement. Otherwise one
RUN statement at the end of the last procedure is suffi-
cient. With the LIBNAME statement, SAS recognizes a
two-level file name: the reference name and the file name
without an extension. For our example, the SAS file name
is REF.ADDISTS. Alternatively, a temporary SAS dataset
could be created and used for these procedures.
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Text that you do not wish SAS to process can be written as
a comment:

/* A comment begins with a forward slash followed by a
star and ends with a star followed by a forward slash. */

* A comment can also be created by beginning with a star
and ending with a semicolon;

The survival analyses demonstrated in SAS are as follows:

1. Demonstrating PROC LIFETEST to obtain Kaplan-
Meier and life table survival estimates (and plots).

2. Running a Cox PH model with PROC PHREG.

3. Running a stratified Cox model.

4. Assessing the PH assumption with a statistical test.

5. Obtaining Cox adjusted survival curves.

6. Running an extended Cox model (i.e., containing time
varying covariates).

7. Running parametric models with PROC LIFEREG.

8. Modeling recurrent events

1. DEMONSTRATING PROC LIFETEST TO OBTAIN
KM AND LIFE TABLE SURVIVAL ESTIMATES
(AND PLOTS)

PROC LIFETEST produces Kaplan-Meier survival esti-
mates with the METHOD=KM option. The PLOTS=(S)
option plots the estimated survival function. The TIME
statement defines the time-to-event variable (SURVT) and
the value for censorship (STATUS=0). The code follows
(output omitted):

Use a STRATA statement in PROC LIFETEST to compare
survival estimates for different groups (e.g., strata clinic).
The PLOTS=(S, LLS) option produces log-log curves as
well as survival curves. If the PH assumption is met, the
log-log survival curves will be parallel. The STRATA state-
ment also provides the log rank test and Wilcoxon test
statistics. The code follows:

572 Computer Appendix: Survival Analysis on the Computer



PROC LIFETEST yields the following edited output:
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Both the log rank andWilcoxon test yield highly significant
chi-square test statistics. TheWilcoxon test is a variation of
the log rank test weighting the observed minus expected
score of the jth failure time by nj (the number still at risk at
the jth failure time).

The requested log-log plots from PROC LIFETEST follow:
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SAS (as well as Stata and R) plots log(survival time) rather
than survival time on the horizontal axis by default for log-
log curves. As far as checking the parallel assumption, it
does not matter if log(survival time) or survival time is on
the horizontal axis. However, if the log-log survival curves
look like straight lines with log(survival time) on the hori-
zontal axis, then there is evidence that the “time-to-event”
variable follows a Weibull distribution. If the slope of the
line equals one, then there is evidence that the survival
time variable follows an exponential distribution – a spe-
cial case of the Weibull distribution. For these situations, a
parametric survival model can be used.

You can gain more control over how variables are plotted,
by creating a dataset that contains the survival estimates.
Use the OUTSURV= option in the PROC LIFETEST state-
ment to create a SAS data containing the KM survival
estimates. The option OUTSURV=DOG creates a dataset
called dog (make up your own name) containing the sur-
vival estimates in a variable called SURVIVAL. The code
follows:
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Data dog contains the survival estimates but not the
log(-(log)) of the survival estimates. Data cat is created in
the following code from data dog (using the statement SET
DOG) and defines a new log-log variable called LLS.

In SAS, the LOG function returns the natural log, not the
log base 10.

PROC PRINT prints the data in the output window.

The first 10 observations from PROC PRINT are listed
below:

The PLOT LLS*SURVT=CLINIC statement puts the vari-
able LLS (the log-log survival variables) on the vertical axis
and SURVT on the horizontal axis, stratified by CLINIC.
The SYMBOL option can be used to choose plotting colors
for each level of clinic. The code and output for plotting the
log log curves by CLINIC follow:
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Coded 1 or 2 1 2
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The plot has survival time (in days) rather than the default
log(survival time). The log-log survival plots look parallel
for CLINIC the first 365 days but then seem to diverge. This
information can be utilized when developing an approach
for modeling CLINIC with a time dependent variable in an
extended Cox model.

You can also obtain survival estimates using life tables.
This method is useful if you do not have individual level
survival information but rather have group survival infor-
mation for specified time intervals. The user determines
the time intervals using the INTERVALS= option. The code
follows (output omitted):

2. RUNNING A COX PROPORTIONAL HAZARD
MODEL WITH PROC PHREG

PROC PHREG is used to request a Cox proportional
hazards model. The code follows:
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The code SURVT*STATUS(0), in the MODEL statement
specifies the time-to-event variable (SURVT) and the
value for censorship (STATUS=0). Three predictors are
included in the model: PRISON, DOSE, and CLINIC. The
option RL in the MODEL statement of PROC PHREG
provides 95% confidence intervals for the hazard ratio
estimates. The PH assumption is assumed to follow for
each of these predictors (perhaps incorrectly). The output
produced by PROC PHREG follows:

The table above lists the parameter estimates for the
regression coefficients, their standard errors, a Wald chi-
square test statistic for each predictor, and corresponding
p-value. The column labeled HAZARD RATIO gives the
estimated hazard ratio per one-unit change in each predic-
tor by exponentiating the estimated regression coeffi-
cients. The final two columns give the 95% confidence
limits for this hazard ratio.

You can use the TIES=EXACT option in the model
statement rather than run the default TIES=BRESLOW
option that was used in the previous model. The TIES=
EXACT option is a computationally intensive method to
handle events that occur at the same time. If many events
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occur simultaneously in the data, then the TIES=EXACT
option is preferred. Otherwise, the difference between this
option and the default is slight. The TIES=EFRON option
is another tie-handling approach that SAS offers. The
TIES=EFRON is the default method used in R.

The output follows:

The parameter estimates and their standard errors vary
only slightly from the previous model without the TIE-
S=EXACT option. Notice that the type of ties-handling
approach is listed in the table called MODEL INFORMA-
TION in the output.

Suppose we wish to assess interaction between PRISON
and CLINIC and between PRISON and DOSE. We can
define two interaction terms in a new temporary SAS data-
set (called addicts2) and then run amodel containing those
terms. Product terms for CLINIC times PRISON (called
CLIN_PR) and CLINIC time DOSE (called CLIN_DO) are
defined in the following data step:
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The interaction terms (called CLIN_PR and CLIN_DO) are
then added to the model. The CONTRAST statement can
be used to test the two interaction terms simultaneously
with a generalized Wald test. After the word CONTRAST is
a user-supplied label in quotes (i.e., the user’s option what
to put in quotes). Then the tested covariates (the product
terms) are listed followed by a 1 and separated by a comma
(see code below):

The PROC PHREG output follows:
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Theestimatesof thehazardratios (left column)maybedecep-
tive when product terms are in the model. For example, by
exponentiating the estimated coefficient for PRISON at exp
(1.19200) = 3.284, we obtain the estimated hazard ratio for
PRISON=1 versus PRISON=0, where DOSE=0 and
CLINIC=0. This is a meaningless hazard ratio since CLINIC
is coded 1 or 2 and DOSE is always greater than zero (all
patients are onmethadone). In the next section (on stratified
Coxmodels),weillustratehowaCONTRASTstatementcanbe
used to obtain more meaningful hazard ratio estimates for
models with interaction terms. The CONTRAST statement
can be used to obtain a linear combination of parameter esti-
mates in addition to the generalizedWald test shown above.

The Wald chi-square p-values for the two product terms are
0.0872 for CLIN_PR and 0.3333 for CLIN_DO. The
generalized Wald chi-square p-values for testing both prod-
uct termssimultaneously is 0.1669.Alternatively, a likelihood
ratio test can simultaneously test both product terms by
subtracting the –2 log-likelihood statistic for the full model
(with the two product terms) from the reduced model (with-
out the product terms). The –2 log likelihood statistic can be
found on the output in the table calledMODEL FIT STATIS-
TICSandunder the columncalledWITHCOVARIATES.The
–2 log likelihood statistic is 1,343.199 for the full model and
1,346.805 for the reduced model. The test is a two degree of
freedom test since 2product terms are simultaneously tested.

The PROBCHI function in SAS can be used to obtain p-
values for chi-square tests. The code follows:

Note that you must write 1 minus the PROBCHI function
to obtain the area under the right side of the chi-square
probability density function. The output from the PROC
PRINT follows:

The p-value for the likelihood ratio test for both product
terms is 0.16480, a similar result to the p-value that was
obtained from the generalized Wald test (0.1669). Both of
these tests are two degree of freedom tests since the two
interaction terms are simultaneously tested.
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3. RUNNING A STRATIFIED COX MODEL
Suppose we believe that the variable CLINIC violates the
proportional hazards assumption but the variables
PRISON and DOSE follow the PH assumption within
each level of CLINIC. A stratified Coxmodel on the variable
CLINIC can be run with PROC PHREG using the STRATA
CLINIC statement. The code follows:

The output of the parameter estimates follows:

Notice there is no parameter estimate for CLINIC since
CLINIC is the stratified variable. The hazard ratio for
PRISON=1 vs. PRISON=0 is estimated at 1.475. This haz-
ard ratio is assumed not to depend on CLINIC since an
interaction term between PRISON and CLINIC was not
included in the model.

Suppose we wish to assess interaction between PRISON
and CLINIC as well as DOSE and CLINIC in a Cox model
stratified by CLINIC. We can define interaction terms in a
new SAS dataset (called addicts2) and then run a model
containing these terms.

Note with the interaction model that the hazard ratio for
PRISON=1 versus PRISON=0 for CLINIC=1 controlling for
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DOSE is exp(b1 þ b3), and the hazard ratio for PRISON=1
versus PRISON=0 for CLINIC=2 controlling for DOSE is
exp(b1 þ 2b3). This latter calculation is obtained by sub-
stituting the appropriate values into the hazard in both the
numerator (for PRISON=1) and denominator (for
PRISON=0) (see below):

HR ¼ h0ðtÞ exp½1b1 þ b2DOSEþ ð2Þð1Þb3 þ b4CLIN DO�
h0ðtÞ exp½0b1 þ b2DOSEþ ð2Þð0Þb3 þ b4CLIN DO� ¼ expðb1 þ 2b3Þ:

A CONTRAST statement with the ESTIMTES= option can
be used with PROC PHREG when we wish to obtain esti-
mates of a linear combination of parameter estimates.
We can also use the CONTRAST statement to test the two
interaction terms simultaneously with a generalized Wald
test as we illustrated in the previous section.

The code below runs a stratified Cox model (STRATA
CLINIC) including two interaction terms in the model.
Three CONTRAST statements are used: the first to esti-
mate the hazard ratio for PRISON among those with
CLINIC=1, exp(b1 þ b3); the second to estimate the hazard
ratio for PRISON among those with CLINIC=2, exp(1 þ
2b3); and the third to test the two interaction terms with a
two degree of freedom generalized Wald test. The ESTI-
MATE=EXP option in the first two CONTRAST statements
requests that the parameter estimates be exponentiated.
The code in the second CONTRAST statement PRISON 1
CLIN_PR 2/ESTIMATE=EXP; requests the estimate for
exp(b1 þ 2b3). The b1 corresponds to PRISON and the
beta3 (b)corresponds to the third variable in the model,
CLIN_PR. The code follows:

Notice that when we stratify by CLINIC, we do not put
the variable CLINIC in the model statement. However,
the interaction terms CLIN_PR and CLIN_DO are put
in the model statement while CLINIC is put in the strata
statement. The output follows:
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The hazard ratio (PRISON=1 vs PRISON=0) is estimated at
1.6528 among CLINIC=1 and 0.9211 among CLINIC=2.
The generalized Wald test for testing both interaction
terms simultaneously (a 2 df test: 1 b3 = 0, 1 b4 = 0) yields
a p-value of 0.3936.

An alternative approach allowing for interaction with
CLINIC and the other covariates is obtained by running
two models: one subsetting on the observations where
CLINIC=1 and the other subsetting on the observations
where CLINIC=2. The code and output follow:

A WHERE statement in a SAS procedure subsets the num-
ber of observations for analyses. A TITLE statement can
also be added to the procedure. The output containing the
parameter estimates subsetting on the observations where
CLINIC=1 follows:
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Similarly, the code and output containing the parameter
estimates subsetting on the observations where CLINIC=2:

The estimated hazard ratio for PRISON=1 versus
PRISON=0 is 0.921 among CLINIC=2 controlling for
DOSE. This result is consistent with the stratified Cox
model previously run in which all the product terms with
CLINIC were included in the model.
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4. ASSESSING THE PH ASSUMPTION WITH
A STATISTICAL TEST

The following SAS program makes use of the addicts data-
set to demonstrate how a statistical test of the PH assump-
tion is performed for a given covariate (Harrel and Lee
1986). This is accomplished by finding the correlation
between the Schoenfeld residuals for a particular covariate
and the ranking of individual failure times. If the PH
assumption is met, then the correlation should be near
zero. The p-value for testing this correlation can be
obtained from PROC CORR (or PROC REG). The Schoen-
feld residuals for a given model can be saved in a SAS
dataset using PROC PHREG. The ranking of events by
failure time can be saved in a SAS dataset using PROC
RANKED. The null hypothesis is that the PH assumption
is not violated.

First, we run a model containing CLINIC, PRISON, and
DOSE. The output statement creates a SAS dataset, the
OUT= option defines an output dataset, and the RESSCH=
statement is followed by user-defined variable names, so
that the output dataset contains the Schoenfeld residuals.
The order of the names corresponds to the order of the
independent variables in the model statement. The actual
variable names are arbitrary. The name we chose for the
dataset is RESID and the names we chose for the variables
containing the Schoenfeld residuals for CLINIC, PRISON,
and DOSE are RCLINIC, RPRISON, and RDOSE. The code
follows:

The code follows:

Software: B. Sas 585



The first 10 observations of the PROC PRINT are printed
below. The three columns on the right are the variables
containing the Schoenfeld residuals.

Next, create a SAS dataset that deletes censored observa-
tions (i.e., only contains observations that fail).

Use PROC RANK to create a dataset containing a variable
that ranks the order of failure times. The user supplies the
name of the output dataset using the OUT= option. The
variable to be ranked is SURVT. The RANKS statement
precedes a user-defined variable name for the rankings of
failure times. The user-defined names are arbitrary. The
name we chose for this variable is TIMERANK. The code
follows:
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PROC CORR is used to get the correlations between the
ranked failure time variable (called TIMERANK in this
example) and the variables containing the Schoenfeld resi-
duals of CLINIC, PRISON, and DOSE (called RCLINIC,
RPRISON, and RDOSE, respectively, in this example).
The NOSIMPLE option suppresses the printing of sum-
mary statistics. If the PH assumption is met for a particular
covariate, then the correlation should be near zero. The p-
value obtained from PROC CORR which tests whether this
correlation is zero is the same p-value we use for testing the
PH assumption. The code follows:

The PROC CORR output follows:

The sample correlations with their corresponding p-values
printed underneath are shown above. The p-values for
CLINIC, PRISON, and DOSE are 0.0012, 0.3323, and
0.3469, respectively, suggesting that the PH assumption is
violated for CLINIC, but reasonable for PRISON and
DOSE.

The same p-values can be obtained by running linear
regressions with each predictor (one at a time) using
PROC REG and examining the p-values for the regression
coefficients. The code below will produce output contain-
ing the p-value for CLINIC:
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The output produced by PROC REG follows:

The p-value for CLINIC (0.0012) is printed in the column
on the right and matches the p-value that was obtained
using PROC CORR.

5. OBTAINING COX ADJUSTED SURVIVAL CURVES
We use the BASELINE statement in PROC PHREG to
create an output dataset containing Cox adjusted survival
estimates for a specified pattern of covariates. The partic-
ular pattern of covariates of interest must first be created
in a SAS dataset that is subsequently used as the input
dataset for the COVARIATES= option in the BASELINE
statement of PROC PHREG. Each pattern of covariates
yields a different survival curve (assuming nonzero
effects). Adjusted log(-log) survival plots can also be
obtained for assessing the PH assumption. This will be
illustrated with three examples:

Ex1 – Run a PH model using PRISON, DOSE, and CLINIC
and obtain adjusted survival curves where PRISON=0,
DOSE=70, and CLINIC=2.

Ex2 – Run a stratified Cox model (by CLINIC). Obtain two
adjusted survival curves using the mean value of
PRISON and DOSE for CLINIC=1 and CLINIC=2. Use
the log log curves to assess the PH assumption for
CLINIC adjusted for PRISON and DOSE.

Ex3 – Run a stratified Cox model (by CLINIC) and obtain
adjusted survival curves for PRISON=0, DOSE=70 and
for PRISON=1, DOSE=70. This yields four survival
curves in all, two for CLINIC=1 and two for CLINIC=2.
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Basically, there are three steps:

1) Create the input dataset containing the pattern (values)
of covariates used for the adjusted survival curves.

2) Run a Cox model with PROC PHREG using the
BASELINE statement to input the dataset from step (1)
and output a dataset containing the adjusted survival
estimates.

3) Plot the adjusted survival estimates from the output
dataset created in step (2).

For Ex1, we create an input dataset (called IN1) with one
observation where PRISON=0, DOSE=70, and CLINIC=2.
We then run a model and create an output dataset (called
OUT1) containing a variable with the adjusted survival
estimates (called S1). Finally, the adjusted survival curve
is plotted using PROC GPLOT. The code follows:

The BASELINE statement in PROC PHREG specifies the
input dataset, the output dataset, and the name of
the variable containing the adjusted survival estimates.
The NOMEAN option suppresses the survival estimates
using the mean values of PRISON, DOSE, and CLINIC.
The next example (Ex2) will not use the NOMEAN option.
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The output for PROC GPLOT follows:

S(t)
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For Ex2, we wish to create and output dataset (called
OUT2) that contains the adjusted survival estimates from
a Cox model stratified by CLINIC using the mean values of
PRISON and DOSE. An input dataset need not be specified
since by default themean values of PRISON and DOSEwill
be used if the NOMEAN option is not used in the BASE-
LINE statement. The code follows:

590 Computer Appendix: Survival Analysis on the Computer



The code, PLOT LS2*SURVT=CLINIC, in the 2nd PROC
GPLOT will plot LS2 on the vertical axis, SURVT on the
horizontal axis, stratified by CLINIC on the same graph.
The variable LS2 was created in the BASELINE statement
of PROC PHREG and contains the adjusted log-log sur-
vival estimates. The PROC GPLOT output for the log-log
survival curves stratified by CLINIC adjusted for PRISON
and DOSE follows:

log-log curves stratified by clinic, adjusted for prison dose
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The adjusted log-log plots look similar to the unadjusted
log-log Kaplan-Meier plots shown earlier, in that the plots
look reasonably parallel before 365 days but then diverge,
suggesting that the PH assumption is violated after 1 year.

For Ex3, a stratified Cox (by CLINIC) is run and adjusted
curves are obtained for PRISON=1 and PRISON=0 holding
DOSE=70. An input dataset (called IN3) is created with two
observations for both levels of PRISON with DOSE=70. An
output dataset (called OUT3) is created with the BASE-
LINE statement that contains a variable (called S3) of
survival estimates for all four curves (two for each stratum
of CLINIC). The code follows:
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Coded 1 or 2 1 2
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For the graph above, the PH assumption is not assumed for
CLINIC since that is the stratified variable. However, the
PH assumption is assumed for PRISON within each stra-
tum of CLINIC (i.e., CLINIC=1 and CLINIC=2).
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6. RUNNING AN EXTENDED COX MODEL
Models containing time-dependent variables are run using
PROC PHREG. Time dependent variables are created with
programming statements within the PROC PHREG proce-
dure. Sometimes, users incorrectly define time-dependent
variables in the data step. This leads to wrong estimates
because the time variable used in the data step (SURVT) is
actually time-independent and therefore different than the
time variable (also called SURVT) used to define time-
dependent variables in the PROC PHREG statement. See
the discussion on the extended Cox likelihood in Chapter 6
for further clarification of this issue.

We have evaluated the PH assumption for the variable
CLINIC by plotting KM log-log curves and Cox-adjusted
log log curves stratified by CLINIC and checking whether
the curves were parallel. We could do similar analyses with
the variables PRISON and DOSE although with DOSE we
would need to categorize the continuous variable before
comparing plots for different strata of DOSE.

If it is expected that the hazard ratio for the effect of DOSE
increases (or decreases) monotonically with time, we could
add a continuous time-varying product term with DOSE
and some function of time. The model defined below con-
tains a time-varying variable (LOGTDOSE) defined as the
product of DOSE and the natural log of time (SURVT). In
some sense, a violation of the PH assumption for a partic-
ular variable means that there is an interaction between
that variable and time. Note that the variable LOGTDOSE
is defined within the PHREG procedure and not in the data
step. The code follows:
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The output produced by PROC PHREG follows:

TheWald test for the time-dependent variable LOGTDOSE
yields a p-value of 0.1841. A nonsignificant p-value does
not necessarily mean that the PH assumption is reasonable
for DOSE. Perhaps, a different defined time-dependent
variable would have been significant (e.g., DOSE �
(TIME – 100)). Also, the sample-size of the study is a key
determinant of the power to reject the null, which in this
case means rejection of the PH assumption.

