Computer Science

Computer Architecture

Arithmetic for Computers

Unsigned Numbers

 For an N bit system, unsighed numbers are
represented fromOto 2V-1

0000 0000 0000 0000 0000 0000 0000 0000,,,,=0
0000 0000 0000 0000 0000 0000 0000 0001,,,,=1
0000 0000 0000 0000 0000 0000 0000 0010,,,, = 2

two —

two ten
ten

ten

11111111 11111111 1111 1111 1111 1110,,,, = 4,294,967,293
11111111 11111111 1111 1111 1111 1110,,,, = 4,294,967,294
111111111111 111111111111 1111 1111, = 4,294,967,295

ten

ten

ten

2’s Complement — Signed Numbers

0000 0000 0000 0000 0000 0000 0000 0000, = 0,
0000 0000 0000 0000 0000 0000 0000 0001, = 1.,
01111111 1111 1111 1111 1111 1111 1111, = 231
1000 0000 0000 0000 0000 0000 0000 0000, = -231
1000 0000 0000 0000 0000 0000 0000 0001, = -(23! — 1)
1000 0000 0000 0000 0000 0000 0000 0010, = -(23! — 2)
111111111111 1111 1111 1111 1111 1110, = -2
111111111111 11111111 1111 1111 1111, =-1

2’s Complement — Conversion

* Each number represents the quantity
Xgq =231 + X570 230+ %59 220 + ..+ % 21+ %, 2°
* More conveniently negate each bit and 1 to get the 2°s
complement.

01111111111112121211111111111111111 > 231 -1

4

1000 0000 0000 0000 0000 0000 0000 0001 = - (231-1)

Alternative Representations of Negative Numbers

Two’s complement is used for signed numbers in every
computer today. The following two representations were
discarded because they required additional conversion
steps before arithmetic could be performed on the
numbers
1. sign-and-magnitude: the most significant bit
represents +/- and the remaining bits express the
magnitude

2. one’s complement: -x is represented by inverting all
the bits of x

Both representations above suffer from two zeroes

Signh Extension

* |[n immediate instructions e.g. we have to add
a 32 bit number to a 16 bit constant.

e Before performing this operation the constant
needs to be converted to 32 bits. This is done
by replicating the most significant bit to fill in
the additional bits.

Addition and Subtraction

e Addition is similar to decimal arithmetic

e For subtraction, simply add the negative number — hence,
subtract A-B involves negating B’s bits, adding 1 and A

; ’ 4 4 r

A TR
0 1 1 0
1 1T (Mo W 1

€y ¢ —

0
0
- {0) ¢ {0 0 (0

Overflows

e For an unsigned number, overflow happens when the last carry (1)
cannot be accommodated

e For a signed number, overflow happens
= when the sum of two positive numbers is a negative result
= when the sum of two negative numbers is a positive result
= The sum of a positive and negative number will never overflow

e MIPS allows addu and subu instructions that work with unsigned
integers and never flag an overflow

Multiplication Example

Multiplicand 1000,,,,
Multiplier x 1001,
1000
0000
0000
1000
Product 1001000,,,,

In every step
e multiplicand is shifted
e next bit of multiplier is examined (also a shifting step)
e if this bit is 1, shifted multiplicand is added to the product

Multiplication Hardware Algorithm 1

R

Mutiplier
Shift right

32 bits

Control test I'

Write

In every step
e multiplicand is shifted
e next bit of multiplier is examined (also a shifting step)
e if this bit is 1, shifted multiplicand is added to the product

10

Division

1001,
1001010
-1000
10
101
1010
-1000
10

Quotient
Dividend

Divisor 1000

ten | ten

ten Remainder

At every step,
e shift divisor right and compare it with current dividend
e if divisor is larger, shift 0 as the next bit of the quotient
e if divisor is smaller, subtract to get new dividend and shift 1

as the next bit of the quotient
11

Division

1001,
1001010

Quotient
Dividend

Divisor 1000

two | two

01001010 01001010 00001010 00001010
10000000 - 01000000-> 00100000-> 00001000
Quo: O 01 010 01001

At every step,
e shift divisor right and compare it with current dividend
e if divisor is larger, shift 0 as the next bit of the quotient
e if divisor is smaller, subtract to get new dividend and shift 1
as the next bit of the quotient

Divide Example

e Divide 7

ten

(00000111

two

) by 2

ten

(0010

two)

Iter

Step

Quot

Divisor

Remainder

0

Initial values

1

13

Divide Example

e Divide 7., (0000 0111,,,) by 2,.,(0010,,,)

Iter Step Quot Divisor Remainder
0 Initial values 0000 | 0010 0000 | 0000 0111
1 Rem = Rem — Div 0000 | 00100000 | 11100111

Rem < 0 = +Div, shift 0 into Q 0000 | 0010 0000 | 0000 0111

Shift Div right 0000 | 0001 0000 | 0000 0111

2 Same steps as 1 0000 | 0001 0000 | 1111 0111
0000 | 0001 0000 | 0000 0111

0000 | 0000 1000 | 0000 0111

3 Same steps as 1 0000 | 0000 0100 | 0000 0111
4 | Rem =Rem - Div 0000 | 0000 0100 | 0000 0011
Rem >=0 =>» shift 1 into Q 0001 | 0000 0100 | 0000 0011

Shift Div right 0001 | 0000 0010 | 0000 0011

) Same steps as 4 0011 | 0000 0001 | 0000 0001

Hardware for Division

]

-
Dwisor
Shift right }-—
184 bis

l De—

N Quatient
B4-bit ALU Shift left

32 bits
Aemander Om—m
Write 18!
64 bils

A comparison requires a subtract; the sign of the result is

examined; if the result is negative, the divisor must be added back

15

Floating Point

e Done in the class