Next, we consider time-dependent variables for CLINIC.
The next two models use heaviside functions that allow a
different hazard ratio to be estimated for CLINIC before
and after 365 days. The first model uses two heaviside
functions in the model (HV1 and HV2) but not CLINIC.
The second model uses one heaviside function (HV) but
also includes CLINIC in the model. These two models yield
the same hazard ratio estimates for CLINIC but are coded
differently. The code and output for the model with two
heaviside functions follows:
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The parameter estimates for HV1 and HV2 can be used
directly to obtain the estimated hazard ratio for CLINIC=2
vs CLINIC=1 before and after 365 days. The estimated
hazard ratio for CLINIC at 100 days is exp(–0.45956) =
0.632 and the estimated hazard ratio for CLINIC at 400
days is exp(–1.82823) = 0.161. The CONTRAST statement
provides a Wald test on the equality of two heaviside coef-
ficients (b3 = b4 or b3 – b4 = 0). If the two heaviside coeffi-
cients were equal, then the hazard ratios for CLINIC would
not depend on time. So the test could be viewed as a test of
one form of PH violation. The p-value for the test is highly
significant at 0.0030, suggesting that the PH assumption is
violated for CLINIC.

The code and output for an equivalent model with one
heaviside function are shown below:

Notice that the variable CLINIC is included in this model
and the coefficient for the time-dependent heaviside func-
tion, HV, does not contribute to the estimated hazard ratio
until day 365. The estimated hazard ratio for CLINIC at
100 days is exp(–0.45956) = 0.6316 while the estimated
hazard ratio for CLINIC at 400 days is exp((–0.45956) þ
(–1.36866)) = 0.1607 as calculated using the ESTIMA-
TE=EXP option in the CONTRAST statement. These
results are consistent with the estimates obtained from
the model with two heaviside functions. A Wald test for
the variable HV shows a statistically significant p-value of
0.003 suggesting a violation of the PH assumption for
CLINIC. This is the same test as that obtained with the
CONTRAST statement using the model with two heaviside
functions.

Software: B. Sas 595



Suppose it is believed that the hazard ratio for CLINIC=2
versus CLINIC=1 is constant over the first year but then
monotonically increases (or decreases) after the first year.
The following code defines a model allowing for a time-
varying covariate called CLINTIME (defined in the code)
which contributes to the hazard ratio for CLINIC after 365
days (output omitted):

SAS is flexible in the way it can accommodate the model-
ing of time-varying covariates from different data formats.
To illustrate this point, consider an example that was dis-
cussed in Chapter 6. The data below (Data D1) contain one
observation for Jane who had an event at 49 months
(MONTHS=49 and STATUS=1). Her dose of medication
at the beginning of follow-up was 60 mg (DOSE1=60 and
TIME1=0). At the 12th month of follow-up, her dose was
changed to 120 mg (DOSE2=120 and TIME2=12). At the
30th month of follow-up, her dose was changed to 150 mg
(DOSE3=120 and TIME3=30).

(Data D1) DOSE changes at three time points for Jane

If dosage is measured at multiple time points, then we
would want to treat dose as a time varying covariate. We
are assuming that Jane’s observation is one out of many
individuals Å. The following code would run an extended
Cox model for data formatted as above:
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The time dependent variable T_DOSE is defined below the
MODEL statement and is defined in terms of DOSE1,
DOSE2, and DOSE3 at specified points in time.

Alternatively, the data can be transposed in a counting
process format such that Jane would have three observa-
tions to accommodate her three values of dosage over her
risk period.

The following code transposes the data (D1) into a count-
ing process format (D2):

Now the data (D2) is transposed to contain three observa-
tions for Jane, allowing DOSE to be represented as a time-
dependent variable. For the first time interval (START=0,
STOP=12), Jane’s dose was 60 mg. For the second time
interval (12–30 months), Jane’s dose was 120 mg. For the
third time interval (30–49 months), Jane’s dose was 150
mg. The data indicate that Jane had an event at 49 months
(STOP=49 and STATUS=1). Jane’s three observations are
printed below:
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The code to run the model with the data in counting pro-
cess format is shown below:

Using PROC PHREG on data in the counting process for-
mat is discussed in more detail when we discuss the mod-
eling recurrent events in SAS (Section 8).

7. RUNNING PARAMETRIC MODELS
WITH PROC LIFEREG

PROC LIFEREG runs parametric AFT models rather than
PH models. Whereas the key assumption of a PH model is
that hazard ratios are constant over time, the key assump-
tion for an AFT model is that survival time accelerates (or
decelerates) by a constant factor when comparing different
levels of covariates.

The most common distribution for parametric modeling of
survival data is the Weibull distribution. The hazard func-
tion for a Weibull distribution is lptp�1. If p = 1, then the
Weibull distribution is also an exponential distribution.
The Weibull distribution has a desirable property, in that
if the AFT assumption holds then the PH assumption also
holds. The exponential distribution is a special case of
the Weibull distribution. The key property for the expo-
nential distribution is that the hazard is constant over time
(h(t) =l). In SAS, the Weibull and exponential model are
run only as AFT models.

The Weibull distribution has the property that the log-log
of the survival function is linear with the log of time. PROC
LIFETEST can be used to plot Kaplan-Meier log-log curves
against the log of time. If the curves are approximately
straight lines (and parallel), then the assumption is reason-
able. Furthermore, if the straight lines have a slope of 1,
then the exponential distribution is appropriate. The code
below produces log-log curves stratified by CLINIC and
PRISON that can be used to check the validity of the
Weibull assumption for those variables:
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The log-log curves do not look straight but for illustration
we shall proceed as if the Weibull assumption were appro-
priate. First, an exponential model will be run with PROC
LIFEREG. In this model, the Weibull shape parameter (p)
is forced to equal 1, which forces the hazard to be constant.

The DIST=EXPONENTIAL option in theMODEL statement
requests the Weibull distribution. The output of parameter
estimates obtained fromPROCLIFEREG follows:
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The exponential model assumes a constant hazard. This is
indicated in the output by the value of the Weibull shape
parameter (1.0000). The output can be used to calculate
the estimated hazard for any subject given a pattern of
covariates. For example, a subject with PRISON=0,
DOSE=50, and CLINIC=2 has an estimated hazard of
expf�ð3:6843þ 50ð0:0289ÞÞ þ 2ð0:8806Þg ¼ 0:001. Note that
SAS gives the parameter estimates for the AFT form of
the exponential model. Multiply the estimated coefficients
by negative one to get estimates consistent with the PH
parameterization of the model (see Chapter 7).

Next, a Weibull AFT model is run with PROC LIFEREG.

The DIST=WEIBULL option in the MODEL statement
requests the Weibull distribution. The output for the
parameter estimates follows:

The Weibull shape parameter is estimated at 1.3702. SAS
calls the reciprocal of the Weibull shape parameter, the
Scale parameter, estimated at 0.7298. The acceleration
factor comparing CLINIC=2 to CLINIC=1 is estimated at
exp(0.7090) = 2.03. So, the estimated median survival time
(time off heroin) is double for patients enrolled in
CLINIC=2 compared to CLINIC=1.

To obtain the hazard ratio parameters from the Weibull
AFT model, multiply the Weibull shape parameter by the
negative of the AFT parameter (see Chapter 7). For exam-
ple, theHR estimate for CLINIC=2 vs CLINIC=1 controlling
for the other covariates is exp(1.3702(-0.7090)) = 0.38.
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Next, a log-logistic AFTmodel is run with PROC LIFEREG.

The output of the log-logistic parameter estimates follows:

From this output, the acceleration factor comparing
CLINIC=2 to CLINIC=1 is estimated at exp(0.5806) =
1.79. If the AFT assumption holds for a log-logistic
model, then the proportional odds assumption holds for
the survival function (although the PH assumption will not
hold). The proportional odds assumption can be evaluated
by plotting the log odds of survival (using KM estimates)
against the log of survival time. If the plots are straight
lines for each pattern of covariates, then the log-logistic
distribution is reasonable. If the straight lines are also
parallel, then the proportional odds and AFT assumptions
also hold.

A SAS dataset containing the KM survival estimates can be
created using PROC LIFETEST (see Section 1 of this
appendix). Once this variable is created, a dataset contain-
ing variables for the estimated log odds of survival and the
log of survival time can also be created. PROC GPLOT can
then be used to plot the log odds of survival against survival
time.

Another context for thinking about the proportional odds
assumption is that the odds ratio estimated by a logistic
regression does not depend on the length of the follow-up.
For example, if a follow-up study was extended from 3 to 5
years, then the underlying odds ratio comparing two pat-
terns of covariates would not change. If the proportional
odds assumption is not true, then the odds ratio is specific
to the length of follow-up.
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An AFT model is a multiplicative model with respect to
survival time or equivalently an additive model with
respect to the log of time. In the previous example, the
median survival time was estimated as 1.79 times longer
for CLINIC=2 compared to CLINIC=1. In that example,
survival time was assumed to follow a log-logistic distribu-
tion or equivalently the log of survival time was assumed to
follow a logistic distribution.

SAS allows additive failure time models to be run (see
chapter 7 under the heading “Other Parametric Models”).
The NOLOG option in the MODEL statement of PROC
LIFEREG suppresses the default log link function which
means that time, rather than log(time), is modeled as a
linear function of the regression parameters. The following
code requests an additive failure time model in which time
follows a logistic (not log-logistic) distribution:

Even though the option DIST=LLOGISTIC appears to
request that survival time follows a log-logistic distribution.
The NOLOG option actually means that survival time is
assumed to follow a logistic distribution. (Note that the
NOLOG option in Stata means – something completely
different using the streg command – that the iteration log
file not be shown in the output.) The output from the
additive failure time model follows:
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The parameter estimate for CLINIC is 214.2525. The inter-
pretation for this estimate is that the median survival time
(or time to any fixed value of S(t)) is estimated at 214 days
more for CLINIC=2 compared to CLINIC=1. In other
words, you add 214 days to the estimated median survival
time for CLINIC=1 to get the estimated median survival
time for CLINIC=2. This contrasts with the previous AFT
model in which you multiply estimated median survival
time for CLINIC=1 by 1.79 to get the estimated median
survival time for CLINIC=2. The additive model can be
viewed as a shifting of survival time while the AFT model
can be viewed as a scaling of survival time.

If survival time follows a logistic distribution and the addi-
tive failure time assumption holds, then the proportional
odds assumption also holds. The logistic assumption can
be evaluated by plotting the log odds of survival (using KM
estimates) against time (rather than against the log of time
as analogously used for the evaluation of the log-logistic
assumption). If the plots are straight lines for each pattern
of covariates, then the logistic distribution is reasonable. If
the straight lines are also parallel, then the proportional
odds and additive failure time assumptions hold.

Other distributions supported by PROC LIFEREG are
the generalized gamma (DIST=GAMMA) and lognormal
(DIST=LNORMAL) distributions. If the NOLOG option is
specified with the DIST=LNORMAL option in the model
statement, then survival time is assumed to follow a nor-
mal distribution.

8. MODELING RECURRENT EVENTS
The modeling of recurrent events is illustrated with the
bladder cancer dataset (bladder.sas7bdat) described at
the start of this appendix. Recurrent events are represented
in the data with multiple observations for subjects having
multiple events. The data layout for the bladder cancer
dataset is suitable for a counting process approach with
time intervals defined for each observation (see Chapter 8).
The following code prints the 12th–20th observation, which
contains information for four subjects. The code follows:
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The output follows:

There are three observations for ID=10, one observation
for ID=11, three observations for ID=12, and two observa-
tions for ID=13. The variables START and STOP represent
the time interval for the risk period specific to that obser-
vation. The variable EVENT indicates whether an event
(coded 1) occurred. The first three observations indicate
that the subject with ID=10 had an event at 12 months,
another event at 16 months, and was censored at 18
months.

PROC PHREG can be used for survival data using a count-
ing process data layout. The following code runs a model
with three predictors – treatment status (TX), initial num-
ber of tumors (NUM), and the initial size of tumors (SIZE)
– included in the model:

The code (START,STOP)*EVENT(0) in the MODEL state-
ment indicates that the time intervals for each observation
are defined by the variables START and STOP and that
EVENT=0 denotes a censored observation. The ID statement
defines ID as the variable representing each subject. The
COVS(AGGREGATE)option in thePROCPHREGstatement
requests robust standard errors for the parameter estimates.
The output generated by PROC PHREG follows:
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Coefficient estimates are provided with robust standard
errors. The column under the heading StdErrRatio pro-
vides the ratio of the robust to the non-robust standard
errors. For example, the standard error for the coefficient
for TX (0.24183) is 1.209 greater than the standard error
would be if we had not requested robust standard errors
(i.e., omit the COVS(AGGREGATE) option). The robust
standard errors are estimated slightly different compared
to the corresponding model in Stata or R.

A stratified Coxmodel can also be run using the data in this
format with the variable INTERVAL as the stratified vari-
able. The stratified variable indicates whether the subject
was at risk for their 1st, 2nd, 3rd, or 4th event. This approach
is called a Stratified CP approach in Chapter 8 and is used
if the investigator wants to distinguish the order in which
recurrent events occur. The code for a stratified Cox fol-
lows:
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The only additional code from the previous model is the
STRATA statement, indicating that the variable INTER-
VAL is the stratified variable. The output containing the
parameter estimates follows:

Interaction terms between the treatment variable (TX) and
the stratified variable could be created to examine whether
the effect of treatment differed for the 1st, 2nd, 3rd, or 4th

event.

Another stratified approach (called Gap Time) is a slight
variation of the stratified counting process approach. The
difference is in the way the time intervals for the recurrent
events are defined. There is no difference in the time inter-
vals when subjects are at risk for their first event. However,
with the Gap Time approach, the starting time at risk gets
reset to zero for each subsequent event. The following code
creates data suitable for using the gap-time approach:

The new dataset (bladder2) copies the data from re.bladder
and creates two new variables for the time interval:
START2, which is always set to zero and STOP2, which is
the length of the time interval (i.e., STOP–START). The
following code uses these newly created variables to run a
Gap Time model with PROC PHREG:
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The output follows:

The results using the Gap Time approach vary slightly
from that obtained using the Stratified CP approach.

The counting process data layout with multiple observa-
tions per subject need not only apply to recurrent event
data, but can also be used for a more conventional survival
analyses in which each subject is limited to one event.
A subject with four observations may be censored for the
first three observations before getting the event in the time
interval represented by the fourth observation. This data
layout is particularly suitable for representing time-vary-
ing exposures (i.e., exposures which change values over
different intervals of time).

C. SPSS
Analyses are carried out in SPSS by using the appropriate
SPSS procedure on an SPSS dataset. Most users select
procedures by pointing and clicking the mouse through
a series of menus and dialog boxes. The code, or command
syntax, generated by these steps can be viewed and edited.

Analyses on the “addicts” dataset will be used to illustrate
these procedures. The addicts dataset was obtained from a
1991 Australian study by Caplehorn et al. and contains
information on 238 heroin addicts. The study compared
two methadone treatment clinics to assess patient time
remaining under methadone treatment. The two clinics
differed according to its live-in policies for patients.
A patient’s survival time was determined as the time (in
days) until the person dropped out of the clinic or was
censored. The variables are defined at the start of this
appendix.
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After getting into SPSS, open the dataset addicts.sav. The
data should appear on your screen. This is now your work-
ing dataset. To obtain a basic descriptive analysis of the
outcome variable (SURVT), click on Analyze!Descriptive
Statistics ! Descriptive from the drop-down menus to
reach the dialog box to specify the analytic variables. Select
the SURVT from the list of variables and enter it into the
variable box. Click on OK to view the output. Alternatively,
you can click on Paste (rather than OK) to obtain the
corresponding SPSS syntax. The syntax can then be sub-
mitted (by clicking the button under Run), edited, or saved
for another session. The syntax created is as follows (out-
put omitted):

DESCRIPTIVES
VARIABLES=survt
/STATISTICS=MEAN STDDEV MIN MAX.

There are some analyses that SPSS only performs by sub-
mitting syntax rather than using the point and click
approach (e.g., running an extended Cox model with two
time-varying covariates). Each time the point and click
approach is presented, the corresponding syntax will also
be presented.

To obtain more detailed descriptive statistics on survival
time stratified by CLINIC, click on Analyze ! Descriptive
Statistics ! Explore from the drop-down menus. Select
SURVT from the list of variables and enter it into the
Dependent List and then select CLINIC and enter it into
the Factor List. Click on OK to see the output. The syntax
created from clicking on Paste (rather than OK) is as fol-
lows (output omitted):

EXAMINE
VARIABLES=survt BY clinic
/PLOT BOXPLOT STEMLEAF
/COMPARE GROUP
/STATISTICS DESCRIPTIVES
/CINTERVAL 95
/MISSING LISTWISE
/NOTOTAL.

Survival analyses can be performed in SPSS by selecting
Analyze ! Survival. There are then four choices for selec-
tion: Life Tables, Kaplan-Meier, Cox Regression, and Cox
w/ Time-Dep Cov. The key SPSS procedures for survival
analysis are the KM and COXREG procedures.
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The survival analyses demonstrated in SPSS are as follows:

1. Estimating survival functions (unadjusted) and
comparing them across strata

2. Assessing the PH assumption using Kaplan-Meier log-
log survival curves

3. Running a Cox PH model

4. Running a stratified Cox model and obtaining Cox
adjusted log-log curves

5. Assessing the PH assumption with a statistical test

6. Running an extended Cox model

SPSS (version PASW 18) does not provide commands to
run parametric survival models, frailty models, or models
using a counting process data layout for recurrent events.

1. ESTIMATING SURVIVAL FUNCTIONS
(UNADJUSTED) AND COMPARING THEM
ACROSS STRATA

To obtain Kaplan-Meier survival estimates, select Analyze
! Survival ! Kaplan-Meier. Select the SURVT from the
variable list and enter it into the Time box, then select the
variable STATUS and enter it into the Status box. You will
then see a question mark in parentheses after the status
variable, indicating that the value of the event needs to be
entered. Click the Define Event button and insert the value
1 in the box since the variable STATUS is coded 1 for events
and 0 for censorships. Click on Continue and then OK to
view the output. The syntax, obtained from clicking on
Paste (rather than OK), is as follows (output omitted):

KM
survt /STATUS=status(1)
/PRINT TABLE MEAN.

The stream of output of these KM estimates is quite long.
If you wish to edit the output, try right clicking inside the
output and then select Edit Content. You then have a
choice to select In Viewer or In Separate Window. Click
on one of these depending on if you want to open a sepa-
rate window for your edited output.
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To obtain KM survival estimates and plots by CLINIC as
well as log rank (and other) test statistics, select Analyze!
Survival ! Kaplan-Meier and then select SURVT as the
time-to-event variable and STAUS as the status variable as
described above. Enter CLINIC into the Factor box and
click the Compare Factor button. You have a choice of
three test statistics for testing the equality of survival func-
tions across CLINIC. Select all three (log rank, Breslow,
and Tarone–Ware) for comparison and click Continue.
Select the Options button to request plots. There are four
choices (unfortunately, log-log survival plots are not
included). Select Survival to obtain KM plots by clinic.
Click Continue and then OK to view the output.

The syntax follows:

KM
survt BY clinic /STATUS=status(1)
/PRINT TABLE MEAN
/PLOT SURVIVAL
/TEST LOGRANK BRESLOW TARONE
/COMPARE OVERALL POOLED.

The output containing the KM estimates for the first five
events or censorship times from CLINIC=1 and CLINIC=2
as well for the log rank, Breslow, and Tarone–Ware tests
follow:
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Note that what SPSS calls the Breslow test statistic is
equivalent to what Stata (and SAS) call the Wilcoxon test
statistic.

Life Table estimates can be obtained by selecting Analyze
! Survival ! Life Tables. The time-to-event and status
variables are defined similarly as described above for KM
estimates. However with life tables, SPSS presents a Dis-
play Time Intervals box. This allows the user to define the
time intervals used for the life table analysis. For example,
0 to 1,000/100 would define 10 time intervals of equal
length. Life table plots can similarly be requested as
described above for the KM plots.

2. ASSESSING THE PH ASSUMPTION USING
KAPLAN-MEIER LOG-LOG SURVIVAL CURVES

SPSS does not provide unadjusted KM log-log curves by
directly using the point and click approach with the KM
command. SPSS does provide adjusted log log curves from
running a stratified Cox model (described later in the stra-
tified Cox section). A log-log curve equivalent to the unad-
justed KM log-log curve can be obtained in SPSS by
running a stratified Cox without including any covariates
in the model. In this section, however, we illustrate how
new variables can be defined in the working dataset and
then used to plot unadjusted log-log KM plots.
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First, a variable will be created containing the KM survival
estimates. Then, another new variable will be created con-
taining the log-log of the survival estimates. Finally, the
log-log survival estimates will be plotted against survival
time to see if the curves for CLINIC=1 and CLINIC=2 are
parallel. Each step can be done with the point and click
approach or by typing in the code directly.

A variable containing the survival estimates can be created
by selecting Analyze ! Survival ! Kaplan-Meier and then
selecting SURVT as the time-to-event variable, STAUS as
the status variable, and CLINIC as the factor variable as
described above. Then click the Save button. This opens a
dialogue box called Kaplan-Meier Save New Variables.
Check Survival and click on Continue and then on Paste.
The code that is created is as follows:

KM
survt BY clinic /STATUS=status(1)
/PRINT TABLE MEAN
/SAVE SURVIVAL.

By submitting this code, a new variable containing the KM
estimates called SUR_1 is created. To create a new variable
called lls containing the log(-log) of SUR_1, submit the
following code:

COMPUTE lls = LN(-LN (SUR_1)).
EXECUTE.

The above code could also be generated by selecting Trans-
form! Compute Variable and defining the new variable in
the dialogue box. To plot lls against survival time, submit
the code:

GRAPH
/SCATTERPLOT(BIVAR)=survtWITH lls BY clinic
/MISSING=LISTWISE.

This final piece of code could also be run by selecting
Graphs ! Legacy Dialogue ! Scatter/Dot ! and then
clicking on Simple Scatter and then Define in the Scatter/
Dot dialogue box. Select LLS for the Y-axis, SURVT for the
X-axis, and CLINIC in the Set Marker By box. Clicking on
paste creates the code or clicking OK submits the program.
A plot of LLS against log(SURVT) could similarly be cre-
ated. Parallel curves support the PH assumption for
CLINIC.
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3. RUNNING A COX PH MODEL
A Cox PH model can be run by selecting Analyze ! Sur-
vival ! Cox Regression. Select the SURVT from the vari-
able list and enter it into the Time box, then select the
variable STATUS and enter it into the Status box. You
will then see a question mark in parentheses after the
status variable, indicating that the value of the event
needs to be entered. Click the Define Event button and
insert the value 1 in the box since the variable STATUS is
coded 1 for events and 0 for censorships. Click on Continue
and select PRISON, DOSE, and CLINIC from the variable
list and enter them into the Covariates box. You can click
on Plots or Options to explore some of the options (e.g.,
95% CI for exp(b)). Click OK to view the output or click on
Paste to see the code. The code follows:

COXREG
survt /STATUS=status(1)
/METHOD=ENTER prison dose clinic
/CRITERIA=PIN(.05) POUT(.10) ITERATE(20).

Note that the PH assumption is assumed to hold for all
three covariates using this Cox model (the output follows).
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4. RUNNING A STRATIFIED COX MODEL AND
OBTAINING COX ADJUSTED LOG-LOG CURVES

A stratified Cox model is run by selecting Analyze !
Survival ! Cox Regression. Select the SURVT from the
variable list and enter it into the Time box. Select the
variable STATUS and enter it into the Status box and
then define the value of the event as 1. Put the variables
PRISON and DOSE in the Covariates box and the variable
CLINIC in the Strata box. The Cox model will be stratified
by CLINIC. Click the Plots button and check Log minus log
as the plot type and then click on Continue. Click on OK to
view the output or click on Paste to see the code. The code
follows:

COXREG
survt /STATUS=status(1)
/STRATA=clinic
/METHOD=ENTER prison dose
/PLOT LML
/CRITERIA=PIN(.05) POUT(.10) ITERATE(20).

The output containing the parameter estimates and the
adjusted log log plots follows:
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Notice that there are parameter estimates for PRISON and
DOSE but not CLINIC since CLINIC is the stratified vari-
able. The Cox-adjusted log log plots are fitted using the
mean values of PRISON and DOSE and are used to evalu-
ate the PH assumption for CLINIC.

Suppose rather than using the mean value of DOSE for the
adjusted log log plots, you wish to obtain adjusted plots in
which DOSE=70. Run the same code as before, up to click-
ing on the Plots button and checking Log minus log as the
plot type. Instead, click on DOSE(Mean) in the window
called Covariate Values Plotted at. Underneath the heading
called Change Value, click on the word Value, type in the
value 70, and then click on the button called Change. Now,
the variable in the window should be called DOSE(70)
rather than DOSE(Mean). Click on Continue and then
OK to view the output.

5. ASSESSING THE PH ASSUMPTION WITH
A STATISTICAL TEST

SPSS does not easily accommodate a statistical test on the
PH assumption using the Schoenfeld residuals. However,
it can be programmed using several steps. The steps are as
follows:

1. Run a Cox PHmodel to obtain the Schoenfeld residuals
for all the covariates. These residuals are saved as new
variables in the working dataset.

2. Delete observations that were censored.

3. Create a variable that contains the ranked order of
survival time. For example, the subject who had the
fourth event gets a value of 4 for this variable.

3. Run correlations on the survival rankings with the
Schoenfeld residuals.

4. The p-value for testing whether the correlation between
the ranked survival time and the covariate’s Schoenfeld
residuals is zero is the same p-value used to test the PH
assumption. The null hypothesis is that the PH
assumption is not violated.

First, run a Cox PH model with CLINIC, PRISON, and
DOSE. Click on the Save button before submitting the
model. A dialogue box appears that is called Cox Regres-
sion: Save Model Variables. Check Partial Residuals and
click on Continue. This creates three new variables in the
working dataset called PR1_1, PR2_1, and PR3_1, which
are the partial residuals (Schoenfeld residuals) for CLINIC,
PRISON, and DOSE, respectively. Click OK to run the
model (or Paste to generate the code).
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Next, delete all censored observations (i.e., only keep
observations in which STATUS=1). To do this, select Data
! Select Cases. Then check If condition is satisfied, and
then click on If. Type status=1 in the dialogue box and click
on Continue. Check Delete unselected cases in the box
called Output. Click OK and only observations with events
will be kept in the dataset. (Remember to go back to the
addicts dataset that contains the censored observations
when you continue work through the other sections that
use the addicts data.)

Create the variable that contains the ranking of survival
times by selecting Transform ! Ranked Cases. Select the
SURVT into the Variables box. Click on Rank Types, check
Ranks, and click on Continue and then click on Ties, check
Mean, and click Continue. Click OK and a new variable
(called Rsurvt) will be created containing the ranked sur-
vival time.

Finally, obtain correlations (and their p-values) between
the ranked survival and the Schoenfeld residuals. Select
Analyze! Correlate!Bivariate. Move the ranked survival
time variable as well as the three partial residual variables
into the variable box. Check Pearson (for Pearson correla-
tions) and Two-tailed for a two-tail test of significance and
click OK to see the output. The code that is generated from
these steps follows:

COXREG
survt /STATUS=status(1)
/METHOD=ENTER clinic prison dose
/SAVE= PRESID
/CRITERIA=PIN(.05) POUT(.10) ITERATE(20) .

FILTER OFF.
USE ALL.
SELECT IF(status=1).
EXECUTE

RANK
VARIABLES=survt (A) /RANK /PRINT=YES
/TIES=MEAN.

CORRELATIONS
/VARIABLES=Rsurvt PR1_1 PR2_1 PR3_1
/PRINT=TWOTAIL NOSIG
/MISSING=PAIRWISE.
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The output containing the correlations follows:

The p-values for the correlations are the p-values for
the PH test. In the output, examine the row labeled
RANK of SURVT Sig(2-tailed). Notice that the null hypoth-
esis is rejected for CLINIC (p = 0.001) but not for PRISON
(p = 0.332) or DOSE (p = 0.347).

6. RUNNING AN EXTENDED COX MODEL
An extended Cox model with exactly one time-dependent
covariate can be run using the point and click approach.
Suppose we want to include a time-dependent covariate
DOSE times the log of survival time. This product term
could be appropriate if the hazard ratio comparing any two
levels of DOSEmonotonically increases (or decreases) over
time. Select Analyze ! Survival ! Cox w/ Time-Dep Cov.
This opens a dialogue called Expression for T_COV_. The
user defines a time-dependent variable (called T_COV_) in
this box. A variable T_ is included in the variable list. This
is the variable that represents time-varying survival (as
opposed to SURVT which is an individual’s fixed time of
event). We wish to define T_COV_ to be the log of T_ �
DOSE. Enter the expression LN(T_)*dose into the dialogue
box and click on the Model button. Now, run a Cox model
that includes the covariates: PRISON, CLINIC, DOSE, and
T_COV_. The code generated is as follows:
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TIME PROGRAM.
COMPUTE T_COV_ = LN(T_) * dose.

COXREG
survt /STATUS=status(1)
/METHOD=ENTER prison clinic dose T_COV_
/CRITERIA=PIN(.05) POUT(.10) ITERATE(20).

The output containing the parameter estimates follows:

The variable T_COV_ represents the time-dependent vari-
able included in the model, which in this example is DOSE
times the log of survival time.

A heaviside function for CLINIC can similarly be created.
We can define a time dependent variable equal to CLINIC if
time is greater than or equal to 365 days and 0 otherwise.
Select Analyze! Survival ! Cox w/ Time-Dep Cov. Define
T_COV to be (T_ � 365) � clinic. After clicking on the
Model button, run a Cox model that includes PRISON,
DOSE, CLINIC, and T_COV_. The code generated is as
follows:

TIME PROGRAM.
COMPUTE T_COV_ = (T_ > = 365)* clinic.

COXREG
survt /STATUS=status(1)
/METHOD=ENTER prison clinic dose T_COV_
/CRITERIA=PIN(.05) POUT(.10) ITERATE(20).

Note that SPSS recognizes the expression (T_ � 365) as
taking the value 1 if survival time is �365 days and 0 other-
wise.
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The output follows:

Notice the variable CLINIC is included in this model and
the time-dependent heaviside function, T_COV_, does not
contribute to the estimated hazard ratio until day 365. The
estimated hazard ratio for CLINIC at 100 days is exp(-
0.460) = 0.632 while the estimated hazard ratio for CLINIC
at 400 days is exp((-0.460) þ (-1.369)) = 0.161.

It may be of interest to define two heaviside functions (with
CLINIC) and not include CLINIC in the model. This is
essentially the same model as the one described above
with one heaviside function. However, the coding of two
heaviside functions makes it somewhat computationally
more convenient for estimating the two hazard ratios for
CLINIC (HR for <365 days and HR for �365 days). Unfor-
tunately, SPSS allows just one time-dependent variable (i.
e., T_COV_) using the point and click approach. However,
by examining the code created for the single heaviside
function, there is only a slight adjustment needed to create
code for two heaviside functions. The following code cre-
ates two heaviside functions (called HV1 and HV2) and
runs a model containing PRISON, DOSE, HV1, and HV2:

TIME PROGRAM.
COMPUTE hv1= (T_ < 365)* clinic.
COMPUTE hv2= (T_ >= 365)* clinic.

COXREG
survt /STATUS=status(1)
/METHOD=ENTER prison dose hv1 hv2
/CRITERIA=PIN(.05) POUT(.10) ITERATE(20).
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The output follows:

The parameter estimates for HV1 and HV2 can be used
directly to obtain the estimated hazard ratio for CLINIC=2
vs CLINIC=1 before and after 365 days. The estimated
hazard ratio for CLINIC at 100 days is exp(-0.460) ¼
0.632 and the estimated hazard ratio for CLINIC at 400
days is expexp(-1.828)¼ 0.161. These results are consistent
with the estimates obtained from the previous model with
one heaviside function.

D. R Software
R is available for free and can be downloaded from the
Comprehensive R Archive Network (CRAN) at its home
site at http://www.r-project.org/. Analyses are carried out
in R by applying functions on R data (stored as R objects).
R functions are stored in packages. Only when a package is
loaded, its contents are available. The base packages are
installed when you download R. Packages that are not base
packages need to be installed separately.

Once you open R, you’ll see a prompt: Type 1þ1 and press
enter. You’ll (hopefully) see the answer 2 returned at the
line below. Alternatively, you can type commands in a
script by clicking on File ! New script. A new script win-
dow will open up. By typing commands in this window,
you can submit batches of code at one time by highlighting
the code and clicking on Edit ! Run line or by clicking on
Edit! selection. Programming in a script window serves a
similar function as the program editor in SAS or the Do-file
Editor in Stata, in that code can be submitted as a block
rather than one line at a time.

To see which packages are installed at your site, type and
enter library( ). To run many of the functions needed to
perform survival analyses, you will need to install the sur-
vival package (not generally a base package).
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To install the survival package, click on Packages! Install
package(s). You will see a heading called CRAN mirror
with a listing of many different countries under that head-
ing. Click on one of these (e.g., USA (AZ)) and then scroll
down and click on survival and then click OK. The survival
package (with its many survival functions) should now be
installed. Type library(survival) and press enter, and the
survival package will be ready to use. As a check, type the
word kidney and hit enter. A dataset called kidney (which
is part of the survival package) should print on your screen.
Once the survival package is installed, you do not have to
reinstall it each session. However, you will need to type
library(survival) each session before you run the survival
functions contained in the package.

Before discussing survival analyses in R, it may be useful to
give a brief overview on some of the ways data are stored in
R. In particular, we describe four classes of data storage:
vectors, matrices, dataframes, and lists. If you type and
enter the code below, R will create a numerical vector with
five elements:

c(1,7,12,6,3)

The c function combines its arguments to form a vector.
We can store this vector as an object under the name
(identifier), x1:

x1=c(1,7,12,6,3)

Type x1 and press enter, and you will see the vector x1
printed as output. The code and output are shown below:

x1
1 7 12 6 3

We can identify elements from the vector x1 by placing
brackets [ ] after x1. For example, x1[2] will identify the
2nd element of x1. The code x1[1:3] will identify the first
three elements of x1 and the code x1[x1>6] will identify
the elements in x1 greater than 6. The code and output for
these three examples follow:

x1[2]
7
x1[1:3]
1 7 12
x1[x1>6]
7 12
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The : operator (used in the 2nd example) creates a sequence
of integers incremented by 1. Next, we create four more
vectors called x2, x3, x4, and x5:

x2=2*(1:5)
x3=2*x1 + x2
x4=x1>z6
x5=c(“blue”,“green”,“red”,“green”,“purple”)

The code x2=2*(1:5) creates the vector 2, 4, 6, 8, and 10
which we named x2. The vector x3 results from arithmetic
operations of x1 and x2 (2 � x1 þ x2). The vectors x1, x2,
and x3 are each numeric vectors. If you apply the mode
function on x1 (i.e., typemode(x1) and press enter), it will
return the word “numeric” as output. The vector x4 is a
logical vector. The mode function will return the word
“logical” if you submit the code mode(x4). The elements
of a vector of mode logical are either “TRUE” or “FALSE.”
Enter the code x4 (output below):

x4
FALSE TRUE TRUE FALSE FALSE

The 2nd and 3rd elements of x4 are TRUE because the 2nd

and 3rd elements of x1 are greater than 6. The vector x5 is a
character vector. R is case sensitive, so naming the vector
x5 is not the same as naming it X5.

We can create a numeric matrix (called y) using the vec-
tors x1, x2, and x3 as columns of the matrix by applying
the cbind function:

y=cbind(x1,x2,x3)

Enter the code class(y) and the word “matrix” will be
returned as output. Enter the code mode(y) and the word
“numeric” will be returned since y is a numericmatrix. You
cannot mix numeric and character vectors in a matrix.

Type y and press enter, and the matrix will be printed
(shown below):
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A dataframe provides a more general class of data storage
than amatrix inRbecause a dataframe can contain amix of
numeric, character, and logical variables. A dataframe in R
is similar to a dataset in Stata, SAS, or SPSS, in that it can
store different types of variables. The data.frame function
can be used to combine vectors and matrices as follows:

z=data.frame(x1,x2,x3,x4,x5) or, equivalently, z=data.frame(y,x4,x5)

Type z and press enter, and the dataframe will be printed
(shown below):

Brackets [] can be used to access particular rows and/or
columns of a dataframe or matrix. Enter the code: z[2,5]
and the 2nd row, 5th column will be printed from the matrix
z (the element “green” in this example). If you want to
access the first three rows (observations) of the fifth col-
umn, type the code z[1:3,5] or equivalently z[c(1,2,3),5].
If you want to access the entire 5th column, enter z[,5].
Alternatively, since the 5th column (or variable) is named
x5, you can access the entire 5th column by entering the
code z$x5. The $ in this example points to the variable
named x5 from the dataframe named z.

A list offers a more general type of data storage than the
vector, matrix, or dataframe, and can include any of those
data objects as part of the list. The following code creates a
list called w that contains a character vector of length 2 as
its first element, the vector x1 as its second element, the
matrix y as its third element, and the dataframe z as its
fourth element:

w=list(c(“hello”,”good-bye”),x1,y,z)

Double brackets [[ ]] can be used to access particular ele-
ments of a list. If you want to access the dataframe z from
the listw, enter the codew[[4]] since z is the fourth element
ofw. If you want to access the first row third column of the
fourth element of w from the list, enter the following code:

w[[4]] [1,3]

The1st row3rdcolumnof the4thelementofwhas thevalue4.

Software: D. R Software 623



Survival Functions in R

Once the survival package has been installed you will have
access to the survival functions needed to perform the
survival analyses in this appendix. Enter the code library
(survival) each session to access these functions. Some of
the key survival functions are listed below:

Surv – Used to define the “time-to-event” and “status”
outcome variables. This function creates a survival
object that can be used as the outcome variable for
other survival functions in R

survfit – Produces KM or Cox-adjusted survival estimates
or survival estimates from a previously fitted parametric
model

survdiff – Used to perform statistical tests for the equality
of survival functions across strata

coxph – Used to run a Cox PH model, a stratified Cox
model, or an extended Cox model

cox.zph – Performs statistical tests on the PH assumption
based on Schoenfeld residuals

survSplit – Creates a new dataset in the counting process
format, with a start time, stop time, and event status for
each record. Splits single observations into multiple
observations given survival data and specified cut times

survreg – Used to run parametric survival models

Generic functions in R such as the summary function and
the plot function are often used in conjunction with these
survival functions in order to produce survival estimates
and plots.

R documentation (online help) for these functions can be
obtained by typing and submitting a question mark and
then the name of the function as one word. For example, to
access R documentation on the coxph function, submit the
code ?coxph.

The survival analyses demonstrated in R are as follows:

1. Estimating survival functions (unadjusted) and
comparing them across strata.

2. Assessing the PH assumption using graphical
approaches.

3. Running a Cox PH model.

4. Running a stratified Cox model.

5. Assessing the PH assumption with a statistical test.

6. Obtaining Cox-adjusted survival curves.
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7. Running an extended Cox model.

8. Running parametric models.

9. Running frailty models.

10. Modeling recurrent events.

We use the addicts dataset for illustration. The load func-
tion is used to access an R dataframe that has been saved
as a file. Suppose the addicts dataset has been saved on
your C drive as C:\craddicts.rda. The following code will
load the addicts data:

load(“C:\craddicts.rda”)

To print the addicts dataset, enter the code:

addicts

To print the first five observations, enter the code:

addicts[1:5, ]

All 6 variables (columns) are printed because there was no
entry after the comma. Equivalently, we could have
entered the code addicts[1:5,1:6]. The output follows:

The time-to-event variable in the addicts dataset is named
SURVT and the variable indicating whether a subject had
an event or was censored is named STATUS. The function
Surv creates a survival object in R linking these two out-
come variables (code shown below):

Surv(addicts$survt,addicts$status==1)

The first argument is the time-to-event variable which is
accessed from the addicts dataframe with the $ notation
(addicts$survt). The second argument (addicts$sta-
tus==1) indicates an event occurs (as opposed to a censor-
ship) when the status variable equals 1. Notice that two
equal signs are used to express equality. A single equal sign
is used to designate assignment in R. A portion of the
output from the Surv function is shown below:
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The output above shows the survival times for the first 36
subjects in the addicts data (out of 238). A plus (þ) sign
after their time indicates censorship rather than event.

This survival object created by the Surv function is often
used in R as the response variable for survival analyses.
Next we demonstrate survival analyses in R by specific
topics.

1. ESTIMATING SURVIVAL FUNCTIONS
(UNADJUSTED) AND COMPARING THEM
ACROSS STRATA

Kaplan-Meier survival estimates are obtained in R with the
use of three functions. The Surv function (described
above) is used within the survfit function, which is then
used within the summary function. The code follows:

summary(survfit(Surv(addicts$survt,addicts$status==1)�1))

To better understand how this code works we’ll break
down each function. The code: Y=Surv(addicts$survt,
addicts$status==1) creates a survival object called Y that
is used as the response variable in the analysis. Now con-
sider the code Y�1 This syntax is called a formula. For-
mulas are used as arguments in many functions in R,
particularly those that specify statistical models. Y�1
requests an intercept only model. In other words, we are
not conditioning on any other variable. Later in this sec-
tion we stratify on the variable CLINIC and use the formula
Y� addicts$clinic. A formula needs to be supplied as the
argument of the survfit function (shown below):

kmfit1=survfit(Y�1)

An object, which we named kmfit1, was created with the
survfit function. Enter the code kmfit1 and press enter
(output shown below):

kmfit1
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The output contains descriptive information on the num-
ber of records, the number at risk at time 0, the number
of events, and the median estimated survival time with
a 95% confidence interval. The summary function can
then be used to get Kaplan-Meier survival estimates
for all event times. The code summary(kmfit1) is equiva-
lent to the code summary(survfit(Surv(addicts$survt,
addicts$status==1)�1)) shown above. The output follows:

The summary function can also produce survival esti-
mates for specified survival times (e.g., at day 365) with
the times= option. Code and output follow:

summary(kmfit1,times=365)

If we wish to stratify by the variable CLINIC and compare
the Kaplan-Meier survival estimates at specified times, we
can first create an object (called kmfit2, where the name is
arbitrary) from the survfit function:

kmfit2=survfit(Y�addicts$clinic)

To get survival estimates at specified times (every 100 days)
for each level of CLINIC, enter the code:

summary(kmfit2,times=c(0,100,200,300,400,500,600,700,800,900,1000))
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The output follows:

Survival estimates are supplied for each 100th day. For
CLINIC=1, survival times stopped at 900 rather than 1000
as requested because no subject was at risk on day 1000.
The second argument of the summary function requesting
a vector of survival times could have been equivalently
written: summary(kmfit2,times=100*(0:10)). The output
would be identical if this alternative syntax had been used.

KM survival plots can be obtained using the plot function:

plot(kmfit2)

There are many plotting options that can be applied with
the plot function. The code below requests different line
types (lty=) and different colors (col=) for CLINIC=1 and
CLINIC=2 as well as labels for the X and Y axes (xlab= and
ylab=). If the code col( ) is submitted, then R returns a list
of over 600 colors that can be selected with the col= option.
The legend function is used to add a legend. The first
argument, “topright,” places the legend at the top right
part of the graph. The code and output follow:
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plot(kmfit2, lty = c(“solid”, “dashed”), col=c(“black”,“grey”),
xlab=“survival time in days”,ylab=“survival probabilities”)

legend(“topright”, c(“Clinic 1”,“Clinic 2”), lty=c(“solid”,“dashed”),
col=c(“black”,“grey”))

The plot indicates that subjects from CLINIC=2 have a
higher rate of survival than subjects from CLINIC=1.

The survdiff function can be used to implement a log rank
test on the variable CLINIC (the code follows):

survdiff(Surv(survt,status)�clinic, data=addicts)

The second argument of the survdiff function, data=
addicts, indicates that the variables come from the addicts
dataset. Alternatively, you could use the code:

survdiff(Surv(addicts$survt,addicts$status)�addicts$clinic)

As a third alternative, the attach function can be used to
indicate that all subsequent variable names apply to the
addicts dataset (R will search the addicts dataset for vari-
ables). The detach function can be used to remove a data-
set from the search path.

attach(addicts)
survdiff(Surv(survt,status)�clinic)
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The output follows:

The log rank statistic is highly significant with a p-value of
0.000000128 (i.e., 1.28e-07).

Variations of the log rank test can be obtained by using the
rho= option as an argument in the survdiff function. The
contribution of the jth failure time to the test statistic is
weighted by s(tj)

rho, where s(tj) represents the KM survival
estimates at time tj. If rho=0, then each failure time is
equally weighted since s(tj)

0 = 1 and the resulting test is
the log rank test. If rho=1, then the weights for each failure
time are the KM survival estimate at that failure time since
s(tj)

1 = s(tj). This test is equivalent to the Peto & Peto
modification of the Gehan–Wilcoxon test. The code and
output with rho=1 follows:

survdiff(Surv(survt,status)�clinic,data=addicts,rho=1)

The results of the test in which rho=1 yield a chi-square
value of 15.8 with a p-value of 0.0000718. This is a some-
what different result than the log rank test but still shows a
highly significant effect of CLINIC on survival.

A stratified log rank test for CLINIC (stratified by PRISON)
can be run with the þ strata(prison) term included in the
model formula. With the stratified approach, the observed
minus expected number of events are summed over all
failure times for each group within each stratum and
then summed over all strata. The code and output follow:

survdiff(Surv(survt,status) � clinic þ strata(prison),data=addicts)
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The formula includes the term + strata(prison) in the
survdiff function. The result of this test is very similar to
that obtained from the log rank test without stratifying on
PRISON.

2. ASSESSING THE PH ASSUMPTION USING
GRAPHICAL APPROACHES

The proportional hazards assumption for CLINIC can be
assessed by plotting log-log Kaplan Meier survival esti-
mates against time (or against the log of time) and evalu-
ating whether the curves are reasonably parallel. Recall
that a survival object, called kmfit2, was created in the
previous section with the survfit. The code plot(survfit2)
was used to plot the survival estimates against time. The
fun=“cloglog” option in the plot function requests that
log-log survival plot be plotted against time (on the log
scale). The code follows:

plot(kmfit2,fun=“cloglog”,xlab=“time in days using logarithmic
scale”,ylab=“log-log survival”, main=“log-log curves by clinic”)

The xlab= and ylab= request labels for the x- and y-axes and
the main= option requests a title. fun=“cloglog” requests
the complimentary log log function. The output follows:
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The plot suggests that the proportional hazards assumption
is violated as the log-log survival curves are not parallel. The
fun= option (fun denotes function) plots time on a logarith-
mic scale. It is not so straightforward if you want the log-log
survival estimates plotted against time with time not on a
logarithmic scale. However, itmay be useful to program this
task in order to illustrate how analytic output can be saved,
manipulated, and plotted. To do that, we first save the
survival estimates as an object (which we will call kmfit3)
using the summary function:

kmfit3=summary(kmfit2)

If we submit the code names(kmfit3), then the column
names of the object kmfit3 are printed. We are interested
in the columns that indicate each subject’s survival time,
KM survival estimate, and level of clinic (1 or 2). With the
names function, we can see that these columns are called
time, surv, and strata. We can examine any of these three
columns by submitting kmfit3$strata, kmfit3$time, or
kmfit3$surv as code. A dataframe (called kmfit4) consist-
ing of these three columns as variables can be created with
the data.frame function:

kmfit4=data.frame(kmfit3$strata,kmfit3$time,kmfit3$surv)
names(kmfit4)=c(“clinic”,“time”,“survival”)

The names function is used (above) on kmfit4 to overwrite
the default variable names. Next, we’ll print the first 5
observations of kmfit4:

kmfit4[1:5, ]

We are interested in separating out CLINIC=1 and
CLINIC=2. Below, we create two dataframes (clinic1 and
clinic2) from kmfit4:

clinic1=kmfit4[kmfit4$clinic==“addicts$clinic=1”, ]
clinic2=kmfit4[kmfit4$clinic==“addicts$clinic=2”, ]

The dataframes clinic1 and clinic2 contain the survival
times and survival estimates for those in CLINIC=1 and
CLINIC=2, respectively. We can now use the plot function

632 Computer Appendix: Survival Analysis on the Computer



to plot the log-log survival curves against time (with time
not plotted on the log scale). The code follows:

plot(clinic1$time,log(-log(clinic1$survival)),xlab=“survival time in days”,ylab=
“log-log survival”,xlim=c(0,800),col=“black”,type=‘l’,lty=“solid”,main=“log-log
curves by clinic”)

par(new=T)
plot(clinic2$time,log(-log(clinic2$survival)),axes=F,xlab=“survival time in
days”,ylab=“log-log survival”,col=“grey50”,type=‘l’,lty= “dashed”)

legend(“bottomright”, c(“Clinic 1”, “Clinic 2”), lty = c(“solid”, “dashed”),col=c
(“black”,“grey50”))

par(new=F)

In the first plot, time (clinic1$time) is plotted on the x axis,
and the log(-log) of survival (clinc1$survival) is plotted on
the y axis using the dataframe clinic1. The code par
(new=T) requests that the first plot not get erased when
the second plot is requested (i.e., the two plots will be over-
layed). The par function is used to set or query graphical
parameters. The second plot function is similar to the first
except that the data that is plotted are from the dataframe
clinic2. A legend is added with the legend function and
finally par(new=F) sets the graphical parameter new back
to its default value of false (so that these plots will be erased
when the next plot is requested). The output follows:

log-log curves by clinic
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The plot suggests that the proportional hazards assump-
tion is violated for CLINIC.
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3. RUNNING A COX PH MODEL
The coxph function is used to run a Cox proportional
hazards model. First, the response variable is created
with the Surv function and then a Cox PH model contain-
ing the variables CLINIC, PRISON, and DOSE is run with
the coxph function. The code and the coxph output follow:

Y=Surv(addicts$survt,addicts$status==1)

coxph(Y� prison þ dose þ clinic,data=addicts)

The output contains the regression coefficients, the expo-
nentiated coefficients (estimated hazard ratios), as well as
the standard errors, z-tests, and corresponding p-values for
the coefficients. Additional output including 95% confi-
dence intervals can be obtained by applying the summary
function to the coxph function (code and output shown
below):

summary(coxph(Y� prisonþ doseþ clinic,data=addicts))

The second table of the output gives the estimated hazard
ratio, under the column exp(coef), for CLINIC=2 vs
CLINIC=1 at 0.3643 with 95% CI (0.2391, 0.5550). Under
the column exp(-coef), we see that the estimated hazard
ratio for CLINIC=1 vs CLINIC=2 is 2.7453 (the reciprocal
of 0.3643).
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If any of the events in the data occur at the same time, there
are several options for handling ties in the Cox likelihood.
R offers three approaches with the coxph function 1) the
Efron method (the default), 2) the Breslow method, and 3)
the exact method. Generally, these methods have little
impact on the estimates but model results obtained from
different software packages may differ depending on the
default tie handling method. R uses the Efron method as
the default while Stata, SAS and SPSS use the Breslow
method as the default. The method= option in the coxph
function is used to specify the method for handling ties
(code shown below, output omitted):

coxph(Y� prison þ dose þ clinic,data=addicts, method=”efron”)
coxph(Y� prison þ dose þ clinic,data=addicts, method=”breslow”)
coxph(Y� prison þ dose þ clinic,data=addicts, method=”exact”)

Next we include two interaction (product) terms with
PRISON and test the significance of the interaction terms
simultaneously with a likelihood ratio test. The following
code creates two objects (called mod1 and mod2) that
contain information obtained from the coxph function
for the no interaction model (mod1 – the reduced model)
and the model with the two interaction terms (mod2 – the
full model)

mod1=coxph(Y � prison þ dose þ clinic,data=addicts)
mod2=coxph(Y� prisonþ doseþ clinicþ clinic*prison
þ clinic*dose, data=addicts)

Enter the codemod2 to see the output with the interaction
terms (code and output shown below):

mod2

The rest of this section gets a little complicated but we
include it to demonstrate how analytic output in R can be
accessed and then manipulated.
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The objects mod1 and mod2 contain information that we
may wish to utilize. Type the code names(mod2) to see the
names of the elements in mod2 (code and output shown
below):

names(mod2)

The 3rd element of mod2 is named “loglik.” We can access
the data stored under this name by entering the codemod2
$loglik or equivalently mod2[[3]] since loglik is the 3rd

element in the list (code and output follow):

mod2$loglik
-705.6619 -671.5997

The second element of mod2$loglik is �671.5997, which
is the log likelihood of the two interaction terms in the
model. The first element of -704.6619 is the log likelihood
of a model that contains none of the predictors (not of
interest right now).

Next we wish to perform a likelihood ratio test on the two
interaction terms. To calculate the test statistic, we need to
subtract the log-likelihood of the full model (with the inter-
action terms) from the reduced model (without the inter-
action terms) and multiply that difference by negative 2.
We can obtain this by entering the following code:

(-2)*(mod1$loglik[2]-mod2$loglik[2])

We get the output: 3.605457, which is the likelihood ratio
test statistic. Under the null, this test statistic follows a chi-
square distribution with two degrees of freedom. We can
use the pchisq function to obtain a p-value for this test.
The code 1 � pchisq(3.605457,2) returns the p-value for a
two degree of freedom chi-square test. In summary, the
following code will produce a p-value for the likelihood
ratio test (output follows):

LRT=(-2)*(mod1$loglik[2]-mod2$loglik[2])
Pvalue = 1 - pchisq(LRT, 2)
Pvalue

0.1648485
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The p-value of 0.168485 is not significant at the 0.05 level of
significance.

One of the powerful features of R is the ability for users to
define their own functions. We illustrate this feature by
defining our own function that performs a likelihood
ratio test from two Cox models (a full and reduced
model). The following code creates a function which we
call lrt.surv. This function requests the user to enter three
arguments (1) the name of the full model, (2) the name of
the reduced model, and (3) the degrees of freedom for the
test. The function will return the p-value for the likelihood
ratio test.

An R function called function is used to define a new
function. The three arguments for this function we call
mod.full, mod.reduced, and df. The code that R will use
to calculate the function output is contained within brack-
ets { } after the arguments are listed. The argument in the R
function called return informs R of the output that we
wish to return from this function (in this example, the p-
value for the likelihood ratio test). The code follows:

lrt.surv=function(mod.full,mod.reduced,df) {
lrts=(-2)*(mod.full$loglik[2]- mod.reduced$loglik[2])
pvalue=1-pchisq(lrts,df)
return(pvalue)
}

Once this code is submitted any user can obtain a p-value
from a likelihood ratio test from two Cox models by invok-
ing the function lrt.surv. We invoke this new function by
performing the same likelihood ratio test that we previ-
ously ran for the objects mod1 and mod2. The code and
output follow:

lrt.surv(mod1, mod2, 2)
0.1648485

The p-value is the same as that which we obtained earlier.
The function lrt.surv is more general and now available to
simply obtain p-values for other likelihood ratio tests that
compare two (full and reduced) Cox models.
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4. RUNNING A STRATIFIED COX MODEL
If the proportional hazards assumption is violated for the
variable CLINIC but met for PRISON and DOSE, a strati-
fied Cox model can be performed with CLINIC the strati-
fied variable. The coxph function includes a strata()
option in the model formula. First we define the response
variable Y with the Surv function and then the coxph
function is used to run a stratified Cox model (code and
output shown below):

Y=Surv(addicts$survt,addicts$status==1)
coxph(Y� prison þ dose þ strata(clinic),data=addicts)

Interaction terms for CLINIC can be included directly in
the model formula by including product terms using the :
operator (clinic:prison and clinic:dose) (code and output
follow):

coxph(Y� prison þ dose þ clinic:prison þ clinic:dose þ
strata(clinic),data=addicts)

Suppose we wish to estimate the hazard ratio for
PRISON=1 vs. PRISON=0 for CLINIC=2. This hazard
ratio can be estimated by exponentiating the coefficient
for prison plus 2 times the coefficient for the CLINIC*
PRISON interaction term. This expression is obtained by
substituting the appropriate values into the hazard in both
the numerator (for PRISON=1) and denominator (for
PRISON=0) (see below):

HR ¼ h0ðtÞ exp½1b1 þ b2DOSEþ ð2Þð1Þb3 þ b4CLINIC� DOSE�
h0ðtÞ exp½10þ b2DOSEþ ð2Þð0Þb3 þ b4CLINIC� DOSE� ¼ expðb1 þ 2b2Þ:
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The resulting hazard ratio, exp(b1 þ 2b2), is an exponen-
tiated linear combination of parameters. Unfortunately,
R does not have a lincom command that Stata provides
or an estimate statement that SAS provides in order to
calculate a linear combination of parameter estimates.
However an approach that can be used in any statistical
software package for such a situation is to recode the
variable(s) of interest such that the desired estimate is no
longer a linear combination of parameter estimates.

In this example, we are interested in a hazard ratio
PRISON=1 versus PRISON=0 for CLINIC=2. We can
define a new variable CLINIC � 2 so when CLINIC=2,
CLINIC � 2=0.

Addicts$clinic2=addicts$clinic-2
summary(coxph(Y� prisonþdoseþclinic2:prisonþ
clinic2:doseþstrata(clinic2),data=addicts))

The first line of code defines a new variable CLINIC2.
CLINIC2 is used in the stratified Cox model rather than
CLINIC. We are interested in the hazard ratio for
PRISON=1 vs PRISON=0 for CLINIC2=0. When
CLINIC2=0, the product terms cancel and the hazard
ratio reduces to exp(b1).

The second line of code applies the summary function to
the coxph function. The summary function applied in this
way produces additional output including 95% confidence
intervals for the hazard ratios. The output follows:
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The estimate for exp(b1) can be found in the second table,
exp(coef) for prison = 0.9203. The lower and upper confi-
dence limits are 0.4346 and 1.9603, respectively. If we did
not recode the variable CLINIC the problem would have
been more complicated in that we would have had to use
variance–covariance matrix (which can be obtained with
the vcov function) to calculate a 95% confidence interval
for this hazard ratio.

5. ASSESSING THE PH ASSUMPTION
WITH A STATISTICAL TEST

The cox.zph function is designed to perform a statistical
test on the proportional hazards assumption. This statisti-
cal test is a test of correlation between the Schoenfeld
residuals and survival time (or ranked survival time).
A correlation of zero supports the proportional hazards
assumption (the null hypothesis). First, we define the
response variable Y with the Surv function and then the
coxph function is used to run a Cox proportional hazards
model with the variables PRISON, DOSE, and CLINIC:

Y=Surv(addicts$survt,addicts$status==1)
mod1=coxph(Y�prison þ dose þ clinic, data=addicts)

The object called mod1 is created from the coxph func-
tion. This object is the first argument for the cox.zph
function. The code to run the test of the proportional
hazards assumption follows:

cox.zph(mod1,transform=rank)

The second argument requests that ranked survival times
be tested against the Schoenfeld residuals rather than the
actual survival times (the default). The output follows:

The output shows that the correation between the Schoen-
feld residuals for the variable CLINIC (3rd row) and ranked
survival time is -0.2498 with a p-value of 0.00120. The
significant p-value offers evidence that the proportional
hazards assumption is not satisfied for the variable
CLINIC. The p-values for PRISON and DOSE are not sig-
nificant suggesting that there is not enough evidence to
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reject the proportional hazards assumption for PRISON
and DOSE. The global test (4th row) tests the proportional
hazards assumption for the entire model (i.e., for all three
predictor variables simultaneously) and is significant with
p = 0.00606. The global test offers evidence that the pro-
portional hazards assumption is violated for this model.

We can plot the Schoenfeld residuals against each indivi-
dual’s failure time with the plot function and an object
created from the cox.zph function as the first argument.
The argument var=clinic, specifies that the residuals
should pertain the variable CLINIC. The argument se=F,
suppresses the printing of confidence limits for the fitted
curve. The code and output follow:

plot(cox.zph(mod1,transform=rank),se=F,var=‘clinic’)

If the PH assumption is met then the fitted curve should
look horizontal because the Schoenfeld residuals would be
independent of survival time. However, the fitted curve
slopes downward.

6. OBTAINING COX-ADJUSTED SURVIVAL CURVES
Cox adjusted survival estimates and plots can be obtained
by applying the summary or plot function to an object
created from the function survfit. The first step is to run
the Cox model with the coxph function:

Y=Surv(addicts$survt,addicts$status==1)
mod1=coxph(Y � prison þ dose þ clinic, data=addicts)

Adjusted survival curves generally depend on the pattern of
covariates. Suppose we are interested in plotting the sur-
vival curve for the pattern PRISON=0, DOSE=70, and
CLINIC=2. First, we need to create a dataset (or dataframe)
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with the data.frame function with one observation. Code
and output follows:

pattern1=data.frame(prison=0,dose=70,clinic=2)

pattern1
prison dose clinic
0 70 2

This one observation dataframe is called pattern1. To
obtain Cox adjusted survival estimates apply the survfit
function within the summary function as shown below:

summary(survfit(mod1,newdata=pattern1))

The first argument of the survfit function is the object
called mod1 created with coxph function. The second
argument supplies the dataframe containing the pattern
of covariates of interest (called pattern1).

The output follows:

To obtain a Cox adjusted survival curve for the same pat-
tern of covariates, apply the plot function in the same
manner that the summary function was applied above.
The code follows:

plot(survfit(mod1,newdata=pattern1),conf.int=F,main=“Adjusted
survival for prison=0, dose=70, clinic=2”)
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The conf.int=F option suppresses the plotting of the con-
fidence limits. The option conf.int=T (the default) would
plot the 95% confidence limits. Themain= option requests
a title for the plot. The output follows:

Stratified Cox adjusted survival curves can be obtained by
first running a stratified Cox model (stratified by CLINIC):

mod3=coxph(Y� prison þ dose þ strata(clinic),data=addicts)

To obtain stratified Cox adjusted curves controlling for
PRISON and DOSE, we create a one observation data-
frame with the mean values of 0.46 for PRISON and 60.4
for DOSE:

pattern2=data.frame(prison=.46,dose=60.40)

Now apply the plot function to the survfit function as
shown in the last example. The code and output follow:

plot(survfit(mod3,newdata=pattern2), conf.int=F, lty = c(“solid”,
“dashed”), col=c(“black”,“grey”), main=“Survival curves for clinic,
adjusted for prison and dose”)
legend(“topright”, c(“Clinic 1”,“Clinic 2”), lty=c(“solid”,“dashed”),
col=c(“black”,“grey”))
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The fun= option in the plot function can be used to plot
log-log survival curves. The code and output follow:

plot(survfit(mod3,newdata=pattern2),fun=“cloglog”, main=
“Log-log curves for cinic, adjusted for prison and dose”)

The fun= option plots time on a logarithmic scale. It is not
so straightforward if you want the log-log plot against time
with time not on a logarithmic scale. This was shown in
Sect. 2 for KM log log curves. First, the adjusted survival
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estimates can be saved in an object we’ll call sum.mod3
(shown below):

sum.mod3=summary(survfit(mod3,newdata=pattern2))

Now, if it desired to plot the log-log plot against time with
time not on a logarithmic scale, similar code can be used as
was shown in Section 2, except replace the object we had
called kmfit3 in Section 2 with the object created above,
called sum.mod3. The code and plot follows:

sum.mod4=data.frame(sum.mod3$strata,sum.mod3
$time,sum.mod3$surv)
colnames(sum.mod4)=c(“clinic”,“time”,“survival”)
clinic1=sum.mod4[sum.mod4$clinic==“clinic=1”, ]
clinic2=sum.mod4[sum.mod4$clinic==“clinic=2”, ]

plot(clinic1$time,log(-log(clinic1$survival)),xlab=“survival
time in days”,ylab=“log-log survival”,xlim=c(0,800),col=
“black”,type=‘l’,lty=“solid”, main=“log-log curves stratified by
clinic, adjusted for prison, dose”)

par(new=T)

plot(clinic2$time,log(-log(clinic2$survival)),axes=F,xlab=
“survival time in days”,ylab=“log-log survival”,col=“grey50”,
type=‘l’,lty=“dashed”)

legend(“bottomright”, c(“Clinic 1”, “Clinic 2”), lty = c(“solid”,
“dashed”),col=c(“black”,“grey50”))

par(new=F)
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7. RUNNING AN EXTENDED COX MODEL
In contrast to Stata, SAS, and SPSS, in order to run an
extended Cox model in R, the analytic dataset must be in
the counting process (start, stop) format. Unfortunately,
the addicts dataset is not in that format, so it needs to be
altered in order to include a time-varying covariate. This
can be accomplished with the survSplit function. The
survSplit function can create a dataset that provides mul-
tiple observations for the same subject allowing a subject’s
covariate to change values from observation to observa-
tion. The user supplies the time cutpoint(s).

The most general choice for time cutpoints that can
accommodate the modeling of any time-varying covariate
is a vector of time cutpoints that includes all event times in
the data. The variable SURVT in the addicts dataset con-
tains each individual’s time-to-event or time-to-censorship.
The following code creates a new analytic dataset (called
addicts.cp) which puts the addicts data in the counting
process format using the survSplit function:

addicts.cp=survSplit(addicts,cut=addicts$survt[addicts$status==1],
end=“survt”, event=“status”,start=“start”,id=“id”)

The first argument of the survSplit function specifies the
dataframe (addicts) to be manipulated into the counting
process format. The cut= addicts$survt[addicts$sta-
tus==1] option specified that the time cutpoints are indi-
cated by the SURVT variable subsetted where the STATUS
variable equals 1 (i.e., keeping the event times but omitting
censorship times). The event=”status” option specifies
STATUS as the variable indicating whether the individual
had an event or was censored. The start=”start” option
creates a new variable called START. This newly defined
variable for the starting times for each observation is nec-
essary for the data to be in counting process (start, stop)
format. The end=”survt” option defines SURVT as the
stop variable (i.e., the time-to-event variable). The option
id=”id” indicates that ID is the variable that identifies each
individual. The survSplit function creates multiple obser-
vations for individuals at risk at multiple time points. The
dataset addicts.cp created above contains 18,708 observa-
tions from the 238 observations in the addicts dataset (use
the nrow function and the code nrow(addicts.cp)) to
return the number of observations.

Suppose the PH assumption was violated for the variable
DOSE and we were interested in defining a time-varying
covariate as the product of DOSE and the natural log of
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time (SURVT). This variable can easily be defined if the
dataset is in counting process form with time cutpoints at
each event time as shown below:

addicts.cp$logtdose=addicts.cp$dose*log(addicts.cp$survt)

We now have a new variable in the dataset (called LOGT-
DOSE=ln(DOSE)*T) that varies over time. We print the
dataset for one individual (id=106) who had an event at
time=35 days. Rather than print all the variables, we
request a subset of them with the c function:

addicts.cp[addicts.cp$id==106,c(‘id’,‘start’,‘survt’,‘status’,
‘dose’,‘logtdose’)

The variable LOGTDOSE is time dependent as its values
increase with time as expected. The variable SURVT lists
all the event times in the addicts dataset up to day 35 when
this individual had an event. Notice STATUS=1 when the
event occurred and STATUS=0 prior to the event. Next we
run an extended Cox model including the predictors
PRISON, DOSE, and CLINIC and the time-dependent var-
iable LOGTDOSE:

coxph(Surv(addicts.cp$start,addicts.cp$survt,addicts.cp$status) �
prison þ dose þ clinic þ logtdose þ cluster(id),data=addicts.cp)

The Surv function now takes three arguments: the start
variable (called START), the stop variable (called SURVT),
and the status variable (called STATUS). The term cluster
(ID) in the model formula indicates that there are multiple
observations (clusters) from the same subject and requests
that robust standard errors be produced for the coefficient
estimates. These robust standard errors are designed to
account for the non-independence of observations from
the same subject. The model output follows:
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The Wald test z statistic of 1.64 (p = 1.0e-01 or p=0.10) is
not significant for LOGTDOSE, providing no evidence that
the proportional hazards assumption is violated for DOSE.

Next we run an extended Cox model with heaviside func-
tions for CLINIC defined about the time cutpoint of 365
days. We could use the dataset that we just created,
addicts.cp, but since there is now only one cutpoint, we
illustrate how to create a dataset in counting process for-
mat with only one cutpoint. The new dataset (called
addicts.cp365) will have 360 observations compared to
18,708 in the dataset we previously had created called
addicts.cp. The code follows:

addicts.cp365=survSplit(addicts,cut=365,end=“survt”,
event=“status”,start=“start”,id=“id”)

The cut=365 option in the survSplit function requests that
day 365 be the only cutpoint. Next we create the two time-
dependent variables (HV1 and HV2). HV1 is defined to
equal the value of CLINIC if survival time is less than 365
days and 0 otherwise. HV2 is defined to equal 0 if survival
time is less than 365 days and equal the value of CLINIC
otherwise (code follows):

addicts.cp365$hv1=addicts.cp365$clinic*(addicts.cp365$start<365)
addicts.cp365$hv2=addicts.cp365$clinic*(addicts.cp365$start>=365)

The conditional statements in the code (addicts.cp365
$start<365) and (addicts.cp365$start>=365), take the
values of 1 if true and 0 if false and are then multiplied by
the variable CLINIC to define HV1 and HV2.

Next we’ll sort the dataset by the variables ID and START.
This is not a necessary step but it is easier to view and
understand the data when multiple observations from the
same subject are consecutive. The order function sorts the
dataset:

addicts.cp365=addicts.cp365[order(addicts.cp365$id,addicts.cp365$start), ]

Next we print the first 10 observations for selected vari-
ables:
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addicts.cp365[1:10,c(‘id’start’,‘survt’,‘status’,‘clinic’,‘hv1’,‘hv2’)]

Notice the sorted order of the ID variable is 1, 10, and 100
rather than 1, 2, and 3. The ID variable is a character rather
than numeric variable and is sorted in “alphabetical”
rather than numerical order. The first subject (ID=1) had
an event at 428 days, so was censored (STATUS=0) during
the first time interval (0, 365) but had an event (STA-
TUS=1) during the second interval (365, 428). This subject
has the value CLINIC=1, thus has the time-dependent
values HV1=1 and HV2=0 over the first interval and
HV1=0 and HV2=1 over the second interval.

Before running an extended Cox model with these heavi-
side functions we define an object (called Y365) for the
response variable using the Surv function. This object is
then used in the coxph model formula. It is not necessary
to explicitly define this object and we did not do so for the
previous extended Cox model that we ran containing
LOGTDOSE, but the code is more readable with the nota-
tion for the response variable simplified. The code follows:

Y365=Surv(addicts.cp365$start,addicts.cp365$survt,
addicts.cp365$status)

Next we run the model with two heaviside functions (code
and output follow):

coxph(Y365 � prison þ dose þ hv1 þ hv2 þ cluster(id),
data=addicts.cp365)
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The estimated hazard ratio (CLINIC=2 vs. CLINIC=1) is
0.632 for days <365 and 0.160 for days ≧365 (found in
the second numeric column under exp(coef)). If we wish
to match the SAS, Stata, and SPSS output, we could run
the model without robust standard errors and use the
method=”breslow” to handle simultaneous events (ties)
in the Cox likelihood. The code follows (output omitted):

coxph(Y365 � prison þ dose þ hv1 þ hv2,data=addicts.
cp365,method=“breslow”)

To run an equivalent model with one heaviside function,
we need to include the CLINIC variable in the model (code
and output shown below):

coxph(Y365 � prison þ dose þ clinic þ hv2 þ cluster
(id),data=addicts.cp365)

The coefficient estimates are different with this model
compared to the model with two heaviside functions but
the estimated hazard ratios are the same. The estimated
hazard ratio (CLINIC=2 vs. CLINIC=1) is 0.632 for days
<365 (exponentiate the coefficient for CLINIC). In order to
estimate the hazard ratio for days � 365, we need to sum
the coefficient estimates for CLINIC and HV2 and then
exponentiate (exp(-0.4594 þ -1.3711)) = 0.160). The signif-
icant p-value for the estimated coefficient for HV2 of (p =
3.6e-10 or p = 0.0036) suggests that the hazard ratios for
CLINIC for the two different time periods are not equal. In
other words, the significant p-value provides evidence that
the proportional hazard assumption is violated for
CLINIC.
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8. RUNNING PARAMETRIC MODELS
The survreg function in R runs parametric accelerated
failure time (AFT) models. Whereas the key assumption
of a proportional hazards (PH) model is that hazard ratios
are constant over time, the key assumption for an AFT
model is that survival time accelerates (or decelerates)
by a constant factor when comparing different levels of
covariates.

The most common distribution for parametric modeling of
survival data is the Weibull distribution. The hazard func-
tion for a Weibull distribution is lptp�1. If p = 1, then the
Weibull distribution is also an exponential distribution.
The Weibull distribution has the desirable property in
that if the AFT assumption holds then the PH assumption
also holds. The exponential distribution is a special case of
theWeibull distribution. The key property for the exponen-
tial distribution is that the hazard is constant over time ((h
(t) = l). In R, the Weibull and exponential model are run
only as AFT models.

The Weibull distribution has the property that the log-log
of the survival function is linear with the log of time. Recall
in Section 2 (assessing the PH assumption graphical
approach) that the fun=“cloglog” option in the plot
function requested Kaplan-Meier log-log survival plot
be plotted against time (on the log scale) for the variable
CLINIC. The curves from this plot can be used to evaluate
the Weibull assumption. If the survival curves are approxi-
mately straight lines (and parallel), then the Weibull
assumption is reasonable for CLINIC. Furthermore, if the
straight lines have a slope of 1, then the exponential distri-
bution is appropriate. We repeat and condense the code
that was given in Section 2 (see outputted plot in Section 2):

plot(survfit(Y�addicts$clinic), fun=“cloglog”,xlab=“time in days using log-
arithmic scale”,ylab=“log-log survival”, main=“log-log curves by clinic”)

The log–log curves in Section 2 do not look straight but for
illustration, we shall proceed as if the Weibull assumption
were appropriate. First an exponential model is run with
the survreg function. In this model, the Weibull shape
parameter (p) is forced to equal 1, which forces the hazard
to be constant. We’ll save the results in an object called
modpar1:

modpar1=survreg(Surv(addicts$survt,addicts$status) � prison þ dose þ
clinic,data=addicts,dist=“exponential”)
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Next we apply the summary function to the object we just
created (code and output shown below):

summary(modpar1)

The key assumption of an exponential model is that the
hazard is constant over time. This is indicated in the out-
put by the statement “Scale fixed at 1” listed under the
tables of parameter estimates. The output can be used to
estimate the hazard ratio for any subject given a pattern of
covariates. Note that R outputs the parameter estimates
for the AFT form of the exponential model. Multiply the
estimated coefficients by one to get estimates consistent
with the PH parameterization of the model (see Chapter.
7). For example, the estimated hazard ratio comparing
PRISON=1 vs PRISON=0 is exp(0.2526) = 1.29. The
corresponding acceleration factor for an exponential
model is just the reciprocal of the hazard ratio, exp(-
0.2526) = 0.78. Having a prison record accelerates the
time to event by a factor of 0.78.

Next a Weibull AFT model is run with the survreg func-
tion. The results are saved in an object called modpar2:

modpar2=survreg(Surv(addicts$survt,addicts$status)
� prison þ dose þ clinic,data=addicts,dist=“weibull”)
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Next we apply the summary function to the object
modpar2 (code and output follow):

summary(modpar2)

The Weibull shape parameter is the reciprocal of what R
calls the Scale parameter (estimated at 0.73). An estimate
for the Weibull shape parameter can be obtained by taking
the reciprocal, 1/0.73 = 1.37. The acceleration factor com-
paring CLINIC=2 to CLINIC=1 is estimated at exp(0.7090)
= 2.03. So, the estimated median survival time (time off
heroin) is double for patients enrolled in CLINIC=2 com-
pared to CLINIC=1.

We can use the model results and the predict function to
estimate the median (or any other quantile) time to event
for any specified pattern of covariates. For example, we
can obtain the 25th, 50th, and 75th percentile of survival
time estimated from the Weibull model results that we
saved in the object modpar2 for an individual who has
the covariate pattern PRISON=1, DOSE=50, and
CLINIC=1. The code follows:

pattern1=data.frame(prison=1,dose=50,clinic=1)
pct=c(.25,.50,.75)
days=predict(modpar2,newdata=pattern1,type=“quantile”,p=pct)
cbind(pct,days)

The first statement in the code creates a dataframe of one
observation specifying the pattern of covariates of interest.
This dataframe (called pattern1) could have contained
more than one observation if we were interested in com-
paring different patterns of covariates. The next statement
creates a vector (called pct) which contains the percentiles
of interest (25th, 50th, and 75th). The third statement cre-
ates an object (called days) that contains output from the
predict function. The first argument of the predict func-
tion is the object we called modpar2 that contains the
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Weibull model results. The second argument, newdata=
pattern1, inputs the pattern of covariates of interest. The
third argument, type=“quantile”, requests that quantiles
be output. The fourth argument, p=pct, inputs the vector
of quantiles that we created in the line of code above it. The
last statement of code uses the cbind function to combine
the vectors pct and days side-by-side in columns. The
output follows:

The estimated median survival time is 254.2196 days.
We can use similar code to plot the survival curve for an
individual who has the covariate pattern PRISON=1,
DOSE=50, and CLINIC=1 using the Weibull model results.
The code follows:

pct2=0:100/100
days2=predict(modpar2,newdata=pattern1,
type=“quantile”,p=pct2)
survival=1-pct2

plot(days2,survival,xlab=“survival time in days”,ylab= “survival
probabilities”,main=“Weibull survival estimates for prison=0,
dose=40,clinic=1”,xlim=c(0,800))

The first statement creates a vector called pct2 that con-
tains a sequence of percentiles between 0 and 1 incremen-
ted by 0.01,(0, 0.01, 0.02,...,0.99, 1). The second statement
creates an object, called days2, containing output from the
predict function. The third argument creates a vector
called survival which reverses the order of pct2. Finally,
the plot function plots the vectors days2 on the horizontal
axis and survival on the vertical axis. Axis labels and a title
are added using plot function options. The output follows:
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Next a log-logistic AFT model is run with the survreg
function. The results are saved in an object called
modpar3:

modpar3=survreg(Surv(addicts$survt,addicts$status)�
prison þ dose þ clinic,data=addicts,dist=“loglogistic”)

Next, we apply the summary function to the object
modpar3 (code and output shown below):

summary(modpar3)
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From this output, the acceleration factor comparing
CLINIC=2 to CLINIC=1 is estimated as exp(0.5806) =
1.79. If the AFT assumption holds for a log logistic model,
then the proportional odds assumption holds for the sur-
vival function (although the PH assumption will not hold).
The proportional odds assumption can be evaluated by
plotting the log odds of survival (using KM estimates)
against the log of survival time. If the plots look like
straight lines for each pattern of covariates then the log
logistic distribution is reasonable. If the straight lines are
also parallel then the proportional odds and AFT assump-
tions also hold.

In Section. 2, we created an object which we called kmfit2
that contained the Kaplan-Meier survival estimates. We
repeat the code to recreate that object:

kmfit2=survfit(Surv(addicts$survt,addicts$status)�addicts$clinic)

The vector kmfit2$time contains the survival times and
the vector kmfit2$surv contains the KM survival estimates
by CLINIC. The plot function can be used to plot log odds
of survival, log[(S/(1 � S)], against the log of survival time.
The code and output follow:

plot(log(kmfit2$time),log(kmfit2$surv/(1-kmfit2$surv)))

The curves do not look like straight lines or parallel so the
proportional odds assumption for CLINIC looks to be vio-
lated. We had run the log-logistic model earlier for illustra-
tion, even though the graph suggests that it is not the
appropriate model.

Other distributions supported by the survreg function are
the normal (dist=”gaussian”) and the lognormal (dist=”log-
normal”) distributions.
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9. RUNNING FRAILTY MODELS
Frailty models contain an extra random component
designed to account for individual-level differences in the
hazard otherwise unaccounted for by the model. The
frailty, a, is a multiplicative effect on the hazard assumed
to follow some distribution. The hazard function condi-
tional on the frailty can be expressed as hðtjaÞ ¼ a½hðtÞ�.

R offers three choices for the distribution of the frailty: the
gamma, Gaussian, and t distributions. The variance (theta)
of the frailty component is a parameter typically estimated
by the model. If theta = 0, then there is no frailty.

First, we rerun a stratified Cox model without frailty (pre-
viously shown in Section. 4). The stratified variable is
CLINIC while PRISON and DOSE are predictor variables.
A stratified Cox model is appropriate if the PH assumption
is violated for CLINIC and met for PRISON and DOSE and
our interest is in estimating a hazard ratio for PRISON or
DOSE. The code and output follow:

Y=Surv(addicts$survt,addicts$status==1)
coxph(Y� prison þ dose þ strata(clinic),data=addicts)

The estimated hazard ratio for PRISON=1 versus
PRISON=0 is exp(0.3896) = 1.476. Next we illustrate how
to include a frailty component in this model. The code
follows:

coxph(Y� prison þ dose þ strata(clinic) þ frailty(id, distribution=
“gamma”), data=addicts)

The termþ frailty(id, distribution=“gamma”) is included
in the model formula. The first argument of the frailty
function is the variable id and indicates that the unmea-
sured heterogeneity (the frailty) is at the individual level.
The second argument indicates that the distribution of the
random component is the gamma distribution. The output
follows:
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Under the table of parameter estimates the output indi-
cates that the variance of random effect = 0.00227. The p-
value for the frailty component of 3.1e-01= 0.31 is provided
in the third row and right column of the table and indicates
that the frailty component is not significant. We conclude
that the variance of the random component is zero for this
model (i.e., there is no frailty). The parameter estimates for
PRISON and DOSE changed minimally in this model com-
pared to the model previously run without the frailty.

Now, suppose the variable CLINIC was unmeasured. Next
we consider a Cox model (without frailty) that does not
contain CLINIC. The code and output follow:

coxph(Y� prison þ dose, data=addicts)

The estimated hazard ratio for PRISON=1 versus
PRISON=0 is exp(0.1897) = 1.209 as compared to exp
(0.3896) = 1.476 that was observed in the model that
contained CLINIC as a stratified variable. In previous sec-
tions CLINIC was shown to be an important predictor that
violates the proportional hazards assumption. If CLINIC
was unaccounted for (as in the model above), there may be
a source of unobserved heterogeneity that a frailty compo-
nent might address. The next model omits CLINIC but
includes a frailty component and the predictors PRISON
and DOSE. The code and output follow:
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coxph(Y� prison þ dose þ frailty(id, distribution=“gamma”), data=addicts)

The variance of the frailty component is estimated at 0.65
compared to 0.00227 for the model that we showed previ-
ously that contained CLINIC as the stratified variable. The
p-value for the frailty is highly significant at 8.6e–3 =
0.0086. The hazard ratio for the effect of PRISON is exp
(0.4144) = 1.51. The summary function can be applied to
the coxph function to get R to exponentiate the parameter
estimates (with 95% CI) when a frailty component is
included in a Cox model. The code and output follow:

summary(coxph(Y� prison þ dose þ frailty(id,
distribution=“gamma”), data=addicts))

It is interesting that the estimated hazard ratio for PRISON
(1.51) obtained in this model (without CLINIC but with the
frailty component) is closer to the corresponding hazard
ratio obtained from the model that included CLINIC
(1.476) compared to the one that did not include CLINIC
(1.209). In this example, the frailty component might be
accounting to some extent for the fact that CLINIC was
omitted from the model.
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10. MODELING RECURRENT EVENTS
The modeling of recurrent events is illustrated with the
bladder cancer dataset (bladder.rda) described at the
start of this appendix. Recurrent events are represented
in the data with multiple observations for subjects having
multiple events. The data layout for the bladder cancer
dataset is in the counting process (start, stop) format
with time intervals defined for each observation (see Chap-
ter 8). The load function is used to access an R dataframe
that has been saved as a file. Suppose the bladder dataset
has been saved on your C drive as C:\crbladder.rda. The
following code will load the bladder data:

load(“C:\\bladder.rda”)

The following code prints the 12th–20th observation, which
contains information for four subjects:

bladder[12:20, ]

The output follows:

There are three observations for ID=10, one observation
for ID=11, three observations for ID=12, and two observa-
tions for ID=13. The variables START and STOP represent
the time interval for the risk period specific to that obser-
vation. The variable EVENT indicates whether an event
(coded 1) occurred. The first three observations indicate
that the subject with ID=10 had an event at 12 months,
another event at 16 months, and was censored at 18
months.

Recall we analyzed data in the counting process format
when we ran extended Cox models (Section 7). In that
section we saw how a subject’s covariate can change values
from time-interval to time-interval. With the bladder data-
set, the (start,stop) data format provides a way to indicate
that a subject experienced multiple events.
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As mentioned in the beginning of our discussion of R, the
code library(survival) must be submitted at each session
before survival functions in R can be accessed.

library(survival)

The coxph function can be used to run Cox models with
recurrent events. First, we’ll define a response variable
using the Surv function (called Y):

Y=Surv(bladder$start,bladder$stop,bladder$event==1)

As we have seen in Section 7, the Surv function requires
three arguments with data in the counting process format:
the start variable (called START), the stop variable (called
STOP), and the status variable (called EVENT). The code
bladder$event==1 indicates that an event is coded 1. R
recognizes the value 1 as the default coding of an event, so
it was not necessary to state this explicitly in the Surv
function as we did. Next, a recurrent-events Cox model is
run with the predictors: treatment status (TX), initial num-
ber of tumors (NUM), and the initial size of tumors (SIZE):

coxph(Y � tx þ num þ size þ cluster(id), data=bladder)

The term þ cluster(id) in the model formula requests
robust standard errors for the parameter estimates. The
model output follows:

The treatment variable (TX) is coded 1 for treatment with
thiotepa and 0 for the placebo. The estimated hazard ratio
(TX=1 vs. TX=0) is 0.663 (with a p-value of 0.0980). There
are two sets of standard errors presented in the table under
the columns labeled: se(coef) and robust se. The p-values
and z-test statistics in this table are calculated using the
robust standard errors. We could obtain additional model
output (including 95% CIs) by applying the summary
function to the coxph function.

A stratified Coxmodel can also be run using the data in this
format with the variable INTERVAL as the stratified vari-
able. The stratified variable indicates whether the subject
was at risk for their first, second, third, or fourth event.
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This approach is called a Stratified CP recurrent event
model (see Chap. 8) and is used if the investigator wants
to distinguish the order in which recurrent events occur.
The bladder data is in the proper format to run this model.
The code and output follow:

coxph(Y � tx þ num þ size þ strata(interval) þ cluster
(id),data=bladder)

The only additional code from the previous model is the
term þ strata(interval) in the model formula which indi-
cates that INTERVAL is the stratified variable. Interaction
terms between the treatment variable (TX) and the strati-
fied variable could be created to examine whether the
effect of treatment differed for the 1st, 2nd, 3rd, or 4th event.

Another stratified approach (called Gap Time) is a slight
variation of the Stratified CP approach. The difference is in
the way the time intervals for the recurrent events are
defined. There is no difference in the time intervals when
subjects are at risk for their first event. However, with the
Gap Time approach, the starting time at risk gets reset to
zero for each subsequent event. To run a Gap Time model,
we need to create two new (start, stop) variables in the
bladder dataset, which we’ll call START2 and STOP2:

bladder$start2=0
bladder$stop2=bladder$stop – bladder$start

The first of the two newly defined variables (START2) is
always zero. The second (STOP2) is defined as the time
between each event (STOP–START). To print a subset of
these variables, we can use the data.frame function. The
attach function allows variables in the bladder dataset to
be listed without the bladder$ prefix (code and output for
printing the 12th–20th observation below).

attach(bladder)
data.frame(id,event,start,stop,start2,stop2)[12:20, ]
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Next we need to reset our response variable using the Surv
function by changing our time intervals from (START,
STOP) to (START2, STOP2):

Y2=Surv(bladder$start2,bladder$stop2,bladder$event)

Next we run a Gap Timemodel with the bladder data using
similar code that was used for the Stratified CP model
except we use Y2 rather than Y as our response variable.
The code and output follow:

coxph(Y2 � tx þ num þ size þ strata(interval) þ cluster(id),data=bladder)

The results using the Gap Time approach varies slightly
from that obtained using the Stratified CP approach.
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Chapter 1 True-False Questions:

1. T

2. T

3. T

4. F: Step function.

5. F: Ranges between 0 and 1.

6. T

7. T

8. T

9. T

10. F: Median survival time is longer for group 1 than for
group 2.

11. F: Six weeks or greater.

12. F: The risk set at 7 weeks contains 15 persons.

13. F: Hazard ratio.

14. T

15. T

16. h(t) gives the instantaneous potential per unit time for
the event to occur given that the individual has
survived up to time t;k(t) is greater than or equal to
0; h(t) has no upper bound.

17. Hazard functions

� give insight about conditional failure rates;
� help to identify specific model forms (e.g.,

exponential, Weibull);
� are used to specify mathematical models for

survival analysis.

18. Three goals of survival analysis are:

� to estimate and interpret survivor and/or hazard
functions;

� to compare survivor and/or hazard functions;
� to assess the relationship of explanatory variables

to survival time.
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19. t(j) mj qj R(t(j))

Group 1: 0 0 0 25 persons survive � 0 years
1.8 1 0 25 persons survive � 1.8 years
2.2 1 0 24 persons survive � 2.2 years
2.5 1 0 23 persons survive � 2.5 years
2.6 1 0 22 persons survive � 2.6 years
3.0 1 0 21 persons suivive � 3.0 years
3.5 1 0 20 persons survive � 3.5 years
3.8 1 0 19 persons survive � 3.8 years
5.3 1 0 18 persons survive � 5.3 years
5.4 1 0 17 persons survive � 5.4 years
5.7 1 0 16 persons survive � 5.7 years
6.6 1 0 15 persons survive � 6.6 years
8.2 1 0 14 persons survive � 8.2 years
8.7 1 0 13 persons survive � 8.7 years
9.2 2 0 12 persons survive � 9.2 years
9.8 1 0 10 persons survive � 9.8 years

10.0 1 0 9 persons survive � 10.0 years
10.2 1 0 8 persons survive � 10.2 years
10.7 1 0 7 persons survive � 10.7 years
11.0 1 0 6 persons survive � 11.0 years
11.1 1 0 5 persons survive � 11.1 years
11.7 1 3 4 persons survive � 11.7 years

20. a. Group 1 has a better survival prognosis than
group 2 because group 1 has a higher average
survival time and a correspondingly lower
average hazard rate than group 2.

b. The average survival time and average hazard rates
give overall descriptive statistics. The survivor
curves allow one to make comparisons over time.

Chapter 2 1. a. KM plots and the log rank statistic for the cell
type 1 variable in the vets.data dataset are shown
below.
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The KM curves indicate that persons with large
cell type have a consistently better prognosis than
persons with other cell types, although the two
curves are essentially the same very early on and
after 250 days. The log rank test is not significant
at the .05 level, which gives somewhat equivocal
findings.

b. KM plots and the log rank statistic for the four
categories of cell type are shown below.

The KM curves suggest that persons with adeno or
small cell types have a poorer survival prognosis
than persons with large or squamous cell types.
Moreover, there does not appear to be a
meaningful difference between adeno or small
cell types. Also, persons with squamous cell type
seem to have, on the whole, a better prognosis
than persons with large cell type.
Computer results from Stata giving log rank
statistics are now shown.

Group Events observed Events expected

1 26 34.55
2 26 15.69
3 45 30.10
4 31 47.65
Total 128 128.00

Log rank ¼ chi2(3) ¼ 25.40
P-value ¼ Pr > chi2 ¼ 0.0000

Group Events observed Events expected

1 102 93.45
2 26 34.55
Total 128 128.00

Log rank ¼ chi2(1) ¼ 3.02
p-value ¼ Pr > chi2 ¼ 0.0822
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The log-rank test yields highly significant p-values,
indicating that there is some overall difference
between all four curves; that is, the null hypothesis
that the four curves have a common survival curve
is rejected,

2. a. KM plots for the two clinics are shown below. These
plots indicate that patients in clinic 2 have a
consistently better prognosis for remaining under
treatment than do patients in clinic 1. Moreover, it
appears that the difference between the two clinics
is small before one year of follow-up but diverges
after one year of follow up.

b. The log rank statistic (27.893) and Wilcoxon
statistic (11.63) are both significant well below the
.01 level, indicating that the survival curves for the
two clinics are significantly different. The log rank
statistic is nevertheless much larger than the
Wilcoxon statistic, which makes sense because the
log rank statistic emphasizes the later survival
experience, where the two survival curves are far
apart, whereas the Wilcoxon statistic emphasizes
earlier survival experience, where the two survival
curves are closer together.

c. If methadone dose is categorized into high (70þ),
medium (55–70) and low (<55), we obtain the KM
curves shown below.
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The KM curves indicate that persons with high
doses have a consistently better survival prognosis
(i.e.. maintenance) than persons with medium or
low doses. The latter two groups are not very
different from each other, although the medium
dose group has a somewhat better prognosis up to
the first 400 days of follow-up.
The log rank test statistic is shown below for the
above categorization scheme.

Group Events observed Events expected

0 45 30.93
1 74 54.09
2 31 64.99
Total 150 150.00

Log rank ¼ chi2(2) ¼ 33.02
P-value ¼ Pr>chi2 ¼ 0.0000

The test statistic is highly significant, indicating
that these three curves are not equivalent.

Chapter 3 1. a. h(t,X) ¼ h0(t)exp[b1T1 þ b2T2 þ b3PS þ b4DC
þ b5BF þ b6(T1 � PS) þ b7(T2 � PS)
þ b8(T1 � DC) þ b9(T2 � DC)
þ b10(T1�BF)þb11(T2�BF)]

b. Intervention A: X* ¼ (1, 0, PS, DC, BF, PS, 0,
DC, 0, BE 0)
Intervention C: X¼ (� 1,�1, PS, DC, BF, –PS,
–PS, –DC, –DC, –BF, –BF)

HR¼ hðt;X�Þ
hðt;XÞ ¼ exp½2 b1þ b2þ 2 b6 PSþ b7 PS

þ 2 b8 DCþ b9 DCþ 2 b10 BF

þ b11 BF�
c. H0: b6 ¼ b7 ¼ b8 ¼ b9 ¼ b10 ¼ b11 ¼ 0 in the full

model.
Likelihood ratio test statistic: � 2 ln L̂R � (�2InL̂F),
which is approximately w26 under H0, where R
denotes the reduced model (containing no product
terms) under H0, and F denotes the full model
(given in Part la above)

d. The two models being compared are:
Full model (F): h(t,X)¼ h0(t)exp[b1Tlþ b2T2þ b3PS
þ b4DC þ b5BF]
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Reduced model (R): h(t,X) ¼ h0(t)exp[b3PS þ b4DC
þ b5BF]
H0: b1 ¼ b2 ¼ 0 in the full model
Likelihood ratio test statistic: �2lnL̂R � (�2lnL̂F),
which is approximately w22 under H0.

e.
Intervention A:

Ŝðt;XÞ ¼ ½Ŝ0ðtÞ�exp½b̂1þðPSÞb̂3þðDCÞb̂4þðBFÞb̂5�

Intervention B:

Ŝðt;XÞ ¼ ½Ŝ0ðtÞ�exp½b̂2þðPSÞb̂3þðDCÞb̂4þðBFÞb̂5�

Intervention C:

Ŝðt;XÞ ¼ ½Ŝ0ðtÞ�exp½�b̂1�b̂2þðPSÞb̂3þðDCÞb̂4þðBFÞb̂5�

2. a. h(t,X) ¼ h0(t)exp[b1 CHR þ b2 AGE þ b3(CHR �
AGE)]

b. H0: b3 ¼ 0
LR statistic ¼ 264.90 � 264.70 ¼ 0.21; w2 with 1 d.f.
under H0; not significant.
Wald statistic gives a chi-square value of .01, also
not significant. Conclusions about interaction: the
model should not contain an interaction term.

c. When AGE is controlled (using the gold standard
model 2), the hazard ratio for the effect of CHR is
exp(.8051) ¼ 2.24, whereas when AGE is not
controlled, the hazard ratio for the effect of CHR
(using Model 1) is exp(.8595) ¼ 2.36. Thus, the
hazard ratios are not appreciably different, so
AGE is not a confounder.
Regarding precision, the 95% confidence interval
for the effect of CHR in the gold standard model
(Model 2)is given by exp[.8051 � 1.96(.3252)] ¼
(1.183, 4.231) whereas the corresponding 95%
confidence interval in the model without AGE
(Model 1) is given by exp[.8595 � 1.96(.3116)] ¼
(1.282, 4.350). Both confidence intervals have
about the same width, with the latter interval
being slightly wider. Thus, controlling for AGE has
little effect on the final point and interval estimates
of interest.

d. If the hazard functions cross for the two levels
of the CHR variable, this would mean that none
of the models provided is appropriate, because
each model assumes that the proportional hazards
assumption is met for each predictor in the model.
If hazard functions cross for CHR, however,
the proportional hazards assumption cannot be
satisfied for this variable.
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e. for CHR ¼ 1 : Ŝ t; Xð Þ ¼ Ŝ0 tð Þ� �exp 0:8051þ0:0856ðAGEÞ½ �
For CHR ¼ 0 : Ŝ t; Xð Þ ¼ Ŝ0 tð Þ� �exp 0:0856ðAGEÞ½ �

f. Using Model 1, which is the best model, there is
evidence of a moderate effect of CHR on survival
time, because the hazard ratio is about 2.4 with a
95% confidence interval between 1.3 and 4.4, and
the Wald text for significance of this variable is
significant below the .01 level.

3.a. Full model (F ¼ Model 1): h(t,X)¼h0(t)exp[b1Rx
þ b2Sexþb3log WBCþb4(Rx � Sex)
þ b5(Rx � log WBC)]
Reduced model (R ¼ model 4):
h(t,X) ¼ h0(t) exp[b1Rx þ b2Sexþ b3logWBC]
H0: b4�b5¼0
LR statistic ¼ 144.218 � 139.030 ¼ 5.19; w2 with
2 d.f. under H0; not significant at 0.05, though
signilicant at 0.10. The chunk test indicates some
(though mild) evidence of interaction.

b. Using either a Wald test (p-value ¼ .776) or a LR
test, the product term Rx � log WBC is clearly not
significant, and thus should be dropped from
Model 1. Thus, Model 2 is preferred to Model 1.

c. Using Model 2, the hazard ratio for the effect of
Rx is given by HR � (h(t,X*))/(h(t,X)) ¼ exp[0.405
þ 2.013 Sex]

d. Males Sex ¼ 0ð Þ : cHR ¼ exp 0:405½ � ¼ 1:499
Females Sex ¼ 1ð Þ : cHR ¼ exp 0:405þ 2:013 1ð Þ½ � ¼
11.223

e. Model 2 is preferred to Model 3 if one decides that
the coefficients for the variables Rx and Rx � Sex
are meaningfully different for the two models.
It appears that such corresponding coefficients
(0.405 vs. 0.587 and 2.013 vs. 1.906) are different.
The estimated hazard ratios tor Model 3 are 1.799
(males) and 12.098 (females), which are different,
but not very different from the estimates computed
in Part 3d for Model 2. If it is decided that there
is a meaningful difference here, then we would
conclude that log WBC is a confounder; otherwise
logWBC is not a confounder. Note that the logWBC
variable is significant in Model 2 (P¼ .000), but this
addresses precision and not confounding. When in
doubt, as in this case, the safest thing to do (for
validity reasons) is to control for log WBC.

f. Model 2 appears to be best, because there is
significant interaction of Rx � Sex (P ¼ .023) and
because logWBC is a likely confounder (fromPart e).
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Chapter 4 1. The P(PH) values in the printout provide GOF
statistics for each variable adjusted for the other
variables in the model These P(PH) values indicate
that the clinic variable does not satisfy the PH
assumption (P << .01), whereas the prison and dose
variables satisfy the PH assumption (P>.10).

2. The log–log plots shown are parallel. However, the
reason why they are parallel is because the clinic
variable has been included in the model, and log–log
curves for any variable in a PH model must always be
parallel. If, instead, the clinic variable had been
stratified (i.e., not included in the model), then the
log–log plots comparing the two clinics adjusted for
the prison and dose variables might not be parallel.

3. The log–log plots obtained when the clinic variable is
stratified (i.e., using a stratified Cox PHmodel) are not
parallel. They intersect early on in follow-up and
diverge from each other later in follow-up. These
plots therefore indicate that the PH assumption is
not satisfied for the clinic variable.

4. Both graphs of log–log plots for the prison variable
show curves that intersect and then diverge from each
other and then intersect again. Thus, the plots on each
graph appear to be quite nonparallel, indicating that
the PH assumption is not satisfied for the prison
variable. Note, however, that on each graph, the
plots are quite close to each other, so that one might
conclude that, allowing for random variation, the two
plots are essentially coincident; with this latter point
of view, one would conclude that the PH assumption
is satisfied for the prison variable.

5. The conclusion of nonparallel log–log plots in
Question 4 gives a different result about the PH
assumption for the prison variable than determined
from the GOF tests provided in Question 1. That is,
the log–log plots suggest that the prison variable
does not satisfy the PH assumption, whereas the
GOF test suggests that the prison variable satisfies
the assumption. Note, however, if the point of view is
taken that the two plots are close enough to suggest
coincidence, the graphical conclusion would be the
same as the GOF conclusion. Although the final
decision is somewhat equivocal here, we prefer to
conclude that the PH assumption is satisfied for the
prison variable because this is strongly indicated from
the GOF test and questionably counterindicated by
the log–log curves.
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6. Because maximum methadone dose is a continuous
variable, we must categorize this variable into two or
more groups in order to graphically evaluate whether
it satisfies the PH assumption. Assume that we have
categorized this variable into two groups, say, low
versus high. Then, observed survival plots can be
obtained as KM curves for low and high groups
separately To obtain expected plots, we can fit a Cox
model containing the dose variable and then
substitute suitably chosen values for dose into the
formula for the estimated survival curve. Typically,
the values substituted would be either the mean or
median (maximum) dose in each group.
After obtaining observed and expected plots for low
and high dose groups, we would conclude that the PH
assumption is satisfied if corresponding observed and
expected plots art; not widely discrepant from each
other. If a noticeable discrepancy is found for at least
one pair of observed versus expected plots, we
conclude that the PH assumption is not satisfied.

7. h(t,X) ¼ h0(t)exp[b1 clinic þ b2 prison þ b3 dose
þ d1 (clinic � g(t)) þ d2 (prison � g(t))
þ d3 (dose � g(t))]

where g(t) is some function of time. The null
hypothesis is given by H0: d1 ¼ d2 ¼ d3 ¼ 0. The test
statistic is a likelihood ratio statistic of the form LR ¼
�2lnLR � (�2InLF) where R denotes the reduced (PH)
model obtained when all ds are 0, and F denotes the
full model given above. Under H0, the LR statistic is
approximately chi-square with 3 d.f.

8. Drawbacks of the extended Cox model approach:

� Not always clear how to specify g(t); different
choices may give different conclusions;

� Different modeling strategies to choose from, for
example, might consider g(t) to be a polynomial
in t and do a backward elimination to eliminate
nonsignificant higher-order terms; alternatively,
might consider g(t) to be linear in t without
evaluating higher-order terms.
Different strategiesmay yield different conclusions.
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9. h(t,X) ¼ h0(t)exp[b1 clinic þ b2prison þ b3 dose þ
d1(clinic � g(t))] where g(t) is some function of time.
The null hypothesis is given by H0: d1 ¼ 0, and the
test statistic is either a Wald statistic or a likelihood
ratio statistic. The LR statistic would be of the form
LR ¼ �2 In LR � (�2In LF), where R denotes the
reduced (PH) model obtained when d1 ¼ 0, and F
denotes the full model given above. Either statistic is
approximately chi-square with 1 d.f. under the null
hypothesis.

10. t > 365 days: HR ¼ exp[b1 þ d1]

t 	 365 days: HR ¼ exp[b1]
If d1 is not equal to zero, then themodel does not satisfy
the PH assumption for the clinic variable. Thus, a test
ofH0: d1¼ 0 evaluates the PH assumption; a significant
result would indicate that the PH assumption is
violated. Note that if d1 is not equal to zero, then the
model assumes that the hazard ratio is not constant
over time by giving a different hazard ratio value
depending on whether t is greater than 365 days or
t is less than or equal to 365 days.

Chapter 5 1. By fitting a stratified Cox (SC) model that stratifies on
clinic, we can compare adjusted survival curves for
each clinic, adjusted for the prison and dose
variables. This will allow us to visually describe the
extent of clinic differences on survival over time.
However, a drawback to stratifying on clinic is that it
will not be possible to obtain an estimate of the hazard
ratio for the effect of clinic, because clinic will not be
included in the model.

2. The adjusted survival surves indicate that clinic 2 has
a better survival prognosis than clinic 1 consistently
over time. Moreover, it seems that the difference
between the effects of clinic 2 and clinic 1 increases
over lime.

3. hg t; Xð Þ ¼ h0g tð Þexp½ b1 prison þ b2 dose�; g ¼ 1; 2

This is a no-interaction model because the regression
coefficients for prison and dose are the same for each
stratum.

4. Effect of prison, adjusted for clinic and dose: cHR ¼
1:475; 95% CI: (1.059, 2.054). It appears that having
a prison record gives a 1.475 increased hazard for
failure than not having a prison record. The p-value
is 0.021, which is significant at the 0.05 level.

5. Version 1: hg t;Xð Þ ¼ h0g tð Þexp½ b1g prisonþ b2g dose�;
g ¼ 1; 2

Version 2: hg t;Xð Þ ¼ h0g tð Þexp b1 prisonþ b2 dose½
þ b3 clinic� prisonð Þ þ b4 clinic � doseð Þ�; g ¼ 1; 2
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6. g ¼ 1 (clinic 1):
h1(t,X) ¼ h01(t)exp[(0.502)prison þ (�0.036) dose]
g ¼ 2 (clinic 2):
h2(t,X) ¼ h02(t)exp[(�0.083)prison þ (�0.037)dose]

7. The adjusted survival curves stratified by clinic
are virtually identical for the no-interaction and
interaction models. Consequently, both graphs (no-
interaction versus interaction) indicate the same
conclusion that clinic 2 has consistently larger
survival (i.e., retention) probabilities than clinic 1 as
time increases.

8. H0: b3 ¼b4 ¼ 0 in the version 2 model (i.e., the no-
interaction assumption is satisfied). LR ¼ � 2In
LR� (�2 In LF) where R denotes the reduced (no-
interaction) model and F denotes the full (interaction)
model. Under the null hypothesis, LR is approximately
a chi square with 2 degrees of freedom.
Computed LR¼ 1195.428� 1193.558¼ 1.87; p-value¼
0.395; thus, the null hypothesis is not rejected and
we conclude that the no interaction model is
preferable to the interaction model.

Chapter 6 1. For the chemo data, the –log-log KM curves intersect
at around 600 days; thus the curves are not parallel,
and this suggests that the treatment variable does not
satisfy the PH assumption.

2. The P (PH) value for the Gx variable is 0, indicating
that the PH assumption is not satisfied for the
treatment variable based on this goodness-of-fit test.

3. h(t,X) ¼ h0(t)exp[b1(T x)g1(t) þ b2(T x)g2(t)
þ b3(T x)g3(t)]

where

g1 tð Þ ¼ 1 if 0 	 t < 250 days

0 if otherwise

�

g2 tð Þ ¼ 1 if 25 0 	 t < 500 days

0 if otherwise

�

g3 tð Þ ¼ 1 if t � 500 days

0 if otherwise

�

4. Based on the printout the hazard ratio estimates and
corresponding p-values and 95% confidence intervals
are given as follows for each time interval:
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Haz. Ratio p> |z|
[95% Conf.
Interval]

0 	 t < 250 days: 0.221 0.001 0.089 0.545
250 	 t < 500 days: 1.629 0.278 0.675 3.934
t � 500 days: 1.441 0.411 0.604 3.440

The results show a significant effect of treatment
below 250 days and a nonsignificant effect of
treatment in each of the two intervals after 250
days. Because the coding for treatment was 1 ¼
chemotherapy plus radiation versus 2 ¼ chemo-
therapy alone, the results indicate that the hazard
for chemotherapy plus radiation is 1/0.221 ¼ 4.52
times the hazard for chemotherapy alone. The
hazard ratio inverts to a value less than 1 (in favor
of chemotherapy plus radiation after 250 days),
but this result is nonsignificant. Note that for
the significant effect of 1/0.221 ¼ 4.52 below 250
days, the 95% confidence interval ranges between
1/0.545¼ 1.83 and 1/0.089¼ 11.24 when inverted,
which is a very wide interval.

5. Model with two Heaviside functions:
h(t,X) ¼ h0(t)exp[b1(Tx)g1(t) þ b2(Tx)g2(t)]
where

g1 tð Þ ¼ 1 if 0 	 t < 250 days

0 if otherwise

�

g2 tð Þ ¼ 1 if t � 250 days

0 if otherwise

�

Model with one Heaviside function:
h(t,X) ¼ h0(t)exp[b1(Tx) þ b2(Tx)g1(t)]
where g1(t) is defined above.

6. The results for two time inteivals give hazard ratios
that are on the opposite side of the null value (i.e., 1).
Below 250 days, the use of chemotherapy plus
radiation is, as in the previous analysis, 4.52 times
the hazard when chemother apy is used alone. This
result is significant and the same confidence interval
is obtained as before. Above 250 days, the use of
chemotherapy alone has 1.532 times the hazard of
chemotherapy plus radiation, but this result is
nonsignificant.
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Chapter 7 1. F: They are multiplicative models, although additive
on the log scale.

2. T

3. T

4. F: If the AFT assumption holds in a log-logistic model,
the proportional odds assumption holds.

5. F: An acceleration factor greater than one suggests the
exposure is beneficial to survival.

6. T

7. T

8. T

9. F: ln(T) follows an extreme value minimum
distribution.

10. F: The subject is right-censored.

11.
g ¼ exp a0 þ a1 2ð Þ þ a2PRISON þ a3DOSEþ a4PRISDOSE½ �

exp a0 þ a1 1ð Þ þ a2PRISON þ a3DOSE þ a4PRISDOSE½ �
¼ exp a1ð Þ

ĝ ¼ exp 0:698ð Þ ¼ 2:01

95% CI = exp 0.698� 1.96 0.158ð Þ½ � ¼ 1:47; 2:74ð Þ
The point estimate for the acceleration factor (2.01)
suggests that the survival time (time off heroin) is
double for those enrolled in CLINIC ¼ 2 compared to
CLINIC ¼ 1. The 95% confidence interval does not
include the null value of 1.0 indicating a statistically
significant preventive effect for CLINIC ¼ 2 compared
to CLINIC ¼ 1.

12.
HR ¼ exp b0 þ b1 2ð Þ þ b2PRISON þ b3DOSE þ b4PRISDOSE½ �

exp b0 þ b1 1ð Þ þ b2PRISON þ b3DOSEþ b4PRISDOSE½ �
¼ exp b1ð Þ

ĤR ¼ exp �0:957ð Þ ¼ 0:38

95% CI = exp �0.957� 1.96 0.213ð Þ½ � ¼ 0:25; 0:58ð Þ
The point estimate of 0.38 suggests the hazard of going
back on heroin is reduced by a factor of 0.38 for those
enrolled in CLINIC ¼ 2 compared to CLINIC ¼ 1.
Or from the other perspective: the estimated hazard
is elevated for those in CLINIC ¼ 1 by a factor of exp
(þ0 957) ¼ 2.60.

13. b1 ¼ �a1p for CLINIC, so b̂1 ¼ �(0.698X1.370467) ¼
�0.957, which matches the output for the PH form of
the model.
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14. The product term PRISDOSE is included in the model
as a potential confounder of the effect of CLINIC on
survival. It is not an effect modifier because under this
model the hazard ratio or acceleration factor for
CLINIC does not depend on the value of PRISDOSE.
The PRISDOSE term would cancel in the estimation
of the hazard ratio or acceleration factor (see
Questions 11 and 12). On the other hand, a product
term involving CLINIC would be a potential effect
modifier.

15. Using the AFT form of the model:

1

l1=p
¼ exp a0 þ a1 CLINIC þ a2 PRISONþ a3 DOSE½

þ a4 PRISDOSE�
Median survival time for CLINIC ¼ 2, PRISON ¼ 1,
DOSE ¼ 50, PRISDOSE ¼ 100:

t ¼ � ln SðtÞ½ �1=p� 1

l1=p
¼ � ln 0:5ð Þ½ �1=p

� exp b0 þ 2b1 þ b2 þ 50b3 þ 100b4½ �
t̂ (median) ¼ 403.66 days (obtained by substituting
parameter estimates from output).

16. Using the same approach as the previous question:
Median survival time for CLINIC ¼ 1, PRISON ¼ 1,
DOSE ¼ 50, PRISDOSE ¼ 100:
t ¼ [�ln(0.5)]1/p � exp[b0 þ lb1 þ b2 þ 50b3 þ 100d4]
t̂ (median) ¼ 200.85 days.

17. The ratio of themedian survival times is 403.66/200.85
¼ 2.01. This is the estimated acceleration factor for
CLINIC ¼ 2 vs. CLINIC ¼ 1 calculated in Question 11.
Note that if we used any survival probability (i.e., any
quantile of survival time), not just S(i) -¼ 0.5 (the
median), we would have obtained the same ratio.

18. The addition of the frailty component did not change
any of the other parameter estimates nor did it change
the log likelihood of �260.74854.

19. If the variance of the frailty is zero (theta ¼ 0), then
the frailty has no effect on the model. A variance of
zero means the frailty (a) is constant at 1. Frailty is
defined as a multiplicative random effect on the
hazard h(t|a) ¼ ah(t). If a ¼ 1 then h(t|a) ¼ h(t), and
there is no frailty.
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Chapter 8 1. a. Survival time (say, in weeks) to the first event
(stratum 1):

t(f) nf mf qf R(t(f))

0 2 0 0 {B,L}

12 2 1 0 {B,L}

20 1 1 0 {L}

b. For each approach, the observation for the first
event is identical.

c. Survival rime (say, in weeks) from the first to the
second event (stratum 2) using the Stratified CP
approach:

t(f) nf mf qf R(t(f))

0 0 0 0 –

16 1 1 0 {B}

23 1 1 0 {L}

d. Survival time (say, in weeks) from the first to the
second event (stratum 2) using the Gap Time
approach:

t(f) nf mf qf R((f))

0 2 0 0 {B,L}

3 2 1 0 {B,L}

4 1 1 0 {B}

e. Survival time (say, in weeks) from the first to the
second event using the Marginal approach:

t(f) nf mf qf R(t(f))

0 2 0 0 {B,L}

16 2 1 0 {B.L}

23 1 1 0 {L}

f. Correct choice is iii.
Bonnie is at risk for a second event between times
12 to 16.
Lonnie is at risk for a second event between times
20 to 23.
Neither is in the risk set for the other’s second event.

g. Correct choice is ii.
Bonnie is at risk for a second event between times
0 to 4.
Lonnie is at risk for a second event between times
0 to 3.
Bonnie is in the risk set when Lonnie gets her
second event.
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h. Correct choice is i.
Bonnie is at risk for a second event between times
0 to 16.
Lonnie is at risk for a second event between times
0 to 23.
Lonnie is in the risk set when Bonnie gets her
second event.

2. a. Cox PH Model for CP approach to Defibrillator
Study:

h(t,X) ¼ h0(t)exp[b tx þ g smoking]

where tx ¼ 1 if treatment A, 0 if treatment B.
smoking status ¼ 1 if ever smoked, 0 if never
smoked.

b. Using the CP approach, there is no significant
effect of treatment status adjusted for smoking.
The estimated hazard ratio for the effect of
treatment is 1.09, the corresponding P-value is
0.42 and a 95% CI for the hazard ratio is (0.88,
1.33).

c. No-interaction SC model for Marginal approach:

hg{t,X) ¼ h0g(t)exp[b tx þ g smoking], g ¼ 1, 2,3

Interaction SC model for Marginal approach:

hg{t,X) ¼h0g(t)exp[bg tx þ gg smoking], g¼ 1, 2, 3

d. LR¼ � 2lnLR �(�21n LF) is approximately w2 with
4 df under
H0:no-interaction SCmodel is appropriate, where R
denotes the reduced (no interaction SC) model and
F denotes the full (interaction SC) model

e. The use of a no-interaction model does not allow
you to obtain stratum-specific HR estimates, even
though you are assuming that strata are important.

f. The CP approach makes sense for these data
because recurrent defibrillator (shock) events on
the same subject are the same kind of event no
matter when it occurred.

g. You might use the Marginal approach if you
determined that different recurrent events on the
same subject were different because they were of
different order.

h. The number in the risk set (nf) remains unchanged
through day 68 because every subject who failed by
this time was still at risk for a later event.

i. Subjects 3,6, 10,26, and 31 all fail for the third time
at day 98 and are not followed afterwards.

j. Subjects 9, 15, and 28 fail for the second time at
79 days, whereas subject #16 is censored at 79 days.

k. Subjects 4, 14, 15, 24, and 29 were censored
between days 111 and 112.
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l. Subject #5 gets his first event at 45 days and his
second event at 68 days, after which he drops out
of the study. This subject is the first of the 36
subjects to drop out of the study, so the number in
the risk set changes from 36 to 35 after 68 days.

m. None of the above.
n. The product limit formula is not applicable to the

CP data; in particular, P(T > t|T � t) does not equal
“# failing in time interval /# in the risk set at start of
interval.”

o. Use the information provided in Table T.2 to
complete the data layouts for plotting the following
survival curves.
i. S1(t) ¼ Pr(T1 > t) where T1 ¼ time to first event

from study entry

t(f) nf mf qf S(tp) ¼ S(tf�1) � Pr (T1 > t | T1 � t)

0 36 0 0 1.00
33 36 2 0 0.94
34 34 3 0 0.86
36 31 3 0 0.78
37 28 2 0 0.72
38 26 4 0 0.61
39 22 5 0 0.47
40 17 1 0 0.44
41 16 1 0 0.42
43 15 1 0 0.39
44 14 1 0 0.36
45 13 2 0 0.31
46 11 2 0 0.25
48 9 1 0 0.22
49 8 1 0 0.19
51 7 2 0 0.19 � 5/7 ¼ 0.14
57 5 2 0 0.14 � 3/5 ¼ 0.08
58 3 2 0 0.08 � 1/3 ¼ 0.03
61 1 1 0 0.03 � 0/1 ¼ 0.00

ii. Gap Time S2c(t) ¼ Pr(T2c > t) where T2c ¼ time
to second event from first event.

t(f) nf mf qf S2(t(f))¼ S2(t(f�1))�Pr(T2 > t | T2 � t)

0 36 0 0 1.00
5 36 1 0 0.97
9 35 1 0 0.94

18 34 2 0 0.89
20 32 1 0 0.86
21 31 2 1 0.81
23 28 1 0 0.78
24 27 1 0 0.75

(Continued on next page)
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t(f) nf mf qf S2(t(f))¼ S2(t(f�1))�Pr(T2 > t | T2 � t)

25 26 1 0 0.72
26 25 2 0 0.66
27 23 2 0 0.60
28 21 1 0 0.58
29 20 1 0 0.55
30 19 1 0 0.52
31 18 3 0 0.43
32 15 1 0 0.40
33 14 5 0 0 26
35 9 1 0 0.23
39 8 2 0 0.17
40 6 2 0 0.17 � 4/6 ¼ 0.12
41 4 1 0 0.12 � 3/4 ¼ 0.09
42 3 1 0 0.09 � 2/3 ¼ 0.06
46 2 1 0 0.06 � 1/2 ¼ 0.03
47 1 1 0 0.03 � 0/1 ¼ 0.00

iii. Marginal S2m(t) ¼ Pr(T2m > t) where T2m ¼
time to second event from study entry.

t(f) nf mf qf S(t(f))¼S2(t(f�1))�Pr(T2>t|T2�t)

0 36 0 0 1.00
63 36 2 0 0.94
64 34 3 0 0.86
65 31 2 0 0.81
66 29 3 0 0.72
67 26 4 0 0.61
68 22 2 0 0.56
69 20 1 0 0.53
70 19 1 0 0.50
71 18 1 0 0.47
72 17 2 0 0.42
73 15 1 0 0.39
74 14 1 0 0.36
76 13 1 0 0.33
77 12 1 0 0.31
78 11 2 0 0.25
79 9 3 1 0.25 � 6/9 ¼ 0.17
80 5 2 0 0.17 � 3/5 ¼ 0.10
81 3 2 0 0.10 � 1/3 ¼ 0.03
97 1 1 0 0.03 � 0/1 ¼ 0.00

p. The survival curves corresponding to the above data
layouts will differ because they are describing
different survival functions. In particular, the
composition of the risk set differs in all three data
layouts and the ordered survival times being plotted
are different as well.

(Continued)
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Chapter 9 1. Cause-specific no interaction model for local
recurrence of bladder cancer (event ¼ 1):

h1(t,X) ¼ h01(t)exp[b11tx þ b21num þ b31size]

2. Censored subjects have bladdermetastasis (event¼ 2)
or other metastasis (event ¼ 3).

3. Cause-specific no-interaction model for bladder
metastasis (event ¼2):

h2(t,X) ¼ h02(t)exp[b12tx þ b22 þ b32size]

where censored subjects have local recurrence of
bladder cancer (event ¼ 1) or other metastasis
(event ¼ 3).

4. A sensitivity analysis would consider worst-case
violations of the independence assumption. For
example, subjects censored from failing from events
¼ 2 or 3 might be treated in the analysis as either all
being event-free (i.e., change event status to 0 and
time to 53) or all experiencing the event of interest
(i.e., change event status to 1 and leave time as is).

5. a. Verify the CIC1 calculation provided at failure time
tf¼8 for persons in the treatment group (tx ¼ 1):

ĥ1ð8Þ ¼ 1=23 ¼ 0:0435

Ŝð4Þ ¼ Ŝð3ÞPrðT > 4jT � 4Þ ¼ 0:9630ð1� 2=26Þ
¼ 0:9630ð0:9231Þ ¼ 0:8889

î1ð8Þ ¼ ĥ1ð8ÞŜð4Þ ¼ 0:0435ð:8889Þ ¼ 0:0387

CIC1ð8Þ ¼ CIC1ð4Þ þ 0:0387 ¼ 0þ 0:0387 ¼ 0:0387

b. Verify the CIC1 calculation provided at failure time
tf¼ 25 for persons in the placebo group (tx ¼ 0):

ĥ1ð25Þ ¼ 1=6 ¼ 0:1667

Ŝð23Þ ¼ Ŝð21ÞPrðT > 23jT � 23Þ ¼ 0:4150ð1� 1=8Þ
¼ 0:4150ð0:875Þ ¼ 0:3631

Î1ð25Þ ¼ ĥ1ð25ÞŜð23Þ ¼ 0:1667ð:3631Þ ¼ 0:0605

CIC1ð25Þ ¼ CIC1ð23Þ þ 0:0605 ¼ 0:2949þ 0:0605

¼ 0:3554

c. interpret the CIC1 values obtained for both the treat
ment and placebo groups at tf ¼ 30.
For tx ¼ 1, CIC1(tf ¼ 30) ¼ 0.3087 and for tx ¼ 0,
CIC1(tf ¼30) ¼ 0.3554.
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Thus, for treated subjects (tx ¼ 1), the cumulative
risk (i.e., marginal probability) for local bladder
cancer recurrence is about 30.1 % at 30 months
when allowing for the presence of competing risks
for bladder metastasis or other metastasis.
For placebo subjects (tx ¼ 1), the cumulative risk
(i.e., marginal probability) for local bladder cancer
recurrence is about 35.5% at 30 months when
allowing for the presence of competing risks for
bladder metastasis or other metastasis.
The placebo group therefore has a 5% increased
risk of failure than the treatment group by 30
months of follow-up.

d. Calculating the CPC1 values for both treatment and
placebo groups at tf ¼ 30:
The formula relating CPC to CIC is given by
CPCc ¼ CICc/(1 � CTCc0) where CICc ¼ CIC for
cause-specific risk event ¼ 1 and CICc0 ¼ CIC from
risks for events ¼ 2 or 3 combined
For tx ¼ l, CIC1(tf ¼ 30) ¼ 0.3087 and for tx ¼ 0,
CIC1(tf ¼ 30) ¼ 0.3554.
The calculation of CICc0 involves recoding the event
variable to 1 for subjects with bladder metastasis
or other metastasis and 0 otherwise and then
computing CICc0. Calculation of CICc0 involves the
following calculations.

tx ¼ 1 (Treatment A)

tf nf d1f ĥ1(tf) Ŝ(tf�1) Î1(tf) CIC10(tf)

0 27 0 0 — — —
2 27 1 .0370 l .0370 .0370
3 26 2 .0769 .9630 .0741 .1111
4 24 0 0 .8889 0 .1111
8 23 1 .0435 .8889 .0387 .1498
9 21 1 .0476 .8116 .0386 .1884

10 20 1 .0500 .7729 .0386 .2270
15 17 1 .0588 .7343 .0432 .2702
16 15 1 .0667 .6479 .0432 .3134
18 14 0 0 .6047 0 .3134
22 12 0 0 .6047 0 .3134
23 11 0 0 .5543 0 .3134
24 8 0 0 .5039 0 .3134
26 7 0 0 .4409 0 .3134
28 4 1 .2500 .3779 .0945 .4079
29 2 0 0 .2835 0 .4079
30 1 0 0 .2835 0 .4079
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tx ¼ 0 (Placebo)

tf nf d1f ĥ1(tf) Ŝ(tf�1) Î1(tf) CIC10(tf)

0 26 0 0 — — —
1 26 0 0 1 0 0
2 24 0 0 .9615 0 0
3 23 0 0 .9215 0 0
5 21 1 .0476 .8413 .0400 .0400
6 20 2 .1000 .8013 .0801 .1201
7 18 1 .0556 .7212 .0401 .1602

10 16 1 .0625 .6811 .0426 .2028
12 15 1 .0667 .6385 .0426 .2454
14 13 0 0 6835 0 .2454
16 12 1 .0833 .5534 .0461 .2915
17 10 0 0 .4612 0 .2915
18 9 0 0 .4150 0 .2915
21 8 1 .1250 .4150 .0519 .3434
23 7 0 0 .3632 0 .3434
25 6 1 .1667 .3632 .0605 .4039
29 4 0 0 .2421 0 .4039
30 2 0 0 .2421 0 .4039

From these tables, for tx ¼ 1, CIC10((tf) ¼ 30) ¼ 0.4079,
and for tx ¼ 0, CIC10((tf)¼ 30) ¼ 0.4039.
Thus, for tx ¼1, CPC1((tf)¼30)¼ 0.3087/(1 � 0.4079)
¼ 0.5213, and for tx ¼ 0, CPC1((tf) ¼ 30) ¼ 0.3554/
(1 � 0.4039) ¼ 0.5962.

6. a. HR1 tx ¼ 1 vs: tx ¼ 0ð Þ ¼ 0:535 ¼ 1=1:87ð Þ;
p-value ¼ 0:250; N:S:

b. HR2 tx ¼ 1 vs: tx ¼ 0ð Þ ¼ 0:987;
p-value ¼ :985; N:S:

c. HR3 tx ¼ 1 vs: tx ¼ 0ð Þ ¼ 0:684 ¼ 1=1:46ð Þ;
p-value ¼ :575; N.S.

7. a. Hazard model formula for the LM model:

h�gðt;XÞ ¼ h�0gðtÞ exp½b1 txþ b2 numþ b3 size
g ¼ 1; 2; 3 þ d1ðtxd2Þ þ d2ðnumd2Þ

þ d3ðsized2Þ þ d4ðtxd3Þ
þ d5ðnumd3Þ þ d6ðsized3Þ�

where

d2 ¼ 1 if bladder metastasis and 0 otherwise,
and

d3 ¼ 1 if or other metastasis and 0 otherwise
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b. Hazard ratios for the effect of each of the 3
cause-specific events:

HR1ðtx ¼ 1 vs. tx ¼ 0Þ ¼ expð�0:6258Þ
¼ 0:535ð¼ 1=1:87Þ

HR2ðtx ¼ 1 vs. tx ¼ 0Þ ¼ expð�0:6258þ :6132Þ
¼ 0:987ð¼ 1=1:01Þ

HR3ðtx ¼ 1 vs. tx ¼ 0Þ ¼ expð�0:6258þ :2463Þ
¼ 0:684ð¼ 1=1:46Þ

c. Corresponding HRs are identical.
8. a. Hazard model formula for the LMalt model:

h0gðt;XÞ ¼ h00gðtÞ exp½ d
0
11 txd1þ d

0
12 numd1þ d

0
13 sized1

g ¼ 1; 2; 3 þ d
0
21txd2þ d

0
22numd2

þ d
0
23sized2 þ d

0
31txd3

þ d
0
32numd3þ d

0
33sized3�

where
d1 ¼ 1 if local bladder cancer recurrence and 0

otherwise
d2 ¼ 1 if bladder metastasis and 0 otherwise,

and
d3 ¼ 1 if or other metastasis and 0 otherwise

b. Hazard ratios for the effect of each of the three
cause-specific events:
output.

HR1ðtx ¼ 1 vs. tx ¼ 0Þ ¼ expð�0:6258Þ
¼ 0:535ð¼ 1=1:87Þ

HR2ðtx ¼ 1 vs. tx ¼ 0Þ ¼ expð�0:0127Þ
¼ 0:987ð¼ 1=1:01Þ

HR3ðtx ¼ 1 vs. tx ¼ 0Þ ¼ expð�0:3796Þ
¼ 0:684ð¼ 1=1:46Þ

c. Corresponding hazard ratios arc identical.
9. No interaction SC LM model:

h�gðt;XÞ
g ¼ 1; 2; 3

¼ h�0gðtÞ exp½ b1 txþ b2 numþ b8 size�

Assumes HR1(X) ¼ HR2(X) ¼ HR3(X) for any X
variable e.g., Rx ¼ 0 vs. Rx ¼ 1:
HR1(tx) ¼ HR2(tx) ¼ HR3(tx) ¼ exp[b1]

10. Carry out the following likelihood ratio test:

H0: dgj = 0 g ¼ 2; 3; j ¼ 1; 2; 3

where dgj is coefficient of DgXj in the interaction SC
LM model
LR ¼ 2log LR � (�2LogLF) approx w26 under H0

R ¼ no-interaction SC (reduced) model
F ¼ interaction SC (full) model
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Chapter 10 1. Example: A¼2, F¼2, so Mt¼A/2 þ F ¼3, R¼2
a¼0.05, b¼0.10
l0 ¼ 0.10, l1 ¼ 0.05, D ¼ l0/ l1¼ 2

NEV ¼ f(1.96 þ 1.282)[2(2)þ 1]/[
ffiffiffi
2

p
(2� 1)]g2

¼ 131:382 
 132

Using Formula 1:

N ¼ 131:382

2

2þ 1
f 1� e�2ð0:05Þð3Þg þ 1

2þ 1
f 1� e�ð0:05Þ3g

NEV

¼ 131:832

0:2192
¼ 601.4 
 602

PEV

N1 ¼ [2/3]601.4 ¼ 400.93 
 401 and
N0 ¼ 400.9/2 ¼ 200.45 
 200

2. Nev ¼131.383 ¼ 132 from question 1.

PEV1 ¼ 1� 1

ð0.05)(2) e�ð0:05Þð2Þ � e�0:05Þð2þ2Þ
h i

¼ 1 � 0:8611 ¼ 0:1389

PEV0 ¼ 1� 1

ð0.10)(2) e�ð0:10Þð2Þ � e�ð0:10Þð2þ2Þ
h i

¼ 1 � 0:7421 ¼ 0:2579

N ¼ 131:382

2

2þ 1
(0.1389Þ þ 1

2þ 1
(0.2579Þ

¼ 131:832

0:1786
¼ 738.14 
 739

N1 ¼ [2/3]738.14 ¼ 492.09 
 492 and
N0 ¼ 492.09/2 ¼ 246.04 
 246.

3. The results using Formulae 1 and 2 are somewhat
different since Formula 1 yields N¼602 whereas
Formula 2 yields N¼739. Formula 1 uses the median
follow-up time MF in the computation of pEVi whereas
Formula 2 computes pEVi by assuming that the time X
at which any subject enters the study has the uniform
distribution over the accrual period.

4. NLOFadj ¼ 739/(1 � 0.25) ¼ 985.33 
 986

5. N1 ¼ [2/3]985.33¼ 656.89 
 657 and N0 ¼ 656.89/2 ¼
328.44 
 328

6. NITTadj ¼ 986/(1 � 0 05 �0.10)2 ¼ 1364.71 
 1365
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7. N1 ¼ [2/(2þl)]1364.71 ¼ 909.81 
910 and
N0 ¼ 909.81/2 ¼ 454.91 
 455

8. From question 6, the required accrual rate is r ¼ N/A ¼
1365/2 ¼ 682.5 
 683 subjects per year. If this accrual
rate is not feasible, but r* was considered feasible, then
you can adjust your sample size by reducing the accrual
period to A* ¼ N/r*. For example, if the maximum for
r is rmax ¼ 600/yr, then the required accrual period is
modified from A¼2 to A* ¼ 2.275 years.

Now suppose, we keep NEV (¼131.382), F¼2, R¼2,
a¼0.05, b¼0.10, l0 ¼ 0.10, l1 ¼ 0.05, and D ¼ l0/l1 ¼ 2
all constant, but increase the accrual time to A*¼2.275
years. Then we would need to re-compute pEV1, pEV0
and N to obtain pEV1¼ 0.2677, pEV0¼ 0.1447, and N ¼
579.541 (prior to adjusting for LOF and Crossovers),
which is modified to N* ¼ 1069.51 after adjusting for
25% LOF rate, 5% dc rate and 10% dt, rate. For this
modified sample size, the modified required accrual
rate is r* ¼ N*/A* ¼ 1069.71/2.275 ¼ 470.11, which is
less than rmax ¼ 600, so that the study is feasible.

Note, however, it is also possible to obtain a feasible
study if the accrual period remains at A¼2, but the
follow-up period increases to, say F¼4, again keeping
NEV(¼131.382), R ¼ 2, a ¼ 0.05, b ¼ 0.10, l00.10, l1 ¼
0.05, and D ¼ l0/l1 ¼ 2 all constant. This will require
re-computing pEV1, pEV0 and N again, followed by
adjustments for LOF and Crossovers. In particular, if
F is increased (to say F¼4), then pEV1 and pEV0 should
correspondingly increase from previously calculated
values because the probability for an event occurring
should increase if follow-up time is increased.
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Index

A
Accelerated failure time

(AFT)
assumption, 298–300
models, 297–298, 314–316,

341, 345–349
Acceleration factor,

299–300
exponential, 301–303
with frailty, 337, 340
log-logistic, 313
Weibull, 308

Accrual period, 505,
507–512, 514, 516,
518, 520, 522

Addicts dataset, 526
data analysis, 260–264, 280
with R programming

620–663
with SAS programming,

570–607
with SPSS programming,

607–620
with STATA

programming,
527–570

Additive failure time
model, 317

Adjusted survival curves
log-log plots, 174–175, 189
observed vs. expected

plots, 175–180
stratified Cox procedure,

208
using Cox PH model,

120–123, 144, 147
AFT. See Accelerated

failure time
Age as time scale, 131, 134,

142, 144, 147
Age-Related Eye Disease

Study (AREDS),
391–395

Age-truncated, 138
Cox models for, 138–142,

144, 148
Akaike’s information

criterion (AIC), 318
Average hazard rate, 28

B
Baseline hazard function,

108–109, 111, 145
Biased results, 438
Binary regression, 322
Bladder cancer dataset, 527
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Bladder cancer patients
comparison of results for, 385–389
counting process for first, 30

subjects, 371
hypothetical subjects, 368–369
interaction model results for, 386
no-interaction model results for, 386

Byar data, 433–434
cause-specific competing risk analysis,

435–437
Lunn–McNeil models, 455, 461

C
Cause-specific hazard function, 434
Censored data, 5–8, 37–41

interval-censored, 318, 321
left-censored, 7, 318
right-censored, 7, 318

Censoring, 5
informative (dependent), 408–410
non-informative (independent), 405–409

Closed cohort, 134–135, 139
Competing risks, 4, 8, 426, 430

CIC, 444
CPC, 453
examples of data, 474–476
independence assumption, 437
Lunn–McNeil models, 455, 461
separate models for different event

types, 434–437
Complementary log-log

binary model, 325
link function, 324

Conditional failure rate, 12
Conditional probability curves

(CPC), 453–455
Conditional survival function, 327
Confidence intervals

for hazard ratio when interaction
in PH model, 117–119, 143, 146

for KM curves, 78–79, 81, 86
for median survival time, 80, 82, 86

Confounding effect, 30–31
Counting process (CP) approach,

366, 368–379, 385–389,
392, 398–400, 402–404,
408, 410

example, 368–369, 373–375, 377–382
general data layout, 370–371

Counting process format, 20–23, 46–47
for age as time scale analysis, 142, 144
for extended Cox model, 271–273

Cox adjusted survival curves
using SAS, 588–589
using SPSS, 614–615
using Stata, 547–550

Cox likelihood, 127–131
extended for time dependent variables,

223–225
Cox PH cause-specific model, 434
Cox proportional hazards (PH) model

adjusted survival curves using, 120–123
computer example using, 100–108
extension of (see Extended Cox model)
formula for, 108–110
maximum likelihood estimation of,

112–114
popularity of, 110–112
review of, 244–246
using SAS, 576–580
using SPSS, 613
using Stata, 538–543

CP approach. See Counting process
approach

CPC. See Conditional probability
curves

Crossover observation, 517, 521
Cumulative incidence, viii
Cumulative incidence curves (CIC),

427, 444–455

D
Data layout for computer

augmented (Lunn–McNeil approach)
data layout for, 456

counting process data layout for,
370–371

general data layout for, 16–23
marginal approach data layout for,

380–381
Datasets, 526–527
Decreasing Weibull model, 14
Discrete survival analysis, 325
Drop-in/drop-out observation, 517, 521

E
Effect size, 501–502, 507, 509, 514, 518
Empirical estimation, 376
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Estimated-ln(-ln) survivor curves, 166
Estimated survivor curves, 29
Evans County Study

Cox proportional hazards (PH) model
application to, 154–156

Kaplan-Meier survival curves
for, 87–89

multivariable example using, 33–35
ordered failure times for, 53–54
survival data from, 149–152

Event, 4
types, different, separate models for,

434–437
Expected vs. observed plots, 175–180
Exponential regression, 13

accelerated failure-time form, 300–304
log relative-hazard form, 295–297

Extended Cox likelihood, 269–274
Extended Cox model, 126, 249

application to Stanford heart transplant
data, 265–269

application to treatment of heroin
addiction, 260–264

hazard ratio formula for, 251–253
time-dependent variables, 249–251
using SAS, 593–598
using SPSS, 617–620
using Stata, 550–554

F
Failure, 4

rate, conditional, 12
Flemington–Harrington test, 75
Frailty

component, 327
effect, 332
models, 326–340

using R, 657–659
using Stata, 561–564

G
Gamma distribution, 328
Gamma frailty, 333
Gap time model, 379–382, 385–388, 393,

399, 405
Gastric carcinoma data, 285–286
Generalized gamma model, 316
General stratified Cox (SC) model,

208–209

GOF. See Goodness-of-fit
Gompertz model, 317
Goodness-of-fit (GOF)

testing approach, 181–183
tests, 166

Greenwood’s formula, 78–82, 86

H
Hazard function, 9, 10

cause-specific, 434
probability density function and,

294–295
Hazard ratio, 36–37, 49

confidence interval in Cox PH model
with interaction, 117–119, 143

formula for Cox PH model, 114–117,
143, 146

formula for extended Cox model,
251–253

Heaviside function, 257

I
Increasing Weibull model, 14
Independence assumption, 437–443
Independent censoring, 37–42, 49

in competing risks, 437–443
Information matrix, 378
Instantaneous potential, 11
Intention-to-treat (ITT) principle,

517, 521
Interactions, 31

confidence interval in Cox PH
model with interaction, 117–119,
143, 146

Interval-censored data, 8, 44, 318–326
Inverse–Gaussian distribution, 328

K
Kaplan-Meier (KM) curves, 56

example of, 61–65
general features of, 66–67
log-log survival curves, 171

KM curves. See Kaplan-Meier curves

L
Left-censored data, 7–8, 132–133, 318,

321
Left truncation, 132–133, 136–140, 144,

147
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Leukemia remission-time data,
18–20, 30

Cox proportional hazards (PH) model
application, 100–108

exponential survival, 295–297
increasing Weibull for, 14
Kaplan–Meier survival curves for,

61–65, 89–90
log-log KM curves for, 171–175

recurrent event data for, 367
stratified Cox (SC) model application

to, 204–216
Likelihood function

for Cox PH model, 127–131, 145, 244
for extended Cox model, 269–274, 281
for parametric models, 318–321,

349–350
for stratified Cox (SC) model,

223–225, 230
Likelihood ratio (LR) statistic, 103
LM approach. See Lunn–McNeil

approach
Logit link function, 324
Log-logistic regression, 309–314

accelerated failure-time form, 352
Log-log

plots, 167–175
survival curves, 167–175

Lognormal survival models, 14, 316
Log-rank test, 56

alternatives to, 73–78
for several groups, 71–73
for two groups, 67–71

Loss to follow-up, 512, 516, 520
LR statistic. See Likelihood ratio

statistic
Lunn–McNeil (LM) approach, 433,

455–461
alternative, 461–464

M
Macular degeneration data set, 391–395

marginal probability, 446
results for, 393

Maximum likelihood (ML) estimation
of Cox PH model, 112–114

Median follow-up time, 505, 507, 516,
519

Multiplicative model, 317

N
No-interaction assumption in stratified

Cox model, 210–216
Non-informative censoring, 37, 41–42,

49, 437

O
Observed vs. expected plots, 175–180
Open cohort, 135, 140, 144

P
Parametric approach using shared

frailty, 389–391
Parametric survival models

defined, 292
examples

exponential model, 295–297, 300–304
log-logistic model, 309–314
Weibull model, 304–309

likelihood function, 318–321
other models, 316–318
SAS use, 598–603
Stata use, 554–561

Pepe-Mori test, 471
Peto test, 73
PH assumption

assessment using
goodness of fit test with Schonfield

residuals, 181–183
Kaplan-Meier log-log survival

curves, 611–612
observed vs. expected plots, 175–180
SAS, 585–588
SPSS, 615–617
Stata, 535–538, 545–547
time-dependent covariates, 183–187,

253–259
evaluating, 161–200
meaning of, 123–127

PH model, Cox. See Cox proportional
hazards (PH) model

Precision, 106
Probability, 12

density function, 294–295
PROC LIFEREG (SAS), 598–603
PROC LIFETEST (SAS), 572–576
PROC PHREG, 576–580
Product limit formula, 56
Proportional odds (PO) assumption, 324
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R
R software 620–663

assessing PH assumption
using graphical approaches, 631–633
using statistical tests, 640–641

estimating survival functions, 626–631
modeling recurrent events, 660–663
obtaining Cox adjusted survival curves

with, 641–645
running Cox proportional hazards (PH)

model, 634–637
running extended Cox model, 646–650
running frailty models, 657–659
running parametric models, 651–656
running stratified Cox (SC) model,

638–640
Random censoring, 37–41, 49
Recurrent event survival analysis,

363–423
counting process approach, 368–376
definition of recurrent events, 4, 364
examples of recurrent event data,

366–368
other approaches for analysis, 379–385
parametric approach using shared

frailty, 389–391
SAS modeling, 603–604
Stata modeling, 564–570
survival curves with, 395–398

Right-censored data, 8, 321
Risk set, 26
Robust estimation, 376–378
Robust standard error, 379
Robust variance, 377

S
Sample size inflation factor, 513, 517,

521
SAS, 570–607

assessing PH assumption, with
statistical tests, 585–588

demonstrating PROC LIFETEST,
572–576

modeling recurrent events, 603–607
obtaining Cox adjusted survival

curves, 588–592
running Cox proportional hazards

(PH) model, with PROC PHREG,
576–580

running extended Cox model, 593–598
running parametric models, with PROC

LIFEREG, 598–603
running stratified Cox (SC) model,

581–584
Schoenfeld residuals, 181–182, 586–587
Score residuals, 378
Semi-parametric model, 109–110, 293
Sensitivity analys.is (with competing

risks), 440–443
Shape parameter, 304
Shared frailty, 338–340, 390

recurrent events analysis using,
389–391

Shared frailty model, 338
SPSS, 607–620

assessing PH assumption
with statistical tests, 615–617
using Kaplan-Meier log-log survival

curves, 611–612
estimating survival functions, 626–628
running Cox proportional hazards

(PH) model, 613
running extended Cox model, 617–620
running stratified Cox (SC) model,

614–615
Stanford Heart Transplant Study

extended Cox model application to,
265–269

transplants vs. nontransplants,
265–269

Stata, 527–570
assessing PH assumption

using graphical approaches,
535–538

using statistical tests, 545–547
estimating survival functions, 531–535
modeling recurrent events, 564–570
obtaining Cox adjusted survival curves

with, 547–550
running Cox proportional hazards (PH)

model, 538–543
running extended Cox model, 550–554
running frailty models, 561–564
running parametric models, 554–561
running stratified Cox (SC) model,

543–545
Step functions, 10
Strata variable, 379
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Stratification variables, several, 216–221
Stratified Cox (SC) model, 204–208,

395–398
for analyzing recurrent event data,

377–385
conditional approaches, 379–383
general, 208–209
graphical view of, 221–222
marginal approach, 379–383
using SAS, 581–583
using SPSS, 614–615
using Stata, 543–545

Stratified CP model, 379–383, 385–389,
393–395, 405–410, 415

Sub-distribution hazard function,
451–452, 478

Sub-distribution (Fine and Gray)
hazard model, 451

Survival curves
adjusted, 120

using Cox PH model, 117–123
Cox adjusted (see Cox adjusted

survival curves)
with recurrent events, 395–398

Survival functions
conditional, 327
estimation

R, 626–631
SAS, 572–576
SPSS, 609–611
Stata, 531–535

probability density function and, 294–295
unconditional, 327

Survival time, 4
variable, 15

Survivor function, 9

T
Tarone–Ware test statistic, 74
Time-dependent covariates,

assessing PH assumption
using, 183–187

Time-dependent variables, 164
definition and examples of, 246–249
extended Cox model for, 249–251

Time-independent variables, PH
assumption and, 254–259

Time-on-study, 131–142, 148

U
Unconditional survival function, 327
Unshared frailty, 338

V
Veterans Administration Lung

Cancer Data
Kaplan-Meier survival curves for,

72–73
model with no frailty, 328
proportional hazards assumption

evaluation for, 115–118
with several stratification variables,

216–219
stratified Cox (SC) model application,

231–234

W
Wald statistic, 103
Weibull model, 304–309
Weibull regression

accelerated failure-time form, 354, 357
log relative-hazard form, 355, 357

Wilcoxon test, 74
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